WorldWideScience

Sample records for acoustic decay instability

  1. Electron heating caused by the ion-acoustic decay instability in a finite-length system

    International Nuclear Information System (INIS)

    The ion-acoustic decay instability is investigated for a finite-length plasma with density somewhat below the cutoff density of the electromagnetic driver (napprox.0.7n/sub c/). For this regime, the heating in a very long system can overpopulate the electron tail and cause linear saturation of the low phase velocity electron plasma waves. For a short system, the instability is nonlinearly saturated at larger amplitude by ion trapping. Absorption can be significantly increased by the large-amplitude ion waves. These results compare favorably with microwave experiments

  2. Development of a new plasma diagnostic of the critical surface and studies of the ion acoustic decay instability using collective Thomson scattering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, K.; DeGroot, J.S. [California Univ., Davis, CA (United States); Seka, W. [Rochester Univ., NY (United States). Lab. for Laser Energetics]l Drake, R.P. [Lawrence Livermore National Lab., CA (United States)

    1991-12-31

    We have developed 5-channel collective Thomson scattering system to measure the ion acoustic wave excited by the ion acoustic wave decay instabilities. The multichannel collective Thomson scattering technique was established with 4{omega} probe laser beam using GDL laser system at LLE, Univ. of Rochester. We have obtained the ionic charge state Z by measuring the second harmonic emission from the ion acoustic decay instability. The LASNEX computer simulation calculations have been carried out. The experimental results agree very well with the LASNEX computer simulation results with the flux number f=0.1. In high power laser regime, the spectrum become broad, and the {alpha}{gamma} decreases indicating that the turbulent like spectrum is observed. In order to understand the experimental results, we have developed a theory to study absorption of laser and heat transport. This new theory includes the temporal evolution of the heat conduction region. The results agree with flux-limited hydrodynamic simulations. 20 refs.

  3. Development of a new plasma diagnostic of the critical surface and studies of the ion acoustic decay instability using collective Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, K.; DeGroot, J.S. (California Univ., Davis, CA (United States)); Seka, W. (Rochester Univ., NY (United States). Lab. for Laser Energetics)l Drake, R.P. (Lawrence Livermore National Lab., CA (United States))

    1991-01-01

    We have developed 5-channel collective Thomson scattering system to measure the ion acoustic wave excited by the ion acoustic wave decay instabilities. The multichannel collective Thomson scattering technique was established with 4{omega} probe laser beam using GDL laser system at LLE, Univ. of Rochester. We have obtained the ionic charge state Z by measuring the second harmonic emission from the ion acoustic decay instability. The LASNEX computer simulation calculations have been carried out. The experimental results agree very well with the LASNEX computer simulation results with the flux number f=0.1. In high power laser regime, the spectrum become broad, and the {alpha}{gamma} decreases indicating that the turbulent like spectrum is observed. In order to understand the experimental results, we have developed a theory to study absorption of laser and heat transport. This new theory includes the temporal evolution of the heat conduction region. The results agree with flux-limited hydrodynamic simulations. 20 refs.

  4. Magnetorotational decay instability in Keplerian disks.

    Science.gov (United States)

    Shtemler, Yuri; Liverts, Edward; Mond, Michael

    2013-12-01

    The saturation of the magnetorotational instability (MRI) in thin Keplerian disks through three-wave resonant interactions is introduced and discussed. That mechanism is a natural generalization of the fundamental decay instability discovered five decades ago for infinite, homogeneous, and immovable plasmas. The decay instability relies on the energy transfer from the MRI to stable slow Alfvén-Coriolis as well as magnetosonic waves. A second-order forced Duffing amplitude equation for the initially unstable MRI as well as two first-order equations for the other two waves are derived. The solutions of those equations exhibit bounded bursty nonlinear oscillations for the MRI as well as unbounded growth for the linearly stable slow Alfvén-Coriolis and magnetosonic perturbations, thus giving rise to the magnetorotational decay instability. PMID:24476249

  5. The essential facts in ion acoustic instability

    International Nuclear Information System (INIS)

    The purpose of this report is to clarify the conclusions of linear and quasi-linear theories, through which a better understanding of ion acoustic instability is possible. One of the subjects covered is the hydrodynamics derived from the quasi-linear theory. It will be seen that, ultimately, the processes involved in these theories are often referred to in the most sophisticated non-linear theories: resonance of particles with a wave, or particle trapping in the wave potential, i.e., the LANDAU effect; resulting changes in electronic and ionic velocity distribution. However, resonance broadening is a specifically non-linear phenomenon, since the linear theory postulates infinitely narrow resonance. Also, wave spectrum definition is governed by the non-linear LANDAU effect. The paper gives a synthetic presentation of published information on two-dimensional particle simulation, together with a few quantitative results

  6. The acoustic instabilities in magnetized collisional dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B. P., E-mail: birendra.pandey@mq.edu.au [Department of Physics and Astrophysics, Macquarie University, Sydney, NSW 2109 (Australia); Vladimirov, S. V., E-mail: s.vladimirov@physics.usyd.edu.au [Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Dwivedi, C. B., E-mail: jagatpurdwivedi@gmail.com [Ved–Vijnanam Pravartanam Samitihi, Pratapgarh (Awadh), Jagatpur, Bharat (India)

    2014-09-15

    The present work investigates the wave propagation in collisional dusty plasmas in the presence of electric and magnetic field. It is shown that the dust ion-acoustic waves may become unstable to the reactive instability whereas dust-acoustic waves may suffer from both reactive and dissipative instabilities. If the wave phase speed is smaller than the plasma drift speed, the instability is of reactive type whereas in the opposite case, the instability becomes dissipative in nature. Plasma in the vicinity of dust may also become unstable to reactive instability with the instability sensitive to the dust material: dielectric dust may considerably quench this instability. This has implications for the dust charging and the use of dust as a probe in the plasma sheath.

  7. Sound decay of notes from acoustic guitars

    Science.gov (United States)

    Galazen, Erika; Nordberg, Joni; Huber, Thomas M.

    2005-09-01

    The acoustic guitar produces tones by transferring energy from the strings, through the bridge to the top plate, back, and air cavity of the guitar. The vibrations are ultimately radiated into the air as sound. The air-cavity and body resonances of the guitar play an important role in both the tone and the sustain (the time it takes notes to decay) produced by the guitar. To study the relationship between resonances of the guitar and the sustain of notes, the resonance frequencies were measured using a mechanical shaker attached to the body of the guitar and laser Doppler vibrometer to measure its vibration. A string was tuned to different frequencies and plucked. The decay of the note was measured with an electromagnetic pickup that measured the vibration of the string, a vibrometer to measure vibration of the top plate, and microphones located inside and outside the guitar. As expected, when the fundamental frequency of the string was near one of the resonances of the guitar, the decay rate was faster (shorter sustain) than when the string was between resonances. The relationship between the decay rates of the different parts of the system will also be discussed.

  8. Instability of vertical and acoustic modes in supersonic round jets

    OpenAIRE

    Luo, K. H.; Sandham, N. D.

    1997-01-01

    The stability of "top-hat" and fully developed jet profiles is investigated by an inviscid linear stability theory for compressible flow. The study covers a wide range of the Mach number and the temperature ratio. Two types of instabilities are found: vortical and acoustic, each of which can be subdivided into non-radiating (subsonic) and radiating (supersonic) modes. The vortical mode is the continuation of the Kelvin-Helmholtz instability from incompressible flow. The acoustic mode is a com...

  9. Nested sampling applied in Bayesian room-acoustics decay analysis.

    Science.gov (United States)

    Jasa, Tomislav; Xiang, Ning

    2012-11-01

    Room-acoustic energy decays often exhibit single-rate or multiple-rate characteristics in a wide variety of rooms/halls. Both the energy decay order and decay parameter estimation are of practical significance in architectural acoustics applications, representing two different levels of Bayesian probabilistic inference. This paper discusses a model-based sound energy decay analysis within a Bayesian framework utilizing the nested sampling algorithm. The nested sampling algorithm is specifically developed to evaluate the Bayesian evidence required for determining the energy decay order with decay parameter estimates as a secondary result. Taking the energy decay analysis in architectural acoustics as an example, this paper demonstrates that two different levels of inference, decay model-selection and decay parameter estimation, can be cohesively accomplished by the nested sampling algorithm. PMID:23145609

  10. Propellant injection strategy for suppressing acoustic combustion instability

    Science.gov (United States)

    Diao, Qina

    Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz

  11. Solar wind driven dust acoustic instability with Lorentzian kappa distribution

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Kashif [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad and University of Wah, Wah Cantt 47040 (Pakistan); Ehsan, Zahida, E-mail: Ehsan.zahida@gmail.com [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Universita degli Studi del Molise, 86090 Pesche - IS (Italy); INFN Sezione di Napoli, 80126 Napoli (Italy); Department of Physics, COMSATS Institute of Information Technology (CIIT), Defence Road, Off Raiwind Road, Lahore 86090 (Pakistan); Khan, S. A. [National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division, PINSTEC, PO Box Nilore, Islamabad 44000 (Pakistan)

    2014-02-15

    In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.

  12. One-dimensional acoustic modeling of thermoacoustic instabilities

    NARCIS (Netherlands)

    Kampen, van Jaap F.; Huls, Rob A.; Kok, Jim B.W.; Meer, van der Theo H.; Nilsson, A.; Boden, H.

    2003-01-01

    In this paper the acoustic stability of a premixed turbulent natural gas flame confined in a combustor is investigated. Specifically when the flame is operated in a lean premixed mode, the thermoacoustic system is known to exhibit instabilities. These arise from a feedback mechanism between the osci

  13. Dust acoustic instability in a strongly coupled dusty plasma

    Science.gov (United States)

    Rosenberg, M.; Kalman, G. J.; Hartmann, P.; Goree, J.

    2013-10-01

    Dusty plasmas are plasmas containing charged micron to sub-micron size dust grains (solid particulates). Because the grains can be multiply charged and are much more massive than the ions, the presence of dust can lead to novel waves such as the dust acoustic wave, which is a compressional wave that can be excited by a flow of ions that is driven by an electric field. Moreover, the large dust charge can result in strong Coulomb coupling between the dust grains, where the electrostatic energy between neighboring grains is larger than their thermal (kinetic) energy. When the coupling between dust grains is strong, but not large enough for crystallization, the dust is in the strongly coupled liquid phase. This poster theoretically investigates the dust acoustic instability, which is driven by sub-thermal ion flow, in a three-dimensional dusty plasma in the strongly coupled liquid phase. It is found that strong coupling enhances the instability. The application is to microgravity experiments with dusty plasma planned for the PK-4 and PlasmaLab instruments, which are in development for the International Space Station. Microgravity conditions enable the preparation of dust clouds under these sub-thermal ion flow conditions by avoiding the need for strong electric fields to levitate the dust grains.

  14. Modulational instability of dust ion-acoustic waves in a magnetized dusty superthermal plasma

    CERN Document Server

    Shalini, A P Misra

    2016-01-01

    The amplitude modulation of three dimensional (3D) dust ion-acoustic wave (DIAW) packets is studied in a collisionless magnetized plasma with inertial positive ions, superthermal electrons and negatively charged immobile dust grains. By using the reductive perturbation technique, a 3D-nonlinear Schr{\\"o}dinger (NLS) equation is derived, which governs the slow modulation of DIAW packets. The latter are found to be stable in the low-frequency $(\\omega\\omega_c$, and the modulational instability (MI) is related to the modulational obliqueness $(\\theta)$. Here, $\\omega~(\\omega_c)$ is the nondimensional wave (ion-cyclotron) frequency. It is shown that the superthermal parameter $\\kappa$, the frequency $\\omega_c$ as well as the charged dust impurity $(0<\\mu<1)$ shift the MI domains around the $\\omega-\\theta$ plane, where $\\mu$ is the ratio of electron to ion number densities. Furthermore, it is found that the decay rate of instability is quenched by the superthermal parameter $\\kappa$ with cut-offs at lower wa...

  15. Vibro-acoustical instabilities induced by combustion dynamics in gas turbine combustors

    NARCIS (Netherlands)

    Pozarlik, Artur

    2010-01-01

    The lean premixed combustion suffers from a high sensitivity to thermo-acoustic instabilities which may occur in a combustion chamber of a gas turbine. The high level of acoustic excitation is hazardous to the combustion chamber walls (liner). The situation is even worse when mutual interaction betw

  16. Modulational instability of ion-acoustic waves in a warm plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 段文山; 郎和

    2002-01-01

    Using the standard reductive perturbation technique, a nonlinear Schrodinger equation is derived to study themodulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma. It is found thatthe inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the solitonstructures. The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties areinvestigated in detail.

  17. Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability

    CERN Document Server

    Belyaev, Mikhail

    2016-01-01

    We present an instability for exciting incompressible modes (e.g. gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic CFS instability, because of the direct analogy to the Chandrasekhar-Friedman-Schutz instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e.\\ the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of o...

  18. Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation

    Science.gov (United States)

    Mironov, A. K.; Krasheninnikov, S. Yu.; Maslov, V. P.; Zakharov, D. E.

    2016-07-01

    An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.

  19. Efficient estimation of decay parameters in acoustically coupled-spaces using slice sampling.

    Science.gov (United States)

    Jasa, Tomislav; Xiang, Ning

    2009-09-01

    Room-acoustic energy decay analysis of acoustically coupled-spaces within the Bayesian framework has proven valuable for architectural acoustics applications. This paper describes an efficient algorithm termed slice sampling Monte Carlo (SSMC) for room-acoustic decay parameter estimation within the Bayesian framework. This work combines the SSMC algorithm and a fast search algorithm in order to efficiently determine decay parameters, their uncertainties, and inter-relationships with a minimum amount of required user tuning and interaction. The large variations in the posterior probability density functions over multidimensional parameter spaces imply that an adaptive exploration algorithm such as SSMC can have advantages over the exiting importance sampling Monte Carlo and Metropolis-Hastings Markov Chain Monte Carlo algorithms. This paper discusses implementation of the SSMC algorithm, its initialization, and convergence using experimental data measured from acoustically coupled-spaces. PMID:19739741

  20. A Monte-Carlo investigation of the uncertainty of acoustic decay measurements

    DEFF Research Database (Denmark)

    Cabo, David Pérez; Seoane, Manuel A. Sobreira; Jacobsen, Finn

    2012-01-01

    Measurement of acoustic decays can be problematic at low frequencies: short decays cannot be evaluated accurately. Several effects influencing the evaluation will be reviewed in this paper. As new contribution, the measurement uncertainty due to one-third octave band pass filters will be analysed...... been be set up: the model function is a model of the acoustic decays, where the modal density, the resonances of the system, and the amplitude and phase of the normal modes may be considered as random variables. Once the random input variables and the model function are defined, the uncertainty...... of acoustic decay measurements can be estimated. Different filters will be analysed: linear phase FIR and IIR filters both in their direct and time-reversed versions. © European Acoustics Association....

  1. Modulational Instability of Dust Ion Acoustic Waves in a Collisional Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    XUE Ju-Kui

    2003-01-01

    The modulational instability of dust ion acoustic waves in a dust plasma with ion-dust collision effects is studied. Using the perturbation method, a modified nonlinear Schrodinger equation contains a damping term that comes from the effect of the ion-dust collision is derived. It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.

  2. Modulational Instability of Ion-Acoustic Waves in a Warm Plasma with a Relativistic Electron Beam

    Institute of Scientific and Technical Information of China (English)

    XUE Ju-Kui; LANG He

    2003-01-01

    The modulational instability of ion-acoustic wave in a collisionless, unmagnetized plasma consisting ofwarm ions, hot isothermal electrons, and relativistic electron beam is studied. A modified nonlinear Schrodinger equationincluding one additional term that comes from the effect of relativistic electron beam is derived. It is found that theinclusion of a relativistic electron beam would modify the modulational instability of the wave packet and could notadmit any stationary soliton waves.

  3. Ion-Acoustic Instabilities in a Multi-Ion Plasma

    Directory of Open Access Journals (Sweden)

    Noble P. Abraham

    2013-01-01

    Full Text Available We have, in this paper, studied the stability of the ion-acoustic wave in a plasma composed of hydrogen, positively and negatively charged oxygen ions, and electrons, which approximates very well the plasma environment around a comet. Modelling each cometary component (H+, O+, and O− by a ring distribution, we find that ion-acoustic waves can be generated at frequencies comparable to the hydrogen ion plasma frequency. The dispersion relation has been solved both analytically and numerically. We find that the ratio of the ring speed (u⊥s to the thermal spread (vts modifies the dispersion characteristics of the ion-acoustic wave. The contrasting behaviour of the phase velocity of the ion-acoustic wave in the presence of O− ions for u⊥s>vts (and vice versa can be used to detect the presence of negatively charged oxygen ions and also their thermalization.

  4. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a...... positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  5. Linear and quasi-linear investigation of the crossfield current-driven ion-acoustic instability

    Energy Technology Data Exchange (ETDEWEB)

    Bharuthram, R. (Natal Univ., Durban (South Africa). Plasma Physics Research Inst.; Durban-Westville Univ. (South Africa)); Hellberg, M.A. (Natal Univ., Durban (South Africa). Plasma Physics Research Inst.)

    1982-10-01

    The linear growth rate of the crossfield current-driven ion-acoustic instability is obtained for any equilibrium particle velocity distribution function of the type fsub(oj)=fsub(oj)(V/sup 2/sub(perpendicular to)),Vsub(z). Quasi-linear theory is then used to investigate the saturation of the instability. Several associated features, namely, particle diffusion in velocity space, anomalous resistivity, energy distribution and electron and ion heating rates are evaluated for a Maxwellian distribution. Finally, a brief comparison is made with the heating rates associated with the electron cyclotron drift instability.

  6. On the generation of double layers from ion- and electron-acoustic instabilities

    Science.gov (United States)

    Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan

    2016-03-01

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.

  7. Gait instability in patients with small acoustic neuroma

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; JIANG Hai-yang; GUAN Chao; JIANG Xue-jun; Ishikawa Kazuo; ZHOU Hong-wu

    2011-01-01

    Background Small acoustic neuromas seldom result in typical vestibular symptoms, despite the tumor arising from the vestibular nerve. In this study, we have shown that abnormal gait in eleven patients with small acoustic neuroma could be detected in gait analysis by the use of tactile sensor. Patients displayed no oculomotor abnormality and had tumors less than 10 mm from the porus acoustics.Methods Gait related parameters including the coefficients of variations (CV) of stance, swing, double support, area ratio of trajectories of center of force (TCOF), in addition to the foot pressure difference between both feet, were used for assessment of gait.Results The CV of swing and the area ratio of TCOF were greater in patients than those in the control group (P <0.05).The values of these two parameters became greater under an eyes closed condition compared to eyes open (P<0.05) in the patient group.Conclusion These results indicate that gait analysis may be helpful to assess vestibulospinal function of patients with small acoustic neuroma, the slight vestibular deficits of which can not be detected by visual observation.

  8. Dependence of oscillational instabilities on the amplitude of the acoustic wave in single-axis levitators

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo; Ruiz-Boullosa, Ricardo; Cutanda Henríquez, Vicente;

    2007-01-01

    It is well known that acoustic waves exert forces on a boundary with which they interact; these forces can be so intense that they can compensate for the weight of small objects up to a few grams. In this way, it is possible to maintain solid or liquid samples levitating in a fluid, avoiding...... the use of containers, which may be undesirable for certain applications. Moreover, small samples can be manipulated by means of acoustic waves. In this paper, we report a study on the oscillational instabilities that can appear on a levitated solid sphere in single-axis acoustic devices. A theory...... falls out of the levitating field or strikes a boundary of the device. These theoretical results are consistent with experiments. According to the theory, the instabilities due to oscillations are produced by a phase difference between the position of the levitated object and the variations of the sound...

  9. Ion-Acoustic Instability in the Presence of High Frequency Oscillations

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Sandu, D.; Schrittwieser, R.

    1977-01-01

    Measurements are presented of a standing ion-acoustic wave instability, which is excited by a positively biased grid inserted perpendicularly into the plasma column of a single-ended Q-machine, under the influence of a high frequency signal superimposed onto the positive voltage at the grid. The...... experimental results show that in certain regions of the frequency and amplitude of the h.f. signal the ion wave instability is stabilized or destabilized. A possible explanation of these effects is presented....

  10. The influence of the group delay of digital filters on acoustic decay measurements

    DEFF Research Database (Denmark)

    Sobreira-Seoane, Manuel A.; Cabo, David Pérez; Jacobsen, Finn

    2012-01-01

    In this paper the error due to the phase response of digital filters on acoustic decay measurements is analyzed. There are two main sources of errors when an acoustic decay is filtered: the error due to the bandwidth of the filters related to their magnitude response, and the error due...... to their phase response. In this investigation the two components are separated and the phase error analyzed in terms of the group delay of the filters. Linear phase FIR filters and minimum phase IIR filters fulfilling the class 1 requirements of the IEC 61260 standard have been designed, and their errors...... compared. This makes it possible to explain the behavior of the phase error and develop recommendations for the use of each filtering technique. The paper is focused on the filtering techniques covered by current versions of the standards for measurement of acoustic decays and in the evaluation...

  11. Acoustic emission characteristics of instability process of a rock plate under concentrated loading

    OpenAIRE

    S. R. Wang; Li, C. Y.; Z.S. Zou; Liu, X. L.

    2016-01-01

    It can facilitate the understanding of the mechanical properties and failure laws of rocks to research on the rock failure mechanism and evolution characteristics of Acoustic Emission (AE). Under the concentrated loading condition, the fracture and instability test of a rock plate was conducted by using the rock Mechanics Testing System (MTS), meanwhile, these AE events were recorded through the AE recording system. Based on the laboratory test, the numerical simulation was completed by us...

  12. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    Science.gov (United States)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  13. Radiative decay of the one-dimensional large acoustic polaron

    Energy Technology Data Exchange (ETDEWEB)

    Ivic, Zoran; Zekovic, Slobodan; Przulj, Zeljko

    2002-12-30

    Finite temperature dynamics and stability of the adiabatic large acoustic polaron in one-dimensional systems have been examined by means of the perturbation method based upon the inverse scattering transform. Polaron life-time was estimated in dependence of temperature and electron (exciton)-phonon coupling constant.

  14. Analysis of oscillational instabilities in acoustic levitation using the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2011-01-01

    The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic levita...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....

  15. Modulational instability of a weakly relativistic ion acoustic wave in a warm plasma with nonthermal electrons

    Institute of Scientific and Technical Information of China (English)

    S. K. El-Labany; M. S. Abdel Krim; S. A. El-Warraki; W. F.El-Taibany

    2003-01-01

    An investigation has been made of modulational instability of a nonlinear ion acoustic wave in a weakly relativis-tic warm unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributedelectrons. Up to the second order of the perturbation theory, a nonlinear Schrodinger type (NST) equation for thecomplex amplitude of the perturbed ion density is obtained. The coefficients of this equation show that the relativisticeffect, the finite ion temperature and the nonthermal electrons modify the condition of the modulational stability. Theassociation between the small-wavenumber limit of the NST equation and the oscillatory solution of the Korteweg-deVaries equation, obtained by a reductive perturbation theory, is satisfied.

  16. Decay instability of an upper hybrid wave in a magnetized dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gahlot, Ajay [Maharaja Surajmal Institute of Technology, C-4, Janakpuri, New Delhi (India); Walia, Ritu [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110 086 (India); Sharma, Jyotsna [Department of Physics, KIIT College of Engineering, Gurgaon 122102 (India); Sharma, Suresh C.; Sharma, Rinku [Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110 042 (India)

    2013-01-15

    The decay instability of an upper hybrid wave into an upper hybrid sideband wave and low frequency ion-cyclotron wave are studied in a magnetized dusty plasma cylinder. The growth rate and ion-cyclotron mode frequencies were evaluated based on existing dusty plasma parameters. It is found that the unstable mode frequency increases linearly with {delta} (ion-to-electron density ratio). In addition, the growth rate of the unstable ion-cyclotron mode decreases sharply for lower values of {delta} in the presence of dust charge fluctuations, i.e., the dust grains increases the damping effect in three wave interaction process.

  17. Perturbative decay of anti-branes in flux backgrounds due to space time instabilities

    CERN Document Server

    Danielsson, Ulf H

    2015-01-01

    In this paper we suggest a new source of perturbative decay of the KPV-state, which might have consequences for the viability of the KKLT-construction. The results do not rely on any direct enhancement of the decay due to flux accumulating on the anti-brane in transverse space. Instead, we note that the system can lower its energy through a sequence of NS5-configurations all the way to the true vacuum, without encountering a barrier, if we allow for clumping of screened charge in space time. The clumping can possibly be a parallel to the Gregory-Laflamme instability of black branes. The results are obtained at large $p$, but for $p/M$ arbitrarily small. It is furthermore argued that the results extend to cases of few or single anti-branes where quantization becomes important. We believe that it is important to investigate this possible effect further to judge whether there are any fatal consequences.

  18. Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines

    Science.gov (United States)

    Wolf, Pierre; Staffelbach, Gabriel; Gicquel, Laurent; Poinsot, Thierry

    2009-07-01

    Most of the energy produced worldwide comes from the combustion of fossil fuels. In the context of global climate changes and dramatically decreasing resources, there is a critical need for optimizing the process of burning, especially in the field of gas turbines. Unfortunately, new designs for efficient combustion are prone to destructive thermo-acoustic instabilities. Large Eddy Simulation (LES) is a promising tool to predict turbulent reacting flows in complex industrial configurations and explore the mechanisms triggering the coupling between acoustics and combustion. In the particular field of annular combustion chambers, these instabilities usually take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber comprising all sectors, which remained out of reach until very recently and the development of massively parallel computers. A fully compressible, multi-species reactive Navier-Stokes solver is used on up to 4096 BlueGene/P CPUs for two designs of a full annular helicopter chamber. Results show evidence of self-established azimuthal modes for the two cases but with different energy containing limit-cycles. Mesh dependency is checked with grids comprising 38 and 93 million tetrahedra. The fact that the two grid predictions yield similar flow topologies and limit-cycles enforces the ability of LES to discriminate design changes.

  19. Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines

    International Nuclear Information System (INIS)

    Most of the energy produced worldwide comes from the combustion of fossil fuels. In the context of global climate changes and dramatically decreasing resources, there is a critical need for optimizing the process of burning, especially in the field of gas turbines. Unfortunately, new designs for efficient combustion are prone to destructive thermo-acoustic instabilities. Large Eddy Simulation (LES) is a promising tool to predict turbulent reacting flows in complex industrial configurations and explore the mechanisms triggering the coupling between acoustics and combustion. In the particular field of annular combustion chambers, these instabilities usually take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber comprising all sectors, which remained out of reach until very recently and the development of massively parallel computers. A fully compressible, multi-species reactive Navier-Stokes solver is used on up to 4096 BlueGene/P CPUs for two designs of a full annular helicopter chamber. Results show evidence of self-established azimuthal modes for the two cases but with different energy containing limit-cycles. Mesh dependency is checked with grids comprising 38 and 93 million tetrahedra. The fact that the two grid predictions yield similar flow topologies and limit-cycles enforces the ability of LES to discriminate design changes.

  20. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    Science.gov (United States)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  1. The Effect of the Charge Fluctuation of Dust Particles on Ion-acoustic Wave Excited Through Ioniza tion Instability

    Institute of Scientific and Technical Information of China (English)

    华建军; 刘金远; 马腾才

    2002-01-01

    The effect of the charge fluctuation of dust particles on ion acoustic wave (IAW) excited through ionization instability was investigated. The hydrodynamic equations and linear time-dependent perturbation theory served as the starting point of theory, by which the dispersion relation and growth rate of the IAW were given. By comparing the results with the case of constant dust charges, it was found that the charge fluctuation of dust particles reduces the instability of the wave mode.

  2. Hydro-acoustic instabilities in compressible turbulent channel flow with porous walls

    Science.gov (United States)

    Scalo, Carlo; Rahbari, Iman

    2015-11-01

    C. Scalo, J. Bodart, and S. K. Lele, Phys. Fluids (2015) manipulated wall-bounded compressible turbulence by applying impedance boundary conditions (IBC) acoustically tuned to the characteristic time scale of the large-scale eddies. Near-wall turbulence was overhauled by hydro-acoustic instabilities - comprised of coherent spanwise Kelvin-Helmholtz rollers driven by Helmholtz-like acoustic resonance - while outer-layer turbulence was left structurally unaltered. We discuss linear modeling results of the observed flow response, supported by new high-fidelity simulations up to transonic bulk Mach numbers. For IBCs with zero reactance, corresponding to a Darcy-like formulation for porous walls, two dominant modes are identified whose Reynolds stress distributions overlap with the impermeable-wall turbulent buffer layer, directly affecting the near-wall turbulence cycle. For the range of wavenumbers investigated, the transition from subcritical to supercritical permeability does not significantly alter the structure of the unstable modes, showing that wall-permeability accentuates pre-existing, otherwise stable, modes. Implications on flow control strategies for compressible boundary layers over porous walls are discussed. School of Mechanical Engineering.

  3. Nonlinear Evolution of the Radiation-Driven Magneto-Acoustic Instability (RMI)

    CERN Document Server

    Fernández, Rodrigo

    2012-01-01

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux -- the Radiation-Driven Magneto-Acoustic Instability (RMI, a.k.a. the "photon bubble" instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably-stratified, optically-thick media. The conditions for instability are present in a variety of astrophysical environments, and do not require the radiation pressure to dominate or the magnetic field to be strong. Here we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-MHD simulations of local, stably-stratified domains are conducted with Zeus-MP in the optically-thick, highly-conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates (2003) in that the RMI operates even in gas pressure-dominated environments that a...

  4. NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Rodrigo; Socrates, Aristotle [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-04-20

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies. Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.

  5. Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution

    International Nuclear Information System (INIS)

    Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear Schrödinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter α. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist

  6. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta 34517, Egypt and Department of Physics, College of Science, King Khalid University, Abha P.O. 9004 (Saudi Arabia)

    2014-08-15

    The solitary structures of multi–dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  7. Numerical study of acoustic instability in a partly lined flow duct using the full linearized Navier-Stokes equations

    Science.gov (United States)

    Xin, Bo; Sun, Dakun; Jing, Xiaodong; Sun, Xiaofeng

    2016-07-01

    Lined ducts are extensively applied to suppress noise emission from aero-engines and other turbomachines. The complex noise/flow interaction in a lined duct possibly leads to acoustic instability in certain conditions. To investigate the instability, the full linearized Navier-Stokes equations with eddy viscosity considered are solved in frequency domain using a Galerkin finite element method to compute the sound transmission in shear flow in the lined duct as well as the flow perturbation over the impedance wall. A good agreement between the numerical predictions and the published experimental results is obtained for the sound transmission, showing that a transmission peak occurs around the resonant frequency of the acoustic liner in the presence of shear flow. The eddy viscosity is an important influential factor that plays the roles of both providing destabilizing and making coupling between the acoustic and flow motions over the acoustic liner. Moreover, it is shown from the numerical investigation that the occurrence of the sound amplification and the magnitude of transmission coefficient are closely related to the realistic velocity profile, and we find it essential that the actual variation of the velocity profile in the axial direction over the liner surface be included in the computation. The simulation results of the periodic flow patterns possess the proper features of the convective instability over the liner, as observed in Marx et al.'s experiment. A quantitative comparison between numerical and experimental results of amplitude and phase of the instability is performed. The corresponding eigenvalues achieve great agreement.

  8. Nonlinear ion-acoustic structures in a nonextensive electron–positron–ion–dust plasma: Modulational instability and rogue waves

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shimin, E-mail: gsm861@126.com [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands); Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Center for Computational Geosciences, Xi’an Jiaotong University, Xi’an, 710049 (China); Sun, Anbang [Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands)

    2013-05-15

    The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments. -- Highlights: ► Modulational instability of ion-acoustic waves in a new plasma model is discussed. ► Tsallis’s statistics is considered in the model. ► The second-order ion-acoustic rogue wave is studied for the first time.

  9. Resonance Type Instabilities in the Gaseous Disks of the Flat Galaxies 1 The Acoustical Resonance Type Instability and the Absence of Vortex Sheet Stabilization on Shallow Water

    CERN Document Server

    Mustsevaya, J V

    1998-01-01

    Linear analysis of vortex sheet stability in the rotating gaseous disk or shallow water layer shows that presence of a central reflecting surface changes system stability significantly. An effect of absence of vortex sheet stabilization has been found as compressibility exceeds Landau criterion. The properties of multimode short-scale instability of acoustical resonance type are investigated and probability of its influence upon experiments on the rotating shallow water is discussed.

  10. Controlling two plasmon decay instability in intense femtosecond laser driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prashant Kumar; Adak, Amitava; Lad, Amit D.; Chatterjee, Gourab; Ravindra Kumar, G., E-mail: grk@tifr.res.in [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); Brijesh, P. [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India)

    2015-11-15

    We investigate the onset of the two-plasmon-decay (TPD) instability in intense femtosecond laser-solid interaction. In particular, this instability, originating at the quarter critical electron density surface in the inhomogeneous plasma, is explored for a wide range of laser parameters-energy, pulse duration, and intensity contrast. By varying these laser parameters, we demonstrate ways to excite and control the growth of the TPD process. The pulse duration scan carried out under a constant laser fluence reveals the pulse width dependent nature of TPD growth. The spectral splitting of the TPD induced three-halves harmonic emission is used to infer the electron temperature near the quarter critical density surface. Moreover, by varying the laser contrast over four orders of magnitude, we find that the intensity threshold of three-halves harmonic emission increases by nearly two orders of magnitude. This contrast dependent intensity threshold for the emission of three-halves harmonic can be a useful diagnostic of the laser contrast.

  11. Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach

    Science.gov (United States)

    Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    "Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.

  12. Decay of geodesic acoustic modes due to the combined action of phase mixing and Landau damping

    CERN Document Server

    Biancalani, A; Angioni, C; Bottino, A; Zonca, F

    2016-01-01

    Geodesic acoustic modes (GAMs) are oscillations of the electric field whose importance in tokamak plasmas is due to their role in the regulation of turbulence. The linear collisionless damping of GAMs is investigated here by means of analytical theory and numerical simulations with the global gyrokinetic particle-in-cell code ORB5. The combined effect of the phase mixing and Landau damping is found to quickly redistribute the GAM energy in phase-space, due to the synergy of the finite orbit width of the passing ions and the cascade in wave number given by the phase mixing. When plasma parameters characteristic of realistic tokamak profiles are considered, the GAM decay time is found to be an order of magnitude lower than the decay due to the Landau damping alone, and in some cases of the same order of magnitude of the characteristic GAM drive time due to the nonlinear interaction with an ITG mode. In particular, the radial mode structure evolution in time is investigated here and reproduced quantitatively by ...

  13. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures

    KAUST Repository

    Taamallah, Soufien

    2015-01-01

    © 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. We investigate the onset of thermo-acoustic instabilities and their link to the mean flame configurations - or macrostructures - under acoustically coupled and decoupled conditions. Methane-hydrogen mixtures are used to explore the role of the fuel in changing the flame macrostructure, as determined by chemilumi-nescence, as the equivalence ratio (φ) varies. We observe four different configurations: a columnar flame (I); a bubble-columnar flame (II); a single conical flame (III); and a double conical flame (IV). We also observe different thermo-acoustic modes in the lean regime investigated, φ ∈ [0.5-0.75], that correspond to different flame configurations. By changing the combustor length without affecting the underlying flow, the resonant modes of the combustor are shifted to higher frequencies allowing for the decoupling of heat release fluctuations and the acoustic field over a range of equivalence ratio. We find that the same flame macrostructures observed in the long, acoustically coupled combustor arise in the short, acoustically decoupled combustor and transition at similar equivalence ratios in both combustors. The onset of the first fully unstable mode in the long combustor occurs at similar equivalence ratio as the flame transition from configuration III to IV. In the acoustically decoupled case, this transition occurs gradually starting with the intermittent appearance of a flame in the outer recirculation zone (ORZ). Spectral analysis of this phenomenon, referred to as "ORZ flame flickering" shows the existence of an unsteady event occurring over a narrow frequency band centered around 28 Hz along with a weaker broadband region at lower frequency in the range [1-10] Hz. The tone at 28 Hz is shown to be associated with the azimuthal advection of the flame by the outer recirculation zone flow. Changes in the fuel composition, by adding hydrogen (up to 20%), do not

  14. Survey of ion-acoustic-instability particle simulations and relevance to laser-fusion thermal-transport inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.

    1980-09-11

    Ion acoustic turbulence is examined as one mechanism which could contribute to the inhibition of electron thermal transport which has been inferred from many laser-plasma experiments. The behavior of the ion acoustic instability is discussed from the viewpoint of the literature of 2-dimensional particle-in-cell simulations. Simulation techniques, limitations, and reported saturation mechanisms and levels are discussed. A scaling law for the effective collision frequency ..nu..* can be fit to several workers' results to within an order-of-magnitude. The inferred ..nu..* is shown to be 1-2 orders-of-magnitude too small to account for the transport inhibition seen in Nd-laser-produced plasmas. Several differences between the simulation conditions and laser-produced plasma conditions are noted.

  15. Multi-dimensional instability of dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons

    Science.gov (United States)

    Haider, M. M.; Rahman, O.

    2016-07-01

    An attempt has been made to study the multi-dimensional instability of dust-ion-acoustic (DIA) solitary waves (SWs) in magnetized multi-ion plasmas containing opposite polarity ions, opposite polarity dusts and non-thermal electrons. First of all, we have derived Zakharov-Kuznetsov (ZK) equation to study the DIA SWs in this case using reductive perturbation method as well as its solution. Small-k perturbation technique was employed to find out the instability criterion and growth rate of such a wave which can give a guideline in understanding the space and laboratory plasmas, situated in the D-region of the Earth's ionosphere, mesosphere, and solar photosphere, as well as the microelectronics plasma processing reactors.

  16. On Novel Mechanism of a Pump Electromagnetic Wave Absolute Two-Plasmon Parametric Decay Instability Excitation in Tokamak ECRH Experiments

    CERN Document Server

    Gusakov, E Z

    2016-01-01

    Novel mechanism leading to excitation of absolute two plasmon parametric decay instability (TPDI) of a pump extraordinary (X) wave is discussed. It is shown that the upper hybrid (UH) plasmon can be 3D trapped in the presence of both a nonmonotonous density profile and a finite-size pump beam in a plane perpendicular to the plasma inhomogeneity direction. This leads to excitation of the absolute TPDI of the pump X wave, which manifests itself in temporal exponential growth of the trapped daughter UH wave amplitude and is perhaps the most dangerous instability for mm-waves, widely utilized nowadays in tokamak and stellarators for local plasma heating and current drive and being considered for application in ITER.

  17. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    International Nuclear Information System (INIS)

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes

  18. Corotational instability, magnetic resonances and global inertial-acoustic oscillations in magnetized black hole accretion discs

    Science.gov (United States)

    Fu, Wen; Lai, Dong

    2011-01-01

    Low-order, non-axisymmetric p-modes (also referred as inertial-acoustic modes) in hydrodynamic accretion discs around black holes are plausible candidates for high-frequency quasi-periodic oscillations (QPOs) observed in a number of accreting black hole systems. These modes are trapped in the innermost region of the accretion disc, and are subject to global instabilities due to wave absorption at the corotation resonance (where the wave pattern frequency ω/m equals the disc rotation rate Ω), when the fluid vortensity, ζ=κ2/(2ΩΣ) (where κ and Σ are the radial epicyclic frequency and disc surface density, respectively), has a positive gradient. We investigate the effects of disc magnetic fields on the wave absorption at corotation and the related wave super-reflection of the corotation barrier, and on the overstability of disc p-modes. In general, in the presence of magnetic fields, the p-modes have the character of inertial-fast magnetosonic waves in their propagation zone. For discs with a pure toroidal field, the corotation resonance is split into two magnetic resonances, where the wave frequency in the corotating frame of the fluid, ?, matches the slow magnetosonic wave frequency. Significant wave energy/angular momentum absorption occurs at both magnetic resonances, but with opposite signs, such that one of them enhances the super-reflection while the other diminishes it. The combined effect of the two magnetic resonances is to reduce the super-reflection and the growth rate of the overstable p-modes. Our calculations show that even a subthermal toroidal field (with the magnetic pressure less than the gas pressure) may suppress the overstability of hydrodynamic (B= 0) p-modes. For accretion discs with mixed (toroidal and vertical) magnetic fields, two additional Alfvén resonances appear, where ? matches the local Alfvén wave frequency. The effect of these additional resonances is to further reduce or diminish the growth rate of p-modes. Our results

  19. Correspondence Between “Stable” Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion

    KAUST Repository

    Taamallah, Soufien

    2014-12-23

    Copyright © 2015 by ASME. In this paper, we conduct an experimental investigation to study the link between the flame macroscale structure - or flame brush spatial distribution - and thermo-acoustic instabilities, in a premixed swirl-stabilized dump combustor. We operate the combustor with premixed methane-air in the range of equivalence ratio (Φ) from the lean blowout limit to Φ = 0. 75. First, we observe the different dynamic modes in this lean range as Φ is raised. We also document the effect of Φ on the flame macrostructure. Next, we examine the correspondence between dynamic mode transitions and changes in flame macrostructure. To do so, we modify the combustor length - by downstream truncation - without changing the underlying flow upstream. Thus, the resonant frequencies of the geometry are altered allowing for decoupling the heat release rate fluctuations and the acoustic feedback. Mean flame configurations in the modified combustor and for the same range of equivalence ratio are examined, following the same experimental protocol. It is found that not only the same sequence of flame macrostructures is observed in both combustors but also that the transitions occur at a similar set of equivalence ratio. In particular, the appearance of the flame in the outside recirculation zone (ORZ) in the long combustor - which occurs simultaneously with the onset of instability at the fundamental frequency - happens at similar Φ when compared to the short combustor, but without being in latter case accompanied by a transition to thermo-acoustic instability. Then, we interrogate the flow field by analyzing the streamlines, mean, and rms velocities for the nonreacting flow and the different flame types. Finally, we focus on the transition of the flame to the ORZ in the acoustically decoupled case. Our analysis of this transition shows that it occurs gradually with an intermittent appearance of a flame in the ORZ and an increasing probability with Φ. The spectral

  20. Ion acoustic instability of HPT particles, FAC density, anomalous resistivity and parallel electric field in the auroral region

    Indian Academy of Sciences (India)

    C S Jayasree; G Renuka; C Venugopal

    2003-12-01

    During the magnetic storm of 21st March 1990, the DE-1 spacecraft encountered the auroral region at high invariant latitude at altitudes ranging from a few thousand kilometers in the ionosphere to many earth radii in the magnetosphere. The magnetic field perturbations interpretable as field aligned current (FAC) layers and the electrostatic turbulence possibly due to electrostatic ion acoustic instability driven by these currents are shown. The critical drift velocity of Hot Plasma Torus (HPT) electrons and the growth rate of ion acoustic wave as a function of electron to ion temperature ratio (/) for low and high current densities and energy of HPT electrons are found out. The intense FAC destabilizes the ion acoustic wave and the resultant electrostatic turbulence creates an anomalous resistivity. The current driven resistivity produces parallel electric field and high power dissipation. The anomalous resistivity , potential differnece along the auroral field lines ∥, intensity of electric field turbulence ∥ and power produced per unit volume are computed. It is found that the change in westward magnetic perturbation increases ∥; ; ∥ ;∥ and . Hence HPT electrons are heated and accelerated due to power dissipation during magnetically active periods in the auroral region. Concerning, applications, such HPT electrons can be used in particle accelerators like electron ring accelerator, smokatron etc.

  1. Modification of the formation of high-Mach number electrostatic shock-like structures by the ion acoustic instability

    CERN Document Server

    Dieckmann, Mark E; Doria, Domenico; Pohl, Martin; Borghesi, Marco

    2013-01-01

    The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one- and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolve into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is redu...

  2. Modulational Instability of Dust Ion Acoustic Waves in a Collisional Dusty Plasma

    Institute of Scientific and Technical Information of China (English)

    XUEJu-Kui

    2003-01-01

    The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.

  3. Transverse instability of ion acoustic solitons in a magnetized plasma including -nonextensive electrons and positrons

    Science.gov (United States)

    Akhtar, N.; El-Taibany, W. F.; Mahmood, S.; Behery, E. E.; Khan, S. A.; Ali, S.; Hussain, S.

    2015-10-01

    > . The magnetic field has no effect on the amplitude of the IASW, whereas the obliqueness angle of the wave propagation, the ion-to-electron temperature ratio and positron-to-ion density concentration ratio affect both the amplitude and the width of the solitary wave structures. The transverse instability analysis illustrates that the one soliton solution has a constant growth rate, and it suffers from instability in the transverse direction. The relevance of the present study to astrophysical space plasmas is also discussed.

  4. Numerical prediction of combustion induced vibro-acoustical instabilities in a gas turbine combustor

    NARCIS (Netherlands)

    Pozarlik, Artur; Kok, Jim

    2009-01-01

    Introduction of lean premixed combustion to gas turbine technology reduced the emission of harmful exhaust gas species, but due to the high sensitivity of lean flames to acoustic perturbations, the average life time of gas turbine engines was decreased significantly. Very dangerous to the integrity

  5. Modulation instability and dissipative ion-acoustic structures in collisional nonthermal electron-positron-ion plasma: solitary and shock waves

    Science.gov (United States)

    Guo, Shimin; Mei, Liquan; He, Ya-Ling; Ma, Chenchen; Sun, Youfa

    2016-10-01

    The nonlinear behavior of an ion-acoustic wave packet is investigated in a three-component plasma consisting of warm ions, nonthermal electrons and positrons. The nonthermal components are assumed to be inertialess and hot where they are modeled by the kappa distribution. The relevant processes, including the kinematic viscosity amongst the plasma constituents and the collision between ions and neutrals, are taken into consideration. It is shown that the dynamics of the modulated ion-acoustic wave is governed by the generalized complex Ginzburg-Landau equation with a linear dissipative term. The dispersion relation and modulation instability criterion for the generalized complex Ginzburg-Landau equation are investigated numerically. In the general dissipation regime, the effect of the plasma parameters on the dissipative solitary (dissipative soliton) and shock waves is also discussed in detail. The project is supported by NSF of China (11501441, 11371289, 11371288), National Natural Science Foundation of China (U1261112), China Postdoctoral Science Foundation (2014M560756), and Fundamental Research Funds for the Central Universities (xjj2015067).

  6. Closed shell effects from the stability and instability of deformed and superdeformed nuclei against cluster decays in the mass regions 130-158 and 180-198

    OpenAIRE

    Gupta, Raj K; Dhaulta, Sharda; Kumar, Rajesh; Balasubramaniam, M.; Münzenberg, G.; Scheid, Werner

    2003-01-01

    The stability and/or instability of the deformed and superdeformed nuclei, $^{133-137}_{60}$Nd, $^{144-158}_{64}$Gd, $^{176-194}_{80}$Hg, and $^{192-198}_{82}$Pb parents, coming from three regions of different superdeformations, are studied with respect to the $\\alpha$ and heavy cluster decays. The $\\alpha$-decay studies also include the heavier $^{199-210}$Pb nuclei, for reasons of spherical magic shells at Z=82 and N=126. The calculations are made by using the preformed cluster-decay model,...

  7. Effect of dust charge fluctuation on multidimensional instability of dust-acoustic solitary waves in a magnetized dusty plasma with nonthermal ions

    Science.gov (United States)

    Shahmohammadi, Nafise; Dorranian, Davoud

    2015-10-01

    Simultaneous effects of dust charge fluctuation and nonthermal ions on the threshold point and growth rate of three-dimensional instability of dust-acoustic solitary waves (DASW) in magnetized dusty plasma have been investigated. In this model, dusty plasma consists of Maxwellian electrons, nonthermal ions, and micron size negatively charged dust particles. Modified Zakharov-Kuznetsov equation for DASW was derived employing a reductive perturbation method and its solitary answer under the influence of dust charge fluctuation and nonthermal ions has been studied. The dispersion relation of DASW has been derived using a small-k perturbation method. Results show that the direction and the magnitude of external magnetic field at which the instability takes place are strongly affected by the rate of dust charge fluctuation and nonthermality of ions. With increasing the number of nonthermal ions, the growth rate of instability decreases, while increasing the dust charge fluctuation increases the growth rate of instability.

  8. Effect of dust charge fluctuation on multidimensional instability of dust-acoustic solitary waves in a magnetized dusty plasma with nonthermal ions

    Energy Technology Data Exchange (ETDEWEB)

    Shahmohammadi, Nafise; Dorranian, Davoud, E-mail: doran@srbiau.ac.ir [Laser Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-10-15

    Simultaneous effects of dust charge fluctuation and nonthermal ions on the threshold point and growth rate of three-dimensional instability of dust-acoustic solitary waves (DASW) in magnetized dusty plasma have been investigated. In this model, dusty plasma consists of Maxwellian electrons, nonthermal ions, and micron size negatively charged dust particles. Modified Zakharov-Kuznetsov equation for DASW was derived employing a reductive perturbation method and its solitary answer under the influence of dust charge fluctuation and nonthermal ions has been studied. The dispersion relation of DASW has been derived using a small-k perturbation method. Results show that the direction and the magnitude of external magnetic field at which the instability takes place are strongly affected by the rate of dust charge fluctuation and nonthermality of ions. With increasing the number of nonthermal ions, the growth rate of instability decreases, while increasing the dust charge fluctuation increases the growth rate of instability.

  9. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  10. Corotational Instability, Magnetic Resonances and Global Inertial-Acoustic Oscillations in Magnetized Black-Hole Accretion Discs

    CERN Document Server

    Fu, Wen

    2010-01-01

    Low-order, non-axisymmetric p-modes (also referred as inertial-acoustic modes) trapped in the inner-most region of hydrodynamic accretion discs around black holes, are plausible candidates for high-frequency quasi-periodic oscillations (QPOs) observed in a number of accreting black-hole systems. These modes are subject to global instabilities due to wave absorption at the corotation resonance (where the wave pattern frequency $\\omega/m$ equals the disc rotation rate $\\Omega$), when the fluid vortensity, $\\zeta=\\kappa^2/(2\\Omega\\Sigma)$ (where $\\kappa$ and $\\Sigma$ are the radial epicyclic frequency and disc surface density, respectively), has a positive gradient. We investigate the effects of disc magnetic fields on the wave absorption at corotation and the related wave super-reflection of the corotation barrier, and on the overstability of disc p-modes. For discs with a pure toroidal field, the corotation resonance is split into two magnetic resonances, where the wave frequency in the corotating frame of the...

  11. Thermo-acoustic instabilities of high-frequency combustion in rocket engines; Instabilites thermo-acoustiques de combustion haute-frequence dans les moteurs fusees

    Energy Technology Data Exchange (ETDEWEB)

    Cheuret, F.

    2005-10-15

    Rocket motors are confined environments where combustion occurs in extreme conditions. Combustion instabilities can occur at high frequencies; they are tied to the acoustic modes of the combustion chamber. A common research chamber, CRC, allows us to study the response of a turbulent two-phase flame to acoustic oscillations of low or high amplitudes. The chamber is characterised under cold conditions to obtain, in particular, the relative damping coefficient of acoustic oscillations. The structure and frequency of the modes are determined in the case where the chamber is coupled to a lateral cavity. We have used a powder gun to study the response to a forced acoustic excitation at high amplitude. The results guide us towards shorter flames. The injectors were then modified to study the combustion noise level as a function of injection conditions. The speed of the gas determines whether the flames are attached or lifted. The noise level of lifted flames is higher. That of attached flames is proportional to the Weber number. The shorter flames whose length is less than the radius of the CRC, necessary condition to obtain an effective coupling, are the most sensitive to acoustic perturbations. The use of a toothed wheel at different positions in the chamber allowed us to obtain informations on the origin of the thermo-acoustic coupling, main objective of this thesis. The flame is sensitive to pressure acoustic oscillations, with a quasi-zero response time. These observations suggest that under the conditions of the CRC, we observe essentially the response of chemical kinetics to pressure oscillations. (author)

  12. The application of the acoustic emission technique to stone decay by sodium sulphate in laboratory tests

    Directory of Open Access Journals (Sweden)

    Grossi, C. M.

    1997-03-01

    Full Text Available Acoustic emission was monitored during salt crystallisation cycles in order to study the mechanisms of rock deterioration by sodium sulphate in laboratory tests. Some porous carbonate stones used in Spanish monuments (Cathedral of Oviedo, Murcia and Seo Vella of Lérida were selected for this study. The acoustic emission detected during the different stages of the cycles (immersion, drying and cooling was interpreted to be the result of the salt behaviour inside the stone. The use of this technique has confirmed that this behaviour depends on salt characteristics (solubility, hydration state and polymorphism of anhydrous sodium sulphate and stone porosity and pore network.

    Para determinar los mecanismos de deterioro de las rocas debidos a la acción del sulfato de sodio, se ha registrado la emisión acústica durante ensayos de cristalización de sales en el laboratorio. Para ello, se han seleccionado tres piedras porosas carbonatadas utilizadas como materiales de construcción en monumentos españoles (Catedrales de Oviedo, Murcia y Seo Vella de Lérida. La emisión acústica detectada durante las diferentes etapas de los ciclos (inmersión, secado y enfriamiento se ha interpretado como debida al comportamiento de la sal en el interior de la piedra. Mediante esta técnica se ha confirmado que este comportamiento depende de las características de la sal (solubilidad, diferentes estados de hidratación y el polimorfismo del sulfato de sodio anhidro y de la porosidad y configuración del sistema poroso de las rocas.

  13. Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions

    Institute of Scientific and Technical Information of China (English)

    刘铁路; 王云良; 路彦珍

    2015-01-01

    The nonlinear propagation of quantum ion acoustic wave (QIAW) is investigated in a four-component plasma com-posed of warm classical positive ions and negative ions, as well as inertialess relativistically degenerate electrons and positrons. A nonlinear Schr ¨odinger equation is derived by using the reductive perturbation method, which governs the dynamics of QIAW packets. The modulation instability analysis of QIAWs is considered based on the typical parameters of the white dwarf. The results exhibit that both in weakly relativistic limit and in ultrarelativistic limit, the modulational instability regions are sensitively dependent on the ratios of temperature and number density of negative ions to those of positive ions respectively, and on relativistically degenerate effect as well.

  14. Plasma-maser instability of the ion acoustics wave in the presence of lower hybrid wave turbulence in inhomogeneous plasma

    Indian Academy of Sciences (India)

    M Singh; P N Deka

    2006-03-01

    A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.

  15. Observation of large-scale density cavities and parametric-decay instabilities in the high-altitude discrete auroral ionosphere under pulsed electromagnetic radiation.

    Science.gov (United States)

    Wong, A Y; Chen, J; Lee, L C; Liu, L Y

    2009-03-13

    A large density cavity that measured 2000 km across and 500 km in height was observed by DEMETER and Formosat/COSMIC satellites in temporal and spatial relation to a new mode of propagation of electromagnetic (em) pulses between discrete magnetic field-aligned auroral plasmas to high altitudes. Recorded positive plasma potential from satellite probes is consistent with the expulsion of electrons in the creation of density cavities. High-frequency decay spectra support the concept of parametric instabilities fed by free energy sources. PMID:19392121

  16. Application of Multi-Port Mixing for Passive Suppression of Thermo-Acoustic Instabilities in Premixed Combustors

    OpenAIRE

    Farina, Jordan T

    2013-01-01

    The utilization of lean premixed combustors has become attractive to designers of industrial gas turbines as a means of meeting strict emissions standards without compromising efficiency.  Mixing the fuel and air prior to combustion allows for lower temperature flame zones, creating the potential for drastically reduced nitrous oxide emissions.  While effective, these systems are commonly plagued by combustion driven instabilities.  These instabilities produce large pressure and heat release ...

  17. Oblique ion acoustic wave instabilities in a multi-ion plasma and 3He-rich events

    International Nuclear Information System (INIS)

    Oblique ion acoustic waves in a current-carrying, magnetized plasma are investigated. For a multi-ion plasma whose dominant components are hydrogen and helium, it is found that for some plasma parameters oblique ion acoustic waves can have positive growth rates at frequencies ω ≅ Ω3He (3He cyclotron frequency) and, at the same time, negative growth rates at ω ≅ Ω4He, It is then suggested that these waves can play an essential role in the 3He-rich solar flares. (author)

  18. Multidimensional Josephson vortices in spin-orbit-coupled Bose-Einstein condensates: Snake instability and decay through vortex dipoles

    Science.gov (United States)

    Gallemí, A.; Guilleumas, M.; Mayol, R.; Mateo, A. Muñoz

    2016-03-01

    We analyze the dynamics of Josephson vortex states in two-component Bose-Einstein condensates with Rashba-Dresselhaus spin-orbit coupling by using the Gross-Pitaevskii equation. In one dimension, both in homogeneous and harmonically trapped systems, we report on stationary states containing doubly charged, static Josephson vortices. In multidimensional systems, we find stable Josephson vortices in a regime of parameters typical of current experiments with 87Rb atoms. In addition, we discuss the instability regime of Josephson vortices in disk-shaped condensates, where the snake instability operates and vortex dipoles emerge. We study the rich dynamics that they exhibit in different regimes of the spin-orbit-coupled condensate depending on the orientation of the Josephson vortices.

  19. Mechanisms of plastic instability and fracture of compressed and tensile tested Mg-Li alloys investigated using the acoustic emission method

    Directory of Open Access Journals (Sweden)

    A. Pawełek

    2016-01-01

    Full Text Available The results of the investigation of both mechanical and acoustic emission (AE behaviors of Mg4Li5Al alloy subjected to compression and tensile tests at room temperature are compared with the test results obtained using the same alloy and loading scheme but at elevated temperatures. The main aim of the paper is to investigate, to determine and to explain the possible influence of factors related with enhanced internal stresses such as: segregation of precipitates along grain boundaries or solute atoms along dislocations (Cottrell atmospheres or dislocation pile-ups at grain boundaries which create very high stress concentration leading to fracture. The results show that the plastic instabilities are related to the Portevin–Le Châtelier phenomenon (PL effect and they are correlated with the generation of AE peaks. The fractography of breaking samples was analyzed on the basis of light (optical, TEM and SEM images.

  20. The instability of dust acoustic waves in inhomogeneous dusty plasmas with non-adiabatic dust charge fluctuation

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Ping; Xue Ju-Kui

    2008-01-01

    This paper investigates the propagation of linear dust acoustic waves in inhomogeneous dusty plasmas due to spatial gradients of dust charge, plasma densities. A linear dispersion relation is obtained with the non-adiabatic dust charge fluctuation and the non-thermally distributed ions. The numerical results show that the inhomogeneity, nonthermal ions and non-adiabatic dust charge fluctuation have strong influence on the frequency and the damping rate of waves.

  1. Plastic Instabilities Induced by the Portevin - Le Châtelier Effect and Fracture Character of Deformed Mg-Li Alloys Investigated Using the Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Pawełek A.

    2016-06-01

    Full Text Available The results of the investigation of both mechanical and acoustic emission (AE behaviors of Mg4Li5Al and Mg4Li4Zn alloys subjected to compression and tensile tests at room temperature are compared with the test results obtained using the same alloys and loading scheme but at elevated temperatures. The main aim of the paper is to investigate, to determine and to explain the relation between plastic flow instabilities and the fracture characteristics. There are discussed the possible influence of the factors related with enhanced internal stresses such as: segregation of precipitates along grain boundaries, interaction of solute atoms with mobile dislocations (Cottrell atmospheres as well as dislocation pile-ups which may lead to the microcracks formation due to the creation of very high stress concentration at grain boundaries. The results show that the plastic flow discontinuities are related to the Portevin-Le Châtelier phenomenon (PL effect and they are correlated with the generation of characteristic AE pulse trains. The fractography of broken samples was analyzed on the basis of light (optical, TEM and SEM images.

  2. Corotational Instability of Inertial-Acoustic Modes in Black Hole Accretion Discs and Quasi-Periodic Oscillations

    CERN Document Server

    Lai, Dong

    2008-01-01

    We study the global stability of non-axisymmetric p-modes (also called inertial-acoustic modes) trapped in the inner-most regions of accretion discs around black holes. We show that the lowest-order (highest-frequency) p-modes, with frequencies $\\omega=(0.5-0.7) m\\Omega_{\\rm ISCO}$, can be overstable due to general relativistic effects, according to which the radial epicyclic frequency is a non-monotonic function of radius near the black hole. The mode is trapped inside the corotation resonance radius and carries a negative energy. The mode growth arises primarily from wave absorption at the corotation resonance, and the sign of the wave absorption depends on the gradient of the disc vortensity. When the mode frequency is sufficiently high, such that the slope of the vortensity is positive at corotation positive wave energy is absorbed at the resonance, leading to the growth of mode amplitude. We also study how the rapid radial inflow at the inner edge of the disc affects the mode trapping and growth. Our ana...

  3. Effect of the ion-acoustic plasma turbulence on the development of the parametric instability nearby the low hybrid resonance

    International Nuclear Information System (INIS)

    The parametric plasma instability on HF heating near the low hybrid resonance in the process of developing the ion sound turbulence in an original by currentless plasma is studied experimentally. A cylinder plasma column was produced in a homogeneous magnetic field by the electron beam at 60-100 eV. Argon was used as the operating gas. The pressure of argon was of 2.5 - 2.7 10-4 Tor. The low frequency noises of the plasma were recorded by the single Langmuir probe according to fluctuations of the ion saturation current. The experiment was carried out under conditions when Ωsub(i) 0 is the circular frequency of the pumping wave, Ωsub(i), ωsub(Li) are the ion cyclotron and Langmuir frequencies, ωsub(LH) - is the Low hybrid frequency). The investigation shows that the parametric excitation of ion sound noises and HF oscillations near the pumping wave frequency takes place over a wide range of frequencies with the spectrum analogous to the spectrum of the ion-sound turbulence. The experimental observations indicate an effect of the sound turbulence and that of the form of the velocity distribution function of charged particles on parametric buildup of the waves

  4. Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation

    CERN Document Server

    Nariyuki, Yasuhiro; Hada, Tohru

    2008-01-01

    We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.

  5. Baryon Instability in SUSY Models

    OpenAIRE

    Nath, Pran; Arnowitt, R.

    1996-01-01

    Comment: 14 pages, latex, 1 fig, to be published in proceedings of the International Workshop on " Future Prospects of Baryon Instability Search in p-Decay and n-nbar Oscillation Experiments", Oak Ridge, Tennessee, March 28-30,1996

  6. Nature of the Wiggle Instability of Galactic Spiral Shocks

    CERN Document Server

    Kim, Woong-Tae; Kim, Jeong-Gyu

    2014-01-01

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis as well as nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gas in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinui...

  7. Analysis of beam plasma instability effects on incoherent scatter spectra

    Directory of Open Access Journals (Sweden)

    M. A. Diaz

    2010-12-01

    Full Text Available Naturally Enhanced Ion Acoustic Lines (NEIALs detected with Incoherent Scatter Radars (ISRs can be produced by a Langmuir decay mechanism, triggered by a bump on tail instability. A recent model of the beam-plasma instability suggests that weak-warm beams, such those associated with NEIAL events, might produce Langmuir harmonics which could be detected by a properly configured ISR. The analysis performed in this work shows that such a beam-driven wave may be simultaneously detected with NEIALs within the baseband signal of a single ISR. The analysis shows that simultaneous detection of NEIALs and the first Langmuir harmonic is more likely than simultaneous detection of NEIALs and enhanced plasma line. This detection not only would help to discriminate between current NEIAL models, but could also aid in the parameter estimation of soft precipitating electrons.

  8. Surge Instability on a Cavitating Propeller

    OpenAIRE

    Duttweiler, Mark E.; Brennen, Christopher E.

    2001-01-01

    This study details experiments investigating a previously unrecognized surge instability on a cavitating propeller in a water tunnel. The surge instability is furst explored through visual observation of the cavitation on the propeller blades and in the tip vortices. Similarities between the instability and previously documented cavitation phenomena are noted. Measurements of the radiated pressure are then obtained, and the acoustic signature of the instability is identified. The magnitud...

  9. Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, D.F.; Rose, H.A. [Los Alamos National Lab., NM (United States); Russell, D. [Lodestar Research Inc., Boulder, CO (United States)

    1995-12-01

    Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular I will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Laugmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where the weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency, spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. The experiments on SRS are less detailed but by Thomson scattering the secondary decay of the daughter Langmuir wave has been observed. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments.

  10. Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence

    International Nuclear Information System (INIS)

    Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular we will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Langmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where the weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. Thomson scattering measurements of the Langmuir wave spectra from SRS are consistent with the saturation by secondary and tertiary decay of the primary SRS Langmuir waves. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments. (orig.)

  11. Solitons versus parametric instabilities during ionospheric heating

    Science.gov (United States)

    Nicholson, D. R.; Payne, G. L.; Downie, R. M.; Sheerin, J. P.

    1984-01-01

    Various effects associated with ionospheric heating are investigated by numerically solving the modified Zakharov (1972) equations. It is shown that, for typical ionospheric parameters, the modulational instability is more important than the parametric decay instability in the spatial region of strongest heater electric field. It is concluded that the modulational instability leads to the formation of solitons, as originally predicted by Petviashvili (1976).

  12. Measurements of parametric instability near the critical density and the resultant electron heating: Final report

    International Nuclear Information System (INIS)

    Detailed studies of the ion acoustic parametric decay instability have been made. Theoretical and particle simulation results indicate these instabilities are important in long scale length plasma irradiated by moderate intensity laser light (10'' ≤ Iλ2/T/sub e/ (W/cm2) (μm2)/(keV) ≤ 5 x 1014). Laser light (λ0 ≅ 1/2 μm) is focused onto a CH target. The parametric decay instability has been measured by detecting the emission spectrum at frequencies near 2ω0. The experimental results clearly indicate that this parametric instability is important for short wavelength (1/2 μm) laser light irradiation. The threshold of the parametric instability (λ0 = 1/2 μm) was only slightly higher than that of 1 μm laser case. The measured wavelength shift of the Stokes component (λ0 = 1/2 μm) compared very well with the 1 μm laser results

  13. Mechanisms of plastic instability and fracture of compressed and tensile tested Mg-Li alloys investigated using the acoustic emission method

    OpenAIRE

    A. Pawełek; A. Piątkowski; W. Wajda; W. Skuza; A. Tarasek; W. Ozgowicz; B. Grzegorczyk; Z. Ranachowski; S. Kúdela; S. Kúdela, Jr.

    2016-01-01

    The results of the investigation of both mechanical and acoustic emission (AE) behaviors of Mg4Li5Al alloy subjected to compression and tensile tests at room temperature are compared with the test results obtained using the same alloy and loading scheme but at elevated temperatures. The main aim of the paper is to investigate, to determine and to explain the possible influence of factors related with enhanced internal stresses such as: segregation of precipitates along grain bound...

  14. Size effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2006-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  15. Shoulder Instability

    Science.gov (United States)

    ... Risk Factors Is shoulder instability the same as shoulder dislocation? No. The signs of dislocation and instability might ... the same to you--weakness and pain. However, dislocation occurs when your shoulder goes completely out of place. The shoulder ligaments ...

  16. Optical Mixing Controlled Stimulated Scattering instabilities: Suppression of SRS by the Controlled Introduction of Ion Acoustic and Electron Plasma Wave Turbulence

    CERN Document Server

    Afeyan, Bedros; Won, K; Montgomery, D S; Hammer, J; Kirkwood, R K; Schmitt, A J

    2012-01-01

    In a series of experiments on the Omega laser facility at LLE, we have demonstrated the suppression of SRS in prescribed spectral windows due to the presence of externally controlled levels of ion acoustic waves (IAW, by crossing two blue beams at the Mach -1 surface) and electron plasma waves (EPW, by crossing a blue and a green beam around a tenth critical density plasma) generated via optical mixing. We have further observed SRS backscattering of a green beam when crossed with a blue pump beam, in whose absence, that (green beam) backscattering signature was five times smaller. This is direct evidence for green beam amplification when crossed with the blue. Additional proof comes from transmitted green beam measurements. A combination of these techniques may allow the suppression of unacceptable levels of SRS near the light entrance hole of large-scale hohlraums on the NIF or LMJ.

  17. Shoulder instability

    International Nuclear Information System (INIS)

    In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)

  18. Hip instability.

    Science.gov (United States)

    Smith, Matthew V; Sekiya, Jon K

    2010-06-01

    Hip instability is becoming a more commonly recognized source of pain and disability in patients. Traumatic causes of hip instability are often clear. Appropriate treatment includes immediate reduction, early surgery for acetabular rim fractures greater than 25% or incarcerated fragments in the joint, and close follow-up to monitor for avascular necrosis. Late surgical intervention may be necessary for residual symptomatic hip instability. Atraumatic causes of hip instability include repetitive external rotation with axial loading, generalized ligamentous laxity, and collagen disorders like Ehlers-Danlos. Symptoms caused by atraumatic hip instability often have an insidious onset. Patients may have a wide array of hip symptoms while demonstrating only subtle findings suggestive of capsular laxity. Traction views of the affected hip can be helpful in diagnosing hip instability. Open and arthroscopic techniques can be used to treat capsular laxity. We describe an arthroscopic anterior hip capsular plication using a suture technique. PMID:20473129

  19. Parametric instabilities in quantum plasmas with electron exchange-correlation effects

    Institute of Scientific and Technical Information of China (English)

    He Cai-Xia; Xue Ju-Kui

    2013-01-01

    Parametric instabilities induced by the nonlinear interaction between high frequency quantum Langmuir waves and low frequency quantum ion-acoustic waves in quantum plasmas with the electron exchange-correlation effects are presented.By using the quantum hydrodynamic equations with the electron exchange-correlation correction,we obtain an effective quantum Zaharov model,which is then used to derive the modified dispersion relations and the growth rates of the decay and four-wave instabilities.The influences of the electron exchange-correlation effects and the quantum effects on the existence of quantum Langmuir waves and the parametric instabilities are discussed in detail.It is shown that the electron exchange-correlation effects and quantum effects are strongly coupled.The quantum Langmuir wave can propagate in quantum plasmas only when the electron exchange-correlation effects and the quantum effects satisfy a certain condition.The electron exchange-correlation effects tend to enhance the parametric instabilities,while quantum effects suppress the instabilities.

  20. Booming Dune Instability

    Science.gov (United States)

    Andreotti, B.; Bonneau, L.

    2009-12-01

    Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud sound with a characteristic vibrato around a well-defined frequency, a phenomenon called the “song of dunes.” Here, we show through theory that a homogenous granular surface flow is linearly unstable towards growing elastic waves when a localized shear band forms at the interface between the avalanche and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of this booming instability. The dispersion relation and the shape of the most unstable modes are computed and compared to field measurements.

  1. The Effect of Resistance on Rocket Injector Acoustics

    Science.gov (United States)

    Morgan, C. J.

    2015-01-01

    Combustion instability, where unsteady heat release couples with acoustic modes, has long been an area of concern in liquid rocket engines. Accurate modeling of the acoustic normal modes of the combustion chamber is important to understanding and preventing combustion instability. The injector resistance can have a significant influence on the chamber normal mode shape, and hence on the system stability.

  2. Stable And Oscillating Acoustic Levitation

    Science.gov (United States)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  3. Instability of supersymmetric microstate geometries

    CERN Document Server

    Eperon, Felicity C; Santos, Jorge E

    2016-01-01

    We investigate the classical stability of supersymmetric, asymptotically flat, microstate geometries with five non-compact dimensions. Such geometries admit an "evanescent ergosurface": a timelike hypersurface of infinite redshift. On such a surface, there are null geodesics with zero energy relative to infinity. These geodesics are stably trapped in the potential well near the ergosurface. We present a heuristic argument indicating that this feature is likely to lead to a nonlinear instability of these solutions. We argue that the precursor of such an instability can be seen in the behaviour of linear perturbations: nonlinear stability would require that all linear perturbations decay sufficiently rapidly but the stable trapping implies that some linear perturbation decay very slowly. We study this in detail for the most symmetric microstate geometries. By constructing quasinormal modes of these geometries we show that generic linear perturbations decay slower than any inverse power of time.

  4. Collective instabilities

    Energy Technology Data Exchange (ETDEWEB)

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  5. Baroclinic instabilities

    OpenAIRE

    Joly, Laurent; Chassaing, Patrick; Chapin, Vincent; Reinaud, Jean; Micallef, J; Suarez, Juan; Bretonnet, L

    2003-01-01

    1. Introduction - Illustrative examples from experiments and simulations 2. The baroclinic torque in high Froude number flows, its organization, scale and order of magnitude 3. Stability of the inhomogeneous mixing-layer 4. Transition of the inhomogeneous mixing-layer and the 2D secondary baroclinic instability 5. The strain field of 2D light jets 6. Transition to three-dimensionality in light jets and the question of side-jets 7. Baroclinic instability of heavy vortices and...

  6. Carpal instability

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.; Froehner, S.; Coblenz, G.; Christopoulos, G. [Institut fuer Diagnostische und Interventionelle Radiologie, Herz- und Gefaessklinik GmbH, Bad Neustadt an der Saale (Germany)

    2006-10-15

    This review addresses the pathoanatomical basics as well as the clinical and radiological presentation of instability patterns of the wrist. Carpal instability mostly follows an injury; however, other diseases, like CPPD arthropathy, can be associated. Instability occurs either if the carpus is unable to sustain physiologic loads (''dyskinetics'') or suffers from abnormal motion of its bones during movement (''dyskinematics''). In the classification of carpal instability, dissociative subcategories (located within proximal carpal row) are differentiated from non-dissociative subcategories (present between the carpal rows) and combined patterns. It is essential to note that the unstable wrist initially does not cause relevant signs in standard radiograms, therefore being ''occult'' for the radiologic assessment. This paper emphasizes the high utility of kinematographic studies, contrast-enhanced magnetic resonance imaging (MRI) and MR arthrography for detecting these predynamic and dynamic instability stages. Later in the natural history of carpal instability, static malalignment of the wrist and osteoarthritis will develop, both being associated with significant morbidity and disability. To prevent individual and socio-economic implications, the handsurgeon or orthopedist, as well as the radiologist, is challenged for early and precise diagnosis. (orig.)

  7. Aspects of Electron Acoustic Wave Physics in Laser Backscatter from Plasmas

    CERN Document Server

    Sircombe, N J; Dendy, R O

    2006-01-01

    Recent experimental results from the Trident laser confirm the importance of kinetic effects in determining laser reflectivities at high intensities. Examples observed include scattering from low frequency electron acoustic waves (EAWs), and the first few stages of a cascade towards turbulence through the Langmuir decay instability. Interpretive and predictive computational capability in this area is assisted by the development of Vlasov codes, which offer high velocity space resolution in high energy regions of particle phase space, and do not require analytical pre-processing of the fundamental equations. A direct Vlasov solver, capable of resolving these kinetic processes, is used here to address fundamental aspects of the existence and stability of the electron acoustic wave, together with its collective scattering properties. These simulations are extended to realistic laser and plasma parameters characteristic of single hot-spot experiments. Results are in qualitative agreement with experiments displayi...

  8. Size-effects on cavitation instabilities

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavity...... triaxiality, where cavitation instabilities are predicted by conventional plasticity theory, such instabilities are also found for the nonlocal theory, but the effects of gradient hardening delay the onset of the instability. Furthermore, in some cases the cavitation stress reaches a maximum and then decays...

  9. The saturation of SASI by parasitic instabilities

    CERN Document Server

    Guilet, Jerome; Foglizzo, Thierry

    2009-01-01

    The Standing Accretion Shock Instability (SASI) is commonly believed to be responsible for large amplitude dipolar oscillations of the stalled shock during core collapse, potentially leading to an asymmetric supernovae explosion. The degree of asymmetry depends on the amplitude of SASI, which nonlinear saturation mechanism has never been elucidated. We investigate the role of parasitic instabilities as a possible cause of nonlinear SASI saturation. As the shock oscillations create both vorticity and entropy gradients, we show that both Kelvin-Helmholtz and Rayleigh-Taylor types of instabilities are able to grow on a SASI mode if its amplitude is large enough. We obtain simple estimates of their growth rates, taking into account the effects of advection and entropy stratification. In the context of the advective-acoustic cycle, we use numerical simulations to demonstrate how the acoustic feedback can be decreased if a parasitic instability distorts the advected structure. The amplitude of the shock deformation...

  10. Shoulder instability

    International Nuclear Information System (INIS)

    Shoulder instability is a common clinical feature leading to recurrent pain and limitated range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging. (orig.)

  11. Performance through Deformation and Instability

    Science.gov (United States)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  12. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  13. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  14. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  15. Laboratory Observations Consistent with Non-linear Decay of a Kinetic Alfvén Wave

    Science.gov (United States)

    Dorfman, S. E.; Carter, T. A.; Vincena, S. T.; Sydora, R. D.; Lin, Y.; Pribyl, P.; Guice, D.; Rossi, G.; Klein, K. G.

    2014-12-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in space plasmas. For example, a cascade of non-linearly interacting Alfvén waves is believed to play a key role in solar wind turbulence. At perpendicular length scales below the ion gyroradius, this takes the form of Kinetic Alfvén Waves (KAWs). Theoretical predictions show that these Alfvén waves may be unstable to various decay instabilities (e.g. [1,2]). In particular, theory predicts that a KAW may decay into two daughter KAWs even at very low amplitude (δB/Bdata-points, laboratory experiments may play a vital role in exploring the key physics responsible. The present work, conducted at UCLA's Large Plasma Device (LAPD) represents the first fundamental laboratory study of the non-linear Alfvén wave interactions responsible for Alfvén wave decay instabilities. These experiments include the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of the Parametric Decay Instability [3]. More recently, laboratory efforts have focused on the predicted non-linear decay of one KAW into two daughter KAWs. In these experiments, a single high-frequency ω/Ωi~0.7 Alfvén wave is launched, resulting in two daughter modes with frequencies and wave numbers that suggest co-propagating KAWs produced by decay of the pump wave. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump mode amplitude. Efforts are underway to fully characterize this set of experiments and compare with decay instabilities predicted by theory and simulations. [1] JV Hollweg, J. Geophys. Res. 99, 23 431 (1994).[2] YM Voitenko, Journal of plasma physics 60.03 (1998).[3] S Dorfman and T Carter, Phys. Rev. Lett. 110, 195001 (2013). Supported by DOE, NSF, and DOE FES and NASA Eddy Postdoctoral Fellowships

  16. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  17. Recombination instability

    DEFF Research Database (Denmark)

    D'Angelo, N.

    1967-01-01

    A recombination instability is considered which may arise in a plasma if the temperature dependence of the volume recombination coefficient, alpha, is sufficiently strong. Two cases are analyzed: (a) a steady-state plasma produced in a neutral gas by X-rays or high energy electrons; and (b...

  18. Memory-Effect on Acoustic Cavitation

    OpenAIRE

    Yavaṣ, Oğuz; Leiderer, Paul; Park, Hee K.; Grigoropoulos, Costas P.; Poon, Chie C.; Tam, Andrew C.

    1994-01-01

    The formation of bubbles at a liquid-solid interface due to acoustic cavitation depends particularly on the preconditions of the interface. Here, it wiIl be shown that following laser-induced bubble formation at the interface the acoustic cavitation efficiency is strongly enhanced. Optical reflectance measurements reveal that this observed enhancement of acoustic cavitation due to preceding laser-induced bubble formation, which could be termed as memory effect, decays in a few hundred microse...

  19. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  20. The booming dune instability

    Science.gov (United States)

    Andreotti, B.; Bonneau, L.

    2009-12-01

    Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud sound with a characteristic vibrato around a well defined frequency, a phenomenon called the "song of dunes". Here, we show theoretically that an homogenous granular surface flow is linearly unstable towards growing elastic waves when a localized shear band form at the interface between the avalanche and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of this booming instability. The dispersion relation and the shape of the most unstable modes are computed and compared to field records performed in the Atlantic Sahara. We finally show that several characteristics predicted by the model and observed in the field allow to dismiss former hypothesis based on resonances or the synchronisation of sand grain collisions.

  1. Radiative heat transport instability in ICF plasmas

    Science.gov (United States)

    Rozmus, W.; Bychenkov, V. Yu.

    2015-11-01

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation losses and radiative heat transfer supports ion acoustic wave instability. A linear dispersion relation is derived and instability is compared to the radiation cooling instability. This instability develops in the wide range of angles and wavenumbers with the typical growth rate on the order of cs/LT (cs is the sound speed, LT is the temperature scale length). In addition to radiation dominated systems, a similar thermal transport driven ion acoustic instability was found before in plasmas where the thermal transport coefficient depends on electron density. However, under conditions of indirect drive ICF experiments the driving term for the instability is the radiative heat flux and in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered corresponding to a thermal conductivity coefficient that is inversely proportional to the square of local particle density. In the nonlinear regime this instability may lead to plasma jet formation and anisotropic x-ray generation.

  2. Combustion Instabilities Modeled

    Science.gov (United States)

    Paxson, Daniel E.

    1999-01-01

    NASA Lewis Research Center's Advanced Controls and Dynamics Technology Branch is investigating active control strategies to mitigate or eliminate the combustion instabilities prevalent in lean-burning, low-emission combustors. These instabilities result from coupling between the heat-release mechanisms of the burning process and the acoustic flow field of the combustor. Control design and implementation require a simulation capability that is both fast and accurate. It must capture the essential physics of the system, yet be as simple as possible. A quasi-one-dimensional, computational fluid dynamics (CFD) based simulation has been developed which may meet these requirements. The Euler equations of mass, momentum, and energy have been used, along with a single reactive species transport equation to simulate coupled thermoacoustic oscillations. A very simple numerical integration scheme was chosen to reduce computing time. Robust boundary condition procedures were incorporated to simulate various flow conditions (e.g., valves, open ends, and choked inflow) as well as to accommodate flow reversals that may arise during large flow-field oscillations. The accompanying figure shows a sample simulation result. A combustor with an open inlet, a choked outlet, and a large constriction approximately two thirds of the way down the length is shown. The middle plot shows normalized, time-averaged distributions of the relevant flow quantities, and the bottom plot illustrates the acoustic mode shape of the resulting thermoacoustic oscillation. For this simulation, the limit cycle peak-to-peak pressure fluctuations were 13 percent of the mean. The simulation used 100 numerical cells. The total normalized simulation time was 50 units (approximately 15 oscillations), which took 26 sec on a Sun Ultra2.

  3. Large Eddy Simulation of thermoacoustic instabilities in annular combustion chambers

    OpenAIRE

    Wolf, Pierre

    2011-01-01

    Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. Combustion instabilities arise from the coupling of acoustics and combustion. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must consider the...

  4. [Carpal instability].

    Science.gov (United States)

    Redeker, J; Vogt, P M

    2011-01-01

    Carpal instability can be understood as a disturbed anatomical alignment between bones articulating in the carpus. This disturbed balance occurs either only dynamically (with movement) under the effect of physiological force or even statically at rest. The most common cause of carpal instability is wrist trauma with rupture of the stabilizing ligaments and adaptive misalignment following fractures of the radius or carpus. Carpal collapse plays a special role in this mechanism due to non-healed fracture of the scaphoid bone. In addition degenerative inflammatory alterations, such as chondrocalcinosis or gout, more rarely aseptic bone necrosis of the lunate or scaphoid bones or misalignment due to deposition (Madelung deformity) can lead to wrist instability. Under increased pressure the misaligned joint surfaces lead to bone arrosion with secondary arthritis of the wrist. In order to arrest or slow down this irreversible process, diagnosis must occur as early as possible. Many surgical methods have been thought out to regain stability ranging from direct reconstruction of the damaged ligaments, through ligament replacement to partial stiffening of the wrist joint.

  5. More on core instabilities of magnetic monopoles

    CERN Document Server

    Striet, J

    2003-01-01

    In this paper we present new results on the core instability of the 't Hooft Polyakov monopoles we reported on before. This instability, where the spherical core decays in a toroidal one, typically occurs in models in which charge conjugation is gauged. In this paper we also discuss a third conceivable configuration denoted as ``split core'', which brings us to some details of the numerical methods we employed. We argue that a core instability of 't Hooft Polyakov type monopoles is quite a generic feature of models with charged Higgs particles.

  6. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  7. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  8. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Takayuki; Saito, Shinji [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya City, Aichi 464-8601 (Japan); Nariyuki, Yasuhiro, E-mail: umeda@stelab.nagoya-u.ac.jp, E-mail: saito@stelab.nagoya-u.ac.jp, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama City, Toyama 930-8555 (Japan)

    2014-10-10

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  9. Influence of Ion Streaming Instabilities on Transport Near Plasma Boundaries

    CERN Document Server

    Baalrud, Scott D

    2015-01-01

    Plasma boundary layers are susceptible to electrostatic instabilities driven by ion flows in presheaths and, when present, these instabilities can influence transport. In plasmas with a single species of positive ion, ion-acoustic instabilities are expected under conditions of low pressure and large electron-to-ion temperature ratio ($T_e/T_i \\gg 1$). In plasmas with two species of positive ions, ion-ion two-stream instabilities can also be excited. The stability phase-space is characterized using the Penrose criterion and approximate linear dispersion relations. Predictions for how these instabilities affect ion and electron transport in presheaths, including rapid thermalization due to instability-enhanced collisions and an instability-enhanced ion-ion friction force, are also briefly reviewed. Recent experimental tests of these predictions are discussed along with research needs required for further validation. The calculated stability boundaries provide a guide to determine the experimental conditions at ...

  10. Influence of ion streaming instabilities on transport near plasma boundaries

    Science.gov (United States)

    Baalrud, Scott D.

    2016-04-01

    Plasma boundary layers are susceptible to electrostatic instabilities driven by ion flows in presheaths and, when present, these instabilities can influence transport. In plasmas with a single species of positive ion, ion-acoustic instabilities are expected under conditions of low pressure and large electron-to-ion temperature ratio ({{T}e}/{{T}i}\\gg 1 ). In plasmas with two species of positive ions, ion-ion two-stream instabilities can also be excited. The stability phase-space is characterized using the Penrose criterion and approximate linear dispersion relations. Predictions for how these instabilities affect ion and electron transport in presheaths, including rapid thermalization due to instability-enhanced collisions and an instability-enhanced ion-ion friction force, are briefly reviewed. Recent experimental tests of these predictions are discussed along with research needs required for further validation. The calculated stability boundaries provide a guide to determine the experimental conditions at which these effects can be expected.

  11. Two scenarios of instability development in flow with strong swirling

    DEFF Research Database (Denmark)

    Naumov, Igor; Okulov, Valery; Sørensen, Jens Nørkær

    2007-01-01

    The development of instability in a flow generated in a cylindrical cavity with a rotating endwall has been studied. Both possible scenarios of the development of instability, according to which the amplitude of velocity pulsation grows or decays with increasing twist of the flow, have been obser...

  12. Tau decays

    International Nuclear Information System (INIS)

    The most recent experimental results of τ physics are reviewed. The covered topics include precision measurements of semihadronic τ decay and their impact on tau branching ratio budget, the current status of the tau consistency test, a determination of Michel parameters and τ neutrino helicity, and upper limits on lepton-number violating τ decays. (orig.)

  13. Experimental Replication of an Aeroengine Combustion Instability

    Science.gov (United States)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  14. Bar instabilities in Coma cluster galaxies

    International Nuclear Information System (INIS)

    The radial distribution of bar versus nonbar galaxies within the Coma cluster shows that a significantly larger fraction of bar galaxies are members of the cluster core. This result can be used either to estimate the time scale for the decay of bar instabilities or to argue that galaxies in the core of Coma are confined within the core

  15. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  16. Effect of wave localization on plasma instabilities. Ph.D. Thesis

    Science.gov (United States)

    Levedahl, William Kirk

    1987-01-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  17. KB-WOT Quality assurance acoustics: overview and protocols 2008 version

    NARCIS (Netherlands)

    Ybema, M.S.

    2009-01-01

    The quality of IMARES' acoustic surveys proved quite unstable in recent years despite extra effort in this field to bring this instability down. The amount of involved scientists in acoustics has been small compared to demersal survey work. Therefore scientific standards of acoustic surveys are rela

  18. Proton Decay

    OpenAIRE

    Raby, Stuart

    2002-01-01

    We discuss the status of supersymmetric grand unified theories [SUSY GUTs] with regards to the observation of proton decay. In this talk we focus on SUSY GUTs in 4 dimensions. We outline the major theoretical uncertainties present in the calculation of the proton lifetime and then present our best estimate of an absolute upper bound on the predicted proton lifetime. Towards the end, we consider some new results in higher dimensional GUTs and the ramifications for proton decay.

  19. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  20. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  1. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  2. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  3. Transient spirals as superposed instabilities

    CERN Document Server

    Sellwood, J A

    2014-01-01

    We present evidence that recurrent spiral activity, long manifested in simulations of disk galaxies, results from the super-position of a few transient spiral modes. Each mode lasts between five and ten rotations at its corotation radius where its amplitude is greatest. The scattering of stars as each wave decays takes place over narrow ranges of angular momentum, causing abrupt changes to the impedance of the disk to subsequent traveling waves. Partial reflections of waves at these newly created features, allows new standing-wave instabilities to appear that saturate and decay in their turn, scattering particles at new locations, creating a recurring cycle. The spiral activity causes the general level of random motion to rise, gradually decreasing the ability of the disk to support further activity unless the disk contains a dissipative gas component from which stars form on near-circular orbits. We also show that this interpretation is consistent with the behavior reported in other recent simulations with l...

  4. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  5. B decays

    CERN Document Server

    Stone, Sheldon

    1992-01-01

    The study of b quarks has now reached a stage where it is useful to review what has been learned so far and also to look at the implications of future studies. The most important observations thus far - measurement of the "B" lifetime, B 0 - B 0 mixing, and the observation of b? u transitions, as well as more mundane results on hadronic and semileptonic transitions - are described in detail by experimentalists who have been closely involved with the measurements. Theoretical progress in understanding b quark decays, including the mechanisms of hadronic and semileptonic decays, are described. S

  6. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  7. Does the Decay Wave Propagate Forwards in Dusty Plasmas?

    Institute of Scientific and Technical Information of China (English)

    谢柏松

    2002-01-01

    The decay interaction of the ion acoustic wave in a dusty plasma with variable-charge dust grains is studied.Even if strong charging relaxation for dust grains and the short wavelength regime for ion waves are included, it is found that the decay wave must be backward propagating.

  8. A Computational Fluid Dynamics Investigation of Thermoacoustic Instabilities in Premixed Laminar and Turbulent Combustion Systems

    OpenAIRE

    Chatterjee, Prateep

    2004-01-01

    Lean premixed combustors have been designed to lower NOx and other pollutant levels in land based gas turbines. These combustors are often susceptible to thermo-acoustic instabilities, which manifest as pressure and heat release oscillations in the combustor. To be able to predict and control these instabilities, it is required that both the acoustics of the system, and a frequency-resolved response of the combustion process to incoming perturbations be understood. Currently, a system-level...

  9. Control and simulation of thermoacoustic instabilities

    Science.gov (United States)

    Poinsot, Thierry

    2014-11-01

    Combustion instabilities (CI), due to thermoacoustic coupling between acoustic waves and chemical reaction, constitute a major danger for all combustion systems. They can drive the system to unstable states where the whole combustor can oscillate, vibrate, quench or in extreme cases explode or burn. Such phenomena are commonly observed in the final phases of development programs, leading to major difficulties and significant additional costs. One of the most famous examples of combustion instabilities is the F1 engine of the Apollo program which required more than 1000 engine tests to obtain a stable regime satisfying all other constraints (performance, ignition, etc). CIs constitute one of the most challenging problems in fluid mechanics: they combine turbulence, acoustics, chemistry, unsteady two-phase flow in complex geometries. Since combustion instabilities have been identified (more than hundred years ago), the combustion community has followed two paths: (1) improve our understanding of the phenomena controlling stability to build engines which would be ``stable by design'' and (2) give up on a detailed understanding of mechanisms and add control systems either in open or closed loop devices to inhibit unstable modes. Of course, understanding phenomena driving combustion instabilities to suppress them would be the most satisfying approach but there is no fully reliable theory or numerical method today which can predict whether a combustor will be stable or not before it is fired. This talk will present an overview of combustion instabilities phenomenology before focusing on: (1) active control methods for combustion instabilities and (2) recent methods to predict unstable modes in combustors. These methods are based on recent Large Eddy Simulation codes for compressible reacting flows on HPC systems but we will also describe recent fully analytical methods which provide new insights into unstable modes in annular combustion chambers. Support: European

  10. Acoustic emission

    International Nuclear Information System (INIS)

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  11. Evaluating shoulder instability treatment

    OpenAIRE

    Linde, J. A.

    2016-01-01

    Shoulder instability common occurs. When treated nonoperatively, the resulting societal costs based on health care utilization and productivity losses are significant. Shoulder function can be evaluated using patient reported outcome measurements (PROMs). For shoulder instability, these include the Western Ontario Shoulder Instability index (WOSI) and the Oxford Shoulder Instability Score (OSIS). When translated and validated for the dutch population, both have good measurment properties. Sco...

  12. New features in the stability and fission decay of superheavy Thorium isotopes

    OpenAIRE

    Satpathy, L.; Patra, S. K.; Choudhury, R. K.

    2006-01-01

    Superheavy isotopes are highly neutron rich nuclei in the vicinity of neutron drip-line, stabilized by shell effect against the instability due to repulsive component of nuclear force, analogous to superheavy elements similarly stabilized against Coulomb instability. Here we discuss the stability and fission decay properties of such nuclei in the $^{254}$Th region and show that they are stable against $\\alpha$ and fission decay and have $\\beta$-decay life time of several tens of seconds. In p...

  13. Dielectric permittivity tensor and low frequency instabilities of a magnetoactive current-driven plasma with nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Khorashadizadeh, S. M. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)

    2015-12-15

    The dielectric permittivity tensor of a magnetoactive current-driven plasma is obtained by employing the kinetic theory based on the Vlasov equation and Lorentz transformation formulas with an emphasize on the q-nonextensive statistics. By deriving the q-generalized dispersion relation of the low frequency modes in this plasma system, the possibility and properties of filamentation and ion acoustic instabilities are then studied. It is shown that the occurrence and the growth rate of these instabilities depend strongly on the nonextensive parameters, external magnetic field strength, and drift velocity. It is observed that the growth rate of ion acoustic instability is affected by the magnetic field strength much more than that of the filamentation instability in the low frequency range. The external magnetic field facilitates the development of the ion-acoustic instability. It is also shown that the filamentation is the dominant instability only for the high value of drift velocity.

  14. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  15. Numerical simulation of unsteady heat release of low frequency instabilities in a dump combustor

    Science.gov (United States)

    Laverdant, A.

    The influence of combustion instabilities on heat transfer is investigated using an adaptation of KIVA code. A simulation of low-frequency instabilities observed on a small burner is described. It is shown that the turbulence is distributed in the flame zone, and the heat transfer increases by acoustic pulsation emitted from the entrance plane of the cavity.

  16. Overstability of acoustic waves in strongly magnetized anisotropic MHD shear flows

    CERN Document Server

    Uchava, E S; Tevzadze, A G; Poedts, S

    2014-01-01

    We present a linear stability analysis of the perturbation modes in anisotropic MHD flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model, that takes into account not only the effect of pressure anisotropy, but also the effect of anisotropic heat fluxes. In this model the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also impor...

  17. Airy acoustical-sheet spinner tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  18. Visualization of conventional and combusting subsonic jet instabilities

    CERN Document Server

    Kozlov, Victor; Litvinenko, Yury

    2016-01-01

    Based on new information obtained on free microjets, this book explains the latest phenomena in flame evolution in the presence of a transverse acoustic field with round and plane propane microjet combustion. It gives an overview of recent experimental results on instability and dynamics of jets at low Reynolds numbers and provides the reader, step by step, with the milestones and recent advances in jet flow stability and combustion. Readers will also discover a clarification of the differences between top-hat and parabolic round and plane jet instability. Chapters demonstrate features of the interaction between jet and crossflow, and how experimental data testify to similarities of the perturbed flow patterns of laminar and turbulent round jets. A similar response of the jets to external acoustic oscillations is shown, as well as the peculiarities of the effect of a transverse acoustic field on downstream evolution of round and plane macro- and microjets. Basic features of round and plane, macro and micro je...

  19. Study of Parametric Instability of gravitational wave detectors using silicon test masses

    CERN Document Server

    Zhang, Jue; Ju, Li; Blair, David

    2016-01-01

    Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector based on cooled silicon test masses. It is shown that there would be about 2 unstable modes per test mass, with the highest parametric gain of ~76. The importance of developing suitable instability suppression schemes is emphasized.

  20. Computational investigation on combustion instabilities in a rocket combustor

    Science.gov (United States)

    Yuan, Lei; Shen, Chibing

    2016-10-01

    High frequency combustion instability is viewed as the most challenging task in the development of Liquid Rocket Engines. In this article, results of attempts to capture the self-excited high frequency combustion instability in a rocket combustor are shown. The presence of combustion instability was demonstrated using point measurements, along with Fast Fourier Transform analysis and instantaneous flowfield contours. A baseline case demonstrates a similar wall heat flux profile as the associated experimental case. The acoustic oscillation modes and corresponding frequencies predicted by current simulations are almost the same as the results obtained from classic acoustic analysis. Pressure wave moving back and forth across the combustor was also observed. Then this baseline case was compared against different fuel-oxidizer velocity ratios. It predicts a general trend: the smaller velocity ratio produces larger oscillation amplitudes than the larger one. A possible explanation for the trend was given using the computational results.

  1. Shoulder instability; Schulterinstabilitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Kreitner, Karl-Friedrich [Mainiz Univ. (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2014-06-15

    In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)

  2. Assessment of shock capturing schemes for resonant flows in nonlinear instability analysis

    Science.gov (United States)

    Przekwas, A. J.; Yang, H. Q.; Mcconnaughey, P.; Tucker, K.

    1990-01-01

    The paper presents computational assessment of advanced numerical schemes for nonlinear acoustic problems related to combustion instabilities in liquid rocket engines. Several time-accurate, shock capturing schemes have been evaluated on a benchmark, closed-end resonant pipe flow problem. It involves the numerical solution of inviscid, compressible gas dynamics equations to predict acoustic wave propagation, wave steepening, formation of shocks, acoustic energy dissipation and wave-wall reflection for several hundred wave cycles. It was demonstrated that high accuracy TVD type schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time. The selected scheme was then applied to analyze the acoustic responses of resonant pipe-resonator, radial acoustic modes and hub-baffle configurations. Interesting observations of wave shape and damping characteristics have been drawn from presented computational studies.

  3. Resonant instability of supersonic shear layers

    Science.gov (United States)

    Tam, C. K. W.; Lele, S. K.

    1990-01-01

    A computer simulation of possible resonant instability of a supersonic shear layer is carried out. The resonance of two acoustic duct modes of the flow induced by periodic Mach waves generated by a wavy wall is sought. Results of the simulations are reported. Simulations are unable to document a resonant instability and the mixing characteristics remain unchanged. Possible weakness of the present simulations are discussed. A second set of simulations involving a mixing layer separating a supersonic and a subsonic stream were performed. A wavy wall placed adjacent to the supersonic stream to produce a set of periodic Mach waves terminating at the shear layer is modelled. The entire flow field is similar to that of an imperfectly expanded supersonic jet discharging into a subsonic coflowing stream for which enhanced mixing due to the onset of screech (feedback instability) is known to occur. The purpose of these simulations is to see if enhanced mixing and feedback instability would, indeed, take place. Some evidence of feedback oscillations is found in the simulated flow.

  4. STABILITY AND INSTABILITY OF SOLITARY WAVES FOR ABSTRACT COMPLEX HAMILTONIAN SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Zhao Ye

    2005-01-01

    This paper is concerned with the orbital stability and orbital instability of solitary waves for some complex Hamiltonian systems in abstract form. Under some assumptions on the spectra of the related operator and the decaying estimates of the semigroup, the sufficient conditions on orbital stability and instability are obtained.

  5. Longitudinal Mode Aeroengine Combustion Instability: Model and Experiment

    Science.gov (United States)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2001-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem more completely (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the casual dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment and be designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic, and thermo-fluid features, ensuring that results achieved in the single-nozzle experiment will be scalable to the engine.

  6. Nonlinear acoustic waves in a collisional self-gravitating dusty plasma

    Institute of Scientific and Technical Information of China (English)

    Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu

    2010-01-01

    Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.

  7. Instability in evolutionary games.

    Directory of Open Access Journals (Sweden)

    Zimo Yang

    Full Text Available BACKGROUND: Phenomena of instability are widely observed in many dissimilar systems, with punctuated equilibrium in biological evolution and economic crises being noticeable examples. Recent studies suggested that such instabilities, quantified by the abrupt changes of the composition of individuals, could result within the framework of a collection of individuals interacting through the prisoner's dilemma and incorporating three mechanisms: (i imitation and mutation, (ii preferred selection on successful individuals, and (iii networking effects. METHODOLOGY/PRINCIPAL FINDINGS: We study the importance of each mechanism using simplified models. The models are studied numerically and analytically via rate equations and mean-field approximation. It is shown that imitation and mutation alone can lead to the instability on the number of cooperators, and preferred selection modifies the instability in an asymmetric way. The co-evolution of network topology and game dynamics is not necessary to the occurrence of instability and the network topology is found to have almost no impact on instability if new links are added in a global manner. The results are valid in both the contexts of the snowdrift game and prisoner's dilemma. CONCLUSIONS/SIGNIFICANCE: The imitation and mutation mechanism, which gives a heterogeneous rate of change in the system's composition, is the dominating reason of the instability on the number of cooperators. The effects of payoffs and network topology are relatively insignificant. Our work refines the understanding on the driving forces of system instability.

  8. Semileptonic Decays

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  9. Ultrafast magnetoelastic probing of surface acoustic transients

    Science.gov (United States)

    Janušonis, J.; Chang, C. L.; Jansma, T.; Gatilova, A.; Vlasov, V. S.; Lomonosov, A. M.; Temnov, V. V.; Tobey, R. I.

    2016-07-01

    We generate in-plane magnetoelastic waves in nickel films using the all-optical transient grating technique. When performed on amorphous glass substrates, two dominant magnetoelastic excitations can be resonantly driven by the underlying elastic distortions, the Rayleigh surface acoustic wave and the surface skimming longitudinal wave. An applied field, oriented in the sample plane, selectively tunes the coupling between magnetic precession and one of the elastic waves, thus demonstrating selective excitation of coexisting, large-amplitude magnetoelastic waves. Analytical calculations based on the Green's function approach corroborate the generation of multiple surface acoustic transients with disparate decay dynamics.

  10. Lateral elbow instability

    Directory of Open Access Journals (Sweden)

    Harry Dominic Stracey Clitherow

    2014-01-01

    Full Text Available Lateral elbow stability utilises a combination of bony and soft tissue constraints. Lateral elbow instability is usually associated with an episode of elbow dislocation. Isolated lateral ligament complex insufficiency results in posterolateral rotatory instability (PLRI, The most common presentation is lateral elbow discomfort and a sensation of instability, without recurrent dislocation. The lateral pivot shift test is unreliable for diagnosing PLRI when the patient is awake due to significant apprehension. Stress radiographs, fluoroscopy, computed tomography and arthroscopy are all useful investigations to confirm the diagnosis of lateral instability. Surgical treatment is indicated for functional instability. All associated fractures need to be addressed. In severe cases, the medial structures and the posterolateral capsule may also require reconstruction.

  11. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    CERN Document Server

    Marchevsky, M; Sabbi, G; Prestemon, S

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01 [1], we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed.

  12. Analytical Interaction of the Acoustic Wave and Turbulent Flame

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; JIANG Zong-Lin

    2007-01-01

    A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically.Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.

  13. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  14. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  15. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  16. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  17. Thermally induced secondary atomization of droplet in an acoustic field

    Science.gov (United States)

    Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-01-01

    We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization.

  18. Nonlinear Development of Thermal Instability without External Forcing

    CERN Document Server

    Koyama, H; Koyama, Hiroshi; Inutsuka, Shu-ichiro

    2006-01-01

    Supersonic turbulent motions are the remarkable properties of interstellar medium. Previous numerical simulations have demonstrated that the thermal instability in a shock-compressed layer produces the supersonic turbulent motion that does not decay. In this paper we focus on two- and three-dimensional numerical simulations of the non-linear development of simple thermal instability incorporating physical viscosity but without any external forcing, in order to isolate the effects of various processes responsible for the long-lasting turbulent motion. As the initial condition for our simulations, we set up spatially uniform gas with thermally unstable temperature in a box with periodic boundaries. After the linear growth stage of the thermal instability, two-phase medium forms where cold clumps are embedded in warm medium, and turbulent fluid flow clearly visible as translational motions of the cold clumps does not decay in a viscous dissipation timescale. The amplitude of the turbulent velocity increases when...

  19. Acoustic dispersive prism

    OpenAIRE

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  20. Nonlinear helical MHD instability

    Energy Technology Data Exchange (ETDEWEB)

    Zueva, N.M.; Solov' ev, L.S.

    1977-07-01

    An examination is made of the boundary problem on the development of MHD instability in a toroidal plasma. Two types of local helical instability are noted - Alfven and thermal, and the corresponding criteria of instability are cited. An evaluation is made of the maximum attainable kinetic energy, limited by the degree to which the law of conservation is fulfilled. An examination is made of a precise solution to a kinematic problem on the helical evolution of a cylindrical magnetic configuration at a given velocity distribution in a plasma. A numerical computation of the development of MHD instability in a plasma cylinder by a computerized solution of MHD equations is made where the process's helical symmetry is conserved. The development of instability is of a resonance nature. The instability involves the entire cross section of the plasma and leads to an inside-out reversal of the magnetic surfaces when there is a maximum unstable equilibrium configuration in the nonlinear stage. The examined instability in the tore is apparently stabilized by a magnetic hole when certain limitations are placed on the distribution of flows in the plasma. 29 references, 8 figures.

  1. Global Theories of Geodesic Acoustic Modes: Excitation by Energetic Particles and Drift Wave Turbulences

    International Nuclear Information System (INIS)

    Full text: Excitation of Geodesic Acoustic Modes (GAMs) by both energetic particles (EPs) and drift wave (DW) turbulences taking into account plasma nonuniformities are investigated in this work. The global radial mode structures of EP induced GAM (EGAM) are systematically studied and their properties are found to depend on the nonuniformities of both the GAM continuous spectrum and EP radial profile. For a radially broad EP drive, the eigenmode equation valid for arbitrary EP drift orbit width is derived, and then solved using a Fourier transformation technique. The excited EGAM is shown to strongly couple to the GAM continuous spectrum; resulting in a finite drive threshold in EP density. The cross-scale couplings between micro-, meso- and macro-scales, discussed in this work, are mediated by the EP dynamics and have many interesting similarities with complex behaviors, expected in burning plasmas of fusion interest. The excitation of GAM by DW turbulence accounting for various kinetic dispersiveness and nonuniformities is also investigated, with the paradigm of three-wave resonant parametric decay instability. Considering the scale length of linear DW eigenmode envelope is much smaller than that of particle diamagnetic drift frequency L*, in the linear growth phase, the parametric instability is convective for typical tokamak parameters, when the finite group velocities of GAM and DW sideband are taken into account. This is a case of less practical interest. However, if we look at longer time scales, and finite L* effects are taken into account, the convectively amplified GAM-DW wave-packet pair is reflected at the DW linear turning points, resulting in a quasi-exponentially growing absolute instability. DW turbulence spreading with the excitation of GAM is also investigated, with emphasis on quantitative understanding of the dispersiveness associated with kinetic GAM. (author)

  2. Decay of multiply charged vortices at nonzero temperatures

    OpenAIRE

    Karpiuk, Tomasz; Brewczyk, Miroslaw; Gajda, Mariusz; Rzazewski, Kazimierz

    2008-01-01

    We study the instability of multiply charged vortices in the presence of thermal atoms and find various scenarios of splitting of such vortices. The onset of the decay of a vortex is always preceded by the increase of a number of thermal (uncondensed) atoms in the system and manifests itself by the sudden rise of the amplitude of the oscillations of the quadrupole moment. Our calculations show that the decay time gets shorter when the multiplicity of a vortex becomes higher.

  3. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  4. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  5. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  6. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  7. The Collisionless Magnetothermal Instability

    CERN Document Server

    Islam, Tanim

    2013-01-01

    It is likely that nearly all central galactic massive and supermassive black holes are nonradiative: their accretion luminosities are orders of magnitude below what can be explained by efficient black hole accretion within their ambient environments. These objects, of which Sagittarius A* is the best-known example, are also dilute (mildly collisional to highly collisionless) and optically thin. In order for accretion to occur, magnetohydrodynamic instabilities must develop that not only transport angular momentum, but also gravitational energy generated through matter infall, outwards. A class of new magnetohydrodynamical fluid instabilities -- the magnetoviscous-thermal instability (MVTI) (Islam12) -- was found to transport angular momentum and energy along magnetic field lines through large (fluid) viscosities and thermal conductivities. This paper describes the collisionless and mildly collisional analogue to the MVTI, the collisional magnetothermal instability (CMTI), that similarly transports energy and ...

  8. Chronic Ankle Instability

    Science.gov (United States)

    ... ankle surgeon will ask you about any previous ankle injuries and instability. Then s/he will examine your ankle ... Weak ankles may be a result of previous ankle injuries, but in some cases they are a congenital ( ...

  9. Imaging in carpal instability.

    Science.gov (United States)

    Ramamurthy, N K; Chojnowski, A J; Toms, A P

    2016-01-01

    Carpal instability is a complex and heterogeneous clinical condition. Management requires accurate identification of structural injury with an understanding of the resultant movement (kinematic) and load transfer (kinetic) failure. Static imaging techniques, such as plain film radiography, stress views, ultrasound, magnetic resonance, MR arthrography and computerized tomography arthrography, may accurately depict major wrist ligamentous injury. Dynamic ultrasound and videofluoroscopy may demonstrate dynamic instability and kinematic dysfunction. There is a growing evidence base for the diagnostic accuracy of these techniques in detecting intrinsic ligament tears, but there are limitations. Evidence of their efficacy and relevance in detection of non-dissociative carpal instability and extrinsic ligament tears is weak. Further research into the accuracy of existing imaging modalities is still required. Novel techniques, including four-dimensional computerized tomography and magnetic resonance, can evaluate both cross-sectional and functional carpal anatomy. This is a narrative review of level-III studies evaluating the role of imaging in carpal instability. PMID:26586689

  10. Curvature suppresses the Rayleigh-Taylor instability

    CERN Document Server

    Trinh, Philippe H; Hammoud, Naima; Howell, Peter D; Chapman, S Jonathan; Stone, Howard A

    2014-01-01

    The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless parameter (a modified Bond number) that incorporates both geometric parameters, gravity, and surface tension is identified, and allows the observations to be classified according to three different flow regimes: stable films, films with transient growth of perturbations followed by decay, and unstable films. Experiments and theory confirm that, below a critical value of the Bond number, curvature of the substrate suppresses the Rayleigh-Taylor instability.

  11. Rotor internal friction instability

    Science.gov (United States)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  12. Constructing acoustic timefronts using random matrix theory

    CERN Document Server

    Hegewisch, Katherine C

    2012-01-01

    In a recent letter [Europhys. Lett. {\\bf 97}, 34002 (2012)], random matrix theory is introduced for long-range acoustic propagation in the ocean. The theory is expressed in terms of unitary propagation matrices that represent the scattering between acoustic modes due to sound speed fluctuations induced by the ocean's internal waves. The scattering exhibits a power-law decay as a function of the differences in mode numbers thereby generating a power-law, banded, random unitary matrix ensemble. This work gives a more complete account of that approach and extends the methods to the construction of an ensemble of acoustic timefronts. The result is a very efficient method for studying the statistical properties of timefronts at various propagation ranges that agrees well with propagation based on the parabolic equation. It helps identify which information about the ocean environment survives in the timefronts and how to connect features of the data to the surviving environmental information. It also makes direct c...

  13. Weibel instability driven by spatially anisotropic density structures

    CERN Document Server

    Tomita, Sara

    2016-01-01

    Observations of afterglows of gamma-ray bursts suggest (GRBs) that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating of the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron--positron plasmas with the spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by the spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that the temperature ...

  14. Enhanced acoustic cavitation following laser-induced bubble formation : long-term memory effect

    OpenAIRE

    Yavaṣ, Oğuz; Leiderer, Paul; Park, Hee K.; Grigoropoulos, Costas P.; Poon, Chie C.; Tam, Andrew C.

    1994-01-01

    The enhancement of acoustic caviation at a liquid-solid interface following laser-induced bubble formation is studied. The experiment results indicate that metastable ultramicroscopic bubbles formed on the solid surface cause a long-term memory effect on acoustic cavitation. By performing a double-pulse experiment using two excimer lasers, the temporal decay of this memory effect is determined for two different liquids on a chromium surface. An explanation of the observed decay mode by a ...

  15. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  16. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  17. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.

    2016-01-01

    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  18. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  19. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  20. Cystic acoustic neuromas

    OpenAIRE

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  1. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  2. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  3. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  4. Instability of the Heliopause

    International Nuclear Information System (INIS)

    The heliopause (HP) separates the tenuous hot heliosheath plasma from the relatively dense cool magnetized plasma of the local interstellar medium (LISM). Fluid acceleration in the HP region can therefore drive Rayleigh-Taylor-like and Kelvin-Helmholtz- like instabilities. Charge exchange coupling of plasma ions and primary interstellar neutral atoms provides an effective gravity, suggesting the possibility of Rayleigh Taylor-like (RT-like) instabilities. Shear flow due to the velocity difference between the heliosheath and the interstellar flows drives Kelvin Helmholtz-like (KH-like) modes on the heliopause. Magnetic fields damp the classical KH instability. However, we show that energetic neutral atoms (ENAs) destabilize KH-modes,even in the presence of interplanetary and interstellar magnetic fields. We consider a model that includes a number of effects that are important in the heliosphere such as resonant change exchange between the primary neutrals and the solar wind plasma, ENAs from the inner heliosheath, plasma flows along the heliopause and magnetic fields in the inner and outer heliosheath. We find that the nose region is unstable to RT-like modes for HP parameters, while the shoulder region is unstable to a new instability that has the characteristics of a mixed RT-KH-like mode. These instabilities are not stabilized by typical values of the magnetic fields in the inner and outer heliosheath close to the nose and shoulder regions. Whereas ENAs have a stabilizing influence on the RT instability in the vicinity of the nose region (due to counter streaming), they have a destabilizing influence on the KH instability in the vicinity of the flanks. We find that even in the presence of interplanetary and interstellar magnetic fields, ENAs can drive a new form of KH-like instability on the flanks. An analysis of the collisional and anomalous magnetic field diffusion time scales shows that ideal MHD is an appropriate model at the HP. The interstellar magnetic

  5. Plasma physics and instabilities

    International Nuclear Information System (INIS)

    These lectures procide an introduction to the theory of plasmas and their instabilities. Starting from the Bogoliubov, Born, Green, Kirkwood, and Yvon (BBGKY) hierarchy of kinetic equations, the additional concept of self-consistent fields leads to the fundamental Vlasov equation and hence to the warm two-fluid model and the one-fluid MHD, or cold, model. The properties of small-amplitude waves in magnetized (and unmagnetized) plasmas, and the instabilities to which they give rise, are described in some detail, and a complete chapter is devoted to Landau damping. The linear theory of plasma instabilities is illustrated by the current-driven electrostatic kind, with descriptions of the Penrose criterion and the energy principle of ideal MHD. There is a brief account of the application of feedback control. The non-linear theory is represented by three examples: quasi-linear velocity-space instabilities, three-wave instabilities, and the stability of an arbitrarily largeamplitude wave in a plasma. (orig.)

  6. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  7. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    Science.gov (United States)

    Cho, Y.; Kumar, A.; Xu, S.; Zou, J.

    2016-10-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  8. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  9. Instabilities in astrophysical jets

    International Nuclear Information System (INIS)

    Instabilities in astrophysical jets are studied in the nonlinear regime by performing 2D numerical classical gasdynamical calculations. The instabilities which arise from unsteadiness in output from the central engine feeding the jets, and those which arise from a beam in a turbulent surrounding are studied. An extra power output an order of magnitude higher than is normally delivered by the engine over a time equal to (nozzle length)/(sound velocity at centre) causes a nonlinear Kelvin-Helmholtz instability in the jet walls. Constrictions move outwards, but the jet structure is left untouched. A beam in turbulent surroundings produces internal shocks over distances of a few beam widths. If viscosity is present the throughput of material is hampered on time scales of a few beam radius sound travel times. The implications are discussed. (Auth.)

  10. The Walking Droplet Instability

    Science.gov (United States)

    Bostwick, Joshua; Steen, Paul

    2013-11-01

    A droplet of liquid that partially wets a solid substrate assumes a spherical-cap equilibrium shape. We show that the spherical-cap with a mobile contact-line is unstable to a non-axisymmetric disturbance and we characterize the instability mechanism, as it depends upon the wetting properties of the substrate. We then solve the hydrodynamic problem for inviscid motions showing that the flow associated with the instability correlates with horizontal motion of the droplet's center-of-mass. We calculate the resulting ``walking speed.'' A novel feature is that the energy conversion mechanism is not unique, so long as the contact-line is mobilized. Hence, the walking droplet instability is potentially significant to a number of industrial applications, such as self-cleansing surfaces or energy harvesting devices.

  11. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel;

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus......, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other...... chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling...

  12. Control of the vertical instability in tokamaks

    International Nuclear Information System (INIS)

    The problem of control of the vertical instability is formulated for a massless filamentary plasma. The massless approximation is justified by an examination of the role of inertia in the control problem. The system is solved using Laplace transform techniques. The linear system is studied to determine the stability boundaries. It is found that the system can be stabilized up to a critical decay index, which is predominantly a function of the geometry of the passive stabilizing shell. A second, smaller critical index, which is a function of the geometry of the control coils, determines the limit of stability in the absence of derivative gain in the control circuit. The system is also studied numerically in order to incorporate the non-linear effects of power supply dynamics. The power supply bandwidth requirement is determined by the open-loop growth rate of the instability. The system is studied for a number of control coil options which are available on the DIII-D tokamak. It is found that many of the coils will not provide adequate stabilization and that the use of inboard coils is advantageous in stabilizing the system up to the critical index. Experiments carried out on DIII-D confirm the appropriateness of the model. Using the results of the model study, we have stabilized DIII-D plasmas with decay indices up to 98% of the critical index. Measurement of the plasma vertical position is also discussed. (author) 27 figs., 6 refs

  13. Ringed accretion disks: instabilities

    CERN Document Server

    Pugliese, D

    2016-01-01

    We analyze the possibility that several instability points may be formed, due to the Paczy\\'nski mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider recently proposed model of ringed accretion disk, made up by several tori (rings) which can be corotating or counterrotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  14. Mixing through shear instabilities

    CERN Document Server

    Brüggen, M

    2000-01-01

    In this paper we present the results of numerical simulations of the Kelvin-Helmholtz instability in a stratified shear layer. This shear instability is believed to be responsible for extra mixing in differentially rotating stellar interiors and is the prime candidate to explain the abundance anomalies observed in many rotating stars. All mixing prescriptions currently in use are based on phenomenological and heuristic estimates whose validity is often unclear. Using three-dimensional numerical simulations, we study the mixing efficiency as a function of the Richardson number and compare our results with some semi-analytical formalisms of mixing.

  15. Harmonic generation and parametric decay in the ion cyclotron frequency range

    International Nuclear Information System (INIS)

    Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability

  16. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  17. ACOUSTICAL STANDARDS NEWS.

    Science.gov (United States)

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  18. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    , the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... work. Based on first- and second-order perturbation theory, assuming small acoustic amplitudes, we derived the time-dependent governing equations under adiabatic conditions. The adiabatic first- and second-order equations are solved analytically for the acoustic field between two orthogonally......-of-the-art in the field. Furthermore, the analytical solution for the acoustic streaming in rectangular channels with arbitrary large height-to-width ratios is derived. This accommodates the analytical theory of acoustic streaming to applications within acoustofluidics....

  19. Weak decays. [Lectures, phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  20. decays to baryons

    Indian Academy of Sciences (India)

    Torsten Leddig

    2012-11-01

    From inclusive measurements, it is known that about 7% of all mesons decay into final states with baryons. In these decays, some striking features become visible compared to mesonic decays. The largest branching fractions come with quite moderate multiplicities of 3–4 hadrons. We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.

  1. Non-Liner Dynamics of Underwater Acoustics

    Science.gov (United States)

    Wiercigroch, M.; Badiey, M.; Simmen, J.; Cheng, A. H.-D.

    1999-03-01

    The non-linear dynamic behavior of acoustic wave propagation in an underwater sound channel, described by the Munk's classical sound speed profile perturbed by a single-mode internal wave, is studied using a parabolic ray theory. The amplitude and wavelength of this single-mode wave are used as the branching parameters in bifurcation analysis. The phase plane trajectory of the ray-based system can be periodic, quasi-periodic, and unstable. The regions of instability, located numerically via the bifurcation diagrams, are examined through a sequence of phase diagrams and Poincaré maps. Charts showing the maximum uninterrupted propagation distance reveal instances of anomalous vertical scattering of sound energy. Floquet multipliers were used to investigate instability of periodic orbits.

  2. Shock instability in dissipative gases

    OpenAIRE

    Radulescu, Matei I.; Sirmas, Nick

    2011-01-01

    Previous experiments have revealed that shock waves in thermally relaxing gases, such as ionizing, dissociating and vibrationally excited gases, can become unstable. To date, the mechanism controlling this instability has not been resolved. Previous accounts of the D'yakov-Kontorovich instability, and Bethe-Zel'dovich-Thompson behaviour could not predict the experimentally observed instability. To address the mechanism controlling the instability, we study the propagation of shock waves in a ...

  3. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations

    Science.gov (United States)

    Méry, Yoann; Hakim, Layal; Scouflaire, Philippe; Vingert, Lucien; Ducruix, Sébastien; Candel, Sébastien

    2013-01-01

    The present investigation is focused on high-frequency combustion instabilities coupled by transverse acoustic modes. This phenomenon has been observed during the development of many liquid rocket engines and other high performance devices. Such instabilities induce an unsteady heat release which leads in many cases to a rapid intensification of heat fluxes to the thrust chamber walls, causing fatal damage and a spectacular destruction of the propulsion system. One central objective of this effort is to observe and understand the physical processes leading the coupling between acoustics and combustion, and resulting in the growth of such instabilities. Experiments carried out on the Mascotte testbed at ONERA serve to identify the main processes involved and bring forth mechanisms taking place when an engine becomes unstable. Hot fire experiments are carried out in a model scale combustor reproducing many of the conditions prevailing in unstable rocket engines. Subcritical and transcritical cryogenic jets are injected in a multiple injector combustion chamber (MIC). This system is fed with LOx and methane through five injection units. The flames formed in this configuration are modulated by an acoustic wave with an amplitude of several bars. This is obtained with a new Very Large Amplitude Modulator (VHAM) capable of generating acoustic mode amplitudes representative of those found in actual engine undergoing HF instabilities. It is shown first that the strength of the acoustic field and the frequency range of oscillation (1 kHz-3.5 kHz) are consistent with rocket instability observations. Conditions where a feedback of the flame on the acoustic field occurs are obtained. High speed diagnostics indicates that the velocity field dramatically enhances the atomization process. The liquid core length is strongly reduced. At moderate amplitudes, the liquid jets are flattened in the spanwise direction and heat release takes place in two sheets neighboring the dense core

  4. A theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    CERN Document Server

    Muller, Peter Barkholt

    2015-01-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal build-up and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance wit...

  5. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence

    Science.gov (United States)

    Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.

    2016-01-01

    Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005

  6. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence

    Science.gov (United States)

    Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.

    2016-07-01

    Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios.

  7. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence.

    Science.gov (United States)

    Kimmoun, O; Hsu, H C; Branger, H; Li, M S; Chen, Y Y; Kharif, C; Onorato, M; Kelleher, E J R; Kibler, B; Akhmediev, N; Chabchoub, A

    2016-01-01

    Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005

  8. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  9. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  10. Kinetic study of ion-acoustic plasma vortices

    International Nuclear Information System (INIS)

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas

  11. Kinetic study of ion-acoustic plasma vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Téchnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-09-15

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

  12. Genetic instability in Gynecological Cancer

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-hua; ZHOU Hong-lin

    2003-01-01

    Defects of mismatch repair (MMR) genes also have beenidentified in many kinds of tumors. Loss of MMR functionhas been linked to genetic instability especially microsatelliteinstability that results in high mutation rate. In this review, wediscussed the microsatellite instability observed in thegynecological tumors. We also discussed defects in the DNAmismatch repair in these tumors and their correlation to themicrosatellite instability, as well as the gene mutations due tothe microsatellite instability in these tumors. From thesediscussion, we tried to understand the mechanism ofcarcinogenesis in gynecological tumors from the aspect ofgenetic instability due to mismatch repair defects.

  13. Cosmic ray driven instability

    International Nuclear Information System (INIS)

    The interaction between energetic charged particles and thermal plasma, which forms the basis of diffusive shock acceleration, leads also to interesting dynamical phenomena. For a compressional mode propagating in a system with homoeneous energetic particle pressure it is well known that friction with the energetic particles leads to damping. The linear theory of this effect has been analyzed in detail by Ptuskin. Not so obvious is that a non-uniform energetic particle pressure can in addition amplify compressional disturbances. If the pressure gradient is sufficiently steep this growth can dominate the frictional damping and lead to an instability. It is important to not that this effect results from the collective nature of the interaction between the energetic particles and the gas and is not connected with the Parker instability, nor with the resonant amplification of Alfven waves

  14. Instabilities in sensory processes

    Science.gov (United States)

    Balakrishnan, J.

    2014-07-01

    In any organism there are different kinds of sensory receptors for detecting the various, distinct stimuli through which its external environment may impinge upon it. These receptors convey these stimuli in different ways to an organism's information processing region enabling it to distinctly perceive the varied sensations and to respond to them. The behavior of cells and their response to stimuli may be captured through simple mathematical models employing regulatory feedback mechanisms. We argue that the sensory processes such as olfaction function optimally by operating in the close proximity of dynamical instabilities. In the case of coupled neurons, we point out that random disturbances and fluctuations can move their operating point close to certain dynamical instabilities triggering synchronous activity.

  15. Sessile Rayleigh drop instability

    Science.gov (United States)

    Steen, Paul; Bostwick, Josh

    2012-11-01

    Rayleigh (1879) determined the mode shapes and frequencies of the inviscid motion of a free drop held by surface tension. We study the inviscid motions of a sessile Rayleigh drop - a drop which rests on a planar solid and whose contact-line is free to move. Linear stability analysis gives the modes and frequencies of the droplet motions. In this talk, we focus on the ``walking instability,'' an unstable mode wherein the drop moves across a planar substrate in an inviscid rocking-like motion. The mode shape is non-axisymmetric. Although the experimental literature has hinted at such a mode, this is the first prediction from linear stability analysis, as far as we are aware. The ``walking instability'' of the drop converts energy stored in the liquid shape into the energy of liquid motion - which represents a heretofore unknown pathway of energy conversion of potentially wide significance for a broad range of applications.

  16. Anatomy of the Bar Instability in Cuspy Dark Matter Halos

    CERN Document Server

    Dubinski, John; Shlosman, Isaac

    2008-01-01

    We examine the bar instability in galactic models with an exponential disk and a cuspy dark matter (DM) halo with a Navarro-Frenk-White (NFW) cosmological density profile. We construct equilibrium models from a 3-integral composite distribution function that are subject to the bar instability. We generate a sequence of models with a range of mass resolution from 1.8K to 18M particles in the disk and 10K to 100M particles in the halo along with a multi-mass model with an effective resolution of ~10^10 particles. We describe how mass resolution affects the bar instability, including its linear growth phase, the buckling instability, pattern speed decay through the resonant transfer of angular momentum to the DM halo, and the possible destruction of the halo cusp. Our higher resolution simulations show a converging spectrum of discrete resonance interactions between the bar and DM halo orbits. As the pattern speed decays, orbital resonances sweep through most of the DM halo phase space and widely distribute angu...

  17. The bar instability revisited

    OpenAIRE

    Chiodi, Filippo; Andreotti, Bruno; Claudin, Philippe

    2012-01-01

    The river bar instability is revisited, using a hydrodynamical model based on Reynolds averaged Navier-Stokes equations. The results are contrasted with the standard analysis based on shallow water Saint-Venant equations. We first show that the stability of both transverse modes (ripples) and of small wavelength inclined modes (bars) predicted by the Saint-Venant approach are artefacts of this hydrodynamical approximation. When using a more reliable hydrodynamical model, the dispersion relati...

  18. Slow Diffusive Gravitational Instability Before Decoupling

    CERN Document Server

    Thompson, Todd A

    2009-01-01

    Radiative diffusion damps acoustic modes at large comoving wavenumber (k) before decoupling (``Silk damping''). In a simple WKB analysis, neglecting moments of the temperature distribution beyond the quadrupole, damping appears in the acoustic mode as a term of order ik^2/(taudot) where taudot is the scattering rate per unit conformal time. Although the Jeans instability is stabilized on scales smaller than the adiabatic Jeans length, I show that the medium is linearly unstable to first order in (1/taudot) to a slow diffusive mode. At large comoving wavenumber, the characteristic growth rate becomes independent of spatial scale and constant: (t_{KH}a)^-1 ~ (128 pi G/9 kappa_T c)(rho_m/rho_b), where "a" is the scale factor, rho_m and rho_b are the matter and baryon energy density, respectively, and kappa_T is the Thomson opacity. This is the characteristic timescale for a fluid parcel to radiate away its thermal energy content at the Eddington limit, analogous to the Kelvin-Helmholz (KH) time for a massive sta...

  19. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  20. Low frequency acoustic microscope

    Science.gov (United States)

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  1. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  2. Localized acoustic surface modes

    Science.gov (United States)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  3. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  4. Carpal instability nondissociative.

    Science.gov (United States)

    Wolfe, Scott W; Garcia-Elias, Marc; Kitay, Alison

    2012-09-01

    Carpal instability nondissociative (CIND) represents a spectrum of conditions characterized by kinematic dysfunction of the proximal carpal row, often associated with a clinical "clunk." CIND is manifested at the midcarpal and/or radiocarpal joints, and it is distinguished from carpal instability dissociative (CID) by the lack of disruption between bones within the same carpal row. There are four major subcategories of CIND: palmar, dorsal, combined, and adaptive. In palmar CIND, instability occurs across the entire proximal carpal row. When nonsurgical management fails, surgical options include arthroscopic thermal capsulorrhaphy, soft-tissue reconstruction, or limited radiocarpal or intercarpal fusions. In dorsal CIND, the capitate subluxates dorsally from its reduced resting position. Dorsal CIND usually responds to nonsurgical management; refractory cases respond to palmar ligament reefing and/or dorsal intercarpal capsulodesis. Combined CIND demonstrates signs of both palmar and dorsal CIND and can be treated with soft-tissue or bony procedures. In adaptive CIND, the volar carpal ligaments are slackened and are less capable of inducing the physiologic shift of the proximal carpal row from flexion into extension as the wrist ulnarly deviates. Treatment of choice is a corrective osteotomy to restore the normal volar tilt of the distal radius.

  5. Density modulation-induced absolute laser-plasma-instabilities: simulations and theory

    OpenAIRE

    Li, J.; Yan, R.; Ren, C.

    2016-01-01

    Fluid simulations show that when a sinusoidal density modulation is superimposed on a linear density profile, convective instabilities can become absolutely unstable. This conversion can occur for two-plasmon-decay and stimulated Raman Scattering instabilities under realistic direct-drive inertial confinement fusion conditions and can affect hot electron generation and laser energy deposition. Analysis of the three-wave model shows that a sufficiently large change of the density gradient in a...

  6. Rare Decays at LHCb

    Science.gov (United States)

    Hall, Sam

    2014-04-01

    Rare decays of beauty and charm hadrons provide an effective method of testing the Standard Model and probing possible new physics scenarios. The LHCb experiment has published a variety of interesting results in this field, some of which are presented here. In particular the measurements of the branching fractions of B(s)0 → μ+μ- which, in combination with CMS, resulted in the first observation of the Bs0 → μ+μ- decay. Other topics include searches for the rare decay D0 → μ+μ-, the lepton flavour violating decays B(s)0 → e±μ∓, and the observation of the ψ(4160) resonance in the region of low recoil in B+ → K+μ+μ- decay. New results on the angular analysis of the decay B0 → K*0μ+μ- with form factor independent observables are also shown.

  7. Acoustic and categorical dissimilarity of musical timbre: Evidence from asymmetriesbetween acoustic and chimeric sounds

    Directory of Open Access Journals (Sweden)

    Kai eSiedenburg

    2016-01-01

    Full Text Available This paper investigates the role of acoustic and categorical information in timbre dissimilarity ratings. Using a Gammatone-filterbank-based sound transformation, we created tones that were rated as less familiar than recorded tones from orchestral instruments and that were harder to associate with an unambiguous sound source (Exp. 1. A subset of transformed tones, a set of orchestral recordings, and a mixed set were then rated on pairwise dissimilarity (Exp. 2A. We observed that recorded instrument timbres clustered into subsets that distinguished timbres according to acoustic and categorical properties. For the subset of cross-category comparisons in the mixed set, we observed asymmetries in the distribution of ratings, as well as a stark decay of inter-rater agreement. These effects were replicated in a more robust within-subjects design (Exp. 2B and cannot be explained by acoustic factors alone. We finally introduced a novel model of timbre dissimilarity based on partial least-squares regression that compared the contributions of both acoustic and categorical timbre descriptors. The best model fit (R^2 = .88 was achieved when both types of descriptors were taken into account. These findings are interpreted as evidence for an interplay of acoustic and categorical information in timbre dissimilarity perception.

  8. Decay of 120Ba

    International Nuclear Information System (INIS)

    The decay of 120Ba has been studied with an on-line isotope separator. Its half-life was determined to be t1/2=24±2 s. A decay scheme is proposed, based on γ-γ, γ-X, and γ-β+ coincidence measurements, which takes account of all 16 observed γ rays. The total decay energy was measured to be QEC=50±0.3 MeV

  9. Effective Majorana neutrino decay

    CERN Document Server

    Duarte, Lucía; Peressutti, Javier; Sampayo, Oscar A

    2016-01-01

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of this particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width.

  10. What Is an Acoustic Neuroma

    Science.gov (United States)

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  11. Shoulder instability; Schultergelenkinstabilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, J.; Imhof, H. [Abteilung Osteoradiologie, Univ.-Klinik fuer Radiodiagnostik Wien (Austria)

    2004-06-01

    Shoulder instability is a common clinical feature leading to recurrent pain and limitated range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging. (orig.) [German] Die Schultergelenkinstabilitaet ist haeufig fuer wiederholt auftretende Schmerzen sowie eine eingeschraenkte Beweglichkeit im Glenohumeralgelenk verantwortlich. Sie kann als Folge eines vorangegangenen Traumas, einer generellen Hyperlaxitaet oder infolge wiederholter Mikrotraumen entstehen. Die Differenzierung zwischen traumatischer und atraumatischer Form der Gelenkinstabilitaet erfordert eine sorgfaeltige Anamnese und eine genaue klinische Untersuchung. Die Gelelenklaxitaet als Differenzialdiagnose muss von der echten Instabilitaet unterschieden werden, die Instabilitaet wird dann im Rahmen des klinischen Status nach Grad und Richtung der glenohumeralen Translation unterteilt. Zur Diagnose knoecherner Laesionen werden das konventionelle Roentgen sowie die CT herangezogen. MRT sowie MR-Arthrographie dienen zur Detektion

  12. An acoustic energy framework for predicting combustion-driven acoustic instabilities in premixed gas-turbines

    Science.gov (United States)

    Ibrahim, Zuhair M. A.

    The purpose of this study was to discover and assess student financial services delivered to students enrolled at East Tennessee State University. The research was undertaken for institutional self-improvement. The research explored changes that have occurred in student financial services in the dynamic higher education market. The research revealed universities pursued best practices for the delivery of student financial services through expanded employee knowledge, restructured organizations, and integrated information technologies. The research was conducted during October and November, 2006. The data were gathered from an online student survey of student financial services. The areas researched included: the Bursar office, the Financial Aid office, and online services. The results of the data analysis revealed problems with the students' perceived quality of existing financial services and the additional services students desire. The research focused on student perceptions of the quality of financial services by age and gender classifications and response categories. Although no statistically significant difference was found between the age-gender classifications on the perception of the quality of the financial services studied, the research adds to our understanding of student financial services at East Tennessee State University. Recommendation for continued research included annual surveys of segmented student populations that include ethnicity, age, gender, and educational level. The research would be used for continuous improvement efforts and student relationship management. Also additional research was recommended for employee learning in relation to the institution's mission, goals, and values.

  13. Modeling and analysis of thermoacoustic instabilities in an annular combustor

    Science.gov (United States)

    Murthy, Sandeep; Sayadi, Taraneh; Le Chenadec, Vincent; Schmid, Peter

    2015-11-01

    A simplified model is introduced to study thermo-acoustic instabilities in axisymmetric combustion chambers. Such instabilities can be triggered when correlations between heat-release and pressure oscillations exist, leading to undesirable effects. Gas turbine designs typically consist of a periodic assembly of N identical units; as evidenced by documented studies, the coupling across sectors may give rise to unstable modes, which are the highlight of this study. In the proposed model, the governing equations are linearized in the acoustic limit, with each burner modeled as a one-dimensional system, featuring acoustic damping and a compact heat source. The coupling between the burners is accounted for by solving the two-dimensional wave equation over an annular region, perpendicular to the burners, representing the chamber's geometry. The discretization of these equations results in a set of coupled delay-differential equations, that depends on a finite set of parameters. The system's periodicity is leveraged using a recently developed root-of-unity formalism (Schmid et al., 2015). This results in a linear system, which is then subjected to modal and non-modal analysis to explore the influence of the coupled behavior of the burners on the system's stability and receptivity.

  14. Collision and recombination driven instabilities in variable charged dusty plasmas

    Indian Academy of Sciences (India)

    S Bal; M Bose

    2013-04-01

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant in the long wavelength regime even in the presence of dust-neutral and ion-neutral collisions, while in the shorter wavelength regime, the dust-neutral collision is found to play a major role. In an earlier research work, the dust-neutral collision was neglected in comparison to the effect due to the recombination for estimating the dust-acoustic instability; later the other report shows that the recombination effect is negligible in the presence of dust-neutral collisions. In line of this present situation our investigation revealed that the recombination is more important than dust-neutral collisions in laboratory plasma and fusion plasma, while the dust-neutral collision frequency is dominant in the interstellar plasmas. The effects of ion and dust densities and ion streaming on the recombination and collision driven mode in parameter regimes relevant for many experimental studies on dusty plasmas have also been calculated.

  15. Investigation of Thermal Acoustic Effects on SRF Cavities within CM1 at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Harms, Elvin [Fermilab; Klebaner, Arkadiy [Fermilab; Leibfritz, Jerry [Fermilab; Martinez, Alex [Fermilab; Pischalnikov, Yuriy [Fermilab; Schappert, Warren [Fermilab

    2016-06-01

    Two TESLA-style 8-cavity cryomodules have been operated at Fermilab Accelerator Science and Technology (FAST), formerly the Superconducting Radio Frequency (SRF) Accelerator Test Facility. Operational instabilities were revealed during Radio Frequency (RF) power studies. These observations were complemented by the characterization of thermal acoustic effects on cavity microphonics manifested by apparent noisy boiling of helium involving vapor bubble and liquid vibration. The thermal acoustic measurements also consider pressure and temperature spikes which drive the phenomenon at low and high frequencies.

  16. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be explai......Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...... with surface scattering is presented. Each of the two scattering effects is modeled as frequency dependent functions....

  17. Acoustic and Large Eddy Simulation studies of azimuthal modes in annular combustion chambers

    OpenAIRE

    Wolf, Pierre; Staffelbach, Gabriel; Gicquel, Laurent Y.M.; Müller, Jens-Dominik; Poinsot, Thierry

    2012-01-01

    International audience The objectives of this paper are the description of azimuthal instability modes found in annular combus- tion chambers using two numerical tools: (1) Large Eddy Simulation (LES) methods and (2) acoustic solv- ers. These strong combustion instabilities are difficult to study experimentally and the present study is based on a LES of a full aeronautical combustion chamber. The LES exhibits a self-excited oscillation at the frequency of the first azimuthal eigenmode. The...

  18. Density modulation-induced absolute laser-plasma-instabilities: simulations and theory

    CERN Document Server

    Li, J; Ren, C

    2016-01-01

    Fluid simulations show that when a sinusoidal density modulation is superimposed on a linear density profile, convective instabilities can become absolutely unstable. This conversion can occur for two-plasmon-decay and stimulated Raman Scattering instabilities under realistic direct-drive inertial confinement fusion conditions and can affect hot electron generation and laser energy deposition. Analysis of the three-wave model shows that a sufficiently large change of the density gradient in a linear density profile can turn convective instabilities into absolute ones. An analytical expression is given for the threshold of the gradient change, which depends on the convective gain only.

  19. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  20. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  1. Ocean acoustic hurricane classification.

    Science.gov (United States)

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  2. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  3. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  4. Rare Semileptonic Charm Decays

    CERN Document Server

    de Boer, Stefan

    2015-01-01

    An analysis of charm mesons decaying semileptonically via Flavor Changing Neutral Currents is presented. We calculate the Wilson coefficients within the Standard Model. A window in the decay distribution, where physics beyond the Standard Model could be measured is identified. Exemplary, we study effects of leptoquark models.

  5. Genome instability and aging.

    Science.gov (United States)

    Vijg, Jan; Suh, Yousin

    2013-01-01

    Genome instability has long been implicated as the main causal factor in aging. Somatic cells are continuously exposed to various sources of DNA damage, from reactive oxygen species to UV radiation to environmental mutagens. To cope with the tens of thousands of chemical lesions introduced into the genome of a typical cell each day, a complex network of genome maintenance systems acts to remove damage and restore the correct base pair sequence. Occasionally, however, repair is erroneous, and such errors, as well as the occasional failure to correctly replicate the genome during cell division, are the basis for mutations and epimutations. There is now ample evidence that mutations accumulate in various organs and tissues of higher animals, including humans, mice, and flies. What is not known, however, is whether the frequency of these random changes is sufficient to cause the phenotypic effects generally associated with aging. The exception is cancer, an age-related disease caused by the accumulation of mutations and epimutations. Here, we first review current concepts regarding the relationship between DNA damage, repair, and mutation, as well as the data regarding genome alterations as a function of age. We then describe a model for how randomly induced DNA sequence and epigenomic variants in the somatic genomes of animals can result in functional decline and disease in old age. Finally, we discuss the genetics of genome instability in relation to longevity to address the importance of alterations in the somatic genome as a causal factor in aging and to underscore the opportunities provided by genetic approaches to develop interventions that attenuate genome instability, reduce disease risk, and increase life span. PMID:23398157

  6. Structural and Material Instability

    DEFF Research Database (Denmark)

    Cifuentes, Gustavo Cifuentes

    This work is a small contribution to the general problem of structural and material instability. In this work, the main subject is the analysis of cracking and failure of structural elements made from quasi-brittle materials like concrete. The analysis is made using the finite element method. Three....... Numerical problems associated with the use of elements with embedded cracks based on the extended finite element method are presented in the next part of this work. And an alternative procedure is used in order to successfully remove these numerical problems. In the final part of this work, a computer...

  7. Decay of hypernuclei

    International Nuclear Information System (INIS)

    The pionic and non-mesonic decays of hypernuclei are discussed. In the first part, various decay processes which could be useful to obtain information of hypernuclear structure are discussed. The experimental data concerning the pionic and non-mesonic decays are discussed in the second part. As the experimental data, there are only few lifetime data and some crude data on the non-mesonic to π decay ratio. In the third and the fourth parts, some theoretical analyses are made on the pionic and the nonmesonic decays. DDHF calculation was performed for Λ and N systems by using Skyrme type ΛN and NN effective interactions. A suppression factor of the order of 10-3 for A nearly equal 100 was obtained. (Aoki, K.)

  8. Noise-Sustained Convective Instability in a Magnetized Taylor-Couette Flow

    CERN Document Server

    Liu, Wei

    2008-01-01

    The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with larger height. After modeling the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulted from unstable Ekman and Stewartson layers is switched off, a slowly-decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.

  9. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    T Mithun; K Porsezian

    2014-02-01

    We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.

  10. Instability in Shocked Granular Gases

    OpenAIRE

    Sirmas, Nick; Falle, Sam; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structur...

  11. Summary of longitudinal instabilities workshop

    International Nuclear Information System (INIS)

    A five-day ISABELLE workshop on longitudinal instabilities was held at BNL, August 9--13, 1976. Heavy emphasis was put on single bunched beam instabilities in the microwave region extending above the cut-off frequency of the ISABELLE vacuum chamber. A discussion is given of the mechanism governing the instability, and calculations as well as measurements of the longitudinal coupling impedances in the ISABELLE rings are described

  12. Bounds on Transient Instability for Complex Ecosystems.

    Directory of Open Access Journals (Sweden)

    Francesco Caravelli

    Full Text Available Stability is a desirable property of complex ecosystems. If a community of interacting species is at a stable equilibrium point then it is able to withstand small perturbations to component species' abundances without suffering adverse effects. In ecology, the Jacobian matrix evaluated at an equilibrium point is known as the community matrix, which describes the population dynamics of interacting species. A system's asymptotic short- and long-term behaviour can be determined from eigenvalues derived from the community matrix. Here we use results from the theory of pseudospectra to describe intermediate, transient dynamics. We first recover the established result that the transition from stable to unstable dynamics includes a region of 'transient instability', where the effect of a small perturbation to species' abundances-to the population vector-is amplified before ultimately decaying. Then we show that the shift from stability to transient instability can be affected by uncertainty in, or small changes to, entries in the community matrix, and determine lower and upper bounds to the maximum amplitude of perturbations to the population vector. Of five different types of community matrix, we find that amplification is least severe when predator-prey interactions dominate. This analysis is relevant to other systems whose dynamics can be expressed in terms of the Jacobian matrix.

  13. Bounds on Transient Instability for Complex Ecosystems.

    Science.gov (United States)

    Caravelli, Francesco; Staniczenko, Phillip P A

    2016-01-01

    Stability is a desirable property of complex ecosystems. If a community of interacting species is at a stable equilibrium point then it is able to withstand small perturbations to component species' abundances without suffering adverse effects. In ecology, the Jacobian matrix evaluated at an equilibrium point is known as the community matrix, which describes the population dynamics of interacting species. A system's asymptotic short- and long-term behaviour can be determined from eigenvalues derived from the community matrix. Here we use results from the theory of pseudospectra to describe intermediate, transient dynamics. We first recover the established result that the transition from stable to unstable dynamics includes a region of 'transient instability', where the effect of a small perturbation to species' abundances-to the population vector-is amplified before ultimately decaying. Then we show that the shift from stability to transient instability can be affected by uncertainty in, or small changes to, entries in the community matrix, and determine lower and upper bounds to the maximum amplitude of perturbations to the population vector. Of five different types of community matrix, we find that amplification is least severe when predator-prey interactions dominate. This analysis is relevant to other systems whose dynamics can be expressed in terms of the Jacobian matrix. PMID:27327511

  14. Studies on the parametric decay of waves in fusion plasmas

    International Nuclear Information System (INIS)

    Parametric instabilities of large-amplitude electromagnetic waves are investigated in fusion applications. In laser fusion, the electromegnetic wave reflected from the overdense plasma can act as a secondary pump wave and exite parametric instabilities. In double simulated Brilloun scattering (DSBS), both the incoming and the reflected pump wave scatter from a common ion sound wave. The stationary states and the dynamics of DSBS are investigated by using a simple envelope model. The ion sound wave that is exited in DSBS is shown to have soliton-like properties. The simulated Raman scattering (SRS) of free-electron-laser radiation can be applied to current drive in tokamaks. SRS generates fast longitudinal electron plasma waves which accelerate electrons to relativistic energies. Since the energetic current-carrying electrons are almost collisionless, the current decays very slowly. The feasibility of the Raman current drive in tokamaks is investigated theoretically. The current drive efficiency and the optimum free-electron-laser parameters are determined. The energy transfer to the fast electrons from the electrostatic wave is studied with relativistic Vlasov-Maxwell simulations. The parametric decay of a wave to half-harmonics is investigated. It is shown that the growth rate of the decay vanishes in the limit of a long wavelenght of the pump wave even for general electromagnetic or electrostatic decay models. The results are applied to the decay of a fast magnetosonic waves in tokamak plasmas. (orig.)

  15. [Aspirin suppresses microsatellite instability].

    Science.gov (United States)

    Wallinger, S; Dietmaier, W; Beyser, K; Bocker, T; Hofstädter, F; Fishel, R; Rüschoff, J

    1999-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit cancer preventive effects and have been shown to induce regression of adenomas in FAP patients. In order to elucidate the probable underlying mechanism, the effect of NSAIDs on mismatch repair related microsatellite instability was investigated. Six colorectal cancer cell lines all but one deficient for human mismatch repair (MMR) genes were examined for microsatellite instability (MSI) prior and after treatment with Aspirin or Sulindac. For rapid in vitro analysis of MSI a microcloning assay was developed by combining Laser microdissection and random (PEP-) PCR prior to specific MSI-PCR. Effects of NSAIDs on cell cycle and apoptosis were systematically investigated by using flow cytometry and cell-sorting. MSI frequency in cells deficient of MMR genes (hMSH2, hMLH1, hMSH6) was markedly reduced after long-term (> 10 weeks) NSAID treatment. This effect was reversible, time- and concentration dependent. However, in the hPMS2 deficient endometrial cancer cell line (HEC-1-A) the MSI phenotype kept unchanged. According to cell sorting, non-apoptotic cells were stable and apoptotic cells were unstable. These results suggest that aspirin/sulindac induces a genetic selection for microsatellite stability in a subset of MMR-deficient cells and may thus provide an effective prophylactic therapy for HNPCC related colorectal carcinomas.

  16. Libration driven multipolar instabilities

    CERN Document Server

    Cébron, David; Herreman, Wietze

    2014-01-01

    We consider rotating flows in non-axisymmetric enclosures that are driven by libration, i.e. by a small periodic modulation of the rotation rate. Thanks to its simplicity, this model is relevant to various contexts, from industrial containers (with small oscillations of the rotation rate) to fluid layers of terrestial planets (with length-of-day variations). Assuming a multipolar $n$-fold boundary deformation, we first obtain the two-dimensional basic flow. We then perform a short-wavelength local stability analysis of the basic flow, showing that an instability may occur in three dimensions. We christen it the Libration Driven Multipolar Instability (LDMI). The growth rates of the LDMI are computed by a Floquet analysis in a systematic way, and compared to analytical expressions obtained by perturbation methods. We then focus on the simplest geometry allowing the LDMI, a librating deformed cylinder. To take into account viscous and confinement effects, we perform a global stability analysis, which shows that...

  17. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  18. Acoustic Emission Analysis Applet (AEAA) Software

    Science.gov (United States)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  19. Two plasmon parametric decay in a slightly inhomogeneous plasma

    International Nuclear Information System (INIS)

    The convective parametric decay of an incident electromagnetic wave (ω0,k0) into two plasmons at ω = ω/sub p/ in a slightly inhomogeneous plasma of scale length L is considered. Asymptotic solutions for the fields are obtained which show that for L/lambda0 much greater than (ω/sub p/lambda/sub D//νlambda0)2, where ν is the plasmon damping rate, the homogeneous-plasma decay criterion must be satisfied by the pump field for instability

  20. Longitudinal-Mode Combustion Instabilities: Modeling and Experiments

    Science.gov (United States)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities can lead to increased development time and cost for aeroengine gas turbines. This problem has been evident in the development of very-low emissions stationary gas turbines, and will likely be encountered in the newer, more aggressive aeroengine designs. In order to minimize development time and cost, it is imperative that potential combustion dynamics issues be resolved using analyses and smaller-scale experimentation. This paper discusses a methodology through which a problem in a full-scale engine was replicated in a single-nozzle laboratory combustor. Specifically, this approach is valid for longitudinal and "bulk" mode combustion instabilities. An explanation and partial validation of the acoustic analyses that were used to achieve this replication are also included. This approach yields a testbed for the diagnosis of combustion dynamics problems and for their solution through passive and active control techniques.

  1. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  2. Acoustic sniper localization system

    Science.gov (United States)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  3. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    OpenAIRE

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  4. Weak Decay of Hypernuclei

    CERN Document Server

    Alberico, W M

    2004-01-01

    The focus of these Lectures is on the weak decay modes of hypernuclei, with special attention to Lambda-hypernuclei. The subject involves many fields of modern theoretical and experimental physics, from nuclear structure to the fundamental constituents of matter and their interactions. The various weak decay modes of Lambda-hypernuclei are described: the mesonic mode and the non-mesonic ones. The latter are the dominant decay channels of medium--heavy hypernuclei, where, on the contrary, the mesonic decay is disfavoured by Pauli blocking effect on the outgoing nucleon. In particular, one can distinguish between one-body and two-body induced decays. Theoretical models employed to evaluate the (partial and total) decay widths of hypernuclei are illustrated, and their results compared with existing experimental data. Open problems and recent achievements are extensively discussed, in particular the determination of the ratio Gamma_n/Gamma_p, possible tests of the Delta I=1/2 rule in non-mesonic decays and the pu...

  5. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  6. Active Control of Combustor Instability Shown to Help Lower Emissions

    Science.gov (United States)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  7. Weak radiative hyperon decays

    International Nuclear Information System (INIS)

    New measurements of the Σ+ and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K-p → Yπ where Y = Σ+ or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ+ → pγ to Σ+ → pπ0 and Λ → nγ to Λ → nπ0. The photons from weak radiative decays and from π0 decays were detected with modular NaI arrays. (orig.)

  8. Axions from wall decay

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S; Hagmann, C; Sikivie, P

    2001-01-08

    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  9. Rare decays at LHCb

    CERN Document Server

    Lafferty, George

    2015-01-01

    We review recent results from the LHCb experiment on studies of particle decays that are forbidden or rare in the Standard Model. The studies include searches for lepton flavour violating decays of the $\\tau$ lepton and the $B$ and $D$ mesons, and of $B$ and $D$ meson decays that would be mediated by Majorana neutrinos. Results are also presented for the rare processes $B_s \\to \\mu^+\\mu^-$ and $B^0 \\to \\mu^+\\mu^-$, $D^0 \\to \\pi^+\\pi^-\\mu^+\\mu^-$, $b \\to s\\gamma$ transitions, and $B \\to K^{(*)}\\mu^+\\mu^-$.

  10. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    Science.gov (United States)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  11. Acoustic pollution in hospital environments

    Science.gov (United States)

    Olivera, J. M.; Rocha, L. A.; Rotger, V. I.; Herrera, M. C.

    2011-12-01

    There are many different services within a hospital. This means different types of noise which can be considered as acoustic pollution. Knowing that preterm infants exposed to high amounts of noise in the NICU are at a much higher risk because of their neurologic immaturity and physiologic instability, that excessive levels of noise also affect the persons and it can also impede some studies on patients, it was proposed to evaluate the Sound Pressure Level in some services of the Instituto de Maternidad, Tucumán, Argentina. There were evaluated the Level III NICU, the laundry service, a physical space destined for a service of evoked potential and a neonatal incubator under working conditions. The measurements were performed with a type II sonometer (CENTER 322) and it was also used an incubator analyzer (FLUKE INCU) for the incubator. The average values obtained were of 63.6 dBA for the NICU, 82.5dBA for the laundry room, 52.7 dBA for the evoked potential room and 62.8 dBA in the inside of the incubator under 64 dBA in the outside. The reports were documented in compliance with the appropriate standards.

  12. Acoustic pollution in hospital environments

    International Nuclear Information System (INIS)

    There are many different services within a hospital. This means different types of noise which can be considered as acoustic pollution. Knowing that preterm infants exposed to high amounts of noise in the NICU are at a much higher risk because of their neurologic immaturity and physiologic instability, that excessive levels of noise also affect the persons and it can also impede some studies on patients, it was proposed to evaluate the Sound Pressure Level in some services of the Instituto de Maternidad, Tucumán, Argentina. There were evaluated the Level III NICU, the laundry service, a physical space destined for a service of evoked potential and a neonatal incubator under working conditions. The measurements were performed with a type II sonometer (CENTER 322) and it was also used an incubator analyzer (FLUKE INCU) for the incubator. The average values obtained were of 63.6 dBA for the NICU, 82.5dBA for the laundry room, 52.7 dBA for the evoked potential room and 62.8 dBA in the inside of the incubator under 64 dBA in the outside. The reports were documented in compliance with the appropriate standards.

  13. Non-leptonic decays of beauty decays

    CERN Document Server

    Bigi, Ikaros I; Shifman, M; Uraltsev, N; Vainshtein, A I

    1994-01-01

    "Anyone who keeps the ability to see beauty never grows old" (Franz Kafka). In the last few years considerable progress has been achieved in our understanding of the decays of heavy flavour hadrons. One can now calculate inclusive transition rates in QCD proper through an expansion in inverse powers of the heavy flavour quark mass without recourse to phenomenological assumptions. The non-perturbative contributions are treated systematically in this way; they are found to produce corrections of order a few percent in beauty decays, i.e. typically somewhat smaller than the perturbative corrections. One finds, among other things: (a) The lifetime of $B^-$ mesons is predicted to be longer than that of $B^0$ mesons by several percent. (b) The QCD prediction for the semileptonic branching ratio of $B$ mesons appears to exceed present experimental values.

  14. Understanding Aero-Fractures using optics and acoustics

    Science.gov (United States)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    In this work, analogue models are developed in a linear geometry, with confinement and at low porosity to study the instabilities that develop during fast motion of fluid in dense porous materials: fracturing, fingering, and channeling. We study these complex fluid/solid mechanical systems using two imaging techniques: optical imaging using a high speed camera (1000 fps) and high frequency resolution accelerometers. Additionally, we develop physical models rendering for the fluid mechanics in the channels and the propagation of microseismic waves around the fracture. We then compare a numerical resolution of this physical system with the observed experimental system. The experimental setup consists of a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. During the experiments, the fluid is injected into the system, with a constant injection pressure, from the point opposite to the semi-permeable boundary. At large enough injection pressures, the fluid also displaces grains and creates large channels and thin fractures towards the semi-permeable boundary. In the analysis phase, we compute the power spectrum of the acoustic signal in time windows of 5 ms, recorded by shock accelerometers Brüel & Kjaer 4374 (Frq. Range 1 Hz - 26 kHz) with 1 MHz sampling rate. The evolution of the power spectrum is compared with the optical recordings. The power spectrum initially follows a power law trend and when the channel network is developed, stick-slip events generating peaks with characteristic frequencies at 10, 30, 60 and 180 kHz are seen. These peaks are strongly influenced by the size and branching of the channels, compaction of the medium, vibration of air in the pores and the fundamental frequency of the plate. Furthermore, the number of these stick-slip events, similar to the data obtained in hydraulic fracturing operations, follows a Modified Omori Law decay with an

  15. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    CERN Document Server

    Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  16. Cinerama sickness and postural instability

    NARCIS (Netherlands)

    Bos, J.E.; Ledegang, W.D.; Lubeck, A.J.A.; Stins, J.F.

    2013-01-01

    Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min af

  17. Microsatellite instability in bladder cancer

    DEFF Research Database (Denmark)

    Gonzalez-Zulueta, M; Ruppert, J M; Tokino, K;

    1993-01-01

    Somatic instability at microsatellite repeats was detected in 6 of 200 transitional cell carcinomas of the bladder. Instabilities were apparent as changes in (GT)n repeat lengths on human chromosome 9 for four tumors and as alterations in a (CAG)n repeat in the androgen receptor gene on the X...

  18. Cohabitation and Children's Family Instability

    Science.gov (United States)

    Kelly Raley, R.; Wildsmith, Elizabeth

    2004-01-01

    This study estimates how much children's family instability is missed when we do not count transitions into and out of cohabitation, and examines early life course trajectories of children to see whether children who experience maternal cohabitation face more family instability than children who do not. Using data from the 1995 National Survey of…

  19. Genome instability in Alzheimer disease

    DEFF Research Database (Denmark)

    Hou, Yujun; Song, Hyundong; Croteau, Deborah L;

    2016-01-01

    to the development of noninvasive treatment strategies. Further investigations into the molecular mechanisms connecting DNA damage to AD pathology may help to develop novel treatment strategies for this debilitating disease. Here we provide an overview of the role of genome instability and DNA repair deficiency...... in AD pathology and discuss research strategies that include genome instability as a component....

  20. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.

    2004-11-15

    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  1. Plateau Rayleigh instability simulation.

    Science.gov (United States)

    Mead-Hunter, Ryan; King, Andrew J C; Mullins, Benjamin J

    2012-05-01

    The well-known phenomena of Plateau-Rayleigh instability has been simulated using computational fluid dynamics (CFD). The breakup of a liquid film into an array of droplets on a cylindrical element was simulated using a volume-of-fluid (VOF) solver and compared to experimental observations and existing theory. It is demonstrated that the VOF method can correctly predict the breakup of thins films into an array of either axisymmetric droplets or clam-shell droplets, depending on the surface energy. The existence of unrealistically large films is precluded. Droplet spacing was found to show reasonable agreement with theory. Droplet motion and displacement under fluid flow was also examined and compared to that in previous studies. It was found that the presence of air flow around the droplet does not influence the stable film thickness; however, it reduces the time required for droplet formation. Novel relationships for droplet displacement were derived from the results. PMID:22512475

  2. Instability and Information

    CERN Document Server

    Patzelt, Felix

    2015-01-01

    Many complex systems exhibit extreme events far more often than expected for a normal distribution. This work examines how self-similar bursts of activity across several orders of magnitude can emerge from first principles in systems that adapt to information. Surprising connections are found between two apparently unrelated research topics: hand-eye coordination in balancing tasks and speculative trading in financial markets. Seemingly paradoxically, locally minimising fluctuations can increase a dynamical system's sensitivity to unpredictable perturbations and thereby facilitate global catastrophes. This general principle is studied in several domain-specific models and in behavioural experiments. It explains many findings in both fields and resolves an apparent antinomy: the coexistence of stabilising control or market efficiency and perpetual instabilities resembling critical phenomena in physical systems.

  3. The bar instability revisited

    CERN Document Server

    Chiodi, Filippo; Claudin, Philippe

    2012-01-01

    The river bar instability is revisited, using a hydrodynamical model based on Reynolds averaged Navier-Stokes equations. The results are contrasted with the standard analysis based on shallow water Saint-Venant equations. We first show that the stability of both transverse modes (ripples) and of small wavelength inclined modes (bars) predicted by the Saint-Venant approach are artefacts of this hydrodynamical approximation. When using a more reliable hydrodynamical model, the dispersion relation does not present any maximum of the growth rate when the sediment transport is assumed to be locally saturated. The analysis therefore reveals the fundamental importance of the relaxation of sediment transport towards equilibrium as it it is responsible for the stabilisation of small wavelength modes. This dynamical mechanism is characterised by the saturation number, defined as the ratio of the saturation length to the water depth Lsat/H. This dimensionless number controls the transition from ripples (transverse patte...

  4. Internal rotor friction instability

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  5. CLEO Results B Decays

    CERN Document Server

    Cassel, David G

    2001-01-01

    Measurements of many Standard Model constants are clouded by uncertainties in nonperturbative QCD parameters that relate measurable quantities to the underlying parton-level processes. Generally these QCD parameters have been obtained from model calculations with large uncertainties that are difficult to quantify. The CLEO Collaboration has taken a major step towards reducing these uncertainties in determining the CKM matrix elements Vcb and Vub using new measurements of the branching fraction and photon energy spectrum of B -> s gamma decays. This report includes: the new CLEO measurements of B -> s gamma decays, Vcb, and Vub; the first results from CLEO III data -- studies of B -> K pi, pi pi, and K Kbar decays; mention of some other recent CLEO B decay results; and plans for operating CESR and CLEO in the charm threshold region.

  6. Decay ring design

    CERN Document Server

    Chancé, A; Bouquerel, E; Hancock, S; Jensen, E

    The study of the neutrino oscillation between its different flavours needs pureand very intense fluxes of high energy, well collimated neutrinos with a welldetermined energy spectrum. A dedicated machine seems to be necessarynowadays to reach the required flux. A new concept based on the β-decayof radioactive ions which were accelerated in an accelerator chain was thenproposed. After ion production, stripping, bunching and acceleration, the unstableions are then stored in a racetrack-shaped superconducting decay ring.Finally, the ions are accumulated in the decay ring until being lost. The incomingbeam is merged to the stored beam by using a specific RF system, whichwill be presented here.We propose here to study some aspects of the decay ring, such as its opticalproperties, its RF system or the management of the losses which occur in thering (mainly by decay or by collimation).

  7. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    Kai Zuber

    2012-10-01

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  8. Inflaton decay in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics]|[Tokyo Univ. (Japan). Research Center for the Early Universe

    2007-06-15

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3){sub C} gauge interactions. (orig.)

  9. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  10. Acoustic integrated extinction

    CERN Document Server

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  11. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  12. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  13. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  15. Acoustics lecturing in Mexico

    Science.gov (United States)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  16. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  17. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  18. Equilibrium Electro-osmotic Instability

    CERN Document Server

    Rubinstein, Isaak

    2014-01-01

    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium electro-osmosis can. First theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge-selectivity for the sake of simplicity and so did the subsequent numerical studies of various time-dependent and nonlinear features of electro-osmotic instability. In this letter, we show that relaxing the assumption of perfect charge-selectivity (tantamount to fixing the electrochemical potential in the solid) allows for equilibrium electro-osmotic instability. Moreover, we s...

  19. Instability in Shocked Granular Gases

    CERN Document Server

    Sirmas, Nick; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  20. Instability in shocked granular gases

    International Nuclear Information System (INIS)

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  1. Gravitational Instabilities in Circumstellar Disks

    CERN Document Server

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  2. Experimental Studies of the Stimulated Brillouin Scattering Instability in the Saturated Regime

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D

    2002-10-29

    An experimental study of the stimulated Brillouin scattering (SBS) instability has investigated the effects of velocity gradients and kinetic effects on the saturation of ion-acoustic waves in a plasma. For intensities less than I < 1.5 x 10{sup 15} W cm{sup -2}, the SBS instability is moderated primarily by velocity gradients, and for intensities above this threshold, nonlinear trapping is invoked to saturate the instability. We report direct evidence of detuning of SBS by a velocity gradient which was achieved by directly measuring the frequency shift of the SBS driven acoustic wave relative to the local resonant acoustic frequency. Furthermore, a novel use of Thomson scattering has allowed us to gather direct evidence of kinetic effects associated with the SBS process. Specifically, a measured two-fold increase of the ion temperature has been linked with laser beam excitation of ion-acoustic waves to large amplitudes by the SBS instability. Ion-acoustic waves were excited to large amplitude with a 2{omega} 1.2-ns long interaction beam with intensities up to 5 x 10{sup 15} W cm{sup -2}. The local frequency, amplitude, and spatial range of these waves were measured with a 3{omega} 200ps Thomson-scattering probe beam. These detailed and accurate measurements in well-characterized plasma conditions allow for the first time a direct test of non-linear models of the saturation of SBS. The measured two-fold increase of the ion temperature and its correlation with SBS reactivity measurements is the first quantitative evidence of hot ions created by ion trapping in laser plasmas.

  3. Open Flavor Strong Decays

    Science.gov (United States)

    García-Tecocoatzi, H.; Bijker, R.; Ferretti, J.; Galatà, G.; Santopinto, E.

    2016-10-01

    In this contribution, we discuss the results of a QM calculation of the open-flavor strong decays of **** light nucleon resonances. These are the results of a recent calculation, where we used a modified ^3P_0 model for the amplitudes and the U(7) algebraic model and the hypercentral quark model to predict the baryon spectrum. The decay amplitudes are compared with the existing experimental data.

  4. Aspects of B decays

    Energy Technology Data Exchange (ETDEWEB)

    Faller, Sven

    2011-03-04

    B-meson decays are a good probe for testing the flavour sector of the standard model of particle physics. The standard model describes at present all experimental data satisfactorily, although some ''tensions'' exist, i.e. two to three sigma deviations from the predictions, in particular in B decays. The arguments against the standard model are thus purely theoretical. These tensions between experimental data and theoretical predictions provide an extension of the standard model by new physics contributions. Within the flavour sector main theoretical uncertainties are related to the hadronic matrix elements. For exclusive semileptonic anti B {yields} D{sup (*)}l anti {nu} decays QCD sum rule techniques, which are suitable for studying hadronic matrix elements, however, with substantial, but estimable hadronic uncertainties, are used. The exploration of new physics effects in B-meson decays is done in an twofold way. In exclusive semileptonic anti B {yields} D{sup (*)}l anti {nu} decays the effect of additional right-handed vector as well as left- and right-handed scalar and tensor hadronic current structures in the decay rates and the form factors are studied at the non-recoil point. As a second approach one studied the non-leptonic B{sup 0}{sub s}{yields}J/{psi}{phi} and B{sup 0}{yields}J/{psi}K{sub S,L} decays discussing CP violating effects in the time-dependent decay amplitudes by considering new physics phase in the B{sup 0}- anti B{sup 0} mixing phase. (orig.)

  5. Open flavor strong decays

    CERN Document Server

    García-Tecocoatzi, H; Ferretti, J; Galatà, G; Santopinto, E

    2016-01-01

    In this contribution, we discuss the results of a QM calculation of the open-flavor strong decays of **** light nucleon resonances. These are the results of a recent calculation, where we used a modified $^3P_0$ model for the amplitudes and the U(7) algebraic model and the Hypercentral Quark Model to predict the baryon spectrum. The decay amplitudes are compared with the existing experimental data.

  6. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  7. Acoustic surface cavitation

    OpenAIRE

    Zijlstra, Aaldert Geert

    2011-01-01

    Merely the presence of compressible entities, known as bubbles, greatly enriches the physical phenomena encountered when introducing ultrasound in a liquid. Mediated by the response of these bubbles, the otherwise diffuse and relatively low energy density of the acoustic field can induce strong, localized liquid motion, high internal temperatures and pressures as well as secondary acoustic emissions. In turn, these effects give rise to considerable stresses exerted on nearby objects and molec...

  8. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Science.gov (United States)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  9. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  10. Suppression of stimulated Brillouin instability of a beat-wave of two lasers in multiple-ion-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2016-01-15

    Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.

  11. Instabilities of advection-dominated accretion flows

    CERN Document Server

    Chen, X

    1996-01-01

    Accretion disk instabilities are briefly reviewed. Some details are given to the short-wavelength thermal instabilities and the convective instabilities. Time-dependent calculations of two-dimensional advection-dominated accretion flows are presented.

  12. Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics

    Science.gov (United States)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability modeling of Solid Rocket Motors (SRM) remains a topic of active research. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process, acoustics, and steady-state gas dynamics. Recent advances in defining the energy transport of disturbances within steady flow-fields have been applied by combustion stability modelers to improve the analysis framework [1, 2, 3]. Employing this more accurate global energy balance requires a higher fidelity model of the SRM flow-field and acoustic mode shapes. The current industry standard analysis tool utilizes a one dimensional analysis of the time dependent fluid dynamics along with a quasi-three dimensional propellant grain regression model to determine the SRM ballistics. The code then couples with another application that calculates the eigenvalues of the one dimensional homogenous wave equation. The mean flow parameters and acoustic normal modes are coupled to evaluate the stability theory developed and popularized by Culick [4, 5]. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The current study employs the COMSOL multiphysics finite element framework to model the steady flow-field parameters and acoustic normal modes of a generic SRM. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluates the gas flow inside of a SRM using St. Robert's law to model the solid propellant burn rate, no slip boundary conditions, and the hybrid outflow condition. Results from the HMNF model are verified by comparing the pertinent ballistics parameters with the industry standard code outputs (i.e. pressure drop, thrust, ect.). These results are then used by the coefficient form of the mathematics module to determine the complex eigenvalues of the

  13. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  14. Phonon mechanisms of nonlinear decay and dephasing of mesoscopic vibrational systems

    Science.gov (United States)

    Atalaya, Juan; Kenny, Thomas W.; Dykman, Mark I.

    2015-03-01

    The frequencies and the decay rates of mesoscopic oscillators depend on vibration amplitudes. Nonlinear decay has been seen recently in various nano- and micro-mechanical systems. Here we consider a microscopic mechanism of nonlinear decay, the nonlinear coupling of the vibrational mode of interest, for example, a flexural mode, to other vibrations. Typically, the modes of interest have low eigenfrequencies ω0. Their decay comes from the coupling to acoustic-phonon type vibrations with much higher frequency and density of states. Thus, nonlinear decay requires quartic anharmonic coupling or cubic anharmonicity in the higher order. We find the decay rate for the inverse lifetime of the involved phonons, which is determined by the internal nonlinearity and the boundary scattering, being either much larger or smaller than ω0. The results extend the thermo-elastic, Akhiezer, and Landau-Rumer decay theory to nonlinear decay of mesoscopic modes and make specific predictions on the temperature and frequency dependence of the decay rate for different types of systems. We show that nonlinear decay is invariably accompanied by dephasing. We also show that in nano-electro-mechanical systems the decay rate can be electrostatically controlled.

  15. Investigations on sound energy decays and flows in a monumental mosque.

    Science.gov (United States)

    Sü Gül, Zühre; Xiang, Ning; Çalışkan, Mehmet

    2016-07-01

    This work investigates the sound energy decays and flows in the Süleymaniye Mosque in İstanbul. This is a single-space superstructure having multiple domes. The study searches for the non-exponential sound energy decay characteristics. The effect of different material surfaces and volumetric contributions are investigated using acoustic simulations and in situ acoustical measurements. Sound energy decay rates are estimated by Bayesian decay analysis. The measured data reveal double- or triple-slope energy decay profiles within the superstructure. To shed light on the mechanism of energy exchanges resulting in multi-slope decay, spatial sound energy distributions and energy flow vectors are studied by diffusion equation model (DEM) simulations. The resulting sound energy flow vector maps highlight the contribution of a sound-reflective central dome contrasted with an absorptive carpeted floor in providing delayed energy feedback. In contrast, no multi-slope energy decay pattern is observed in DEM simulations with a bare marble floor, which generates a much more diffuse sound field than in the real situation with a carpeted floor. The results demonstrate that energy fragmentation, in support of the non-exponential energy decay profile, is due to both the sound absorption characteristics of materials and to their distributions, as well as to relations between the subvolumes of the mosque's interior. PMID:27475158

  16. Energy-Based Collaborative Source Localization Using Acoustic Microsensor Array

    Directory of Open Access Journals (Sweden)

    Li Dan

    2003-01-01

    Full Text Available A novel sensor network source localization method based on acoustic energy measurements is presented. This method makes use of the characteristics that the acoustic energy decays inversely with respect to the square of distance from the source. By comparing energy readings measured at surrounding acoustic sensors, the source location during that time interval can be accurately estimated as the intersection of multiple hyperspheres. Theoretical bounds on the number of sensors required to yield unique solution are derived. Extensive simulations have been conducted to characterize the performance of this method under various parameter perturbations and noise conditions. Potential advantages of this approach include low intersensor communication requirement, robustness with respect to parameter perturbations and measurement noise, and low-complexity implementation.

  17. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    Science.gov (United States)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide

  18. Instability Suppression in a Swirl-Stabilized Combustor Using Microjet Air Injection

    KAUST Repository

    LaBry, Zachary

    2010-01-04

    In this study, we examine the effectiveness of microjet air injection as a means of suppressing thermoacoustic instabilities in a swirl-stabilized, lean-premixed propane/air combustor. High-speed stereo PIV measurements, taken to explore the mechanism of combustion instability, reveal that the inner recirculation zone plays a dominant role in the coupling of acoustics and heat release that leads to combustion instability. Six microjet injector configurations were designed to modify the inner and outer recirculation zones with the intent of decoupling the mechanism leading to instability. Microjets that injected air into the inner recirculation zone, swirling in the opposite sense to the primary swirl were effective in suppressing combustion instability, reducing the overall sound pressure level by up to 17 dB within a certain window of operating conditions. Stabilization was achieved near an equivalence ratio of 0.65, corresponding to the region where the combustor transitions from a 40 Hz instability mode to a 110 Hz instability mode. PIV measurements made of the stabilized flow revealed significant modification of the inner recirculation zone and substantial weakening of the outer recirculation zone.

  19. Nonlinear interaction and parametric instability of kinetic Alfvén waves in multicomponent plasmas

    International Nuclear Information System (INIS)

    Nonlinear couplings among kinetic Alfvén waves are investigated for a three-component plasma consisting of electrons, protons, and heavy ions. The parametric instability is investigated, and the growth rate is obtained. In the kinetic regime, the growth rate for the parallel decay instability increases with the heavy ion content, but the growth rate for the reverse decay is independent of the latter since the perpendicular wavelength is much larger than the ion gyroradius. It decreases with the heavy ion content when the perpendicular wavelength is of the order of the ion gyroradius. It is also found that in the short perpendicular wavelength limit, the growth rate is only weakly affected by the heavy ions. On the other hand, in the inertial regime, for both parallel and reverse decay cases, the growth rate decreases as the number of heavy ions becomes large.

  20. Parametric instabilities in an electron beam plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R.; Cuperman, S.; Gell, Y.; Levush, B.

    1981-08-01

    The excitation of low-frequency parametric instabilities by a finite wavelength pump in a system consisting of a warm electron plasma traversed by a warm electron beam is investigated in a fluid dissipationless model. The dispersion relation for the three-dimensional problem in a magnetized plasma with arbitrary directions for the waves is derived, and the one-dimensional case is analyzed numerically. For the one-dimensional back-scattering decay process, it is found that when the plasma-electron Debye length (lambda/sub D//sup p/) is larger than the beam-electron Debye length (lambda/sub D//sup b/), two low-frequency electrostatic instability branches with different growth rates may exist simultaneously. When lambda/sub D//sup p/approx. =lambda/sub D//sup b/, the large growth rate instability found in the analysis depends strongly on the amplitude of the pump field. For the case lambda/sub D//sup p/instability branch is generally excited.

  1. Investigation on nonlinear thermo-acoustic characteristics of Rijke tube

    Institute of Scientific and Technical Information of China (English)

    DENG Kai; WU Yunfei; LI Hua; FANG Deming; ZHONG Yingjie

    2011-01-01

    Based on the energy conservation relationship, nonlinear thermo-acoustic effects of Rijke tube including instability range, saturation processes and higher harmonics modes were investigated. With coupling between the external flow and the inner space of a Rijke tube, the acoustic characteristics of self-excited oscillation were simulated. The experimental study was also carried out and the results were compared with those from simulation. The nonlinear factors which distort the acoustic waveform distortion were analyzed. From the results, it is seen that varying size of the nozzle outlet changes the acoustic impedance in the boundary, and leads to reduction of the nonlinear effects. The results show that the modes of self-excited oscillation could be influenced by the position of higher harmonics. In the large amplitude oscillation, the distortion of pressure wave within Rijke tube could be induced by the acoustic losses due to vortices on nozzle. It is found that the waveform distortion could be avoided by the shrinkage of nozzle.

  2. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  3. Phononic crystals and acoustic metamaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Lu

    2009-12-01

    Full Text Available Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surface evanescent waves have also been recognized to play key roles to reach acoustic subwavelength imaging and enhanced transmission.

  4. Co-Decaying Dark Matter

    OpenAIRE

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-01-01

    We propose a new mechanism for thermal dark matter freezeout, termed Co-Decaying Dark Matter. Multi-component dark sectors with degenerate particles and out-of-equilibrium decays can co-decay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles, rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross-section, which is predicted to be boosted, and the decay rate ...

  5. Vortex-acoustic lock-on in bluff-body and backward-facing step combustors

    Indian Academy of Sciences (India)

    S R Chakravarthy; R Sivakumar; O J Shreenivasan

    2007-02-01

    Experimental data on acoustic pressure measurements obtained over a wide range of conditions is reported for two simple geometries that are commonly studied for their combustion dynamics behaviour. These geometries are the confined bluff-body and the confined backward-facing steps. The data indicate regimes of flow-acoustic lock-on that signifies the onset of combustion instability, marked by the excitation of high-amplitude discrete tones of sound in the combustor. The highspeed chemiluminescence imaging of the combustion zone indicates heat-release-rate fluctuations occurring at the same frequencies as observed in the acoustic spectra. Attention is then devoted to the data obtained under cold-flow conditions to illustrate distinctly different behaviour than when combustion instability occurs, contrary to the commonly held view that the combustion process does not alter the underlying fluid mechanical processes under low-Mach number conditions.

  6. Oscillatory and electrohydrodynamic instabilities in flow over a viscoelastic gel

    Indian Academy of Sciences (India)

    R M Thaokar

    2015-05-01

    The stability of oscillatory flows over compliant surfaces is studied analytically and numerically. The type of compliant surfaces studied is the incompressible viscoelastic gel model. The stability is determined using the Floquet analysis, where amplitude of perturbations at time intervals separated by one time period is examined to determine whether perturbations grow or decay. Oscillatory flows pas viscoelastic gels exhibit an instability in the limit of zero Reynolds number, and the transition amplitude of the oscillatory velocity increases with the frequency of oscillations. The transition amplitude has a minimum at a finite wavenumber for the viscoelastic gel model. The instability is found to depend strongly on the gel viscosity $\\eta_{g}$, and the effect of oscillations on the continuation of viscous modes at intermediate Reynolds number shows a complicated dependence on the oscillation frequency. Experimental studies are carried out on the stability of an oscillatory flow past a viscoelastic gel at zero Reynolds number, and these confirm the theoretical predictions.

  7. Dynamical instability in the S =1 Bose-Hubbard model

    Science.gov (United States)

    Asaoka, Rui; Tsuchiura, Hiroki; Yamashita, Makoto; Toga, Yuta

    2016-01-01

    We study the dynamical instabilities of superfluid flows in the S =1 Bose-Hubbard model. The time evolution of each spin component in a condensate is calculated based on the dynamical Gutzwiller approximation for a wide range of interactions, from a weakly correlated regime to a strongly correlated regime near the Mott-insulator transition. Owing to the spin-dependent interactions, the superfluid flow of the spin-1 condensate decays at a different critical momentum from a spinless case when the interaction strength is the same. We furthermore calculate the dynamical phase diagram of this model and clarify that the obtained phase boundary has very different features depending on whether the average number of particles per site is even or odd. Finally, we analyze the density and spin modulations that appear in association with the dynamical instability. We find that spin modulations are highly sensitive to the presence of a uniform magnetic field.

  8. Nonlinear ideal magnetohydrodynamics instabilities

    International Nuclear Information System (INIS)

    Explosive phenomena such as internal disruptions in toroidal discharges and solar flares are difficult to explain in terms of linear instabilities. A plasma approaching a linear stability limit can, however, become nonlinearly and explosively unstable, with noninfinitesimal perturbations even before the marginal state is reached. For such investigations, a nonlinear extension of the usual MHD (magnetohydrodynamic) energy principle is helpful. (This was obtained by Merkel and Schlueter, Sitzungsberichted. Bayer. Akad. Wiss., Munich, 1976, No. 7, for Cartesian coordinate systems.) A coordinate system independent Eulerian formulation for the Lagrangian allowing for equilibria with flow and with built-in conservation laws for mass, magnetic flux, and entropy is developed in this paper which is similar to Newcomb's Lagrangian method of 1962 [Nucl. Fusion, Suppl., Pt. II, 452 (1962)]. For static equilibria nonlinear stability is completely determined by the potential energy. For a potential energy which contains second- and nth order or some more general contributions only, it is shown in full generality that linearly unstable and marginally stable systems are explosively unstable even for infinitesimal perturbations; linearly absolutely stable systems require finite initial perturbations. For equilibria with Abelian symmetries symmetry breaking initial perturbations are needed, which should be observed in numerical simulations. Nonlinear stability is proved for two simple examples, m=0 perturbations of a Bennet Z-pinch and z-independent perturbations of a θ pinch. The algebra for treating these cases reduces considerably if symmetries are taken into account from the outset, as suggested by M. N. Rosenbluth (private communication, 1992)

  9. Rotating analogue black holes: Quasinormal modes and tails, superresonance, and sonic bombs and plants in the draining bathtub acoustic hole

    CERN Document Server

    Lemos, José P S

    2013-01-01

    The analogy between sound wave propagation and light waves led to the study of acoustic holes, the acoustic analogues of black holes. Many black hole features have their counterparts in acoustic holes. The Kerr metric, the rotating metric for black holes in general relativity, has as analogue the draining bathtub metric, a metric for a rotating acoustic hole. Here we report on the progress that has been made in the understanding of features, such as quasinormal modes and tails, superresonance, and instabilities when the hole is surrounded by a reflected mirror, in the draining bathtub metric. Given then the right settings one can build up from these instabilities an apparatus that stores energy in the form of amplified sound waves. This can be put to wicked purposes as in a bomb, or to good profit as in a sonic plant.

  10. Supersymmetric top quark decays

    International Nuclear Information System (INIS)

    The supersymmetric decays of the top quark into charged Higgs plus bottom, t → H+b, and into the supersymmetric partner of the top (u1) plus the lightest neutralino (χ10), t → u1χ10, are discussed within the framework of the Minimal Supersymmetric Standard Model with radiatively induced breaking of the gauge group SU(2) x U(1). The possibility of detecting these decays at present, i.e. given the available bounds on supersymmetric parameters, is compared with the situation a Next e+e- Linear Collider would face if supersymmetric particles were still undiscovered at LEP II. The indirect implications for t → H+b and t → u1χ10 of a measurement of the bottom quark decay b → sγ at the Standard Model level are taken into account. (orig.)

  11. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  12. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    OpenAIRE

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, Olli; Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Laulainen, Janne

    2016-01-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1–10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was ...

  13. Intrinsic Instability of Coronal Streamers

    CERN Document Server

    Chen, Y; Song, H Q; Shi, Q Q; Feng, S W; Xia, L D; 10.1088/0004-637X/691/2/1936

    2009-01-01

    Plasma blobs are observed to be weak density enhancements as radially stretched structures emerging from the cusps of quiescent coronal streamers. In this paper, it is suggested that the formation of blobs is a consequence of an intrinsic instability of coronal streamers occurring at a very localized region around the cusp. The evolutionary process of the instability, as revealed in our calculations, can be described as follows: (1) through the localized cusp region where the field is too weak to sustain the confinement, plasmas expand and stretch the closed field lines radially outward as a result of the freezing-in effect of plasma-magnetic field coupling; the expansion brings a strong velocity gradient into the slow wind regime providing the free energy necessary for the onset of a subsequent magnetohydrodynamic instability; (2) the instability manifests itself mainly as mixed streaming sausage-kink modes, the former results in pinches of elongated magnetic loops to provoke reconnections at one or many loc...

  14. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  15. Experimental Robust Control of Structural Acoustic Radiation

    Science.gov (United States)

    Cox, David E.; Gibbs, Gary P.; Clark, Robert L.; Vipperman, Jeffrey S.

    1998-01-01

    This work addresses the design and application of robust controllers for structural acoustic control. Both simulation and experimental results are presented. H(infinity) and mu-synthesis design methods were used to design feedback controllers which minimize power radiated from a panel while avoiding instability due to unmodeled dynamics. Specifically, high order structural modes which couple strongly to the actuator-sensor path were poorly modeled. This model error was analytically bounded with an uncertainty model, which allowed controllers to be designed without artificial limits on control effort. It is found that robust control methods provide the control designer with physically meaningful parameters with which to tune control designs and can be very useful in determining limits of performance. Experimental results also showed, however, poor robustness properties for control designs with ad-hoc uncertainty models. The importance of quantifying and bounding model errors is discussed.

  16. Geodesic Acoustic Modes Induced by Energetic Particles

    Science.gov (United States)

    Zhou, Tianchun; Berk, Herbert

    2009-11-01

    A global geodesic acoustic mode driven by energetic particles (EGAM) has been observed in JET[1, 2] and DIII D[3, 4]. The mode is to be treated fully kinetically. The descriptions of the background electrons and ions are based on standard high and low bounce frequency expansion respectively with respect to the mode frequency. However, the energetic ions must be treated without any expansion of ratio between their bounce frequency and the mode frequency since they are comparable. Under electrostatic perturbation, we construct a quadratic form for the wave amplitude, from which an integro-differential equation is derived. In the limit where the drift orbit width is small comparison with the mode width, a differential equation for perturbed electrostatic field is obtained. Solution is obtained both analytically and numerically. We find that beam counterinjection enhances the instability of the mode. Landau damping due to thermal species is investigated.

  17. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    OpenAIRE

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  18. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    Science.gov (United States)

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  19. Waves and instabilities in plasmas

    International Nuclear Information System (INIS)

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations

  20. Material Instabilities in Particulate Systems

    Science.gov (United States)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  1. Midcarpal instability: a radiological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Toms, Andoni Paul [Norfolk and Norwich University Hospital NHS Trust, Department of Radiology, Norwich, Norfolk (United Kingdom); Radiology Academy, Cotman Centre, Norwich, Norfolk (United Kingdom); Chojnowski, Adrian [Norfolk and Norwich University Hospital NHS Trust, Department of Orthopaedic Surgery, Norwich, Norfolk (United Kingdom); Cahir, John G. [Norfolk and Norwich University Hospital NHS Trust, Department of Radiology, Norwich, Norfolk (United Kingdom)

    2011-05-15

    Midcarpal instability (MCI) is the result of complex abnormal carpal motion at the midcarpal joint of the wrist. It is a form of non-dissociative carpal instability (CIND) and can be caused by various combinations of extrinsic ligament injuries that then result in one of several subtypes of MCI. The complex patterns of injury and the kinematics are further complicated by competing theories, terminology and classifications of MCI. Palmar, dorsal, ulna midcarpal instability, and capitolunate or chronic capitolunate instability are all descriptions of types of MCI with often overlapping features. Palmar midcarpal instability (PMCI) is the most commonly reported type of MCI. It has been described as resulting from deficiencies in the ulna limb of the palmar arcuate ligament (triquetrohamate-capitate) or the dorsal radiotriquetral ligaments, or both. Unstable carpal articulations can be treated with limited carpal arthrodesis or the ligamentous defects can be treated with capsulorrhaphy or ligament reconstruction. Conventional radiographic abnormalities are usually limited to volar intercalated segment instability (VISI) patterns of carpal alignment and are not specific. For many years stress view radiographs and videofluoroscopy have been the methods of choice for demonstrating carpal instability and abnormal carpal kinematics respectively. Dynamic US can be also used to demonstrate midcarpal dyskinesia including the characteristic triquetral ''catch-up'' clunk. Tears of the extrinsic ligaments can be demonstrated with MR arthrography, and probably with CT arthrography, but intact yet redundant ligaments are more difficult to identify. The exact role of these investigations in the diagnosis, categorisation and management of midcarpal instability has yet to be determined. (orig.)

  2. Double beta decay experiments

    International Nuclear Information System (INIS)

    The great sensitivity of double beta decay to neutrino mass and right handed currents has motivated many new and exciting attempts to observe this elusive nuclear phenomenon directly. Experiments in operation and other coming on line in the next one or two years are expected to result in order-of-magnitude improvements in detectable half lives for both the two-neutrino and no-neutrino modes. A brief history of double beta decay experiments is presented together with a discussion of current experimental efforts, including a gas filled time projection chamber being used to study selenium-82. (author)

  3. Fast Proton Decay

    OpenAIRE

    Li, Tianjun; Nanopoulos, Dimitri V.; Walker, Joel W.

    2009-01-01

    We consider proton decay in the testable flipped SU(5) X U(1)_X models with TeV-scale vector-like particles which can be realized in free fermionic string constructions and F-theory model building. We significantly improve upon the determination of light threshold effects from prior studies, and perform a fresh calculation of the second loop for the process p \\to e^+ \\pi^0 from the heavy gauge boson exchange. The cumulative result is comparatively fast proton decay, with a majority of the mos...

  4. Gauge-Independent Scales Related to the Standard Model Vacuum Instability

    CERN Document Server

    Espinosa, Jose R; Konstandin, Thomas; Riotto, Antonio

    2016-01-01

    The measured (central) values of the Higgs and top quark masses indicate that the Standard Model (SM) effective potential develops an instability at high field values. The scale of this instability, determined as the Higgs field value at which the potential drops below the electroweak minimum, is about $10^{11}$ GeV. However, such a scale is unphysical as it is not gauge-invariant and suffers from a gauge-fixing uncertainty of up to two orders of magnitude. Subjecting our system, the SM, to several probes of the instability (adding higher order operators to the potential; letting the vacuum decay through critical bubbles; heating up the system to very high temperature; inflating it) and asking in each case physical questions, we are able to provide several gauge-invariant scales related with the Higgs potential instability.

  5. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence

    CERN Document Server

    Kimmoun, O; Branger, H; Li, M S; Chen, Y Y; Kharif, C; Onorato, M; Kelleher, E J R; Kibler, B; Akhmediev, N; Chabchoub, A

    2016-01-01

    Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. The simplest form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI is tightly related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schr\\"odinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios.

  6. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  7. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  8. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  9. Laser-driven parametric instability and generation of entangled photon-plasmon states in graphene and topological insulators

    CERN Document Server

    Tokman, Mikhail; Oladyshkin, Ivan; Kutayiah, A Ryan; Belyanin, Alexey

    2016-01-01

    We show that a strong infrared laser beam obliquely incident on graphene can experience a parametric instability with respect to decay into lower-frequency (idler) photons and THz surface plasmons. The instability is due to a strong in-plane second-order nonlinear response of graphene which originates from its spatial dispersion. The parametric decay leads to efficient generation of THz plasmons and gives rise to quantum entanglement of idler photons and surface plasmon states. A similar process can be supported by surface states of topological insulators such as Bi$_2$Se$_3$.

  10. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  11. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  12. Instability of enclosed horizons

    Science.gov (United States)

    Kay, Bernard S.

    2015-03-01

    We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.

  13. Densitometry By Acoustic Levitation

    Science.gov (United States)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  14. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  15. Strong acoustic wave action

    Science.gov (United States)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  16. Structural Acoustics and Vibrations

    Science.gov (United States)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  17. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  18. Baryogenesis and proton decay

    International Nuclear Information System (INIS)

    The constraints are analyzed that proton decay experiments and cosmologically sound unification models impose on each other. An intermediate scale of around 1010 GeV arises from considerations on baryogenesis, inflation and supersymmetry breaking. An upper bound to the gravitino mass of about 50 TeV follows from current proton lifetime limits

  19. Hyperon Radiative Decay

    OpenAIRE

    Kaxiras, Efthimios; Soyeur, Madeleine; Moniz, Ernest J.

    1985-01-01

    The radiative decay widths of the low-lying strange baryons are calculated both within the relativistic quark bag model and the nonrelativistic potential model. These widths are found to depend sensitively upon the quark-model dynamics through multiplet mixing and q4¯q admixtures. The comparison between our calculated results and the very limited experimental data is discussed.

  20. Neutrinoless τ decays

    International Nuclear Information System (INIS)

    Lepton number and lepton flavor violation processes occur naturally in many extensions of the Standard Model. No evidence for such processes has been found so far. Recent searches for lepton number violating τ decays are reviewed within the context of the theoretical predictions

  1. Neutrinoless Double Beta Decay

    CERN Document Server

    Päs, Heinrich

    2015-01-01

    We review the potential to probe new physics with neutrinoless double beta decay $(A,Z) \\to (A,Z+2) + 2 e^-$. Both the standard long-range light neutrino mechanism as well as short-range mechanisms mediated by heavy particles are discussed. We also stress aspects of the connection to lepton number violation at colliders and the implications for baryogenesis.

  2. Attention decay in science

    CERN Document Server

    Parolo, Pietro Della Briotta; Ghosh, Rumi; Huberman, Bernardo A; Kaski, Kimmo; Fortunato, Santo

    2015-01-01

    The exponential growth in the number of scientific papers makes it increasingly difficult for researchers to keep track of all the publications relevant to their work. Consequently, the attention that can be devoted to individual papers, measured by their citation counts, is bound to decay rapidly. In this work we make a thorough study of the life-cycle of papers in different disciplines. Typically, the citation rate of a paper increases up to a few years after its publication, reaches a peak and then decreases rapidly. This decay can be described by an exponential or a power law behavior, as in ultradiffusive processes, with exponential fitting better than power law for the majority of cases. The decay is also becoming faster over the years, signaling that nowadays papers are forgotten more quickly. However, when time is counted in terms of the number of published papers, the rate of decay of citations is fairly independent of the period considered. This indicates that the attention of scholars depends on th...

  3. Kelvin-Helmholtz Instability in Compressible Flows and Mixing Inhibition

    Science.gov (United States)

    Karimi, Mona; Girimaji, Shararath

    2015-11-01

    It is well-established that the Kelvin-Helmholtz (KH) instability is central to shear flow mixing. Toward understanding the suppression of turbulent mixing under the influence of compressibility, we first examine the modification to KH instability in a planar mixing layer at high speeds. In this presentation, combining the outcomes of the linear stability analysis with the results of the numerical simulation, we establish that the flow domain can be classified into two main regions: the outer regions on the fast and slow sides and dilatational interface layer (DIL) in the middle. Compressibility engenders the formation of a dilatational or acoustic layer at the high-shear interface between two streams of different speeds. Within the DIL, the velocity perturbations become oscillatory. In the incompressible shear layers, the interface experiences steady vortical motion that entrains fluid from both streams leading to familiar KH behavior. In contrast, in the compressible case, the interface motion is oscillatory inhibiting vortex-merging and roll-up, thereby suppressing entrainment that leads to inhibition of the KH instability. Analysis and illustrations of the constituent mechanisms are presented.

  4. Analysis of fast ion induced instabilities in tokamak plasmas

    CERN Document Server

    Horváth, László

    2015-01-01

    In magnetic confinement fusion devices like tokamaks, it is crucial to confine the high energy fusion-born helium nuclei ($\\alpha$-particles) to maintain the energy equilibrium of the plasma. However, energetic ions can excite various instabilities which can lead to their enhanced radial transport. Consequently, these instabilities may degrade the heating efficiency and they can also cause harmful power loads on the plasma-facing components of the device. Therefore, the understanding of these modes is a key issue regarding future burning plasma experiments. One of the main open questions concerning energetic particle (EP) driven instabilities is the non-linear evolution of the mode structure. In this thesis, I present my results on the investigation of $\\beta$-induced Alfv\\'{e}n eigenmodes (BAEs) and EP-driven geodesic acoustic modes (EGAMs) observed in the ramp-up phase of off-axis NBI heated plasmas in the ASDEX Upgrade tokamak. These modes were well visible on several line-of-sights (LOSs) of the soft X-ra...

  5. The Orbital Decay of Embedded Binary Stars

    CERN Document Server

    Stahler, Steven W

    2009-01-01

    Young binaries within dense molecular clouds are subject to dynamical friction from ambient gas. Consequently, their orbits decay, with both the separation and period decreasing in time. A simple analytic expression is derived for this braking torque. The derivation utilizes the fact that each binary acts as a quadrupolar source of acoustic waves. The acoustic disturbance has the morphology of a two-armed spiral and carries off angular momentum. From the expression for the braking torque, the binary orbital evolution is also determined analytically. This type of merger may help explain the origin of high-mass stars. If infrared dark clouds, with peak densities up to 10^7 cm^{-3}, contain low-mass binaries, those with separations less than 100 AU merge within about 10^5 yr. During the last few thousand years of the process, the rate of mechanical energy deposition in the gas exceeds the stars' radiative luminosity. Successive mergers may lead to the massive star formation believed to occur in these clouds.

  6. Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars

    Science.gov (United States)

    Keir, Joe

    2016-07-01

    We prove that, in a class of spherically symmetric spacetimes exhibiting stable trapping of null geodesics, linear waves cannot (uniformly) decay faster than logarithmically. When these linear waves are treated as a model for nonlinear perturbations, this slow decay is highly suggestive of nonlinear instability. We also prove that, in a large class of asymptotically flat, spherically symmetric spacetimes, logarithmic decay actually holds as a uniform upper bound. In the presence of stable trapping, this result is therefore the best one can obtain. In addition, we provide an application of these results to ultracompact neutron stars, suggesting that all stars with r\\lt 3M might be unstable.

  7. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    Science.gov (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  8. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    Science.gov (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. PMID:15957758

  9. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  10. Modification of the collective Thomson scattering radiometer in the search for parametric decay on TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bongers, W.;

    2012-01-01

    Strong scattering of high-power millimeter waves at 140 GHz has been shown to take place in heating and current-drive experiments at TEXTOR when a tearing mode is present in the plasma. The scattering signal is at present supposed to be generated by the parametric decay instability. Here we descr...

  11. Nonaxisymmetric magnetorotational instability in ideal and viscous plasmas

    Science.gov (United States)

    Mikhailovskii, A. B.; Lominadze, J. G.; Galvão, R. M. O.; Churikov, A. P.; Erokhin, N. N.; Smolyakov, A. I.; Tsypin, V. S.

    2008-05-01

    The excitation of magnetorotational instability (MRI) in rotating laboratory plasmas is investigated. In contrast to astrophysical plasmas, in which gravitation plays an important role, in laboratory plasmas it can be neglected and the plasma rotation is equilibrated by the pressure gradient. The analysis is restricted to the simple model of a magnetic confinement configuration with cylindrical symmetry, in which nonaxisymmetric perturbations are investigated using the local approximation. Starting from the simplest case of an ideal plasma, the corresponding dispersion relations are derived for more complicated models including the physical effects of parallel and perpendicular viscosities. The Friemann-Rotenberg approach used for ideal plasmas is generalized for the viscous model and an analytical expression for the instability boundary is obtained. It is shown that, in addition to the standard effect of radial derivative of the rotation frequency (the Velikhov effect), which can be destabilizing or stabilizing depending on the sign of this derivative in the ideal plasma, there is a destabilizing effect proportional to the fourth power of the rotation frequency, or, what is the same, to the square of the plasma pressure gradient, and to the square of the azimuthal mode number of the perturbations. It is shown that the instability boundary also depends on the product of the plasma pressure and density gradients, which has a destabilizing effect when it is negative. In the case of parallel viscosity, the MRI looks like an ideal instability independent of viscosity, while, in the case of strong perpendicular viscosity, it is a dissipative instability with the growth rate inversely proportional to the characteristic viscous decay rate. We point out, however, that the modes of the continuous range of the magnetohydrodynamics spectrum are not taken into account in this paper, and they can be more dangerous than those that are considered.

  12. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  13. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  14. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  15. Portable acoustic myography

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Danneskiold-Samsøe, Bente; Bartels, Else Marie

    2013-01-01

    Muscle sound gives a local picture of muscles involved in a particular movement and is independent of electrical signals between nerve and muscle. Sound recording (acoustic myography) is a well-known noninvasive technique that has suffered from not being easily applicable, as well as not being ab...

  16. Rare B decays at LEP

    CERN Document Server

    Kluit, P M

    2001-01-01

    The results of the LEP experiments for rare B decays will be reviewed, covering hadronic final states, radiative and other rare decays and results for the inclusive charmless branching ratio. (8 refs).

  17. Holograms for acoustics

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  18. Fermi liquids near Pomeranchuk instabilities

    Science.gov (United States)

    Reidy, Kelly Elizabeth

    We explore features of a Fermi liquid near generalized Pomeranchuk instabilities (PIs) starting from both ordered and disordered phases. These PIs can be viewed as quantum critical points in parameter space, and thus provide an alternate viewpoint on quantum criticality. We employ the tractable crossing symmetric equation method, which is a non-perturbative diagrammatic many-particle method used to calculate the Fermi liquid interaction functions and scattering amplitudes. We consider both repulsive and attractive underlying interactions of arbitrary strength. Starting from a ferromagnetically ordered ground state, we find that upon approach to an s-wave instability in one critical channel, the system simultaneously approaches instabilities in non-critical channels. We study origins and implications of this "quantum multicriticality". We also find that a nematic (non-s-wave) instability precedes and is driven by Pomeranchuk instabilities in both the s-wave spin and density channels. Finally, we discuss potential applications of our results to physical systems, such as ferromagnetic superconductors.

  19. Radiation-induced chromosomal instability

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S. [GSI, Biophysics, Darmstadt (Germany)

    1999-03-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/{mu}m) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  20. Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror

    Science.gov (United States)

    Frank, Hannes M.; Munz, Claus-Dieter

    2016-06-01

    The flow around a side-view mirror and its noise generation are investigated using large eddy simulation and direct acoustic simulation. To this end, we use the high order discontinuous Galerkin spectral element method on non-conforming curved elements. Tonal noise is observed, which originates at the trailing edge downstream of laminar separation, coinciding with experimental results. In order to determine the nature of the tonal noise generation mechanism, we perform a linear stability analysis and employ a global perturbation approach in combination with dynamic mode decomposition. The perturbation analysis based on the whole flow field demonstrates the existence of a global instability involving convective disturbance growth, acoustic scattering at the trailing edge and acoustic receptivity at a rounded edge slightly upstream of separation. The results clearly show the tonal noise to be caused by the so-called acoustic feedback loop known from airfoil aeroacoustics. This phenomenon has been simulated here for the first time for a complex geometry.

  1. CP-violations in decays

    Indian Academy of Sciences (India)

    Y Sakai

    2006-11-01

    Recent results on CP-violation measurements in decays from energy asymmetric -factory experiments are reported. Thanks to large accumulated data samples, CP-violations in decays in mixing-decay interference and direct CP-violation are now firmly established. The measurements of three angles of the unitarity triangle from CP-violations of decays are quite consistent with the Standard Model expectations. These results strongly support the validity of the Kobayashi-Maskawa prescription of CP-violation.

  2. Rare Down Quark Decays

    Science.gov (United States)

    Tung, Kwong-Kwai Humphrey

    1992-01-01

    The rare decays bto sX are sensitive to strong interaction corrections. The effects can be estimated by a renormalization group technique which requires the evaluation of QCD mixing among effective operators. In the dimensional reduction and the naive dimensional regularization methods, there are discrepancies in evaluating the QCD mixing of the four-quark operators with the bto sgamma and bto s+gluon dipole operators. In this thesis, the problem is investigated by considering the contributions of the epsilon -scalar field and the epsilon -dimensional operators that distinguish between the two methods. The discrepancies are shown to come from the epsilon-dimensional four-quark operators in dimensional reduction and not from the epsilon -scalar field. In the decay bto sl^+l^ -, the intermediate of cc pairs in the charm-penguin diagram can form the resonance states J/psi and psi^'. In the published literature, there is a sign discrepancy in the Breit-Wigner amplitude for the resonance effects. Here, the sign difference is settled by considering the unitarity limit of the amplitude in the Argand diagram. The effects of the resonances are quite substantial on the invariant mass spectrum for this decay. However, they are shown to be negligible on the dilepton energy spectrum below 0.95 GeV. The energy spectrum is, thus, more useful than the invariant mass spectrum for measurements of the top -quark mass. The decays Bto K^*X are well modeled by the quark-level decays bto sX. In the quark model, the hadronization is done using a nonrelativistic wave function. In the decay B to K^*gamma, the large K ^* recoil creates an uncertainty in calculating the branching ratio using the quark model. The problem is explored by considering other meson processes where data exist. The data on the pi form factor and the omegapi^0 transition form factor suggest the necessity to retain relativistic spinor and meson normalizations in the quark -model; however, the data do not resolve the

  3. Flow and mixing characteristics of swirling double-concentric jets subject to acoustic excitation

    Science.gov (United States)

    Huang, R. F.; Jufar, S. R.; Hsu, C. M.

    2013-01-01

    Characteristic flow modes, flow evolution processes, jet spread width, turbulence properties, and dispersion characteristics of swirling double-concentric jets were studied experimentally. Jet pulsations were induced by means of acoustic excitation. Streak pictures of smoke flow patterns, illuminated by a laser-light sheet, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocity instabilities in the flow. Jet spread width was obtained through a binary edge identification technique. Tracer-gas concentrations were measured for information on jet dispersions. Two characteristic flow patterns were observed: (1) synchronized vortex rings appeared in the low excitation intensity regime (the excitation intensity less than one) and (2) synchronized puffing turbulent jets appeared in the high excitation intensity regime (the excitation intensity greater than one). In the high excitation intensity regime, the "suction back" phenomenon occurred and therefore induced in-tube mixing. The jet spread width and turbulent fluctuation intensity exhibited particularly large values in the high excitation intensity regime at the excitation Strouhal numbers smaller than 0.85. At the excitation Strouhal numbers >0.85, the high-frequency effect caused significant decay of jet breakup and dispersion—the jet spread width and fluctuation intensity decreased sharply and may, at very high Strouhal numbers, asymptotically approach values almost the same as the values associated with unexcited jets. Exciting the jets at the high excitation intensity regime, the effects of puffing motion and in-tube mixing caused breakup of the jet in the near field and therefore resulted in a small Lagrangian integral time and small length scales of fluctuating eddies. This effect, in turn, caused drastic dispersion of the central jet fluids. It is possible that the excited jets can attain 90 % more improvements than the unexcited jets. We provide a

  4. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  5. Bounds on Transient Instability for Complex Ecosystems

    Science.gov (United States)

    2016-01-01

    Stability is a desirable property of complex ecosystems. If a community of interacting species is at a stable equilibrium point then it is able to withstand small perturbations to component species’ abundances without suffering adverse effects. In ecology, the Jacobian matrix evaluated at an equilibrium point is known as the community matrix, which describes the population dynamics of interacting species. A system’s asymptotic short- and long-term behaviour can be determined from eigenvalues derived from the community matrix. Here we use results from the theory of pseudospectra to describe intermediate, transient dynamics. We first recover the established result that the transition from stable to unstable dynamics includes a region of ‘transient instability’, where the effect of a small perturbation to species’ abundances—to the population vector—is amplified before ultimately decaying. Then we show that the shift from stability to transient instability can be affected by uncertainty in, or small changes to, entries in the community matrix, and determine lower and upper bounds to the maximum amplitude of perturbations to the population vector. Of five different types of community matrix, we find that amplification is least severe when predator-prey interactions dominate. This analysis is relevant to other systems whose dynamics can be expressed in terms of the Jacobian matrix. PMID:27327511

  6. The multi-species Farley-Buneman instability in the solar chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M. [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Fontenla, Juan M., E-mail: cmadsen@bu.edu [Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, 1234 Innovation Drive, Boulder, CO 80303 (United States)

    2014-03-10

    Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electron drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s{sup -1}, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.

  7. Evidence against solar influence on nuclear decay constants

    Directory of Open Access Journals (Sweden)

    S. Pommé

    2016-10-01

    Full Text Available The hypothesis that proximity to the Sun causes variation of decay constants at permille level has been tested and disproved. Repeated activity measurements of mono-radionuclide sources were performed over periods from 200 days up to four decades at 14 laboratories across the globe. Residuals from the exponential nuclear decay curves were inspected for annual oscillations. Systematic deviations from a purely exponential decay curve differ from one data set to another and are attributable to instabilities in the instrumentation and measurement conditions. The most stable activity measurements of alpha, beta-minus, electron capture, and beta-plus decaying sources set an upper limit of 0.0006% to 0.008% to the amplitude of annual oscillations in the decay rate. Oscillations in phase with Earth's orbital distance to the Sun could not be observed within a 10−6 to 10−5 range of precision. There are also no apparent modulations over periods of weeks or months. Consequently, there is no indication of a natural impediment against sub-permille accuracy in half-life determinations, renormalisation of activity to a distant reference date, application of nuclear dating for archaeology, geo- and cosmochronology, nor in establishing the SI unit becquerel and seeking international equivalence of activity standards.

  8. Search for Nucleon Decays in Super-Kamiokande

    International Nuclear Information System (INIS)

    Grand Unified Theories (GUTs) is motivated by merging of the coupling constants of the strong, weak, and electromagnetic forces at a large energy scale (∼1016 GeV), which is out of the reach of accelerators. One of the other general features of GUTs is that they allow lepton and baryon number violations and they predict instability of nucleons. Then nucleon decay experiments are the direct probe for GUTs. The Super-Kamiokande (SK) is a water Cherenkov detector which keeps running to detect nucleon decays with large mass. There are no other nucleon decay detectors which have as long exposure as SK. The results of nucleon decay search based on 173 kton year (1996-2008) will be presented in the conference.The favored decay mode in GUTs based on SU(5) symmetry is p→e+ π0. On the other hand, p→ν K+ is favored by SUSY GUTs model. Those two modes will be mainly discussed. (authors)

  9. Evidence against solar influence on nuclear decay constants

    Science.gov (United States)

    Pommé, S.; Stroh, H.; Paepen, J.; Van Ammel, R.; Marouli, M.; Altzitzoglou, T.; Hult, M.; Kossert, K.; Nähle, O.; Schrader, H.; Juget, F.; Bailat, C.; Nedjadi, Y.; Bochud, F.; Buchillier, T.; Michotte, C.; Courte, S.; van Rooy, M. W.; van Staden, M. J.; Lubbe, J.; Simpson, B. R. S.; Fazio, A.; De Felice, P.; Jackson, T. W.; Van Wyngaardt, W. M.; Reinhard, M. I.; Golya, J.; Bourke, S.; Roy, T.; Galea, R.; Keightley, J. D.; Ferreira, K. M.; Collins, S. M.; Ceccatelli, A.; Unterweger, M.; Fitzgerald, R.; Bergeron, D. E.; Pibida, L.; Verheyen, L.; Bruggeman, M.; Vodenik, B.; Korun, M.; Chisté, V.; Amiot, M.-N.

    2016-10-01

    The hypothesis that proximity to the Sun causes variation of decay constants at permille level has been tested and disproved. Repeated activity measurements of mono-radionuclide sources were performed over periods from 200 days up to four decades at 14 laboratories across the globe. Residuals from the exponential nuclear decay curves were inspected for annual oscillations. Systematic deviations from a purely exponential decay curve differ from one data set to another and are attributable to instabilities in the instrumentation and measurement conditions. The most stable activity measurements of alpha, beta-minus, electron capture, and beta-plus decaying sources set an upper limit of 0.0006% to 0.008% to the amplitude of annual oscillations in the decay rate. Oscillations in phase with Earth's orbital distance to the Sun could not be observed within a 10-6 to 10-5 range of precision. There are also no apparent modulations over periods of weeks or months. Consequently, there is no indication of a natural impediment against sub-permille accuracy in half-life determinations, renormalisation of activity to a distant reference date, application of nuclear dating for archaeology, geo- and cosmochronology, nor in establishing the SI unit becquerel and seeking international equivalence of activity standards.

  10. Giant plasmon instability in a dual-grating-gate graphene field-effect transistor

    Science.gov (United States)

    Koseki, Y.; Ryzhii, V.; Otsuji, T.; Popov, V. V.; Satou, A.

    2016-06-01

    We study the instability of plasmons in a dual-grating-gate graphene field-effect transistor induced by dc current injection using self-consistent simulations with the Boltzmann equation. With only acoustic-phonon-limited electron scattering, it is demonstrated that a total growth rate of the plasmon instability, with a terahertz/midinfrared range of the frequency, can exceed 4 ×1012s-1 at room temperature, which is an order of magnitude larger than in two-dimensional electron gases based on the usual semiconductors. By comparing the simulation results with existing theory, it is revealed that the giant total growth rate originates from a simultaneous occurrence of the so-called Dyakonov-Shur and Ryzhii-Satou-Shur instabilities.

  11. Longitudinal instability in HIF beams

    International Nuclear Information System (INIS)

    In contrast to an electron induction accelerator, in which the particle velocity is virtually constant, the resistive and inductive components of accelerating module impedances can cause instability for an intense non-relativistic heavy ion beam accelerated in a similar structure. Since focusing requirements at the fusion pellet imply a momentum spread approx-lt 3 x 10-4 at the end of the accelerator, it is essential to understand and suppress this instability. There is also an economic issue involved for this application; selection of parameters to control the instability must not unduly affect the efficiency and cost of the accelerator. This paper will present the results of analytic and computational work on module impedances, growth rates and feed back (forward) systems. 2 refs., 3 figs

  12. Interfacial instabilities and Kapitsa pendula

    Science.gov (United States)

    Krieger, Madison

    2015-11-01

    Determining the critera for onset and amplitude growth of instabilities is one of the central problems of fluid mechanics. We develop a parallel between the Kapitsa effect, in which a pendulum subject to high-frequency low-amplitude vibrations becomes stable in the inverted position, and interfaces separating fluids of different density. It has long been known that such interfaces can be stabilized by vibrations, even when the denser fluid is on top. We demonstrate that the stability diagram for these fluid interfaces is identical to the stability diagram for an appopriate Kapitsa pendulum. We expand the robust, ``dictionary''-type relationship between Kapitsa pendula and interfacial instabilities by considering the classical Rayleigh-Taylor, Kelvin-Helmholtz and Plateau instabilities, as well as less-canonical examples ranging in scale from the micron to the width of a galaxy.

  13. Interfacial Instability during Granular Erosion

    Science.gov (United States)

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-01

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  14. Hydrodynamick instabilities on ICF capsules

    International Nuclear Information System (INIS)

    This article summarizes our current understanding of hydrodynamic instabilities as relevant to ICF. First we discuss classical, single mode Rayleigh-Taylor instability, and nonlinear effects in the evolution of a single mode. Then we discuss multimode systems, considering: (1) the onset of nonlinearity; (2) a second order mode coupling theory for weakly nonlinear effects, and (3) the fully nonlinear regime. Two stabilization mechanisms relevant to ICF are described next: gradient scale length and convective stabilization. Then we describe a model which is meant to estimate the weakly nonlinear evolution of multi-mode systems as relevant to ICF, given the short-wavelength stabilization. Finally, we discuss the relevant code simulation capability, and experiments. At this time we are quite optimistic about our ability to estimate instability growth on ICF capsules, but further experiments and simulations are needed to verify the modeling. 52 refs

  15. Electroweak penguin B decays

    CERN Document Server

    Nikodem, Thomas

    2016-01-01

    Flavour Changing Neutral Currents (FCNC) are sensitive probes for physics beyond the Standard Model (SM), so-called New Physics. An example of a FCNC is the $b \\to s$ quark transition described by the electroweak penguin Feynman diagram shown in Figure 1. In the SM such FCNC are only allowed with a loop structure (as e:g: shown in the figure) and not by tree level processes. In the loops heavy particles appear virtually and do not need to be on shell. Therefore also not yet discovered heavy particles with up to a mass $\\mathcal{O}$(TeV) could virtually contribute significantly to observables. Several recent measurements of electroweak penguin B decays exhibit interesting tensions with SM predictions, most prominently in the angular observable $P'_5$ 5 of the decay $B^0 \\to K^{*0} \\mu^+ \\mu^1$[1], which triggered a lot of discussion in the theory community [2]-[14].

  16. Decay constants in geochronology

    Institute of Scientific and Technical Information of China (English)

    IgorM.Villa; PaulR.Renne

    2005-01-01

    Geologic time is fundamental to the Earth Sciences, and progress in many disciplines depends critically on our ability to measure time with increasing accuracy and precision. Isotopic geochronology makes use of the decay of radioactive nuclides as a help to quantify the histories of rock, minerals, and other materials. Both accuracy and precision of radioisotopic ages are, at present, limited by those of radioactive decay constants. Modem mass spectrometers can measure isotope ratios with a precision of 10-4 or better. On the other hand, the uncertainties associated with direct half-life determinations are, in most cases, still at the percent level. The present short note briefly summarizes progress and problems that have been encountered during the Working Group's activity.

  17. Decay of Hoyle state

    Indian Academy of Sciences (India)

    S Bhattacharya; T K Rana; C Bhattacharya; S Kundu; K Banerjee; T K Ghosh; G Mukherjee; R Pandey; P Roy

    2014-11-01

    The prediction of Hoyle state was necessitated to explain the abundance of carbon, which is crucial for the existence of life on Earth and is the stepping stone for understanding the abundance of other heavier elements. After the experimental confirmation of its existence, soon it was realized that the Hoyle state was `different’ from other excited states of carbon, which led to intense theoretical and experimental activities over the past few decades to understand its structure. In recent times, precision, high statistics experiments on the decay of Hoyle state have been performed at the Variable Energy Cyclotron Centre, to determine the quantitative contributions of various direct 3 decay mechanisms of the Hoyle state. The present results have been critically compared with those obtained in other recent experiments and their implications have been discussed.

  18. Rare b decays

    Energy Technology Data Exchange (ETDEWEB)

    Tung, K.K.H.

    1992-01-01

    The rare decays b [yields] sX are sensitive to strong interaction corrections. The effects can be estimated by a renormalization group technique which requires the evaluation of QCD mixing among effective operators. In the dimensional reduction and the naive dimensional regularization methods, there are discrepancies in evaluating the QCD mixing of the four-quark operators with the b [yields] s[gamma] and b [yields] s + gluon dipole operators. The problem is investigated by considering the contributions of the [epsilon]-scalar field and the [epsilon]-dimensional operators that distinguish between the methods. The discrepancies come from the [epsilon]-dimensional four-quark operators in dimensional reduction. In the decay b [yields] sl[sup +]l[sup [minus

  19. An important effect of filamentation instability on laser fusion physical processes

    Institute of Scientific and Technical Information of China (English)

    Zunqi; Lin; Anle; Lei; Wei; Fan; Shenlei; Zhou; Li; Wang

    2013-01-01

    The process of high power laser interaction with the large scale length corona plasma produced by the leading edge of the laser pulse has been investigated. Early experimental results are re-analyzed and conclusions drawn. In particular,studies of the close connection of unstable filamentation instability with – mainly – two-plasmon decay and – partly –stimulated Raman scattering, stimulated Brillouin scattering, and resonance absorption are carried out in this paper. The positive and negative effects of filamentation instability are also discussed.

  20. Beta decay for pedestrians

    CERN Document Server

    Lipkin, Harry Jeannot

    1962-01-01

    The ""pedestrian approach"" was developed to describe some essentially simple experimental results and their theoretical implications in plain language. In this graduate-level text, Harry J. Lipkin presents simply, but without oversimplification, the aspects of beta decay that can be understood without reference to the formal theory; that is, the reactions that follow directly from conservation laws and elementary quantum mechanics.The pedestrian treatment is neither a substitute for a complete treatment nor a watered-down version.

  1. Bremsstrahlung in $\\alpha$ Decay

    CERN Document Server

    Takigawa, N; Hagino, K; Ono, A; Brink, D M

    1999-01-01

    A quantum mechanical analysis of the bremsstrahlung in $\\alpha$ decay of $^{210}$Po is performed in close reference to a semiclassical theory. We clarify the contribution from the tunneling, mixed, outside barrier regions and from the wall of the inner potential well to the final spectral distribution, and discuss their interplay. We also comment on the validity of semiclassical calculations, and the possibility to eliminate the ambiguity in the nuclear potential between the alpha particle and daughter nucleus using the bremsstrahlung spectrum.

  2. Teleportation via decay

    Indian Academy of Sciences (India)

    S Bose; P L Knight; M B Plenio; V Vedral

    2001-02-01

    We present a rare example of a decay mechanism playing a constructive role in quantum information processing. We show how the state of an atom trapped in a cavity can be teleported to a second atom trapped in a distant cavity by the joint detection of photon leakage from the cavities. The scheme, which is probabilistic, requires only a single three level atom in a cavity. We also show how this scheme can be modified to a teleportation with insurance.

  3. Decay of Polarized Delta

    OpenAIRE

    Ramachandran, G.; Venkataraya; Vidya, M. S.; Balasubramanyam, J.; Padmanabha, G.

    2009-01-01

    The resonance $\\Delta(1232)$ with spin-parity ${3 \\over 2}^+$, which contributes dominantly to the reactions like $\\gamma N \\to \\pi N$ and $NN \\to NN\\pi$ at intermediate energies, may be expected to be produced in characteristically different polarized spin states. As such an analysis of the decay of polarized delta is presented, which may be utilized to probe empirically the production mechanism. It is shown that measurements of the angular distributions of the pion and the polarization of t...

  4. Rare D Decays

    CERN Document Server

    Casey, Brendan

    2007-01-01

    We discuss several recent measurements of rare charmed hadron decays. Focus is placed on radiative and annihilation topologies highlighting their sensitivity to new physics and pointing out the strengths and weaknesses of different channels. We compare the different measurement techniques employed at fixed target and $e^+e^-$ dedicated charm experiments, B-factories, and the Tevatron experiments. Comparisons are also made to similar topologies in the beauty, strange, and top systems where appropriate.

  5. Charmless B decays

    Directory of Open Access Journals (Sweden)

    Martens Aurélien

    2014-04-01

    Full Text Available During 2011, LHCb has collected an integrated luminosity of 1.1 fb−1, giving rise to a large variety of measurements. Amongst these, measurements of CP violation in B decays play a central role. In particular CP violation measurements in charmless transitions of B mesons are of interest since they provide new or improved constraints on new physics contributions. These proceedings concentrate on LHCb results made publicin the first half of the year 2012.

  6. Laboratory blast wave driven instabilities

    Science.gov (United States)

    Kuranz, Carolyn

    2008-11-01

    This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User

  7. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  8. Radioactive decay data tables

    International Nuclear Information System (INIS)

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals

  9. Hydromagnetic Instabilities in Neutron Stars

    CERN Document Server

    Lasky, Paul D; Kokkotas, Kostas D; Glampedakis, Kostas

    2011-01-01

    We model the non-linear ideal magnetohydrodynamics of poloidal magnetic fields in neutron stars in general relativity assuming a polytropic equation of state. We identify familiar hydromagnetic modes, in particular the 'sausage/varicose' mode and 'kink' instability inherent to poloidal magnetic fields. The evolution is dominated by the kink instability, which causes a cataclysmic reconfiguration of the magnetic field. The system subsequently evolves to new, non-axisymmetric, quasi-equilibrium end-states. The existence of this branch of stable quasi-equilibria may have consequences for magnetar physics, including flare generation mechanisms and interpretations of quasi-periodic oscillations.

  10. GMAW process stability evaluation through acoustic emission by time and frequency domain analysis

    Directory of Open Access Journals (Sweden)

    E. Huanca Cayo

    2009-06-01

    Full Text Available Purpose: In the present work was made the comparative analysis in time domain and frequency domain to the acoustical pressure generate by the electric arc to determinate which of the two analysis methods is better to evaluates the stability in GMAW process.Design/methodology/approach: Welds had been made with the parameters adjusted to get the highest stability. In these conditions, were simulated instabilities that had been generated by the grease presence in the weld trajectory. In both experimental groups was acquired the acoustical pressure signal produced by electric arc to made analysis based in time domain and frequency domain.Findings: After this comparative study we conclude that the acoustical evaluation of the stability on the GMAW process presents more clarity for the analysis based in the time domain that the frequency domain.Research limitations/implications: In the gotten results, the time domain analysis method could represent adequately the stability and the instability of the process. The stability characterizes for the continuity and minim variation of the statistical parameters, but in the presence of instabilities, these parameters present chaotic changes. In the frequency domain method the variations are imperceptible for steady and unstable regions, but it presents little definite variations in the amplitude of determined bands of frequencies.Originality/value: The stability evaluation in welding is crucial because it is responsible in the weld quality. The non contact methods as the acoustical method have a potentiality extraordinary to monitoring and detect instabilities in welding. The acoustical sensing has the capacity to make an on-line monitoring of the weld process.

  11. Secondary instabilities of linearly heated falling films

    Institute of Scientific and Technical Information of China (English)

    HU Jun; SUN Dejun; HU Guohui; YIN Xieyuan

    2005-01-01

    Secondary instabilities of linearly heated failing films are studied through three steps. Firstly, the analysis of the primary linear instability on Miladinova's long wave equation of the linearly heated film is performed. Secondly, the similar Landau equation is derived through weak nonlinear theory, and a two-dimensional nonlinear saturation solution of primary instability is obtained within the weak nonlinear domain. Thirdly, the secondary (three-dimensional) instability of the two-dimensional wave is studied by the Floquet theorem.Our secondary instability analysis shows that the Marangoni number has destabilization effect on the secondary instability.

  12. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    Science.gov (United States)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  13. Bending instability in galactic discs. Advocacy of the linear theory

    CERN Document Server

    Rodionov, S A

    2013-01-01

    We demonstrate that in N-body simulations of isolated disc galaxies there is numerical vertical heating which slowly increases the vertical velocity dispersion and the disc thickness. Even for models with over a million particles in a disc, this heating can be significant. Such an effect is just the same as in numerical experiments by Sellwood (2013). We also show that in a stellar disc, outside a boxy/peanut bulge, if it presents, the saturation level of the bending instability is rather close to the value predicted by the linear theory. We pay attention to the fact that the bending instability develops and decays very fast, so it couldn't play any role in secular vertical heating. However the bending instability defines the minimal value of the ratio between the vertical and radial velocity dispersions $\\sigma_z / \\sigma_R \\approx 0.3$ (so indirectly the minimal thickness) which could have stellar discs in real galaxies. We demonstrate that observations confirm last statement.

  14. Column: Factors Affecting Data Decay

    Directory of Open Access Journals (Sweden)

    Kevin Fairbanks

    2012-06-01

    Full Text Available In nuclear physics, the phrase decay rate is used to denote the rate that atoms and other particles spontaneously decompose. Uranium-235 famously decays into a variety of daughter isotopes including Thorium and Neptunium, which themselves decay to others. Decay rates are widely observed and wildly different depending on many factors, both internal and external. U-235 has a half-life of 703,800,000 years, for example, while free neutrons have a half-life of 611 seconds and neutrons in an atomic nucleus are stable.We posit that data in computer systems also experiences some kind of statistical decay process and thus also has a discernible decay rate. Like atomic decay, data decay fluctuates wildly. But unlike atomic decay, data decay rates are the result of so many different interplaying processes that we currently do not understand them well enough to come up with quantifiable numbers. Nevertheless, we believe that it is useful to discuss some of the factors that impact the data decay rate, for these factors frequently determine whether useful data about a subject can be recovered by forensic investigation.(see PDF for full column

  15. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  16. Acoustic energy harvesting based on a planar acoustic metamaterial

    Science.gov (United States)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  17. Recent results on tau decays

    International Nuclear Information System (INIS)

    New preliminary ARGUS results on τ decays are presented. We have measured the inclusive 3-prong branching ratio as well as the exclusive branching ratios for 6 major τ decay channels: τ- → ε-ν-bareντ.τ- → μ-ν-barμντ.τ- → π- /K-ντ.τ- → π-π-π-ντ.τ- → π-π0ντ and τ- → π- π- π+ π0 ντ†. Our results are in contradiction to the recent CELLO measurements, which indicate that the τ decay problem disappeared. A search was made for 26 different neutrinoless τ decays. No evidence has been found, that the τ decay problem might be connected to such neutrinoless decays. In addition, the hadronic final states of τ decays into π π0ντ and π-π-π+ντ have been analyzed. (author)

  18. B decays to open charm

    CERN Document Server

    Haines, Susan Carol

    2016-01-01

    Studies of $B$ meson decays to states involving open charm mesons in data recorded by the LHCb experiment have resulted in first observations of several new decay modes, including $B_s^{0} \\rightarrow D_s^{*\\mp} K^{\\pm}$, $B_s^{0} \\rightarrow \\overline{D}^{0} K_S^{0}$ and $B^{+} \\rightarrow D^{+} K^{+} \\pi^{-}$ decays. An upper limit has been placed on the branching fraction of $B_s^{0} \\rightarrow \\overline{D}^{0} f_0(980)$ decays. Measurements of other branching fractions, such as those of $B_s^{0} \\rightarrow D_s^{(*)+} D_s^{(*)-}$ decays, are the most precise to date. Additionally, amplitude analyses of $B^{0} \\rightarrow \\overline{D}^{0} \\pi^{+} \\pi^{-}$ and $B^{0} \\rightarrow \\overline{D}^{0} K^{+} \\pi^{-}$ decays have been performed, alongside the first $CP$ violation analysis using the Dalitz plot of $B^{0} \\rightarrow D K^{+} \\pi^{-}$ decays.

  19. Acoustics Discipline Overview

    Science.gov (United States)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  20. Acoustic Tractor Beam

    Science.gov (United States)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  1. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  2. Acoustic absorption by sunspots

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.C.; Labonte, B.J.; Duvall, T.L. Jr.

    1987-08-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity. 10 references.

  3. Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Kamyshkov, Y.A. [ed.

    1996-11-01

    These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.

  4. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  5. The acoustics of snoring.

    Science.gov (United States)

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as judged by the bed partner, is due to an altered sound spectrum. Whether some acoustic aspects of snoring, such as changes in pitch, have predictive value for the presence of

  6. Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness

    Science.gov (United States)

    Malik, Mujeeb R.; Balakumar, Ponnampalam

    2007-01-01

    Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.

  7. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  8. Acoustics, computers and measurements

    Science.gov (United States)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  9. Edge instabilities of topological superconductors

    Science.gov (United States)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  10. The Chemistry of Beer Instability

    Science.gov (United States)

    Stewart, Graham G.

    2004-01-01

    Brewing of beer, one of the oldest biotechnology industries was one of the earliest processes to be undertaken on commercial basis. Biological instability involves contamination of bacteria, yeast, or mycelia fungi and there is always a risk in brewing that beer can become contaminated by micro-organisms.

  11. Waves and instabilities in plasmas

    CERN Document Server

    Chen Liu

    1987-01-01

    The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.

  12. Lending sociodynamics and economic instability

    Science.gov (United States)

    Hawkins, Raymond J.

    2011-11-01

    We show how the dynamics of economic instability and financial crises articulated by Keynes in the General Theory and developed by Minsky as the Financial Instability Hypothesis can be formalized using Weidlich’s sociodynamics of opinion formation. The model addresses both the lending sentiment of a lender in isolation as well as the impact on that lending sentiment of the behavior of other lenders. The risk associated with lending is incorporated through a stochastic treatment of loan dynamics that treats prepayment and default as competing risks. With this model we are able to generate endogenously the rapid changes in lending opinion that attend slow changes in lending profitability and find these dynamics to be consistent with the rise and collapse of the non-Agency mortgage-backed securities market in 2007/2008. As the parameters of this model correspond to well-known phenomena in cognitive and social psychology, we can both explain why economic instability has proved robust to advances in risk measurement and suggest how policy for reducing economic instability might be formulated in an experimentally sound manner.

  13. GENETIC INSTABILITY IN CERVICAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    赵旻; 伍欣星; 邱小萍; 李晖; 戴天力; 谭云

    2002-01-01

    Objective: The role of human papillomavirus (HPV) in the development of cervical carcinoma has been clearly established but other factors could be involved in cervical tumorigenesis such as loss of heterozygosity (LOH) and microsatellite instability (MI). The aim of the present study was to investigate the genetic instability in cervical carcinoma tissues and provide evidence for discoveringnew tumor suppressor genes and screening diagnostic molecular marker of cervical carcinoma. Methods: Fifty primary cervical carcinoma samples from high-incidence area were analyzed by PCR for HPV16 infection, LOH and microsatellite instability. Results: HPV16 was detected in 88% of the cases. Sixty-six percent of total cases showed LOH with no more than 3 different loci per case. The highest frequency of the allelic loss was found in D18S474 (18q21, 40.5%). MI was detected in 4 cases (8%) only. Conclusion: Different percentages of LOH on specific chromosomal regions were found and MI was very infrequent in cervical carcinoma. The putative suppressor gene(s) could be located on specific chromosome regions such as 18q, and genetic instability could be involved in cervical tumorigenesis.

  14. Cavitation instabilities in hydraulic machines

    International Nuclear Information System (INIS)

    Cavitation instabilities in hydraulic machines, hydro turbines and turbopump inducers, are reviewed focusing on the cause of instabilities. One-dimensional model of hydro turbine system shows that the overload surge is caused by the diffuser effect of the draft tube. Experiments show that this effect also causes the surge mode oscillations at part load. One dimensional model of a cavitating turbopump inducer shows that the mass flow gain factor, representing the cavity volume increase caused by the incidence angle increase is the cause of cavitation surge and rotating cavitation. Two dimensional model of a cavitating turbopump inducer shows that various modes of cavitation instabilities start to occur when the cavity length becomes about 65% of the blade spacing. This is caused by the interaction of the local flow near the cavity trailing edge with the leading edge of the next blade. It was shown by a 3D CFD that this is true also for real cases with tip cavitation. In all cases, it was shown that cavitation instabilities are caused by the fundamental characteristics of cavities that the cavity volume increases with the decrease of ambient pressure or the increase of the incidence angle

  15. Inflaton decay and reheating in nonminimal derivative coupling

    CERN Document Server

    Myung, Yun Soo

    2016-01-01

    We investigate the inflaton decay and reheating period after the end of inflation in the non-minimal derivative coupling (NDC) model withchaotic potential. In general, this model is known to provide an enhanced slow-roll inflation caused by gravitationally enhanced friction. We find violent oscillations of Hubble parameter which induces oscillations of the sound speed squared, implying the Lagrangian instability of curvature perturbation $\\zeta$ under the comoving gauge $\\varphi=0$. However, we show that this instability disappears in the superhorizon limit. Furthermore, it is shown that the curvature perturbation blows up at $\\dot{\\phi}=0$, leading to the breakdown of the comoving gauge at $\\dot{\\phi}=0$. The breakdown of the comoving gauge might not be resolved by introducing the $cd$-gauge in the NDC model.

  16. Dynamics and thermodynamics of decay in charged clusters

    CERN Document Server

    Miller, Mark A; Moerland, Christian P; Gray, Sarah J; Gaigeot, Marie-Pierre

    2015-01-01

    We propose a method for quantifying charge-driven instabilities in clusters, based on equilibrium simulations under confinement at constant external pressure. This approach makes no assumptions about the mode of decay and allows different clusters to be compared on an equal footing. A comprehensive survey of stability in model clusters of 309 Lennard-Jones particles augmented with Coulomb interactions is presented. We proceed to examine dynamic signatures of instability, finding that rate constants for ejection of charged particles increase smoothly as a function of total charge with no sudden changes. For clusters where many particles carry charge, ejection of individual charges competes with a fission process that leads to more symmetric division of the cluster into large fragments. The rate constants for fission depend much more sensitively on total charge than those for ejection of individual particles.

  17. Generation of magnetospheric radiation by decay of Bernstein waves

    International Nuclear Information System (INIS)

    Recent observations show that extremely narrow emission lines are present in the spectrum of the terrestrial myriametric radiation, which on the basis of earlier observations has been characterized as nonthermal contiunuum radiation. The occurance of these monochromatic emissions is not predicted by previoiusly published theories for the generation of the radiaiton. A linear instability, exciting low frequency electrostatic turbulence, is required by theories invoking a nonlinear coalescence to produce the radiation, but there are no conclusive observations associating low frequency electrostatic waves with the sources of myriametric radiation. In this study, the possibility that the radiation is produced by a nonlinear decay of electrostatic Bernstein waves with frequency near the upper hybrid frequency is considered. This mechanism can explain the narrow spectral lines, and does not require a linear instability at low frequencies. (Author)

  18. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  19. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  20. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  1. Effect of adiabatic variation of dust charges on dust acoustic solitary waves in magnetized dusty plasmas

    Institute of Scientific and Technical Information of China (English)

    Duan Wen-Shan

    2004-01-01

    The effect of dust charging and the influence of its adiabatic variation on dust acoustic waves is investigated. By employing the reductive perturbation technique we derived a Zakharov-Kuznetsov (ZK) equation for small amplitude dust acoustic waves. We have analytically verified that there are only rarefactive solitary waves for this system. The instability region for one-dimensional solitary wave under transverse perturbations has also been obtained. The obliquely propagating solitary waves to the z-direction for the ZK equation are given in this paper as well.

  2. Tail formation by nonresonant interaction of ions with ion-acoustic turbulence

    Science.gov (United States)

    Appert, K.; Vaclavik, J.

    1981-09-01

    The quasilinear evolution of ion-acoustic turbulence induced by a constant current in a two-temperature plasma (with electron temperature much greater than ion temperature) is considered. The pertinent equations, which include both resonant and nonresonant wave-particle interactions, are discretized by a finite element method and solved numerically. If is shown first that the nonresonant interaction provides a powerful mechanism for ion tail formation. It is then shown that linear Landau damping on the high-energy ion tail so formed may quench the ion-acoustic instability as proposed by Dum et al. (1974) when interpreting their particle-in-cell simulation results.

  3. Acoustical coupling of lizard eardrums

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-01-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct...... is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit....

  4. Room acoustic auralization with Ambisonics

    OpenAIRE

    Polack, Jean-Dominique; Leão Figueiredo, Fábio

    2012-01-01

    International audience During the year of 2009, the room acoustics group of the LAM (Équipe Lutheries, Acoustique, Musique de l’Institut Jean Le Rond d’Alembert - Université Pierre et Marie Curie, Paris) performed a series of acoustical measurements in music halls in Paris. The halls were chosen in regarding their importance to the historic, architectural or acoustic domains. The measured ensemble of fourteen rooms includes quite different architectural designs. The measurements were carri...

  5. Is Radioactive Decay Really Exponential?

    CERN Document Server

    Aston, Philip J

    2012-01-01

    Radioactive decay of an unstable isotope is widely believed to be exponential. This view is supported by experiments on rapidly decaying isotopes but is more difficult to verify for slowly decaying isotopes. The decay of 14C can be calibrated over a period of 12,550 years by comparing radiocarbon dates with dates obtained from dendrochronology. It is well known that this approach shows that radiocarbon dates of over 3,000 years are in error, which is generally attributed to past variation in atmospheric levels of 14C. We note that predicted atmospheric variation (assuming exponential decay) does not agree with results from modelling, and that theoretical quantum mechanics does not predict exact exponential decay. We give mathematical arguments that non-exponential decay should be expected for slowly decaying isotopes and explore the consequences of non-exponential decay. We propose an experimental test of this prediction of non-exponential decay for 14C. If confirmed, a foundation stone of current dating meth...

  6. Hadronic Decays of Charm

    OpenAIRE

    Stenson, Kevin

    2001-01-01

    Recent hadronic charm decay results from fixed-target experiments are presented. New measurements of the D0 to K-K+K-pi+ branching ratio are shown as are recent results from Dalitz plot fits to D+ to K-K+pi+, pi+pi-pi+, K-pi+pi+, K+pi-pi+ and D_s+ to pi+pi-pi+, K+pi-pi+. These fits include measurements of the masses and widths of several light resonances as well as strong evidence for the existence of two light scalar particles, the pipi resonance sigma and the Kpi resonance kappa.

  7. Tau Decays into Kaons

    OpenAIRE

    Finkemeier, Markus; Mirkes, Erwin

    1995-01-01

    Predictions for semi-leptonic decay rates of the tau lepton into two and three meson final states with one or two kaons are derived, including a discussion of K_S pi- K_S, K_L pi- K_L and K_S pi- K_L. The hadronic matrix elements are expressed in terms of form factors, which can be predicted by chiral Lagrangians supplemented by informations about all possible low-lying resonances in the different channels. Isospin symmetry relations among the different final states are carefully taken into a...

  8. Coupled Bunch Instabilities in the LHC

    CERN Document Server

    Angal-Kalinin, Deepa

    2002-01-01

    In the LHC, the coupled bunch instabilities will be mainly driven by the RF cavities and the resistive wall effect. The growth times of these instabilities have been estimated taking into consideration the undamped and damped higher order modes of these cavities. These estimates show that the rise times of the longitudinal coupled bunch instabilities are under control. The proposed transverse feed-back system allows the same conclusion to be drawn for the transverse resistive wall instability.

  9. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-01-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic...... conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated...... in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation...

  10. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control.

    Science.gov (United States)

    Passero, Carolina Reich Marcon; Zannin, Paulo Henrique Trombetta

    2012-11-01

    Arranging office space into a single open room offers advantages in terms of easy exchange of information and interaction among coworkers, but reduces privacy and acoustic comfort. Thus, the purpose of this work was to evaluate the acoustic quality of a real open-plan office and to propose changes in the room to improve the acoustic conditioning of this office. The computational model of the office under study was calibrated based on RT and STI measurements. Predictions were made of the RT and STI, which generated the radius of distraction r(D), and the rate of spatial decay of sound pressure levels per distance doubling DL(2) in the real conditions of the office and after modifications of the room. The insertion of dividers between work stations and an increase in the ceiling's sound absorption improved the acoustic conditions in the office under study.

  11. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  12. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    International Nuclear Information System (INIS)

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  13. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control.

    Science.gov (United States)

    Passero, Carolina Reich Marcon; Zannin, Paulo Henrique Trombetta

    2012-11-01

    Arranging office space into a single open room offers advantages in terms of easy exchange of information and interaction among coworkers, but reduces privacy and acoustic comfort. Thus, the purpose of this work was to evaluate the acoustic quality of a real open-plan office and to propose changes in the room to improve the acoustic conditioning of this office. The computational model of the office under study was calibrated based on RT and STI measurements. Predictions were made of the RT and STI, which generated the radius of distraction r(D), and the rate of spatial decay of sound pressure levels per distance doubling DL(2) in the real conditions of the office and after modifications of the room. The insertion of dividers between work stations and an increase in the ceiling's sound absorption improved the acoustic conditions in the office under study. PMID:22507599

  14. Suppression of the n=2 rotational instability in field-reversed-configurations

    International Nuclear Information System (INIS)

    Compact toroid plasmas formed in field-reversed-theta-pinches are generally destroyed after 30 to 50 μsec by a rotating n=2 instability. This instability has been controlled, and the plasma destruction avoided in the TRX-1 theta-pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μs based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region was found to be about one ion gyrodiameter

  15. Decay of electric charge on corona charged polyethylene

    International Nuclear Information System (INIS)

    This paper describes a study on the surface potential decay of corona charged low density polyethylene (LDPE) films. A conventional corona charging process is used to deposit charge on the surface of film and surface potential is measured by a compact JCI 140 static monitor. The results from corona charged multilayer sample reveal that the bulk process dominates charge decay. In addition, the pulsed-electro-acoustic (PEA) technique has been employed to monitor charge profiles in corona charged LDPE films. By using the PEA technique, we are able to monitor charge migration through the bulk. Charge profiles in corona charged multilayer sample are consistent with surface potential results. Of further significance, the charge profiles clearly demonstrate that double injection has taken place in corona charged LDPE films

  16. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  17. Localized Rayleigh Instability in Evaporation Fronts

    OpenAIRE

    Diamant, Haim; Agam, Oded

    2009-01-01

    A qualitatively different manifestation of the Rayleigh instability is demonstrated, where, instead of the usual extended undulations and breakup of the liquid into many droplets, the instability is localized, leading to an isolated narrowing of the liquid filament. The localized instability, caused by a nonuniform curvature of the liquid domain, plays a key role in the evaporation of thin liquid films off solid surfaces.

  18. Observation of Parametric Instability in Advanced LIGO

    CERN Document Server

    Evans, Matthew; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; O`Reilly, Brian; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Landry, Michael; Sigg, Daniel; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-01-01

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress.

  19. Basic instabilities of collisionless gravitating systems.

    Science.gov (United States)

    Polyachenko, V. L.

    1995-05-01

    The paper presents a short summary of basic instabilities in stellar systems, namely: the Jeans, bar-mode and fire-hose (bending) instabilities. A classification of bar-mode instabilities according to a ratio of the bar pattern angular velocity and the maximal precession speed of nearly-circular stellar orbits is proposed.

  20. Analogy between thermal convective and magnetohydrodynamic instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Valdmanis, Ya.Ya.; Kukainis, O.A.

    1977-01-01

    An examination is made of the analogy between thermo-convective instability and instability produced by various electromagnetic forces both in steady and alternating thermal and electromagnetic fields. An example is given for calculating an assumed bubble instability which could occur in an alternating magnetic field. 17 references.

  1. Amplitude Equation for Instabilities Driven at Deformable Surfaces - Rosensweig Instability

    Science.gov (United States)

    Pleiner, Harald; Bohlius, Stefan; Brand, Helmut R.

    2008-11-01

    The derivation of amplitude equations from basic hydro-, magneto-, or electrodynamic equations requires the knowledge of the set of adjoint linear eigenvectors. This poses a particular problem for the case of a free and deformable surface, where the adjoint boundary conditions are generally non-trivial. In addition, when the driving force acts on the system via the deformable surface, not only Fredholm's alternative in the bulk, but also the proper boundary conditions are required to get amplitude equations. This is explained and demonstrated for the normal field (or Rosensweig) instability in ferrofluids as well as in ferrogels. An important aspect of the problem is its intrinsic dynamic nature, although at the end the instability is stationary. The resulting amplitude equation contains cubic and quadratic nonlinearities as well as first and (in the gel case) second order time derivatives. Spatial variations of the amplitudes cannot be obtained by using simply Newell's method in the bulk.

  2. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    Science.gov (United States)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  3. Experimental measurement of acoustic plasmons in polycrystalline palladium

    Science.gov (United States)

    Garrity, Patrick L.

    2013-03-01

    An experimental study of collective oscillations in Pd covering the region of very low energy and momentum transfers is reported. Through Dynamic Electron Scattering spectroscopy, structure factor spectra were measured from 80 K to 298 K on a bulk polycrystalline Pd sample. Here we report the first experimental evidence of damped acoustic plasmons and their evolution to the single-particle excitation continuum. The acoustic plasmons follow a linear dispersion and are experimentally shown to be a separate and distinct resonance mode from acoustic surface plasmons. Calculations of the dielectric function employed a model that incorporates complete mixing of two conduction bands with contributions from both interband and intraband transitions. The model was used in computational studies that focused on specific experimental results to aid the characterization and understanding of the plasmon behavior. We found that the Pd acoustic plasmon energy matched the longitudinal phonon anomaly that has sparked numerous theoretical reports on the possible energetic coupling of these modes. Further experimental evidence of plasmon and phonon dynamical processes are found in the linewidth analysis of the data. The primary decay mechanism of the plasmons is interpreted to be strong phonon-assisted interband transitions. Further spectral features and the plasmon velocity are also reported.

  4. Wood decay at sea

    Science.gov (United States)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  5. Topics in vacuum decay (Ph.D Thesis)

    CERN Document Server

    Masoumi, Ali

    2015-01-01

    If a theory has more than one classically stable vacuum, quantum tunneling and thermal jumps make the transition between the vacua possible. The transition happens through a first order phase transition started by nucleation of a bubble of the new vacuum. The outward pressure of the truer vacuum makes the bubble expand and consequently eat away more of the old phase. In the presence of gravity this phenomenon gets more complicated and meanwhile more interesting. It can potentially have important cosmological consequences. Some aspects of this decay are studied in this thesis. Solutions with different symmetry than the generically used O(4) symmetry are studied and their actions calculated. Vacuum decay in a spatial vector field is studied and novel features like kinky domain walls are presented. The question of stability of vacua in a landscape of potentials is studied and the possible instability in large dimension of fields is shown. Finally a compactification of the Einstein-Maxwell theory is studied which...

  6. Collective Effect Studies of a Beta Beam Decay Ring

    CERN Document Server

    Hansen, Christian

    2011-01-01

    The Beta Beam, the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring called the Decay Ring (DR), is the basis of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the DR's ion intensity and of its duty factor (the filled ratio of the ring). Different methods, including analytical calculations and multiparticle tracking simulations, were used to estimate the DR's potential to contain enough ions in as small a part of the ring as needed for the sensitivities. Studies of transverse blow up of the beams due to resonance wake fields show that a very challenging upper limit of the transverse broadband impedance is required to avoid instabilities and beam loss.

  7. Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1996-01-01

    We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate....... Experimental results show the complete sequence of events starting from self-focusing of the stripe, its bending due to the snake instability, and subsequent decay into a set of optical vortices....

  8. Co-Decaying Dark Matter

    CERN Document Server

    Dror, Jeff Asaf; Ng, Wee Hao

    2016-01-01

    We propose a new mechanism for thermal dark matter freezeout, termed Co-Decaying Dark Matter. Multi-component dark sectors with degenerate particles and out-of-equilibrium decays can co-decay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles, rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross-section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes co-decaying dark matter.

  9. Dark decay of Top quark

    CERN Document Server

    Kong, Kyoungchul; Park, Myeonghun

    2014-01-01

    We suggest top quark decays as a venue to search for light dark force carriers. Top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for new decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6 sigma deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t -> b W + Z's. This is the same as the dominant top quark decay (t -> b W) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. We discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.

  10. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  11. Yrast decays in 43K

    International Nuclear Information System (INIS)

    High-spin states in 43K were studied using the 9Be(36S,pnγ)43K reaction. Threefold (pγ1γ2) coincidence data and γ-ray intensity ratios were used to establish a decay scheme and identify negative- and positive-parity yrast decay chains. The 15/2- yrast state is relatively poorly aligned prior to decay. Energies of positive-parity levels predicted by Johnstone are in good agreement with experiment

  12. Invariants of free turbulent decay

    OpenAIRE

    Llor, Antoine

    2006-01-01

    In practically all turbulent flows, turbulent energy decay is present and competes with numerous other phenomena. In Kolmogorov's theory, decay proceeds by transfer from large energy-containing scales towards small viscous scales through the "inertial cascade." Yet, this description cannot predict an actual decay rate, even in the simplest case of homogeneous isotropic turbulence (HIT). As empirically observed over 50 years, the steepness of the "infrared" spectrum - at scales larger than ene...

  13. Particle decay in inflationary cosmology

    OpenAIRE

    Boyanovsky, D.; de Vega, H. J.

    2004-01-01

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. F...

  14. Rare charm decays at LHCb

    CERN Document Server

    Kochebina, Olga

    2014-01-01

    Flavour-changing neutral current decays such as c ! ul + l are highly suppressed in the Standard Model, but may be enhanced by New Physics. The latest searches for such decays at LHCb based on 1.0 fb 1 of data collected in 2011 are presented in this document. Two decays, 2-body D 0 ! m + m and 3-body D + ( s ) ! p + m + m , are considered here

  15. Rock-Arch Instability Characteristics of the Sandstone Plate under Different Loading Conditions

    Directory of Open Access Journals (Sweden)

    Shuren Wang

    2014-01-01

    Full Text Available Under the concentrated loading and the uniform loading, the tests on the brittle fracture and the hinged arching until the rock-arch instability of the sandstone plate were conducted using self-developed loading device, and the sensitivity of influent factors on the rock-arch failure was analyzed by numerical test based on the particle flow code (PFC. The results showed that sandstone plate instability presented four phases: small deformation elastic stage, brittle fracture arching stage, rock-arch bearing stage, and rock-arch instability stage. Under the uniform loading, the maximum vertical force of the rock-arch instability was much higher than that under the concentrated loading condition, but the maximum lateral force was almost the same. The number of acoustic emission (AE and its positioning results of the sandstone plate showed that the extent of the plate damage under the uniform loading was higher than that under the concentrated loading condition. The friction coefficient effect, size effect, loading rate effect, and the initial horizontal force effect on the rock-arch instability were analyzed by the PFC3D numerical experiment.

  16. Convective instability in inhomogeneous media: impulse response in the subcritical cylinder wake

    CERN Document Server

    Marais, Catherine; Barkley, Dwight; Wesfreid, José Eduardo

    2010-01-01

    We study experimentally the impulse response of a cylinder wake below the critical Reynolds number of the B\\'enard-von K\\'arm\\'an instability. In this subcritical regime, a localized inhomogeneous region of convective instability exists which causes initial perturbations to be transiently amplified. The aim of this work is to quantify the evolution resulting from this convective instability using two-dimensional particle image velocimetry in a hydrodynamic tunnel experiment. The velocity fields allow us to describe the evolution of wave packets in terms of two control parameters: the Reynolds number and the magnitude of the imposed perturbation. The temporal evolution of energy exhibits a transient algebraic growth at short times followed by an exponential decay.

  17. Cyclotron instability in the afterglow mode of minimum-B ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Izotov, I., E-mail: izotov@ipfran.ru; Mansfeld, D. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul’yanova St., 603950 Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland); Skalyga, V. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul’yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation)

    2016-02-15

    It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. It was found that even in various gases (helium and oxygen were studied) and at different values of magnetic field and heating power, the dynamic spectra demonstrate common features: decreasing frequency within a single burst as well as from one burst to another.

  18. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  19. Ramsey interaction with transverse decay

    Institute of Scientific and Technical Information of China (English)

    Xucheng Wang; Huadong Cheng; Liang Liu

    2012-01-01

    The Ramsey fringe contrast of a pulsed optically pumped cold atom clock is strongly affected by the transverse decay of the atomic sample.This letter calculates the Ramsey fringe with focus on transverse decay,and analyzes the Ramsey fringe contrast with different transverse decay rates.By fitting the experimental data,we obtain the transverse decay rate in a cold atom sample at an approximate value of 30.5 s-1,which is much smaller than that in a cell.

  20. Radioactive Decays in Geant4

    OpenAIRE

    Hauf, Steffen; Kuster, Markus; Batič, Matej; Bell, Zane W.; Dieter H.H. Hoffmann; Lang, Philipp M.; Neff, Stephan; Pia, Maria Grazia; Weidenspointner, Georg; Zoglauer, Andreas

    2013-01-01

    The simulation of radioactive decays is a common task in Monte-Carlo systems such as Geant4. Usually, a system either uses an approach focusing on the simulations of every individual decay or an approach which simulates a large number of decays with a focus on correct overall statistics. The radioactive decay package presented in this work permits, for the first time, the use of both methods within the same simulation framework - Geant4. The accuracy of the statistical approach in our new pac...