WorldWideScience

Sample records for acoustic desorption combined

  1. Acoustic emission during hydrogen absorption and desorption in palladium

    International Nuclear Information System (INIS)

    Ramesh, R.; Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  2. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  3. Decomposition of thin titanium deuteride films: thermal desorption kinetics studies combined with microstructure analysis

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; Kaszkur, Zbigniew; Smithers, M.A.; Smithers, Mark A.

    2008-01-01

    The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy

  4. Acoustic insulator for combined well equipment of acoustic and radioactivity logging

    International Nuclear Information System (INIS)

    Arkad'ev, E.A.; Gorbachev, Yu.I.; Dseban', I.P.; Yagodov, G.I.

    1977-01-01

    The design of an acoustic insulator for cobined well equipment of acoustic and radioactivity logaing made on the basis of studying the velocity of elastic waves propagation and attenuation in cable structures of various marks is described. It is shown that the cable probe of electric loggign equipment which is recommended as an acoustic insulator for combined well equipment has the necessary sound-insulating properties

  5. Combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part...

  6. Research on the Combination of Underwater Acoustic Countermeasure Equipments Against Torpedo

    Directory of Open Access Journals (Sweden)

    Meng Jie

    2016-01-01

    Full Text Available Today the use of acoustic countermeasure equipment has become the main means in submarine defense torpedo operation. Combination of acoustic countermeasure equipments are used during the operation so that we can amplify the countermeasure effect. Based on the subject of the acoustic countermeasure equipments’ combined use, this paper analyses the interference between these soft kill countermeasure equipments including gas curtain, acoustic decoy and acoustic interferometer, summarizes the advantages and disadvantages of the different combined use of acoustic countermeasure equipments.

  7. Interactive effects of combined inorganic and organic fertilizers on phosphorous adsorption, desorption and mobility

    International Nuclear Information System (INIS)

    Li Xiang; Liu Yanxia; Liu Yiren; Xu Yangchun

    2013-01-01

    A "3"2P-labeled experiment was conducted to investigate the mechanisms of combining inorganic and organic fertilizers affecting P availability. Results showed that the characters of soil P adsorption-desorption changed remarkably with different patterns of fertilizer application. The affinity constant (k) of soil P adsorption, the maximal P adsorption (Q) and the buffering capacity of P adsorption (MBC) of the treatment of 80/20 were lower than those of the 100/0 treatment. The thin-layer chromatography (TLC) showed that "3"2P of the 80/20 treatment moved faster than the 100/0 treatment. The leaching volumes collected for each treatment when "3"2P first was observed were 13.1 mL for the treatment 80 : 20, 19.0 mL for the treatment of 100 : 0 and 19.8 mL (0 : 0) mL. Total "3"2P recovery for the 100 : 0 and the 80 : 20 treatments increased significantly after nearly 45 mL of leachates were collected. When the leachates reached 50 mL, only 1.6%, 8.4% and 9.8% of the applied "3"2P leached out from the 0 : 0, 100 : 0 and 80 : 20 treated soils, respectively. The findings indicated that combined organic and inorganic fertilizers could suppress the decreasing of P fixation, enhance P mobility more effectively and improve P use efficiency. (authors)

  8. Mandarin speech perception in combined electric and acoustic stimulation.

    Directory of Open Access Journals (Sweden)

    Yongxin Li

    Full Text Available For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI and hearing aid (HA typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0 information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2 information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects' HA-aided pure-tone average (PTA thresholds between 250 and 2000 Hz; subjects were divided into two groups: "better" PTA (50 dB HL. The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12, further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception.

  9. A combination dielectric and acoustic laboratory instrument for petrophysics

    Science.gov (United States)

    Josh, Matthew

    2017-12-01

    Laboratory testing of rock samples is the primary method for establishing the physics models which relate the rock properties (i.e. porosity, fluid permeability, pore-fluid and saturation) essential to evaluating a hydrocarbon reservoir, to the physical properties (resistivity, nuclear magnetic resonance, dielectric permittivity and acoustic properties) which can be measured with borehole logging instrumentation. Rock samples usually require machining to produce a suitable geometry for each test as well as specific sample preparation, e.g. multiple levels of saturation and chemical treatments, and this leads to discrepancies in the condition of the sample between different tests. Ideally, multiphysics testing should occur on one sample simultaneously so that useful correlations between data sets can be more firmly established. The world’s first dielectric and acoustic combination cell has been developed at CSIRO, so that a sample may be machined and prepared, then measured to determine the dielectric and acoustic properties simultaneously before atmospheric conditions in the laboratory affect the level of hydration in the sample. The dielectric measurement is performed using a conventional three-terminal parallel plate capacitor which can operate from 40 Hz up to 110 MHz, with modified electrodes incorporating a 4 MHz P-wave piezo crystal. Approximately 10 (acoustic P-) wavelengths interact with a typical (10 mm thick) sample so that the user may reliably ‘pick’ the P-wave arrival times with acceptable resolution. Experimental evidence indicates that the instrument is able to resolve 0.25 mm thickness in a Teflon sample test piece. For a number of engineering materials including Teflon and glass and also for a geological samples (Donnybrook sandstone from Western Australia) there is a perfectly linear relationship between both capacitance and P-wave arrival time with sample thickness. Donnybrook sandstone has a consistently linear increase in dielectric

  10. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hui, E-mail: yuhui200@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); Huang Guohe, E-mail: gordon.huang@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); An Chunjiang, E-mail: an209@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); Wei Jia, E-mail: jia.wei@iseis.org [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada)

    2011-06-15

    Highlights: {yields} The combined DOM and biosurfactant significantly enhanced desorption of PAHs. {yields} Compost DOM exhibited higher desorption enhancement capacity than the soil DOM. {yields} Competition among PAHs, DOM and biosurfactant for sorption site determined desorption of PAHs from soil. {yields} Formation of DOM-biosurfactant complex enhance desorption extent of PAHs. - Abstract: The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  11. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system

    International Nuclear Information System (INIS)

    Yu Hui; Huang Guohe; An Chunjiang; Wei Jia

    2011-01-01

    Highlights: → The combined DOM and biosurfactant significantly enhanced desorption of PAHs. → Compost DOM exhibited higher desorption enhancement capacity than the soil DOM. → Competition among PAHs, DOM and biosurfactant for sorption site determined desorption of PAHs from soil. → Formation of DOM-biosurfactant complex enhance desorption extent of PAHs. - Abstract: The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  12. Description and validation of a combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    A model that combines image source modelling and acoustical radiosity with complex boundary con- ditions, thus including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Model (PARISM). It has been developed in order to be able...... to model both specular and diffuse reflections with complex-valued acoustical descriptions of the surfaces. This paper mainly describes the combination of the two models and the implementation of the angle dependent surface descriptions both in the image source model and in acoustical radiosity...

  13. The distribution dynamics and desorption behaviour of mobile pharmaceuticals and caffeine to combined sewer sediments.

    Science.gov (United States)

    Hajj-Mohamad, M; Darwano, H; Duy, S Vo; Sauvé, S; Prévost, M; Arp, H P H; Dorner, S

    2017-01-01

    Pharmaceuticals are discharged to the environment from wastewater resource recovery facilities, sewer overflows, and illicit sewer connections. To understand the fate of pharmaceuticals, there is a need to better understand their sorption dynamics to suspended sediments (SS) and settled sediments (StS) in sewer systems. In this study, such sorption dynamics to both SS and StS were assessed using a batch equilibrium method under both static and dynamic conditions. Experiments were performed with natively occurring and artificially modified concentrations of sewer pharmaceuticals (acetaminophen, theophylline, carbamazepine, and a metabolite of carbamazepine) and caffeine. Differences in apparent distribution coefficients, K d,app , between SS and StS were related to differences in their organic carbon (OC) content, and the practice of artificially modifying the concentration. K d,app values of modified contaminant concentrations and high OC sediments were substantially higher. Pseudo-second order desorption rates for these mobile compounds were also quantified. Successive flushing events to simulate the addition of stormwater to sewer networks revealed that aqueous concentrations would not necessarily decrease, because the added water will rapidly return to equilibrium concentrations with the sediments. Sorption and desorption kinetics must be considered in addition to dilution, to avoid underestimating the influence of dilution on concentrations of pharmaceuticals discharged to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Auralisations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....

  15. Auralizations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... of the PARISM impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....

  16. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    Science.gov (United States)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  17. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    Science.gov (United States)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  18. A combination of the acoustic radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I.; Brunskog, Jonas; Jeong, Cheol-Ho

    2012-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part...

  19. Comparing a phased combination of acoustical radiosity and the image source method with other simulation tools

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2015-01-01

    A phased combination of acoustical radiosity and the image source method (PARISM) has been developed in order to be able to model both specular and diffuse reflections with angle-dependent and complex-valued acoustical descriptions of the surfaces. It is of great interest to model both specular...

  20. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  1. Analysis of wastewater samples by direct combination of thin-film microextraction and desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Strittmatter, Nicole; Düring, Rolf-Alexander; Takáts, Zoltán

    2012-09-07

    An analysis method for aqueous samples by the direct combination of C18/SCX mixed mode thin-film microextraction (TFME) and desorption electrospray ionization mass spectrometry (DESI-MS) was developed. Both techniques make analytical workflow simpler and faster, hence the combination of the two techniques enables considerably shorter analysis time compared to the traditional liquid chromatography mass spectrometry (LC-MS) approach. The method was characterized using carbamazepine and triclosan as typical examples for pharmaceuticals and personal care product (PPCP) components which draw increasing attention as wastewater-derived environmental contaminants. Both model compounds were successfully detected in real wastewater samples and their concentrations determined using external calibration with isotope labeled standards. Effects of temperature, agitation, sample volume, and exposure time were investigated in the case of spiked aqueous samples. Results were compared to those of parallel HPLC-MS determinations and good agreement was found through a three orders of magnitude wide concentration range. Serious matrix effects were observed in treated wastewater, but lower limits of detection were still found to be in the low ng L(-1) range. Using an Orbitrap mass spectrometer, the technique was found to be ideal for screening purposes and led to the detection of various different PPCP components in wastewater treatment plant effluents, including beta-blockers, nonsteroidal anti-inflammatory drugs, and UV filters.

  2. Combined analysis of 1,3-benzodioxoles by crystalline sponge X-ray crystallography and laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Hayashi, Yukako; Ohara, Kazuaki; Taki, Rika; Saeki, Tomomi; Yamaguchi, Kentaro

    2018-03-12

    The crystalline sponge (CS) method, which employs single-crystal X-ray diffraction to determine the structure of an analyte present as a liquid or an oil and having a low melting point, was used in combination with laser desorption ionization mass spectrometry (LDI-MS). 1,3-Benzodioxole derivatives were encapsulated in CS and their structures were determined by combining X-ray crystallography and MS. After the X-ray analysis, the CS was subjected to imaging mass spectrometry (IMS) with an LDI spiral-time-of-flight mass spectrometer (TOF-MS). The ion detection area matched the microscopic image of the encapsulated CS. In addition, the accumulated 1D mass spectra showed that fragmentation of the guest molecule (hereafter, guest) can be easily visualized without any interference from the fragment ions of CS except for two strong ion peaks derived from the tridentate ligand TPT (2,4,6-tris(4-pyridyl)-1,3,5-triazine) of the CS and its fragment. X-ray analysis clearly showed the presence of the guest as well as the π-π, CH-halogen, and CH-O interactions between the guest and the CS framework. However, some guests remained randomly diffused in the nanopores of CS. In addition, the detection limit was less than sub-pmol order based on the weight and density of CS determined by X-ray analysis. Spectroscopic data, such as UV-vis and NMR, also supported the encapsulation of the guest through the interaction between the guest and CS components. The results denote that the CS-LDI-MS method, which combines CS, X-ray analysis and LDI-MS, is effective for structure determination.

  3. Combining Semantic and Acoustic Features for Valence and Arousal Recognition in Speech

    DEFF Research Database (Denmark)

    Karadogan, Seliz; Larsen, Jan

    2012-01-01

    The recognition of affect in speech has attracted a lot of interest recently; especially in the area of cognitive and computer sciences. Most of the previous studies focused on the recognition of basic emotions (such as happiness, sadness and anger) using categorical approach. Recently, the focus...... has been shifting towards dimensional affect recognition based on the idea that emotional states are not independent from one another but related in a systematic manner. In this paper, we design a continuous dimensional speech affect recognition model that combines acoustic and semantic features. We...... show that combining semantic and acoustic information for dimensional speech recognition improves the results. Moreover, we show that valence is better estimated using semantic features while arousal is better estimated using acoustic features....

  4. Thermodynamics of the CO2–Absorption/Desorption Section in the Integrated Gasifying Combined cycle — II. Analysis

    Directory of Open Access Journals (Sweden)

    Jaroslav KOZACZKA

    2012-06-01

    Full Text Available The thermodynamic analysis of the absorption/desorption section of the ICGC–cycle has been presented using the Second Law with special emphasis on the thermodynamic effectivity concept and usability for complex systems investigations. Essential problems have been discussed based on the classical bibliographical items on the subject. Numerical calculations have been accomplished using results obtained in the first part, which contained absorption and desorption modeling approach oriented onto thermodynamic analyzes. Additionally the special properties of dilute solutions, especially the CO2/water system, have been presented and the problem of the solute chemical concentration exergy change suggested.

  5. Combined Opto-Acoustical sensor modules for KM3NeT

    International Nuclear Information System (INIS)

    Enzenhöfer, A.

    2013-01-01

    KM3NeT is a future multi-cubic-kilometre water Cherenkov neutrino telescope currently entering a first construction phase. It will be located in the Mediterranean Sea and comprise about 600 vertical structures called detection units. Each of these detection units has a length of several hundred metres and is anchored to the sea bed on one side and held taut by a buoy on the other side. The detection units are thus subject to permanent movement due to sea currents. Modules holding photosensors and additional equipment are equally distributed along the detection units. The relative positions of the photosensors has to be known with an uncertainty below 20 cm in order to achieve the necessary precision for neutrino astronomy. These positions can be determined with an acoustic positioning system: dedicated acoustic emitters located at known positions and acoustic receivers along each detection unit. This article describes the approach to combine an acoustic receiver with the photosensors inside one detection module using a common power supply and data readout. The advantage of this approach lies in a reduction of underwater connectors and module configurations as well as in the compactification of the detection units integrating the auxiliary devices necessary for their successful operation.

  6. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    Science.gov (United States)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  7. Combined failure acoustical diagnosis based on improved frequency domain blind deconvolution

    International Nuclear Information System (INIS)

    Pan, Nan; Wu, Xing; Chi, YiLin; Liu, Xiaoqin; Liu, Chang

    2012-01-01

    According to gear box combined failure extraction in complex sound field, an acoustic fault detection method based on improved frequency domain blind deconvolution was proposed. Follow the frequency-domain blind deconvolution flow, the morphological filtering was firstly used to extract modulation features embedded in the observed signals, then the CFPA algorithm was employed to do complex-domain blind separation, finally the J-Divergence of spectrum was employed as distance measure to resolve the permutation. Experiments using real machine sound signals was carried out. The result demonstrate this algorithm can be efficiently applied to gear box combined failure detection in practice.

  8. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    Science.gov (United States)

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,pmusic induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Combined Hybrid DFE and CCK Remodulator for Medium-Range Single-Carrier Underwater Acoustic Communications

    Directory of Open Access Journals (Sweden)

    Xialin Jiang

    2017-01-01

    Full Text Available Advanced modulation and channel equalization techniques are essential for improving the performance of medium-range single-carrier underwater acoustic communications. In this paper, an enhanced detection scheme, hybrid time-frequency domain decision feedback equalizer (DFE combined with complementary code keying (CCK remodulator, is presented. CCK modulation technique provides strong tolerance to intersymbol interference caused by multipath propagation in underwater acoustic channels. The conventional hybrid DFE, using a frequency domain feedforward filter and a time domain feedback filter, provides good performance along with low computational complexity. The error propagation in the feedback filter, caused by feedbacking wrong decisions prior to CCK demodulation, may lead to great performance degradation. In our proposed scheme, with the help of CCK coding gain, more accurate remodulated CCK chips can be used as feedback. The proposed detection scheme is tested by the practical ocean experiments. The experimental results show that the proposed detection scheme ensures robust communications over 10-kilometre underwater acoustic channels with the data rate at 5 Kbits/s in 3 kHz of channel bandwidth.

  10. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Directory of Open Access Journals (Sweden)

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  11. The Evaluation of Efficacy of the Combination of Acoustic Cavitation and Radiofrequency Lipolysis in Body Sculpturing

    Directory of Open Access Journals (Sweden)

    Seval Dogruk Kacar

    2014-02-01

    Full Text Available Aim: There is widespread use of noninvasive body sculpturing methods with the emerging new technologies in the field of aesthethic dermatology. However scientific data about these methods is limited. In our study the efficacy of the combination of acoustic cavitation and radiofrequency in body sculpturing is retrospectively evaluated. Material and Method: We retrospectively evaluated the patients who underwent body contouring treatment for belly and waist area in Dermatocosmetology unit of Afyon Kocatepe University Hospital between September 2012 and September 2013. The combination of acoustic cavitation and radiofrequency is applied 2 times a week for 10 sessions for body contouring of waist and belly. Before treatment and after each session the height, weight and perimetric measurements are recorded. Patients satisfaction level is assessed by visual analogue scale (VAS between 0 (dissatisfied, no effect and 5 (very satisfied, very effective. Results: The mean age of 15 female patients were 36,4±10,2 (23-52. There were statistically significant difference in weight and perimetric measurements of waist (superior waist, waist circumference, inferior waist between the beginning and end of treatment (respectively, p=0.002 and p=0.001 for the remaining three. Sixty percent of patients described the treatment as satisfactory according to VAS. The remaining were not satisfied although the treatments produced a change. No adverse effects reported other than a transient erythema during treatment. Discussion: Diet and exercise are still the most relevant ways to achieve optimal body shape and tone. Besides it is possible to eliminate excess fat and skin in appropriate patients by body sculpturing methods such as invasive and noninvasive liposuction and lipolysis. We found the combination of acoustic cavitation and radiofrequency effective in body shaping.

  12. Isocurvature modes and Baryon Acoustic Oscillations II: gains from combining CMB and Large Scale Structure

    International Nuclear Information System (INIS)

    Carbone, Carmelita; Mangilli, Anna; Verde, Licia

    2011-01-01

    We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter f iso , become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(f iso ) ∼ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys

  13. Differences in Perception of Musical Stimuli among Acoustic, Electric, and Combined Modality Listeners.

    Science.gov (United States)

    Prentiss, Sandra M; Friedland, David R; Nash, John J; Runge, Christina L

    2015-05-01

    Cochlear implants have shown vast improvements in speech understanding for those with severe to profound hearing loss; however, music perception remains a challenge for electric hearing. It is unclear whether the difficulties arise from limitations of sound processing, the nature of a damaged auditory system, or a combination of both. To examine music perception performance with different acoustic and electric hearing configurations. Chord discrimination and timbre perception were tested in subjects representing four daily-use listening configurations: unilateral cochlear implant (CI), contralateral bimodal (CIHA), bilateral hearing aid (HAHA) and normal-hearing (NH) listeners. A same-different task was used for discrimination of two chords played on piano. Timbre perception was assessed using a 10-instrument forced-choice identification task. Fourteen adults were included in each group, none of whom were professional musicians. The number of correct responses was divided by the total number of presentations to calculate scores in percent correct. Data analyses were performed with Kruskal-Wallis one-way analysis of variance and linear regression. Chord discrimination showed a narrow range of performance across groups, with mean scores ranging between 72.5% (CI) and 88.9% (NH). Significant differences were seen between the NH and all hearing-impaired groups. Both the HAHA and CIHA groups performed significantly better than the CI groups, and no significant differences were observed between the HAHA and CIHA groups. Timbre perception was significantly poorer for the hearing-impaired groups (mean scores ranged from 50.3-73.9%) compared to NH (95.2%). Significantly better performance was observed in the HAHA group as compared to both groups with electric hearing (CI and CIHA). There was no significant difference in performance between the CIHA and CI groups. Timbre perception was a significantly more difficult task than chord discrimination for both the CI and CIHA

  14. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation.

    Science.gov (United States)

    Yi, Chunhai; Lu, Qianqian; Wang, Yun; Wang, Yixuan; Yang, Bolun

    2018-05-01

    In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88-176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Shiea, J; Sunner, J

    2000-01-01

    A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.

  16. Determination of trace quaternary ammonium surfactants in water by combining solid-phase extraction with surface-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Sun, M C

    2001-01-01

    This study demonstrates the feasibility of combining solid-phase extraction (SPE) with surface-assisted laser desorption/ionization (SALDI) mass spectrometry to determine trace quaternary ammonium surfactants in water. The trace surfactants in water were directly concentrated on the surface of activated carbon sorbent in SPE. The activated carbon sorbent was then mixed with the SALDI liquid for SALDI analysis. No SPE elution procedure was necessary. Experimental results indicate that the surfactants with longer chain alkyl groups exhibit higher sensitivities than those with shorter chain alkyl groups in SPE-SALDI analysis. The detection limit for hexadecyltrimethylammonium bromide is around 10 ppt in SPE-SALDI analysis by sampling 100 mL of aqueous solution, while that of tetradecyltrimethylammonium bromide is about 100 ppt. The detection limit for decyltrimethylammonium bromide and dodecyltrimethylammonium bromide is in the low-ppb range. Copyright 2001 John Wiley & Sons, Ltd.

  17. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Directory of Open Access Journals (Sweden)

    G. Li

    2016-08-01

    Full Text Available Gaseous formaldehyde (HCHO is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs. Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of  ∼  10 to 40 ppbv. For the determination of uptake coefficients (γ, we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity  =  0 %, an initial γ of (1.1 ± 0.05  ×  10−4 is determined, which gradually drops to (5.5 ± 0.4  ×  10−5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition at the atmosphere–soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  18. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  19. Development of a combined surface plasmon resonance/surface acoustic wave device for the characterization of biomolecules

    International Nuclear Information System (INIS)

    Bender, Florian; Tsortos, Achilleas; Papadakis, George; Gizeli, Electra; Roach, Paul; Newton, Michael I; McHale, Glen

    2009-01-01

    It is known that acoustic sensor devices, if operated in liquid phase, are sensitive not just to the mass of the analyte but also to various other parameters, such as size, shape, charge and elastic constants of the analyte as well as bound and viscously entrained water. This can be used to extract valuable information about a biomolecule, particularly if the acoustic device is combined with another sensor element which is sensitive to the mass or amount of analyte only. The latter is true in good approximation for various optical sensor techniques. This work reports on the development of a combined surface plasmon resonance/surface acoustic wave sensor system which is designed for the investigation of biomolecules such as proteins or DNA. Results for the deposition of neutravidin and DNA are reported

  20. Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined

    Science.gov (United States)

    Feng, X. J.; Zhang, J. T.; Lin, H.; Gillis, K. A.; Mehl, J. B.; Moldover, M. R.; Zhang, K.; Duan, Y. N.

    2017-10-01

    We report a new determination of the Boltzmann constant k B using a cylindrical acoustic gas thermometer. We determined the length of the copper cavity from measurements of its microwave resonance frequencies. This contrasts with our previous work (Zhang et al 2011 Int. J. Thermophys. 32 1297, Lin et al 2013 Metrologia 50 417, Feng et al 2015 Metrologia 52 S343) that determined the length of a different cavity using two-color optical interferometry. In this new study, the half-widths of the acoustic resonances are closer to their theoretical values than in our previous work. Despite significant changes in resonator design and the way in which the cylinder length is determined, the value of k B is substantially unchanged. We combined this result with our four previous results to calculate a global weighted mean of our k B determinations. The calculation follows CODATA’s method (Mohr and Taylor 2000 Rev. Mod. Phys. 72 351) for obtaining the weighted mean value of k B that accounts for the correlations among the measured quantities in this work and in our four previous determinations of k B. The weighted mean {{\\boldsymbol{\\hat{k}}}{B}} is 1.380 6484(28)  ×  10-23 J K-1 with the relative standard uncertainty of 2.0  ×  10-6. The corresponding value of the universal gas constant is 8.314 459(17) J K-1 mol-1 with the relative standard uncertainty of 2.0  ×  10-6.

  1. A combined method for analysis of the acoustic emission signals from aboveground storage tank bottom

    Energy Technology Data Exchange (ETDEWEB)

    Yewei Kang; Mingchun Ling; Min Xiong; Yi Sun; Dongjie Tan [PetroChina Pipeline R and D Center, Langfang (China)

    2009-07-01

    In the late 1980s acoustic emission (AE) technology was first used to assess the corrosion of aboveground storage tank (AST) bottoms. From then on, it attracts great attention because it can do in-service inspection. Recognizing and eliminating noise is still the main challenge due to the small size of the signals in the presence of potential process noise when the AE signals are processed. In this paper a method combining pattern recognition with traditional AE parametric analysis is introduced to assess the corrosion of AST bottom. First, the AE signals are clustered in different clusters by a clustering method based on the distances of AE signal features. The reasonable cluster is selected for next analysis step. Second, a statistical method is used to evaluate the activities of AE on which the final evaluation report is based. Practical inspection is done on a large oil storage tank in the Chongqing distribution station of Lanzhou- Chengdu-Chongqing product oil pipeline of PetroChina Pipeline Company. The analytical result indicates that the combined method is reliable and feasible. (author)

  2. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2015-01-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse...... radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber...

  3. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry.

    Science.gov (United States)

    Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H

    2014-08-08

    For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.

    Science.gov (United States)

    Rader, Tobias; Adel, Youssef; Fastl, Hugo; Baumann, Uwe

    2015-01-01

    The aim of this study is to simulate speech perception with combined electric-acoustic stimulation (EAS), verify the advantage of combined stimulation in normal-hearing (NH) subjects, and then compare it with cochlear implant (CI) and EAS user results from the authors' previous study. Furthermore, an automatic speech recognition (ASR) system was built to examine the impact of low-frequency information and is proposed as an applied model to study different hypotheses of the combined-stimulation advantage. Signal-detection-theory (SDT) models were applied to assess predictions of subject performance without the need to assume any synergistic effects. Speech perception was tested using a closed-set matrix test (Oldenburg sentence test), and its speech material was processed to simulate CI and EAS hearing. A total of 43 NH subjects and a customized ASR system were tested. CI hearing was simulated by an aurally adequate signal spectrum analysis and representation, the part-tone-time-pattern, which was vocoded at 12 center frequencies according to the MED-EL DUET speech processor. Residual acoustic hearing was simulated by low-pass (LP)-filtered speech with cutoff frequencies 200 and 500 Hz for NH subjects and in the range from 100 to 500 Hz for the ASR system. Speech reception thresholds were determined in amplitude-modulated noise and in pseudocontinuous noise. Previously proposed SDT models were lastly applied to predict NH subject performance with EAS simulations. NH subjects tested with EAS simulations demonstrated the combined-stimulation advantage. Increasing the LP cutoff frequency from 200 to 500 Hz significantly improved speech reception thresholds in both noise conditions. In continuous noise, CI and EAS users showed generally better performance than NH subjects tested with simulations. In modulated noise, performance was comparable except for the EAS at cutoff frequency 500 Hz where NH subject performance was superior. The ASR system showed similar behavior

  5. In Situ Evaluation of Density, Viscosity and Thickness of Adsorbed Soft Layers by Combined Surface Acoustic Wave and Surface Plasmon Resonance

    OpenAIRE

    Francis, L.; Friedt, J. -M.; Zhou, C.; Bertrand, P.

    2003-01-01

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is...

  6. Alkaloid profiling of the Chinese herbal medicine Fuzi by combination of matrix-assisted laser desorption ionization mass spectrometry with liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Wang, J.; Heijden, R. van der; Spijksma, G.; Reijmers, T.; Wang, M.; Xu, G.; Hankemeier, T.; Greef, J. van der

    2009-01-01

    A matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method was developed for the high throughput and robust qualitative profiling of alkaloids in Fuzi-the processed lateral roots of the Chinese herbal medicine Aconitum carmichaeli Debx (A. carmichaeli). After optimization,

  7. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms.

    Science.gov (United States)

    Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling

    2015-09-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered.

  8. Defining management units for cetaceans by combining genetics, morphology, acoustics and satellite tracking

    Directory of Open Access Journals (Sweden)

    Signe Sveegaard

    2015-01-01

    Full Text Available Managing animal units is essential in biological conservation and requires spatial and temporal identification of such units. Since even neighbouring populations often have different conservation status and face different levels of anthropogenic pressure, detailed knowledge of population structure, seasonal range and overlap with animals from neighbouring populations is required to manage each unit separately. Previous studies on genetic structure and morphologic separation suggests three distinct populations of harbour porpoises with limited geographic overlap in the North Sea (NS, the Belt Sea (BS and the Baltic Proper (BP region. In this study, we aim to identify a management unit for the BS population of harbour porpoises. We use Argos satellite data and genetics from biopsies of tagged harbour porpoises as well as acoustic data from 40 passive acoustic data loggers to determine management areas with the least overlap between populations and thus the least error when abundance and population status is estimated. Discriminant analysis of the satellite tracking data from the BS and NS populations showed that the best fit of the management unit border during the summer months was an east–west line from Denmark to Sweden at latitude 56.95°N. For the border between BS and BP, satellite tracking data indicate a sharp decline in population density at 13.5°E, with 90% of the locations being west of this line. This was supported by the acoustic data with the average daily detection rate being 27.5 times higher west of 13.5°E as compared to east of 13.5°E. By using this novel multidisciplinary approach, we defined a management unit for the BS harbour porpoise population. We recommend that these boundaries are used for future monitoring efforts of this population under the EU directives. The boundaries may also be used for conservation efforts during the summer months, while seasonal movements of harbour porpoises should be considered during

  9. Nonlinear Dynamic Behavior of a Flexible Structure to Combined External Acoustic and Parametric Excitation

    Directory of Open Access Journals (Sweden)

    Paulo S. Varoto

    2006-01-01

    Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results

  10. A novel method for rapid inspection of sewer networks: combining acoustic and optical means

    OpenAIRE

    Plihal, H.; Kretschmer, F.; Bin Ali, M.T.; See, C.H.; Romanova, A.; Horoshenkov, K.V.; Ertl, T.

    2015-01-01

    Operation and maintenance of the public sewer system represent key tasks for an\\ud operator. Condition assessment is usually conducted by conventional closed\\ud circuit television (CCTV) inspection. However, alternative tools such as\\ud manhole-zoom cameras (MZCs) and the acoustic technology SewerBatt® are\\ud available today.\\ud The INNOKANIS project investigates structural and operational condition\\ud assessment in the sewer system by means of 3 MZC models and SewerBatt® to\\ud develop a comb...

  11. Ionization and acoustical instability of a low temperature magnetized plasma in a combined (direct and alternating) electrical field

    International Nuclear Information System (INIS)

    Andropov, V.G.; Sinkevich, O.A.

    1983-01-01

    It is shown that the ionization front which moves through a gas along a magnetic field in a combined electrical field, which lies in the plane of the front, may be unstable, as a result of the development of an ionization instability in the plasma behind the front. The criterion of instability of the ionization front does not greatly differ from the criterion of instability of an infinite plasma. The ionization front in the magnetic field is stable only in an electrical field of circular polarization or in a combined field in which the direct and alternating electrical fields are orthogonal and the Joule heat liberation from them is equal. The generation of sound is possible in a magnetized plasma in an alternating electrical field orthogonal to a magnetic due to the parametric acoustical instability at the frequency of the external electrical field. 8 refs

  12. Dislodgement and removal of dust-particles from a surface by a technique combining acoustic standing wave and airflow.

    Science.gov (United States)

    Chen, Di; Wu, Junru

    2010-01-01

    It is known that there are many fine particles on the moon and Mars. Their existence may cause risk for the success of a long-term project for NASA, i.e., exploration and habitation of the moon and Mars. These dust-particles might cover the solar panels, making them fail to generate electricity, and they might also penetrate through seals on space suits, hatches, and vehicle wheels causing many incidents. The fine particles would be hazardous to human health if they were inhaled. Development of robust dust mitigation technology is urgently needed for the viable long-term exploration and habilitation of either the moon or Mars. A feasibility study to develop a dust removal technique, which may be used in space-stations or other enclosures for habitation, is reported. It is shown experimentally that the acoustic radiation force produced by a 13.8 kHz 128 dB sound-level standing wave between a 3 cm-aperture tweeter and a reflector separated by 9 cm is strong enough to overcome the van der Waals adhesive force between the dust-particles and the reflector-surface. Thus the majority of fine particles (>2 microm diameter) on a reflector-surface can be dislodged and removed by a technique combining acoustic levitation and airflow methods. The removal efficiency deteriorates for particles of less than 2 microm in size.

  13. Experimental study of ultra-thin films mechanical integrity by combined nanoindentation and nano-acoustic emission

    Science.gov (United States)

    Zhang, Zihou

    Advancement of interconnect technology has imposed significant challenge on interface characterization and reliability for blurred interfaces between layers. There is a need for material properties and these miniaturized length scales and assessment of reliability; including the intrinsic film fracture toughness and the interfacial fracture toughness. The nano-meter range of film thicknesses currently employed, impose significant challenges on evaluating these physical quantities and thereby impose significant challenge on the design cycle. In this study we attempted to use a combined nano-indentation and nano-acoustic emission to qualitatively and quantitatively characterize the failure modes in ultra-thin blanket films on Si substrates or stakes of different characteristics. We have performed and analyzed an exhaustive group of testes that cove many diverge combination of film-substrate combination, provided by both Intel and IBM. When the force-indentation depth curve shows excursion, a direct measure of the total energy release rate is estimated. The collected acoustic emission signal is then used to partition the total energy into two segments, one associated with the cohesive fracture toughness of the film and the other is for the adhesive fracture toughness of the interface. The acoustic emission signal is analyzed in both the time and frequency domain to achieve such energy division. In particular, the signal time domain analysis for signal skewness, time of arrival and total energy content are employed with the proper signal to noise ratio. In the frequency domain, an expansive group of acoustic emission signals are utilized to construct the details of the power spectral density. A bank of band-pass filters are designed to sort the individual signals to those associated with adhesive interlayer cracking, cohesive channel cracking, or other system induced noise. The attenuation time and the energy content within each spectral frequency were the key elements

  14. Combined Helmholtz Integral Equation - Fourier series formulation of acoustical radiation and scattering problems

    CSIR Research Space (South Africa)

    Fedotov, I

    2006-07-01

    Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...

  15. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis

    2002-09-01

    In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.

  16. Combination of elastography and tissue quantification using the acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses.

    Science.gov (United States)

    Tozaki, Mitsuhiro; Isobe, Sachiko; Sakamoto, Masaaki

    2012-10-01

    We evaluated the diagnostic performance of elastography and tissue quantification using acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. There were 161 mass lesions. First, lesion correspondence on ARFI elastographic images to those on the B-mode images was evaluated: no findings on ARFI images (pattern 1), lesions that were bright inside (pattern 2), lesions that were dark inside (pattern 4), lesions that contained both bright and dark areas (pattern 3). In addition, pattern 4 was subdivided into 4a (dark area same as B-mode lesion) and 4b (dark area larger than lesion). Next, shear wave velocity (SWV) was measured using virtual touch tissue quantification. There were 13 pattern 1 lesions and five pattern 2 lesions; all of these lesions were benign, whereas all pattern 4b lesions (n = 43) were malignant. When the value of 3.59 m/s was chosen as the cutoff value, the combination of elastography and tissue quantification showed 91 % (83-91) sensitivity, 93 % (65-70) specificity, and 92 % (148-161) accuracy. The combination of elastography and tissue quantification is thought to be a promising ultrasound technique for differential diagnosis of breast-mass lesions.

  17. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils

    International Nuclear Information System (INIS)

    Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.

    2009-01-01

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  18. Non-contact test set-up for aeroelasticity in a rotating turbomachine combining a novel acoustic excitation system with tip-timing

    International Nuclear Information System (INIS)

    Freund, O; Seume, J R; Montgomery, M; Mittelbach, M

    2014-01-01

    Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact—and thus low interference—experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used

  19. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  20. Decentralized Single-beacon Acoustic Navigation: Combined Communication and Navigation for Underwater Vehicles

    Science.gov (United States)

    2010-06-01

    update equations that the update is a linear combination of the previous state estimate and the measurement: µk|k = Aµk|k−1 + Kzk (B.10) 151 APPENDIX B...LINEAR KALMAN FILTER DERIVATION where both A and K are unknown. Using equation B.4 to solve for A: 0 = E[xk − µk|k] (B.11) = E[xk −Aµk|k−1 − Kzk ] = E...k−1 − Kzk ) = cov(xk − µk|k−1 + KHµk|k−1 −KHxk −Kvk) = cov((I − KH)(xk − µk|k−1)−Kvk) = cov((I − KH)(xk − µk|k−1)) + cov(Kvk) = (I − KH)cov(xk − µk|k−1

  1. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  2. Imipenem-avibactam: a novel combination for the rapid detection of carbapenemase activity in Enterobacteriaceae and Acinetobacter baumannii by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Oviaño, Marina; Bou, Germán

    2017-02-01

    In the present study, we propose a novel matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method for detecting carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii. For this, we analyzed a series of 131 isolates. Among them, a total of 115 Enterobacteriaceae: 79 of them carrying a carbapenemase enzyme (15bla KPC , 7bla NDM , 11bla IMP , 12bla VIM , and 34bla OXA-48 ) and 16 A. baumannii isolates: 15 of them carrying carbapenemases (10bla OXA-23, 2bla OXA-58, 2bla OXA-24 , and 1bla OXA-237 ). The rest of the isolates were noncarbapenemase producers and used as negative controls. The isolates were submitted to susceptibility testing using a combination of imipenem-avibactam and analysis by the MALDI-TOF Biotyper Compass software (Bruker Daltonik, Germany). The assay showed an overall sensitivity and specificity for carbapenemase detection of 98% and 100%, respectively. The combination of imipenem and avibactam displayed activity against KPC and OXA-48-producing Enterobacteriaceae and thus represents a new strategy for identifying and confirming these carbapenemases. However, the combination did not provide any benefit over A. baumannii. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor.

    Science.gov (United States)

    Oh, Se Yeon; Shin, Hyun Du; Kim, Sung Jean; Hong, Jongki

    2008-03-07

    A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been developed for the detection of volatile aroma compounds emanated from lilac blossom (Syringa species: Syringa vulgaris variginata and Syringa dilatata). GC/SAW could detect and quantify various fragrance emitted from lilac blossom, enabling to provide fragrance pattern analysis results. The fragrance pattern analysis could easily characterize the delicate differences in aromas caused by the substantial difference of chemical composition according to different color and shape of petals. Moreover, the method validation of GC/SAW was performed for the purpose of volatile floral actual aroma analysis, achieving a high reproducibility and excellent sensitivity. From the validation results, GC/SAW could serve as an alternative analytical technique for the analysis of volatile floral actual aroma of lilac. In addition, headspace solid-phase microextraction (HS-SPME) GC-MS was employed to further confirm the identification of fragrances emitted from lilac blossom and compared to GC/SAW.

  4. Combining literature review, acoustic mapping and in situ observations: an overview of coralligenous assemblages in Liguria (NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Almudena Cánovas Molina

    2016-03-01

    Full Text Available A review and update of the existing knowledge on the coralligenous assemblages of Liguria (NW Italy was conducted as an essential step towards management measures for their conservation according to the EU Marine Strategy Framework Directive. By combining a literature review, acoustic mapping and in situ observations on a geographic information systems platform, we were able to assess the distribution and heterogeneity of coralligenous assemblages and the main pressures affecting them. The reliability of the literature was previously estimated using a dependability index. The coralligenous assemblages cover an area of 130.9 ha and range from 10 to 113 m depth. Twelve different biological facies (five of them not included in the EUNIS list were identified and four main geomorphotypes (plungingcliffs, paleocliffs, rockfalls and shoals were recognized. Incident light values influenced the distribution of four facies in Portofino promontory. Pressures were found on 33% of the coralligenous assemblages investigated, mainly due to fishing activities, mass mortality events, invasive species and occasional mucilaginous events. Our results showed a high spatial, geomorphological and biological heterogeneity of coralligenous assemblages in Liguria.

  5. Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking

    Directory of Open Access Journals (Sweden)

    Hiekata Takashi

    2006-01-01

    Full Text Available A new two-stage blind source separation (BSS method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO-model-based independent component analysis (ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is illustrated.

  6. Acoustic processing of temporally modulated sounds in infants: evidence from a combined near-infrared spectroscopy and EEG study

    Directory of Open Access Journals (Sweden)

    Silke eTelkemeyer

    2011-04-01

    Full Text Available Speech perception requires rapid extraction of the linguistic content from the acoustic signal. The ability to efficiently process rapid changes in auditory information is important for decoding speech and thereby crucial during language acquisition. Investigating functional networks of speech perception in infancy might elucidate neuronal ensembles supporting perceptual abilities that gate language acquisition. Interhemispheric specializations for language have been demonstrated in infants. How these asymmetries are shaped by basic temporal acoustic properties is under debate. We recently provided evidence that newborns process non-linguistic sounds sharing temporal features with language in a differential and lateralized fashion. The present study used the same material while measuring brain responses of 6 and 3 month old infants using simultaneous recordings of electroencephalography (EEG and near-infrared spectroscopy (NIRS. NIRS reveals that the lateralization observed in newborns remains constant over the first months of life. While fast acoustic modulations elicit bilateral neuronal activations, slow modulations lead to right-lateralized responses. Additionally, auditory evoked potentials and oscillatory EEG responses show differential responses for fast and slow modulations indicating a sensitivity for temporal acoustic variations. Oscillatory responses reveal an effect of development, that is, 6 but not 3 month old infants show stronger theta-band desynchronization for slowly modulated sounds. Whether this developmental effect is due to increasing fine-grained perception for spectrotemporal sounds in general remains speculative. Our findings support the notion that a more general specialization for acoustic properties can be considered the basis for lateralization of speech perception. The results show that concurrent assessment of vascular based imaging and electrophysiological responses have great potential in the research on language

  7. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    Science.gov (United States)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  8. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Study of the uniform corrosion of non alloy and stainless steels: combined utilization of acoustic emission and electrochemical techniques

    International Nuclear Information System (INIS)

    Jaubert, Lionel

    2004-01-01

    In chemical and petrochemical industry, uniform corrosion induces important economic and security disappointments. The mechanisms of this damaging corrosion mode are well understood, but methods for on-line detection are badly missing. Acoustic emission technique presents, to palliate this lack, potentialities that have been studied in an instrumented laboratory loop allowing the simulation of industrial uniform corrosion conditions. In acidic media, acoustic activity is related to the hydrogen evolution resulting from proton reduction; it is therefore well correlated to the damage severity. In neutral aerated media, the deposit formation of corrosion products is not very emissive. Yet, a specific study of frequency parameters allows detection of corrosion evolution, but in that case, the quantification of corrosion rate remains difficult. A subsidiary study confirms the technique applicability in the case of 'acidic' corrosion, even in very noisy conditions. (author) [fr

  10. Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach

    International Nuclear Information System (INIS)

    Jensen, C R; Cleveland, R O; Coussios, C C

    2013-01-01

    Passive acoustic mapping (PAM) has been recently demonstrated as a method of monitoring focused ultrasound therapy by reconstructing the emissions created by inertially cavitating bubbles (Jensen et al 2012 Radiology 262 252–61). The published method sums energy emitted by cavitation from the focal region within the tissue and uses a threshold to determine when sufficient energy has been delivered for ablation. The present work builds on this approach to provide a high-intensity focused ultrasound (HIFU) treatment monitoring software that displays both real-time temperature maps and a prediction of the ablated tissue region. This is achieved by determining heat deposition from two sources: (i) acoustic absorption of the primary HIFU beam which is calculated via a nonlinear model, and (ii) absorption of energy from bubble acoustic emissions which is estimated from measurements. The two sources of heat are used as inputs to the bioheat equation that gives an estimate of the temperature of the tissue as well as estimates of tissue ablation. The method has been applied to ex vivo ox liver samples and the estimated temperature is compared to the measured temperature and shows good agreement, capturing the effect of cavitation-enhanced heating on temperature evolution. In conclusion, it is demonstrated that by using PAM and predictions of heating it is possible to produce an evolving estimate of cell death during exposure in order to guide treatment for monitoring ablative HIFU therapy. (paper)

  11. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  12. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  13. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  14. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.

    Science.gov (United States)

    Cristiglio, Viviana; Grillo, Isabelle; Fomina, Margarita; Wien, Frank; Shalaev, Evgenyi; Novikov, Alexey; Brassamin, Séverine; Réfrégiers, Matthieu; Pérez, Javier; Hennet, Louis

    2017-01-01

    The acoustic levitation technique is a useful sample handling method for small solid and liquids samples, suspended in air by means of an ultrasonic field. This method was previously used at synchrotron sources for studying pharmaceutical liquids and protein solutions using x-ray diffraction and small angle x-ray scattering (SAXS). In this work we combined for the first time this containerless method with small angle neutron scattering (SANS) and synchrotron radiation circular dichroism (SRCD) to study the structural behavior of proteins in solutions during the water evaporation. SANS results are also compared with SAXS experiments. The aggregation behavior of 45μl droplets of lysozyme protein diluted in water was followed during the continuous increase of the sample concentration by evaporating the solvent. The evaporation kinetics was followed at different drying stage by SANS and SAXS with a good data quality. In a prospective work using SRCD, we also studied the evolution of the secondary structure of the myoglobin protein in water solution in the same evaporation conditions. Acoustic levitation was applied for the first time with SANS and the high performances of the used neutron instruments made it possible to monitor fast container-less reactions in situ. A preliminary work using SRCD shows the potentiality of its combination with acoustic levitation for studying the evolution of the protein structure with time. This multi-techniques approach could give novel insights into crystallization and self-assembly phenomena of biological compound with promising potential applications in pharmaceutical, food and cosmetics industry. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions.

    Science.gov (United States)

    Mian, Shahid; Ball, Graham; Hornbuckle, Jo; Holding, Finn; Carmichael, James; Ellis, Ian; Ali, Selman; Li, Geng; McArdle, Stephanie; Creaser, Colin; Rees, Robert

    2003-09-01

    An ability to predict the likelihood of cellular response towards particular chemotherapeutic agents based upon protein expression patterns could facilitate the identification of biological molecules with previously undefined roles in the process of chemoresistance/chemosensitivity, and if robust enough these patterns might also be exploited towards the development of novel predictive assays. To ascertain whether proteomic based molecular profiling in conjunction with artificial neural network (ANN) algorithms could be applied towards the specific recognition of phenotypic patterns between either control or drug treated and chemosensitive or chemoresistant cellular populations, a combined approach involving MALDI-TOF matrix-assisted laser desorption/ionization-time of flight mass spectrometry, Ciphergen protein chip technology and ANN algorithms have been applied to specifically identify proteomic 'fingerprints' indicative of treatment regimen for chemosensitive (MCF-7, T47D) and chemoresistant (MCF-7/ADR) breast cancer cell lines following exposure to Doxorubicin or Paclitaxel. The results indicate that proteomic patterns can be identified by ANN algorithms to correctly assign 'class' for treatment regimen (e.g. control/drug treated or chemosensitive/chemoresistant) with a high degree of accuracy using boot-strap statistical validation techniques and that biomarker ion patterns indicative of response/non-response phenotypes are associated with MCF-7 and MCF-7/ADR cells exposed to Doxorubicin. We have also examined the predictive capability of this approach towards MCF-7 and T47D cells to ascertain whether prediction could be made based upon treatment regimen irrespective of cell lineage. Models were identified that could correctly assign class (control or Paclitaxel treatment) for 35/38 samples of an independent dataset. A similar level of predictive capability was also found (> 92%; n = 28) when proteomic patterns derived from the drug resistant cell line MCF-7

  16. In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance.

    Science.gov (United States)

    Francis, Laurent A; Friedt, Jean-Michel; Zhou, Cheng; Bertrand, Patrick

    2006-06-15

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity, and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold-coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is monitored simultaneously in a single setup for the real-time and label-free measurement of the parameters of adsorbed soft layers, which means for layers with a predominant viscous behavior. A general mathematical modeling in equivalent viscoelastic transmission lines is presented to determine the correlation between experimental SAW signal shifts and the waveguide structure including the presence of the adsorbed layer and the supporting liquid from which it segregates. A methodology is presented to identify from SAW and SPR simulations the parameters representatives of the soft layer. During the absorption of a soft layer, thickness or viscosity changes are observed in the experimental ratio of the SAW signal attenuation to the SAW signal phase and are correlated with the theoretical model. As application example, the simulation method is applied to study the thermal behavior of physisorbed PNIPAAm, a polymer whose conformation is sensitive to temperature, under a cycling variation of temperature between 20 and 40 degrees C. Under the assumption of the bulk density and the bulk refractive index of PNIPAAm, thickness and viscosity of the film are obtained from simulations; the viscosity is correlated to the solvent content of the physisorbed layer.

  17. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  18. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  19. Evidence of key tinnitus-related brain regions documented by a unique combination of manganese-enhanced MRI and acoustic startle reflex testing.

    Directory of Open Access Journals (Sweden)

    Avril Genene Holt

    2010-12-01

    Full Text Available Animal models continue to improve our understanding of tinnitus pathogenesis and aid in development of new treatments. However, there are no diagnostic biomarkers for tinnitus-related pathophysiology for use in awake, freely moving animals. To address this disparity, two complementary methods were combined to examine reliable tinnitus models (rats repeatedly administered salicylate or exposed to a single noise event: inhibition of acoustic startle and manganese-enhanced MRI. Salicylate-induced tinnitus resulted in wide spread supernormal manganese uptake compared to noise-induced tinnitus. Neither model demonstrated significant differences in the auditory cortex. Only in the dorsal cortex of the inferior colliculus (DCIC did both models exhibit supernormal uptake. Therefore, abnormal membrane depolarization in the DCIC appears to be important in tinnitus-mediated activity. Our results provide the foundation for future studies correlating the severity and longevity of tinnitus with hearing loss and neuronal activity in specific brain regions and tools for evaluating treatment efficacy across paradigms.

  20. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  1. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  2. Data compilation for particle impact desorption

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeuchi, Fujio.

    1984-05-01

    The desorption of gases from solid surfaces by incident electrons, ions and photons is one of the important processes of hydrogen recycling in the controlled thermonuclear reactors. We have surveyed the literature concerning the particle impact desorption published through 1983 and compiled the data on the desorption cross sections and desorption yields with the aid of a computer. This report presents the results obtained for electron stimulated desorption, the desorption cross sections and yields being given in graphs and tables as functions of incident electron energy, surface temperature and gas exposure. (author)

  3. A Combined On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker

    CERN Document Server

    Bitadze, A.; Bates, R.; Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; DiGirolamo, B.; Godlewski, J.; Perez-Rodriguez, E.; Zwalinski, L.; Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A.; Boyd, G.; Doubek, M.; Vacek, V.; Vitek, M.; Egorov, K.; Katunin, S.; McMahon, S.; Nagai, K.

    2011-01-01

    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6 (hexafluoro-ethane) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage with increasing LHC luminosity. Central to this upgrade is a new acoustic instrument for the real-time measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. The instrument has demonstrated a resolution of 3.10-3 for C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has been seen. The instrument has many potential applications, including the analysis of mixtures of hydrocarbons,...

  4. The Acoustic Lens Design and in Vivo Use of a Multifunctional Catheter Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    Science.gov (United States)

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Sahn, David

    2009-01-01

    A multifunctional 9F intracardiac imaging and electrophysiology mapping catheter was developed and tested to help guide diagnostic and therapeutic intracardiac electrophysiology (EP) procedures. The catheter tip includes a 7.25-MHz, 64-element, side-looking phased array for high resolution sector scanning. Multiple electrophysiology mapping sensors were mounted as ring electrodes near the array for electrocardiographic synchronization of ultrasound images. The catheter array elevation beam performance in particular was investigated. An acoustic lens for the distal tip array designed with a round cross section can produce an acceptable elevation beam shape; however, the velocity of sound in the lens material should be approximately 155 m/s slower than in tissue for the best beam shape and wide bandwidth performance. To help establish the catheter’s unique ability for integration with electrophysiology interventional procedures, it was used in vivo in a porcine animal model, and demonstrated both useful intracardiac echocardiographic visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheter also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. PMID:18407850

  5. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  6. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  7. Carbon tetrachloride desorption from activated carbon

    International Nuclear Information System (INIS)

    Jonas, L.A.; Sansone, E.B.

    1981-01-01

    Carbon tetrachloride was desorbed from a granular activated carbon subsequent to its adsorption under various vapor exposure periods. The varied conditions of exposure resulted in a range of partially saturated carbon beds which, when followed by a constant flow rate for desorption, generated different forms of the desorbing concentration versus time curve. A method of analyzing the desorption curves is presented which permits extraction of the various desorbing rates from the different desorption and to relate this to the time required for such regeneration. The Wheeler desorption kinetic equation was used to calculate the pseudo first order desorption rate constant for the carbon. The desorption rate constant was found to increase monotonically with increasing saturation of the bed, permitting the calculation of the maximum desorption rate constant for the carbon at 100% saturation. The Retentivity Index of the carbon, defined as the dimensionless ratio of the adsorption to the desorption rate constant, was found to be 681

  8. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Idelevich, Evgeny A; Grünastel, Barbara; Becker, Karsten

    2017-01-01

    Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption-ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. Copyright © 2016 American Society for Microbiology.

  9. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  10. Effects of combined exposure to pyridostigmine bromide and shaker stress on acoustic startle response, pre-pulse inhibition and open field behavior in mice.

    Science.gov (United States)

    Dubovicky, M; Paton, S; Morris, M; Mach, M; Lucot, J B

    2007-01-01

    The present study investigated the effect of combined exposure of pyridostigmine bromide (PB) and chronic shaker stress on acoustic startle responses (ASR), pre-pulse inhibition (PPI) and open field behavior of adult C57BL/6J mice. PB (10 mg kg(-1) day(-1) for 7 days) or saline was administered subcutaneously using osmotic Alzet minipumps implanted under the skin on the back of the mice. At the same time, the mice were exposed to 7 days of intermittent shaker stress. They were tested for ASR (100 dB and 120 dB stimuli) and PPI (70 dB + 100 dB and 70 dB + 120 dB) in the acoustic startle monitor system. The mice were assessed during the shaker stress on days 2 and 7 and 7, 14, 21 and 28 days after discontinuation of treatment. Separate groups of mice were tested in the open field in 15 min sessions on days 1, 3 and 6 during shaker stress and PB treatment. Exposure of mice to PB resulted in an exaggerated ASR, reduced PPI and non-significant decrease in locomotor activity. These behavioral changes were apparent only during exposure to PB. Repeated shaker stress did not have any effect on sensorimotor functions or open field behavior of mice. There was no prolonged or delayed effect of PB and/or stress on individual behavioral variables. The study found C57BL/6J mice to be behaviorally sensitive to PB treatment. (c) 2007 John Wiley & Sons, Ltd.

  11. Using Combined X-ray Computed Tomography and Acoustic Resonance to Understand Supercritical CO2 Behavior in Fractured Sandstone

    Science.gov (United States)

    Kneafsey, T. J.; Nakagawa, S.

    2015-12-01

    Distribution of supercritical (sc) CO2 has a large impact on its flow behavior as well as on the properties of seismic waves used for monitoring. Simultaneous imaging of scCO2 distribution in a rock core using X-ray computed tomography (CT) and measurements of seismic waves in the laboratory can help understand how the distribution evolves as scCO2 invades through rock, and the resulting seismic signatures. To this end, we performed a series of laboratory scCO2 core-flood experiments in intact and fractured anisotropic Carbon Tan sandstone samples. In these experiments, we monitored changes in the CO2 saturation distribution and sonic-frequency acoustic resonances (yielding both seismic velocity and attenuation) over the course of the floods. A short-core resonant bar test system (Split-Hopkinson Resonant Bar Apparatus) custom fit into a long X-ray transparent pressure vessel was used for the seismic measurements, and a modified General Electric medical CT scanner was used to acquire X-ray CT data from which scCO2 saturation distributions were determined. The focus of the experiments was on the impact of single fractures on the scCO2 distribution and the seismic properties. For this reason, we examined several cases including 1. intact, 2. a closely mated fracture along the core axis, 3. a sheared fracture along the core axis (both vertical and horizontal for examining the buoyancy effect), and 4. a sheared fracture perpendicular to the core axis. For the intact and closely mated fractured cores, Young's modulus declined with increasing CO2 saturation, and attenuation increased up to about 15% CO2 saturation after which attenuation declined. For cores having wide axial fractures, the Young's modulus was lower than for the intact and closely mated cases, however did not change much with CO2 pore saturation. Much lower CO2 pore saturations were achieved in these cases. Attenuation increased more rapidly however than for the intact sample. For the core

  12. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials

    International Nuclear Information System (INIS)

    Bender, Markus

    2008-01-01

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  13. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  14. Topological Acoustics

    Science.gov (United States)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  15. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  16. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  17. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    Science.gov (United States)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  18. Heating of carriers as controlled by the combined interactions with acoustic and piezoelectric phonons in degenerate III-V semiconductors at low lattice temperature

    Science.gov (United States)

    Bhattacharya, D. P.; Das, J.; Basu, A.; Das, B.

    2017-09-01

    In compound semiconductors which lack inversion symmetry, the combined interaction of the electrons with both acoustic and piezoelectric phonons is dominant at low lattice temperatures ( 20 K). The field dependence of the effective electron temperature under these conditions, has been calculated by solving the modified energy balance equation that takes due account of the degeneracy. The traditionally used heated Fermi-Dirac (F.D.) function for the non-equilibrium distribution function is approximated by some well tested model distribution. This makes it possible to carry out the integrations quite easily and, thus to obtain some more realistic results in a closed form, without taking recourse to any oversimplified approximations. The numerical results that follow for InSb, InAs and GaN, from the present analysis, are then compared with the available theoretical and experimental data. The degeneracy and the piezoelectric interaction, both are seen to bring about significant changes in the electron temperature characteristics. The scope for further refinement is discussed.

  19. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  20. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    Science.gov (United States)

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  2. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  3. Analysis of phloem protein patterns from different organs of Cucurbita maxima Duch. by matrix-assisted laser desorption/ionization time of flight mass spectroscopy combined with sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Kehr, J; Haebel, S; Blechschmidt-Schneider, S; Willmitzer, L; Steup, M; Fisahn, J

    1999-02-01

    Sieve tubes mediate the long-distance transport of nutrients and signals between source and sink organs of plants. To detect mobile phloem proteins that are differentially distributed in source and sink organs of Cucurbita maxima, we used both one-dimensional gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Both techniques revealed that phloem protein patterns depend on the sampling site: whilst several proteins were consistently observed in all phloem samples studied others appeared to occur in a organ-specific manner. For a characterization and identification of distinct phloem polypeptides, two approaches were chosen. First, protein bands resolved by SDS-PAGE were eluted from the polyacrylamide gel and the masses of the proteins were then determined by MALDI-TOF MS. Second, proteins resolved by SDS-PAGE were subjected to proteolytic degradation and the resulting peptides were analyzed by MALDI-TOF MS: the masses of the proteolytic peptides were used for a database search. By the latter approach, three mobile phloem compounds were identified as the phloem-specific protein PP2 (D.E. Bostwick et al., 1992, The Plant Cell 4, 1539-1548) a chymotrypsin and an aspartic proteinase inhibitor. None of the other polypeptides studied corresponded to any of the protein sequences present in the database. Furthermore, MALDI-TOF MS analyses indicated that some of the mobile phloem proteins occur in a covalently modified form and that the extent of the modification depends upon the plant organ.

  4. First-principles calculations of helium and neon desorption from cavities in silicon

    International Nuclear Information System (INIS)

    Eddin, A Charaf; Pizzagalli, L

    2012-01-01

    Combining density functional theory, the nudged elastic band technique, and the ultradense fluid model, we investigated the desorption process of He and Ne in silicon. Our results show that the internal surfaces of gas-filled bubbles are not a limiting factor during desorption experiments, since the surface reconstruction opens diffusion paths easier than in the bulk. We show that the vibrational contribution to the energy of helium in the bulk has to be considered in order to determine realistic pressures in the bubbles, when comparing experiments and simulations. At the maximum of desorption, an average pressure of 1-2 GPa is computed. (paper)

  5. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  6. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  7. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  8. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  9. Nuclear stimulated desorption as a potential tool for surface study

    International Nuclear Information System (INIS)

    Nir, Dror.

    1993-03-01

    The described research work constitutes a base for an experimental method to be implemented in the study of solid surfaces. Nuclear Stimulated Desorption (NSD) is a new mode of experimentation in thin film and surface physics. It Is based on the interplay between nuclear phenomena (reactions and spontaneous decays), and atomic - scale induced effects on surfaces and very thin films. One may distinguish between two generically different relationships between the two. First, the dynamics of the nuclear reaction -primarily the recoil of the nucleus - may effect the position of the atom or molecule containing it. Second, the nuclear reaction (or decay) may serve as an analytical indicator of the whereabouts of the atom, or molecule, in question. In nuclear stimulated desorption, both thee aspects combine in an essential way. Namely, one employs a series of two consecutive decays (normally weak decays or isomeric transition) . The first of these decays causes the nucleus to desorb from a surface onto which it had been placed; the second serves to determine the position of the daughter and thereby the characteristics of the primary desorption . The essential feature in NSD is that it occurs almost exclusively from the outermost surface layer. This is because we choose to work with nuclei whose recoil energy Is of the same order of magnitude of the binding energy of the atom to the surface . Furthermore, the desorption probability and its angular (and temporal) characteristics, depend on the features (topology, morphology) of its immediate neighborhood. This work describes experiments which were designed to give relevant, phenomenological information about the outgoing flux of the radioactive daughters (for specifically chosen nuclear species) , and in particular the magnitude of the flux, its time dependence and its charged state. In addition. the basic phenomena itself is being distinguished from competing processes (thermal desorption, in particular). We will now

  10. Modelling of a thermally activated building system (TABS) combined with free-hanging acoustic ceiling units using computational fluid dynamics (CFD)

    DEFF Research Database (Denmark)

    Lacarte, Luis Marcos Domínguez; Fan, Jianhua

    2017-01-01

    . The active surfaces of TABS need to be as exposed as possible, but exposing bare concrete surfaces has a negative impact on the acoustic quality in the premises. Acoustic solutions capable of providing optimal acoustic comfort while allowing the heat exchange between the TABS and the room are desirable...... of the heat exchange between the TABS and the room and the occupants. The simulations are validated by comparison with full scale measurements in laboratory conditions. The study shows that for equivalent sound absorption levels, free-hanging vertical sound absorbers have a lower impact on the heat exchange......Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to achieve optimal indoor thermal environment in buildings. This solution uses the building mass to store heat and by means of water pipes embedded in the concrete slabs adjust the temperature in the premises...

  11. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  12. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  13. Localization, Weakening and Fluid-rock Coupling Mechanisms in Gypsum: Development and Initial Data From a New, Combined, Rotary Shear and Acoustic Emission Apparatus.

    Science.gov (United States)

    Benson, P. M.; Pozzi, G.; Guerin-Marthe, S.; De Paola, N.; Nielsen, S. B.; Tomas, R.

    2017-12-01

    We present initial pilot data from a newly developed apparatus designed to measure Acoustic Emissions (AE) during the shear of fault gouges to 25 MPa normal stress and up to a maximum speed of 1 m/s, simulating dynamic earthquake processes. The sample assembly consists of a titanium-vanadium alloy (Ti-alloy, Ti90Al6V4) anvil fitted with 6 ports on the lower (stationary) section for AE sensors that record the activity of the shearing occurring in the gouge layer above. AE data are amplified from between 6 to 70 dB and recorded to disk continuously at a sampling rate of 10 MHz; calibration tests with Teflon shims confirm that the machine noise is negligible. Gouge thicknesses of approximately 2 mm are used, confined with a Teflon ring. Here we focus on Gypsum gouge from the Volterra region of Italy, sieved to give a constant gouge range of between 63 to 90 micrometers. Mechanical data show the onset of weakening after a slip of 1-3 cm for velocities of v = 100 to 1 cm s-1 respectively. Microstructural observations reveal a shear zone bounded by sharp mirror surfaces, and the development of a dehydration front, which is likely to have produced small pockets of water. We also record a characteristic `pulsing' AE signal generated after shearing is arrested, manifested as a series of energy spikes occurring at regular intervals. However, these signals are only generally seen for shear tests conducted on gypsum gouges (not in anhydrite) at 10cm per second or higher. Taken together, we interpret these observations as evidence that the initial shearing generated a thin slip zone that heats up rapidly, generating the dehydration front. Once motion ceases, pockets of trapped pressurized water combined with thermal stress generates distributed micro-fracturing detected as an initial swarm of high energy AE, and allows fluids to vent in pulses to the ambient atmosphere. An initial seismic -b value analysis of the continuous AE waveform also supports these initial findings.

  14. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  15. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.

    1990-01-01

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  17. Building Acoustics

    Science.gov (United States)

    Cowan, James

    This chapter summarizes and explains key concepts of building acoustics. These issues include the behavior of sound waves in rooms, the most commonly used rating systems for sound and sound control in buildings, the most common noise sources found in buildings, practical noise control methods for these sources, and the specific topic of office acoustics. Common noise issues for multi-dwelling units can be derived from most of the sections of this chapter. Books can be and have been written on each of these topics, so the purpose of this chapter is to summarize this information and provide appropriate resources for further exploration of each topic.

  18. Combined Electric and Acoustic Stimulation With Hearing Preservation: Effect of Cochlear Implant Low-Frequency Cutoff on Speech Understanding and Perceived Listening Difficulty.

    Science.gov (United States)

    Gifford, René H; Davis, Timothy J; Sunderhaus, Linsey W; Menapace, Christine; Buck, Barbara; Crosson, Jillian; O'Neill, Lori; Beiter, Anne; Segel, Phil

    The primary objective of this study was to assess the effect of electric and acoustic overlap for speech understanding in typical listening conditions using semidiffuse noise. This study used a within-subjects, repeated measures design including 11 experienced adult implant recipients (13 ears) with functional residual hearing in the implanted and nonimplanted ear. The aided acoustic bandwidth was fixed and the low-frequency cutoff for the cochlear implant (CI) was varied systematically. Assessments were completed in the R-SPACE sound-simulation system which includes a semidiffuse restaurant noise originating from eight loudspeakers placed circumferentially about the subject's head. AzBio sentences were presented at 67 dBA with signal to noise ratio varying between +10 and 0 dB determined individually to yield approximately 50 to 60% correct for the CI-alone condition with full CI bandwidth. Listening conditions for all subjects included CI alone, bimodal (CI + contralateral hearing aid), and bilateral-aided electric and acoustic stimulation (EAS; CI + bilateral hearing aid). Low-frequency cutoffs both below and above the original "clinical software recommendation" frequency were tested for all patients, in all conditions. Subjects estimated listening difficulty for all conditions using listener ratings based on a visual analog scale. Three primary findings were that (1) there was statistically significant benefit of preserved acoustic hearing in the implanted ear for most overlap conditions, (2) the default clinical software recommendation rarely yielded the highest level of speech recognition (1 of 13 ears), and (3) greater EAS overlap than that provided by the clinical recommendation yielded significant improvements in speech understanding. For standard-electrode CI recipients with preserved hearing, spectral overlap of acoustic and electric stimuli yielded significantly better speech understanding and less listening effort in a laboratory-based, restaurant

  19. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  20. Effect of equilibration time on Pu desorption from goethite

    International Nuclear Information System (INIS)

    Wong, Jennifer C.; Powell, Brian A.; Zavarin, Mavrik; Begg, James D.; Kersting, Annie B.

    2015-01-01

    It has been suggested that strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time which has implications for near- and far-field transport of Pu. Batch adsorption-desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethite was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.

  1. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  2. Particle desorption mass spectrometric surface characterization

    International Nuclear Information System (INIS)

    Summers, W.R.

    1986-01-01

    The feasibility of utilizing 252 Cf-Particle Desorption Mass Spectrometry (PDMS) to characterize the surface region of solid samples has been evaluated. The PDMS experiment was adapted to an ultrahigh vacuum (UHV) environment and was configured so as to allow the analysis of thick as well as thin samples. This apparatus included an in situ sputter cleaning/depth profiling facility. The mass resolution was variable from 300 to 200 at 133 daltons by changing the drift length from 27 cm to 20 cm. Desorbed ions were focused by using either a dual grid assembly or an einzel lens. The overall instrumental transmission efficiency with the einzel lens operative was approximately 50%. The applicability of 252 Cf-PDMS to samples that were thick and insulating was demonstrated in the analysis of geological specimens. Pollucite, Microcline, Amblygonite, and Lepidolite were analyzed without complications associated with sample thickness or charge accumulation. Substitution occurring between the alkali metals in the environment was observed by PDMS and was corroborated by SIMS, XPS, and EMP analyses. The analysis of NBM SRM glasses addressed the suitability of combining the PDMS technique was sputter etching. This application demonstrated the ability of this technique to sense changes in the chemical environment brought about by sputter cleaning. The analysis of these samples also allowed the estimation of detection limits for lithium, rubidium, and cesium in a glass matrix as 300 ppm, 400 ppm, and 400 ppm, respectively. Sputter depth profiling combined with 252 Cf-PDMS analysis of an aluminum layer on a silicon substrate established the utility of the PDMS technique in surface characterization

  3. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  4. Acoustic 3D imaging of dental structures

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  5. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  6. Acoustic Territoriality

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2011-01-01

    Under the heading of "Gang i København" a number of initiatives was presented by the Lord Mayer and the Technical and Environmental Mayer of Copenhagen in May 2006. The aim of the initiative, which roughly translates to Lively Copenhagen, was both to make Copenhagen a livelier city in terms of city...... this article outline a few approaches to a theory of acoustic territoriality....

  7. Acoustic lenses

    International Nuclear Information System (INIS)

    Kittmer, C.A.

    1983-03-01

    Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed

  8. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  9. Desorption, dissociation and orientation of oxygen admolecules on a reconstructed platinum(110)(1x2) surface studied by thermal desorption and near-edge X-ray-absorption fine-structure

    International Nuclear Information System (INIS)

    Ohno, Yuichi; Matsushima, Tatsuo; Tanaka, Shin-ichiro; Kamada, Masao

    1993-01-01

    The desorption, dissociation and orientation of oxygen admolecules on a reconstructed Pt(110)(1x2) were studied by means of TDS combined with isotope tracer, NEXAFS, and angle-resolved TDS. The admolecules below half a monolayer lie on the bottom of the trough, being oriented along it. The molecules adsorbed additionally are lying on declining terraces. The desorption flux of the former species shows a simple cosine distribution, suggesting that the molecule is not localized on the bottom in the desorption event. (author)

  10. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  11. Acoustic Neuroma Association

    Science.gov (United States)

    ... EVENTS DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Brain Freeze ? READ MORE Read More What is acoustic neuroma? Identifying an AN Learn More Get Info ...

  12. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  13. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  14. STM-Induced Hydrogen Desorption via a Hole Resonance

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Thirstrup, C.; Sakurai, M.

    1998-01-01

    We report STM-induced desorption of H from Si(100)-H(2 X 1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes...... with the Si-H 5 sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum...

  15. Panel acoustic contribution analysis.

    Science.gov (United States)

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  16. Secondary ion shadow-cone enhanced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chechen Chang (Hawaii Univ., Honolulu (USA). Dept. of Chemistry)

    1990-02-01

    The incident angle dependence of the secondary particle emission process under keV ion bombardment has been investigated. The results from the full molecular dynamics calculations indicate that the flux anisotropy of the incident beam, resulting from the non-uniform impact parameters for the surface atom of a single crystal, affects the particle desorption in a systematic fashion. The enhanced desorption at certain angles of incidence corresponds to the intensive focusing of the incident beam to the near-surface atom and the extended dissipation of momentum by large-angle scattering. This observation has let us to develop a new theoretical model in which the enhanced desorption is described by the distance of closest encounter along the trajectory of the incident particle to the surface atom. The computer time for the simulation of the incident-angle-dependent emission process is significantly reduced. The results from the calculation based on this model are in good agreement both with the results from the full dynamics calculation and with the experimental results. The new model also allows a complementary evaluation of the microscopic dynamics involved in the shadow-cone enhanced desorption. (author).

  17. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  18. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    Science.gov (United States)

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  19. Data compilation for particle-impact desorption, 2

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeutchi, Fujio.

    1985-07-01

    The particle impact desorption is one of the elementary processes of hydrogen recycling in controlled thermonuclear fusion reactors. We have surveyed the literature concerning the ion impact desorption and photon stimulated desorption published through the end of 1984 and compiled the data on the desorption cross sections and yields with the aid of a computer. This report presents the results of the compilation in graphs and tables as functions of incident energy, surface temperature and surface coverage. (author)

  20. Acoustic Parametric Array for Identifying Standoff Targets

    Science.gov (United States)

    Hinders, M. K.; Rudd, K. E.

    2010-02-01

    An integrated simulation method for investigating nonlinear sound beams and 3D acoustic scattering from any combination of complicated objects is presented. A standard finite-difference simulation method is used to model pulsed nonlinear sound propagation from a source to a scattering target via the KZK equation. Then, a parallel 3D acoustic simulation method based on the finite integration technique is used to model the acoustic wave interaction with the target. Any combination of objects and material layers can be placed into the 3D simulation space to study the resulting interaction. Several example simulations are presented to demonstrate the simulation method and 3D visualization techniques. The combined simulation method is validated by comparing experimental and simulation data and a demonstration of how this combined simulation method assisted in the development of a nonlinear acoustic concealed weapons detector is also presented.

  1. Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements

    Science.gov (United States)

    Downing, B.D.; Boss, E.; Bergamaschi, B.A.; Fleck, J.A.; Lionberger, M.A.; Ganju, N.K.; Schoellhamer, D.H.; Fujii, R.

    2009-01-01

    Studying the dynamics and geochemical behavior of dissolved and particulate organic material is difficult because concentration and composition may rapidly change in response to aperiodic as well as periodic physical and biological forcing. Here we describe a method useful for quantifying fluxes and analyzing dissolved organic matter (DOM) dynamics. The method uses coupled optical and acoustic measurements that provide robust quantitative estimates of concentrations and constituent characteristics needed to investigate processes and calculate fluxes of DOM in tidal and other lotic environments. Data were collected several times per hour for 2 weeks or more, with the frequency and duration limited only by power consumption and data storage capacity. We assessed the capabilities and limitations of the method using data from a winter deployment in a natural tidal wetland of the San Francisco Bay estuary. We used statistical correlation of in situ optical data with traditional laboratory analyses of discrete water samples to calibrate optical properties suited as proxies for DOM concentrations and characterizations. Coupled with measurements of flow velocity, we calculated long-term residual horizontal fluxes of DOC into and out from a tidal wetland. Subsampling the dataset provides an estimate for the maximum sampling interval beyond which the error in flux estimate is significantly increased.?? 2009, by the American Society of Limnology and Oceanography, Inc.

  2. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    Science.gov (United States)

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  3. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Boellinghaus, Th.

    2007-01-01

    The focus of this paper is the investigation of the combined influence of hydrogen and pre-plastic deformation on hydrogen's absorption/desorption behavior, the microstructure and microhardness of a single-phased β-21S alloy. In this study, thermal desorption analyses (TDS) evaluation of various desorption and trapping parameters provide further insight on the relationships between hydrogen absorption/desorption processes and deformation, and their mutual influence on the microstructure and the microhardness of β-21S alloy. TDS spectra were supported by other experimental techniques, such as X-ray diffraction, scanning and transmission electron microscopy, hydrogen quantity analyses and microhardness tests. Pre-plastic deformation, performed before the electrochemical hydrogenation of the alloy, increased significantly the hydrogen absorption capacity. Its influence was also evident on the notably expanded lattice parameter of β-21S alloy after hydrogenation. However, no hydride precipitation was observed. An interesting softening effect of the pre-deformed hydrogenated alloy was revealed by microhardness tests. TDS demonstrated the significant effect of pre-plastic deformation on the hydrogen evolution process. Hydrogen desorption temperature and the activation energy for hydrogen release increased, additional trap states were observed and the amount of desorbed hydrogen decreased

  4. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  5. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    Energy Technology Data Exchange (ETDEWEB)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.

  6. Acoustic transducer

    Science.gov (United States)

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  7. Acoustic cryocooler

    International Nuclear Information System (INIS)

    Swift, G.W.; Martin, R.A.; Radebaugh, R.

    1990-01-01

    This patent describes an acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effect to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15--60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K

  8. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    Science.gov (United States)

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies.

  9. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  10. Interior acoustic cloak

    OpenAIRE

    Wael Akl; A. Baz

    2014-01-01

    Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which a...

  11. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  12. Software-based acoustical measurements

    CERN Document Server

    Miyara, Federico

    2017-01-01

    This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals. The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based...

  13. Mass spectrometry of acoustically levitated droplets.

    Science.gov (United States)

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption.

  14. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  15. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  16. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  17. Thermal desorption of deuterium implanted into beryllium

    International Nuclear Information System (INIS)

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P.

    1995-01-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, Φ, from 1x10 20 D/m 2 to 1x10 21 D/m 2 proceeds in one high temperature stage B, while at Φ ≥ 1.2x10 21 D/m 2 one more stage A is added. The desorption maximum A is narrow and consists of two peaks A 1 and A 2 at about 460 K and 490 K, respectively. Peak A 1 is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak A 2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences

  18. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  19. International Conference on Acoustics and Vibration

    CERN Document Server

    Chaari, Fakher; Walha, Lasaad; Abdennadher, Moez; Abbes, Mohamed; Haddar, Mohamed

    2017-01-01

    The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theori...

  20. Acoustics an introduction

    CERN Document Server

    Kuttruff, Heinrich

    2006-01-01

    This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.

  1. Acoustic source for generating an acoustic beam

    Science.gov (United States)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  2. Ipsilateral masking between acoustic and electric stimulations.

    Science.gov (United States)

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  3. Pattern recognition methods for acoustic emission analysis

    International Nuclear Information System (INIS)

    Doctor, P.G.; Harrington, T.P.; Hutton, P.H.

    1979-07-01

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  4. Interior acoustic cloak

    Directory of Open Access Journals (Sweden)

    Wael Akl

    2014-12-01

    Full Text Available Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which are invariably heavy and bulky. The transformation acoustics relationships that govern the operation of this class of interior acoustic cloaks are presented. Physical insights are given to relate these relationships to the reasons behind the effectiveness of the proposed interior acoustic cloaks. Finite element models are presented to demonstrate the characteristics of interior acoustic cloaks used in treating the interior walls of circular and square cavities both in the time and frequency domains. The obtained results emphasize the effectiveness of the proposed interior cloaks in eliminating the reflections of the acoustic waves from the walls of the treated cavities and thereby rendering these cavities acoustically quiet. It is important to note here that the proposed interior acoustic cloaks can find applications in acoustic cavities such as aircraft cabins and auditoriums as well as many other critical applications.

  5. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions to ask Choosing a healthcare provider ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...

  6. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords World Language Videos Questions to ask Choosing ... Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation ...

  7. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  8. Tethys Acoustic Metadata Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tethys database houses the metadata associated with the acoustic data collection efforts by the Passive Acoustic Group. These metadata include dates, locations...

  9. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...... in polar coordinates. The developed algorithm is combined with a so-called actuator-line technique in which the loading is distributed along lines representing the blade forces. Computations are carried out for the 500kW Nordtank wind turbine equipped with three LM19 blades. ©2001 The American Institute...

  10. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution

    International Nuclear Information System (INIS)

    Cao, Menghua; Hu, Yuan; Sun, Qian; Wang, Linling; Chen, Jing; Lu, Xiaohua

    2013-01-01

    This study investigated the simultaneous desorption of trace metal elements and polychlorinated biphenyl (PCB) from mixed contaminated soil with a novel combination of biosurfactant saponin and biodegradable chelant S,S-ethylenediaminedisuccinic acid (EDDS). Results showed significant promotion and synergy on Pb, Cu and PCB desorption with the mixed solution of saponin and EDDS. The maximal desorption of Pb, Cu and PCB were achieved 99.8%, 85.7% and 45.7%, respectively, by addition of 10 mM EDDS and 3000 mg L −1 saponin. The marked interaction between EDDS and saponin contributed to the synergy performance. The sorption of EDDS and saponin on soil was inhibited by each other. EDDS could enhance the complexation of metals with the saponin micelles and the solubilization capabilities of saponin micelles for PCB. Our study suggests the combination of saponin and EDDS would be a promising alternative for remediation of co-contaminated soils caused by hydrophobic organic compounds (HOCs) and metals. -- Highlights: ► A novel combination of biosurfactant saponin and EDDS was used to simultaneously remove mixed contaminations from soil. ► Significant synergy on Pb, Cu and PCB desorption were achieved with EDDS/saponin. ► The marked interaction between EDDS and saponin contributed to the synergy performance. -- Significant synergistic effect on Pb, Cu and PCB desorption were achieved with the mixed solution of saponin and EDDS

  11. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  12. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  13. Universal scaling for biomolecule desorption induced by swift heavy ions

    International Nuclear Information System (INIS)

    Szenes, G.

    2005-01-01

    A thermal activation mechanism is proposed for the desorption of biomolecules. Good agreement is found with the experiments in a broad range of the electronic stopping power. The activation energies of desorption U are 0.33, 1.57 and 5.35 eV for positive, negative and neutral leucine molecules, respectively, and 2.05 eV for positive ergosterol molecules. The desorption of valine clusters is analyzed. The magnitude of the specific heat shows that the internal degrees of freedom are not excited up to the moment of desorption. The effect of irradiation temperature and of ion velocity on the desorption yield is discussed on the basis of the author's model. The scaling function derived in the model for the desorption of biomolecules is applied also to the sputtering of SiO 2 and U = 0.42 eV is obtained

  14. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  15. Acoustic simulation in architecture with parallel algorithm

    Science.gov (United States)

    Li, Xiaohong; Zhang, Xinrong; Li, Dan

    2004-03-01

    In allusion to complexity of architecture environment and Real-time simulation of architecture acoustics, a parallel radiosity algorithm was developed. The distribution of sound energy in scene is solved with this method. And then the impulse response between sources and receivers at frequency segment, which are calculated with multi-process, are combined into whole frequency response. The numerical experiment shows that parallel arithmetic can improve the acoustic simulating efficiency of complex scene.

  16. An infrared measurement of chemical desorption from interstellar ice analogues

    Science.gov (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  17. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  18. Acoustic Environment of Haro Strait: Preliminary Propagation Modeling and Data Analysis

    National Research Council Canada - National Science Library

    Jones, Christopher D; Wolfson, Michael A

    2006-01-01

    Field measurements and acoustic propagation modeling for the frequency range 1 10 kHz are combined to analyze the acoustic environment of Haro Strait of Puget Sound, home to the southern resident killer whales...

  19. Optical detection of CO and CO2 temperature dependent desorption from carbon nanotube clusters

    International Nuclear Information System (INIS)

    Chistiakova, M V; Armani, A M

    2014-01-01

    The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system. (paper)

  20. Desorption of trihalomethanes in gas liquid contactors

    International Nuclear Information System (INIS)

    Ramirez Quesada, Kenneth

    2000-01-01

    Updated studies show that gastric cancer is related with the existence of trihalomethanes (THMs) in the drinking water. The trihalomethanes are sub products from the degradation of humic acids and your reaction with chlorine and bromine used like decontaminates. The desorption process is used to eliminate the THMs with air in contact with the water. The experimental design was used in three contactors. The contactors selected were: the bubbling's column, the packed column and the shaken tank without screen. There were selected three variable: initial concentration of THMs, the residence time and the turbulence degree (measured with the Reynolds number). The concentrations were made with a gas chromatograph. The objective of this project is to do a comparison with the gas liquid contactors more used in the industrial level to determinate which ones are the best in the desorption process. The conclusion of the experimental design is that the tank is the equipment with the best capacity to eliminate THMs. Too it includes other techniques to eliminate THMs of the water and your treatment [es

  1. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  2. Acoustic radiation force impulse elastography, FibroScan®, Forns’ index and their combination in the assessment of liver fibrosis in patients with chronic hepatitis B, and the impact of inflammatory activity and steatosis on these diagnostic methods

    Science.gov (United States)

    DONG, DAO-RAN; HAO, MEI-NA; LI, CHENG; PENG, ZE; LIU, XIA; WANG, GUI-PING; MA, AN-LIN

    2015-01-01

    The aim of the present study was to investigate the combination of certain serological markers (Forns’ index; FI), FibroScan® and acoustic radiation force impulse elastography (ARFI) in the assessment of liver fibrosis in patients with hepatitis B, and to explore the impact of inflammatory activity and steatosis on the accuracy of these diagnostic methods. Eighty-one patients who had been diagnosed with hepatitis B were recruited and the stage of fibrosis was determined by biopsy. The diagnostic accuracy of FI, FibroScan and ARFI, as well as that of the combination of these methods, was evaluated based on the conformity of the results from these tests with those of biopsies. The effect of concomitant inflammation on diagnostic accuracy was also investigated by dividing the patients into two groups based on the grade of inflammation (G<2 and G≥2). The overall univariate correlation between steatosis and the diagnostic value of the three methods was also evaluated. There was a significant association between the stage of fibrosis and the results obtained using ARFI and FibroScan (Kruskal-Wallis; P<0.001 for all patients), and FI (t-test, P<0.001 for all patients). The combination of FI with ARFI/FibroScan increased the predictive accuracy with a fibrosis stage of S≥2 or cirrhosis. There was a significant correlation between the grade of inflammation and the results obtained using ARFI and FibroScan (Kruskal-Wallis, P<0.001 for all patients), and FI (t-test; P<0.001 for all patients). No significant correlation was detected between the measurements obtained using ARFI, FibroScan and FI, and steatosis (r=−0.100, P=0.407; r=0.170, P=0.163; and r=0.154, P=0.216, respectively). ARFI was shown to be as effective in the diagnosis of liver fibrosis as FibroScan or FI, and the combination of ARFI or FibroScan with FI may improve the accuracy of diagnosis. The presence of inflammatory activity, but not that of steatosis, may affect the diagnostic accuracy of these

  3. Behavior of sorption and thermal desorption of fission products from loaded metal oxide exchangers

    International Nuclear Information System (INIS)

    Buerck, J.

    1986-08-01

    A new sublimation method for the concentration and purification of 99 Mo, produced by the fission of 235 U with thermal neutrons, has been developed to replace the present final decontamination steps in the various well established 99 Mo separation processes. A distinct simplification and shortening of the actual procedure is obtained by combining the chromatographic sorption on the SnO 2 -exchanger with the direct thermal desorption of the Mo product from the oxide. (orig./PW) [de

  4. The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  5. Acoustic Metamaterials in Aeronautics

    Directory of Open Access Journals (Sweden)

    Giorgio Palma

    2018-06-01

    Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.

  6. Vibro-acoustic analysis of composite plates

    International Nuclear Information System (INIS)

    Sarigül, A S; Karagözlü, E

    2014-01-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed

  7. Vibro-acoustic analysis of composite plates

    Science.gov (United States)

    Sarigül, A. S.; Karagözlü, E.

    2014-03-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.

  8. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  9. Copper desorption from Gelidium algal biomass.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  10. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  11. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus Spores

    Science.gov (United States)

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...

  12. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  13. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  14. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  15. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  16. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  17. Laser induced desorption as hydrogen retention diagnostic method

    Energy Technology Data Exchange (ETDEWEB)

    Zlobinski, Miroslaw

    2016-07-15

    binding energy. Such effects can lead to the observed desorption fractions as simulations (TMAP7 code) of heat and H diffusion during the laser pulse show. These experiments are performed in a vacuum chamber outside the tokamak, where the desorbed gases are quantified by a quadrupole mass spectrometer, thus representing the ex situ method LID-QMS. In the tokamak TEXTOR the in situ diagnostic method LIDS is used utilizing the same physics for heating, desorption and surface modifications. Understanding the latter becomes important to mitigate material release into the plasma. Here, the quantification of the desorbed hydrogen is done by passive spectroscopy of the Balmer H{sub α} and D{sub α} light (656 nm) observed coaxially to the laser beam as a double line by a spectrometer and from the side by a camera with gated image intensifier using a narrow-band H and D filter. A simplified data evaluation has been developed which determines the plasma radius of the light intensity maximum of the LIDS light, takes the electron density and temperature at this radius measured by edge plasma diagnostics and looks up the corresponding quotient of ionisation to excitation rate {sup S}/{sub XB}(n{sub e},T{sub e}) in a database (ADAS). A second factor takes into account the dominant plasma processes which yield only one atom from one hydrogen molecule for pure hydrogen release and even less for desorbed hydrocarbons. The combined light-to-particle conversion factor is ca. 30 H atoms/H{sub α} photons which agrees with simulations of the LIDS light (ERO code). While the simulated spatial light distribution is very sensitive to the details of the plasma edge profiles, the total photon amount stays very constant, thus justifying the simplified data evaluation. The experimental FWHM of the light in toroidal/poloidal direction is 30-40 mm and has an e-folding decay length of 15-20 mm in radial direction. Its intensity maximum is typically at n{sub e} ∼ 4.10{sup 18} {sup e{sup -}}/{sub m

  18. Laser induced desorption as hydrogen retention diagnostic method

    International Nuclear Information System (INIS)

    Zlobinski, Miroslaw

    2016-01-01

    . Such effects can lead to the observed desorption fractions as simulations (TMAP7 code) of heat and H diffusion during the laser pulse show. These experiments are performed in a vacuum chamber outside the tokamak, where the desorbed gases are quantified by a quadrupole mass spectrometer, thus representing the ex situ method LID-QMS. In the tokamak TEXTOR the in situ diagnostic method LIDS is used utilizing the same physics for heating, desorption and surface modifications. Understanding the latter becomes important to mitigate material release into the plasma. Here, the quantification of the desorbed hydrogen is done by passive spectroscopy of the Balmer H α and D α light (656 nm) observed coaxially to the laser beam as a double line by a spectrometer and from the side by a camera with gated image intensifier using a narrow-band H and D filter. A simplified data evaluation has been developed which determines the plasma radius of the light intensity maximum of the LIDS light, takes the electron density and temperature at this radius measured by edge plasma diagnostics and looks up the corresponding quotient of ionisation to excitation rate S / XB (n e ,T e ) in a database (ADAS). A second factor takes into account the dominant plasma processes which yield only one atom from one hydrogen molecule for pure hydrogen release and even less for desorbed hydrocarbons. The combined light-to-particle conversion factor is ca. 30 H atoms/H α photons which agrees with simulations of the LIDS light (ERO code). While the simulated spatial light distribution is very sensitive to the details of the plasma edge profiles, the total photon amount stays very constant, thus justifying the simplified data evaluation. The experimental FWHM of the light in toroidal/poloidal direction is 30-40 mm and has an e-folding decay length of 15-20 mm in radial direction. Its intensity maximum is typically at n e ∼ 4.10 18 e - / m 3 and k B T e ∼ 60 eV close to the last closed flux surface. A

  19. Resonant acoustic transducer system for a well drilling string

    Science.gov (United States)

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  20. Acoustic Levitation With Less Equipment

    Science.gov (United States)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  1. What Is an Acoustic Neuroma

    Science.gov (United States)

    ... CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Italian Japanese Korean Portuguese Romanian Spanish What is Acoustic Neuroma? Each heading slides to reveal information. Important ...

  2. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

    Science.gov (United States)

    Svet, V. D.; Tsysar', S. A.

    2018-01-01

    Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

  3. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry

    2017-08-29

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.

  4. Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides

    DEFF Research Database (Denmark)

    Levi, Gianluca; Causà, Mauro; Lacovig, Paolo

    2017-01-01

    The present study investigates the coal char combustion by a combination of thermochemical and X-ray photoemission spectroscopy (XPS) analyses. Thermoanalytical methods (differential thermogravimetry, differential scanning calorimetry, and temperature-programmed desorption) are used to identify...... the key reactive steps that occur upon oxidation and heating of coal char (chemisorption, structural rearrangement and switchover of surface oxides, and desorption) and their energetics. XPS is used to reveal the chemical nature of the surface oxides that populate the char surface and to monitor...... functionalities prevail. The rearrangement of epoxy during preoxidation goes together with activation of the more stable and less reactive carbon sites. Results are in good agreement with semi-lumped kinetic models of carbon oxidation, which include (1) formation of "metastable" surface oxides, (2) complex...

  5. Initial screening of thermal desorption for soil remediation

    International Nuclear Information System (INIS)

    Yezzi, J.J. Jr.; Tafuri, A.N.; Rosenthal, S.; Troxler, W.L.

    1994-01-01

    Petroleum-contaminated soils--caused by spills, leaks, and accidental discharges--exist at many sites throughout the United States. Thermal desorption technologies which are increasingly being employed to treat these soils, have met soil cleanup criteria for a variety of petroleum products. Currently the United States Environmental Protection Agency is finalizing a technical report entitled Use of Thermal Desorption for Treating Petroleum-Contaminated Soils to assist remedial project managers, site owners, remediation contractors, and equipment vendors in evaluating the use of thermal desorption technologies for petroleum-contaminated soil applications. The report will present a three-level screening method to help a reader predict the success of applying thermal desorption at a specific site. The objective of screening level one is to determine the likelihood of success in a specific application of thermal desorption. It will take into account procedures for collecting and evaluating data on site characteristics, contaminant characteristics, soil characteristics, and regulatory requirements. This level will establish whether or not thermal desorption should be evaluated further for site remediation, whether treatment should occur on-site or off-site, and if on-site is a viable option, what system size will be most cost-effective. The scope of this paper addresses only screening level one which provides a preliminary assessment of the applicability of thermal desorption to a particular site. This topic encompasses worksheets that are an integral part of the ''user friendly'' screening process. Level one screening provides a foundation for the subsequent two levels which follow a similar ''user friendly'' worksheet approach to evaluating thermal desorption technologies and establishing costs for thermal desorption in an overall remediation project

  6. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter, Fabiano André; Ferreira, Tamara Santos; Sinhorin, Adilson Paulo; Lima, Larissa Borges de; Morais, Leidimar Alves de; Pacheco, Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diu...

  7. Inelastic surface collisions and the desorption of massive molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, R D [Texas A and M Univ., College Station (USA). Dept. of Chemistry

    1983-01-01

    The interaction of high energy ions in the region of electronic stopping (1 MeV u/sup -1/) stimulates the desorption of massive molecular ions of biomolecules such as insulin. The experimental details of the measurements are given with some examples of application for analytical mass spectrometry. Studies on the role of the incident ion (accelerator beam experiments) are reviewed as well as the contribution of the matrix to the desorption-ionization process. How the electronic relaxation process couples to desorption-ionization is a central question in understanding the overall mechanism of the process.

  8. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... 30041 770-205-8211 info@ANAUSA.org The world’s #1 acoustic neuroma resource Click to learn more... ... is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords World Language Videos Questions to ask Choosing a healthcare ...

  9. Acoustics Critical Readiness Review

    Science.gov (United States)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  10. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  11. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  12. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  13. Calibration of acoustic emission transducers

    International Nuclear Information System (INIS)

    Leschek, W.C.

    1976-01-01

    A method is described for calibrating an acoustic emission transducer to be used in a pre-set frequency range. The absolute reception sensitivity of a reference transducer is determined at frequencies selected within the frequency range. The reference transducer and the acoustic emission transducer are put into acoustic communication with the surface of a limited acoustic medium representing an equivalent acoustic load appreciably identical to that of the medium in which the use of the acoustic emission transducer is intended. A blank random acoustic noise is emitted in the acoustic medium in order to establish a diffuse and reverberating sound field, after which the output responses of the reference transducer and of the acoustic emission transducer are obtained with respect to the diffuse and reverberating field, for selected frequencies. The output response of the acoustic emission transducer is compared with that of the reference transducer for the selected frequencies, so as to determine the reception sensitivity of the acoustic emission transducer [fr

  14. Selective adsorption-desorption method for the enrichment of krypton

    International Nuclear Information System (INIS)

    Yuasa, Y.; Ohta, M.; Watanabe, A.; Tani, A.; Takashima, N.

    1975-01-01

    Selective adsorption-desorption method has been developed as an effective means of enriching krypton and xenon gases. A seriesof laboratory-scale tests were performed to provide some basic data of the method when applied to off-gas streams of nuclear power plants. For the first step of the enrichment process of the experiments, krypton was adsorbed on solid adsorbents from dilute mixtures with air at temperatures ranging from -50 0 C to -170 0 C. After the complete breakthrough was obtained, the adsorption bed was evacuated at low temperature by a vacuum pump. By combining these two steps krypton was highly enriched on the adsorbents, and the enrichment factor for krypton was calculated as the product of individual enrichment factors of each step. Two types of adsorbents, coconut charcoal and molecular sieves 5A, were used. Experimental results showed that the present method gave the greater enrichment factor than the conventional method which used selective adsorption step only. (U.S.)

  15. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    Science.gov (United States)

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  16. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  17. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  18. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  19. A Novel Acoustic Liquid Level Determination Method for Coal Seam Gas Wells Based on Autocorrelation Analysis

    Directory of Open Access Journals (Sweden)

    Ximing Zhang

    2017-11-01

    Full Text Available In coal seam gas (CSG wells, water is periodically removed from the wellbore in order to keep the bottom-hole flowing pressure at low levels, facilitating the desorption of methane gas from the coal bed. In order to calculate gas flow rate and further optimize well performance, it is necessary to accurately monitor the liquid level in real-time. This paper presents a novel method based on autocorrelation function (ACF analysis for determining the liquid level in CSG wells under intense noise conditions. The method involves the calculation of the acoustic travel time in the annulus and processing the autocorrelation signal in order to extract the weak echo under high background noise. In contrast to previous works, the non-linear dependence of the acoustic velocity on temperature and pressure is taken into account. To locate the liquid level of a coal seam gas well the travel time is computed iteratively with the non-linear velocity model. Afterwards, the proposed method is validated using experimental laboratory investigations that have been developed for liquid level detection under two scenarios, representing the combination of low pressure, weak signal, and intense noise generated by gas flowing and leakage. By adopting an evaluation indicator called Crest Factor, the results have shown the superiority of the ACF-based method compared to Fourier filtering (FFT. In the two scenarios, the maximal measurement error from the proposed method was 0.34% and 0.50%, respectively. The latent periodic characteristic of the reflected signal can be extracted by the ACF-based method even when the noise is larger than 1.42 Pa, which is impossible for FFT-based de-noising. A case study focused on a specific CSG well is presented to illustrate the feasibility of the proposed approach, and also to demonstrate that signal processing with autocorrelation analysis can improve the sensitivity of the detection system.

  20. Study on hydrogen absorption/desorption properties of uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen absorption/desorption properties of two U-Mn intermetallic compounds, U{sub 6}Mn and UMn{sub 2}, were investigated. U{sub 6}Mn absorbed hydrogen and the hydrogen desorption pressure of U{sub 6}Mn obtained from this experiment was higher than that of U, which was considered to be the effect of alloying, whereas UMn{sub 2} was not observed to absorb hydrogen up to 50 atm at room temperature. (author)

  1. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  2. Transmission acoustic microscopy investigation

    Science.gov (United States)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  3. The accidental (acoustical) tourist

    Science.gov (United States)

    Van Kirk, Wayne

    2002-11-01

    The acoustical phenomenon observed at an ancient temple in the Great Ball Court at Chichen Itza was described as ''little short of amazing--an ancient whispering gallery'' by Silvanus G. Morley, leader of the Carnegie Institute's archaeological team that excavated and restored these structures in the 1920s. Since then, many others have experienced the extraordinary acoustics at Chichen Itza and other Maya sites. Despite these reports, archaeologists and acousticians have until recently shown little interest in understanding these phenomena. After experiencing Chichen Itza's remarkable acoustics as a tourist in 1994, the author commenced collecting and disseminating information about acoustical phenomena there and at other Mayan sites, hoping to stimulate interest among archaeologists and acousticians. Were these designs accidental or intentional? If intentional, how was the knowledge obtained? How were acoustical features used? This paper highlights the author's collection of anecdotal reports of mysterious Mayan acoustics (http://http://www.ianlawton.com/pa1.htm), recommended reading for scientists and engineers who wish to pursue this fascinating study. Also recounted are some of the reactions of archaeologists-ranging from curious, helpful, and insightful to humorous and appalling--to outsiders' efforts to bring serious scientific attention to the new field of acoustical archaeology.

  4. Translational illusion of acoustic sources by transformation acoustics.

    Science.gov (United States)

    Sun, Fei; Li, Shichao; He, Sailing

    2017-09-01

    An acoustic illusion of creating a translated acoustic source is designed by utilizing transformation acoustics. An acoustic source shifter (ASS) composed of layered acoustic metamaterials is designed to achieve such an illusion. A practical example where the ASS is made with naturally available materials is also given. Numerical simulations verify the performance of the proposed device. The designed ASS may have some applications in, e.g., anti-sonar detection.

  5. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Characterization of Rhodamine Self-Assembled Films Using Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Shi, Ruixia; Na, Na; Jiang, Fubin; Ouyang, Jin

    2013-06-01

    Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.

  7. Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores

    Science.gov (United States)

    Chen, Jie; Wang, FengChao; Liu, He; Wu, HengAn

    2017-01-01

    Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas. Unexpectedly, obvious hysteresis is observed from the ideally reversible physical sorption of methane in some experiments. However, the underlying mechanism still remains an open problem. In this study, Monte Carlo (MC) and molecular dynamics (MD) simulations are carried out to explore the molecular mechanisms of adsorption/desorption hysteresis. First, a detailed analysis about the capillary condensation of methane in micropores is presented. The influence of pore width, surface strength, and temperature on the hysteresis loop is further investigated. It is found that a disappearance of hysteresis occurs above a temperature threshold. Combined with the phase diagram of methane, we explicitly point out that capillary condensation is inapplicable for the hysteresis of shale gas under normal temperature conditions. Second, a new mechanism, variation of pore throat size, is proposed and studied. For methane to pass through the throat, a certain energy is required due to the repulsive interaction. The required energy increases with shrinkage of the throat, such that the originally adsorbed methane cannot escape through the narrowed throat. These trapped methane molecules account for the hysteresis. Furthermore, the hysteresis loop is found to increase with the increasing pressure and decreasing temperature. We suggest that the variation of pore throat size can explain the adsorption/desorption hysteresis of shale gas. Our conclusions and findings are of great significance for guiding the efficient exploitation of shale gas.

  8. TPD IR studies of CO desorption from zeolites CuY and CuX

    Science.gov (United States)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  9. Desorption dynamics of deuterium in CuCrZr alloy

    Science.gov (United States)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  10. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  11. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  12. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  13. Acoustical heat pumping engine

    Science.gov (United States)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  14. Deep Water Acoustics

    Science.gov (United States)

    2016-06-28

    the Deep Water project and participate in the NPAL Workshops, including Art Baggeroer (MIT), J. Beron- Vera (UMiami), M. Brown (UMiami), T...Kathleen E . Wage. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Am., 134(4...estimate of the angle α during PhilSea09, made from ADCP measurements at the site of the DVLA. Sim. A B1 B2 B3 C D E F Prof. # 0 4 4 4 5 10 16 20 α

  15. Radiation acoustics and its applications

    International Nuclear Information System (INIS)

    Lyamshev, L.M.

    1992-01-01

    Radiation acoustics is a new branch of acoustics, developing on the boundary of acoustics, nuclear physics, elementary particles and high-energy physics. Its fundamentals are laying in the research of acoustical effects due to the interaction of penetrating radiation with matter. The study of radiation-acoustical effects leads to the new opportunities in the penetration radiation research (acoustical detection, radiation-acoustical dosimetry), study of the physical parameters of matter, in a solution of some applied problems of nondestructive testing, and also for the radiation-acoustical influence on physical and chemical structure of the matter. Results of theoretical and experimental investigations are given. Different mechanisms of the sound generation by penetrating radiation of liquids and solids are considered. Some applications - the radiation acoustical microscopy and visualisation, the acoustical detection of high energy X-ray particles and possibility of using of high energy neutrino beams in geoacoustics - are discussed

  16. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  17. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  18. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... a healthcare provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare ...

  19. Acoustic-Levitation Chamber

    Science.gov (United States)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  20. Acoustic Casimir Effect

    National Research Council Canada - National Science Library

    Homes, Christopher

    1997-01-01

    ...). When the indirect manifestations of the ZPF are interpreted as due to radiation pressure, acoustic noise can provide an excellent analog to investigate the Casimir effect as well as other effects due to the ZPF...

  1. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects ... To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a healthcare provider Request a patient kit ...

  2. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Choosing a healthcare provider Request a patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To Ask Treatment Options Back Overview Observation Radiation Surgery Choosing a ...

  3. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  4. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma ... 8211 info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn ...

  5. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ... info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational ...

  6. Electrostatic ion acoustic waves

    International Nuclear Information System (INIS)

    Hasegawa, A.

    1983-01-01

    In this paper, certain aspects of plasma physics are illustrated through a study of electrostatic ion acoustic waves. The paper consists of three Sections. Section II deals with linear properties of the ion acoustic wave including derivation of the dispersions relation with the effect of Landau damping and of an ambient magnetic field. The section also introduces the excitation processes of the ion acoustic wave due to an electron drift or to a stimulated Brillouin scattering. The nonlinear properties are introduced in Section III and IV. In Section III, incoherent nonlinear effects such as quasilinear and mode-coupling saturations of the instability are discussed. The coherent nonlinear effects such as the generation of ion acoustic solitons, shocks and weak double layers are presented in Section IV. (Auth.)

  7. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... patient kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing ... Back Community Patient Stories Share Your Story Video Stories Caregivers Milestones Gallery Submit Your Milestone Team ANA Volunteer ...

  8. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Connections Overview Find a Meeting Host a Meeting Volunteer Become a Volunteer Opportunities Support Overview Patient Events ... ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree ...

  9. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  10. Acoustic MIMO signal processing

    CERN Document Server

    Huang, Yiteng; Chen, Jingdong

    2006-01-01

    A timely and important book addressing a variety of acoustic signal processing problems under multiple-input multiple-output (MIMO) scenarios. It uniquely investigates these problems within a unified framework offering a novel and penetrating analysis.

  11. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Back Learn more about ANA About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic ... 205-8211 info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home ...

  12. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  13. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Spanish Washington Support Group Leslie of Stone Mountain, ... Providers Acoustic Neuroma Association Donate Now Newly Diagnosed What is AN? Request a Patient Kit Treatment Options Get Support Find a Provider Discussion Forum ...

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway Suite 108 ... About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video English English ...

  15. Acoustic Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  16. Department of Cybernetic Acoustics

    Science.gov (United States)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  17. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... 1 acoustic neuroma resource Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about ... Webinar Library Newsletter Library Patient Info Booklets Member Login Research ANA Survey/Registry AN Research Patient Registry ...

  18. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... About ANA Mission, Vision & Values Shop ANA Leadership & Staff Annual Reports Acoustic Neuroma Association 600 Peachtree Parkway ... ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video ...

  19. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Click to learn more... LOGIN CALENDAR DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts ... Vision & Values Leadership & Staff Annual Reports Shop ANA Home Learn Educational Video English English Arabic Catalan Chinese ( ...

  20. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  1. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  2. Scale Model Thruster Acoustic Measurement Results

    Science.gov (United States)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  3. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  4. Kinetics of Hydrogen Absorption and Desorption in Titanium

    Directory of Open Access Journals (Sweden)

    Suwarno Suwarno

    2017-10-01

    Full Text Available Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD. The present work showed that the path of dehydrogenation of the TiH2 is d®b®a hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 20th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Suwarno, S., Yartys, V.A. (2017. Kinetics of Hydrogen Absorption and Desorption in Titanium. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 312-317  (doi:10.9767/bcrec.12.3.810.312-317

  5. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  6. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  7. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  8. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses

    Science.gov (United States)

    Wang, Xiao-Peng; Wan, Le-Le; Chen, Tian-Ning; Song, Ai-Ling; Wang, Fang

    2016-07-01

    Narrow bandwidth and bulky configuration are the main obstacles for the realization and application of invisible cloaks. In this paper, we present an effective method to achieve broadband and thin acoustic cloak by using an acoustic metasurface (AMS). In order to realize this cloak, we use slitted unit cells to design the AMS due to the advantage of less energy loss, broad operation bandwidth, and subwavelength thickness. According to the hyperboloidal phase profile along the AMS, the incident plane waves can be focused at a designed focal spot by the flat lens. Furthermore, broadband acoustic cloak is obtained by combining two identical flat lenses. The incident plane waves are focused at the center point in between of the two lenses by passing through one lens, and then recovered by passing through the other one. However, they cannot reach the cloaked regions in between of the two lenses. The simulation results can verify the non-detectability effect of the acoustic cloak. Our study results provide an available and simple approach to experimentally achieve the acoustic cloak, which can be used in acoustic non-detectability for large objects.

  9. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  10. Dynamic response analysis of an aircraft structure under thermal-acoustic loads

    International Nuclear Information System (INIS)

    Cheng, H; Li, H B; Zhang, W; Wu, Z Q; Liu, B R

    2016-01-01

    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure (paper)

  11. Laser-nucleated acoustic cavitation in focused ultrasound.

    Science.gov (United States)

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  12. Adsorption and desorption of radioactive inert gases in various materials

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Peculiarities of the 85 Kr and 133 Xe adsorption and desorption processes in active carbon and paraffin are considered in the work. During the desorption process, the distribution of 85 Kr and 133 Xe atoms in active carbon particles is uneven: atoms in narrow micropores desorb the last. It is shown that by changing adsorption conditions the presence time of radioactive inert gases in an active carbon can be prolonged. The adsorption and desorption processes change in the adsorbent, which changes its aggregation state: adsorption occurs in a liquid absorbent and desorption - in a solid absorbent. Paraffin is just such an absorbent changing its aggregation state with low energy losses. It has been obtained that 133 Xe accumulates less in liquid paraffin that in an active carbon. The absorption of 85 Kr in paraffin is larger than in an active carbon (at 18-20 degrees Celsius), while desorption is slower. The velocity of radioactive inert gas atom motion in different places of a solid paraffin sample is different - it increases approaching the borders of the sample. Prolongation of the desorption time of radioactive inert gases from adsorbents and adsorbents in many cases is of a practical importance. In this work, it has been shown by model experiments that the intensity of adsorption and desorption processes for the same sorbents can be changed. Desorption intensity changes are related to the distribution of gas atoms on the surface of particles and in micropores. Desorption velocity decreases if inert gas atoms having entered micropores are 'closed' by condensed liquids in the environment. In this case an inert gas atom diffuses within the whole particle volume or through the condensed liquid. Radioactive inert gases 85 Kr and 133 Xe are absorbed not only in liquid paraffin but in solid one as well. Therefore, after a paraffin sample is hermetically closed in a glass dish, 85 Kr (gas) having diffused from this sample is repeatedly absorbed in it. The 85 Kr

  13. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  14. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  15. Desorption of absorbed iron in bean root and leaf tissues

    International Nuclear Information System (INIS)

    Jooste, J.H.; De Bruyn, J.A.

    1979-01-01

    The effect of different desorption media on the amount of absorbed Fe (from a solution of FeCl 3 in 0,5 mM CaCl 2 ) retained by leaf discs and excised root tips of bean plants was investigated. Attempts were also made to determine the effect of desorption on the intracellular distribution of Fe. Desorption in water or an FeCl 3 solution had no pronounced effect on the amount of absorbed Fe retained by either the leaf or root tissues. However, Na 2 -EDTA was able to desorb a considerable portion of the absorbed Fe, especially in root tissue. This applies to Fe absorbed from solutions of FeCl 3 and Fe-EDDHA. Desorption by the chelate removed Fe from practically all the different particulate fractions of both root and leaf tissues, but desorption following the longer absorption periods resulted in an increase in the Fe content of the 'soluble' fraction. The possibility that Na 2 -EDTA causes an increased permeability of cell membranes seems likely. The view that removal of Ca by the chelate causes this increase in permeability could not be confirmed [af

  16. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  17. Sorption-desorption dynamics of radiocaesium in organic matter soils

    International Nuclear Information System (INIS)

    Valcke, E.; Cremers, A.

    1994-01-01

    A systematic study has been carried out on the radiocaesium sorption properties of 25 soils (forest, peat) covering organic matter (OM) contents in the range of 10-97%. Predictions are made for radiocaesium partitioning between micaceous Frayed Edge Sites (FES) and regular exchange sites (RES) on the basis of specific radiocaesium interception potentials of the soil and overall exchange capacity. It is shown that for soils with a very high OM content (>80%), significant fractions are present in a readily reversible form in the OM phase. In soils of low-medium OM content (<40%), only a very minor fraction is present in the OM exchange complex. Experimental findings, based on a desorption screening with a variety of desorption agents are in agreement with these predictions. On the basis of a study of sorption kinetics, some additional tools are available for identifying problem soils. In cases of very high OM content, radiocaesium adsorption is completed within hours demonstrating the involvement of the OM sites. In soils for which interception occurs in the FES, sorption continues to proceed for periods of 2-3 weeks. In conclusion, some examples are presented on radiocaesium desorption using ion exchangers as radiocaesium sinks in promoting desorption. For a peaty soil, near quantitative desorption is accomplished. For forest soils with OM contents in a range of 10-40%, fixation levels of 30-50% are demonstrated

  18. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution...... level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10......% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments...

  19. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    Science.gov (United States)

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  20. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    Science.gov (United States)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    ) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, redesorptions of the CTD cell following ambient sample analysis show some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.

  1. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  2. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    International Nuclear Information System (INIS)

    Smith, Richard J; Li, Wenqi; Coulson, Jethro; Clark, Matt; Somekh, Michael G; Sharples, Steve D

    2014-01-01

    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data. (paper)

  3. Study of defects near molybdenum surface using thermal desorption spectrometer

    International Nuclear Information System (INIS)

    Naik, P.K.

    1980-01-01

    Thermal desorption spectrometry is utilized to study the migration of atoms and defects near molybdenum surface. The thermal desorption spectra of inert gas ions (neon, argon and krypton) injected with various energies (430-1950 eV) into a polycrystalline molybdenum target with various dosages (6.4 x 10sup(12) - 3.9 x 10sup(14) ions/cmsup(2)) are investigated. Four different states of binding of the trapped atoms corresponding to the activation energies for desorption have been revealed from the spectra. The activation energies are found to be relatively insensitive to the species of the bombarding ion, incident ion energy and the dosage. The patterns of the spectra are strongly influenced by the mean projected range of the ions into the solid. The activation energies deduced are in good agreement with those reported for the migration of atoms and defects in molybdenum. (auth.)

  4. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  5. Study of the mechanisms of matrix assisted laser desorption / ionization

    International Nuclear Information System (INIS)

    Manuelli, Pascal

    1995-01-01

    This research thesis aims at a better knowledge of some aspects of a complex mechanism: the matrix-assisted laser desorption/ionization (MALDI). The author first proposes a comparative analysis of results obtained by time-of-flight (TOF) mass spectrometry and by Fourier transform mass spectrometry. He reports the study of the matrix role (notably a polymeric matrix) as a matter submitted to laser desorption. In this respect, the influence of the incident wavelength has been studied. The author also reports a comparative of ions produced by matrix laser desorption (study performed by Fourier transform mass spectrometry) and of neutral molecules (study performed by flash pyrolysis coupled with gas chromatography and with mass spectrometry). Finally, results obtained on derivatives and complexes based on beta-cyclodextrins highlight benefits as well as limitations of this technique [fr

  6. Electron stimulated desorption of gases at technological surfaces of aluminium

    International Nuclear Information System (INIS)

    Ding, M.Q.; Williams, E.M.

    1989-01-01

    The release of gas by electron bombardment at aluminium alloy surfaces in vacuum -9 torr has been investigated for a range of treatments including bakeout and glow discharge cleaning. Particular attention has been given to the role of continuous electron bombardment, with current densities and electron energies of up to 1.5 mA cm -2 and 2.0 keV, respectively, over the 10 cm 2 of surface area under irradiation. The observations of desorption efficiency, defined as the number of desorbed molecules per incident electron, conform to a model involving a dynamic balance between adsorption and desorption, with contributions to adsorption from both surface and sub-surface gas. Continuous electron bombardment promotes a surface with low desorption efficiency, -5 mol/electron, however, the conditioning cycle is accelerated significantly by glow discharge treatment. There is evidence of some short-term memory when the samples are exposed to air. (author)

  7. Coverage dependent desorption dynamics of deuterium on Si(100) surfaces: interpretation with a diffusion-promoted desorption model.

    Science.gov (United States)

    Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A

    2005-01-08

    We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.

  8. Magnetoactive Acoustic Metamaterials.

    Science.gov (United States)

    Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming

    2018-04-11

    Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Long-term desorption of trichloroethylene from flint clay using multiplexed optical detection

    International Nuclear Information System (INIS)

    Stager, M.P.; Perram, G.P.

    1999-01-01

    The long-term desorption of trichloroethylene (TCE) from powdered flint clay was examined using a multiplexed, phase sensitive infrared technique which provided a gas phase detection limit of 0.0045 torr for continuous monitoring of the desorption process for at least 3 days. The vapor phase TCE concentrations as a function of desorption time exhibit a significant deviation from Langmuir kinetics. The desorption process is adequately described by bonding sites with a gamma distribution for the desorption rate coefficients. The mean desorption rate for powdered flint clay at 25°C is k d = 0.50 ± 0.02 h −1 . (author)

  10. Modelling of Convective Process of Water Desorption from Polystyrene

    International Nuclear Information System (INIS)

    Stakic, M.; Nikolic, A.

    2008-01-01

    This study presents a mathematical model developed to evaluate the influence of structural and operational factors on convective dehydration process (desorption of liquid phase from capillary-porous material), as well as the possibility to utilize this model for the case of water desorption from polystyrene cation resin CG-8. The model accounts for unsteady one-dimensional simultaneous heat and mass transfer between the gas (air) and the solid phase (resin). The identification of effective transport properties for the considered fixed bed of material (resin CG 8) is discussed. To this purpose available data from the literature are used. (author)

  11. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter,Fabiano André; Ferreira,Tamara Santos; Sinhorin,Adilson Paulo; Lima,Larissa Borges de; Morais,Leidimar Alves de; Pacheco,Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorpti...

  12. Counterion adsorption and desorption rate of a charged macromolecule

    Science.gov (United States)

    Shi, Yu; Yang, Jingfa; Zhao, Jiang

    The rate constant of counterion adsorption to and desorption from a synthetic polyelectrolyte, polystyrene sulfonate (PSS-), is measured in aqueous solution by single molecule fluorescence spectroscopy. The results show that both adsorption and desorption rate of counterions have strong dependence on polymer concentration, salt concentration as well as the molecular weight of polyelectrolytes. The results clearly demonstrate that the contribution of electrostatic interaction and the translational entropy to the distribution of counterions of a polyelectrolyte molecule. The information is helpful to the understanding of polyelectrolyte physics. National Natural Science Foundation of China.

  13. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  14. Bulk-mediated surface diffusion: non-Markovian desorption dynamics

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Prato, Domingo; Wio, Horacio S

    2005-01-01

    Here we analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework, when the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption as well as its motion in the bulk is governed by Markovian dynamics. We study the diffusion of particles in both semi-infinite and finite cubic lattices, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The results are compared with known Markovian cases showing the differences that can be exploited to distinguish between Markovian and non-Markovian desorption mechanisms in experimental situations

  15. Anomalous low-temperature desorption from preirradiated rare gas solids

    International Nuclear Information System (INIS)

    Savchenko, E.V.; Gumenchuk, G.B.; Yurtaeva, E.M.; Belov, A.G.; Khyzhniy, I.V.; Frankowski, M.; Beyer, M.K.; Smith-Gicklhorn, A.M.; Ponomaryov, A.N.; Bondybey, V.E.

    2005-01-01

    The role for the exciton-induced defects in the stimulation of anomalous low-temperature desorption of the own lattice atoms from solid Ar and Ne preirradiated by an electron beam is studied. The free electrons from shallow traps-structural defects-was monitored by the measurements of a yield of the thermally induced exoelectron emission (TSEE). The reaction of recombination of self-trapped holes with electrons is considered as a source of energy needed for the desorption of atoms from the surface of preirradiated solids. A key part of the exciton-induced defects in the phenomenon observed is demonstrated

  16. A new, simple electrostatic-acoustic hybrid levitator

    Science.gov (United States)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  17. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  18. Sea Turtle Acoustic Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic transmitters attached to sea turtles captured in various fishing gear enable the animals to be passively tracked. Acoustic receivers set up in an array...

  19. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying; Yang, Min; Sheng, Ping

    2017-01-01

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles

  20. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  1. Acoustic Levitation Containerless Processing

    Science.gov (United States)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  2. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  3. Topological Acoustic Delay Line

    Science.gov (United States)

    Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan

    2018-03-01

    Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.

  4. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  5. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  6. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    Science.gov (United States)

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  7. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    International Nuclear Information System (INIS)

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-01-01

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation

  8. Acoustic Liners for Turbine Engines

    Science.gov (United States)

    Jones, Michael G (Inventor); Grady, Joseph E (Inventor); Kiser, James D. (Inventor); Miller, Christopher (Inventor); Heidmann, James D. (Inventor)

    2016-01-01

    An improved acoustic liner for turbine engines is disclosed. The acoustic liner may include a straight cell section including a plurality of cells with straight chambers. The acoustic liner may also include a bent cell section including one or more cells that are bent to extend chamber length without increasing the overall height of the acoustic liner by the entire chamber length. In some cases, holes are placed between cell chambers in addition to bending the cells, or instead of bending the cells.

  9. Densitometry By Acoustic Levitation

    Science.gov (United States)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  10. Acoustic integrated extinction

    OpenAIRE

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we der...

  11. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  12. Shallow Water Acoustics Studies

    Science.gov (United States)

    2017-11-19

    LE O CEAN RAPHIC I TITUTI Appli d Oc:ean Physics and E11gi1i,ering Depar1111,11t vember 9, 2017 Dr. Robert Headrick ffice of Naval Resear h, ode...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Applied Ocean Physics and Engineering Department...2015). [3] J.F. Lynch and A.E. Newhall, "Shallow water acoustics", book chapter in "Practical Underwater Acoustics," L. Bjorno, T. Neighbors, and D

  13. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  14. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.

    1978-01-01

    In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass

  15. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  16. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  17. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    Science.gov (United States)

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni

  18. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  19. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    Science.gov (United States)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  20. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    Science.gov (United States)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  1. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  2. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  3. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  4. Influence of pre-treatments on the desorption isotherm ...

    African Journals Online (AJOL)

    Influence of pre-treatments on the desorption isotherm characteristics of plaintain. P-N T Johnson. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjs.v39i1.15851 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for ...

  5. Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces

    CERN Document Server

    Tratnik, H; Hilleret, Noël

    2005-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which in°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly in°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can a®ect the operation of the accelerator by modifying th...

  6. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  7. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  8. A monoenergetic electron source generated by nuclear stimulated desorption

    International Nuclear Information System (INIS)

    Kelson, I.; Levy, Y.; Nir, D.; Haustein, P.E.

    1994-01-01

    A series of measurements of nuclear stimulated desorption was performed for 103 Ru, using thin ruthenium films irradiated by thermal neutrons. The magnitude, time dependence and electric charge state of the outgoing 103m Rh flux was investigated. The utilization of monoenergetic electrons accompanying the 103 Rh decay for thin film thickness measurement is considered. (Author)

  9. Water absorption and desorption in shuttle ablator and insulation materials

    Science.gov (United States)

    Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.

    1982-01-01

    Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.

  10. Equilibrium adsorption data from temperature-programmed desorption measurements

    NARCIS (Netherlands)

    Foeth, F.; Mugge, J.M.; van der Vaart, R.; van der Vaart, Rick; Bosch, H.; Reith, T.

    1996-01-01

    This work describes a novel method that enables the calculation of a series of adsorption isotherms basically from a single Temperature-Programmed Desorption (TPD) experiment. The basic idea is to saturate an adsorbent packed in a fixed bed at a certain feed concentration and temperature and to

  11. PAH desorption from river floodplain soils using supercritical fluid extraction

    Czech Academy of Sciences Publication Activity Database

    Yang, Y.; Cajthaml, Tomáš; Hofmann, T.

    2008-01-01

    Roč. 156, č. 3 (2008), s. 745-752 ISSN 0269-7491 R&D Projects: GA MŠk 2B06156 Institutional research plan: CEZ:AV0Z50200510 Keywords : pahs * slow desorption * carbonaceous materials Subject RIV: EE - Microbiology, Virology Impact factor: 3.135, year: 2008

  12. Study of boric acid sorption and desorption processes

    International Nuclear Information System (INIS)

    Czosnowska, B.; Laren, E.

    1978-01-01

    The results are given of the experimental determination of the effect on the boric acid flow and sorption and desorption efficiency of the flow rate of boric acid at different concentrations through an ion exchange column 10.2 cm 2 in cross section. The strongly alkaline VOFATIT RO ion exchanger was used. (B.S.)

  13. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    Science.gov (United States)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  14. Benefits of 2.94 μm infrared matrix-assisted laser desorption/ionization for analysis of labile molecules by Fourier transform mass spectrometry

    DEFF Research Database (Denmark)

    Budnik, Bogdan A.; Jensen, Kenneth Bendix; Jørgensen, Thomas J. D.

    2000-01-01

    A 2.94 microm Er:YAG laser was used together with a commercial Fourier transform mass spectrometer to study labile biomolecules. The combination has shown superior performance over conventional 337 nm ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) Fourier transform mass...

  15. Improved acoustic levitation apparatus

    Science.gov (United States)

    Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.

    1980-01-01

    Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.

  16. Acoustic cavitation studies

    Science.gov (United States)

    Crum, L. A.

    1981-09-01

    The primary thrust of this study was toward a more complete understanding of general aspects of acoustic cavitation. The effect of long-chain polymer additives on the cavitation threshold was investigated to determine if they reduced the acoustic cavitation threshold in a similar manner to the observed reduction in the cavitation index in hydrodynamic cavitation. Measurements were made of the acoustic cavitation threshold as a function of polymer concentration for additives such as guar gum and polyethelene oxide. The measurements were also made as a function of dissolved gas concentration, surface tension and viscosity. It was determined that there was a significant increase in the acoustic cavitation threshold for increased concentrations of the polymer additives (measurable effects could be obtained for concentrations as low as a few parts per million). One would normally expect that an additive that reduces surface tension to decrease the pressure required to cause a cavity to grow and thus these additives, at first thought, should reduce the threshold. However, even in the hydrodynamic case, the threshold was increased. In both of the hydrodynamic cases considered, the explanation for the increased threshold was given in terms of changed fluid dynamics rather than changed physical properties of the fluid.

  17. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Cumming, GA 30041 770-205-8211 info@ANAUSA.org The world’s #1 acoustic neuroma resource Click to ... Cumming, GA 30041 770-205-8211 info@ANAUSA.org About ANA Mission, Vision & Values Leadership & Staff Annual ...

  18. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  19. Portable acoustic myography

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Danneskiold-Samsøe, Bente; Bartels, Else Marie

    2013-01-01

    Muscle sound gives a local picture of muscles involved in a particular movement and is independent of electrical signals between nerve and muscle. Sound recording (acoustic myography) is a well-known noninvasive technique that has suffered from not being easily applicable, as well as not being able...

  20. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  1. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  2. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  3. Acoustic Surface Cavitation

    NARCIS (Netherlands)

    Zijlstra, A.G.

    2011-01-01

    Merely the presence of compressible entities, known as bubbles, greatly enriches the physical phenomena encountered when introducing ultrasound in a liquid. Mediated by the response of these bubbles, the otherwise diffuse and relatively low energy density of the acoustic field can induce strong,

  4. Select Internet Resources on Acoustics

    Directory of Open Access Journals (Sweden)

    Angela R. Davis

    2016-12-01

    Full Text Available Merriam-Webster (2016 defines acoustics as, “a science that deals with the production, control, transmission, reception, and effects of sounds.” According to Rossing (2014, the study of acoustics began in ancient Greece with Pythagoras’ study of vibrating strings on musical instruments. Since those early beginnings, famous scientists including Rayleigh, Alexander Graham Bell, and Thomas Edison, have helped expand the field of acoustics to include architectural, physical, engineering, structural, underwater, physiological and psychological, musical acoustics, and speech. Acoustics is a highly interdisciplinary field and researchers may need resources from physics, medicine, and engineering to understand all aspects of their research.

  5. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Trace level detection of explosives in solution using leidenfrost phenomenon assisted thermal desorption ambient mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20 μL (absolute sample amount 90-630 fmol). As LTP ionization method was applied and ion-molecule reactions took place in ambient atmosphere, various ion-molecule adduct species like [M+NO2](-), [M+NO3](-), [M+HCO3](-), [M+HCO4](-) were generated together with [M-H](-) peak. Each peak was unambiguously identified using 'Exactive Orbitrap' mass spectrometer in negative ionization mode within 3 ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions.

  7. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Bialy, Agata [Amminex Emissions Technology A/S, Gladsaxevej 363, 2860 Soeborg (Denmark); Jensen, Peter B. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Fysikvej 311, DK-2800 Kgs. Lyngby (Denmark); Blanchard, Didier [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Vegge, Tejs, E-mail: teve@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Quaade, Ulrich J., E-mail: ujq@amminex.com [Amminex Emissions Technology A/S, Gladsaxevej 363, 2860 Soeborg (Denmark)

    2015-01-15

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba{sub x}Sr{sub (1−x)}Cl{sub 2} mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH{sub 3}){sub 8}Cl{sub 2}. - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl{sub 2} in SrCl{sub 2} yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures.

  8. Acoustic manipulation: Bessel beams and active carriers

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2017-10-01

    In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool, with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the full manipulability condition of active carriers in comparison with the case of a plane wave field. The results unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in delivery systems, microswimmers, and trapper designs.

  9. Beam aperture modifier design with acoustic metasurfaces

    Science.gov (United States)

    Tang, Weipeng; Ren, Chunyu

    2017-10-01

    In this paper, we present a design concept of acoustic beam aperture modifier using two metasurface-based planar lenses. By appropriately designing the phase gradient profile along the metasurface, we obtain a class of acoustic convex lenses and concave lenses, which can focus the incoming plane waves and collimate the converging waves, respectively. On the basis of the high converging and diverging capability of these lenses, two kinds of lens combination scheme, including the convex-concave type and convex-convex type, are proposed to tune up the incoming beam aperture as needed. To be specific, the aperture of the acoustic beam can be shrunk or expanded through adjusting the phase gradient of the pair of lenses and the spacing between them. These lenses and the corresponding aperture modifiers are constructed by the stacking ultrathin labyrinthine structures, which are obtained by the geometry optimization procedure and exhibit high transmission coefficient and a full range of phase shift. The simulation results demonstrate the effectiveness of our proposed beam aperture modifiers. Due to the flexibility in aperture controlling and the simplicity in fabrication, the proposed modifiers have promising potential in applications, such as acoustic imaging, nondestructive evaluation, and communication.

  10. Holograms for acoustics.

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-09-22

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  11. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  12. Adsorption-desorption and leaching of pyraclostrobin in Indian soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-01-01

    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  13. Education in acoustics in Argentina

    Science.gov (United States)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  14. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    Science.gov (United States)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  15. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    Science.gov (United States)

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  16. Coverage-dependent adsorption and desorption of oxygen on Pd(100)

    Energy Technology Data Exchange (ETDEWEB)

    Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra; Juurlink, Ludo B. F., E-mail: l.juurlink@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden (Netherlands); Berg, Otto T. [Department of Chemistry, California State University Fresno, 2555 E. San Ramon Ave., Fresno, California 93740 (United States)

    2016-06-28

    We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediate temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.

  17. Rate Parameter Distributions for Isobutane Dehydrogenation and Isobutene Dimerization and Desorption over HZSM-5

    Directory of Open Access Journals (Sweden)

    Trevor C. Brown

    2013-11-01

    Full Text Available Deconvolution of the evolved isobutene data obtained from temperature-programmed, low-pressure steady-state conversion of isobutane over HZSM-5 has yielded apparent activation energies for isobutane dehydrogenation, isobutene dimerization and desorption. Intrinsic activation energies and associated isobutane collision frequencies are also estimated. A combination of wavelet shrinkage denoising, followed by time-varying flexible least squares of the evolved mass-spectral abundance data over the temperature range 150 to 450 °C, provides accurate, temperature-dependent, apparent rate parameters. Intrinsic activation energies for isobutane dehydrogenation range from 86 to 235.2 kJ mol−1 (average = 150 ± 42 kJ mol−1 for isobutene dimerization from 48.3 to 267 kJ mol−1 (average = 112 ± 74 kJ mol−1 and for isobutene desorption from 64.4 to 97.8 kJ mol−1 (average = 77 ± 12 kJ mol−1. These wide ranges reflect the heterogeneity and acidity of the zeolite surface and structure. Seven distinct locations and sites, including Lewis and Brønsted acid sites can be identified in the profiles. Isobutane collision frequencies range from 10−0.4 to 1022.2 s−1 and are proportional to the accessibility of active sites, within the HZSM-5 micropores or on the external surface.

  18. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  19. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  20. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    International Nuclear Information System (INIS)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M.

    2010-01-01

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H 2 O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  1. Extraction and desorption of accessible uranium

    International Nuclear Information System (INIS)

    Payne, T.

    1987-01-01

    The proportion of the uranium in natural ore samples which is in isotopic equilibrium with the uranium in the groundwater may be designated accessible uranium, and can be regarded as being in short-term exchange with the aqueous phase. Some of the natural uranium is secured in resistant crystalline minerals, and is described as inaccessible, because it may not be brought into solution unless the mineral is subjected to extreme chemical attack. It is not available for groundwater transport in the short term. An estimate of the proportion of accessible uranium is therefore useful when modeling radionuclide migration. The amount of accessible natural uranium is some uranium ore samples from the Ranger deposit has been determined by combining a sequential extraction with isotopic measurements of the extracted phases. The solid samples were crushed drill core form Ranger S1/146 which had previously been used for uranium adsorption experiments and therefore contained 236 U as well as natural uranium. This Section discusses how the uranium partitioning found with the sequential extraction procedure predicts the leaching behavior of these samples

  2. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    International Nuclear Information System (INIS)

    Holzrichter, J.F.; Ng, L.C.

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs

  3. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    Science.gov (United States)

    Holzrichter, John F.; Ng, Lawrence C.

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.

  4. An acoustic prion assay

    Directory of Open Access Journals (Sweden)

    Gordon Hayward

    2016-12-01

    Full Text Available An acoustic prion assay has been demonstrated for sheep brain samples. Only five false positives and no false negatives were observed in a test of 45 positive and 45 negative samples. The acoustic prion sensor was constructed using a thickness shear mode quartz resonator coated with a covalently bound recombinant prion protein. The characteristic indicator of a scrapie infected sheep brain sample was an observed shoulder in the frequency decrease in response to a sample.The response of the sensor aligns with a conformational shift in the surface protein and with the propagation mechanism of the disease. This alignment is evident in the response timing and shape, dependence on concentration, cross species behaviour and impact of blood plasma. This alignment is far from sufficient to prove the mechanism of the sensor but it does offer the possibility of a rapid and inexpensive additional tool to explore prion disease. Keywords: Prions, Thickness shear mode quartz sensor

  5. The acoustics of snoring.

    Science.gov (United States)

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  6. Osmotic Acoustic Source

    Science.gov (United States)

    2017-09-25

    Technology Transfer at (401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited Attorney Docket No...in the enclosure through osmosis. Valves open at a specified time after the liquid injection to free flood between the enclosure and the...the timing of the salt jets and the free-flooding valves enables a repeatable Attorney Docket No. 300070 4 of 14 acoustic pulse at low

  7. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A

    2008-01-01

    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  8. Anisotropy of acoustic properties in paratellurite

    International Nuclear Information System (INIS)

    Parygin, Vladimir N.

    1996-01-01

    One of the peculiarities of the TeO 2 crystal consists of its strong acoustic anisotropy. This anisotropy demonstrates itself by acoustic energy walk-off and anisotropic distortion of an acoustic beam. Four constants completely characterise the acoustic anisotropy of the medium. In this paper these constants are calculated for various directions of the acoustic beam in crystal. (authors)

  9. Canada Basin Acoustic Propagation Experiment (CANAPE)

    Science.gov (United States)

    2015-09-30

    acoustic communications, acoustic navigation, or acoustic remote sensing of the ocean interior . RELATED PROJECTS The 2015 CANAPE pilot study was a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Canada Basin Acoustic Propagation Experiment (CANAPE...ocean structure. Changes in sea ice and the water column affect both acoustic propagation and ambient noise. This implies that what was learned

  10. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    International Nuclear Information System (INIS)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na + and F + desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H + , Li + , and F + are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N 2 -O 2 multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF 2 and a series of alkali halides are discussed in terms of desorption mechanisms

  11. Acoustic and adsorption properties of submerged wood

    Science.gov (United States)

    Hilde, Calvin Patrick

    Wood is a common material for the manufacture of many products. Submerged wood, in particular, is used in niche markets, such as the creation of musical instruments. An initial study performed on submerged wood from Ootsa Lake, British Columbia, provided results that showed that the wood was not suitable for musical instruments. This thesis re-examined the submerged wood samples. After allowing the wood to age unabated in a laboratory setting, the wood was retested under the hypothesis that the physical acoustic characteristics would improve. It was shown, however, that the acoustic properties became less adequate after being left to sit. The adsorption properties of the submerged wood were examined to show that the submerged wood had a larger accessible area of wood than that of control wood samples. This implied a lower amount of crystalline area within the submerged wood. From the combined adsorption and acoustic data for the submerged wood, relationships between the moisture content and speed of sound were created and combined with previous research to create a proposed model to describe how the speed of sound varies with temperature, moisture content and the moisture content corresponding to complete hydration of sorption sites within the wood.

  12. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  13. Bilateral acoustic neuromas.

    Science.gov (United States)

    Anand, V T; Byrnes, D P; Walby, A P; Kerr, A G

    1993-10-01

    This article reviews 12 patients with bilateral acoustic neuromas. The sex incidence was equal and the mean age at diagnosis was 26.2 years. The family history was positive in nine of the patients. Five patients have had incomplete surgical removal of acoustic neuromas on both sides. Two of them are completely deaf and the other three have severe sensorineural hearing loss in one ear and no hearing in the other ear. In five patients the tumour on one side has been operated on and the other side is being observed with at least short-term preservation of good hearing. The remaining two patients died of intra-cranial complications, one of them post-operatively. Four patients developed facial palsy immediately following surgery and one developed facial weakness 6 months after surgery. Guidelines are discussed for the care of these patients including the timing of surgery and alternative treatment options (observation, radio-surgery and chemotherapy). This is essentially a group of young individuals who have had multiple operations for bilateral acoustic tumours and associated manifestations and for whom the disease and the sequelae of treatment can be tragic.

  14. Adsorption and desorption of phosphorus in ceramic capsules

    International Nuclear Information System (INIS)

    Almeida, J.R.F. de.

    1983-01-01

    Experiments were carried out in order to analyse the capacity of adsorving P from water using ceramic capsules with 32P, in the presence and absence of water flow through the capsule. Also studied was the desorption of 32 P from the capsule in water, with and without water flow. The desorption of residual 32 P was analysed by isotopic exchange with 31 P, also with and without water flow. It was observed that, in the presence of a flow, the capsule retained 32 P from the solution, which was weakly desorbed by water but was isotopically exchanged with 31 P. In the absence of a flow, the capsule was not an efficient P adsorber. (Author) [pt

  15. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  16. Investigations on ion-beam induced desorption from cryogenic surfaces

    International Nuclear Information System (INIS)

    Maurer, Christoph

    2017-01-01

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  17. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Science.gov (United States)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  18. Electron stimulated desorption study of oxygen adsorption on tungsten

    International Nuclear Information System (INIS)

    Prince, R.H.; Floyd, G.R.

    1978-01-01

    The adsorption of oxygen on a polycrystalline tungsten surface at approximately 800 K has been studied by means of electron stimulated desorption (ESD). Although precision gas dosing was not employed, the initial sticking probability for dissociative adsorption appears to be essentially unity, while the variation with coverage suggests that a high degree of order exists and that precursor state kinetics are significant. A most noticeable and reproducible discontinuity in ESD parameters occurs at a fractional coverage theta approximately 0.8 (exposure approximately 1.4 X 10 15 molecules/cm 2 incident) which is interpreted as an order-disorder transition within a single (β 1 ) chemisorption state, and results in an increase in the ionic desorption cross-section by a factor of approximately 1.26. A discussion of the adsorption kinetics and the disorder transition is given in terms of current models of dissociative adsoption which include the effects of nearest neighbour lateral interactions. (Auth.)

  19. Unconventional resource's production under desorption-induced effects

    Directory of Open Access Journals (Sweden)

    S. Sina Hosseini Boosari

    2016-06-01

    We have developed a numerical model to study the effect of changes in porosity, permeability and compaction on four major U.S. shale formations considering their Langmuir isotherm desorption behavior. These resources include; Marcellus, New Albany, Barnett and Haynesville Shales. First, we introduced a model that is a physical transport of single-phase gas flow in shale porous rock. Later, the governing equations are implemented into a one-dimensional numerical model and solved using a fully implicit solution method. It is found that the natural gas production is substantially affected by desorption-induced porosity/permeability changes and geomechancis. This paper provides valuable insights into accurate modeling of unconventional reservoirs that is more significant when an even small correction to the future production prediction can enormously contribute to the U.S. economy.

  20. Desorption and ionization processes in laser mass spectrometry

    International Nuclear Information System (INIS)

    Peyl, G.J.Q. van der.

    1984-01-01

    In this thesis results are reported from a study on the desorption- and ionization process initiated by infra-red laser irradiation (LDMS) or ion bombardment (SIMS) of thin organic sample layers. The study is especially focused on the formation of quasimolecular ions under these conditions. Results of these investigations can be used for a better optimization of the LDMS and SIMS techniques in organic mass spectrometry. First, an overview is given of laser desorption mass spectrometry. Next, the coupling of the laser energy into the organic sample layer is investigated. It is concluded that the laser energy is primarily absorbed by the substrate material and not by the organic overlayer. The formation of quasi-molecular ions, either in the gas phase or in the substrate surface is investigated. The final section reports kinetic energy distributions for ions sputtered from organic solids and liquids. (Auth.)

  1. Hydrogen absorption-desorption properties of U2Ti

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Tanaka, Satoru; Yamawaki, Michio

    1990-01-01

    Hydrogen absorption-desorption properties of U 2 Ti intermetallic compound was examined over the temperature range of 298 to 973 K and at hydrogen pressures below 10 5 Pa. It absorbs hydrogen up to 7.6 atoms per F.U. (formula unit) by two step reactions and hence each desorption isotherm is separated into two plateau regions. In the first plateau, a newly-found ternary hydride is formed, where the hydrogen concentration, c H , reaches 2.4 H atoms/F.U. In the second plateau, UH 3 is formed and c H reaches 7.6 H atoms/F.U. The specimen is disintegrated into fine powder in the second plateau, while in the first plateau the ternary hydride which was identified to be UTi 2 H x (x=4.8 to 6.2) showed high durability against powdering. It is predicted that UTi 2 can be suitable material for tritium storage. (orig.)

  2. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  3. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows the

  4. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  5. Sample and plume luminescence in fast heavy ion induced desorption

    International Nuclear Information System (INIS)

    Tuszynski, W.; Koch, K.; Hilf, E.R.

    1996-01-01

    The luminescence arising in 252 Cf-fission fragment induced desorption events has been measured using the time-correlated single photon counting technique. Photons emitted from the sample have been guided from a plasma desorption ion source to a photodetector by an optical fibre. Spectra and decay functions have been obtained using thin layers of Coronene or POPOP as samples. The results are strongly dependent on the acceleration field applied for ion extraction. Approximately 10 photons per fission fragment have been produced when applying no accelerating voltage. The results clearly show that these photons come from radiative electronic relaxations of molecules in the solid sample. Considerably more photons per fission fragment have been produced when applying a positive acceleration voltage. The intensity increases almost linearly for acceleration fields below 10 kV/cm and saturates at a nearly 10-fold higher value when compared to no acceleration. The intensity is also affected by the homogeneity of the accelerating field. These additional photons are attributed to radiative electronic relaxations of desorbed neutral molecules in the plume excited by inelastic collisions with accelerated positive ions. No additional photons have been observed when extracting negative ions. The negative ions produced do obviously not hit and/or excite desorbed neutral molecules, presumably due to their specific desorption characteristics. The experimental data have been analyzed by comparing with the cw and time-resolved sample luminescence obtained by optical excitation. The findings demonstrate that valuable information on ion-solid interactions, on specific desorption quantities and on processes in the plume can be obtained by measuring and analyzing the luminescence induced by the impact of high energy primary ions. (orig.)

  6. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  7. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  8. Hybrid Speaker Recognition Using Universal Acoustic Model

    Science.gov (United States)

    Nishimura, Jun; Kuroda, Tadahiro

    We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.

  9. The desorptivity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  10. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  11. Adsorption, aggregation, and desorption of proteins on smectite particles.

    Science.gov (United States)

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-07

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.

  12. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  13. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  14. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  15. Shallow-Water Mud Acoustics

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow-Water Mud Acoustics William L. Siegmann...models and methods that explain observed material and acoustic properties of different physical types of shallow-ocean mud sediments. Other goals...are to assess prior data relating to the acoustic properties of mud and to provide guidance in the development and interpretation of experiments. A

  16. Coupled Acoustic-Mechanical Bandgaps

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Kook, Junghwan

    2016-01-01

    medium and the presence of acoustic resonances. It is demonstrated that corrugation of the plate structure can introduce bending wave bandgaps and bandgaps in the acoustic domain in overlapping and audible frequency ranges. This effect is preserved also when taking the physical coupling between the two...... domains into account. Additionally, the coupling is shown to introduce extra gaps in the band structure due to modal interaction and the appearance of a cut-on frequency for the fundamental acoustic mode....

  17. Acoustic Communications Measurement Systems (ACOMMS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  18. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  19. Guided acoustic wave inspection system

    Science.gov (United States)

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  20. Tunable coupled surface acoustic cavities

    Science.gov (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.

    2012-06-01

    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  1. Transition section for acoustic waveguides

    International Nuclear Information System (INIS)

    Karplus, H.H.B.

    1975-01-01

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation

  2. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  3. Ion-acoustic plasma turbulence

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Silin, V.P.

    1982-01-01

    A theory is developed of the nonlinear state that is established in a plasma as a result of development of ion-acoustic instability. Account is taken simultaneously of the linear induced scattering of the waves by the ions and of the quasilinear relaxation of the electrons by the ion-acoustic pulsations. The distribution of the ion-acoustic turbulence in frequency and in angle is obtained. An Ohm's law is established and expressions are obtained for the electronic heat flux and for the relaxation time of the electron temperature in a turbulent plasma. Anomalously large absorption and scattering of the electromagnetic waves by the ion-acoustic pulsations is predicted

  4. Investigations on ion-beam induced desorption from cryogenic surfaces; Untersuchungen zu ionenstrahlinduzierter Desorption von kryogenen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Christoph

    2017-07-03

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  5. Adsorption-desorption and hysteresis phenomenon of tebuconazole in Colombian agricultural soils: Experimental assays and mathematical approaches.

    Science.gov (United States)

    Mosquera-Vivas, Carmen S; Martinez, María J; García-Santos, Glenda; Guerrero-Dallos, Jairo A

    2018-01-01

    The adsorption-desorption, hysteresis phenomenon, and leachability of tebuconazole were studied for Inceptisol and Histosol soils at the surface (0-10 cm) and in the subsurface (40-50 cm) of an agricultural region from Colombia by the batch-equilibrium method and mathematical approaches. The experimental K fa and K d (L kg -1 ) values (7.9-289.2) decreased with depth for the two Inceptisols and increased with depth for the Histosol due to the organic carbon content, aryl and carbonyl carbon types. Single-point and desorption isotherms depended on adsorption reversibility and suggested that tebuconazole showed hysteresis; which can be adequately evaluated with the single-point desorption isotherm and the linear model using the hysteresis index HI. The most suitable mathematical approach to estimate the adsorption isotherms of tebuconazole at the surface and in the subsurface was that considering the combination of the n-octanol-water partition coefficient, pesticide solubility, and the mass-balance concept. Tebuconazole had similar moderate mobility potential as compared with the values of other studies conducted in temperate amended and unamended soils, but the risk of the fungicide to pollute groundwater sources increased when the pesticide reached subsurface soil layers, particularly in the Inceptisols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enhancing the beamforming map of spherical arrays at low frequencies using acoustic holography

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Torras Rosell, Antoni; Fernandez Grande, Efren

    2014-01-01

    Recent studies have shown that the localization of acoustic sources based on circular arrays can be improved at low frequencies by combining beamforming with acoustic holography. This paper extends this technique to the three dimensional case by making use of spherical arrays. The pressure captur...

  7. Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators

    Science.gov (United States)

    Hernandez, M. I.; Couso, D.; Pinto, R.

    2011-01-01

    Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…

  8. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations.

    Science.gov (United States)

    Hagsäter, S M; Jensen, T Glasdam; Bruus, H; Kutter, J P

    2007-10-01

    We show that full-image micro-PIV analysis in combination with images of transient particle motion is a powerful tool for experimental studies of acoustic radiation forces and acoustic streaming in microfluidic chambers under piezo-actuation in the MHz range. The measured steady-state motion of both large 5 microm and small 1 microm particles can be understood in terms of the acoustic eigenmodes or standing ultra-sound waves in the given experimental microsystems. This interpretation is supported by numerical solutions of the corresponding acoustic wave equation.

  9. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2018-05-03

    The desorption of benzene, 1,3,5-trifluorobenzene (TFB), and hexafluorobenzene (HFB) from a graphene covered Pt(111) substrate was investigated using temperature programmed desorption (TPD). All three species have well resolved monolayer and second layer desorption peaks. The desorption spectra for submonolayer coverages of benzene and hexafluorobenzene are consistent with first order desorption kinetics. In contrast, the submonolayer TPD spectra for 1,3,5-trifluorobenzene align on a common leading-edge which is indicative of zero order desorption kinetics. The desorption behavior of the three molecules can be correlated with the strength of the quadrupole moments. Calculations (second-order Møller-Plesset perturbation and density functional theory) show that the potential minimum for coplanar TFB dimers is more than a factor of two greater than that for either benzene or HFB dimers. The calculations support the interpretation that benzene and HFB are less likely to form the two dimensional islands that are needed for submonolayer zero order desorption kinetics.

  10. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    Science.gov (United States)

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  11. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  12. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis.

    Science.gov (United States)

    Deng, Liping; Su, Yingying; Su, Hua; Wang, Xinting; Zhu, Xiaobin

    2007-05-08

    Biosorption is an effective method to remove heavy metals from wastewater. In this work, adsorption features of Cladophora fascicularis were investigated as a function of time, initial pH, initial Pb(II) concentrations, temperature and co-existing ions. Kinetics and equilibria were obtained from batch experiments. The biosorption kinetics followed the pseudo-second order model. Adsorption equilibria were well described by the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 198.5 mg/g at 298K and pH 5.0. The adsorption processes were endothermic and the biosorption heat was 29.6 kJ/mol. Desorption experiments indicated that 0.01 mol/L Na(2)EDTA was an efficient desorbent for the recovery of Pb(II) from biomass. IR spectrum analysis suggested amido or hydroxy, CO and C-O could combine intensively with Pb(II).

  13. Damage cross sections for fast heavy ion induced desorption of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, M; Hakansson, P; Sundqvist, B [Uppsala Univ. (Sweden). Tandem Accelerator Lab.

    1984-03-01

    The Uppsala EN-tandem accelerator combined with a time-of-flight mass spectrometer has been used to measure the damage cross sections for Fast Heavy Ion Induced Desorption (FHIID) of the amino acid valine (MW=117) and the protein bovine insulin (MW=5733). Time-of-flight spectra have been obtained after exposing the sample to a known radiation dose of 90 MeV /sup 127/I/sup 14 +/ ions and the yield of the quasi-molecular ions has been measured as a function of the radiation dose. The results are: 6.8(+-1.8)x10/sup -13/ cm/sup 2/ and 50(+-17)x10/sup -13/ cm/sup 2/ for positive ions of valine and insulin respectively. The cross section for valine is roughly one order of magnitude larger than previously published low energy (keV) damage cross sections for the amino acid leucine.

  14. Desorption of hydrogen from magnesium hydride: in-situ electron diffraction study

    International Nuclear Information System (INIS)

    Paik, B.; Jones, I.P.; Walton, A.; Mann, V.; Book, D.; Harris, I.R.

    2009-01-01

    The dynamics of a phase change has been studied where electron beam in Transmission Electron Microscope (TEM) has been used to transform MgH 2 into magnesium. A combination of in-situ Electron Diffraction (ED) and an in-situ Electron Energy Loss Spectroscopy (EELS) study under ED mode describes the phase transformation in terms of, respectively, change in the crystal structure and Plasmon energy shift. The orientation relation [001] MgH2 //[-2110] Mg and (-110) MgH2 //(0001) Mg , obtained from the ED study, has been used to propose a model for the movements of magnesium atoms in the structural change to describe the dynamics of the process. The in-situ EELS study has been compared with the existing H-desorption model. The study aims to describe the sorption dynamics of hydrogen in MgH 2 which is a base material for a number of promising hydrogen storage systems. (author)

  15. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  16. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  17. Monolithic acoustic graphene transistors based on lithium niobate thin film

    Science.gov (United States)

    Liang, J.; Liu, B.-H.; Zhang, H.-X.; Zhang, H.; Zhang, M.-L.; Zhang, D.-H.; Pang, W.

    2018-05-01

    This paper introduces an on-chip acoustic graphene transistor based on lithium niobate thin film. The graphene transistor is embedded in a microelectromechanical systems (MEMS) acoustic wave device, and surface acoustic waves generated by the resonator induce a macroscopic current in the graphene due to the acousto-electric (AE) effect. The acoustic resonator and the graphene share the lithium niobate film, and a gate voltage is applied through the back side of the silicon substrate. The AE current induced by the Rayleigh and Sezawa modes was investigated, and the transistor outputs a larger current in the Rayleigh mode because of a larger coupling to velocity ratio. The output current increases linearly with the input radiofrequency power and can be effectively modulated by the gate voltage. The acoustic graphene transistor realized a five-fold enhancement in the output current at an optimum gate voltage, outperforming its counterpart with a DC input. The acoustic graphene transistor demonstrates a paradigm for more-than-Moore technology. By combining the benefits of MEMS and graphene circuits, it opens an avenue for various system-on-chip applications.

  18. MRI of acoustic neurinoma

    International Nuclear Information System (INIS)

    Matsumoto, Kunihiko; Niitsu, Mamoru; Yoshioka, Hiroshi; Tanaka, Yumiko; Anno, Izumi; Kuramoto, Kenmei; Itai, Yuji

    1994-01-01

    Thirty six patients were studied with a 1.5 T superconductive magnetic resonance imager. Small neurinomas appeared as homogenous intensities, large neurinomas as heterogenous intensities in T 1 and T 2 weighted images. Dural tail representing reactive change of the meninges was seen in our three acoustic neurinomas. High resolution, thin slice, MR imaging was particularly useful for intracanalicular tumor to see the relationship between the tumor and facial nerve. Total or near-total removal of tumor was performed in thirteen cases, in which functional preservation of the cochlear nerve was achieved in only three cases. (author)

  19. Lecture Notes On Acoustics

    International Nuclear Information System (INIS)

    Kim, Yang Han

    2005-09-01

    This book mentions string vibration and wave, one-dimension wave and wave equation, characteristic impedance, governing equation of string, and wave energy from string, wave equation of wave and basic physical quantity like one-dimension wave equation, sound unit, sound intensity and energy, sound movement in a surface of discontinuity with transmission loss of sound by partition, and Snell's law, radiation, scatter and diffraction and sound in closed space with Sabine's theory, sound characteristic of closed space and duct acoustics.

  20. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  1. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... exchanging experiences about constructions fulfilling different classes, reducing trade barriers, and finally increasing the sound insulation of dwellings.......Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...

  2. Relating desorption of polycyclic aromatic hydrocarbons from harbour sludges to type of organic material

    Science.gov (United States)

    Heister, K.; Pols, S.; Loch, J. P. G.; Bosma, T.

    2009-04-01

    sodium azide to prevent microbial degradation, all samples showed oscillating concentrations of PAH over time pointing to the presence of anaerobic biodegradation. This also had an impact on the temporal development of pH, DOC and electrical conductivity. However, the concentrations of PAH desorbed were very low; for components with a molecular weight higher than pyrene, no desorption was observed at all. On a percentage basis, more PAH desorbed from the BK sample, even though the BMR sample contained an up to ten times higher amount of PAH. In addition, the organic material of the sludges was characterised by C and N elemental and sugar analysis and 13C CPMAS NMR to see how the type of organic material influenced desorption. It was shown that the two sludges did not differ significantly in the amount but more in the type of organic material. The BK sample contained organic material which was more degraded than the BMR sample. By combining desorption behaviour with organic material characterisation, we will show how the type of organic material influences desorption of PAH from the sediments.

  3. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  4. Acoustic Levitation With One Driver

    Science.gov (United States)

    Wang, T. G.; Rudnick, I.; Elleman, D. D.; Stoneburner, J. D.

    1985-01-01

    Report discusses acoustic levitation in rectangular chamber using one driver mounted at corner. Placement of driver at corner enables it to couple effectively to acoustic modes along all three axes. Use of single driver reduces cost, complexity and weight of levitation system below those of three driver system.

  5. Acoustic Levitation With One Transducer

    Science.gov (United States)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  6. Digital Controller For Acoustic Levitation

    Science.gov (United States)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  7. Acoustic engineering and technology '90

    International Nuclear Information System (INIS)

    1990-01-01

    Acoustic monitoring, testing and diagnosis in machines, production processes and products enhance the uptimes and profitability of machinery and plants. 18 papers discuss the current state of the art of acoustic monitoring systems including integrated factory planning as well as industrial health, and noise protection. (DG) [de

  8. Scattering Of Nonplanar Acoustic Waves

    Science.gov (United States)

    Gillman, Judith M.; Farassat, F.; Myers, M. K.

    1995-01-01

    Report presents theoretical study of scattering of nonplanar acoustic waves by rigid bodies. Study performed as part of effort to develop means of predicting scattering, from aircraft fuselages, of noise made by rotating blades. Basic approach was to model acoustic scattering by use of boundary integral equation to solve equation by the Galerkin method.

  9. Acoustical Properties of Contemporary Mosques

    OpenAIRE

    Karaman Özgül Yılmaz; Güzel Neslihan Onat

    2017-01-01

    Religious buildings are important for many communities because of their representation of different beliefs. In such structures, the sense of individuality or unity & togetherness are created according to variable worship activities; these different uses have also different acoustical requirements. In order to create the desired feeling in the space at the required time, rooms should be evaluated in terms of acoustical conditions.

  10. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  11. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  12. Acoustic Emission Technology and Application

    International Nuclear Information System (INIS)

    Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.

    2003-10-01

    Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures

  13. Surface acoustic wave actuated cell sorting (SAWACS).

    Science.gov (United States)

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  14. One-dimensional rigid film acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-11-01

    We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves.

  15. One-dimensional rigid film acoustic metamaterials

    International Nuclear Information System (INIS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-01-01

    We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves. (paper)

  16. Ultrasound acoustic wave energy transfer and harvesting

    Science.gov (United States)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  17. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  18. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  19. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  20. [Acoustical parameters of toys].

    Science.gov (United States)

    Harazin, Barbara

    2010-01-01

    Toys play an important role in the development of the sight and hearing concentration in children. They also support the development of manipulation, gently influence a child and excite its emotional activities. A lot of toys emit various sounds. The aim of the study was to assess sound levels produced by sound-emitting toys used by young children. Acoustical parameters of noise were evaluated for 16 sound-emitting plastic toys in laboratory conditions. The noise level was recorded at four different distances, 10, 20, 25 and 30 cm, from the toy. Measurements of A-weighted sound pressure levels and noise levels in octave band in the frequency range from 31.5 Hz to 16 kHz were performed at each distance. Taking into consideration the highest equivalent A-weighted sound levels produced by tested toys, they can be divided into four groups: below 70 dB (6 toys), from 70 to 74 dB (4 toys), from 75 to 84 dB (3 toys) and from 85 to 94 dB (3 toys). The majority of toys (81%) emitted dominant sound levels in octave band at the frequency range from 2 kHz to 4 kHz. Sound-emitting toys produce the highest acoustic energy at the frequency range of the highest susceptibility of the auditory system. Noise levels produced by some toys can be dangerous to children's hearing.

  1. Review of Progress in Acoustic Levitation

    Science.gov (United States)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2018-04-01

    Acoustic levitation uses acoustic radiation forces to counteract gravity and suspend objects in mid-air. Although acoustic levitation was first demonstrated almost a century ago, for a long time, it was limited to objects much smaller than the acoustic wavelength levitating at fixed positions in space. Recent advances in acoustic levitation now allow not only suspending but also rotating and translating objects in three dimensions. Acoustic levitation is also no longer restricted to small objects and can now be employed to levitate objects larger than the acoustic wavelength. This article reviews the progress of acoustic levitation, focusing on the working mechanism of different types of acoustic levitation devices developed to date. We start with a brief review of the theory. Then, we review the acoustic levitation methods to suspend objects at fixed positions, followed by the techniques that allow the manipulation of objects. Finally, we present a brief summary and offer some future perspectives for acoustic levitation.

  2. Detecting Biosignatures Associated with Minerals by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transorm Mass Spectromety (GALDI-FTMS)

    Energy Technology Data Exchange (ETDEWEB)

    C. Doc Richardson; J. Michelle Kotler; Nancy W. Hinman; Timothy R. McJunkin; Jill R. Scott

    2008-07-01

    The ability to detect carbon signatures that can be linked to complex, possibly biogenic, organic molecules is imperative in research into the origin and distribution of life in our solar system particularly when used in conjunction with inorganic, mineralogical, and isotopic signatures that provide strong evidence for geochemical influences of living organisms on their environment. Ideally, the method used to detect these signatures must (i) accurately and automatically translate the organic and other information into usable forms, (ii) precisely distinguish such information from alternative compositions, (iii) operate with high spatial resolution coupled with precise location abilities, and (iv) require little to no sample preparation because of the potential for contamination. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometer (FTMS) has been used to determine the presence of bio/organic molecules (BOM) associated with different minerals and mineraloids including oxide, sulfate, carbonate, chloride, and silicate minerals. BOM is defined as an organic structure that can be produced by living organisms or derived from another organic compound made by living organisms (i.e., degradation product). GALDI requires no sample preparation because the mineral matrix assists desorption. Ultimately, however, the detectability of BOM is controlled by the desorption efficiency, ionization efficiency, and the specific experimental conditions. Results from experiments with combinations of known BOM and mineral standards indicated that the detectability of BOM increased with decreasing concentration, contrary to most analytical procedures. Results suggest that BOM when combined with certain minerals is more easily detected than when combined with other minerals. Such conclusions can guide selection of appropriate samples for sample return missions.

  3. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  4. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  5. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    International Nuclear Information System (INIS)

    Prata, Fabio; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges; Lavorenti, Arquimedes

    2003-01-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh 2 PO 4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha -1 of P 2 O 5 , which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L -1 ), with a 14 C radioactivity of 0.233 kBq mL -1 . Four steps of the desorption procedures withCaCl 2 0.01 mol L -1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L -1 ). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm -3 . Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  6. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  7. Acoustic position finding of partial discharges in transformers. Combination of partial discharge measurement technology with 3D visualization; Akustische Ortung von Teilentladungen in Transformatoren. TE-Messtechnik und 3-D-Visualisierung kombiniert

    Energy Technology Data Exchange (ETDEWEB)

    Kraetge, Alexander; Hoek, Stefan [Omicron Electronics GmbH, Klaus (Austria)

    2013-11-01

    A new measuring system facilitates the detection of partial discharges in transformers by means of the fully synchronous combination of measurement technology for electrical partial discharges with intuitive 3D visualization of the test object. The contribution under consideration describes the application of this system with examples from the measurement practice.

  8. Validation and application of Acoustic Mapping Velocimetry

    Science.gov (United States)

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army

  9. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  10. Krypton-85 enrichment by adsorption-desorption process

    International Nuclear Information System (INIS)

    Khan, A.A.; Deshingkar, D.S.; Ramarathinam, K.

    1975-01-01

    The use of activated charcoal columns in conjunction with cryogenic distillation system for concentration of krypton-85 in fuel reprocessing process off-gas stream is reported. Dynamic adsorption of krypton on activated charcoals and its subsequent desorption by applying vacuum were studied. The possible reduction in the quantity of carrier gas to be liquified in the cryogenic system by utilising this process has been discussed on the basis of results of laboratory evaluations. The possibility of elimination of air and oxygen to avoid explosion hazards associated with radiolytic formation and concentration of ozone has also been considered. (author)

  11. Desorption of large organic molecules by laser-induced plasmon excitation

    International Nuclear Information System (INIS)

    Lee, I.; Callcott, T.A.

    1991-01-01

    Ejection of large organic molecules from surfaces by laser-induced electronic-excited desorption has attracted considerable interest in recent years. In addition to the importance of this effect for fundamental investigations of the ejection process, this desorption technique has been applied to the study of large, fragile molecules by mass spectrometry. In this paper, we present a new method to induce electronic excitation on the metal surface for the desorption of large organic molecules. 3 refs., 3 figs

  12. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  13. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states...... of chemisorbed hydrogen in the desorption process. Very slow velocities of 700 and 400  ms-1 for H and D atoms are associated with the desorption out of the highest vibrational state of a barrierless potential....

  14. Acoustic Design of Super-light Structures

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl; Brunskog, Jonas

    in a controlled laboratory environment have been conducted with the element in order to evaluate its performance in airborne and impact sound insulation. These results have been employed in simulations of the flanking transmission to estimate the in-situ performance of the super-light slab element. The flanking...... aggregate (leca) along with a newly developed technology called pearl-chain reinforcement, which is a system for post-tensioning. Here, it is shown how to combine these technologies within a precast super-light slab element, while honoring the requirements of a holistic design. Acoustic experiments...

  15. Acoustic Velocity Data for Clay Bearing Carbonate Rocks

    DEFF Research Database (Denmark)

    Lind, Ida; Shogenova, Alla

    1998-01-01

    Two sets of acoustic data on carbonates were combined to span the porosity interval from below 5% to more than 75%: dolomite and limestone of Paleozoic age from Estonia and mixed sediments from the Caribbean. The carbonate content of the samples ranges from less than 50% to 100%, and it was attem...

  16. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary

    International Nuclear Information System (INIS)

    Li, Y.-H.

    1979-01-01

    The pronounced desorption of Ba and 226 Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and 226 Ra by one and nine times, respectively. The desorption flux of 226 Ra from estuaries accounts for 17-43% of the total 226 Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed. (Auth.)

  17. Cs-137 sorption and desorption in relation to properties of 17 soils

    International Nuclear Information System (INIS)

    Kerpen, W.

    1988-01-01

    For Cs-137 sorption and desorption studies material of Ap and Ah horizons from 17 soils with wide varying soil properties was selected. The soils were: Podsol, Luvisol, Chernozem, Cambisol, Phaeozem, Arenosol, Gleysol and other soils. The Cs-137 sorption and desorption experiments were carried out in aqueous solution (20 g of soil) under standardized conditions for two reasons: (1) to determine the amounts of Cs-137 sorption, desorption and remains as a function of different soils and (2) to evaluate the soil parameters which govern the sorption, desorption processes. Concerning the second point the sorption values, the amount of 137 Cs desorbed within four desorption cycles and the 137 Cs remains after four desorption cycles were correlated with pH, grain size, sorption capacity (CEC), and other soil properties. It will be shown that generally Cs-137 sorption, desorption and remains depend primarily on the pH of the soil. The middle sand proved to be an indicator for the strenght of sorption, and desorption processes. Sorption and desorption studies lead to the same results as found in biotest experiments

  18. Adsorption/desorption properties of vacuum materials for the 6 GeV synchrotron

    International Nuclear Information System (INIS)

    Krauss, A.R.

    1985-01-01

    Considerable attention must be paid to the vacuum and adsorption/desorption properties of all materials installed inside the vacuum envelope if the design goals of the 6 GeV synchrotron are to be met. Unfortunately, the data is very sparse in several key areas. Additionally, some procedures normally associated with good vacuum practice, such as air baking, may prove to be totally unsuitable on the basis of desorption properties. We present here a brief discussion of the adsorption, outgassing, electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD) properties of vacuum materials as they relate to the design of a 6 GeV synchrotron

  19. Photo-stimulated desorption from water and methane clusters on the surface of solid neon

    International Nuclear Information System (INIS)

    Arakawa Ichiri; Matsumoto Dairo; Takekuma Shinichi; Tamura Reimi; Miura Takashi

    2012-01-01

    Photo-stimulated desorption of ions from methane and water heterocluster on the surface of solid neon was studied. The desorption yields of the variety of photo-desorbed species showed strong dependence on the composition and the size of the mother cluster. It was found that the presence of a water molecule in the cluster significantly enhanced, or was almost essential for, the desorption of any species observed. Systematic investigation of the correlation between the cluster size and the desorption yield of each ion has revealed the mother cluster which yields the each desorbed ion.

  20. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    Science.gov (United States)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  1. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.K. [Department of Health and Environment, Kosin University, Dong Sam Dong, Young Do Gu, Busan (Korea, Republic of); Sivakumar, S., E-mail: ssivaphd@yahoo.com [Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 627-706 (Korea, Republic of); Rood, M.J. [Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL (United States); Kim, B.J. [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center (ERDC-CERL), Champaign, IL (United States)

    2016-01-15

    Highlights: • We study the adsorption and desorption of VOCs by an activated carbon fiber cloth. • Desorption concentration was controlled via electrothermal heating. • The desorption rate was successfully equalized and controlled by this system. - Abstract: Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40–900 ppm{sub v}) and superficial gas velocity (6.3–9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  2. Acoustic Environment of Haro Strait: Preliminary Propagation Modeling and Data Analysis

    National Research Council Canada - National Science Library

    Jones, Christopher D; Wolfson, Michael A

    2006-01-01

    .... Predictive acoustic modeling in combination with field measurements can be used as a tool for understanding the mechanisms of impact and assessment of the risk, providing a quantitative evaluation...

  3. Moisture Absorption/Desorption Effects on Flexural Property of Glass-Fiber-Reinforced Polyester Laminates: Three-Point Bending Test and Coupled Hygro-Mechanical Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xu Jiang

    2016-08-01

    Full Text Available Influence of moisture absorption/desorption on the flexural properties of Glass-fibre-reinforced polymer (GFRP laminates was experimentally investigated under hot/wet aging environments. To characterize mechanical degradation, three-point bending tests were performed following the ASTM test standard (ASTM D790-10A. The flexural properties of dry (0% Mt/M∞, moisture unsaturated (30% Mt/M∞ and 50% Mt/M∞ and moisture saturated (100% Mt/M∞ specimens at both 20 and 40 °C test temperatures were compared. One cycle of moisture absorption-desorption process was considered in this study to investigate the mechanical degradation scale and the permanent damage of GFRP laminates induced by moisture diffusion. Experimental results confirm that the combination of moisture and temperature effects sincerely deteriorates the flexural properties of GFRP laminates, on both strength and stiffness. Furthermore, the reducing percentage of flexural strength is found much larger than that of E-modulus. Unrecoverable losses of E-modulus (15.0% and flexural strength (16.4% for the GFRP laminates experiencing one cycle of moisture absorption/desorption process are evident at the test temperature of 40 °C, but not for the case of 20 °C test temperature. Moreover, a coupled hygro-mechanical Finite Element (FE model was developed to characterize the mechanical behaviors of GFRP laminates at different moisture absorption/desorption stages, and the modeling method was subsequently validated with flexural test results.

  4. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  5. Relaxation time of acoustically disturbed plasma

    International Nuclear Information System (INIS)

    Mkrtchyan, K.S.; Abrahamyan, A.S.

    2005-01-01

    The conservation time of an acoustic structure in plasma after relieving of external acoustic influence is investigated. Dependences of the conservation time on discharge parameters are presented. It is asserted that the plasma becomes an anisotropic uniaxial medium with an acoustic superlattice under the acoustic influence

  6. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.

    Science.gov (United States)

    Cheng, Hefa; Reinhard, Martin

    2006-06-01

    Hydrophobic micropores can play a significant role in controlling the long-term release of organic contaminants from geosorbents. We describe a technique for quantifying the total and the hydrophobic mineral micropore volumes based on the mass of trichloroethylene (TCE) sorbed in the slow-releasing pores under dry and wet conditions, respectively. Micropore desorption models were used to differentiate the fast- and slow-desorbing fractions in desorption profiles. The micropore environment in which organic molecules were sorbed in the presence of water was probed by studying the transformation of a water-reactive compound (2,2-dichloropropane or 2,2-DCP). For sediment from an alluvial aquifer, the total and hydrophobic micropore volumes estimated using this technique were 4.65 microL/g and 0.027 microL/g (0.58% of total), respectively. In microporous silica gel A, a hydrophobic micropore volume of 0.038 microL/g (0.035% of reported total) was measured. The dehydrohalogenation rate of 2,2-DCP sorbed in hydrophobic micropores of the sediment was slower than that reported in bulk water, indicating an environment of low water activity. The results suggest that hydrolyzable organic contaminants sorbed in hydrophobic micropores react slower than in bulk water, consistent with the reported persistence of reactive contaminants in natural soils.

  7. 3rd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Knotek, Michael

    1988-01-01

    These proceedings are the result of the third international workshop on Desorption Induced by Electronic Transitions, DIET III, which took place on Shelter Island, NY, May. 20-22, 1987. The work contained in this volume is an excellent summary of the current status of the field and should be a valuable reference text for both "seasoned" researchers and newcomers in the field of DIET. Based on the success of the meeting it seems clear that interest and enthusiasm in the field is strong. It is also apparent, from the many lively discussions during the meeting, that many unanswered questions (and controversies) remain to be solved. It was particularly pleasing to see many new participants from new and rapidly advancing fields, ranging from gas phase dynamics to semiconductor processing. The resulting cross-fertilization from these separate but related fields is playing an important role in helping us understand desorption processes at solid surfaces. In general, the topics covered during the course of the worksh...

  8. 5th International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Jennison, Dwight R; Stechel, Ellen B; DIET V; Desorption induced by electronic transitions

    1993-01-01

    This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur­ face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in orde...

  9. 2nd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Menzel, Dietrich

    1985-01-01

    The second workshop on Desorption Induced by Electronic Transitions (DIET II) took place October 15-17, 1984, in SchloB Elmau, Bavaria. DIET II, fol­ lowing the great success of DIET I (edited by N. H. Tolk, M. M. Traum, J. C. Tully, T. E. Madey and published in Springer Ser. Chem. Phys. , Vol. 24), again brought together over 60 workers in this exciting field. The "hard co­ re of experts" was essentially the same as in DIET I but the general overlap of participants between the two meetings was small. While DIET I had the function of an exposition of the status of the field DIET II focussed more on new developments. The main emphasis was again on the microscopic under­ standing of DIET but a number of side aspects and the application of DIET ideas to other fields such as sputtering, laser-induced desorption, fractu­ re, erosion, etc. were considered, too. New mechanisms and new refined expe­ rimental techniques were proposed and discussed at the meeting critically but with great enthusiasm. In addition t...

  10. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  11. Adsorption and desorption of 14C-chlorsulfuron in soils

    International Nuclear Information System (INIS)

    Chen Zuyi; Cheng Wei; Mi Chunyun

    1995-01-01

    The adsorption and desorption of the 4 concentrations of 14 C-chlorsulfuron in 10 soils were studied. As a result the soils had weak adsorptions of chlorsulfuron and the adsorptions varied with different type of soils tested. Adsorption rate of paddy soil (infant red earth) from Hunan and latosol red earth from Hainan was 3%∼4%; Yellow-brown earth from Nanjing and red earth from Jiangxi was 6%∼9%; black soil from Jilin, paddy soil (infant red earth) from Jiangxi and red earth from Anhui was 10%∼14%; Albic bleached soil from Jilin and yellow fluvo-aquatic soil from Jiangsu was 19%∼23%. pH value had an influence on the adsorption and organic matter had not obvious influence on the adsorption. Chlorsulfuron absorbed in soil could be desorbed through water. The relation between the adsorption and desorption was negative. The weak adsorption in soil shows that chlorsulfuron is active movable and diffusible and likely to pollute the ecological environment

  12. On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei; Vlachos, Dionisios G., E-mail: vlachos@udel.edu [Center for Catalytic Science and Technology, Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2014-01-07

    We model N{sub 2} desorption on submonolayer bimetallic surfaces consisting of Co clusters on Pt(111) via first-principles density functional theory-based kinetic Monte Carlo simulations. We find that submonolayer structures are essential to rationalize the high activity of these bimetallics in ammonia decomposition. We show that the N{sub 2} desorption temperature on Co/Pt(111) is about 100 K higher than that on Ni/Pt(111), despite Co/Pt(111) binding N weaker at low N coverages. Co/Pt(111) has substantially different lateral interactions than single metals and Ni/Pt. The lateral interactions are rationalized with the d-band center theory. The activity of bimetallic catalysts is the result of heterogeneity of binding energies and reaction barriers among sites, and the most active site can differ on various bimetallics. Our results are in excellent agreement with experimental data and demonstrate for the first time that the zero-coverage descriptor, used until now, for catalyst activity is inadequate due not only to lacking lateral interactions but importantly to presence of multiple sites and a complex interplay of thermodynamics (binding energies, occupation) and kinetics (association barriers) on those sites.

  13. Magnesium growth in magnesium deuteride thin films during deuterium desorption

    Energy Technology Data Exchange (ETDEWEB)

    Checchetto, R., E-mail: riccardo.checchetto@unitn.it [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Miotello, A. [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Mengucci, P.; Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, I-60131 Ancona (Italy)

    2013-12-15

    Highlights: ► Highly oriented Pd-capped magnesium deuteride thin films. ► The MgD{sub 2} dissociation was studied at temperatures not exceeding 100 °C. ► The structure of the film samples was analyzed by XRD and TEM. ► The transformation is controlled by the re-growth velocity of the Mg layers. ► The transformation is thermally activated, activation energy value of 1.3 ± 0.1 eV. -- Abstract: Pd- capped nanocrystalline magnesium thin films having columnar structure were deposited on Si substrate by e-gun deposition and submitted to thermal annealing in D{sub 2} atmosphere to promote the metal to deuteride phase transformation. The kinetics of the reverse deuteride to metal transformation was studied by Thermal Desorption Spectroscopy (TDS) while the structure of the as deposited and transformed samples was analyzed by X-rays diffraction and Transmission Electron Microscopy (TEM). In Pd- capped MgD{sub 2} thin films the deuteride to metal transformation begins at the interface between un-reacted Mg and transformed MgD{sub 2} layers. The D{sub 2} desorption kinetics is controlled by MgD{sub 2}/Mg interface effects, specifically the re-growth velocity of the Mg layers. The Mg re-growth has thermally activated character and shows an activation energy value of 1.3 ± 0.1 eV.

  14. Investigation of polyelectrolyte desorption by single molecule force spectroscopy

    International Nuclear Information System (INIS)

    Friedsam, C; Seitz, M; Gaub, H E

    2004-01-01

    Single molecule force spectroscopy has evolved into a powerful method for the investigation of intra- and intermolecular interactions at the level of individual molecules. Many examples, including the investigation of the dynamic properties of complex biological systems as well as the properties of covalent bonds or intermolecular transitions within individual polymers, are reported in the literature. The technique has recently been extended to the systematic investigation of desorption processes of individual polyelectrolyte molecules adsorbed on generic surfaces. The stable covalent attachment of polyelectrolyte molecules to the AFM-tip provides the possibility of performing long-term measurements with the same set of molecules and therefore allows the in situ observation of the impact of environmental changes on the adsorption behaviour of individual molecules. Different types of interactions, e.g. electrostatic or hydrophobic interactions, that determine the adsorption process could be identified and characterized. The experiments provided valuable details that help to understand the nature and the properties of non-covalent interactions, which is helpful with regard to biological systems as well as for technical applications. Apart from this, desorption experiments can be utilized to characterize the properties of surfaces or polymer coatings. Therefore they represent a versatile tool that can be further developed in terms of various aspects

  15. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Badu-Tawiah, Abraham K.; Li, Anyin; Soparawalla, Santosh; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  16. Modeling photo-desorption in high current storage rings

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1991-01-01

    High luminosity flavor factories are characterized by high fluxes of synchrotron radiation that lead to thermal management difficulties. The associated photo-desorption from the vacuum chamber walls presents an additional design challenge, providing a vacuum system suitable for maintaining acceptable beam-gas lifetimes and low background levels of scattered radiation in the detector. Achieving acceptable operating pressures (1-10 nTorr) with practical pumping schemes requires the use of materials with low photodesorption efficiency operating in a radiation environment beyond that of existing storage rings. Extrapolating the existing photo-desorption data base to the design requirements of high luminosity colliders requires a physical model of the differential cleaning in the vacuum chamber. The authors present a simple phenomenological model of photodesorption that includes effects of dose dependence and diffuse photon reflection to compute the leveling of gas loads in beamlines of high current storage rings that typify heavy flavor factories. This model is also used to estimate chamber commissioning times

  17. Electron-stimulated desorption from condensed branched alkanes

    International Nuclear Information System (INIS)

    Kelber, J.A.; Knotek, M.L.

    1982-01-01

    Desorption of H + , CH 3+ , H 2+ , and D + have been measured as a function of electron excitation energy for solid neopentane, tetramethylsilane and two deuterated isomers of isobutane. The evidence shows that C-C (or Si-C) and C-H bonds are broken by electronic excitations localized on methyl groups, in contrast to CH 3+ production in gas-phase neopentane, and that these excitations are the final states of decay processes initiated by creation of a hole in the C2s level, or, in tetramethylsilane, the C2s/Si3s level. This is in accord with other evidence which shows that localized multi-valence hole states result in C-H, C-C, Si-C and Si-H dissociation, and that such states may be excited either directly or by shakeup, by decay from a C2s hole, or by decay for a C1s core hole. It is apparent then, that dissociation and desorption of ions from covalent materials is a multi (electron) hole mechanism, and that the means of localizing the excitation energy in such systems involves multi-hole correlation

  18. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  19. MR of acoustic neuromas

    International Nuclear Information System (INIS)

    Suzuki, Masayuki; Takashima, Tsutomu; Kadoya, Masumi; Takahashi, Shiroh; Miyayama, Shiroh; Taira, Sakae; Kashihara, Kengo; Yamashima, Tetsumori; Itoh, Haruhide

    1989-01-01

    In this report, the relationship of acoustic neuromas to the adjacent cranial nerves is discussed. On T 1 -weighted images, the trigeminal nerve was detected in all 13 cases. Mild to marked compression of these nerves by the tumors was observed in eight cases. The extent of compression did not always correspond to the clinical symptoms. In four cases with a maximum tumor diameter of 2 cm or less, the 7th and 8th cranial nerves were identified. There was no facial palsy in these patients. Two patients with a tumor diameter of more than 2 cm also had no facial palsy. All patients, including those with small tumors, complained of hearing loss and/or tinnitus. While MR imaging has some limitations, it is an effective imaging modality for showing the relationship between tumors and nerves. (author)

  20. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  1. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  2. Characteristics Analysis of Joint Acoustic Echo and Noise Suppression in Periodic Drillstring Waveguide

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2014-01-01

    Full Text Available A new method of wireless data telemetry used by oil industry uses compressional acoustic waves to transmit downhole information from the bottom hole to the surface. Unfortunately, acoustic echoes and drilling vibration noises in periodic drillstring are a major issue in transmission performance. A combined acoustic echo and noise suppression method based on wave motion characteristic in drillstring is adopted to enhance an upward-going transmitted acoustic signal. The presented scheme consists of a primary acoustic echo canceller using an array of two accelerometers for dealing with the downward-going noises and a secondary acoustic insulation structure for restraining the upward-going vibration noises. Furthermore, the secondary acoustic insulation structure exhibits a banded and dispersive spectral structure because of periodic groove configuration. By using a finite-differential algorithm for the one-dimensional propagation of longitudinal waves, acoustic receiving characteristics of transmitted signals are simulated with additive Gaussian noise in a periodic pipe structure of limited length to investigate the effects on transmission performance optimization. The results reveal that the proposed scheme can achieve a much lower error bit ratio over a specified acoustic isolation frequency range with a 30–40 dB reduction in the average noise level compared to traditional single-receiver scheme.

  3. Acoustics of friction

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  4. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    Science.gov (United States)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple

  5. Anti-sound and Acoustical Cloaks

    Directory of Open Access Journals (Sweden)

    Veturia CHIROIU

    2016-12-01

    Full Text Available The principles by which the acoustics can be mimicked in order to reduce or cancel the vibrational field are based on anti-sound concept which can be materialized by acoustic cloaks. Geometric transformations open an elegant way towards the unconstrained control of sound through acoustic metamaterials. Acoustic cloaks can be achieved through geometric transformations which bring exotic metamaterial properties into the acoustic equations. Our paper brings new ideas concerning the technological keys for manufacturing of novel metamaterials based on the spatial compression of Cantor structures, and the architecture of 3D acoustic cloaks in a given frequency band, with application to architectural acoustics.

  6. Demonstration of a batch vacuum thermal desorption process on hazardous and mixed waste

    International Nuclear Information System (INIS)

    Palmer, C.R.; McElwee, M.; Meyers, G.

    1995-01-01

    Many different waste streams have been identified at Department of Energy (DOE) facilities as having both hazardous organic and radioactive contaminants. There is presently only one permitted facility in which to manage these materials, and that facility has only limited capacity to process solid wastes. Over the past two years, Rust has been pilot testing a new thermal desorption process that is very well suited to these wastes, and has begun permitting and design of a unit for commercial operation. This paper presents both historic and recent pilot test data on the treatment of hazardous and mixed waste. Also described is the commercial unit. Rust's patented VAC*TRAX technology takes advantage of high vacuum to reduced operating temperature for the thermal desorption of organic contaminants from waste soils, sludges and other contaminated solids. This allows for economical thermal separation on relatively small sites (30 to 5,000 m 3 of waste). VAC*TRAX employs indirect heating; this, combined with a very low carrier gas flow, results in a vent flow rate of approximately 1 m 3 /min which allows for the use of control devices that would not be practical with conventional thermal technology. The unit is therefore ideally suited to processing mixed waste, since zero radioactive emissions can be maintained. An additional benefit of the technology is that the low operating temperature allows highly effective separation to be performed well below the degradation point for the solid components of a trash type waste stream, which constitutes a large fraction of the present mixed waste inventory

  7. Acoustic of monolithic dome structures

    Directory of Open Access Journals (Sweden)

    Mostafa Refat Ismail

    2018-03-01

    The interior of monolithic domes have perfect, concave shapes to ensure that sound travels through the dome and perfectly collected at different vocal points. These dome structures are utilized for domestic use because the scale allows the focal points to be positioned across daily life activities, thereby affecting the sonic comfort of the internal space. This study examines the various acoustic treatments and parametric configurations of monolithic dome sizes. A geometric relationship of acoustic treatment and dome radius is established to provide architects guidelines on the correct selection of absorption needed to maintain the acoustic comfort of these special spaces.

  8. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying

    2017-12-15

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  9. Industrial installation surveillance acoustic device

    International Nuclear Information System (INIS)

    Marini, Jean; Audenard, Bernard.

    1981-01-01

    The purpose of this invention is the detection of possible impacts of bodies migrating inside the installation, using acoustic sensors of the waves emitted at the time of impact of the migrating bodies. This device makes it possible to take into account only those acoustic signals relating to the impacts of bodies migrating in the area under surveillance, to the exclusion of any other acoustic or electric perturbing phenomenon. The invention has a preferential use in the case of a linear shape installation in which a fluid flows at high rate, such as a section of the primary system of a pressurized water nuclear reactor [fr

  10. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai; Xiao, Bingmu; Wu, Ying

    2014-01-01

    and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  11. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-01-01

    -domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original

  12. Study of the reservoirs of Jurassic and Cretaceous periods in the south-cast slope of Central Kara-Kum vault using combination of acoustic logging, neutron-gamma logging, gamma logging, and electrical logging

    International Nuclear Information System (INIS)

    Meredov, T.M.; Baranov, M.I.

    1978-01-01

    Considered is the possibility of application of the combination of neutron-gamma logging, gamma logging al partitioncoustic logging and electrical logging to lithologica of sections, discovery reservoir layers in carbonate and terrigeneous sections as well as quantitative estimation of the porosity coefficients values at prospecting areas in the south-east slope of Central Kara-Kum vault. Neutron-gamma logging mostly makes it possible to partition carbonate rocks into limestones, dolomites and their interstitial variaties and to indicate sand stone layers with different degree of carbonate content

  13. Calculation of the acoustical properties of triadic harmonies.

    Science.gov (United States)

    Cook, Norman D

    2017-12-01

    The author reports that the harmonic "tension" and major/minor "valence" of pitch combinations can be calculated directly from acoustical properties without relying on concepts from traditional harmony theory. The capability to compute the well-known types of harmonic triads means that their perception is not simply a consequence of learning an arbitrary cultural "idiom" handed down from the Italian Renaissance. On the contrary, for typical listeners familiar with diatonic music, attention to certain, definable, acoustical features underlies the perception of the valence (modality) and the inherent tension (instability) of three-tone harmonies.

  14. A fluid dynamic approach to the dust-acoustic soliton

    International Nuclear Information System (INIS)

    McKenzie, J.F.; Doyle, T.B.

    2002-01-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave

  15. A Fluid Dynamic Approach to the Dust-Acoustic Soliton

    Science.gov (United States)

    McKenzie, J. F.; Doyle, T. B.

    2002-12-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave.

  16. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    Science.gov (United States)

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  17. Performance of Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry for Identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting

    Science.gov (United States)

    Sleiman, Sue; Halliday, Catriona L.; Chapman, Belinda; Brown, Mitchell; Nitschke, Joanne; Lau, Anna F.

    2016-01-01

    We developed an Australian database for the identification of Aspergillus, Scedosporium, and Fusarium species (n = 28) by matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS). In a challenge against 117 isolates, species identification significantly improved when the in-house-built database was combined with the Bruker Filamentous Fungi Library compared with that for the Bruker library alone (Aspergillus, 93% versus 69%; Fusarium, 84% versus 42%; and Scedosporium, 94% versus 18%, respectively). PMID:27252460

  18. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian

    2014-01-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to o...... and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high-throughput profiling of metabolites in plant tissues....

  19. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Science.gov (United States)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  20. An Experimental Introduction to Acoustics

    Science.gov (United States)

    Black, Andy Nicholas; Magruder, Robert H.

    2017-11-01

    Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.