WorldWideScience

Sample records for acoustic clinical measurements

  1. Clinical value of acoustic voice measures: a retrospective study.

    Science.gov (United States)

    Werth, Katrin; Voigt, Daniel; Döllinger, Michael; Eysholdt, Ulrich; Lohscheller, Jörg

    2010-08-01

    Within this study a retrospective analysis of clinical voice perturbation measures, Dysphonia Severity Index and subjective perceived hoarseness was performed to determine their value under clinical aspects. The study included the data of 580 healthy and 1,700 pathologic voices, which were investigated under the following aspects. The relevant parameters were identified and their interrelation determined. Group differences between healthy and pathologic voices were figured out and investigated if voice quality measures allowed an automatic diagnosis of voice disorders. The analysis revealed significant changes between the clinical groups, which indicate the diagnostic relevance of voice quality measures. However, an individual diagnosis of the underlying voice disorder failed due to a vast spread of the parameter values within the respective groups. Classification accuracies of 75-90% were achieved. The high misclassification rate of up to 25% implied that in voice disorder diagnosis, the individual interpretation of the parameter values has to be done carefully.

  2. Wireless Acoustic Measurement System

    Science.gov (United States)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  3. Software-based acoustical measurements

    CERN Document Server

    Miyara, Federico

    2017-01-01

    This textbook provides a detailed introduction to the use of software in combination with simple and economical hardware (a sound level meter with calibrated AC output and a digital recording system) to obtain sophisticated measurements usually requiring expensive equipment. It emphasizes the use of free, open source, and multiplatform software. Many commercial acoustical measurement systems use software algorithms as an integral component; however the methods are not disclosed. This book enables the reader to develop useful algorithms and provides insight into the use of digital audio editing tools to document features in the signal. Topics covered include acoustical measurement principles, in-depth critical study of uncertainty applied to acoustical measurements, digital signal processing from the basics, and metrologically-oriented spectral and statistical analysis of signals. The student will gain a deep understanding of the use of software for measurement purposes; the ability to implement software-based...

  4. Wind turbines acoustic measurements

    Science.gov (United States)

    Trematerra, Amelia; Iannace, Gino

    2017-07-01

    The importance of wind turbines has increased over the last few years throughout the European Community. The European energy policy guidelines state that for the year 2020 20% of all energy must be produced by alternative energy sources. Wind turbines are an important type of energy production without petrol. A wind speed in a range from 2.5 m/s to 25.0 m/s is needed. One of the obstacles to the widespread diffusion of wind turbine is noise generation. This work presents some noise measurements of wind turbines in the South of Italy, and discusses the noise problems for the people living near wind farms.

  5. Acoustic Communications Measurement Systems (ACOMMS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  6. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.

    1981-01-01

    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  7. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.

    1981-01-01

    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  8. Eliminating transducer distortion in acoustic measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2014-01-01

    This paper investigates the in uence of nonlinear components that contaminate the linear response of acoustic transducer, and presents a method for eliminating the in uence of nonlinearities in acoustic measurements. The method is evaluated on simulated as well as experimental data, and is shown...

  9. Acoustical measurements in ancient Roman theatres

    Science.gov (United States)

    Farnetani, Andrea; Fausti, Patrizio; Pompoli, Roberto; Prodi, Nicola

    2001-05-01

    The Greek and Roman theatres are among the most precious and spectacular items of cultural heritage in the Mediterranean countries. The theatres are famous not only for their impressive architecture, but also for the acoustic qualities. For this reason it is important to consider these theatres as an acoustical heritage and to study their sound field. Within the activities of the ERATO (identification Evaluation and Revival of the Acoustical heritage of ancient Theatres and Odea) project, acoustical measurements were taken in well-preserved ancient Roman theatres at Aspendos (Turkey) and Jerash (Jordan). Roman theatres have an impressive stage building that forms a back wall in the orchestra area, and it was found that, from the analysis of the acoustical parameters, the reverberation time (e.g., 1.7 s at middle frequencies in the theatre of Aspendos) is quite long compared not only with other open-space theatres but also with closed spaces. Contrary to modern halls the clarity is high and this fact, together with a low sound level in most of the seats, gives the sound field a unique character.

  10. Measuring Norwegian dialect distances using acoustic features

    NARCIS (Netherlands)

    Heeringa, Wilbert; Johnson, Keith; Gooskens, Charlotte

    2009-01-01

    Levenshtein distance has become a popular tool for measuring linguistic dialect distances, and has been applied to Irish Gaelic, Dutch, German and other dialect groups. The method, in the current state of the art, depends upon phonetic transcriptions, even when acoustic differences are used the numb

  11. Measuring Norwegian dialect distances using acoustic features

    NARCIS (Netherlands)

    Heeringa, Wilbert; Johnson, Keith; Gooskens, Charlotte

    Levenshtein distance has become a popular tool for measuring linguistic dialect distances, and has been applied to Irish Gaelic, Dutch, German and other dialect groups. The method, in the current state of the art, depends upon phonetic transcriptions, even when acoustic differences are used the

  12. Force Measurements in Vibration and Acoustic Tests

    Science.gov (United States)

    Scharton, T. D.

    1996-01-01

    The advent of triaxial, piezoelectric force gages and the associated signal processing is a precursor to several dynamics testing innovations. This new technology is applicable to spacecraft programs that JPL manages. An application of force measurement is force limiting (when testing spacecraft in random vibration tests). Base-drive and acoustic modal testing is a potential application.

  13. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Institute of Scientific and Technical Information of China (English)

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  14. Acoustic vs Interferometric Measurements of Lightning

    Science.gov (United States)

    Arechiga, R. O.; Erives, H.; Sonnenfeld, R. G.; Stanley, M. A.; Rison, W.; Thomas, R. J.; Edens, H. E.; Lapierre, J. L.; Stock, M.; Jensen, D.; Morris, K.

    2015-12-01

    During the summer of 2015 we acquired acoustic and RF data on severalflashes from thunderstorms over Fort Morgan CO. and Langmuir Laboratoryin the Magdalena mountains of central New Mexico. The acoustic arrayswere located at a distance of roughly 150 m from the interferometers.Lightning mapping array and slow antenna data were also obtained. Theacoustic arrays consist of arrays of five audio-range and six infrasoundmicrophones operating at 50 KHz and 1 KHz respectively. The lightninginterferometer at Fort Morgan CO. consists of three flat-plate, 13" diameterantennas at the vertices of an equilateral 50 m per side triangle. Theinterferometer at Langmuir Laboratory consists of three 13" dishes separatedby about 15 m. Both interferometers, operating at 180 Megasamples persecond, use the analysis software and digitizer hardware pioneered byStanley, Stock et al. The high data rate allows for excellent spatialresolution of high speed (and typically high current) processes such asK-changes, return strokes and dart-leaders. In previous studies, we haveshown the usefulness of acoustic recordings to locate thunder sources aswell as infrasound pulses from lightning. This work will present acomparison of Acoustic and Interferometric measurements from lightning,using some interesting flashes, including a positive cloud to ground,that occurred in these campaigns.

  15. An acoustic mode measurement technique

    Science.gov (United States)

    Joppa, P. D.

    1984-10-01

    Turbomachinery noise propagates in aircraft jet engine ducts in a complicated manner. Measurement of this propagation is useful both to identify source mechanisms and to design efficient linings. A practical method of making these measurements has been developed, using linear arrays of equally spaced microphones mounted flush with the duct wall. Circumferential or axial arrays are analyzed by spatial Fourier transform, giving sound level as a function of spinning order or axial wavenumber respectively. Complex demodulation is used to acquire data in a modest bandwidth around a high frequency of interest. A joint NASA/Boeing test of the system used 32 microphones in a JT15D turbofan engine inlet. A 400-Hz bandwidth centered at blade passage frequency and at half blade passage frequency was studied. The theoretically predicted modes were clearly seen at blade passage frequency; broadband noise at half blade passage frequency was biased towards modes corotating with the fan. Interference between similar modes was not a significant problem. A lining design study indicated a 15 percent improvement in lining efficiency was possible when mode data were used, for this particular engine. The technique has proven reliable and useful for source diagnostics and lining design.

  16. Acoustic measurement of potato cannon velocity

    CERN Document Server

    Courtney, M; Courtney, Amy; Courtney, Michael

    2006-01-01

    This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.

  17. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  18. ACOUSTIC MEASUREMENTS BUBBLES IN BIOLOGICAL TIESSURE

    Institute of Scientific and Technical Information of China (English)

    CHAHINE Georges L.; TANGUAY Michel; LORAINE Greg

    2009-01-01

    An acoustic based instrument,the ABS Acoustic Bubble Spectrometer(R)(C)(ABS),was investigated for the detection and quantification of bubbles in biological media.These include viscoelastic media(blood),materials of varying density(bone in tissue),non-homogenous distribution of bubbles(intravenous bubbly flow),and bubbles migrating in tissue(decompression sickness,DCS).The performance of the ABS was demonstrated in a series of laboratory experiments.Validation of the code was performed using a viscoelastic polymer solution,Polyox,in which the bubble size distribution and void fraction were determined by ABS measurements and with image analysis of high speed videos.These tests showed that the accuracy of the ABS was not significantly affected by viscoelasticity for bubbles smaller than 200 microns.The ABS detection and measurement of non-homogenous bubble distributions was demonstrated using a bubbly flow through a simulated vein surrounded by tissue.The scatter of acoustic signals due to bones in the acoustic pathway was also investigated.These in-vitro experiments were done using meat(beef)as a tissue simulant.Decompression experiments were done using beef meat which was held underwater at high pressure(9.9 atm)then rapidly decompressed.Bubble size distributions and void fraction calculations in these experiments were then validated using image analysis of high speed video.In addition,preliminary experiments were performed with the US Navy Medical Research Center,demonstrating the utility of the modified ABS system in detecting the evolution of bubbles in swine undergoing decompression sickness(DCS).These results indicate that the ABS may be used to detect and quantify the evolution of bubbles in-vivo and aid in the monitoring of DCS.

  19. Acoustic measuring techniques for suspended sediment

    Science.gov (United States)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  20. Measurement of acoustic attenuation in South Pole ice

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S.W.; Bay, R.; Alba, J.L.B.; Beattie, K.; Beatty, J.J.; Bechet, S.; Becker, J.K.; Becker, K.H.; Benabderrahmane, M.L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D.Z.; Bissok, M.; Blaufuss, E.; Boersma, D.J.; Bohm, C.; Boser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D.F.; D'Agostino, M.V.; Danninger, M.; Clercq, C. De; Demirors, L.; Depaepe, O.; Descamps, F.; Desiati, P.; Vries-Uiterweerd, G. de; DeYoung, T.; Diaz-Velez, J.C.; Dreyer, J.; Dumm, J.P.; Duvoort, M.R.; Ehrlich, R.; Eisch, J.; Ellsworth, R.W.; Engdegard, O.; Euler, S.; Evenson, P.A.; Fadiran, O.; Fazely, A.R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M.M.; Fox, B.D.; Franckowiak, A.; Franke, R.; Gaisser, T.K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glusenkamp, T.; Goldschmidt, A.; Goodman, J.A.; Grant, D.; Griesel, T.; Gross, A.; Grullon, S.; Gunasingha, R.M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G.C.; Hoffman, K.D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Lafebre, S.J.

    2011-01-01

    Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been

  1. A comparison between acoustic mode measurements and acoustic finite element analysis performed for SAAB SF 340

    Science.gov (United States)

    Goeransson, P.; Green, I.

    1986-03-01

    In order to verify an acoustic finite element package, measured and calculated eigenmodes and eigenfrequencies for Saab SF 340 cabin acoustics were compared. The measurements were performed in an acoustic mockup. For the analysis, a two dimensional model of the cross section of the fuselage was used. The comparison shows quite good agreement, the discrepancies being due to the representation of the flexible wall of the fuselage as rigid in the analysis.

  2. Acoustic CT system for temperature distribution measurement

    Institute of Scientific and Technical Information of China (English)

    Shinji Ohyama; Toyofumi Oga; Kazuo Oshima; Junya Takayama

    2008-01-01

    In this paper,a measurement method for crosssectional temperature distribution is addressed. A novel method based on an acoustic CT technique is proposed. Specifically,the temperature distributions are estimated using the time of flight data of several ultrasonic propagation paths. The times of the flight data contain both temperature and wind effect,and the method to select only temperature component is introduced. A filtered back projection method is applied to reconstruct the temperature distributions from the time of flight data. An experimental system was designed and fabricated to realize simultaneous temperature and wind velocity distribution measurements. Through this system,the effectiveness of the proposed measurement method is confirmed.

  3. Noninvasive fluid property measurements using acoustic methods.

    Science.gov (United States)

    Forbush, Michael; Chow, Humphrey; Chiao, James; Rose, Andrew

    2007-03-01

    The properties of a fluid are normally determined using invasive methods. These methods may lead to possibly contaminating or consuming the sample. When only very small amounts of a valuable sample exist, noninvasive measurement methods are preferred. The properties of fluids can then be used to deduce additional properties based on known relationships. In one case, the surface tension of a fluid may be used to determine the concentration of a fluid. The authors describe a measurement technique involving excitation of the surface of the fluid and the measurement of its response. An acoustic wave is used to both excite and monitor the surface of the liquid. This technique is used to determine the concentration of DMSO and water in solution, and the result determines the amount of fluid needed to deliver an accurate amount of solute in solution.

  4. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen, E-mail: Stephen.Avery@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Vander Stappen, François; Janssens, Guillaume; Prieels, Damien [Ion Beam Applications SA, Louvain-la-Neuve 1348 (Belgium); Bawiec, Christopher R.; Lewin, Peter A. [School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Sehgal, Chandra M. [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  5. Measurement of acoustical characteristics of mosques in Saudi Arabia

    Science.gov (United States)

    Abdou, Adel A.

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  6. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  7. Identification of Acoustic-Vibratory System by Acoustic Measurement

    Directory of Open Access Journals (Sweden)

    Takuzo Iwatsubo

    1996-01-01

    Full Text Available A new method for reducing ill-conditioning in a class of identification problems is proposed. The key point of the method is that the identified vibration of the sound source is expressed as a superposition of vibration modes. The mathematical property of the coefficient matrix, the practical error expanding ratio, and the stochastic error expanding ratio are investigated in a numerical example. The mode-superposition method is shown to be an effective tool for acoustic-vibratory inverse analysis.

  8. Outdoor Synthetic Aperture Acoustic Ground Target Measurements

    Science.gov (United States)

    2010-04-19

    1341 (2003). [11] C. A. Dimarzio, T. Shi, F. J. Blonigen et al., “ Laser -Induced Acoustic Landmine Detection,” The Journal Of The Acoustical Society...High Frequency A/S Coupling For Ap Buried Landmine Detection Using Laser Doppler Vibrometers,” Proc. SPIE 5415(1), 35-41 (2004). [16] Bishop, S... Dolphin Echolocation Clicks For Target Discrimination,” The Journal Of The Acoustical Society Of America 124(1), 657-666 (2008). [20] Y. Nakamura

  9. Measurement of the thermo-acoustic effect for acoustic neutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, Dirk; Cramer, Sascha; Laihem, Karim; Paul, Larissa; Wiebusch, Christopher [III. Physikalisches Institut, RWTH Aachen, D-52056 Aachen (Germany); Collaboration: IceCube-Collaboration

    2011-07-01

    Future neutrino telescopes with the aim to explore the extreme high energy region (E >10{sup 18} eV) require 1-2 orders of magnitude larger effective volumes compared to current optical detectors (IceCube 1 km{sup 3}). One possible approach is the thermo-acoustic detection of hadronic cascades from neutrino interactions. A main goal of the Aachen Acoustic Laboratory (AAL) is to study the thermo-acoustic effect under laboratory conditions and to develop appropriate detection methods. Central element is a large 3 m{sup 3} ice or water tank in which sensor and emitter elements are deployed. Thermo-acoustic signals are generated by a pulsed laser beam injected into the tank. In this talk we present the status of the setup and the measurement of laser induced thermo-acoustic sound waves.

  10. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  11. Multi-dimensional analysis of subjective acoustical ratings and acoustical measures in existing concert halls

    Science.gov (United States)

    Okano, Toshiyuki

    2004-05-01

    Correlations between subjective acoustical ratings and hall-averaged values of acoustical measures are studied among existing worldwide major concert halls. It was shown that the classified acoustical ratings by Beranek [Concert and Opera Halls, How They Sound (ASA, 1996)] are discriminated correctly by combining binaural quality index (BQI) with some other acoustical measures. BQI is determined by the arithmetic average of inter-aural cross correlation coefficient in three octave bands of 500, 1000, and 2000 Hz, subtracted from unity, calculated from the early 80-ms part of binaural impulse response. Considering that the upper limit value of BQI not to cause disturbing image shift is approximately 0.85 at individual seat [Okano, J. Acoust. Soc. Am. 2219-2230 (2000)], the values of 0.6 or higher in hall averaged value of BQI, 0.85 or smaller in individual seat value of BQI, and approximately 5 dB or higher in strength factor at middle frequencies are proposed as design objectives to attain a high acoustical quality. It should be provided that other acoustical measures are also optimized. These target values will be very effective in studying room shape of halls, using scale models or computer models.

  12. Measurement of the Laser induced thermo-acoustic effect for acoustic neutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, Dirk; Laihem, Karim; Paul, Larissa; Scheel, Maximilian; Wiebusch, Christopher [III. Physikalisches Institut, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2012-07-01

    Future neutrino telescopes with the aim to explore the extreme high energy region (above 10{sup 18} eV) require 2-3 orders of magnitude larger effective volumes compared to current optical detectors (IceCube 1 km{sup 3}). One possible approach is the acoustic detection of the thermo-acoustic pressure wave generated by hadronic cascades in neutrino interactions. A major goal of the Aachen Acoustic Laboratory (AAL) is to study the thermo-acoustic effect under laboratory conditions and to develop appropriate detection methods. Central element is a large volume (3 m{sup 3}) of ice or water in which sensor and emitter elements are deployed. Thermo-acoustic signals are generated by a pulsed laser beam injected into the volume. In this talk we present the experimental setup and measurements of the laser induced thermo-acoustic sound waves. In addition to these laboratory measurements an outlook on future in-situ measurements of acoustic signals in ice will be given.

  13. Articulatory-acoustic vowel space: Associations between acoustic and perceptual measures of clear speech.

    Science.gov (United States)

    Whitfield, Jason A; Goberman, Alexander M

    2017-04-01

    The current investigation examined the relationship between perceptual ratings of speech clarity and acoustic measures of speech production. Included among the acoustic measures was the Articulatory-Acoustic Vowel Space (AAVS), which provides a measure of working formant space derived from continuously sampled formant trajectories in connected speech. Acoustic measures of articulation and listener ratings of speech clarity were obtained from habitual and clear speech samples produced by 10 neurologically healthy adults. Perceptual ratings of speech clarity were obtained from visual-analogue scale ratings and acoustic measures included the AAVS measure, articulation rate and percentage pause. Clear speech was characterised by a higher perceptual clarity rating, slower articulation rate, greater percentage pause and larger AAVS compared to habitual speech. Additionally, correlation analysis revealed a significant relationship between the perceptual clear speech effect and the relative clarity-related change in the AAVS and articulation rate measures. The current findings suggest that, along with speech rate measures, the recently introduced AAVS is sensitive to changes in speech clarity.

  14. Acoustic temperature measurement in a rocket noise field.

    Science.gov (United States)

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  15. Acoustic sensor for remote measuring of pressure

    Directory of Open Access Journals (Sweden)

    Kataev V. F.

    2008-04-01

    Full Text Available The paper deals with sensors based on delay lines on surface acoustic waves (SAW, having a receiving-emitting and a reflective interdigital transducers (IDT. The dependence of the reflection coefficient of SAW on type and intensity of the load was studied. The authors propose a composite delay line in which the phase of the reflection coefficient depends on the pressure. Pressure leads to a shift of the reflective IDT relative to the transceiver, because they are located on different substrates. The paper also presents functional diagrams of the interrogator.

  16. On acoustic intensity measurements in the presence of mean flow

    Science.gov (United States)

    Munro, D. H.; Ingard, K. U.

    1979-01-01

    A theoretical analysis demonstrates that the technique of measuring acoustic intensity by means of cross correlation between nearby microphones cannot, in general, be extended to situations in which there is mean flow. However, it may be possible to use this technique to measure intensities in ducts with mean flow at frequencies below their cutoff frequencies.

  17. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and

  18. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and t

  19. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  20. Measurement of thin films using very long acoustic wavelengths

    CERN Document Server

    Clement, G T; Adachi, H; Kamakura, T

    2013-01-01

    A procedure for measuring material thickness by means of necessarily-long acoustic wavelengths is examined. The approach utilizes a temporal phase lag caused by the impulse time of wave momentum transferred through a thin layer that is much denser than its surrounding medium. In air, it is predicted that solid or liquid layers below approximately 1/2000 of the acoustic wavelength will exhibit a phase shift with an arctangent functional dependence on thickness and layer density. The effect is verified for thin films on the scale of 10 microns using audible frequency sound (7 kHz). Soap films as thin as 100 nm are then measured using 40 kHz air ultrasound. The method's potential for imaging applications is demonstrated by combining the approach with near-field holography, resulting in reconstructions with sub-wavelength resolution in both the depth and lateral directions. Potential implications at very high and very low acoustic frequencies are discussed.

  1. Reverberation chamber and its verification for acoustic measurements

    Directory of Open Access Journals (Sweden)

    Drabek Pavel

    2016-01-01

    Full Text Available Reverberation rooms are useful for measurement of the acoustic quantities of machines that operate in long cycles, however, current reverberation chamber design practices often lead to known issues with reproducibility and repeatability of measured data. The problem is that construction process of these laboratories is performed according to the relevant standards requirements which are mainly focused on the volume of the room or on the absorption coefficient value of the boundary surfaces. Nevertheless, the inner-laboratory reproducibility of acoustic data is very difficult to achieve even when these diffusivity quantifiers are satisfied. This paper presents a verification process of an acoustic laboratory which proportions, shape and construction material of boundary surfaces are not in compliance with standards in every detail.

  2. Advances in non-invasive measures of vocal acoustics.

    Science.gov (United States)

    LaBlance, G R; Steckol, K F; Cooper, M H

    1991-10-01

    Objective assessment of vocal pitch, loudness, and quality is a crucial adjunct to endoscopy in the diagnosis and treatment of vocal pathology. Historically, this assessment was made through subjective, perceptual measures that were questionable in terms of validity and reliability. Recent advances in electronic technology now permit objective analysis of the acoustic characteristics of voice. Kay Elemetric's Visi-Pitch, DSP 5500 Digital Spectrograph, and Nasometer are representative of these new instruments and are used as illustrations in the discussion of the assessment of speech acoustics.

  3. Tethered acoustic doppler current profiler platforms for measuring streamflow

    Science.gov (United States)

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    The U.S. Geological Survey tested and refined tethered-platform designs for measuring streamflow. Platform specifications were developed, radio-modem telemetry of acoustic Doppler current profiler (ADCP) data and potential platform-hull sources were investigated, and hulls were tested and evaluated.

  4. Measuring System for Interference Optical Fiber Acoustic Emission①

    Institute of Scientific and Technical Information of China (English)

    LUQizhu; ZHENGShengxuan

    1997-01-01

    A type of interference optical fiber acoustic emission sensor is described.With 10-10 m level resolution,megahertz-level frequency and response time less than 1 μs,this sensor possesses prominent measuring stability and can be used in state supervision and trouble diagnosis.

  5. A Comparative Study of Two Acoustic Measures of Hypernasality

    Science.gov (United States)

    Vogel, Adam P.; Ibrahim, Hasherah M.; Reilly, Sheena; Kilpatrick, Nicky

    2009-01-01

    Purpose: This study aimed to compare 2 quantitative acoustic measures of nasality in children with cleft lip and palate (CLP) and healthy controls using formalized perceptual assessment as a guide. Method: Fifty participants (23 children with CLP and 27 age- and gender-matched healthy controls) aged between 4 and 12 years produced a variety of…

  6. Measurement of acoustic attenuation in South Pole ice

    Science.gov (United States)

    IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2011-01-01

    Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ˜300 m with 20% uncertainty. No significant depth or frequency dependence has been found.

  7. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    Science.gov (United States)

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  8. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between two microphone...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  9. Real-time temperature field measurement based on acoustic tomography

    Science.gov (United States)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-07-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution.

  10. Broadband acoustic scattering measurements of underwater unexploded ordnance (UXO).

    Science.gov (United States)

    Bucaro, J A; Houston, B H; Saniga, M; Dragonette, L R; Yoder, T; Dey, S; Kraus, L; Carin, L

    2008-02-01

    In order to evaluate the potential for detection and identification of underwater unexploded ordnance (UXO) by exploiting their structural acoustic response, we carried out broadband monostatic scattering measurements over a full 360 degrees on UXO's (two mortar rounds, an artillery shell, and a rocket warhead) and false targets (a cinder block and a large rock). The measurement band, 1-140 kHz, includes a low frequency structural acoustics region in which the wavelengths are comparable to or larger than the target characteristic dimensions. In general, there are aspects that provide relatively high target strength levels ( approximately -10 to -15 dB), and from our experience the targets should be detectable in this structural acoustics band in most acoustic environments. The rigid body scattering was also calculated for one UXO in order to highlight the measured scattering features involving elastic responses. The broadband scattering data should be able to support feature-based separation of UXO versus false targets and identification of various classes of UXO as well.

  11. Acoustic neuroma ingrowth in the cochlear nerve: does it influence the clinical presentation?

    NARCIS (Netherlands)

    Forton, G.E.J.; Cremers, C.W.R.J.; Offeciers, E.E.

    2004-01-01

    We examined the clinical presentation in patients with a histologically proven ingrowth of the cochlear nerve by acoustic neuroma to see whether this differs from what is known from large acoustic neuroma series. In total, 85 acoustic neuromas had an en bloc dissection to study histologically the re

  12. Measurement of acoustic attenuation in workrooms

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1997-01-01

    in the stationary sound field produced by an omnidirectional sound source in the room. The project has shown that there is a need for a new alternative measuring method - the results based on the classical reverberation time measurements do not agree sufficiently well with the actual equivalent absorption areas...... in the rooms. But it has not been possible within the project to establish and verify an alternative method based on a simple measurement in the stationary sound field.......Experimental work has been done in nine halls with volumes ranging from 693 to 123.978 cubic metres. The equivalent absorption area has been determined from absorption coefficients of the surfaces, calculated from reverberation time measurements and estimated from sound pressure level measurements...

  13. Volumetric measurements of a spatially growing dust acoustic wave

    Science.gov (United States)

    Williams, Jeremiah D.

    2012-11-01

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  14. Volumetric measurements of a spatially growing dust acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  15. Acoustic Emissions to Measure Drought-Induced Cavitation in Plants

    Directory of Open Access Journals (Sweden)

    Linus De Roo

    2016-03-01

    Full Text Available Acoustic emissions are frequently used in material sciences and engineering applications for structural health monitoring. It is known that plants also emit acoustic emissions, and their application in plant sciences is rapidly increasing, especially to investigate drought-induced plant stress. Vulnerability to drought-induced cavitation is a key trait of plant water relations, and contains valuable information about how plants may cope with drought stress. There is, however, no consensus in literature about how this is best measured. Here, we discuss detection of acoustic emissions as a measure for drought-induced cavitation. Past research and the current state of the art are reviewed. We also discuss how the acoustic emission technique can help solve some of the main issues regarding quantification of the degree of cavitation, and how it can contribute to our knowledge about plant behavior during drought stress. So far, crossbreeding in the field of material sciences proved very successful, and we therefore recommend continuing in this direction in future research.

  16. Energy Based Acoustic Measurement Senors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research focuses on fully developing energy density sensors that will yield a significant benefit both for measurements of interest to NASA, as well as for...

  17. A System for Acoustic Field Measurement Employing Cartesian Robot

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2016-09-01

    Full Text Available A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar and particle velocity(vector quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

  18. Measuring against clinical standards.

    Science.gov (United States)

    Shaw, Charles D

    2003-07-15

    Systematic improvement of health services requires the objective measurement of people, practices and organisations against valid and explicit standards in order to identify and implement appropriate change. Effective quality systems must embrace a wide range of definitions of quality, and a similar variety of approaches to defining, measuring and improving. Clinical performance may be examined from three professional viewpoints--clinical competence: assessment of individual practitioners against explicit criteria to recognise achievement and to promote continuing development. Traditional mechanisms of training, registration and accreditation enable clinicians to reach career grades but responsibility for subsequent support is often unclear between employers, professions and registering bodies. Clinical practice: assessment of actual clinical process and outcomes against research-based "best practice" to identify and reduce variation. Peer review, clinical audit and confidential enquiries are examples of this approach, which may involve single or multiple professional groups and their interface with management. Service accreditation: systems to assess health care organisations against published standards in order to encourage best management practice. These are usually run on a regional or national basis and, though sensitive to expectations of patients, managers, clinicians, paying agencies and government, they are usually managed by an impartial but authoritative organisation.

  19. A systematic review of electric-acoustic stimulation: device fitting ranges, outcomes, and clinical fitting practices.

    Science.gov (United States)

    Incerti, Paola V; Ching, Teresa Y C; Cowan, Robert

    2013-03-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices.

  20. Electromagnetic acoustic transducers noncontacting ultrasonic measurements using EMATS

    CERN Document Server

    Hirao, Masahiko

    2017-01-01

    This second edition provides comprehensive information on electromagnetic acoustic transducers (EMATs), from the theory and physical principles of EMATs to the construction of systems and their applications to scientific and industrial ultrasonic measurements on materials. The original version has been complemented with selected ideas on ultrasonic measurement that have emerged since the first edition was released. The book is divided into four parts: PART I offers a self-contained description of the basic elements of coupling mechanisms along with the practical designing of EMATs for various purposes. Several implementations to compensate for EMATs’ low transfer efficiency are provided, along with useful tips on how to make an EMAT. PART II describes the principle of electromagnetic acoustic resonance (EMAR), which makes the most of EMATs’ contactless nature and is the most successful amplification mechanism for precise measurements of velocity and attenuation. PART III applies EMAR to studying physical ...

  1. DEMON Acoustic Ship Signature Measurements in an Urban Harbor

    Directory of Open Access Journals (Sweden)

    Kil Woo Chung

    2011-01-01

    Full Text Available Detection, classification, and tracking of small vessels are important tasks for improving port security and the security of coastal and offshore operations. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification, and tracking. This paper presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise DEMON acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship spectra and were measured at distances up to 7 km. The combination of cross-correlation and methods allowed separation of the acoustic signatures of ships in busy urban environments.

  2. Acoustic property measurements in a photoacoustic imager

    Science.gov (United States)

    Willemink, René G. H.; Manohar, Srirang; Slump, Cornelis H.; van der Heijden, Ferdi; van Leeuwen, Ton

    2007-07-01

    Photoacoustics is a hybrid imaging technique that combines the contrast available to optical imaging with the resolution that is possessed by ultrasound imaging. The technique is based on generating ultrasound from absorbing structures in tissue using pulsed light. In photoacoustic (PA) computerized tomography (CT) imaging, reconstruction of the optical absorption in a subject, is performed for example by filtered backprojection. The backprojection is performed along circular paths in image space instead of along straight lines as in X-ray CT imaging. To achieve this, the speed-of-sound through the subject is usually assumed constant. An unsuitable speed-of-sound can degrade resolution and contrast. We discuss here a method of actually measuring the speed-of- sound distribution using ultrasound transmission through the subject under photoacoustic investigation. This is achieved in a simple approach that does not require any additional ultrasound transmitter. The method uses a passive element (carbon fiber) that is placed in the imager in the path of the illumination which generates ultrasound by the photoacoustic effect and behaves as an ultrasound source. Measuring the time-of-flight of this ultrasound transient by the same detector used for conventional photoacoustics, allows a speed-of-sound image to be reconstructed. This concept is validated on phantoms.

  3. Atypical prosody in Asperger syndrome: perceptual and acoustic measurements.

    Science.gov (United States)

    Filipe, Marisa G; Frota, Sónia; Castro, São Luís; Vicente, Selene G

    2014-08-01

    It is known that individuals with Asperger syndrome (AS) may show no problems with regard to what is said (e.g., lexical content) but tend to have difficulties in how utterances are produced, i.e., they may show prosodic impairments. In the present study, we focus on the use of prosodic features to express grammatical meaning. Specifically, we explored the sentence type difference between statements and questions that is conveyed by intonation, using perceptual and acoustic measurements. Children aged 8 and 9 years with AS (n = 12) were matched according to age and nonverbal intelligence with typically developing peers (n = 17). Although children with AS could produce categorically accurate prosodic patterns, their prosodic contours were perceived as odd by adult listeners, and acoustic measurements showed alterations in duration and pitch. Additionally, children with AS had greater variability in fundamental frequency contours compared to typically developing peers.

  4. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  5. Determining Transmission Loss from Measured External and Internal Acoustic Environments

    Science.gov (United States)

    Scogin, Tyler; Smith, A. M.

    2012-01-01

    An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.

  6. Atypical Prosody in Asperger Syndrome: Perceptual and Acoustic Measurements

    OpenAIRE

    Marisa G. Filipe; Frota, Sónia; Castro, São Luís; Vicente, Selene G.

    2014-01-01

    It is known that individuals with Asperger syndrome (AS) may show no problems with regard to what is said (e.g., lexical content) but tend to have difficulties in how utterances are produced, i.e., they may show prosodic impairments. In the present study, we focus on the use of prosodic features to express grammatical meaning. Specifically, we explored the sentence type difference between statements and questions that is conveyed by intonation, using perceptual and acoustic measurements. Chil...

  7. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  8. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  9. Acoustic doppler methods for remote measurements of ocean flows - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  10. The relationship between VHI scores and specific acoustic measures of mildly disordered voice production.

    Science.gov (United States)

    Wheeler, Karen M; Collins, Savita P; Sapienza, Christine M

    2006-06-01

    This study was designed to examine the relationship between the Voice Handicap Index (VHI) and acoustic measures of voice samples common in clinical practice. Fifty participants, 38 women and 12 men, ranging in age from 19 to 80 years, with a mean age of 49 years, served as participants. Of these 50 participants, 17 participants could be included in the acoustic analysis of voice based on measures of error calculated with the TF32 software. All participants completed the VHI and provided voice samples including three trials of the sustained vowel /A/ at a comfortable loudness level as well as a connected speech sample consisting of the Zoo Passage. Acoustic measures were made with TF32 and Cool Edit software and included fundamental frequency, jitter %, shimmer %, signal-to-noise ratio, mean root-mean-square intensity, fundamental frequency standard deviation, aphonic periods, and breath groups. Results indicate that these measures were not predictive of overall VHI score, and no cohesive or predictable pattern was identified when comparing individual measures with overall VHI or with each subscale item. Likely contributions to this lack of correlation and subsequent clinical implications are discussed, as well as the direction for further research.

  11. Determining low-frequency source location from acoustic phase measurements

    Science.gov (United States)

    Poole, Travis L.; Frisk, George V.

    2002-11-01

    For low-frequency cw sound sources in shallow water, the time rate-of-change of the measured acoustic phase is well approximated by the time rate-of-change of the source-receiver separation distance. An algorithm for determining a locus of possible source locations based on this idea has been developed. The locus has the general form of a hyperbola, which can be used to provide a bearing estimation at long ranges, and an estimate of source location at short ranges. The algorithm uses only acoustic phase data and receiver geometry as input, and can be used even when the source frequency is slightly unstable and/or imprecisely known. The algorithm has been applied to data from low-frequency experiments (20-300 Hz), both for stable and unstable source frequencies, and shown to perform well. [Work supported by ONR and WHOI Academic Programs Office.

  12. Determination of the elastic modulus of snow via acoustic measurements

    Science.gov (United States)

    Gerling, Bastian; van Herwijnen, Alec; Löwe, Henning

    2016-04-01

    The elastic modulus of snow is a key quantity from the viewpoint of avalanche research and forecasting, snow engineering or materials science in general. Since it is a fundamental property, many measurements have been reported in the literature. Due to differences in measurement methods, there is a lot of variation in the reported values. Especially values derived via computer tomography (CT) based numerical calculations using finite element methods are not corresponding to the results of other methods. The central issue is that CT based moduli are purely elastic whereas other methods may include viscoelastic deformation. In order to avoid this discrepancy we derived the elastic modulus of snow via wave propagation measurements and compared our results with CT based calculations. We measured the arrival times of acoustic pulses propagating through the snow samples to determine the P-wave velocity and in turn derive the elastic modulus along the direction of wave propagation. We performed a series of laboratory experiments to derive the P-wave modulus of snow in relation to density. The P-wave modulus ranged from 10 to 280 MPa for a snow density between 150 and 370 kg/m^3;. The moduli derived from the acoustic measurements correlated well with the CT-based values and both exhibited a power law trend over the entire density range. Encouraged by these results we used the acoustic method to investigate the temporal evolution of the elastic modulus. The rate of increase was very close to values mentioned in literature on the sintering rate of snow. Overall, our results are a first but important step towards a new measurement method to attain the elastic properties of snow.

  13. Clinical significance of SNAP somnography test acoustic recording.

    Science.gov (United States)

    Galer, Chad; Yonkers, Anthony; Duff, Wallace; Heywood, Barbara

    2007-02-01

    To examine the clinical significance of acoustic data recorded by the SNAP home polysomnography system (SNAP Laboratories, Glenview, IL). Retrospective analysis of SNAP data from 59 patients undergoing evaluation for sleep apnea at the University of Nebraska Medical Center and an associated private practice in Omaha, NE. Snoring did not correlate with anthropometric variables such as body mass index and neck circumference. Statistical analysis showed no correlation between respiratory disturbance index and the maximum or average loudness of snoring. Average loudness was predictive of the presence of sleep apnea. Spectral analysis of snoring sonography found that the proportion of snoring events associated with a palatal source correlated strongly with the loudness of snoring. These data suggest that analysis of snoring has limited utility in the evaluation of the patient with sleep apnea but may be able to select patients who would benefit from palatal procedures to reduce snoring.

  14. Calibration of ipsilateral stimulus transducer for acoustic reflex measurements.

    Science.gov (United States)

    Olsen, S; Osterhammel, P A; Rasmussen, A N; Nielsen, L H

    1995-01-01

    Pure-tone Reference Equivalent Threshold Sound Pressure Level (RETSPL) of the ipsilateral stimulus receiver for acoustic reflex measurements on Madsen Electronics type Zodiac 901 impedance audiometer is provided. The results, obtained from 20 normal-hearing subjects, are achieved by comparing hearing threshold levels measured using a TDH 39 telephone (calibrated to ISO 389) with thresholds recorded using the ipsilateral stimulus insert phone. The calibration is referenced to an IEC-711 ear simulator and comprises the following frequencies: 125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Hz.

  15. Measuring sound absorption: considerations on the measurement of the active acoustic power

    NARCIS (Netherlands)

    Kuipers, E.R.; Wijnant, Y.H.; Boer, de A.

    2014-01-01

    Using a local plane wave assumption, one can determine the normal incidence sound absorption coefficient of a surface by measuring the acoustic pressure and the particle velocity normal to that surface. As the measurement surface lies in front of the material surface, the measured active and inciden

  16. Photo-acoustic tomography in a rotating measurement setting

    Science.gov (United States)

    Bal, Guillaume; Moradifam, Amir

    2016-10-01

    Photo-acoustic tomography (PAT) aims to leverage the photo-acoustic coupling between optical absorption of light sources and ultrasound (US) emission to obtain high contrast reconstructions of optical parameters with the high resolution of sonic waves. Quantitative PAT often involves a two-step procedure: first the map of sonic emission is reconstructed from US boundary measurements; and second optical properties of biological tissues are evaluated. We consider here a practical measurement setting in which such a separation does not apply. We assume that the optical source and an array of ultrasonic transducers are mounted on a rotating frame (in two or three dimensions) so that the light source rotates at the same time as the US measurements are acquired. As a consequence, we no longer have the option to reconstruct a map of sonic emission corresponding to a given optical illumination. We propose here a framework where the two steps are combined into one and an absorption map is directly reconstructed from the available US measurements.

  17. Cosmological implications of baryon acoustic oscillation (BAO) measurements

    CERN Document Server

    Aubourg, Éric; Bautista, Julian E; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Busca, Nicolás G; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Delubac, Timothée; Eisenstein, Daniel J; Font-Ribera, Andreu; Ge, Jian; Goff, J -M Le; Gontcho, Satya Gontcho A; Gott, J Richard; Gunn, James E; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Nuza, Sebastián E; Olmstead, Matthew D; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Pieri, Matthew M; Prada, Francisco; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A; Slosar, Anže; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A; Weaver, Benjamin A; Weinberg, David H; Wood-Vasey, W M; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo

    2014-01-01

    We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high-precision BAO measurements from galaxy clustering and the Ly-alpha forest (LyaF) in the BOSS survey of SDSS-III. BAO data alone yield a high confidence detection of dark energy, and in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Combining BAO and SN data into an "inverse distance ladder" yields a 1.7% measurement of $H_0=67.3 \\pm1.1$ km/s/Mpc. This measurement assumes standard pre-recombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat LCDM cosmology is an important corroboration of this minimal cosmological model. For open LCDM, our BAO+SN+CMB combination yields $\\Omega_m=0.301 \\pm 0.008$ and curvature $\\Omega_k=-0.003 \\pm ...

  18. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    Science.gov (United States)

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  19. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH......The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse and the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit area......). The purpose is to examine whether one should use a correction similar to the well-known ‘Waterhouse correction’ when the incident sound power is deduced from the sound pressure in the source room....

  20. Utilization of old vibro-acoustic measuring equipment to grasp basic concepts of vibration measurements

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2013-01-01

    The aim of the paper is to show that even old vibro-acoustic (analog) equipment can be used as a very suitable teaching equipment to grasp basic principles of measurements in an era, when measurement equipments are more-or-less treated as ‘black-boxes’, i.e. the user cannot see directly how...

  1. Classification of heart valve condition using acoustic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Prosthetic heart valves and the many great strides in valve design have been responsible for extending the life spans of many people with serious heart conditions. Even though the prosthetic valves are extremely reliable, they are eventually susceptible to long-term fatigue and structural failure effects expected from mechanical devices operating over long periods of time. The purpose of our work is to classify the condition of in vivo Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements of heart valve sounds. The structural failures of interest for Bscc valves is called single leg separation (SLS). SLS can occur if the outlet strut cracks and separates from the main structure of the valve. We measure acoustic opening and closing sounds (waveforms) using high sensitivity contact microphones on the patient`s thorax. For our analysis, we focus our processing and classification efforts on the opening sounds because they yield direct information about outlet strut condition with minimal distortion caused by energy radiated from the valve disc.

  2. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  3. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  4. A mixed method for measuring low-frequency acoustic properties of macromolecular materials

    Institute of Scientific and Technical Information of China (English)

    LIU; Hongwei; YAO; Lei; ZHAO; Hong; ZHANG; Jichuan; XUE; Zhaohong

    2006-01-01

    A mixed method for measuring low-frequency acoustic properties of macromolecular materials is presented.The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus(DMTA) at low frequencies,usually less than 100 Hz; then based on the Principles of Time-Temperature Super position (TTS),these parameters are extended to the frequency range that acousticians are concerned about,usually from hundreds to thousands of hertz; finally the extended dynamic mechanical parameters are transformed into acoustic parameters with the help of acoustic measurement and inverse analysis.To test the feasibility and accuracy,we measure a kind of rubber sample in DMTA and acquire the basic acoustic parameters of the sample by using this method.While applying the basic parameters to calculating characteristics of the sample in acoustic pipe,a reasonable agreement of sound absorption coefficients is obtained between the calculations and measurements in the acoustic pipe.

  5. Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements

    CERN Document Server

    Yoo, Jaiyul; Seljak, Uros

    2011-01-01

    We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...

  6. Instrumentation Suite for Acoustic Propagation Measurements in Complex Shallow Water Environments

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Obtain at-sea measurements to test theoretical and modeling predictions of acoustic propagation in dynamic, inhomogeneous, and nonisotropic shallow water...

  7. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  8. Prediction and Measurement of the Vibration and Acoustic Radiation of Panels Subjected to Acoustic Loading

    Science.gov (United States)

    Turner, Travis L.; Rizzi, Stephen A.

    1995-01-01

    Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.

  9. Acoustic measurements above a plate carrying Lamb waves

    CERN Document Server

    Talberg, Andreas Sørbrøden

    2016-01-01

    This article presents a set of acoustic measurements conducted on the Statoil funded Behind Casing Logging Set-Up, designed by SINTEF Petroleum Research to resemble an oil well casing. A set of simple simulations using COMSOL Multiphysics were also conducted and the results compared with the measurements. The experiments consists of measuring the pressure wave radiated of a set of Lamb waves propagating in a 3 mm thick steel plate, using the so called pitch-catch method. The Lamb waves were excited by a broadband piezoelectric immersion transducer with center frequency of 1 MHz. Through measurements and analysis the group velocity of the fastest mode in the plate was found to be 3138.5 m/s. Measuring the wave radiated into the water in a grid consisting of 8x33 measuring points, the spreading of the plate wave normal to the direction of propagation was investigated. Comparing the point where the amplitude had decreased 50 % relative to the amplitude measured at the axis pointing straight forward from the tran...

  10. Application of acoustic doppler velocimeters for streamflow measurements

    Science.gov (United States)

    Rehmel, M.

    2007-01-01

    The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.

  11. Utilization of old vibro-acoustic measuring equipment to grasp basic concepts of vibration measurements

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2013-01-01

    The aim of the paper is to show that even old vibro-acoustic (analog) equipment can be used as a very suitable teaching equipment to grasp basic principles of measurements in an era, when measurement equipments are more-or-less treated as ‘black-boxes’, i.e. the user cannot see directly how the m...... the measurement is processed, he or she just sets some parameters in a software and clicks a virtual button....

  12. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  13. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  14. Pulsed electro-acoustic (PEA) measurements of embedded charge distributions

    Science.gov (United States)

    Dennison, J. R.; Pearson, Lee H.

    2013-09-01

    Knowledge of the spatial distribution and evolution of embedded charge in thin dielectric materials has important applications in semiconductor, high-power electronic device, high-voltage DC power cable insulation, high-energy and plasma physics apparatus, and spacecraft industries. Knowing how, where, and how much charge accumulates and how it redistributes and dissipates can predict destructive charging effects. Pulsed Electro-acoustic (PEA) measurements— and two closely related methods, Pressure Wave Propagation (PWP) and Laser Intensity Modulation (LIMM)— nondestructively probe such internal charge distributions. We review the instrumentation, methods, theory and signal processing of simple PEA experiments, as well as the related PPW and LIMM methods. We emphasize system improvements required to achieve high spatial resolution for in vacuo measurements of thin dielectrics charged using electron beam injection.

  15. Precise measurement technique for the stable acoustic cavitation bubble

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; CHEN Weizhong; LIU Yanan; GAO Xianxian; JIANG Lian; XU Junfeng; ZHU Yifei

    2005-01-01

    Based on the periodic oscillation of the stable acoustic cavitation bubble, we present a precise measurement technique for the bubble evolution. This technique comprises the lighting engineering of pulsing laser beam whose phase can be digitally shifted, and the long distance microphotographics. We used a laser, an acousto-optic modulator, a pulse generator, and a long distance microscope. The evolution of a levitated bubble can be directly shown by a series of bubble's images at different phases. Numerical simulation in the framework of the Rayleigh-Plesset bubble dynamics well supported the experimental result, and the ambient radius of the bubble, an important parameter related to the mass of the gas inside the bubble, was obtained at the same time.

  16. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    Science.gov (United States)

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  17. Glacier studies on the basis of acoustic measurements

    Directory of Open Access Journals (Sweden)

    V. P. Epifanov

    2013-01-01

    Full Text Available The possibility of glacier ice flow studies using the method of acoustic emission (AE in frequency range from 15 Hz to 20 kHz has been considered. A portable acoustic line system has been developed and a number of methodological issues (mounting of acoustic sensors into glacial ice, their location, reliability of acoustic coupling, etc. have been solved. Acoustic studies of glacial ice have been performed; rock fall effect, ice cracking and ice movement on bedrock have been simulated. Correspondences of AE parameters to specific sources have been identified. The results of acoustic studies on Aldegondabreen (Spitsbergen, Central Tuyuksu and Molodezhny glaciers (northern Tien Shan have been summarized. The dependence of the adhesive strength of ice with smooth substrate (serpentenite on the shear rate has been considered; the effect of tor-shaped obstacle on shear force has been estimated. It is shown that the acoustic effects at cohesive ice failure on obstacles are similar to the observed natural acoustic vibrations generated in glaciers from distant sources. The results might be applied in development of the mobile ice lab and system for remote acoustic monitoring the processes in the bottom layers of glaciers.

  18. Acoustic measurements of F-16 aircraft operating in hush house, NSN 4920-02-070-2721

    Science.gov (United States)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-16 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F-16 aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-16 aircraft water cooled hush house at Hill AFB, but were increased over that measured during ground run up. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment.

  19. Postoperative improvement in acoustic rhinometry measurements after septoplasty correlates with long-term satisfaction

    DEFF Research Database (Denmark)

    Toyserkani, N M; Frisch, Thomas; von Buchwald, Christian

    2013-01-01

    Not much is known about long-term satisfaction of septoplasty. Our goal was to compare pre- and postoperative acoustic rhinometry measurements with satisfaction 11 years after surgery.......Not much is known about long-term satisfaction of septoplasty. Our goal was to compare pre- and postoperative acoustic rhinometry measurements with satisfaction 11 years after surgery....

  20. Acoustic emission measurements in petroleum-related rock mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Unander, Tor Erling

    2002-07-01

    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  1. Acoustic emission measurements in petroleum-related rock mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Unander, Tor Erling

    2002-07-01

    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  2. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    Science.gov (United States)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  3. Experimental and Theoretical Measurements of Concentration Distributions in Acoustic Focusing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K A; Fisher, K; Jung, B; Ness, K; Mariella Jr., R P

    2008-06-16

    We describe a modeling approach to capture the particle motion within an acoustic focusing microfluidic device. Our approach combines finite element models for the acoustic forces with analytical models for the fluid motion and uses these force fields to calculate the particle motion in a Brownian dynamics simulation. We compare results for the model with experimental measurements of the focusing efficiency within a microfabricated device. The results show good qualitative agreement over a range of acoustic driving voltages and particle sizes.

  4. The current status of measurement standards for acoustics and vibration at Inmetro

    OpenAIRE

    Ripper, Gustavo Palmeira; Hoffmann, Walter Erico

    2002-01-01

    ABSTRACT: The Division of Acoustics and Vibration (DIAVI) of INMETRO establishes, validates and maintains the Brazilian national measurement standards used for the realization of the units of physical quantities related to the field of acoustics and vibration. The basic vibration quantity realized by DIAVI is translational acceleration, from which the other motion quantities, i.e., velocity and displacement can be derived. Acoustical physical quantities include sound pressure and sound power...

  5. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Fourmentel, D.; Destouches, C.; Villard, J.F. [CEA, DEN, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul lez Durance (France)

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  6. Acoustic measurements of a liquefied cohesive sediment bed under waves

    Science.gov (United States)

    Mosquera, R.; Groposo, V.; Pedocchi, F.

    2014-04-01

    In this article the response of a cohesive sediment deposit under the action of water waves is studied with the help of laboratory experiments and an analytical model. Under the same regular wave condition three different bed responses were observed depending on the degree of consolidation of the deposit: no bed motion, bed motion of the upper layer after the action of the first waves, and massive bed motion after several waves. The kinematic of the upper 3 cm of the deposit were measured with an ultrasound acoustic profiler, while the pore-water pressure inside the bed was simultaneously measured using several pore pressure sensors. A poro-elastic model was developed to interpret the experimental observations. The model showed that the amplitude of the shear stress increased down into the bed. Then it is possible that the lower layers of the deposit experience plastic deformations, while the upper layers present just elastic deformations. Since plastic deformations in the lower layers are necessary for pore pressure build-up, the analytical model was used to interpret the experimental results and to state that liquefaction of a self consolidated cohesive sediment bed would only occur if the bed yield stress falls within the range defined by the amplitude of the shear stress inside the bed.

  7. PROGRESS OF ACOUSTIC WAVE TECHNIQUE AND ITS APPLICATION IN UNDERGROUND PRESSURE MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    周楚良; 李新元; 张晓龙

    1994-01-01

    This paper carries out the experiment study on the correlation between full stress-strain process of rock samples and the acoustic parameter change of rock by using the measurement system of KS acoustic wave data processing device. On the spot, the stability of surrounding rock is studied by means of experiments on the relationship between the change process (from elastic to plastic failure zone) in surrounding rock of roadway and the change law of acoustic parameters of rock. These acoustic parameters include wave amplitude, spectral amplitude, spectrum area, spectral density, wave velocity and attenuation coefficient etc.

  8. THE ACOUSTIC DETECTION OF INTRACRANIAL ANEURYSMS - A CLINICAL-STUDY

    NARCIS (Netherlands)

    VANBRUGGEN, AC; MOOIJ, JJA; JOURNEE, HL

    1991-01-01

    A new recording method for the acoustical detection of intracranial aneurysms is presented. A study examining the capability of the method to discriminate between patients with an aneurysm and control patients by a simple, objective parameter is reported. Sound signals were recorded over the eyes, a

  9. Research on the influence and correction method of depth scanning error to the underwater acoustic image measurement

    Institute of Scientific and Technical Information of China (English)

    MEI Jidan; ZHAI Chunpin; WANGYilin; HUI Junying

    2011-01-01

    The technology of underwater acoustic image measurement was a passive locating method with high precision in near field. To improve the precision of underwater acoustic image measurement, the influence of the depth scan error was analyzed and the correcti

  10. Logopenic and nonfluent variants of primary progressive aphasia are differentiated by acoustic measures of speech production

    National Research Council Canada - National Science Library

    Ballard, Kirrie J; Savage, Sharon; Leyton, Cristian E; Vogel, Adam P; Hornberger, Michael; Hodges, John R

    2014-01-01

    .... In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis...

  11. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    Science.gov (United States)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  12. The Belt voice: Acoustical measurements and esthetic correlates

    Science.gov (United States)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  13. Acoustic measurements of F-15 aircraft operating in hush house, NSN 4920-02-070-2721

    Science.gov (United States)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-15 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no potential sonic fatigue problems are anticipated with the F-15 aircraft structure during operation in the hush house. However, since these acoustic levels were increased over those measuring during run up on a concrete pad, it is recommended that F-15 equipment qualification levels be checked. The data indicated that the noise field within the hush house is diffuse and that the acoustical energy in the hangar area is radiated from the region between the engine exhaust and the hush house muffler front edge toward the forward part of the hangar.

  14. Statistical relations among architectural features and objective acoustical measurements of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian; Siebein, G. W.; Chiang, W.

    1993-01-01

    A statistical analysis of architectural features and detailed objective acoustical measurements made in eight concert halls and several multi-use rooms in their concert configuration will be presented. A method for evaluating the architectural features of rooms that affect their acoustical...

  15. Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements

    NARCIS (Netherlands)

    Willemink, G.H.; Manohar, S.; Purwar, Y.; Slump, C.H.; Heijden, van der F.; Leeuwen, van T.G.; McAleavey, S.A.; D'Hooge, J.

    2008-01-01

    Photoacoustic imaging is an upcoming medical imaging modality with the potential of imaging both optical and acoustic properties of objects. We present a measurement system and outline reconstruction methods to image both speed of sound and acoustic attenuation distributions of an object using only

  16. Acoustic resonances in HID lamps: model and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, John [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Baumann, Bernd; Wolff, Marcus [Hamburg University of Applied Sciences, Institute for Physical Sensors, Berliner Tor 21, 20099 Hamburg (Germany); Bhosle, Sounil [Universite Paul Sabatier, Toulouse (France); Valdivia Barrientos, Ricardo, E-mail: john.hirsch@philips.co [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2010-06-16

    A finite element model including plasma simulation is used to calculate the amplitude of acoustic resonances in HID lamps in a 2D axisymmetric geometry. Simulation results are presented for different operation parameters and are compared with experimental data.

  17. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

    1995-01-01

    Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04{chi}-16.9, r=0.95; y=0.87{chi}+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author).

  18. Measuring Baryon Acoustic Oscillations from the clustering of voids

    CERN Document Server

    Liang, Yu; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2015-01-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal, from voids based on galaxy redshift catalogues. To this end, we study the dependency of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the meth...

  19. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    Science.gov (United States)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide

  20. Quantification of Acoustic Cavitation Produced by a Clinical Extracorporeal Shock Wave Therapy System Using a Passive Cylindrical Detector

    Science.gov (United States)

    Choi, M. J.; Cho, S. C.; Kang, G. S.; Paeng, D. G.; Lee, K. I.; Hodnett, M.; Zeqiri, B.; Coleman, A. J.

    Acoustic cavitation is regarded to play an important role in extracorporeal shock wave therapy (ESWT). However it is not yet well characterized the cavitation in ESWT due to difficulty in its measurement. This study tests NPL cavitation sensor to discuss its potential to quantify cavitation activities produced by a clinical shock wave field. In the present experiment, the sensor was located at the focus of an electromagentic shock wave generator (HnT Medical System, Korea). Measurements were repeated 15 times as varying setting numbers. It was observed that the acoustic signals recorded by the sensor contain characteristic features of broadband spikes representing cavitation. Spectral band magnitude (SBM), used as a cavitation measure, rose with the setting number. There was a threshold above which SBM soared up and had its uncertainty greately increased. The results prove the potential of the sensor in characterizing the cavitation produced by shock wave fields.

  1. Clinical Study of Acoustic Densitometry Technique in Detecting Atherosclerotic Plaque

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To investigate the effect of Quyu Xiaoban Capsule (祛瘀消斑, QYXB) on the regressive treatment of atherosclerosis (AS) with acoustic densitometry (AD) technique. Methods: Eighty patients with AS were randomly divided into two groups, trial group was treated with QYXB and conventional medicine, and control group was treated with conventional medicine alone. Normal arterial wall and different types of atherosclerotic plaques were detected with AD technique before treatment and 10 months later. Resuits: The corrected averages in intimal echo intensity (AIIc%) were elevated in both groups but without significant difference, AIIc% of fatty plaques were increased in both groups and the value after treatment was significantly higher than that of pre-treatment in the trial group (68.12±5.54 vs 61.43±5.37, P<0.05).The increment rate of AIIc% in trial group was significantly higher than that in control group (10.9±5.1% vs2.5±5.5%, P<0.05). Conclusion: QYXB can stabilize the atherosclerotic plaque by increasing its acoustic density. Acoustic densitometry technique can differentiate the different histological plaques and monitor the histological changes of plaques during treatment.

  2. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  3. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bassindale, P. G.; Drinkwater, B. W. [Faculty of Engineering, Queens building, University of Bristol, Bristol BS8 1TR (United Kingdom); Phillips, D. B. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Barnes, A. C. [Department of Physics, H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  4. Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night-Vision Goggles

    Science.gov (United States)

    2013-11-01

    Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night - Vision Goggles by Jeremy Gaston, Tim Mermagen, and...SUBTITLE Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night - Vision Goggles 5a. CONTRACT NUMBER 5b. GRANT NUMBER...13. SUPPLEMENTARY NOTES 14. ABSTRACT This study evaluates two different night - vision goggles (NVGs) to determine if the devices meet level II

  5. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.

  6. Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    CERN Document Server

    Salomon, K; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C

    2005-01-01

    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.

  7. Fish Acoustics: Physics-Based Modeling and Measurement

    Science.gov (United States)

    2011-01-01

    physical scattering mechanisms. To demonstrate this point, the target strength of a canonical gas-filled sphere is computed using a standard...high-frequency sound scattering by swimbladdered fish,” Journal of the Acoustical Society of America, Vol. 78, pp. 688-700 (1985). 9. Gauss , R. C

  8. Ellipsoidal reflector for measuring oto-acoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Pulkki, Ville; Heiskanen, Vesa

    2014-01-01

    A truncated prolate ellipsoidal reflector having the ear canal of a listener at one focal point and large- diaphragm low-noise microphone at the other focal point is proposed for free-field recordings of oto-acoustic emissions. A prototype reflector consisting of three pieces is presented, which ...

  9. Simple discrimination method between False Acoustic Emission and Acoustic Emission revealed by piezoelectric sensors, in Gran Sasso mountain measurements (L)

    Science.gov (United States)

    Diodati, Paolo; Piazza, Stefano

    2004-07-01

    Recently it was shown, studying data acquired with in-situ measurements on the Gran Sasso mountain (Italy), for about ten years, by means of a high sensitivity transducer coupled to the free-end section of a stainless steel rod fixed by cement in a rock-drill hole 10 m high, about 2500 m above sea level, that Acoustic Emission (AE) can be affected by more than 90% False Acoustic Emission (FAE) of an electromagnetic origin. A very simple method to solve the problem of the discrimination between AE events due to elastic waves, from FAE signals, due to electromagnetic noise, both coming from the same ``reception-point,'' is presented. The reliability of the obtained separation is confirmed also by the reported amplitude and time distribution of AE events, typical of fracture dynamics and those of FAE events, similar to those of noise.

  10. Accuracy of measurement of acoustic rhinometry applied to small experimental animals

    DEFF Research Database (Denmark)

    Kaise, Toshihiko; Ukai, Kotara; Pedersen, Ole Finn

    1999-01-01

    -sectional areas as a function of the distance from the nostril. We modified the equipment used on humans to assess dimensions of nasal airway geometry of small experimental animals. The purpose of this study was to investigate the accuracy of measurement of the modified acoustic rhinometry applied to small...... experimental animals using nasal cavity models and guinea pigs. Measurement of the nasal cavity models (made of cylindrical silicone tubes) showed that the acoustic rhinometry estimated 85.5% of actual area and 79.0% of actual volume. In guinea pigs, nasal cavity volume determined by the acoustic rhinometry...... the volume and nasal airway resistance in guinea pigs. Measurement of the nasal airway resistance is the method frequently used in the evaluation of the nasal obstruction in guinea pigs. These results suggest that acoustic rhinometry is useful in evaluating nasal obstruction in small experimental animals....

  11. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  12. The Ability to Structure Acoustic Material as a Measure of Musical Aptitude. 4. Experiences with Modifications of the Acoustic Structuring Test. Research Bulletin. No. 51.

    Science.gov (United States)

    Karma, Kai

    Four new versions of an acoustic structuring test were developed, administered, and analyzed in order to produce better tests and to contribute to better understanding of the abilities measured by these tests. The tests consist of tape recordings of patterns of musical notes played on an electric organ or an acoustic guitar. Item analyses and…

  13. [A clinical analysis for sudden sensorineural hearing loss with acoustic neurinoma].

    Science.gov (United States)

    Gong, Qi-lin; Zhou, Ai-dong; Lin, Chang

    2013-04-01

    Retrospectively analyzed the clinical data of sudden sensorineural hearing loss with acoustic neuroma. The clinical data of 467 cases with sudden sensorineural hearing loss were collected between Jan, 2008 and Aug, 2012. Discussed the clinical data which were diagnosed as acoustic neuroma. In 467 cases of sudden sensorineural hearing loss, nine cases were diagnosed as acoustic neuromas (9 ears, 1.93%), two males and seven females, with a age range of 28 to 57 years. Among them, seven cases accompanied with tinnitus, seven cases with vertigo. The hearing results in nine cases, two cases were found to be mild, two were moderate, four were severe, and one was profound hearling loss respectively. Hearing was classified into five types according to audiogram shape (1 of up-sloping, 1 of down-sloping, 2 of mid-frequency, 1 of profound loss, 4 of flat audiogram). Eight cases had abnormal ABR, nine cases with ear ipsilateral stapedius reflex were completely not elicited, seven cases with health ear contralateral stapedius reflex were completely not elicited. Tumors were graded by Koos Grades according to size (7 of grade I, 1 of grade II, 1 of grade IV). Seven small acoustic neuroma was taken waiting strategies. Meanwhile, we use glucocorticoid and improve the microcirculation of the inner ear medication short-termly for these patients. Four patients' hearing were improved. The initial symptoms of some acoustic neuroma are sudden hearing loss, especially the small tumors in internal auditory canal. In order to prevent misdiagnosis, MRI and ABR should be performed as a routine test for sudden sensorineural hearing loss. It is necessary to give appropriate treatment to protecting hearing for the small acoustic neuroma patients whose first symptoms are diagnosed as sudden sensorineural hearing loss.

  14. Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening.

    Science.gov (United States)

    Uloza, Virgilijus; Padervinskis, Evaldas; Vegiene, Aurelija; Pribuisiene, Ruta; Saferis, Viktoras; Vaiciukynas, Evaldas; Gelzinis, Adas; Verikas, Antanas

    2015-11-01

    The objective of this study is to evaluate the reliability of acoustic voice parameters obtained using smart phone (SP) microphones and investigate the utility of use of SP voice recordings for voice screening. Voice samples of sustained vowel/a/obtained from 118 subjects (34 normal and 84 pathological voices) were recorded simultaneously through two microphones: oral AKG Perception 220 microphone and SP Samsung Galaxy Note3 microphone. Acoustic voice signal data were measured for fundamental frequency, jitter and shimmer, normalized noise energy (NNE), signal to noise ratio and harmonic to noise ratio using Dr. Speech software. Discriminant analysis-based Correct Classification Rate (CCR) and Random Forest Classifier (RFC) based Equal Error Rate (EER) were used to evaluate the feasibility of acoustic voice parameters classifying normal and pathological voice classes. Lithuanian version of Glottal Function Index (LT_GFI) questionnaire was utilized for self-assessment of the severity of voice disorder. The correlations of acoustic voice parameters obtained with two types of microphones were statistically significant and strong (r = 0.73-1.0) for the entire measurements. When classifying into normal/pathological voice classes, the Oral-NNE revealed the CCR of 73.7% and the pair of SP-NNE and SP-shimmer parameters revealed CCR of 79.5%. However, fusion of the results obtained from SP voice recordings and GFI data provided the CCR of 84.60% and RFC revealed the EER of 7.9%, respectively. In conclusion, measurements of acoustic voice parameters using SP microphone were shown to be reliable in clinical settings demonstrating high CCR and low EER when distinguishing normal and pathological voice classes, and validated the suitability of the SP microphone signal for the task of automatic voice analysis and screening.

  15. Measurement of the acoustic nonlinearity parameter B/A of lossy medium in a focused field

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An analytical description for the linear and nonlinear acoustic fields in lossy medium of a focusing source is derived. The relationship of pressure amplitudes at focus for fundamental and the second harmonic waves is discussed. At high linear focusing gain G, a new method using the insert substitution method for measuring the acoustic nonlinear parameter B /A of biological tissues is presented. Results for some biological tissues are experimentally obtained.

  16. Comparison between psycho-acoustics and physio-acoustic measurement to determine optimum reverberation time of pentatonic angklung music concert hall

    Science.gov (United States)

    Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto

    2015-09-01

    This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement

  17. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    Science.gov (United States)

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  18. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  19. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Ph.D., Jorge O.

    2002-06-10

    The objective of the project was to develop an advanced imaging method, including pore scale imaging, to integrate nuclear magnetic resonance (NMR) techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This will be accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging were linked with a balanced petrographical analysis of cores and theoretical modeling.

  20. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Ph.D., Jorge O.

    2002-06-10

    The objective of the project was to develop an advanced imaging method, including pore scale imaging, to integrate nuclear magnetic resonance (NMR) techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This will be accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging were linked with a balanced petrographical analysis of cores and theoretical modeling.

  1. Measurement of the acoustic radiation force on a sphere embedded in a soft solid

    CERN Document Server

    Lidon, Pierre; Taberlet, Nicolas; Manneville, Sébastien

    2016-01-01

    The acoustic radiation force exerted on a small sphere located at the focus of an ultrasonic beam is measured in a soft gel. It is proved to evolve quadratically with the local amplitude of the acoustic field. Strong oscillations of the local pressure are observed and attributed to an acoustic Fabry-P{\\'e}rot effect between the ultrasonic emitter and the sphere. Taking this effect into account with a simple model, a quantitative link between the radiation force and the acoustic pressure is proposed and compared to theoretical predictions in the absence of dissipation. The discrepancy between experiment and theory suggests that dissipative effects should be taken into account for fully modeling the observations.

  2. Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests).

    Science.gov (United States)

    Horoshenkov, Kirill V; Khan, Amir; Bécot, François-Xavier; Jaouen, Luc; Sgard, Franck; Renault, Amélie; Amirouche, Nesrine; Pompoli, Francesco; Prodi, Nicola; Bonfiglio, Paolo; Pispola, Giulio; Asdrubali, Francesco; Hübelt, Jörn; Atalla, Noureddine; Amédin, Celse K; Lauriks, Walter; Boeckx, Laurens

    2007-07-01

    This paper reports the results of reproducibility experiments on the interlaboratory characterization of the acoustical properties of three types of consolidated porous media: granulated porous rubber, reticulated foam, and fiberglass. The measurements are conducted in several independent laboratories in Europe and North America. The studied acoustical characteristics are the surface complex acoustic impedance at normal incidence and plane wave absorption coefficient which are determined using the standard impedance tube method. The paper provides detailed procedures related to sample preparation and installation and it discusses the dispersion in the acoustical material property observed between individual material samples and laboratories. The importance of the boundary conditions, homogeneity of the porous material structure, and stability of the adopted signal processing method are highlighted.

  3. Measurement of acoustic field radiated by low frequency power ultrasonic transducer with laser-interferometer

    Institute of Scientific and Technical Information of China (English)

    QIAN Menglu; GAO Wen; HU Wenxiang

    2000-01-01

    Based on the piezo-optic effect of medium, the refractive index of medium is the function of its density, and so it's also the function of acoustic pressure. Therefore, acoustic pressure in the optical path everywhere can be determined absolutely by laser-interferometric technique and relative distribution of pressure in the middle and far acoustic field, which can be obtained from theory or experiment respectively. Theory and experiment of measurement of pressure in acoustic field with laser-interferometer are introduced. Distribution of pressure radiated by a power ultrasonic transducer is determined by laser interferometric technique.The theoretical and experimental results are in good agreement. The receiving sensitivity of a PVDF (Polyvinylidene fluoride) transducer in free field is also calibrated absolutely due to above results and its sensitivity is -118.5 dB.

  4. Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

    CERN Document Server

    British Standards Institution. London

    1998-01-01

    Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

  5. Analyzing excitation forces acting on a plate based on measured acoustic pressure.

    Science.gov (United States)

    Wu, Sean F; Zhou, Pan

    2016-07-01

    This paper presents a theoretical study on "seeing" through an elastic structure to uncover the root cause of sound and vibration by using nearfield acoustical holography (NAH) and normal modes expansion. This approach is of generality because vibro-acoustic responses on the surface of a vibrating structure can always be reconstructed, exactly or approximately. With these vibro-acoustic responses, excitation forces acting on the structure can always be determined, analytically or numerically, given any set of boundary conditions. As an example, the explicit formulations for reconstructing time-harmonic excitation forces, including point, line and surface forces, and their arbitrary combinations acting on a rectangular thin plate in vacuum mounted on an infinite baffle are presented. The reason for choosing this example is that the analytic solutions to vibro-acoustic responses are available, and in-depth analyses of results are possible. Results demonstrate that this approach allows one to identify excitation forces based on measured acoustic pressures and reveal their characteristics such as locations, types and amplitudes, as if one could "see" excitation forces acting behind the plate based on acoustic pressure measured on the opposite side. This approach is extendable to general elastic structures, except that in such circumstance numerical results must be sought.

  6. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  7. Pseudo working-point control measurement scheme for acoustic sensitivity of interferometric fiber-optic hydrophones

    Institute of Scientific and Technical Information of China (English)

    Zefeng Wang; Yongming Hu; Zhou Meng; Ming Ni

    2008-01-01

    A novel pseudo working-point control measurement scheme for the acoustic sensitivity of interferometric fiber-optic hydrophones is described and demonstrated.The measurement principle is introduced in detail.An experimental system,which interrogates an interferometric fiber-optic hydrophone with this method,is designed.The acoustic pressure phase sensitivity of the fiber-optic hydrophone is measured over the frequency range of 20-2500Hz.The measured acoustic sensitivity is about-156.5dB re 1rad/μPa with a fluctuation lower than ±1.2dB,which is in good agreement with the results obtained by the method of phase generated carrier.The experimental results testify the validity of this new method which has the advantages of no electric elements in the sensing head,the simplicity of signal processing,and wide working bandwidth.

  8. Measurement of a broadband negative index with space-coiling acoustic metamaterials.

    Science.gov (United States)

    Xie, Yangbo; Popa, Bogdan-Ioan; Zigoneanu, Lucian; Cummer, Steven A

    2013-04-26

    We report the experimental demonstration of a broadband negative refractive index obtained in a labyrinthine acoustic metamaterial structure. Two different approaches were employed to prove the metamaterial negative index nature: one-dimensional extractions of effective parameters from reflection and transmission measurements and two-dimensional prism-based measurements that convincingly show the transmission angle corresponding to negative refraction. The transmission angles observed in the latter case also agree very well with the refractive index obtained in the one-dimensional measurements and numerical simulations. We expect this labyrinthine metamaterial to become the unit cell of choice for practical acoustic metamaterial devices that require broadband and significantly negative indices of refraction.

  9. Measurement of a Broadband Negative Index with Space-Coiling Acoustic Metamaterials

    Science.gov (United States)

    Xie, Yangbo; Popa, Bogdan-Ioan; Zigoneanu, Lucian; Cummer, Steven A.

    2013-04-01

    We report the experimental demonstration of a broadband negative refractive index obtained in a labyrinthine acoustic metamaterial structure. Two different approaches were employed to prove the metamaterial negative index nature: one-dimensional extractions of effective parameters from reflection and transmission measurements and two-dimensional prism-based measurements that convincingly show the transmission angle corresponding to negative refraction. The transmission angles observed in the latter case also agree very well with the refractive index obtained in the one-dimensional measurements and numerical simulations. We expect this labyrinthine metamaterial to become the unit cell of choice for practical acoustic metamaterial devices that require broadband and significantly negative indices of refraction.

  10. Theory and signal processing of acoustic correlation techniques for current velocity measurement

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; FENG Lei; WANG Changhong; WANG Yuling; QIU Wei

    2008-01-01

    A theoretical model and signal processing of acoustic correlation measurements to estimate current velocity are discussed. The sonar space-time correlation function of vol-ume reverberations within Fraunhofer zone is derived. The function, which is in exponential forms, is the theoretical model of acoustic correlation measurements. The characteristics of the correlation values around the maximum of the amplitude of the correlation function, where most information about current velocity is contained, are primarily analyzed. Localized Least Mean Squares (LLMS) criterion is put forward for velocity estimation. Sequential Quadratic Programming (SQP) method is adopted as the optimization method. So the systematic sig-nal processing method of acoustic correlation techniques for current velocity measurement is established. A prototype acoustic correlation current profiler (ACCP) underwent several sea trials, the results show that theoretical model approximately coincides with experimental re-sults. Current profiles including the speed and direction from ACCP are compared with those from acoustic Doppler current profiler (ADCP). The current profiles by both instruments agree reasonably well. Also, the standard deviation of velocity measurement by ACCP is statistically calculated and it is a little larger than predicted value.

  11. The Development and Clinical Application of Acoustical Technique in Hip Joint

    Institute of Scientific and Technical Information of China (English)

    黄晓琳; 邝适存; 郑振耀

    2002-01-01

    Summary: A non-invasive acoustical system was developed for the measurement of transmissionproperties of acoustic waves in the hip joints. The instrumentation consisted of three sub-systems.An excitation system employed a vibratory force at the sacrum of the test subjects. A transductionsystem included a pair of identical microphones installed in the tubes of two stethoscopes, whichwere placed at the greater trochanters on both sides for picking up the acoustical signals transmit-ted across the hip joints. The data acquisition and analysis system was a portable signal analyzerwith a program of dual channel digital filter for measuring the power of acoustical signal in 1/3-oc-tave frequency bands. 27 normal adults, 20 normal pre-school children and 40 normal neonateswere randomly selected for testing. Coherence function (CF) and discrepancy(D) was measuredduring the testing. Results from the three groups showed that there was a high coherence of thesignals (CF>0. 9) and a small discrepancy (D<3 dB) between bilateral hips in the frequencyrange of 200-315 Hz. For normal neonates, there was a wider frequency range of 160-315 Hz inwhich the acoustical signals maintained a high coherence (CF>0. 93) and a smaller discrepancy (D<2 dB) was observed. This study showed that the development of the acoustical technique pro-vided a practical method with objective parameters. The results obtained in this study can offer abaseline for further investigation of hip disorders particularly those related to structural abnormali-ties of the hip.

  12. Broadband electrostatic acoustic transducer for ultrasonic measurements in liquids.

    Science.gov (United States)

    Cantrell, J H; Heyman, J S; Yost, W T; Torbett, M A; Breazeale, M A

    1979-01-01

    A broadband capacitive electrostatic acoustic transducer (ESAT) has been developed for use in a liquid environment at megahertz frequencies. The ESAT basically consists of a thin conductive membrane stretched over a metallic housing. The membrane functions as the ground plate of a parallel plate capacitor, the other plate being a dc biased electrode recessed approximately 10 mum from the electrically grounded membrane. An ultrasonic wave incident on the membrane varies the membrane-electrode gap spacing and generates an electrical signal proportional to the wave amplitude. The entire assembly is sealed for immersion in a liquid environment. Calibration of the ESAT with incident ultrasonic waves of constant displacement amplitude from 1 to 15 MHz reveals a decrease in signal response with increasing frequency independent of membrane tension. The use of the ESAT as a broadband ultrasonic transducer in liquids with a predictable frequency response is promising.

  13. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    Science.gov (United States)

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  14. Measuring baryon acoustic oscillations with future SKA surveys

    CERN Document Server

    Bull, Philip; Raccanelli, Alvise; Blake, Chris; Ferreira, Pedro G; Santos, Mario G; Schwarz, Dominik J

    2015-01-01

    The imprint of baryon acoustic oscillations (BAO) in large-scale structure can be used as a standard ruler for mapping out the cosmic expansion history, and hence for testing cosmological models. In this article we briefly describe the scientific background to the BAO technique, and forecast the potential of the Phase 1 and 2 SKA telescopes to perform BAO surveys using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys. We find that a 25,000 sq. deg. intensity mapping survey on a Phase 1 array will preferentially constrain the radial BAO, providing a highly competitive 2% constraint on the expansion rate at z ~ 2. A 30,000 sq. deg. galaxy redshift survey on SKA2 will outperform all other planned experiments for z < 1.4.

  15. Measuring the speed of light with baryon acoustic oscillations.

    Science.gov (United States)

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  16. Measurement Combination for Acoustic Source Localization in a Room Environment

    Directory of Open Access Journals (Sweden)

    Pasi Pertilä

    2008-07-01

    Full Text Available The behavior of time delay estimation (TDE is well understood and therefore attractive to apply in acoustic source localization (ASL. A time delay between microphones maps into a hyperbola. Furthermore, the likelihoods for different time delays are mapped into a set of weighted nonoverlapping hyperbolae in the spatial domain. Combining TDE functions from several microphone pairs results in a spatial likelihood function (SLF which is a combination of sets of weighted hyperbolae. Traditionally, the maximum SLF point is considered as the source location but is corrupted by reverberation and noise. Particle filters utilize past source information to improve localization performance in such environments. However, uncertainty exists on how to combine the TDE functions. Results from simulated dialogues in various conditions favor TDE combination using intersection-based methods over union. The real-data dialogue results agree with the simulations, showing a 45% RMSE reduction when choosing the intersection over union of TDE functions.

  17. Measurement Combination for Acoustic Source Localization in a Room Environment

    Directory of Open Access Journals (Sweden)

    Pertilä Pasi

    2008-01-01

    Full Text Available The behavior of time delay estimation (TDE is well understood and therefore attractive to apply in acoustic source localization (ASL. A time delay between microphones maps into a hyperbola. Furthermore, the likelihoods for different time delays are mapped into a set of weighted nonoverlapping hyperbolae in the spatial domain. Combining TDE functions from several microphone pairs results in a spatial likelihood function (SLF which is a combination of sets of weighted hyperbolae. Traditionally, the maximum SLF point is considered as the source location but is corrupted by reverberation and noise. Particle filters utilize past source information to improve localization performance in such environments. However, uncertainty exists on how to combine the TDE functions. Results from simulated dialogues in various conditions favor TDE combination using intersection-based methods over union. The real-data dialogue results agree with the simulations, showing a 45% RMSE reduction when choosing the intersection over union of TDE functions.

  18. A Monte-Carlo investigation of the uncertainty of acoustic decay measurements

    DEFF Research Database (Denmark)

    Cabo, David Pérez; Seoane, Manuel A. Sobreira; Jacobsen, Finn

    2012-01-01

    Measurement of acoustic decays can be problematic at low frequencies: short decays cannot be evaluated accurately. Several effects influencing the evaluation will be reviewed in this paper. As new contribution, the measurement uncertainty due to one-third octave band pass filters will be analysed...

  19. Final Report: Geothermal dual acoustic tool for measurement of rock stress

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy A. [Perma Works LLC, Pattonville, TX (United States)

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  20. Final Report. Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy A [Perma Works LLC, Pattonville, TX (United States)

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  1. Methods of temperature measurement in a radio-acoustic tropospheric sounder

    Directory of Open Access Journals (Sweden)

    P. TRIVERO

    1976-06-01

    Full Text Available The temperature of the lower troposphere is inferred
    by measuring with a doppler radar the speed of a powerful acoustic wave,
    capable of periodically perturbing the index of refraction of air. Three
    methods for performing these measurements are described.

  2. Wideband Acoustic Immittance: Normative Study and Test-Retest Reliability of Tympanometric Measurements in Adults

    Science.gov (United States)

    Sun, Xiao-Ming

    2016-01-01

    Purpose: The purpose of this study was to present normative data of tympanometric measurements of wideband acoustic immittance and to characterize wideband tympanograms. Method: Data were collected in 84 young adults with strictly defined normal hearing and middle ear status. Energy absorbance (EA) was measured using clicks for 1/12-octave…

  3. Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy A.

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  4. Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K

    Science.gov (United States)

    Benedetto, G.; Gavioso, R. M.; Spagnolo, R.; Marcarino, P.; Merlone, A.

    2004-02-01

    We have measured the differences between the Kelvin thermodynamic temperature and the temperature of the International Temperature Scale of 1990 on nine isotherms between the triple point of mercury and 380 K, by means of a primary acoustic thermometer. For the present measurements the standard uncertainty of (T - T90) ranges from 0.9 mK at 234 K to 1.7 mK at 380 K. The experimental method is based on the measurement of the acoustic resonance frequencies of an argon-filled spherical cavity and the microwave resonance frequencies of the same cavity when evacuated. The present results agree within the remarkably small combined uncertainties with both NIST acoustic thermometry ([1] Moldover M R et al 1999 J. Res. Natl Inst. Stand. Technol. 104 11-46 [2] Strouse G F et al 2002 Progress in primary acoustic thermometry at NIST: 273 K to 505 K 8th Temperature Symp. (Chicago, 21-24 October 2002)) and UCL acoustic thermometry ([3] Ewing M B and Trusler J P M 2000 J. Chem. Thermodyn. 32 1229-55) in the overlapping temperature range.

  5. Measurements and empirical model of the acoustic properties of reticulated vitreous carbon

    Science.gov (United States)

    Muehleisen, Ralph T.; Beamer, C. Walter; Tinianov, Brandon D.

    2005-02-01

    Reticulated vitreous carbon (RVC) is a highly porous, rigid, open cell carbon foam structure with a high melting point, good chemical inertness, and low bulk thermal conductivity. For the proper design of acoustic devices such as acoustic absorbers and thermoacoustic stacks and regenerators utilizing RVC, the acoustic properties of RVC must be known. From knowledge of the complex characteristic impedance and wave number most other acoustic properties can be computed. In this investigation, the four-microphone transfer matrix measurement method is used to measure the complex characteristic impedance and wave number for 60 to 300 pore-per-inch RVC foams with flow resistivities from 1759 to 10 782 Pa s m-2 in the frequency range of 330 Hz-2 kHz. The data are found to be poorly predicted by the fibrous material empirical model developed by Delany and Bazley, the open cell plastic foam empirical model developed by Qunli, or the Johnson-Allard microstructural model. A new empirical power law model is developed and is shown to provide good predictions of the acoustic properties over the frequency range of measurement. Uncertainty estimates for the constants of the model are also computed. .

  6. Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite

    Science.gov (United States)

    2008-01-01

    A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.

  7. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed. Water temperature and pressure environments of the ocean can be simulated in a water-filled tube, and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency. A tested sample is located at central position of the tube. A pair of projectors is separately located at both ends of the tube. Using an active anechoic technique, the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer. So the traveling sound field is built up in the tube. By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample, its reflection coefficients and transmission coefficients are obtained. In the measurement system, the inside diameter of the tube is Φ208 mm, the working frequency range is from 100 to 4000 Hz, the maximum pressure is 5 MPa. The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically. The results show that the measured values are in good agreement with the values calculated, and the measurement uncertainty is not greater than 1.5 dB.

  8. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  9. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    OpenAIRE

    Murphy, William J.; Cameron J Fackler; Berger, Elliott H.; Peter B Shaw; Mike Stergar

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an a...

  10. MO-F-CAMPUS-J-01: Acoustic Range Verification of Proton Beams: Simulation of Heterogeneity and Clinical Proton Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K; Sehgal, C; Avery, S [Univ Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Through simulation, to assess acoustic-based range verification of proton beams (protoacoustics) under clinical conditions. Methods: Pressure waves generated by the energy deposition of a 150 MeV, 8 mm FWHM pulsed pencil proton beam were numerically simulated through two Methods: 1) For a homogeneous water medium, an analytical wave-equation solution was used to calculate the time-dependent pressure measured at detector points surrounding the proton Bragg peak. 2) For heterogeneity studies, a CT tissue image was used to calculate the proton dose deposition and define the acoustic properties of the voxels through which numerical pressure wave propagation was simulated with the k-Wave matlab toolbox. The simulations were used to assess the dependence of the acoustic amplitude and range-verification accuracy on proton pulse rise time and tissue heterogeneity. Results: As the proton pulse rise time is increased from 1 to 40 µs, the amplitude of the expected acoustic emission decreases (a 60% drop distal to the Bragg peak), the central frequency of the expected signal decreases (from 45 to 6 kHz), and the accuracy of the range-verification decreases (from <1 mm to 16 mm at 5 cm distal to the Bragg peak). For a 300 nA pulse, the expected pressure range is on the order of 0.1 Pa, which is observable with commercial detectors. For the heterogeneous medium, our test case shows that pressure waves emitted by an anterior pencil beam directed into the abdomen and detected posteriorly can determine the Bragg peak range to an accuracy of <2mm for a 1 µs proton pulse. Conclusion: For proton pulses with fast rise-times, protoacoustics is a promising potential method for monitoring penetration depth through heterogeneous tissue. The loss of range-verification accuracy with increasing rise-times, however, suggests the need for comparisons to modeling to improve accuracy for slower cyclotron proton sources.

  11. Field acoustic measurements of high-speed train sound along BTIR

    Science.gov (United States)

    Yu, HuaHua; Li, JiaChun

    2013-02-01

    In this paper, single-point field measurements of noise radiated from high-speed trains were performed at two sites along Beijing-Tianjin intercity railway (BTIR), aiming at acquiring the realistic acoustic data for validation and verification of physical model and computational prediction. The measurements showed that A-weighted sound pressure levels (SPLs) were between 80 and 87 dBA as trains passed. The maximum noise occurred at the moment when the pantograph arrived, suggesting that pantograph noise was one of the most significant sources. Sound radiated from high-speed trains of BTIR was a typical broadband spectrum with most acoustic power restricted in the range of medium-high frequency from about 400 Hz to 5 kHz. Aerodynamic noise was shown to be the dominant one over other acoustic sources for high-speed trains.

  12. Guidelines for Acoustical Measurements Inside Historical Opera Houses: Procedures and Validation

    Science.gov (United States)

    POMPOLI, ROBERTO; PRODI, NICOLA

    2000-04-01

    The acoustics of Italian historical theatres is to be regarded as a cultural heritage, which is to be preserved and studied. These actions are imperative for handing down the heritage to future generations and to avoid its loss. In this paper, the technical means for scientific quantification of the acoustical heritage are presented in the form of operative guidelines for acoustical measurements inside historical theatres. The document includes the advice of international experts and is being employed during an extended measurement campaign inside renaissance and baroque historical theatres. A relevant part of the paper deals with the experimental validation of the recommendations given in the guidelines, achieved by a dedicated test session inside the Municipal Theatre of Ferrara.

  13. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    Science.gov (United States)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  14. Measuring baryon acoustic oscillations with angular two-point correlation function

    CERN Document Server

    Alcaniz, Jailson S; Bernui, Armando; Carvalho, Joel C; Benetti, Micol

    2016-01-01

    The Baryon Acoustic Oscillations (BAO) imprinted a characteristic correlation length in the large-scale structure of the universe that can be used as a standard ruler for mapping out the cosmic expansion history. Here, we discuss the application of the angular two-point correlation function, $w(\\theta)$, to a sample of luminous red galaxies of the Sloan Digital Sky Survey (SDSS) and derive two new measurements of the BAO angular scale at $z = 0.235$ and $z = 0.365$. Since noise and systematics may hinder the identification of the BAO signature in the $w - \\theta$ plane, we also introduce a potential new method to localize the acoustic bump in a model-independent way. We use these new measurements along with previous data to constrain cosmological parameters of dark energy models and to derive a new estimate of the acoustic scale $r_s$.

  15. Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics

    Science.gov (United States)

    Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

    2009-01-01

    Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility

  16. Acoustic measurements of F-4E aircraft operating in hush house, NSN 4920-02-070-2721

    Science.gov (United States)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The primary purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-4E aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that sonic fatigue problems are anticipated with the F-4E aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-4E aircraft water cooled hush house at Hill AFB in the lower frequencies, but were increased over that measured during ground run up on some areas of the aircraft. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment. Recommendations were also made to increase the fatigue life of the aft fuselage.

  17. Acoustic measurements of F100-PW-100 engine operating in hush house NSN 4920-02-070-2721

    Science.gov (United States)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly AFB Texas during operation of the F100-PW-100 engine to ensure that engine structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F100-PW-100 engine structure during operation in the hush house. The measured acoustic levels were less than those measured in an existing F100-PW-100 engine wet-cooled noise suppressor, but were increased over that measured during operation on an open test stand. It was recommended that the acoustic load increases measured in this program should be specified in the structural design criteria for engines which will be subjected to hush house operation or defining requirements for associated equipment.

  18. Acoustic absorption measurement of human hair and skin within the audible frequency range.

    Science.gov (United States)

    Katz, B F

    2000-11-01

    Utilizing the two-microphone impedance tube method, the acoustic absorption of human skin and hair is measured in the frequency range 1-6 kHz. Various locations on a number of human subjects are measured to determine if the presence of bone or an air pocket affects the acoustic absorption of human skin. The absorption coefficient of human hair is also measured. Additional techniques are utilized to minimize errors due to sample mounting methods. Techniques are employed to minimize potential errors in sensor and sample locations. The results of these measurements are compared to relevant historical papers on similar investigations. Results for skin measurements compare well with previous work. Measured hair absorption data do not agree with previous work in the area but do coincide with expected trends, which previous works do not.

  19. Functions of diffraction correction and analytical solutions in nonlinear acoustic measurement

    CERN Document Server

    Alliès, Laurent; Nadi, M

    2008-01-01

    This paper presents an analytical formulation for correcting the diffraction associated to the second harmonic of an acoustic wave, more compact than that usually used. This new formulation, resulting from an approximation of the correction applied to fundamental, makes it possible to obtain simple solutions for the second harmonic of the average acoustic pressure, but sufficiently precise for measuring the parameter of nonlinearity B/A in a finite amplitude method. Comparison with other expressions requiring numerical integration, show the solutions are precise in the nearfield.

  20. Comparisons between Computer Simulations of Room Acoustical Parameters and those Measured in Concert Halls

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Shiokawa, Hiroyoshi; Christensen, Claus Lynge;

    1999-01-01

    A number of European concert halls were surveyed in 1989. In this paper comparisons are made between measured room acoustical parameters and those obtained from computer simulations using the ODEON program version 3.1 on two concert halls. One is Musikverein in Vienna and the other is Concertgebo...

  1. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  2. Measurement and Modeling of the Acoustic Response in a High Pressure Combustor

    NARCIS (Netherlands)

    Kapucu, M.; Kapucu, Mehmet; Alemela, P.R.; Kok, Jacobus B.W.; Pozarlik, Artur Krzysztof

    2011-01-01

    In this paper, a one dimensional acoustic network model is presented which can be used as a design tool to predict the limit cycle pressure oscillations in a gas turbine combustor. Analytically represented models are combined with measured flame transfer functions and well defined boundary condition

  3. Passive acoustic measurements of snapping shrimp from a reef monitoring feasibility test in Aruba

    NARCIS (Netherlands)

    Huntera, A.; Fillingera, L.; Clarijs, M.

    2014-01-01

    In December 2013, TNO made underwater measurements in Aruba to assess the feasibility of reef health monitoring using passive acoustics; this work was conducted in collaboration with Aruba Ports Authority, Aruba Marine Park, and Aruba Reef Care Foundation. Ambient noise recordings were made at vario

  4. Remote sensing of temperature and wind using acoustic travel-time measurements

    Directory of Open Access Journals (Sweden)

    Manuela Barth

    2013-04-01

    Full Text Available A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre.

  5. On the local plane wave methods for in situ measurement of acoustic absorption

    NARCIS (Netherlands)

    Wijnant, Y.H.

    2015-01-01

    In this paper we address a series of so-called local plane wave methods (LPW) to measure acoustic absorption. As opposed to other methods, these methods do not rely on assumptions of the global sound field, like e.g. a plane wave or diffuse field, but are based on a local plane wave assumption. Ther

  6. A Multidimensional Investigation of Children's /r/ Productions: Perceptual, Ultrasound, and Acoustic Measures

    Science.gov (United States)

    Klein, Harriet B.; McAllister Byun, Tara; Davidson, Lisa; Grigos, Maria I.

    2013-01-01

    Purpose: This study explored relationships among perceptual, ultrasound, and acoustic measurements of children's correct and misarticulated /r/ sounds. Longitudinal data documenting changes across these parameters were collected from 2 children who acquired /r/ over a period of intervention and were compared with data from children with typical…

  7. Modal measurements and propeller field excitation on acoustic full scale mockup of SAAB 340 aircraft

    Science.gov (United States)

    Gustavsson, Lars

    1992-06-01

    The acoustic mockup of the cabin SAAB 340 aircraft was measured in an anechoic chamber concerning modal parameters and operating deflection shapes. The mockup was excited with vibration shakers at the fuselage for modal estimation and with a ring of loudspeakers around the fuselage to generate propeller fields for operating deflection shapes. Two cases of structure configuration were used at the measurements; one consisting of only the fuselage, without trimpanels and floorpanels and one case with trimpanels and floorpanels. Modal measurements were done with excitation on a frame of the fuselage at the propeller plane. The modes were estimated for the individual components; fuselage, trimpanels, floorpanels, and soundfield in the cabin. The modes of the fuselage were compared with the acoustic models in the cabin concerning possible coupling effects. With the loudspeakering, the sound field from the left and the right propeller were generated at a blade passage frequency of 81.9 Hz and its first harmonic. Operating deflection shapes of fuselage, panels, and cabin acoustic were estimated. The results from the measurements could be used to verify a finite element model and as a tool for developing acoustic noise control systems.

  8. Acoustic Reflex Measurements in Normal, Cochlear, and Retrocochlear Lesions -Part1

    Directory of Open Access Journals (Sweden)

    Navid Shahnaz

    1992-04-01

    Full Text Available The cut off points of 90th percentile of acoustic reflex thresholds were determined in the normal and sensory hearing loss.All subjects had measurable hearing(ANSI-1969≤110 dBHL in three frequencies of 500,1000 and 2000Hz.While hearing loss was more than 55dB, The cut off point was higher in studies that NR responses was included.In cases that hearing loss was less than 75dB, 90th percentile can be used in diganosis of retrochochlear lesions.Since Acoustic reflexes are absent in both mentioned pathologies in greater amount of hearing loss,It would be less efficient in diffrential diganisis of cochlear and retrochochlear lesions to use acoustic reflex thresholds under the mentioned circumstances.

  9. Acoustical Measurement and Biot Model for Coral Reef Detection and Quantification

    Directory of Open Access Journals (Sweden)

    Henry M. Manik

    2016-01-01

    Full Text Available Coral reefs are coastal resources and very useful for marine ecosystems. Nowadays, the existence of coral reefs is seriously threatened due to the activities of blast fishing, coral mining, marine sedimentation, pollution, and global climate change. To determine the existence of coral reefs, it is necessary to study them comprehensively. One method to study a coral reef by using a propagation of sound waves is proposed. In this research, the measurement of reflection coefficient, transmission coefficient, acoustic backscattering, hardness, and roughness of coral reefs has been conducted using acoustic instruments and numerical modeling using Biot theory. The results showed that the quantification of the acoustic backscatter can classify the type of coral reef.

  10. A measure of acoustic noise generated from transcranial magnetic stimulation coils.

    Science.gov (United States)

    Dhamne, Sameer C; Kothare, Raveena S; Yu, Camilla; Hsieh, Tsung-Hsun; Anastasio, Elana M; Oberman, Lindsay; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2014-01-01

    The intensity of sound emanating from the discharge of magnetic coils used in repetitive transcranial magnetic stimulation (rTMS) can potentially cause acoustic trauma. Per Occupational Safety and Health Administration (OSHA) standards for safety of noise exposure, hearing protection is recommended beyond restricted levels of noise and time limits. We measured the sound pressure levels (SPLs) from four rTMS coils with the goal of assessing if the acoustic artifact levels are of sufficient amplitude to warrant protection from acoustic trauma per OSHA standards. We studied the SPLs at two frequencies (5 and 10 Hz), three machine outputs (MO) (60, 80 and 100%), and two distances from the coil (5 and 10 cm). We found that the SPLs were louder at closer proximity from the coil and directly dependent on the MO. We also found that in all studied conditions, SPLs were lower than the OSHA permissible thresholds for short (8 h) exposure.

  11. High accuracy acoustic relative humidity measurement in duct flow with air

    OpenAIRE

    Cees van der Geld; Twan Wernaart; Mart Grooten; Wilhelm van Schaik

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temp...

  12. Comparisons between computer simulations of room acoustical parameters and those measured in concert halls

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Shiokawa, Hiroyoshi; Christensen, Claus Lynge;

    1999-01-01

    A number of European concert halls were surveyed in 1989. In this paper comparisons are made between measured room acoustical parameters and those obtained from computer simulations on concert halls using the odeon program version 3.1. The key parameter compared with measured data is the reverber......A number of European concert halls were surveyed in 1989. In this paper comparisons are made between measured room acoustical parameters and those obtained from computer simulations on concert halls using the odeon program version 3.1. The key parameter compared with measured data...... is the reverberation time, and this is mainly used to adjust the absorption data of the surfaces in the computer model. But five additional parameters are calculated and compared with measured data as well. In order to determine the sensitivity of the computer model, comparisons are also made between the results...

  13. Coupling thermogravimetric and acoustic emission measurements: its application to study the inhibition of catalytic coke deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ropital, Francois; Dascotte, Philippe; Marchand, Pierre [Institut Francais du Petrole, 1 Avenue Bois Preau, 92952 Rueil-Malmaison (France); Faure, Thierry; Lenain, Jean-Claude; Proust, Alain [Euro Physical Acoustics, 27 Rue Magellan, 94373 Sucy-en-Brie Cedex (France)

    2004-07-01

    In order to improve the knowledge on the high temperature behaviour of metallic materials, the coupling of several in situ physical analysis methods is a promising way. For this purpose a thermogravimetric balance has been equipped with a specific acoustic emission device in order to continuously measure the mass variation of the corrosion sample and the acoustic emission transient under experimental conditions of temperature and gas phase compositions that are representative of the industrial environments. The catalytic coke deposition condition that is a major problem for the refinery and petrochemical industries, has been studied with such a device. The carbon deposition on reactor walls can induce localised disruption in the process such as heat-transfer reduction and pressure drops. To prevent these perturbations, proper selections of the metallurgical or internal coating compositions of the equipment, or the injection of accurate amount of inhibitors have to be decided. The feasibility of the coupling at high temperature of thermogravimetric and acoustic emission has been demonstrated. This new technique has been applied to study the inhibition of the catalytic coke deposition on pure iron by sulphur additives in the temperature range of 650 deg. C and under different mixed atmospheres of hydrocarbon and hydrogen contents. Good correlation has been obtained between the coking rates measured by thermogravimetric measurements and the intensities of the acoustic emission parameters. (authors)

  14. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  15. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    Science.gov (United States)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  16. Relationship between acoustic measures and judgments of intelligibility in Parkinson’s disease: A within-speaker approach

    Science.gov (United States)

    FEENAUGHTY, LYNDA; TJADEN, KRIS; SUSSMAN, JOAN

    2017-01-01

    This study investigated the acoustic basis of within-speaker, across-utterance variation in sentence intelligibility for 12 speakers with dysarthria secondary to Parkinson’s disease (PD). Acoustic measures were also obtained for 12 healthy controls for comparison to speakers with PD. Speakers read sentences using their typical speech style. Acoustic measures of speech rate, articulatory rate, fundamental frequency, sound pressure level and F2 interquartile range (F2 IQR) were obtained. A group of listeners judged sentence intelligibility using a computerized visual-analog scale. Relationships between judgments of intelligibility and acoustic measures were determined for individual speakers with PD. Relationships among acoustic measures were also quantified. Although considerable variability was noted, articulatory rate, fundamental frequency and F2 IQR were most frequently associated with within-speaker variation in sentence intelligibility. Results suggest that diversity among speakers with PD should be considered when interpreting results from group analyses. PMID:24874184

  17. Method based on broadband compressed pulse superposition to measure properties of underwater acoustic materials

    Institute of Scientific and Technical Information of China (English)

    LI Shui; MIAO Rongxing

    2001-01-01

    A method is proposed for the measurements of the performances of underwater acoustic finite sized large area material samples in a free field by using broadband pulse compression technique. As the result of which, the low-frequency cutoff of the standard tests is obviously reduced, and the broadband measurements are also realized. The experimental system provides measurements of complex reflection and transmission coefficients at continuous frequency points. From the data one can obtain the following acoustic parameters: echo reduction and insertion loss, absorption and attenuation coefficients, etc. The measurements are performed for two actual panels with the size 1 m×1 m in the frequency range from 2-20 kHz.

  18. Early-age acoustic emission measurements in hydrating cement paste: Evidence for cavitation during solidification due to self-desiccation

    DEFF Research Database (Denmark)

    Lura, Pietro; Couch, J.; Jensen, Ole Mejlhede

    2009-01-01

    In this study, the acoustic emission activity of cement pastes was investigated during the first day of hydration. Deaired, fresh cement pastes were cast in sealed sample holders designed to minimize friction and restraint. The majority of acoustic emission events occurred in lower water to cement....... According to these experimental results, the acoustic emission measured around setting time was attributed to cavitation events occurring in the pores of the cement paste due to self-desiccation. This paper shows how acoustic emission might be used to indicate the time when the fluid–solid transition occurs...

  19. The acoustic environment of intensive care wards based on long period nocturnal measurements

    Directory of Open Access Journals (Sweden)

    Hui Xie

    2012-01-01

    Full Text Available The patients in the Intensive Care Units are often exposed to excessive levels of noise and activities. They can suffer from sleep disturbance, especially at night, but they are often too ill to cope with the poor environment. This article investigates the acoustic environment of typical intensive care wards in the UK, based on long period nocturnal measurements, and examines the differences between singlebed and multibed wards, using statistical analysis. It has been shown that the acoustic environment differs significantly every night. There are also significant differences between the noise levels in the singlebed and multibed wards, where acoustic ceilings are present. Despite the similar background noises in both ward types, more intrusive noises tend to originate from the multibed wards, while more extreme sounds are likely to occur in the single wards. The sound levels in the measured wards for each night are in excess of the World Health Organization′s (WHO guide levels by at least 20 dBA, dominantly at the middle frequencies. Although the sound level at night varies less than that in the daytime, the nocturnal acoustic environment is not dependant on any specific time, thus neither the noisiest nor quietest period can be determined. It is expected that the statistical analysis of the collected data will provide essential information for the development of relevant guidelines and noise reduction strategies.

  20. The acoustic environment of intensive care wards based on long period nocturnal measurements.

    Science.gov (United States)

    Xie, Hui; Kang, Jian

    2012-01-01

    The patients in the Intensive Care Units are often exposed to excessive levels of noise and activities. They can suffer from sleep disturbance, especially at night, but they are often too ill to cope with the poor environment. This article investigates the acoustic environment of typical intensive care wards in the UK, based on long period nocturnal measurements, and examines the differences between singlebed and multibed wards, using statistical analysis. It has been shown that the acoustic environment differs significantly every night. There are also significant differences between the noise levels in the singlebed and multibed wards, where acoustic ceilings are present. Despite the similar background noises in both ward types, more intrusive noises tend to originate from the multibed wards, while more extreme sounds are likely to occur in the single wards. The sound levels in the measured wards for each night are in excess of the World Health Organization's (WHO) guide levels by at least 20 dBA, dominantly at the middle frequencies. Although the sound level at night varies less than that in the daytime, the nocturnal acoustic environment is not dependant on any specific time, thus neither the noisiest nor quietest period can be determined. It is expected that the statistical analysis of the collected data will provide essential information for the development of relevant guidelines and noise reduction strategies.

  1. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  2. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    Science.gov (United States)

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.

  3. Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic measurements

    OpenAIRE

    AUDOLY, Christian

    2012-01-01

    International audience; External anechoic and decoupling hull coatings are used on ships or submarines to reduce acoustic target strength and radiated noise, respectively. Measurement of test panels in a water tank gives only the reflection and transmission coefficients in free field, with respects to frequency. It is shown using simple models that anechoic and decoupling efficiencies can be derived, providing appropriate modulus and phase measurement of the coefficients. Additionnally, the i...

  4. Laser and acoustic Doppler techniques for the measurement of fluid velocities

    Science.gov (United States)

    Cliff, W. C.

    1975-01-01

    An overview of current laser and acoustic Doppler techniques is presented. Results obtained by Doppler anemometry and conventional sensors are compared. Comparisons include simultaneous velocity measurements by hot wire and a three-dimensional laser anemometer made in a gaseous pipe flow as well as direct comparisons of atmospheric velocities measured with propeller and cup anemometry. Scanning techniques are also discussed. Conclusions and recommendations for future work are presented.

  5. Logopenic and Nonfluent Variants of Primary Progressive Aphasia Are Differentiated by Acoustic Measures of Speech Production: e89864

    National Research Council Canada - National Science Library

    Kirrie J Ballard; Sharon Savage; Cristian E Leyton; Adam P Vogel; Michael Hornberger; John R Hodges

    2014-01-01

    .... In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis...

  6. Acoustic Measurements of Residual Stresses and Grain Sizes in Aluminum Alloys

    Science.gov (United States)

    Fisher, Martin John

    The theory of acoustoelasticity relates the velocity of an acoustic wave in a solid to the elastic stress state in that solid. This thesis presents new theories, measurement techniques, and methodologies related to the use of longitudinal wave acoustoelasticity in aluminum alloys. A one-dimensional model has been developed to provide a simple understanding of the acoustoelastic effect. A new acoustic device for accurately measuring relative thickness variations has been designed and built. This device is used--in conjunction with a pulse-echo phase measurement device and a computer controlled scanning system--to measure acoustic velocity variations in plastically deformed and non-flat-and-parallel samples. Acoustic velocity variations from point to point in an unstressed sample can sometimes be on the same order as velocity changes due to applied or residual stresses, and this can make stress measurements difficult. A statistical theory has been developed to relate these unstressed velocity variations to the average grain size in the sample and to the active area of the acoustic transducer used. Large transducers and small grain sizes will minimize these variations. This relationship has been verified by tests on a number of aluminum alloys and a new method for non-destructive grain size determination has been suggested. A systematic methodology has been developed and tested for studying the influence of uniaxial plastic deformation on the acoustoelastic response. Samples have been plastically deformed in four-point bending to produce elastic-plastic and residual stress states. Acoustic measurements of these stresses have then been compared directly to theoretical predictions based on the materials' stress-strain curves and simple beam theory. In the aluminum alloys tested (2024-T351 and 7075-T651), the acoustoelastic constants are shown to be virtually unchanged by uniaxial plastic strains of less than 2.5%. Thus, the acoustoelastic technique can be reliably

  7. Measurement of ultrasonic nonlinear parameter by using electromagnetic acoustic transducer

    Science.gov (United States)

    Cai, Zhichao; Liu, Suzhen; Zhang, Chuang

    2017-02-01

    The nonlinear ultrasonic technology is generally known as an effective method for the microcrack detection. However, most of the previous experimental studies were limited by a contact nonlinearity method. Since measurement by the contact method is affected by the coupling conditions, additional nonlinear coefficient are lead into the measurement. This research presents a novel technique for nonlinear ultrasonic wave measurements that uses a non-contact electromagnetic ultrasonic transducer (EMAT). And for a better understanding and a more in-depth analysis of the macroscopic nonlinear behavior of microcrack, the developed FEM modeling approach was built to simulate microcrack induced nonlinearities manifested in electromagnetic ultrasonic waves and validated experimentally. This study has yielded a quantitative characterization strategy for microcrack using EMAT, facilitating deployment of structural health monitoring by noncontact electromagnetic nondestructive testing.

  8. Acoustical and optical backscatter measurements of sediment transport in the 1988 1989 STRESS experiment

    Science.gov (United States)

    Lynch, J. F.; Gross, T. F.; Sherwood, C. R.; Irish, J. D.; Brumley, B. H.

    1997-04-01

    During the 1988-1989 Sediment Transport Events on Shelves and Slopes (STRESS) experiment, a 1-MHz acoustic backscatter system (ABSS), deployed in 90 m of water off the California coast measured vertical profiles of suspended sediment concentration from 1.5 to (nominally) 26 meters above bottom (m.a.b.). An 8-week-long time series was obtained, showing major sediment transport events (storms) in late December and early January. Comparison of the acoustics measurements from 1.5 m.a.b. are made with optical backscatter system (OBS) concentration estimates lower in the boundary layer (0.25 m.a.b.). Correlations between ABSS and OBS concentration measurements and the boundary layer forcing functions (waves, currents, and their non-linear interaction) provided a variety of insights into the nature of the sediment transport of the STRESS site. Transport rates and integrated transport are seen to be dominated by the largest storm events.

  9. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  10. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse and the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit area...

  11. Improvements in Elimination of Loudspeaker Distortion in Acoustic Measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2015-01-01

    sine signal and is tested on models of memoryless nonlinear systems as well as nonlinear loudspeakers. The method is shown to give a clear benefit over existing methods. Two techniques that improve the signal-to-noise ratio are demonstrated: the first uses more measurement levels than the number...

  12. Age effects in the human middle ear: Wideband acoustical measures

    Science.gov (United States)

    Feeney, M. Patrick; Sanford, Chris A.

    2004-12-01

    Studies that have examined age effects in the human middle ear using either admittance measures at 220 or 660 Hz or multifrequency tympanometry from 200 to 2000 Hz have had conflicting results. Several studies have suggested an increase in admittance with age, while several others have suggested a decrease in admittance with age. A third group of studies found no significant age effect. This study examined 226 Hz tympanometry and wideband energy reflectance and impedance at ambient pressure in a group of 40 young adults and a group of 30 adults with age >=60 years. The groups did not differ in admittance measures of the middle ear at 226 Hz. However, significant age effects were found in wideband energy reflectance and impedance. In particular, in older adults there was a comparative decrease in reflectance from 800 to 2000 Hz but an increase near 4000 Hz. The results suggest a decrease in middle-ear stiffness with age. The findings of this study hold relevance for understanding the aging process in the auditory system, for the establishment of normative data for wideband energy reflectance, for the possibility of a conductive component to presbycusis, and for the interpretation of otoacoustic emission measurements. .

  13. Synthetic aperture acoustic measurements of stationary suspended cinderblock and surrogate substitutes

    Science.gov (United States)

    Bishop, Steven; Woods, Teresa; Vignola, Joe; Judge, John; Soumekh, Mehrdad

    2009-05-01

    A synthetic aperture acoustic approach is used as a standoff method to assess material properties of a typical cinder block, referred to as a concrete masonry unit (CMU), and a variety of CMU surrogates. The objective is to identify anomalies in CMU wall surfaces. The acoustic specular return and phase change across the blocks are the fundamental measurements of interest. The CMU surrogates are created from commercially available closed cell expanding foam. Results from three test articles are presented that show potentially exploitable differences in terms of acoustic magnitude and acoustic phase response between the surrogates and typical CMUs. The test articles are; a typical CMU, a foam block, and a foam block with an embedded steel object. All test articles are similar in size and shape, and both foam blocks are covered in grout so that surface appearance closely matches that of a CMU. The results show that each of the test articles has characteristics that may be used for discrimination and anomaly detection.

  14. A novel multipitch measurement algorithm for acoustic signals of moving targets

    Science.gov (United States)

    Huang, Jingchang; Guo, Feng; Zu, Xingshui; Li, Haiyan; Liu, Huawei; Li, Baoqing

    2016-12-01

    In this paper, a novel multipitch measurement (MPM) method is proposed for acoustic signals. Starting from the analysis of moving targets' acoustic signatures, a pitch-based harmonics representation model of acoustic signal is put forward. According to the proposed harmonics model, a modified greatest common divisor (MGCD) method is developed to obtain an initial multipitch set (IMS). Subsequently, the harmonic number vector (HNV) associated with the IMS is determined by maximizing the objective function formulated as a multi-impulse-train weighted symmetric average magnitude sum function (SAMSF) of the observed signal. The frequencies of SAMSF are determined by the target acoustic signal, the periods of the multi-impulse-train are governed by the estimated IMS harmonics and the maximization of the objective function is figured out through a time-domain matching of periodicities of the multi-impulse-train with that of the SAMSF. Finally, by using the obtained IMS and its HNV, a precise fundamental frequency set is achieved. Evaluation of the algorithm performances in comparison with state-of-the-art methods indicates that MPM is practical for the multipitch extraction of moving targets.

  15. Acoustic Resuspension Measurement System (ARMS): Announcement of Availability.

    Science.gov (United States)

    1992-04-01

    their controlling circuitry to be con,- Z bined in compact, battery -powered packages. These instrument packages can W 0 be contained in rellatively... Station DTIO QUALITY [INSP8•ECTE"•D 4 3909 Halls Ferry Road. Vicksburg, MS 39180-6199 tzqq o- ,1TEDOf’ rYCjA" PiosJ Mr. E. Clark McNair, Jr., (601... Prickett and Michelle M. Thevenot. Introduction In order to measure in situ properties of the boundary layer above dredged material mounds in open

  16. Shallow-water acoustic tomography from angle measurements instead of travel-time measurements.

    Science.gov (United States)

    Aulanier, Florian; Nicolas, Barbara; Mars, Jérôme I; Roux, Philippe; Brossier, Romain

    2013-10-01

    For shallow-water waveguides and mid-frequency broadband acoustic signals, ocean acoustic tomography (OAT) is based on the multi-path aspect of wave propagation. Using arrays in emission and reception and advanced array processing, every acoustic arrival can be isolated and matched to an eigenray that is defined not only by its travel time but also by its launch and reception angles. Classically, OAT uses travel-time variations to retrieve sound-speed perturbations; this assumes very accurate source-to-receiver clock synchronization. This letter uses numerical simulations to demonstrate that launch-and-reception-angle tomography gives similar results to travel-time tomography without the same requirement for high-precision synchronization.

  17. Initiation of GPS-Acoustics Measurements on the Continental Slope of the Cascadia Subduction Zone

    Science.gov (United States)

    Chadwell, C. D.

    2016-12-01

    Land-based GPS measurements suggest the megathrust is locked offshore along the Cascadia Subduction Zone. However, land-based data alone lack geometric resolution to constrain the how the slip is distributed. GPS-Acoustic measurements can provide these constraints, but using traditional GPS-Acoustic approaches employing a ship is costly. Wave Gliders, a wave- and solar-powered, remotely-piloted sea surface platform, provide a low cost method for collecting GPS-A data. We have adapted GPS-Acoustic technology to the Wave Glider. In July 2016, the GPS-A Wave Glider was launched on month-long mission to two sites on the continental slope of the Cascadia Subduction Zone. One site is approximately 45 NM offshore central Oregon and the other approximately 50 NM offshore central Washington State. We will report on initial results of the GPS-A data collection and operational experiences of the mission. Wave Glider based GPS-A measurement have the potential to significantly increase the number and frequency of measurements of strain accumulation in Cascadia Subduction Zone and elsewhere.

  18. Overview of hydro-acoustic current-measurement applications by the U.S. geological survey in Indiana

    Science.gov (United States)

    Morlock, Scott E.; Stewart, James A.

    1999-01-01

    The U.S. Geological Survey (USGS) maintains a network of 170 streamflow-gaging stations in Indiana to collect data from which continuous records of river discharges are produced. Traditionally, the discharge record from a station is produced by recording river stage and making periodic discharge measurements through a range of stage, then developing a relation between stage and discharge. Techniques that promise to increase data collection accuracy and efficiency include the use of hydro-acoustic instrumentation to measure river velocities. The velocity measurements are used to compute river discharge. In-situ applications of hydro-acoustic instruments by the USGS in Indiana include acoustic velocity meters (AVM's) at six streamflow-gaging stations and newly developed Doppler velocity meters (DVM's) at two stations. AVM's use reciprocal travel times of acoustic signals to measure average water velocities along acoustic paths, whereas DVM's use the Doppler shift of backscattered acoustic signals to compute water velocities. In addition to the in-situ applications, three acoustic Doppler current profilers (ADCP's) are used to make river-discharge measurements from moving boats at streamflow-gaging stations in Indiana. The USGS has designed and is testing an innovative unmanned platform from which to make ADCP discharge measurements.

  19. Brillouin-scattering measurements of the acoustic absorption coefficient in liquid CS2

    Science.gov (United States)

    Coakley, R. W.; Detenbeck, R. W.

    1975-01-01

    High-resolution Brillouin spectra were recorded for light scattered at small angles from liquid CS2. The use of a single-mode He-Ne laser, locked in frequency to a Fabry-Perot interferometer, permitted measurements of line widths of the order of 10 MHz for frequencies in the range 300-1000 MHz. These measurements extend previous Brillouin line-width measurements at higher frequencies into the region where relaxation effects are dominant and connect the optical measurements with lower-frequency acoustical data.

  20. Self-oscillation acoustic system destined to measurement of stresses in mass rocks

    CERN Document Server

    Kwasniewski, Janusz; Dominik, Ireneusz; Dorobczynski, Lech

    2011-01-01

    The paper presents an electronic self-oscillation acoustic system (SAS) destined to measure of stresses variations in the elastic media. The system consists of piezoelectric detector, amplifier-limiter, pass-band filter, piezoelectric exciter and the frequency meter. The mass rock plays a role of delaying element, in which variations in stresses causing the variations of acoustic wave velocity of propagation, and successive variation in frequency of oscillations generated by system. The laboratory test permitted to estimate variations in frequency caused by variations in stresses of elastic medium. The principles of selection of frequency and other parameters of the electronic system in application to stresses measurement in condition of the mine were presented.

  1. Measurement of low-frequency ultrasonic wave in water using an acoustic fiber sensor.

    Science.gov (United States)

    Sakoda, Tatsuya; Sonoda, Yoshito

    2006-04-01

    An acoustic fiber sensor for measurement of ultrasonic waves, which used the approximate Raman-Nath diffraction effect where light diffraction waves were generated in an optical fiber by strain due to the ultrasonic waves, was proposed and examined. In order to characterize the acoustic fiber sensor as a basic study, measurements of low-frequency ultrasonic waves in water were examined using a step index fiber operating as a detection sensor. The results showed that characteristics of detected signals agreed with the theoretical prediction based on Fraunhofer diffraction. This indicates that our proposed fiber sensor can be used for the detection of low-frequency ultrasonic waves as well as the transmission of light diffraction signals.

  2. Clinical Studies of Real-Time Monitoring of Lithotripter Performance Using Passive Acoustic Sensors

    Science.gov (United States)

    Leighton, T. G.; Fedele, F.; Coleman, A. J.; McCarthy, C.; Ryves, S.; Hurrell, A. M.; De Stefano, A.; White, P. R.

    2008-09-01

    This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated

  3. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    Science.gov (United States)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  4. Hearing preservation in acoustic neuroma resection: Analysis of petrous bone measurement and intraoperative application

    Directory of Open Access Journals (Sweden)

    Levent Tanrikulu

    2016-01-01

    Conclusion: Petrous bone measurement by high-resolution MRI data enables safe surgical exposure of the internal acoustic canal with avoidance of injury to the labyrinth and a better postoperative prognosis, especially for intrameatal ANs and for the resection of intrameatal portions of larger neuromas. The prognostic factors enable the patients and the surgeon a better estimation of postoperative results regarding deafness and postoperative hypacusis and support a consolidated treatment planning.

  5. Acoustical measurements of expression devices in pipe organs.

    Science.gov (United States)

    Braasch, Jonas

    2008-03-01

    In this investigation, three different swell systems known in pipe organs, the swell box, the crescendo wheel, and the historic wind swell were measured and compared to each other. The dynamic range of the crescendo wheel was found to be most effective, and for frequencies near 2 kHz the increase in sound pressure level could be up to 50 dB between the softest and the loudest adjustment. The maximum dynamic range for the wind swell and the swell box were found to be 10-20 dB in the same frequency range. With its step-wise crescendo procedure, the crescendo wheel simulates the type of orchestra crescendo which is reached by successively adding further musical instruments. In contrast, the swell box and the wind swell produce a crescendo effect similar to the crescendo in which individual musical instruments perform a dynamic movement. This type of crescendo requires a continuous level increase but allows a smaller dynamic range. The disappearance of the wind swell is not surprising because it offers no advantage over the swell box, while being restricted to stops with free reeds.

  6. [Clinical and radiological evolution of a group of untreated acoustic neuromas].

    Science.gov (United States)

    Escorihuela-García, Vicente; Llópez-Carratalá, Ignacio; Orts-Alborch, Miguel; Marco-Algarra, Jaime

    2014-01-01

    The acoustic neuroma is a benign tumour that originates in the vestibular branch of the eighth cranial nerve. The main treatment is surgery, but many authors suggest that with elderly patients or in small neuromas we can opt for watchful waiting. This was a retrospective study from 2007 to 2013 that included 27 patients diagnosed of acoustic neuroma that had not been treated due to the size of the tumour, age and comorbidities, or by patient choice. We evaluated overall condition, hearing thresholds, degree of canal paresis and central disorders. After 6 years of follow up, clinical manifestations of 18 patients remained unchanged, 5 patients underwent hearing loss and developed tinnitus, 2 cases had more intense tinnitus and 2 cases had dizziness. The radiological controls by magnetic resonance imaging showed that the initial maximum diameters (5-16mm) increased by 1.7mm on average, with annual growth rates below 0.5mm. In selected cases, such as for small neuromas and in elderly patients, the conservative option of close monitoring with magnetic resonance imaging is an important alternative given that, in our cases, clinical features and radiological image did not suffer major changes. If there were any such changes, therapeutic options could be proposed. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  7. Air-coupled acoustic radiation force source for non-contact measurement of soft media elasticity (Conference Presentation)

    Science.gov (United States)

    Ambroziński, Lukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David S.; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2017-04-01

    Acoustic radiation force (ARF) is commonly used in ultrasound (US)-based elastography to generate shear waves deep within soft tissue. These waves can be detected with different methods, e.g. contact conventional ultrasound imaging probes or contact free magnetic resonance or optical coherence tomography (OCT). For many clinical applications, however, for instance the eye, a totally non-contact system for generation/detection of mechanical waves is needed. Here, we present a method for efficient non-contact excitation of broadband transverse mechanical waves in soft media. The approach is based on pushing the medium under study with a 1 MHz chirped US wave focused to its surface from air. The US beam reflected from the air/medium interface provides the ARF force to the medium surface launching a transient mechanical wave in the transverse (lateral) direction. The design and performance of the air-coupled transducer is discussed. The focal zone, peak pressure and acoustic intensity are measured for transducers with different numerical apertures. Time and frequency characteristics of the propagating mechanical waves, generated in soft tissue, are tracked with a phase-sensitive ultra-fast frame rate OCT imaging system. Application of the proposed method for non-contact, non-invasive, sub-mm resolution elasticity measurement in soft tissue is proposed.

  8. Complete velocity distribution in river cross-sections measured by acoustic instruments

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  9. Direct voltage measurements using bulk acoustic wave sensing in LiNbO3

    Science.gov (United States)

    Patel, Nishant Bhupendra

    Accurate (impedance effects that can distort the pulse shape, and pickup of extraneous signals resulting from electromagnetic interference effects. A piezoelectric crystal-based bulk acoustic wave sensor using lithium niobate (LiNbO3) that has applications to metrology, research, and power metering was developed to overcome these measurement issues with the factors of scalability, ease of use, and compactness in mind. A Y+36° cut LiNbO3crystal was coupled to two acoustic transducers, where direct current (DC) voltages ranging from 128--1100 V were applied transversely to the crystal. An acoustic wave was used to interrogate the crystal before, during, and after voltage application. Both single and multiple pass measurements were performed and compared to linear piezoelectric theory. A comparison study between Y+36° and 0° X-cut LiNbO3 was performed to evaluate the influence of crystal cut on acoustic propagation. The study was extended to applying alternating current (AC), and pulsed voltages. The measured DC data was compared to a 1-D impedance matrix model that was based on a three port circuit with voltage-induced strain effects inputted as a model parameter. An uncertainty budget was carried out for both crystal cuts and compared. Environmental effects such as pressure and temperature were also measured to determine their influence on the sensor under ambient conditions. Published literature regarding material constants, such as elastic constants and piezoelectric constants, for LiNbO3 do not account for the influence of an electric field. In light of this, measurements of the acoustic velocities and material constants under the presence of a DC electric field were performed up to 896 V. This information was used to develop an uncertainty analysis for the determination of stress-charge form piezoelectric constants e15 and e22. All measured and calculated values were input into a Monte Carlo simulation to determine the error of the strain-charge form

  10. Responsiveness of Clinical Outcome Measures

    DEFF Research Database (Denmark)

    Lauridsen, Henrik Hein

    Rating Scale is recommended. The MCID was more or less stable across subgroups for most instruments and increased monotonously with baseline condition severity in PrS and LBP patients only. The clinical question: “how are you now compared to when you started the treatment” seems to be most sensitive...... obtainable by a certain treatment. Chronic LBP patients seem to have a reasonable idea of an acceptable change in pain but overestimate change in functional and psychological /affective domains....

  11. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    Science.gov (United States)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  12. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2010-03-01

    Full Text Available The Juvenile Salmon Acoustic Telemetry System (JSATS is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  13. Evaluation of stage acoustics in Seoul Arts Center Concert Hall by measuring stage support.

    Science.gov (United States)

    Jeon, Jin Yong; Barron, Michael

    2005-01-01

    Stage acoustics is an important characteristic for concert halls, both for the acoustic quality on stage and for the audience. However, relatively little research has been conducted into the question. This study was based on the investigation of an actual concert hall stage, that of the Seoul Arts Center Concert Hall in Korea. The stage acoustics was evaluated in the actual hall, and with two models: a 1:25 scale model and a computer model. The study was based on the stage support parameter ST1 proposed by Gade as a measure of support for individual performers [Acustica 65, 193-203 (1989)]. The variation of support was measured on the empty stage of the actual hall and in the two models. The effect of musicians on stage, the effect of moving the orchestra, the effect of ceiling height and of stage-wall profile were also investigated. Conclusions are drawn both relating to the Seoul Concert Hall stage and stages in general.

  14. Acoustic harmonic generation measurement applications: Detection of tight cracks in powder metallurgy compacts

    Science.gov (United States)

    Barnard, D. J.; Foley, J. C.

    2000-05-01

    Standard linear ultrasonic testing techniques have long been employed for locating and characterizing relatively open cracks in a wide variety of materials, from metallic alloys and ceramics to composites. In all these materials, the detection of open cracks easily accomplished because the void between the two crack surfaces provides sufficient acoustic impedance mismatch to reflect the incident energy. Closed or partially closed cracks, however, may often go undetected because contacting interfaces allow transmission of ultrasound. In the green (unsintered) state, powder metallurgy compacts typically contain high residual stresses that have the ability to close cracks formed during the compaction process, a result of oxide films, improper powder lubricant, mold design, etc. After sintering, the reduction of residual stresses may no longer be sufficient to close the crack. Although the crack may be more easily detected, it is obvious most desirable to discover defects prior to sintering. It has been shown that the displacements of an interface may be highly nonlinear if a stress wave of sufficient intensity propagates across it, a result of the stress wave either opening or closing the interface. Current efforts involve the application of nonlinear acoustic techniques, in particular acoustic harmonic generation measurements, for the detection and characterization of tightly closed cracks in powder metallurgy parts. A description of the equipment and the measurement technique will be discussed and initial experimental results on sintered and green compacts will be presented.—This work was performed at the Ames Laboratory, Iowa State University under USDOE Contract No. W-7405-ENG-82.

  15. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range.

  16. Fish species identification based on its acoustic target strength using in situ measurement

    Directory of Open Access Journals (Sweden)

    Raja-Bidin Raja-Hassan

    2010-11-01

    Full Text Available The purpose of this study is fish species identification using acoustic target strength (TS. Insitu measurement has been deployed at the South China Sea of Terengganu Malaysia using Furuno FQ-80 Scientific Echo Sounder which included in the research vessel of KK Senangin II. The transducer isplaced 2.8 meter under sea surface while fish put in the net cage under the vessel. TS data have beencollected independently for commercial fish in Malaysia, there are Selar boops (Oxeye scad, Alepesdjedaba (Shrimp scad, Megalaspis cordyla (Torpedo scad, and Decapterus maruadsi/b> (Japanese scad.TS value, depth, and position of specific target have been observed using echogram. TS of every speciesis different although similar size and at the similar range from transducer. Thus, the specific fish specieshas been identified based on its acoustic target strength.

  17. Measurements of Finite Dust Temperature Effects in the Dispersion Relation of the Dust Acoustic Wave

    Science.gov (United States)

    Snipes, Erica; Williams, Jeremiah

    2009-04-01

    A dusty plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of these charged microparticles gives rise to new plasma wave modes, including the dust acoustic wave. Recent measurements [1, 2] of the dispersion relationship for the dust acoustic wave in a glow discharge have shown that finite temperature effects are observed at higher values of neutral pressure. Other work [3] has shown that these effects are not observed at lower values of neutral pressure. We present the results of ongoing work examining finite temperature effects in the dispersion relation as a function of neutral pressure. [4pt] [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [0pt] [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [0pt] [3] T. Trottenberg, D. Block, and A. Piel, Phys. Plasmas 13, 042105 (2006).

  18. A Tool Measuring Remaining Thickness of Notched Acoustic Cavities in Primary Reaction Control Thruster NDI Standards

    Science.gov (United States)

    Sun, Yushi; Sun, Changhong; Zhu, Harry; Wincheski, Buzz

    2006-01-01

    Stress corrosion cracking in the relief radius area of a space shuttle primary reaction control thruster is an issue of concern. The current approach for monitoring of potential crack growth is nondestructive inspection (NDI) of remaining thickness (RT) to the acoustic cavities using an eddy current or remote field eddy current probe. EDM manufacturers have difficulty in providing accurate RT calibration standards. Significant error in the RT values of NDI calibration standards could lead to a mistaken judgment of cracking condition of a thruster under inspection. A tool based on eddy current principle has been developed to measure the RT at each acoustic cavity of a calibration standard in order to validate that the standard meets the sample design criteria.

  19. Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study.

    Science.gov (United States)

    Vanneste, Sven; van Dongen, Marijn; De Vree, Bjorn; Hiseni, Senad; van der Velden, Eddy; Strydis, Christos; Joos, Kathleen; Norena, Arnaud; Serdijn, Wouter; De Ridder, Dirk

    2013-02-01

    Animal research has shown that loss of normal acoustic stimulation can increase spontaneous firing in the central auditory system and induce cortical map plasticity. Enriched acoustic environment after noise trauma prevents map plasticity and abolishes neural signs of tinnitus. In humans, the tinnitus spectrum overlaps with the area of hearing loss. Based on these findings it can be hypothesized that stimulating the auditory system by presenting music compensating specifically for the hearing loss might also suppress chronic tinnitus. To verify this hypothesis, a study was conducted in three groups of tinnitus patients. One group listened just to unmodified music (i.e. active control group), one group listened to music spectrally tailored to compensate for their hearing loss, and a third group received music tailored to overcompensate for their hearing loss, associated with one (in presbycusis) or two notches (in audiometric dip) at the edge of hearing loss. Our data indicate that applying overcompensation to the hearing loss worsens the patients' tinnitus loudness, the tinnitus annoyance and their depressive feelings. No significant effects were obtained for the control group or for the compensation group. These clinical findings were associated with an increase in current density within the left dorsal anterior cingulate cortex in the alpha2 frequency band and within the left pregenual anterior cingulate cortex in beta1 and beta2 frequency band. In addition, a region of interest analysis also demonstrated an associated increase in gamma band activity in the auditory cortex after overcompensation in comparison to baseline measurements. This was, however, not the case for the control or the compensation groups. In conclusion, music therapy compensating for hearing loss is not beneficial in suppressing tinnitus, and overcompensating hearing loss actually worsens tinnitus, both clinically and electrophysiologically.

  20. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    Science.gov (United States)

    Kent, Renee M.; Vary, Alex

    1992-01-01

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns).

  1. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    Directory of Open Access Journals (Sweden)

    William J Murphy

    2015-01-01

    Full Text Available Impulse peak insertion loss (IPIL was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF. Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB, 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs ® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL.

  2. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube.

    Science.gov (United States)

    Murphy, William J; Fackler, Cameron J; Berger, Elliott H; Shaw, Peter B; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs ® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL.

  3. Measuring early plaque formation clinically.

    Science.gov (United States)

    Maliska, Alessandra N; Weidlich, Patricia; Gomes, Sabrina C; Oppermann, Rui V

    2006-01-01

    To test a system of measuring early plaque formation (EPF) and its subgingival extension as related to the presence or absence of a plaque free zone (PFZ). EPF was measured by three independent examiners following two consecutive 72-hour periods of undisturbed plaque build-up. One of the examiners further measured EPF following a 96-hour period in the presence of chlorhexidine or placebo. The classification system was composed of criterion 0 (plaque-free dental surface), criterion 1 (presence of plaque and PFZ) and criterion 2 (absence of PFZ, subgingival extension of plaque). Intra- and inter-examiner reliability were evaluated by means of the percentage of absolute agreement (c), Kappa (k) and Kendall (kd) coefficients. The third experiment consisted of a double-blind, placebo-controlled, cross-over trial. Plaque build-up in the presence of 0.12% chlorhexidine was assessed by employing the classification system described. The percentage of absolute intra- and inter-examiner agreement ranged from 85.43% to 75.63% and from 77.31% to 75.35% respectively. Chlorhexidine and placebo rinses showed similar percentages of criterion 1 surfaces, 62.6% and 51.5% respectively (p = 0.343). Of the surfaces, 44.3% showed criterion 2 after the use of placebo, while 3.4% of surfaces showed this criterion with the chlorhexidine (p = 0.007). The events associated with EPF can be appropriately scored with this classification system. Chlorhexidine rinses inhibit both the plaque colonization of the dental surfaces as well as its subgingival extension.

  4. Multibeam volume acoustic backscatter imagery and reverberation measurements in the northeastern Gulf of Mexico

    Science.gov (United States)

    Gallaudet, Timothy C.; deMoustier, Christian P.

    2002-08-01

    Multibeam volume acoustic backscatter imagery and reverberation measurements are derived from data collected in 200-m-deep waters in the northeastern Gulf of Mexico, with the Toroidal Volume Search Sonar (TVSS), a 68-kHz cylindrical sonar operated by the U.S. Navy's Coastal System Station. The TVSS's 360-degree vertical imaging plane allows simultaneous identification of multiple volume scattering sources and their discrimination from backscatter at the sea surface or the seafloor. This imaging capability is used to construct a three-dimensional representation of a pelagic fish school near the bottom. Scattering layers imaged in the mixed layer and upper thermocline are attributed to assemblages of epipelagic zooplankton. The fine scale patchiness of these scatterers is assessed with the two-dimensional variance spectra of vertical volume scattering strength images in the upper and middle water column. Mean volume reverberation levels exhibit a vertical directionality which is attributed to the volume scattering layers. Boundary echo sidelobe interference and reverberation is shown to be the major limitation in obtaining bioacoustic data with the TVSS. Because net tow and trawl samples were not collected with the acoustic data, the analysis presented is based upon comparison to previous biologic surveys in the northeastern Gulf of Mexico and reference to the bioacoustic literature. copyright 2002 Acoustical Society of America.

  5. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...... of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  6. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.

    Science.gov (United States)

    Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P

    2012-05-01

    Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.

  7. Responsiveness of Clinical Outcome Measures

    DEFF Research Database (Denmark)

    Lauridsen, Henrik Hein

    to condition alterations in PrS patients and should be added as an outcome measure to standard questionnaires used serially. The prospective acceptable outcome method offers a benchmark by which clinicians can balance any mismatch between what are acceptable outcomes to the patient with what is realistically......, the most commonly used retrospective method to establish the MCID has inherent methodological flaws. Perhaps it would be more prudent to ask LBP patients what is an acceptable result of the treatment before it begins? Objectives The overall objective was to establish the responsiveness and MCID in specific...... subgroups of patients with LBP. In addition, we explored whether low back pain patients were able to determine an acceptable treatment outcome before it began. Methods The responsiveness in subgroups study. An extensive cross-cultural adaptation and validation of the ODI was carried out on patients seen...

  8. Angular measurement of acoustic reflection coefficients by the inversion of V(z, t) data with high frequency time-resolved acoustic microscopy

    Science.gov (United States)

    Chen, Jian; Bai, Xiaolong; Yang, Keji; Ju, Bing-Feng

    2012-01-01

    For inspection of mechanical properties and integrity of critical components such as integrated circuits or composite materials by acoustic methodology, it is imperative to evaluate their acoustic reflection coefficients, which are in close correlation with the elastic properties, thickness, density, and attenuation and interface adhesion of these layered structures. An experimental method based on angular spectrum to evaluate the acoustic coefficient as a function of the incident angle, θ, and frequency, ω, is presented with high frequency time-resolved acoustic microscopy. In order to achieve a high spatial resolution for evaluation of thin plates with thicknesses about one or two wavelengths, a point focusing transducer with a nominal center frequency of 25 MHz is adopted. By measuring the V(z, t) data in pulse mode, the reflection coefficient, R(θ, ω), can be reconstructed from its two-dimensional spectrum. It brings simplicity to experimental setup and measurement procedure since only single translation of the transducer in the vertical direction is competent for incident angle and frequency acquisition. It overcomes the disadvantages of the conventional methods requiring the spectroscopy for frequency scanning and/or ultrasonic goniometer for angular scanning. Two substrates of aluminum and Plexiglas and four stainless plates with various thicknesses of 100 μm, 150 μm, 200 μm, and 250 μm were applied. The acoustic reflection coefficients are consistent with the corresponding theoretical calculations. It opened the way of non-destructive methodology to evaluate the elastic and geometrical properties of very thin multi-layers structures simultaneously.

  9. Two-dimensional direction finding for low altitude target based on intensity measurement using an acoustic vector-sensor

    Institute of Scientific and Technical Information of China (English)

    CHEN Huawei; ZHAO Junwei

    2004-01-01

    A method of two-dimensional direction of arrival (DOA) estimation for low altitude target, which is based on intensity measurement using a three-dimensional differential pressure acoustic vector-sensor, is presented. With the perfect characteristics of acoustic vector sensor in the low frequency band, accurate DOA estimation is achieved under small array size. The validity of the proposed method was assessed by experiments on the noise signals radiated by a helicopter. The influence of acoustic sensor size, integral time and signal to noise ratio to the accuracy of DOA estimation were investigated, respectively. The performance comparisons demonstrated that it outperformed the traditional time-delay measurement based method for a small acoustic array.

  10. New acoustic system for continuous measurement of river discharge and water temperature

    Directory of Open Access Journals (Sweden)

    Kiyosi KAWANISI

    2010-03-01

    Full Text Available In many cases, river discharge is indirectly estimated from water level or streamflow velocity near the water surface. However, these methods have limited applicability. In this study, an innovative system, the fluvial acoustic tomography system (FATS, was used for continuous discharge measurement. Transducers with a central frequency of 30 kHz were installed diagonally across the river. The system’s significant functions include accurate measurement of the travel time of the transmission signal using a GPS clock and the attainment of a high signal-to-noise ratio as a result of modulation of the signal by the 10th order M-sequence. In addition, FATS is small and lightweight, and its power consumption is low. Operating in unsteady streamflow, FATS successfully measured the cross-sectional average velocity. The agreement between FATS and acoustic Doppler current profilers (ADCPs on water discharge was satisfactory. Moreover, the temporal variation of the cross-sectional average temperature deduced from the sound speed of FATS was similar to that measured by a temperature sensor near the bank.

  11. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  12. Digital PIV Measurements of Acoustic Particle Displacements in a Normal Incidence Impedance Tube

    Science.gov (United States)

    Humphreys, William M., Jr.; Bartram, Scott M.; Parrott, Tony L.; Jones, Michael G.

    1998-01-01

    Acoustic particle displacements and velocities inside a normal incidence impedance tube have been successfully measured for a variety of pure tone sound fields using Digital Particle Image Velocimetry (DPIV). The DPIV system utilized two 600-mj Nd:YAG lasers to generate a double-pulsed light sheet synchronized with the sound field and used to illuminate a portion of the oscillatory flow inside the tube. A high resolution (1320 x 1035 pixel), 8-bit camera was used to capture double-exposed images of 2.7-micron hollow silicon dioxide tracer particles inside the tube. Classical spatial autocorrelation analysis techniques were used to ascertain the acoustic particle displacements and associated velocities for various sound field intensities and frequencies. The results show that particle displacements spanning a range of 1-60 microns can be measured for incident sound pressure levels of 100-130 dB and for frequencies spanning 500-1000 Hz. The ability to resolve 1 micron particle displacements at sound pressure levels in the 100 dB range allows the use of DPIV systems for measurement of sound fields at much lower sound pressure levels than had been previously possible. Representative impedance tube data as well as an uncertainty analysis for the measurements are presented.

  13. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    Science.gov (United States)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  14. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    Energy Technology Data Exchange (ETDEWEB)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd, U-3139, Storrs, CT 06269 (United States); King, Galen B. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  15. Galaxy bias and its effects on the Baryon acoustic oscillations measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Kushal T. [Univ. of Arizona, Tucson, AZ (United States); Seo, Hee -Jong [Univ. of California, Berkeley, CA (United States); Fermi National Accelerator Lab., Batavia, IL (United States); Eckel, Jonathan [Univ. of Arizona, Tucson, AZ (United States); Eisenstein, Daniel J. [Univ. of Arizona, Tucson, AZ (United States); Harvard Univ., Cambridge, MA (United States); Metchnik, Marc [Univ. of Arizona, Tucson, AZ (United States); Pinto, Philip [Univ. of Arizona, Tucson, AZ (United States); Xu, Xiaoying [Univ. of Arizona, Tucson, AZ (United States)

    2011-05-31

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  16. Galaxy bias and its effects on the Baryon acoustic oscillations measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Kushal T. [Univ. of Arizona, Tucson, AZ (United States); Seo, Hee -Jong [Univ. of California, Berkeley, CA (United States); Fermi National Accelerator Lab., Batavia, IL (United States); Eckel, Jonathan [Univ. of Arizona, Tucson, AZ (United States); Eisenstein, Daniel J. [Univ. of Arizona, Tucson, AZ (United States); Harvard Univ., Cambridge, MA (United States); Metchnik, Marc [Univ. of Arizona, Tucson, AZ (United States); Pinto, Philip [Univ. of Arizona, Tucson, AZ (United States); Xu, Xiaoying [Univ. of Arizona, Tucson, AZ (United States)

    2011-05-31

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  17. A more precise, repeatable and diagnostic alternative to surface electromyography - an appraisal of the clinical utility of acoustic myography

    DEFF Research Database (Denmark)

    Harrison, Adrian P

    2017-01-01

    Acoustic myography (AMG) enables a detailed and accurate measurement of those muscles involved in a particular movement and is independent of electrical signals between the nerve and muscle, measuring solely muscle contractions, unlike surface electromyography (sEMG). With modern amplifiers and d...

  18. Clinical utility of measures of breathlessness.

    Science.gov (United States)

    Cullen, Deborah L; Rodak, Bernadette

    2002-09-01

    The clinical utility of measures of dyspnea has been debated in the health care community. Although breathlessness can be evaluated with various instruments, the most effective dyspnea measurement tool for patients with chronic lung disease or for measuring treatment effectiveness remains uncertain. Understanding the evidence for the validity and reliability of these instruments may provide a basis for appropriate clinical application. Evaluate instruments designed to measure breathlessness, either as single-symptom or multidimensional instruments, based on psychometrics foundations such as validity, reliability, and discriminative and evaluative properties. Classification of each dyspnea measurement instrument will recommend clinical application in terms of exercise, benchmarking patients, activities of daily living, patient outcomes, clinical trials, and responsiveness to treatment. Eleven dyspnea measurement instruments were selected. Each instrument was assessed as discriminative or evaluative and then analyzed as to its psychometric properties and purpose of design. Descriptive data from all studies were described according to their primary patient application (ie, chronic obstructive pulmonary disease, asthma, or other patient populations). The Borg Scale and the Visual Analogue Scale are applicable to exertion and thus can be applied to any cardiopulmonary patient to determine dyspnea. All other measures were determined appropriate for chronic obstructive pulmonary disease, whereas the Shortness of Breath Questionnaire can be applied to cystic fibrosis and lung transplant patients. The most appropriate utility for all instruments was measuring the effects on activities of daily living and for benchmarking patient progress. Instruments that quantify function and health-related quality of life have great utility for documenting outcomes but may be limited as to documenting treatment responsiveness in terms of clinically important changes. The dyspnea

  19. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  20. Southeast Alaska Acoustic Measurement Facility (SEAFAC) environmental data base review, evaluation, and upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A.; Skalski, J.R.; Faulkner, L.L.; Rodman, C.W.; Carlile, D.W.; Ecker, R.M.; Nicholls, A.K.; Ramsdell, J.V.; Scott, M.J.

    1986-04-01

    This report summarizes the principal issues of public concern, the adequacy of the environmental data base to answer the issues of concern, and the additional data collection required to support a National Environmental Policy Act (NEPA) review of the proposed Southeast Alaska Acoustic Measurement Facility (SEAFAC). The report is based on a review of the readily available environmental literature and a site visit. Representatives of local, state, and federal agencies were also interviewed for their personal insights and concerns not discovered during the literature review.

  1. Compressive sensing beamforming based on covariance for acoustic imaging with noisy measurements.

    Science.gov (United States)

    Zhong, Siyang; Wei, Qingkai; Huang, Xun

    2013-11-01

    Compressive sensing, a newly emerging method from information technology, is applied to array beamforming and associated acoustic applications. A compressive sensing beamforming method (CSB-II) is developed based on sampling covariance matrix, assuming spatially sparse and incoherent signals, and then examined using both simulations and aeroacoustic measurements. The simulation results clearly show that the proposed CSB-II method is robust to sensing noise. In addition, aeroacoustic tests of a landing gear model demonstrate the good performance in terms of resolution and sidelobe rejection.

  2. Magnetic hysteresis and magnetic flux patterns measured by acoustically stimulated electromagnetic response in a steel plate

    Science.gov (United States)

    Yamada, Hisato; Watanabe, Kakeru; Ikushima, Kenji

    2015-08-01

    Magnetic hysteresis loops are measured by ultrasonic techniques and used in visualizing the magnetic-flux distribution in a steel plate. The piezomagnetic coefficient determines the amplitude of acoustically stimulated electromagnetic (ASEM) fields, yielding the hysteresis behavior of the intensity of the ASEM response. By utilizing the high correspondence of the ASEM response to the magnetic-flux density, we image the specific spatial patterns of the flux density formed by an artificial defect in a steel plate specimen. Magnetic-flux probing by ultrasonic waves is thus shown to be a viable method of nondestructive material inspection.

  3. Design and development of a synthetic acoustic antenna for highly directional sound measurements

    Science.gov (United States)

    Boone, Rinus

    1987-12-01

    A SYNThetic ACoustic ANtenna (SYNTACAN) for highly directional sound measurements with an average resolving power of 1.5 deg in the frequency range from 89 to 1413 Hz (4 octave bands) with resolution of 1/12 octave, was developed for measurement of sound emissions from individual sources on industrial areas. The applicability of SYNTACAN is illustrated with a large number of test measurements concerning resolution, focussing, correlations, screening, and coherence loss. Measurements of sound from large factories, sound radiation from rotor blades of wind turbines, and the estimation of the source height of passing vehicles are described. Similarity between the imaging technique of SYNTACAN and techniques in optical and radioastronomy, sonar, radar, and seismology is discussed. The influence of the finite length of the antenna and the disturbance of the wave propagation by turbulence in the medium, causing finite beam patterns and thus unsharp source images is considered.

  4. Potencials of sap flow evaluation by means of acoustic emission measurements

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2011-01-01

    measurements became possible due to application of psychrometric method (Dixon and Tyree, 1985. There exist also other physical variables carrying important information, which can be measured using different principles. This includes e.g., acoustic methods, which can detect quantitative variation of pulses occurring during cavitation events, associated with interruptions of water columns in vessels. This must not necessarily be a single source of acoustic emissions. In this study we are focused on a general description of acoustic events measurable in a wide range of their spectrum. The first aim was to detect such signals and the second to learn them and gradually analyze in order to better understand the associated processes causing their occurrence and their relations to plant life.

  5. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    Science.gov (United States)

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  6. Clinical characteristics of acoustic trauma caused by gunshot noise in mass rifle drills without ear protection.

    Science.gov (United States)

    Moon, In Seok; Park, Sang-Yong; Park, Hyun Jin; Yang, Hoon-Shik; Hong, Sung-Jong; Lee, Won-Sang

    2011-10-01

    One of the major occupational hazards of working in military service is being subjected to intense impulse noise. We analyzed the clinical presentation of acoustic traumas, induced by mass rifle gunshot noise during military training, in unprotected patients. We evaluated 189 soldiers who had otologic symptoms after rifle shooting exercises without using any hearing protection. All soldiers had been training on the K2 rifle. We took medical histories; conducted physical examinations and hearing evaluations (pure-tone audiometry, speech audiometry, and impedence audiometry); and distributed the Newmann's Tinnitus Handicap Inventory (THI) survey. In addition, we evaluated a normal control group of 64 subjects of similar age who had never fired a rifle. In the patient group, the most common and irritating reported symptom was tinnitus (94.2%), and the average THI score in the patient group was 39.51 ± 14.87, which was significantly higher than the control group score (0.56 ± 3.94) (p < 0.001). Average outcomes of post-exposure air conduction thresholds were 21.33 ± 13.25 dB HL in the affected ears. These levels also were significantly higher than those of the control group (9.16 ± 4.07dB HL) (p < 0.001). Hearing loss was most prominent at high frequencies. An asymmetry of hearing loss related to head position during shooting was not observed. Acoustic trauma induced by gunshot noise can cause permanent tinnitus and hearing loss. Hearing protection (bilateral earplugs) and environmental reform are necessary.

  7. Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

    Science.gov (United States)

    Brunker, J.; Beard, P.

    2013-03-01

    Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better

  8. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    Science.gov (United States)

    Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  9. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake

    Science.gov (United States)

    Heidelberg, Laurence J.; Hall, David G.

    1993-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  10. Effects of Noise and Absorption on High Frequency Measurements of Acoustic-Backscatter from Fish

    Directory of Open Access Journals (Sweden)

    Masahiko Furusawa

    2015-01-01

    Full Text Available Quantitative echosounders operating at multiple frequencies (e.g., 18, 38, 70, 120, 200, 333, and 710 kHz are often used to observe fish and zooplankton and identify their species. At frequencies above 100 kHz, the absorption attenuation increases rapidly and decreases the signal-to-noise ratio (SNR. Also, incomplete compensation for the attenuation may result in measurement error. This paper addresses the effects of the attenuation and noise on high frequency measurements of acoustic backscatter from fish. It is shown that measurements of a fish with target strength of −40 dB at 200 m depth are limited by SNR to frequencies up to about 100 kHz. Above 100 kHz, absorption coefficients must be matched to local environmental conditions.

  11. Method and apparatus for background signal reduction in opto-acoustic absorption measurement

    Science.gov (United States)

    Rosengren, L. G. (Inventor)

    1976-01-01

    The sensitivity of an opto-acoustic absorption detector is increased to make it possible to measure trace amounts of constituent gases. A second beam radiation path is created through the sample cell identical to a first path except as to length, alternating the beam through the two paths and minimizing the detected pressure difference for the two paths while the beam wavelength is tuned away from the absorption lines of the sample. Then with the beam wavelength tuned to the absorption line of any constituent of interest, the pressure difference is a measure of trace amounts of the constituent. The same improved detector may also be used for measuring the absorption coefficient of known concentrations of absorbing gases.

  12. In-Situ Measurement of Aerosol Light Absorption Using a Photo Acoustic Spectrometer

    Science.gov (United States)

    Schmid, O.; Andreae, M. O.; Helas, G.; Guyon, P.; Sciare, J.; Arnott, W. P.

    2002-12-01

    A recently developed photo acoustic spectrometer (PAS) (Arnott et al., 1999) has been used for in-situ light absorption measurements on atmospheric aerosol. Measurement campaigns in the Mediterranean and Amazon regions demonstrated the viability of the PAS under field conditions and provided data on the absorption coefficient of atmospheric aerosol generated by anthropogenic pollution and biomass burning, respectively. By operating the PAS in series with a nephelometer the scattering albedo of (dry) atmospheric aerosol was determined. Here we discuss the principle of the PAS, describe the calibration technique, and present some field data. Arnott, W. P., H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description, Atmos. Environ, 33, 2845-2852, 1999.

  13. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  14. Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Mohammad A.K. Alia

    2007-01-01

    Full Text Available Recent developments in temperature measurement have encouraged researchers to develop low-cost, simple structure, computerized generic transducers for environmental monitoring and industrial process control. The research presents a computerized technique which allows to measure temperature according to the variation of acoustic velocity (frequency in a closed waveguide. Signal conditioning and processing was carried out using labVIEW (G Language VIs. In order to evaluate the time characteristic of the transducer its response was compared with that of a reference detector (PT 100 for the same step input. Static characteristics of the transducer show a quasi-linear relationship between the measured temperature and the resonance frequency. Results of practical experiments show that in order to improve the response curve of the transducer and decrease the rising time interval it is advisable to implement thin-wall glass tubes or another material with lower thermal impedance.

  15. The Magnetic Acoustic Change Complex and Mismatch Field: A Comparison of Neurophysiological Measures of Auditory Discrimination

    Directory of Open Access Journals (Sweden)

    Shu Hui Yau

    2017-02-01

    Full Text Available The Acoustic Change Complex (ACC, a P1-N1-P2-like event-related response to changes in a continuous sound, has been suggested as a reliable, objective, and efficient test of auditory discrimination. We used magnetoencephalography to compare the magnetic ACC (mACC to the more widely used mismatch field (MMF. Brain responses of 14 adults were recorded during mACC and MMF paradigms involving the same pitch and vowel changes in a synthetic vowel sound. Analyses of peak amplitudes revealed a significant interaction between stimulus and paradigm: for the MMF, the response was greater for vowel changes than for pitch changes, whereas, for the mACC, the pattern was reversed. A similar interaction was observed for the signal to noise ratio and single-trial analysis of individual participants’ responses showed that the MMF to Pitch changes was elicited less consistently than the other three responses. Results support the view that the ACC/mACC is a robust and efficient measure of simple auditory discrimination, particularly when researchers or clinicians are interested in the responses of individual listeners. However, the differential sensitivity of the two paradigms to the same acoustic changes indicates that the mACC and MMF are indices of different aspects of auditory processing and should, therefore, be seen as complementary rather than competing neurophysiological measures.

  16. Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Taviarides, Lawrence L.

    2005-06-01

    Our effort in this project is to develop an acoustic monitor for accurate, real-time characterization of the size and weight fractions of solids in slurries for process monitoring and to determine the optimal timing for slurry transfers. This capability will be valuable in the Savannah River Site accelerated clean-up program. Our scientific work during the first research period developed a theory, supported by experiments, to describe sound attenuation of solids in suspensions in the presence of bubbles, which permits us to determine the solid-liquid weight percent. Engineering developments during the second research period led to the design, construction, and demonstration, in our laboratories, of the Syracuse Acoustic Monitor (SAM) system that measures weight percent solids accurately in slurries of 0.5 to 8.0 weight percent on-line and in real-time. Also, we had shown the potential for these measurements in solid-gas-liquid slurries by removing the interference due to the presence of gas bubbles.

  17. A Novel Method to Measure Acoustic Power of Focusing Transducer with Spherical Surface Based on Self-Reciprocity Theorem

    Institute of Scientific and Technical Information of China (English)

    DUAN Shi-Mei; SHOU Wen-De; HE Pei-Zhong; QIAN De-Chu; XIA Rong-Min

    2005-01-01

    @@ A novel method to measure acoustic power of focusing transducer based on the self-reciprocity theorem of con vergent spherical acoustic wave is proposed. The performance of this reciprocity method is compared with that of the radiation force balance (RFB) method and the admittance circle method. The average deviations of the reciprocity method from RFB in measurements of the acoustic power and the radiation conductance for a focusing transducer of 1.525 MHz are 7.5% and 3.6% respectively, and for another focusing transducer of 5.27MHz,they are 1.7% and 1.1%. The measured radiation conductance deviation by the reciprocity method from the admittance circle method for the focusing transducer of 1.525 MHz is 7.9%. It presents encouraging results even in measuring low acoustic power level. The overall uncertainty of acoustic power measurement using the method is evaluated below 10%, and it has many advantages such as high signal-to-noise ratio, good stability and less interference of bubbles and environment.

  18. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    Science.gov (United States)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote

  19. Acoustic measures of the abundance and size of pelagic planktivores in Lake Michigan

    Science.gov (United States)

    Brandt, Stephen B.; Mason, Doran M.; Patrick, E. Vincent; Argyle, Ray L.; Wells, L.; Unger, Philip A.; Stewart, Donald J.

    1991-01-01

    Based on acoustic data taken at night and vertically stratified by bottom depth (3–110 m only), the total number (± 95% Cl) of pelagic fishes in Lake Michigan was 43.4 ± 10.1 x 109 or 226.0 ± 55.2 kt in spring (mean density 0.7–3.8 fish·m-2 or 1.6–12.8 ga·m-2) and 115.8 ± 18.3 x 109 or 313.2 ± 74.3 kt in late summer, 1987 (mean density 1.1–7.0 fish·m-2 or 3.0–13.2 g·m-2); approximately 30% of this increase in numbers (35% of biomass) occurred within Green Bay. Abundance estimates from horizontally stratified (by water column depth) data were within 9-11% of vertically stratified estimates during spring but over 20% higher during summer. By extrapolation to all water depths, we estimated total pelagic biomass as 274.6 kt for spring and 410.8 kt for summer. During both seasons, smaller fishes were nearer to the surface and nearer shore than larger individuals, and acoustic measures of size approximated the sizes of fishes caught in trawls. Bioenergetic model simulations suggest that 60% of the available production of alewife (Alosa pseudoharengus) was either consumed by stocked salmonines (52.9%) or commercially harvested (7.1%) in 1987. Underwater acoustics proved a valuable tool for lakewide assessments of fish abundances in the Great Lakes.

  20. Acoustic Measurements for Determination of the Materials Damping Using A Sound Source Localisation System

    Institute of Scientific and Technical Information of China (English)

    J. G(o)ken; J. Swiostek; H. Hurdelbrink; U. Keil

    2013-01-01

    Noise measurements are especially a problem when the object under investigation is largely dimensioned and can only be measured from the distance.To obtain information about the location of noise generation,a measurement technique which makes sound visible in order to introduce further specific technical measures is advantageous.The question is if the time dependence of the signal got from such a non touching and non destructive acoustic method has the potential to calculate the materials damping from.Using a small sound source localization system (MicroflownTM probe),specimens of magnesium alloys with different grain sizes obtained by hydrostatic extrusion were investigated.It has been demonstrated that the fine grained microstructure led to a lower damping and its dependence on the strain was reduced.In this context,acoustic measurements by a sound source localisation system which makes materials characterization possible could be used as a quality tool to detect changes in highly stressed components.This approach allows to promote a selective substitution of conventional materials by more innovative ones.The offshore sector is considered to be a field of application:Wind turbines produce noise emission which stems mainly from turbulences at the tips of the rotor blades and vibrations of components inside the nacelle (e.g.gearbox,generator,…).If the vibration amplitudes are too high,microcracks of components can lead to failure over the long term.The monitoring of microstructural changes using a larger type of a sound source localisation system is considered as an innovative technical approach with respect to maintenance activities.

  1. Clinical Outcome Measures in Chiari I Malformation.

    Science.gov (United States)

    Yarbrough, Chester K; Greenberg, Jacob K; Park, Tae Sung

    2015-10-01

    Chiari malformation type 1 (CM-I) is a common and often debilitating neurologic disease. Reliable evaluation of treatments has been hampered by inconsistent use of clinical outcome measures. A variety of outcome measurement tools are available, although few have been validated in CM-I. The recent development of the Chicago Chiari Outcome Scale and the Chiari Symptom Profile provides CM-I-specific instruments to measure outcomes in adults and children, although validation and refinement may be necessary.

  2. [Measurement and clinical significance of cervical lordosis].

    Science.gov (United States)

    Zhang, Yu-ting; Wang, Xiang; Zhan, Hong-sheng

    2014-12-01

    Measurement of cervical lordosis is the basic method for evaluating cervical function, and important reference for determine treatment decision. However, how to choose appropriate measurement in accordance with different situation, as well as the relationship among these methods is not clear. An increasing number of studies suggested that different measurements could directly affect the judgment of cervical lordosis. Therefore, comparative study of cervical vertebrae plays an important role in clinical treatment for cervical spondylosis under different cervical curvature conditions.

  3. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  4. Simultaneous surface acoustic wave and surface plasmon resonance measurements: Electrodeposition and biological interactions monitoring

    Science.gov (United States)

    Friedt, J.-M.; Francis, L.; Reekmans, G.; De Palma, R.; Campitelli, A.; Sleytr, U. B.

    2004-02-01

    We present results from an instrument combining surface acoustic wave propagation and surface plasmon resonance measurements. The objective is to use two independent methods, the former based on adsorbed mass change measurements and the latter on surface dielectric properties variations, to identify physical properties of protein layers, and more specifically their water content. We display mass sensitivity calibration curves using electrodeposition of copper leading to a sensitivity in liquid of 150±15 cm2/g for the Love mode device used here, and the application to monitoring biological processes. The extraction of protein layer thickness and protein to water content ratio is also presented for S-layer proteins under investigation. We obtain, respectively, 4.7±0.7 nm and 75±15%.

  5. Implications for the thermal regime of acoustic noise measurements in Crater Lake, Mount Ruapehu, New Zealand

    Science.gov (United States)

    Vandemeulebrouck, J.; Hurst, A. W.; Poussielgue, N.

    1994-12-01

    Hydrophone measurements of acoustic noise levels in the Crater Lake of Mount Ruapehu, New Zealand were made on 18 January 1991 from an inflatable rubber boat on the lake. The greatest sound pressures were recorded in the 1 10 Hz band, with sound levels generally decreasing about 20 dB per decade from 10 Hz to 80 kHz. The low frequency noise did not have an obvious relationship to the tremor observed at a seismic station within 1 km of the lake. The comparatively low levels of middle and high frequency sound meant that at the time of measurement, direct steam input did not make a significant contribution to the heating of Crater Lake. This is consistent with the earlier conclusion that during the last decade a major part of the heat input of Crater Lake has come from lake water that was heated below the lake and recycled back into the lake.

  6. Optimizing an infrasound sensor network for measuring acoustic background noise and its inversion for stratospheric winds

    Science.gov (United States)

    Marcillo, O. E.; Arrowsmith, S.

    2013-12-01

    We demonstrate the design of an infrasound network (and the associated analysis) for measuring and inverting low-frequency acoustic background noise (microbaroms) for stratospheric winds. We developed a mathematical framework for the inversion of local stratospheric winds using microbaroms, and found theoretical constraints on the optimum sensor network topology. Based on these results, we deployed, over the winter months (January to March, 2013), a prototype sensor network comprising six infrasound stations separated between 5 and 70 km; the initial analysis shows periods of very high coherency (suitable for our inversion) lasting several hours with associated tropospheric and low stratospheric celerities. We are analyzing the coherency between signals with distance and relative azimuth. Following this pilot study, we are designing a denser sensor network further optimized to capture microbaroms and planning for its validation using independent measurements.

  7. Measurement of Plasma Clotting Using Shear Horizontal Surface Acoustic Wave Sensor

    Science.gov (United States)

    Nagayama, Tatsuya; Kondoh, Jun; Oonishi, Tomoko; Hosokawa, Kazuya

    2013-07-01

    The monitoring of blood coagulation is important during operation. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied to monitor plasma clotting. An SH-SAW sensor with a metallized surface for mechanical perturbation detection can detect plasma clotting. As plasma clotting is a gel formation reaction, the SH-SAW sensor detects viscoelastic property changes. On the other hand, an SH-SAW sensor with a free surface for electrical perturbation detection detects only the liquid mixing effect. No electrical property changes due to plasma clotting are obtained using this sensor. A planar electrochemical sensor is also used to monitor plasma clotting. In impedance spectral analysis, plasma clotting is measured. However, in the measurement of time responses, no differences between clotting and nonclotting are obtained. Therefore, the SH-SAW sensor is useful for monitoring plasma clotting.

  8. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method

    DEFF Research Database (Denmark)

    Barnkob, Rune; Iranmanesh, Ida; Wiklund, Martin;

    2012-01-01

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis....... It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments......, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels....

  9. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.

  10. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    Science.gov (United States)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  11. Acoustic phonetics in a clinical setting: a case study of /r/-distortion therapy with surgical intervention.

    Science.gov (United States)

    Hagiwara, Robert; Fosnot, Susan Meyers; Alessi, David M

    2002-09-01

    Acoustic measures are used to document the speech of a 6-year-old child with persistent /r/-distortion through several treatment interventions. The child originally presented a complex of speech disorders and was treated by a speech-language pathologist using phonological process techniques. The procedures successfully corrected most of his speech problems, although /r/ remained severely distorted. The primary acoustic manifestation of this distortion was a high third formant. Surgical correction of a banded lingual frenulum, along with adenoton-sillectomy indicated for sleep apnea, is shown to have had a small effect in lowering the third formant. A dramatic change was seen on reintroduction of therapy, when an extreme drop in third formant frequencies for /r/ was observed. The acoustic data are interpreted using speaker-internal controls derived from a dialect-appropriate adult model.

  12. Vapor-Liquid Equilibrium of Carbon Dioxide + Ethanol: Experimental Measurements with Acoustic Method and Thermodynamic Modeling

    Directory of Open Access Journals (Sweden)

    Ana Mehl

    2011-01-01

    Full Text Available Phase behavior of systems composed by supercritical carbon dioxide and ethanol is of great interest, especially in the processes involving supercritical extraction in which ethanol is used as a cosolvent. The development of an apparatus, which is able to perform the measurements of vapor-liquid equilibrium (VLE at high pressure using a combination of the visual and the acoustic methods, was successful and was proven to be suited for determining the isothermal VLE data of this system. The acoustic method, based on the variation of the amplitude of an ultra-sound signal passing through a mixture during a phase transition, was applied to investigate the phase equilibria of the system carbon dioxide + ethanol at temperatures ranging from 298.2 K to 323.2 K and pressures from 3.0 MPa to 9.0 MPa. The VLE data were correlated with Peng-Robinson equation of state combined with two different mixing rules and the SAFT equations of state as well. The compositions calculated with the models are in good agreement with the experimental data for the isotherms evaluated.

  13. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  14. Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements

    CERN Document Server

    Mehta, Kushal T; Eckel, Jonathan; Eisenstein, Daniel J; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying

    2011-01-01

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2009). For the less biased HOD models (b 3) show a shift at moderate significance (0.79% \\pm 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at ne...

  15. Accelerometer measurements of acoustic-to-seismic coupling above buried objects.

    Science.gov (United States)

    Attenborough, Keith; Qin, Qin; Jefferis, Jonathan; Heald, Gary

    2007-12-01

    The surface velocity of sand inside a large PVC container, induced by the sound pressure from either a large loudspeaker radiating into an inverted cone and pipe or a Bruel and Kjaer point source loudspeaker mounted with its axis vertical, has been measured using accelerometers. Results of white noise and stepped frequency excitation are presented. Without any buried object the mass loading of an accelerometer creates resonances in the spectral ratio of sand surface velocity to incident acoustic pressure, i.e., the acoustic-to-seismic (A/S) admittance spectra. The A/S responses above a buried compliant object are larger and distinctive. The linear A/S admittance spectra in the presence of a buried electronic components box have been studied as a function of burial depth and sand state. The nonlinear responses above the buried box have been studied as a function of depth, sand state, and amplitude. Predictions of a modified one-dimensional lumped parameter model have been found to be consistent with the observed nonlinear responses. Also the modified model has been used to explain features of the A/S responses observed when using an accelerometer without any buried object.

  16. CFD Analysis of an Installation Used to Measure the Skin-Friction Penalty of Acoustic Treatments

    Science.gov (United States)

    Spalart, Philippe R.; Garbaruk, Andrey; Howerton, Brian M.

    2017-01-01

    There is a drive to devise acoustic treatments with reduced skin-friction and therefore fuel-burn penalty for engine nacelles on commercial airplanes. The studies have been experimental, and the effects on skin-friction are deduced from measurements of the pressure drop along a duct. We conduct a detailed CFD analysis of the installation, for two purposes. The first is to predict the effects of the finite size of the rig, including its near-square cross-section and the moderate length of the treated patch; this introduces transient and blockage effects, which have not been included so far in the analysis. In addition, the flow is compressible, so that even with homogeneous surface conditions, it is not homogeneous in the streamwise direction. The second purpose is to extract an effective sand-grain roughness size for a particular liner, which in turn can be used in a CFD analysis of the aircraft, leading to actual predictions of the effect of acoustic treatments on fuel burn in service. The study is entirely based on classical turbulence models, with an appropriate modification for effective roughness effects, rather than directly modeling the liners.

  17. Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters

    CERN Document Server

    Veropalumbo, Alfonso; Moscardini, Lauro; Moresco, Michele; Cimatti, Andrea

    2015-01-01

    We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, $z=0.2$, $z=0.3$, and $z=0.5$. The number of objects is $12910$, $42215$, and $11816$, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are: $r_s/D_V(z=0.2)=0.18 \\pm 0.01$, $r_s/D_V(z=0.3)=0.124 \\pm 0.004$ and $r_s/D_V(z=0.5)=0.080 \\pm 0.002$. Combining these measurements, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard $\\Lambda$ cold dark matter model. Specifically, we constrain the Hubble constant in a $\\Lambda$CDM model, $H_0 = 64_{-9}^{+14} \\, \\mathrm{km} \\, \\mathrm{s}^{-1}\\mathrm{Mpc}^{-1}$, the density of curvature energy, in the $o\\Lambda$CDM context, $\\Omega_K = -0.015_{-0...

  18. Evaluation of the Acoustic Measurement Capability of the NASA Langley V/STOL Wind Tunnel Open Test Section with Acoustically Absorbent Ceiling and Floor Treatments

    Science.gov (United States)

    Theobald, M. A.

    1978-01-01

    The single source location used for helicopter model studies was utilized in a study to determine the distances and directions upstream of the model accurate at which measurements of the direct acoustic field could be obtained. The method used was to measure the decrease of sound pressure levels with distance from a noise source and thereby determine the Hall radius as a function of frequency and direction. Test arrangements and procedures are described. Graphs show the normalized sound pressure level versus distance curves for the glass fiber floor treatment and for the foam floor treatment.

  19. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    Science.gov (United States)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  20. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    Science.gov (United States)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  1. Simultaneous measurement of gas concentration and temperature by the ball surface acoustic wave sensor

    Science.gov (United States)

    Yamanaka, Kazushi; Akao, Shingo; Takeda, Nobuo; Tsuji, Toshihiro; Oizumi, Toru; Tsukahara, Yusuke

    2017-07-01

    We have developed a ball surface acoustic wave (SAW) trace moisture sensor with an amorphous silica sensitive film and realized wide-range measurement from 0.017 ppmv [a frost point (FP) of -99 °C] to 6.0 × 103 ppmv (0 °C FP). However, since the sensitivity of the sensor depends on the temperature, measurement results are disturbed when the temperature largely changes. To overcome this problem, we developed a method to simultaneously measure temperature and gas concentration using a ball SAW sensor. Temperature and concentration is derived by solving equations for the delay time change at two frequencies. When the temperature had a large jump, the delay time change was significantly disturbed, but the water concentration was almost correctly measured, by compensating the sensitivity change using measured temperature. The temperature measured by a ball SAW sensor will also be used to control the ball temperature. This method will make a ball SAW sensor reliable in environments of varying temperatures.

  2. Clinical utility of acoustic radiation force impulse imaging for identification of malignant liver lesions: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Li; Lin, Xiao; Xie, Zuo-Liu; Tang, Fei-Yun; Hu, Yuan-Ping [First Affiliated Hospital of Wenzhou Medical College, Department of Ultrasonography, Wenzhou (China); Shi, Ke-Qing [First Affiliated Hospital of Wenzhou Medical College, Department of Infection and Liver Diseases, Institution of Hepatology, Wenzhou (China)

    2012-12-15

    To assess the performance of acoustic radiation force impulse (ARFI) imaging for identification of malignant liver lesions using meta-analysis. PubMed, the Cochrane Library, the ISI Web of Knowledge and the China National Knowledge Infrastructure were searched. The studies published in English or Chinese relating to evaluation accuracy of ARFI imaging for identification of malignant liver lesions were collected. A hierarchical summary receiver operating characteristic (HSROC) curve was used to examine the ARFI imaging accuracy. Clinical utility of ARFI imaging for identification of malignant liver lesions was evaluated by Fagan plot analysis. A total of eight studies which included 590 liver lesions were analysed. The summary sensitivity and specificity for identification of malignant liver lesions were 0.86 (95 % confidence interval (CI) 0.74-0.93) and 0.89 (95 % CI 0.81-0.94), respectively. The HSROC was 0.94 (95 % CI 0.91-0.96). After ARFI imaging results over the cut-off value for malignant liver lesions (''positive'' result), the corresponding post-test probability for the presence (if pre-test probability was 50 %) was 89 %; in ''negative'' measurement, the post-test probability was 13 %. ARFI imaging has a high accuracy in the classification of liver lesions. (orig.)

  3. Measurement of Acoustic Intensity Distribution and Radiation Power of Flat-Plate Phased-Array Sound Source

    Science.gov (United States)

    Yokoyama, Tomoki; Takahashi, Kumiko; Seki, Daizaburou; Hasegawa, Akio

    2002-05-01

    The acoustic intensity distribution and radiation power of a flat-plate phased-array sound source consisting of Tonpilz-type transducers were measured. This study shows that the active acoustic intensity is skewed in the direction of wave propagation. In addition, it clarifies that if the measurement is carried out in the immediate vicinity of the sound source, the reactive acoustic intensity distribution is effective for identifying the positions of the individual sound source elements. Experimental values of active radiation power agree well with theoretical values. Conversely, experimental values of reactive radiation power do not agree with theoretical values; it is clear that they fluctuate significantly with distance from the radiating surface. The reason for this is explained in the case of a point sound source.

  4. Validation of streamflow measurements made with M9 and RiverRay acoustic Doppler current profilers

    Science.gov (United States)

    Boldt, Justin A.; Oberg, Kevin A.

    2015-01-01

    The U.S. Geological Survey (USGS) Office of Surface Water (OSW) previously validated the use of Teledyne RD Instruments (TRDI) Rio Grande (in 2007), StreamPro (in 2006), and Broadband (in 1996) acoustic Doppler current profilers (ADCPs) for streamflow (discharge) measurements made by the USGS. Two new ADCPs, the SonTek M9 and the TRDI RiverRay, were first used in the USGS Water Mission Area programs in 2009. Since 2009, the OSW and USGS Water Science Centers (WSCs) have been conducting field measurements as part of their stream-gaging program using these ADCPs. The purpose of this paper is to document the results of USGS OSW analyses for validation of M9 and RiverRay ADCP streamflow measurements. The OSW required each participating WSC to make comparison measurements over the range of operating conditions in which the instruments were used until sufficient measurements were available. The performance of these ADCPs was evaluated for validation and to identify any present and potential problems. Statistical analyses of streamflow measurements indicate that measurements made with the SonTek M9 ADCP using firmware 2.00–3.00 or the TRDI RiverRay ADCP using firmware 44.12–44.15 are unbiased, and therefore, can continue to be used to make streamflow measurements in the USGS stream-gaging program. However, for the M9 ADCP, there are some important issues to be considered in making future measurements. Possible future work may include additional validation of streamflow measurements made with these instruments from other locations in the United States and measurement validation using updated firmware and software.

  5. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Jorge O.; Hackert, Chris L.; Ni, Qingwen; Collier, Hughbert A.

    2000-09-22

    This report contains eight sections. Some individual subsections contain lists of references as well as figures and conclusions when appropriate. The first section includes the introduction and summary of the first-year project efforts. The next section describes the results of the project tasks: (1) implementation of theoretical relations between effect dispersion and the stochastic medium, (2) imaging analyses using core and well log data, (3) construction of dispersion and attenuation models at the core and borehole scales in poroelastic media, (4) petrophysics and a catalog of core and well log data from Siberia Ridge field, (5) acoustic/geotechnical measurements and CT imaging of core samples from Florida carbonates, and (6) development of an algorithm to predict pore size distribution from NMR core data. The last section includes a summary of accomplishments, technology transfer activities and follow-on work for Phase II.

  6. Structure of water + acetonitrile solutions from acoustic and positron annihilation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jerie, Kazimierz [Institute of Experimental Physics, University of WrocIaw, WrocIaw (Poland); Baranowski, Andrzej [Institute of Experimental Physics, University of WrocIaw, WrocIaw (Poland); Koziol, Stan [Waters Corp., 34 Maple St., Milford, MA 01757 (United States); Glinski, Jacek [Faculty of Chemistry, University of WrocIaw, WrocIaw (Poland)]. E-mail: glin@wchuwr.chem.uni.wroc.pl; Burakowski, Andrzej [Faculty of Chemistry, University of WrocIaw, WrocIaw (Poland)

    2005-03-14

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH{sub 3}CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. A new method of calculating the 'ideal' positronium lifetimes is proposed, based on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The results are almost identical with those obtained from molar volumes using the concept of Levay et al. On the other hand, the same calculations performed using the 'bubble' model of annihilation yield very different results. It seems that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  7. Structure of Aqueous Solutions of Acetonitrile Investigated by Acoustic and Positron Annihilation Measurements

    Science.gov (United States)

    Jerie, K.; Baranowski, A.; Koziol, S.; Burakowski, A.

    2005-05-01

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH3CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. The concept of Levay et al. of calculating the "ideal positronium lifetimes is applied, basing on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The same calculations performed using the Tao model of annihilation yield very different results. It can be concluded that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  8. Structure of water + acetonitrile solutions from acoustic and positron annihilation measurements

    Science.gov (United States)

    Jerie, Kazimierz; Baranowski, Andrzej; Koziol, Stan; Gliński, Jacek; Burakowski, Andrzej

    2005-03-01

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH 3CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. A new method of calculating the "ideal" positronium lifetimes is proposed, based on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The results are almost identical with those obtained from molar volumes using the concept of Levay et al. On the other hand, the same calculations performed using the "bubble" model of annihilation yield very different results. It seems that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  9. Comparison of shipboard acoustic Doppler current profiler and moored current measurements in the Equatorial Pacific

    Science.gov (United States)

    Chereskin, T. K.; Regier, L. A.; Halpern, D.

    1987-01-01

    Depth-averaged current shears computed from shipboard acoustic Doppler current profiler (ADCP) and moored Savonius rotor and vane vector-averaging current meter (VACM) measurements are compared at 35, 62.5, 100 and 140 m depths within 7 km of each other near 0 deg, 140 deg W during a 12-day interval in November 1984. The agreement between the VACM and ADCP shears was excellent. The average root-mean-square difference of hourly shear values was small, approximately 0.0021/s, and the average correlation coefficient was 0.90. Spectral estimates were equivalent to within a 95 percent significance level and the VACM and ADCP shears were 95 percent statistically coherent with zero phase difference for frequencies below 0.2 cycles per hour.

  10. Criterion Referenced Measures for Clinical Evaluations.

    Science.gov (United States)

    Pikulski, John J.

    This paper discusses criterion referenced tests' characteristics and their use in clinical evaluation. The distinction between diagnostic tests and criterion referenced measures is largely a matter of emphasis. Some authorities believe that in diagnostic testing the emphasis is upon an evaluation of an individual's strengths and weaknesses in…

  11. DIASCoPE: Directly integrated acoustic system combined with pressure experiments—A new method for fast acoustic velocity measurements at high pressure

    Science.gov (United States)

    Whitaker, Matthew L.; Baldwin, Kenneth J.; Huebsch, William R.

    2017-03-01

    A new experimental system to measure elastic wave velocities in samples in situ under extreme conditions of pressure and temperature in a multi-anvil apparatus has been installed at Beamline 6-BM-B of the Advanced Photon Source at Argonne National Laboratory. This system allows for measurement of acoustic velocities via ultrasonic interferometry, and makes use of the synchrotron beam to measure sample densities via X-ray diffraction and sample lengths using X-radiographic imaging. This system is fully integrated into the automated software controls of the beamline and is capable of collecting robust data on elastic wave travel times in less than 1 s, which is an improvement of more than one to two orders of magnitude over existing systems. Moreover, this fast data collection time has been shown to have no effect on the obtained travel time results. This allows for more careful study of time-dependent phenomena with tighter snapshots in time of processes that would otherwise be lost or averaged out in other acoustic measurement systems.

  12. Measurement of the open porosity of agricultural soils with acoustic waves

    Science.gov (United States)

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    soil, since there are more voids filled with air and water, increasing the viscous losses. Fellah et al. (2003) showed that porosity can be determined from phase speed and reflection coefficient. The propagation of acoustic waves in soil is investigated to develop a rapid method for the quantification of the porosity level of agricultural soils. In the present contribution, correlations are determined between the acoustic signatures of agricultural soil in function of its structural properties. In laboratory, compression tests are performed on unsaturated soil samples to reproduce different porosity levels. Ultrasonic pulses are sent through the considered samples. The propagated signals are treated in both time and frequency domains in order to determine the speed of the phase velocity and the reflection. Porosity is then determined and compared with water content measured by gravimetric method. Alaoui, A., Lipiec, J. & Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116, pp.1-15. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Aristegui C., Chapelon J.Y., 2003. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America 113 (5), pp 2424-2433 Hamza, M.A. & Anderson, W.K., 2005. Soil compaction in cropping systems. Soil and Tillage Research, 82(2), pp.121-145. Lu, Z., 2005. Role of hysteresis in propagating acousitcs waves in soils. Geophysical Research Letter, pp.32:1-4. Lu, Z., Hickey, C.J. & Sabatier, J.M., 2004. Effects of compaction on the acoustic velocity in soils. Soil Science Society of America Journal, 68(1), pp.7-16. Lu, Z. & Sabatier, J.M., 2009. Effects of soil water potential and moisture content on sound speed. Soil Science Society of America Journal, 73(5), pp.1614-1625. Le Maitre, D.C., Kotzee, I.M. & O'Farrell, P.J., 2014. Impacts of land-cover change on

  13. Improvement of the accuracy of continuous GPS/Acoustic measurement using a slackly moored buoy

    Science.gov (United States)

    Imano, M.; Kido, M.; Ohta, Y.; Takahashi, N.; Fukuda, T.; Ochi, H.; Honsho, C.; Hino, R.

    2016-12-01

    For the real-time detection of seafloor crustal movement and tsunami associated with large earthquakes, it is necessary to monitor them continuously in their source regions. For this purpose, Tohoku University, JAMSTEC, and JAXA have co-developed a continuous GPS/Acoustic (GPS/A) measurement system using a moored buoy, and the third sea-trial is ongoing for a year in Kumano-nada, Nankai Trough. In this presentation, we report of the positioning accuracy of the continuous GPS/Acoustic measurement in the buoy system. We have adopted the array positioning technique developed by researchers at the Scripps Institute of Oceanography with some improvements. The advantage of this method is that errors in assumed sound velocity and array geometry (relative positions of individual seafloor transponders) little affect positioning results when measurements are conducted in the vicinity of the array center. However, the GPS/A measurement using a moored buoy is generally conducted under much worse condition than the conventional one using a research vessel. In our system, the mooring cable length was determined to be 1.5 times the water depth for safety reasons against strong current. Therefore, the buoy is drifting within a relatively wide area by the wind and the current, and measurements are randomly performed at various points within the area. These features can lead to significant systematic errors in the array positioning, because the effect of errors in pre-defined array geometry increases as the observation point goes farther from the array center. At the moments, the positioning accuracy of GPS/A measurement using a moored buoy is estimated as 0.6/0.7 m, for the EW/NS components, respectively, from the data obtained during the third sea-trial. It is considered that errors in the assumed array geometry result in considerable errors in the array positioning. Therefore, it is necessary to determine the array geometry more precisely in order to improve the accuracy of GPS

  14. Measurement of porcine haptoglobin in meat juice using surface acoustic wave biosensor technology.

    Science.gov (United States)

    Klauke, Thorsten N; Gronewold, Thomas M A; Perpeet, Markus; Plattes, Susanne; Petersen, Brigitte

    2013-11-01

    Aim of the study was the application of biosensor technique to measure the concentration of an acute phase protein (APP) within complex matrices from animal origin. For the first time, acute phase protein haptoglobin (Hp) was detected from unpurified meat juice of slaughter pigs by a label-free biosensor-system, the SAW-based sam®5 system. The system uses a sensor chip with specific antibodies to catch Hp while the mass-related phase shift is measured. The concentration is calculated as a function of these measured phase shifts. The results correlate very well with reference measurement results obtained by enzyme-linked immunosorbent assay (ELISA), R=0.98. The robust setup of the surface acoustic wave (SAW)-based system and its ability to measure within very short time periods qualifies it for large-scale analyses and is apt to identify rapidly pigs in the meat production process whose consumption would have an increased risk for consumers.

  15. Measuring Mortality Information in Clinical Data Warehouses.

    Science.gov (United States)

    Jones, Barrett; Vawdrey, David K

    2015-01-01

    The ability to track and report long-term outcomes, especially mortality, is essential for advancing clinical research. The purpose of this study was to present a framework for assessing the quality of mortality information in clinical research databases. Using the clinical data warehouse (CDW) at Columbia University Medical Center as a case study, we measured: 1) agreement in vital status between our institution's patient registration system and the U.S. Social Security Administration's Death Master File (DMF), 2) the proportion of patients marked as deceased according to the DMF records who had subsequent visits to our institution, and 3) the proportion of patients still living according to Columbia's CDW who were over 100 and 120 years of age. Of 33,295 deaths recorded in our institution's patient registration system, 13,167 (39.5%) did not exist in the DMF. Of 315,037 patients in our CDW who marked as deceased according to the DMF, 2.1% had a subsequent clinical encounter at our institution. The proportion of patients still living according to Columbia's CDW who were over 100 and 120 years of age was 43.6% and 43.1%, respectively. These measures may be useful to other clinical research investigators seeking to assess the quality of mortality data (1-4).

  16. Measurements of high-frequency acoustic scattering from glacially-eroded rock outcrops

    CERN Document Server

    Olson, Derek R; Sæbo, Torstein

    2016-01-01

    Measurements of acoustic backscattering from glacially-eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20$^\\circ$ grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20$^\\circ$ grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supportin...

  17. Acoustic backscattering by deepwater fish measured in situ from a manned submersible

    Science.gov (United States)

    Benoit-Bird, Kelly J.; Au, Whitlow W. L.; Kelley, Christopher D.; Taylor, Christopher

    2003-02-01

    An outstanding problem in fisheries acoustics is the depth dependence of scattering characteristics of swimbladder-bearing fish, and the effects of pressure on the target strength of physoclistous fish remain unresolved. In situ echoes from deepwater snappers were obtained with a sonar transducer mounted on a manned submersible next to a low-light video camera, permitting simultaneous echo recording and identification of species, fish size and orientation. The sonar system, consisting of a transducer, single board computer, hard disk, and analog-to-digital converter, used a 80 μs, broadband signal (bandwidth 35 kHz, center frequency 120 kHz). The observed relationship between fish length and in situ target strength shows no difference from the relationship measured at the surface. No differences in the species-specific temporal echo characteristics were observed between surface and in situ measures. This indicates that the size and shape of the snappers' swimbladders are maintained both at the surface and at depths of up to 250 m. Information obtained through controlled backscatter measurements of tethered, anesthetized fish at the surface can be applied to free-swimming fish at depth. This is the first published account of the use of a manned submersible to measure in situ scattering from identified, individual animals with known orientations. The distinct advantage of this technique compared with other in situ techniques is the ability to observe the target fish, obtaining accurate species, size, and orientation information.

  18. Acoustical environment measurement at a very shallow port: Trial case in Hashirimizu Port

    Science.gov (United States)

    Ogasawara, Hanako; Mori, Kazuyoshi

    2016-07-01

    Recently, the needs for coastal environment measurement has been increasing for many purposes, such as fishing, weather forecasting, ocean noise measurement for power plants, and coastal security. Acoustical measurement is one of the solutions because it can cover a wide area with few sensors, and it is possible to monitor long term or in real time. In this study, a small-scale reciprocal sound travel experiment was carried out in Hashirimizu Port for coastal environment measurement, such as current speed and water temperature. Since the distance between the surface and the transducer becomes short according to the tidal effect, the direct signal is canceled by the surface-reflected signal under a specific condition. However, even under such a condition, mean water temperature could be estimated from the reciprocal travel time using bottom-reflected signals. The current along the travel path was a reasonable value. It is possible to obtain a special current speed with another reciprocal path, which is in a direction perpendicular to the current travel path.

  19. Correcting acoustic Doppler current profiler discharge measurements biased by sediment transport

    Science.gov (United States)

    Mueller, D.S.; Wagner, C.R.

    2007-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment on or near the streambed, and is an issue widely acknowledged by the scientific community. The integration of a differentially corrected global positioning system (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias, based on the closure error resulting from a two-way crossing of the river, is presented. The uncertainty in the mean moving-bed velocity measured by the loop method is shown to be approximately 0.6cm/s. For the 13 field measurements presented, the loop method resulted in corrected discharges that were within 5% of discharges measured utilizing DGPS to compensate for moving-bed conditions. ?? 2007 ASCE.

  20. Evaluation of photo-acoustic infrared multigas analyzer in measuring concentrations of greenhouse gases emitted from feedlot soil/manure

    Science.gov (United States)

    Photo-acoustic infrared multigas analyzers (PIMAs) are being increasingly utilized to measure concentrations and fluxes of greenhouse gases (i.e., N2O, CO2, and CH4) at the soil surface because of their low cost, portability, and ease of operation. This research evaluated a PIMA in combination with ...

  1. A replicable acoustic measure of lenition and the nature of variability in Gurindji stops

    Directory of Open Access Journals (Sweden)

    Thomas Ennever

    2017-08-01

    Full Text Available An automated method is presented for the commensurable, reproducible measurement of duration and lenition of segment types ranging from fully occluded stops to highly lenited variants, in acoustic data. The method is motivated with respect to the relationship between acoustic and articulatory phonetics and, through subsequent evaluation, is argued to correspond well to articulation. It is then applied to the phonemic stops of casual speech in Gurindji (Pama-Nyungan, Australia to investigate the nature of their articulatory targets. The degree of stop lenition is found to vary widely. Contrary to expectations, no evidence is found of a positive effect on lenition due to word-medial (relative to word-initial position, beyond that attributable to duration; nor do non-coronals lenite more than their apical counterparts, which freely lenite along a continuum towards taps. No significant effect is found of preceding or following vocalic environment. Taken together, the observed lenition, duration, and peak intensity velocities are argued to be inconsistent with a single, fully-occluded articulatory ‘stop’ target which is undershot at short durations, rather targets can be understood to span a range or ‘window’ of values in the sense of Keating (1990, from fully-occluded stop-like targets to more approximant-like targets. It is an open question to what degree the patterns found in Gurindji are language particular, or can be related to the organization of obstruent systems in Australian languages more broadly. Precisely comparable studies of additional languages will be especially valuable in addressing these questions and others, and are possible using the method we introduce.

  2. The acoustics of public squares/places: A comparison between results from a computer simulation program and measurements in situ

    DEFF Research Database (Denmark)

    Paini, Dario; Rindel, Jens Holger; Gade, Anders

    2004-01-01

    In the contest of a PhD thesis, in which the main purpose is to analyse the importance of the public square/place (“agora”) as a meeting point of sound and music, with particular regard to its use for concerts (amplified or not), a first step was done, making comparisons between measurement in situ...... is not completely closed and not completely open, with highly reflecting and partially diffusing vertical surfaces (the facades) and with one totally absorbing surface (the sky). A natural application of these results will be the possibility to detect the best position for a sound source (typically an orchestra...... or a band during, for instance, music summer festivals) and the best position for the audience. A further result could be to propose some acoustic adjustments to achieve better acoustic quality by considering the acoustic parameters which are typically used for concert halls and opera houses....

  3. Measurements of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials

    NARCIS (Netherlands)

    Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the ex

  4. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  5. Elastic stiffness and damping measurements in titanium alloys using atomic force acoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Phani, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India); Kumar, Anish, E-mail: anish@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 Tamil Nadu (India); Arnold, W. [Department of Materials and Materials Technology, Saarland University, Campus D 2.2, D-66123 Saarbrücken (Germany); 1. Physikalisches Institut, Georg-August-Universität, Friedrich Hund Platz 1, D-37077 Göttingen (Germany); Samwer, K. [1. Physikalisches Institut, Georg-August-Universität, Friedrich Hund Platz 1, D-37077 Göttingen (Germany)

    2016-08-15

    Atomic force acoustic microscopy (AFAM) has been used to study the distribution of elastic stiffness and damping properties across different phases, such as α &β phases in a β titanium alloy (Ti−10V−4.5Fe−1.5Al) and α, β and α′ phases in an α + β alloy (Ti−6Al−4V). Contact-resonance spectra were obtained with a 100 nm spatial resolution in various specimens of the two titanium alloys heat-treated at different temperatures. The study indicates that the metastable β phase has the minimum modulus and maximum damping followed by α′ and α-phases. Employing the rule of mixtures, the average modulus measured by AFAM was then compared with the modulus obtained by ultrasonic velocity measurements. The error in the average modulus values obtained by both techniques is discussed. - Highlights: • Mapping of elastic stiffness and damping across various phases in titanium alloys. • Influence of alloy chemistry and crystal orientation on the results are discussed. • β phase has the minimum modulus and maximum damping followed by α′ and α-phases. • Average modulus of sample calculated from AFAM measurements on individual phases.

  6. Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements

    Science.gov (United States)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui

    2017-01-01

    Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm‑1.

  7. A novel acoustic method for gas flow measurement using correlation techniques

    Science.gov (United States)

    Knuuttila, Matti Tapani

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3%. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user.

  8. A New Method to Identify Quaternary Moraine:Acoustic Emission Stress Measurement

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhizhong; QIAO Yansong; TIAN Jiaorong; WANG Min; LI Mingze; HE Peiyuan; QIAN Fang

    2006-01-01

    How to effectively identify glacial sediments, especially Quaternary moraine, has been in dispute for decades. The traditional methods, e.g., sedimentary and geomorphologic ones, are facing challenge in eastern China where controversial moraine deposits are dominatingly distributed. Here,for the first time, we introduce the acoustic emission (AE) stress measurement, a kind of historical stress measurement, to identify Quaternary moraine. The results demonstrate that it can be employed to reconstruct stress information of glaciation remaining in gravels, and may shed light on the identification of Quaternary moraine in eastern China. First, we measured the AE stress of gravels of glacial origin that are underlying the Xidatan Glacier, eastern Kunlun Mountains in western China.Second, we calculated the stress according to the actual thickness of the glacier. The almost identical stress values suggest that the glacial gravels can memorize and preserve the overlying glacier-derived aplomb stress. And then we introduce this new approach to the controversial moraine in Mount Lushan, eastern China. The results indicate that the stress is attributed to the Quaternary glacier, and the muddy gravels in the controversial moraine in Mount Lushan are moraine deposits but not others.

  9. Absorption measurement of acoustic materials using a scanning laser Doppler vibrometer

    Science.gov (United States)

    Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick; de Sitter, Gert

    2005-03-01

    In this article a method is proposed to estimate the normal incidence reflection ratio and absorption coefficient of acoustical materials using measurements in a transparent tube excited with a loudspeaker and terminated with the material under investigation. The waveforms are measured at different locations in the tube using a scanning laser Doppler vibrometer. Because the measurement probe (i.e., the laser beam) does not interfere with the wave in the tube, narrow tubes can be used. This means that-in contrast to the standardized wide tube tests using microphones-the proposed experiment could be used for high frequencies (in the paper an 8 mm tube was used, resulting in a 25 kHz upper frequency limit). It is shown based on theoretically known scenarios (i.e., an open tube and a rigid termination) that the absorption coefficient can be obtained with an error of about three percent. In addition, the absorption coefficient of two commonly used absorption materials-glass fiber wool and carpet-were determined and found to be in good agreement with material databases. .

  10. A novel acoustic method for gas flow measurement using correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Knuuttila, M. [VTT Chemical Technology, Espoo (Finland). Industrial Physics

    1997-12-31

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3 %. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user. (orig.) 51 refs.

  11. Fiber-optic sensor-based remote acoustic emission measurement of composites

    Science.gov (United States)

    Yu, Fengming; Okabe, Yoji; Wu, Qi; Shigeta, Naoki

    2016-10-01

    Acoustic emission (AE) detection functioning at high temperatures could clarify the damage process in high heat-resistant composites. To achieve the high-temperature AE detection, a remote AE measurement based on a phase-shifted fiber Bragg grating (PS-FBG) sensor with a high sensitivity over a broad bandwidth was proposed. The common optical fibers were made from glass with good heat resistance. Hence, in this method, optical fiber was used as the waveguide to propagate the AE in the composite from a high-temperature environment to the room-temperature environment wherein the PS-FBG was located. Owing to the special AE detection configuration, this method was a new adhesive method for remote measurement (ADRM). The experiment and numerical simulation revealed that the PS-FBG sensor in the ADRM configuration demonstrated accurate remote sensing for the AE signals. This was because of the good waveguide system provided by the thin optical fiber and the sensitivity of the PS-FBG sensor to the axial strain in the core of the fiber. Consequently, the remote measurement utilizing the PS-FBG sensor in the ADRM configuration has a high potential for AE detection in high-temperature conditions.

  12. Quasi-residual strain and moduli measurements in materials using embedded acoustic waveguides

    Science.gov (United States)

    Harrold, Ronald T.; Sanjana, Zal N.; Raju, Basavaraju B.

    1996-11-01

    Following the processing and manufacture of resin and composite parts and during their lifetime, the distribution of internal residual strain and any variations in moduli are generally unknown. Real-time information on these parameters would be valuable for improving material performance and reliability. It is believed that measurements related to material residual stresses or strain and moduli can be obtained by measuring the longitudinal wave velocities within acoustic waveguides (AWG) embedded within a material. The concept is that the wave velocities within embedded AWG are related to the material bulk modulus, density and Poisson's Ratio which are all in some degree related to the material state of cure, and finally the internal residual stresses. Based on this concept it is shown that the AWG of different diameters embedded within the same resin part of uniform internal stress distribution, the AWG wave velocities should vary in relation to the square root of the AWG diameter. Experimental results using AWG of 5, 10, 16, 20, 40 and 62 mil diameter Nichrome embedded within Shell 815 clear resin with optically measured uniform strain, demonstrate a direct relationship between AWG velocities and the square root of the AWG diameter. Consequently, it is reasoned that for a part with several embedded AWG, each of the same diameter, then differences in the AWG velocities would yield information on differences in the residual strain and moduli within the part.

  13. Acoustic transducer in system for gas temperature measurement in gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    DeSilva, Upul P.; Claussen, Heiko

    2017-07-04

    An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second end of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.

  14. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...... the theoretical absorption coefficient and the reverberation room measurement. The angle-weighted absorption coefficient, together with the size correction, agrees satisfactorily with the measured absorption data by the reverberation chamber method. At high frequencies and for large samples, the averaged...

  15. Apparatus for measurement of acoustic wave propagation under uniaxial loading with application to measurement of third-order elastic constants of piezoelectric single crystals.

    Science.gov (United States)

    Zhang, Haifeng; Kosinski, J A; Karim, Md Afzalul

    2013-05-01

    We describe an apparatus for the measurement of acoustic wave propagation under uniaxial loading featuring a special mechanism designed to assure a uniform mechanical load on a cube-shaped sample of piezoelectric material. We demonstrate the utility of the apparatus by determining the effects of stresses on acoustic wave speed, which forms a foundation for the final determination of the third-order elastic constants of langasite and langatate single crystals. The transit time method is used to determine changes in acoustic wave velocity as the loading is varied. In order to minimize error and improve the accuracy of the wave speed measurements, the cross correlation method is used to determine the small changes in the time of flight. Typical experimental results are presented and discussed.

  16. Effects of measurement procedure and equipment on average room acoustic measurements

    DEFF Research Database (Denmark)

    Gade, Anders Christian; Bradley, J S; Siebein, G W

    1993-01-01

    . In some of the halls measurements were repeated using the procedures of the other teams to make it possible to separate the effects of different equipment and different procedures. The paper will present position-averaged results from the three teams and will discuss reasons for the differences observed...

  17. Updated determination of the molar gas constant R by acoustic measurements in argon at UVa-CEM

    Science.gov (United States)

    Segovia, J. J.; Lozano-Martín, D.; Martín, M. C.; Chamorro, C. R.; Villamañán, M. A.; Pérez, E.; García Izquierdo, C.; del Campo, D.

    2017-10-01

    A new determination of the molar gas constant was performed from measurements of the speed of sound in argon at the triple point of water and extrapolation to zero pressure. A new resonant cavity was used. This is a triaxial ellipsoid whose walls are gold-coated steel and which is divided into two identical halves that are bolted and sealed with an O-ring. Microwave and electroacoustic traducers are located in the northern and southern parts of the cavity, respectively, so that measurements of microwave and acoustic frequencies are carried out in the same experiment. Measurements were taken at pressures from 600 kPa to 60 kPa and at 273.16 K. The internal equivalent radius of the cavity was accurately determined by microwave measurements and the first four radial symmetric acoustic modes were simultaneously measured and used to calculate the speed of sound. The improvements made using the new cavity have reduced by half the main contributions to the uncertainty due to the radius determination using microwave measurements which amounts to 4.7 parts in 106 and the acoustic measurements, 4.4 parts in 106, where the main contribution (3.7 parts in 106) is the relative excess half-widths associated with the limit of our acoustic model, compared with our previous measurements. As a result of all the improvements with the new cavity and the measurements performed, we determined the molar gas constant R  =  (8.314 449  ±  0.000 056) J · K-1 · mol-1 which corresponds to a relative standard uncertainty of 6.7 parts in 106. The value reported in this paper lies  -1.3 parts in 106 below the recommended value of CODATA 2014, although still within the range consistent with it.

  18. Clinical outcome measures in juvenile idiopathic arthritis.

    Science.gov (United States)

    Consolaro, Alessandro; Giancane, Gabriella; Schiappapietra, Benedetta; Davì, Sergio; Calandra, Serena; Lanni, Stefano; Ravelli, Angelo

    2016-04-18

    Juvenile idiopathic arthritis (JIA), as a chronic condition, is associated with significant disease- and treatment-related morbidity, thus impacting children's quality of life. In order to optimize JIA management, the paediatric rheumatologist has begun to regularly use measurements of disease activity developed, validated and endorsed by international paediatric rheumatology professional societies in an effort to monitor the disease course over time and assess the efficacy of therapeutic interventions in JIA patients.A literature review was performed to describe the main outcome measures currently used in JIA patients to determine disease activity status.The Juvenile Disease Activity Score (JADAS), in its different versions (classic JADAS, JADAS-CRP and cJADAS) and the validated definitions of disease activity and response to treatment represent an important tool for the assessment of clinically relevant changes in disease activity, leading more and more to a treat-to-target strategy, based on a tight and thorough control of the patient condition. Moreover, in recent years, increasing attention on the incorporation of patient-reported or parent-reported outcomes (PRCOs), when measuring the health state of patients with paediatric rheumatic diseases has emerged.We think that the care of JIA patients cannot be possible without taking into account clinical outcome measures and, in this regard, further work is required.

  19. An assessment of the FlowCapt acoustic sensor for measuring snowdrift in the Indian Himalayas

    Indian Academy of Sciences (India)

    R K Das; P Datt; A Acharya

    2012-12-01

    Wind caused snow drifting plays a dominant role in the redistribution of snow mass that restructures a snowpack. Strong wind activity at the mountain tops results in uneven distribution of snow with erosion on windward side and deposition on leeward areas. Such snowdrift events are responsible for the formation of cornices, increase in the loading of avalanche release zones on the leeward side and consequent increase in the level of avalanche hazard. In this paper, we present the results of snowdrift measurement using an acoustic snow-drift meter, the FlowCapt, built by IAV Engineering, which was used during winter seasons of 2007–2010 at a field research station of Snow and Avalanche Study Establishment (SASE) in the western Himalayas. The aim of the study was to evaluate the suitability of the instrument in measuring snowdrift in the Himalayan weather conditions. Results proved the utility of the instrument as a useful tool to study drifting snow in remote areas. However, in the absence of conventional snow gauges for validation, the quality of the absolute snow flux data could not be ascertained.

  20. Acoustic Doppler current profiler measurements in coastal and estuarine environments: examples from the Tay Estuary, Scotland

    Science.gov (United States)

    Wewetzer, Silke F. K.; Duck, Robert W.; Anderson, James M.

    1999-08-01

    Acoustic Doppler current profilers (ADCPs) provide a means to measure the components of water current velocities in three dimensions. Such instruments have been used widely by the oil industry in deep offshore waters but their application to nearshore coastal and estuarine environments has been principally confined to the USA. Using examples of ADCP datasets acquired from the macrotidal Tay Estuary, eastern Scotland, the principles of field deployment, data acquisition and forms of output are critically summarised. It is shown, for the first time in the Tay Estuary, that vertical current velocities are significant and are particularly so in downwelling zones associated with the development and passage of axially convergent tidal fronts. The improved understanding of three-dimensional water and suspended sediment dynamics in coastal and estuarine waters is crucial to, inter alia, the sustainable management of effluent discharges and, in more general terms, it is predicted on the basis of the Tay case study, that ADCP measurements afford significant opportunities to refine understanding of geomorphological processes in a variety of aquatic environments worldwide.

  1. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Peter Ariessohn

    2008-06-30

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations

  2. Measuring pacemaker dose: A clinical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org [Department of Radiation Oncology at the Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); Xiao Ying; Harrison, Amy S. [Department of Radiation Oncology at the Jefferson Medical College and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States)

    2012-07-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. A simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired.

  3. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    Science.gov (United States)

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  4. Advances in Fast-response Acoustically Derived Air-temperature Measurements

    Science.gov (United States)

    Bogoev, I.; Jacobsen, L.; Horst, T. W.; Conrad, B.

    2015-12-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity.The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  5. Clinical measurement of mechanical ankle instability.

    Science.gov (United States)

    Parasher, Raju K; Nagy, Dawn R; Em, April L; Phillips, Howard J; Mc Donough, Andrew L

    2012-10-01

    Clinicians commonly use the anterior draw test (ligament laxity) and distal fibular position (lateral malleolus displacement), to measure ankle instability. The purpose of this study was to establish intra-rater and inter-rater reliability for the anterior draw test and distal fibular position in a clinical setting. The anterior draw test (AD) was measured with a plastic Goniometer, and was defined as the linear displacement of the foot as it is drawn anteriorly with the ankle held in 20 degrees of plantar-flexion. Distal fibular position (DFP) was measured in standing using a digital vernier caliper and was the relative linear distance between the lateral and the medial malleoli. 20 participants aged 21-28 volunteered for the study and were measured on both ankles. It was found that Intra-tester reliability (ICC) ranged from 0.88 to 0.97 for AD and DFP; while inter-tester reliability (ICC) was 0.6 for AD and 0.77 for DFP. In addition for measures across trials, the standard error of the measurement (SEM) was, on average 0.66 mm for AD and 1.7 mm for DFP. While the limits of agreement (LOA) was ±0.17 mm for AD and ±4.03 mm for DFP. However, the SEM and LOA between testers was 2.27 mm and ±2.27 mm respectively for AD; and for 3.1 mm and ±10.4 mm for DFP. Overall the results suggest that both measures, as defined in this study exhibit moderate to good reliability and low standard error of measurement, suggesting a high degree of repeatability across trials.

  6. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    Science.gov (United States)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  7. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    CERN Document Server

    Mazumdar, A; Ballot, J; Antia, H M; Basu, S; Houdek, G; Mathur, S; Cunha, M S; Aguirre, V Silva; Garcia, R A; Salabert, D; Verner, G A; Christensen-Dalsgaard, J; Metcalfe, T S; Sanderfer, D T; Seader, S E; Smith, J C; Chaplin, W J

    2013-01-01

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results ...

  8. Analogies between the measurement of acoustic impedance via the reaction on the source method and the automatic microwave vector network analyzer technique

    Science.gov (United States)

    McLean, James; Sutton, Robert; Post, John

    2003-10-01

    One useful method of acoustic impedance measurement involves the measurement of the electrical impedance ``looking into'' the electrical port of a reciprocal electroacoustic transducer. This reaction on the source method greatly facilitates the measurement of acoustic impedance by borrowing highly refined techniques to measure electrical impedance. It is also well suited for in situ acoustic impedance measurements. In order to accurately determine acoustic impedance from the measured electrical impedance, the characteristics of the transducer must be accurately known, i.e., the characteristics of the transducer must be ``removed'' completely from the data. The measurement of acoustic impedance via the measurement of the reaction on the source is analogous to modern microwave measurements made with an automatic vector network analyzer. The action of the analyzer is described as de-embedding the desired data (such as acoustic impedance) from the raw data. Such measurements are fundamentally substitution measurements in that the transducer's characteristics are determined by measuring a set of reference standards. The reaction on the source method is extended to take advantage of improvements in microwave measurement techniques which allow calibration via imperfect standard loads. This removes one of the principal weaknesses of the method in that the requirement of high-quality reference standards is relaxed.

  9. Measuring the 2D Baryon Acoustic Oscillation signal of galaxies in WiggleZ: Cosmological constraints

    CERN Document Server

    Hinton, Samuel R; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russel J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David

    2016-01-01

    We present results from the 2D anisotropic Baryon Acoustic Oscillation (BAO) signal present in the final dataset from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: firstly using the full shape of the 2D correlation function and secondly focussing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalise over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of $\\Omega_c h^2$, $H(z)$, and $D_A(z)$ for three redshift ...

  10. Comparison of multimicrophone probe design and processing methods in measuring acoustic intensity.

    Science.gov (United States)

    Wiederhold, Curtis P; Gee, Kent L; Blotter, Jonathan D; Sommerfeldt, Scott D; Giraud, Jarom H

    2014-05-01

    Three multimicrophone probe arrangements used to measure acoustic intensity are the four-microphone regular tetrahedral, the four-microphone orthogonal, and the six-microphone designs. Finite-sum and finite-difference processing methods can be used with such probes to estimate pressure and particle velocity, respectively. A numerical analysis is performed to investigate the bias inherent in each combination of probe design and processing method. Probes consisting of matched point sensor microphones both embedded and not embedded on the surface of a rigid sphere are considered. Results are given for plane wave fields in terms of root-mean-square average bias and maximum bias as a function of angle of incidence. An experimental verification of the analysis model is described. Of the combinations considered and under the stated conditions, the orthogonal probe using the origin microphone for the pressure estimate is shown to have the lowest amount of intensity magnitude bias. Lowest intensity direction bias comes from the six-microphone probe using an average of the 15 intensity components calculated using all microphone pairs. Also discussed are how multimicrophone probes can advantageously use correction factors calculated from a numerical analysis and how the results of such an analysis depend on the chosen definition of the dimensionless frequency.

  11. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    Science.gov (United States)

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  12. Korean Clinic Based Outcome Measure Studies

    Directory of Open Access Journals (Sweden)

    Jongbae Park

    2003-02-01

    Full Text Available Background: Evidence based medicine has become main tools for medical practice. However, conducting a highly ranked in the evidence hierarchy pyramid is not easy or feasible at all times and places. There remains a room for descriptive clinical outcome measure studies with admitting the limit of the intepretation. Aims: Presents three Korean clinic based outcome measure studies with a view to encouraging Korean clinicians to conduct similar studies. Methods: Three studies are presented briefly here including 1 Quality of Life of liver cancer patients after 8 Constitutional acupuncture; 2 Developing a Korean version of Measuring yourself Medical Outcome profile (MYMOP; and 3 Survey on 5 Shu points: a pilot In the first study, we have included 4 primary or secondary liver cancer patients collecting their diagnostic X-ray film and clinical data f개m their hospital, and asked them to fill in the European Organization Research and Treatment of Cancer, Quality of Life Questionnaire before the commencement of the treatment. The acupuncture treatment is set up format but not disclosed yet. The translation and developing a Korean version of outcome measures that is Korean clinician friendly has been sought for MYMOP is one of the most appropriate one. The permission was granted, the translation into Korean was done, then back translated into English only based on the Korean translation by the researcher who is bilingual in both languages. The back translation was compared by the original developer of MYMOP and confirmed usable. In order to test the existence of acupoints and meridians through popular forms of Korean acupuncture regimes, we aim at collecting opinions from 101 Korean clinicians that have used those forms. The questions asked include most effective symptoms, 5 Shu points, points those are least likely to use due to either adverse events or the lack of effectiveness, theoretical reasons for the above proposals, proposing outcome measures

  13. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    Science.gov (United States)

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  14. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    Science.gov (United States)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  15. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    Science.gov (United States)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  16. Logopenic and nonfluent variants of primary progressive aphasia are differentiated by acoustic measures of speech production.

    Directory of Open Access Journals (Sweden)

    Kirrie J Ballard

    Full Text Available Differentiation of logopenic (lvPPA and nonfluent/agrammatic (nfvPPA variants of Primary Progressive Aphasia is important yet remains challenging since it hinges on expert based evaluation of speech and language production. In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis of apraxia of speech in nfvPPA. Forty-one patients (21 lvPPA, 20 nfvPPA were recruited from a consecutive sample with suspected frontotemporal dementia. Patients were diagnosed using the current gold-standard of expert perceptual judgment, based on presence/absence of particular speech features during speaking tasks. Seventeen healthy age-matched adults served as controls. MRI scans were available for 11 control and 37 PPA cases; 23 of the PPA cases underwent amyloid ligand PET imaging. Measures, corresponding to perceptual features of apraxia of speech, were periods of silence during reading and relative vowel duration and intensity in polysyllable word repetition. Discriminant function analyses revealed that a measure of relative vowel duration differentiated nfvPPA cases from both control and lvPPA cases (r(2 = 0.47 with 88% agreement with expert judgment of presence of apraxia of speech in nfvPPA cases. VBM analysis showed that relative vowel duration covaried with grey matter intensity in areas critical for speech motor planning and programming: precentral gyrus, supplementary motor area and inferior frontal gyrus bilaterally, only affected in the nfvPPA group. This bilateral involvement of frontal speech networks in nfvPPA potentially affects access to compensatory mechanisms involving right hemisphere homologues. Measures of silences during reading also discriminated the PPA and control groups, but did not increase predictive accuracy. Findings suggest that a measure of relative vowel duration from of a polysyllable word

  17. Logopenic and nonfluent variants of primary progressive aphasia are differentiated by acoustic measures of speech production.

    Science.gov (United States)

    Ballard, Kirrie J; Savage, Sharon; Leyton, Cristian E; Vogel, Adam P; Hornberger, Michael; Hodges, John R

    2014-01-01

    Differentiation of logopenic (lvPPA) and nonfluent/agrammatic (nfvPPA) variants of Primary Progressive Aphasia is important yet remains challenging since it hinges on expert based evaluation of speech and language production. In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis of apraxia of speech in nfvPPA. Forty-one patients (21 lvPPA, 20 nfvPPA) were recruited from a consecutive sample with suspected frontotemporal dementia. Patients were diagnosed using the current gold-standard of expert perceptual judgment, based on presence/absence of particular speech features during speaking tasks. Seventeen healthy age-matched adults served as controls. MRI scans were available for 11 control and 37 PPA cases; 23 of the PPA cases underwent amyloid ligand PET imaging. Measures, corresponding to perceptual features of apraxia of speech, were periods of silence during reading and relative vowel duration and intensity in polysyllable word repetition. Discriminant function analyses revealed that a measure of relative vowel duration differentiated nfvPPA cases from both control and lvPPA cases (r(2) = 0.47) with 88% agreement with expert judgment of presence of apraxia of speech in nfvPPA cases. VBM analysis showed that relative vowel duration covaried with grey matter intensity in areas critical for speech motor planning and programming: precentral gyrus, supplementary motor area and inferior frontal gyrus bilaterally, only affected in the nfvPPA group. This bilateral involvement of frontal speech networks in nfvPPA potentially affects access to compensatory mechanisms involving right hemisphere homologues. Measures of silences during reading also discriminated the PPA and control groups, but did not increase predictive accuracy. Findings suggest that a measure of relative vowel duration from of a polysyllable word repetition task

  18. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  19. Acoustic and perceptual parameters relating to connected speech are more reliable measures of hoarseness than parameters relating to sustained vowels.

    Science.gov (United States)

    Halberstam, Benjamin

    2004-01-01

    This report investigates the correlations between acoustic parameters and the perception of hoarseness by trained listeners. Both sustained vowels and connected speech were examined. Fourteen acoustic parameters from samples of sustained vowels and 2 from connected speech were measured. The results show that jitter, shimmer and cepstral peak prominence (CPP) are correlated with the perception of hoarseness in sustained vowels. CPP is strongly correlated with the perception of hoarseness in connected speech. Some evidence is seen that perception of hoarseness in connected speech is more valid than the perception of hoarseness in sustained vowels. It is concluded that CPP for connected speech is a more valid objective measure of hoarseness than jitter, shimmer or CPP for sustained vowels and that perception of hoarseness may be most accurate in connected speech, rather than isolated vowels. Copyright 2004 S. Karger AG, Basel

  20. Preclinical evaluation of acoustic radiation force impulse measurements in regions of heterogeneous elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Hollerieth, Katharina; Moog, Philipp; Vo-Cong, Minh-Truc; Heemann, Uwe [Nephrology Department, Klinikum Rechts der Isar of the Technical University of Munich, Munich (Germany); Gassmann, Bernhard [Meso International GmbH, Berlin (Germany); Wagenpfeil, Stefan [Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Campus Homburg (Saar), Homburg (Germany)

    2016-08-15

    The purpose of this study was to compare the reliability of ultrasound-based shear wave elastography in regions of homogeneous versus heterogeneous elasticity by using two different probes. Using acoustic radiation force impulse (ARFI) elastography, we measured the shear wave velocity (SWV) in different lesions of an elastography phantom with the convex {sub 4}C{sub 1} probe and the linear {sub 9}L{sub 4} probe. The region of interest (ROI) was positioned in such a way that it was partly filled by one of the lesions (0%, 25%, 50%, 75%, and 100%) and partly by the background of the phantom (100%, 75%, 50%, 25%, and 0%, respectively). The success rate was 98.5%. The measured value and the reference value of SWV correlated significantly (r=0.89, P<0.001). Further, a comparison of the two probes revealed that there was no statistical difference in either the mean or the variance values. However, the deviation of SWV from the reference was higher in the case of the {sub 9}L{sub 4} probe than in the case of the {sub 4}C{sub 1} probe, both overall and in measurements in which the ROI contained structures of different elasticity (P=0.021 and P=0.002). Taking into account all data, for both probes, we found that there was a greater spread and deviation of the SWV from the reference value when the ROI was positioned in structures having different elastic properties (standard deviation, 0.02±0.01 m/sec vs. 0.04±0.04 m/sec; P=0.010; deviation from the reference value, 0.21±0.12 m/sec vs. 0.38±0.27 m/sec; P=0.050). Quantitative ARFI elastography was achievable in structures of different elasticity; however, the validity and the reliability of the SWV measurements decreased in comparison to those of the measurements performed in structures of homogeneous elasticity. Therefore, a convex probe is preferred for examining heterogeneous structures.

  1. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A. [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Monteiro, M. J. P. F. G.; Cunha, M. S. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, S. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States); Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); García, R. A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salabert, D. [Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06304 Nice (France); Verner, G. A.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanderfer, D. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Seader, S. E.; Smith, J. C. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  2. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    Science.gov (United States)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  3. Fire Fountains At Etna Volcano: What Do We Learn From Acoustic Measurements?

    Science.gov (United States)

    Vergniolle, S.

    Acoustic measurements were performed on Etna volcano (Italy) in July 2001, during two episodes of quasi fire fountains. They last about 4 h, are separated by quiet peri- ods of a few days and consist in a serie of explosions, whose intermittency increases in time from several minutes to several seconds. The waveform of every explosion is very similar to explosions at Stromboli, suggesting that the sound at Etna is also pro- duced by bursting large bubbles. The model for bubble vibration, at work at Stromboli, gives a very good fit between data and theory. When the eruptive episode reaches its climax, a bubble at Etna has a radius of 5 m, a length of 8 m for an overpressure of 0.39 MPa. Rising large expanding bubbles in a conduit distorts the top of the lava column and sloshing waves can be produced. The theoretical frequency is between 0.3 and 0.7 Hz for a radius of 5 m. Recorded acoustic pressure shows these frequen- cies. Their intensity is directly correlated to the intensity for bubble bursting (2 Hz), showing that frequencies between 0.3 Hz and 0.7 Hz are sloshing waves in a conduit radius of 5 m. Furthermore if the source of sound is monopole, gas and ejecta ve- locity is estimated at 92 m/s during episode climax, assuming a conduit radius of 5 m. Simultaneous measurements done with a radar produce exactly the same estimate [Duboclard et al., 2001]. The very good agreement between the synthetic waveform, the theoretical sloshing waves and the estimate of gas velocity shows that fire foun- tains at Etna correspond to a serie of bursting bubbles of radius 5 m, colliding during its climax to form an inner gas jet. The alternance between fire fountains and quiet periods is totally similar between Etna and Kilauea volcanoes (Hawaii). Therefore fire fountains at Etna might also be generated at depth by coalescence of a foam layer trapped at the top of the magma chamber. The total gas volume released by one fire fountain is equal to 7.4 × 106 m3 and has been

  4. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  5. Forensic Automatic Speaker Recognition Based on Likelihood Ratio Using Acoustic-phonetic Features Measured Automatically

    Directory of Open Access Journals (Sweden)

    Huapeng Wang

    2015-01-01

    Full Text Available Forensic speaker recognition is experiencing a remarkable paradigm shift in terms of the evaluation framework and presentation of voice evidence. This paper proposes a new method of forensic automatic speaker recognition using the likelihood ratio framework to quantify the strength of voice evidence. The proposed method uses a reference database to calculate the within- and between-speaker variability. Some acoustic-phonetic features are extracted automatically using the software VoiceSauce. The effectiveness of the approach was tested using two Mandarin databases: A mobile telephone database and a landline database. The experiment's results indicate that these acoustic-phonetic features do have some discriminating potential and are worth trying in discrimination. The automatic acoustic-phonetic features have acceptable discriminative performance and can provide more reliable results in evidence analysis when fused with other kind of voice features.

  6. Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system

    Science.gov (United States)

    Kawanisi, K.; Razaz, M.; Ishikawa, K.; Yano, J.; Soltaniasl, M.

    2012-05-01

    The continuous measurement of river discharge for long periods of time is crucial in water resource studies. However, the accurate estimation of river discharge is a difficult and labor-intensive procedure; thus, a robust and efficient method of measurement is required. Continuous measurements of flowrate have been carried out in a wide, shallow gravel bed river (water depth ≈ 0.6 m under low-flow conditions, width ≈ 115 m) using Fluvial Acoustic Tomography System (FATS) that has 25 kHz broadband transducers with horizontally omnidirectional and vertically hemispherical beam patterns. Reciprocal sound transmissions were performed between the two acoustic stations located diagonally on both sides of the river. The horizontal distance between the transducers was 301.96 m. FATS enabled the measurement of the depth- and range-averaged sound speed and flow velocity along the ray path. In contrast to traditional point/transect measurements of discharge, in a fraction of a second, FATS covers the entire cross section of river in a single measurement. The flow rates measured by FATS were compared to those estimated by moving boat Acoustic Doppler Current Profiler (ADCP) and rating curve (RC) methods. FATS estimates were in good agreement with ADCP estimates over a range of 20 to 65 m3 s-1. The RMS of residual between the two measurements was 2.41 m3 s-1. On the other hand the flowrate by RC method fairly agreed with FATS estimates for greater discharges than around 40 m3 s-1. This inconsistency arises from biased RC estimates in low flows. Thus, the flow rates derived from FATS could be considered reliable.

  7. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    Science.gov (United States)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  8. A programmable acoustic stimuli and auditory evoked potential measurement system for objective tinnitus diagnosis research.

    Science.gov (United States)

    Ku, Yunseo; Ahn, Joong Woo; Kwon, Chiheon; Suh, Myung-Whan; Lee, Jun Ho; Oh, Seung Ha; Kim, Hee Chan

    2014-01-01

    This paper presents the development of a single platform that records auditory evoked potential synchronized to specific acoustic stimuli of the gap prepulse inhibition method for objective tinnitus diagnosis research. The developed system enables to program various parameters of the generated acoustic stimuli. Moreover, only by simple filter modification, the developed system provides high flexibility to record not only short latency auditory brainstem response but also late latency auditory cortical response. The adaptive weighted averaging algorithm to minimize the time required for the experiment is also introduced. The results show that the proposed algorithm can reduce the number of the averaging repetitions to 70% compared with conventional ensemble averaging method.

  9. Measurement of acoustic and anatomic changes in oral and maxillofacial surgery patients

    CERN Document Server

    Aalto, Daniel; Happonen, Risto-Pekka; Jääsaari, Päivi; Kivelä, Atle; Kuortti, Juha; Luukinen, Jean-Marc; Malinen, Jarmo; Murtola, Tiina; Parkkola, Riitta; Saunavaara, Jani; Soukka, Tero; Vainio, Martti

    2013-01-01

    We describe an arrangement for simultaneous recording of speech and geometry of vocal tract in patients undergoing surgery involving this area. Experimental design is considered from an articulatory phonetic point of view. The speech and noise signals are recorded with an acoustic-electrical arrangement. The vocal tract is simultaneously imaged with MRI. A MATLAB-based system controls the timing of speech recording and MR image acquisition. The speech signals are cleaned from acoustic MRI noise by a non-linear signal processing algorithm. Finally, a vowel data set from pilot experiments is compared with validation data from anechoic chamber as well as with Helmholtz resonances of the vocal tract volume.

  10. Acoustic Doppler Current Profiler Measurements in the Tailrace at John Day Dam

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Serkowski, John A.; Richmond, Marshall C.; Titzler, P. Scott; Dennis, Gary W.

    2006-01-30

    Acoustic Doppler current profilers (ADCPs) were used to measure water velocities in the tailrace at John Day Dam over a two-week period in February 2005. Data were collected by the Pacific Northwest National Laboratory for the Hydraulic Design Section, Portland District, U.S. Army Corps of Engineers (USACE). The objective of this project was therefore to collect field measurements of water velocities in the near-field draft tube exit zone as well as the far-field tailrace to be used for improving these models. Field data were collected during the project using five separate ADCPs. Mobile ADCP data were collected using two ADCPs mounted on two separate boats. Data were collected by either holding the boat on-station at pre-defined locations for approximately 10 minutes or in moving transect mode when the boat would move over large distances during the data collection. Results from the mobile ADCP survey indicated a complex hydrodynamic flow field in the tailrace downstream of John Day Dam. A large gyre was noted between the skeleton section of the powerhouse and non-spilling portion of the spillway. Downstream of the spillway, the spillway flow is constrained against the navigation lock guide wall, and large velocities were noted in this region. Downstream of the guide wall, velocities decreased as the spillway jet dispersed. Near the tailrace island, the flow split was measured to be approximately equal on Day 2 (25.4 kcfs spillway/123 kcfs total). However, approximately 60% of the flow passed along the south shore of the island on Day 1 (15.0 kcfs spillway/150 kcfs total). At a distance of 9000 ft downstream of the dam, flows had equalized laterally and were generally uniform over the cross section. The collection of water velocities near the draft tube exit of an operating turbine unit is not routine, and equipment capable of measuring 3D water velocities in these zones are at the forefront of hydraulic measurement technology. Although the feasibility of

  11. Vector network analyzer measurement of the amplitude of an electrically excited surface acoustic wave and validation by X-ray diffraction

    Science.gov (United States)

    Camara, I. S.; Croset, B.; Largeau, L.; Rovillain, P.; Thevenard, L.; Duquesne, J.-Y.

    2017-01-01

    Surface acoustic waves are used in magnetism to initiate magnetization switching, in microfluidics to control fluids and particles in lab-on-a-chip devices, and in quantum systems like two-dimensional electron gases, quantum dots, photonic cavities, and single carrier transport systems. For all these applications, an easy tool is highly needed to measure precisely the acoustic wave amplitude in order to understand the underlying physics and/or to optimize the device used to generate the acoustic waves. We present here a method to determine experimentally the amplitude of surface acoustic waves propagating on Gallium Arsenide generated by an interdigitated transducer. It relies on Vector Network Analyzer measurements of S parameters and modeling using the Coupling-Of-Modes theory. The displacements obtained are in excellent agreement with those measured by a very different method based on X-ray diffraction measurements.

  12. Quantitative and Descriptive Comparison of Four Acoustic Analysis Systems: Vowel Measurements

    Science.gov (United States)

    Burris, Carlyn; Vorperian, Houri K.; Fourakis, Marios; Kent, Ray D.; Bolt, Daniel M.

    2014-01-01

    Purpose: This study examines accuracy and comparability of 4 trademarked acoustic analysis software packages (AASPs): Praat, WaveSurfer, TF32, and CSL by using synthesized and natural vowels. Features of AASPs are also described. Method: Synthesized and natural vowels were analyzed using each of the AASP's default settings to secure 9…

  13. Measurement of the acoustic-to-optical phonon coupling in multicomponent systems

    NARCIS (Netherlands)

    Caretta, Antonio; Donker, Michiel C.; Perdok, Diederik W.; Abbaszadeh, Davood; Polyakov, Alexey O.; Havenith, Remco W. A.; Palstra, Thomas T. M.; van Loosdrecht, Paul H. M.

    2015-01-01

    In this paper we investigate the acoustic-to-optical up-conversion phonon processes in a multicomponent system. These processes take place during heat transport and limit the efficiency of heat flow. By combining time-resolved optical and heat capacity experiments we quantify the thermal coupling co

  14. Acoustic Response of Underwater Munitions near a Sediment Interface: Measurement Model Comparisons and Classification Schemes

    Science.gov (United States)

    2015-04-23

    mm UXO with fins, a Mark 82 500-lb bomb (MK82), a diver evaluation unit (DEU), a solid 2:1 aluminum cylinder, and solid aluminum replicas of a 100...Water Acoustics, NG Pace and P Blondel (Eds.), University of Bath , UK, Sept., 2005, pp. 137-143. [11] TM Marston, KL Williams, PL Marston, “Scattering

  15. Mechanical impedance and acoustic mobility measurement techniques of specifying vibration environments

    Science.gov (United States)

    Kao, G. C.

    1973-01-01

    Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.

  16. Acoustic determination of cracks in welded joints. [by resonant structural vibration measurements

    Science.gov (United States)

    Baltanoiu, M.; Criciotoiu, E.

    1974-01-01

    The acoustic analysis method permits detection of any cracks that might take place and their manner of propagation. The study deals with the cracks produced in experiments to determine the welding technology for a welded gray cast iron workpiece by using piezoelectric transducers to determine vibration acceleration.

  17. Digital stroboscopic holographic interferometry for power flow measurements in acoustically driven membranes

    Science.gov (United States)

    Keustermans, William; Pires, Felipe; De Greef, Daniël; Vanlanduit, Steve J. A.; Dirckx, Joris J. J.

    2016-06-01

    Despite the importance of the eardrum and the ossicles in the hearing chain, it remains an open question how acoustical energy is transmitted between them. Identifying the transmission path at different frequencies could lead to valuable information for the domain of middle ear surgery. In this work a setup for stroboscopic holography is combined with an algorithm for power flow calculations. With our method we were able to accurately locate the power sources and sinks in a membrane. The setup enabled us to make amplitude maps of the out-of-plane displacement of a vibrating rubber membrane at subsequent instances of time within the vibration period. From these, the amplitude maps of the moments of force and velocities are calculated. The magnitude and phase maps are extracted from this amplitude data, and form the input for the power flow calculations. We present the algorithm used for the measurements and for the power flow calculations. Finite element models of a circular plate with a local energy source and sink allowed us to test and optimize this algorithm in a controlled way and without the present of noise, but will not be discussed below. At the setup an earphone was connected with a thin tube which was placed very close to the membrane so that sound impinges locally on the membrane, hereby acting as a local energy source. The energy sink was a little piece of foam carefully placed against the membrane. The laser pulses are fired at selected instants within the vibration period using a 30 mW HeNe continuous wave laser (red light, 632.8 nm) in combination with an acousto-optic modulator. A function generator controls the phase of these illumination pulses and the holograms are recorded using a CCD camera. We present the magnitude and phase maps as well as the power flow measurements on the rubber membrane. Calculation of the divergence of this power flow map provides a simple and fast way of identifying and locating an energy source or sink. In conclusion

  18. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  19. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  20. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  1. Evaluating the auralization of a small room in a virtual sound environment using objective room acoustic measures

    DEFF Research Database (Denmark)

    Ahrens, Axel; Marschall, Marton; Dau, Torsten

    To study human auditory perception in realistic environments, loudspeakerbased reproduction techniques have recently become state-of-the-art. To evaluate the accuracy of a simulation-based room auralization of a small room, objective measures were evaluated. In particular: - early-decay time (EDT......) & reverberation time (T20, T30); - clarity (C7, C50, C80); - interaural cross-correlation (IACC); - speech transmission index (STI); - direct-to-reverberant ratio (DRR). Impulse responses (IRs) were measured in an IEC listening room. The room was then modeled in the room acoustics software ODEON, and the same...

  2. Characterization of Transducer Performance and Narrowband Transient Ultrasonic Fields in Metals by Rayleigh-Sommerfeld Backpropagation of Compression Acoustic Waves Measured with Double-Pulsed Tv Holography

    Science.gov (United States)

    Trillo, Cristina; Doval, Ángel F.; Fernández, José L.; Rodríguez-Gómez, Pablo; López-Vázquez, J. Carlos

    2014-10-01

    This article presents a method aimed at the characterization of the narrowband transient acoustic field radiated by an ultrasonic plane transducer into a homogeneous, isotropic and optically opaque prismatic solid, and the assessment of the performance of the acoustic source. The method relies on a previous technique based on the full-field optical measurement of an acoustic wavepacket at the surface of a solid and its subsequent numerical backpropagation within the material. The experimental results show that quantitative transversal and axial profiles of the complex amplitude of the beam can be obtained at any plane between the measurement and excitation surfaces. The reconstruction of the acoustic field at the transducer face, carried out on a defective transducer model, shows that the method could also be suitable for the nondestructive testing of the performance of ultrasonic sources. In all cases, the measurements were performed with the transducer working under realistic loading conditions.

  3. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  4. [The clinical efficacy of composite acoustic therapy in patients of sudden deafness with tinnitus].

    Science.gov (United States)

    Liu, Zhao; Liang, Yong; Yang, Chen; Liu, Youli; Li, Yanfei; Han, Xiaoyan; Zeng, Linyan; He, Pingxiang

    2015-02-01

    To determine whether the composite acoustic therapy is effective to treat tinnitus in patients with sudden deafness and to explore the mechanisms. Ninety-six cases (96 ears) were divided into experimental group and control group, and all the patients underwent drug treatment. The patients in experimental group were given personalized composite acoustic therapy in the first 30 days, music therapy in next 31-90 days, however, the patients in control group were not given sound therapy. Additionally, pure tone audiogram, tinnitus pitch and loudness as well as questionnaires (including THI, VAS, and SAS) were conducted for each patient before treatment, at day 30 and day 90 posttreatment. Eighty-nine patients (n = 47 for experimental group and n = 42 for control group) completed the trial. The results of day 30 posttreatment showed there were no significant differences in VAS and hearing recovery rate between these two groups, but THI and SAS showed significant differences. The results of day 90 posttreatment showed significant differences in VAS (P sudden deafness, and the effect on hearing recovery still need to be confirmed in further studies.

  5. Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI).

    Science.gov (United States)

    Li, Xu; Xu, Yuan; He, Bin

    2007-02-01

    We have conducted computer simulation and experimental studies on magnetoacoustic-tomography with magnetic induction (MAT-MI) for electrical impedance imaging. In MAT-MI, the object to be imaged is placed in a static magnetic field, while pulsed magnetic stimulation is applied in order to induce eddy current in the object. In the static magnetic field, the Lorentz force acts upon the eddy current and causes acoustic vibrations in the object. The propagated acoustic wave is then measured around the object to reconstruct the electrical impedance distribution. In the present simulation study, a two-layer spherical model is used. Parameters of the model such as sample size, conductivity values, strength of the static and pulsed magnetic field, are set to simulate features of biological tissue samples and feasible experimental constraints. In the forward simulation, the electrical potential and current density are solved using Poisson's equation, and the acoustic pressure is calculated as the forward solution. The electrical impedance distribution is then reconstructed from the simulated pressure distribution surrounding the sample. The present computer simulation results suggest that MAT-MI can reconstruct conductivity images of biological tissue with high spatial resolution and high contrast. The feasibility of MAT-MI in providing high spatial resolution images containing impedance-related information has also been demonstrated in a phantom experiment.

  6. Hydro-acoustic and tsunami waves generated by the 2012 Haida Gwaii earthquake: Modeling and in situ measurements

    Science.gov (United States)

    Abdolali, Ali; Cecioni, Claudia; Bellotti, Giorgio; Kirby, James T.

    2015-02-01

    Detection of low-frequency hydro-acoustic waves as precursor components of destructive tsunamis can enhance the promptness and the accuracy of Tsunami Early Warning Systems (TEWS). We reconstruct the hydro-acoustic wave field generated by the 2012 Haida Gwaii tsunamigenic earthquake using a 2-D horizontal numerical model based on the integration over the depth of the compressible fluid wave equation and considering a mild sloped rigid seabed. Spectral analysis of the wave field obtained at different water depths and distances from the source revealed the frequency range of low-frequency elastic oscillations of sea water. The resulting 2-D numerical model gave us the opportunity to study the hydro-acoustic wave propagation in a large-scale domain with available computers and to support the idea of deep-sea observatory and data interpretation. The model provides satisfactory results, compared with in situ measurements, in the reproduction of the long-gravitational waves. Differences between numerical results and field data are probably due to the lack of exact knowledge of sea bottom motion and to the rigid seabed approximation, indicating the need for further study of poro-elastic bottom effects.

  7. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  8. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array

    Science.gov (United States)

    Gallaudet, Timothy Cole

    2001-10-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are

  9. A METHODOLOGY TO INTEGRATE MAGNETIC RESONANCE AND ACOUSTIC MEASUREMENTS FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson

    2002-09-20

    The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the

  10. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.

    Science.gov (United States)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2014-12-01

    The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump.

  11. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    Science.gov (United States)

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  12. Simulation and measurement of different hydrophone components for acoustic particle detection; Simulation und Messung verschiedener Hydrophonkomponenten zur akustischen Teilchendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, K.S.

    2007-01-26

    A study of piezoceramics as sensitive elements for the use in acoustical astroparticle physics is presented in this work. This study aims to develop underwater microphones (hydrophones) in order to detect thermoacoustic sound pulses, which are produced in neutrino interactions. The sensitive elements of the acoustical detectors, the piezo ceramics, are under investigation in this work. Therefore the equations of a piezo are solved in simulations to derive its macroscopic properties. Especially the impedance and the displacement of the piezo as response to applied voltage are of interest. This is correlated with the electrical and mechanical answer of a piezo when sending. For receiving the resulting voltage or the electrical charge due to applied stress are of interest. In the present studies cylinder and hollow cylinder were analyzed. Insight of the interrelationship between the displacement and the impedance is given. The impedance is fitted with an equivalent circuit, to derive the mechanical analog properties. Furthermore the effect of the piezo geometry to the resonance frequencies is explored. Further calculations were made to reveal the sound field produced by a piezo. Measurements of the impedance with a phase-gain-analyser are made. On the other side the displacement is measured using optical interferometry. Beside the simulation and measurements of the piezosensitive elements a study for a trigger-algorithm using the crosscorrelation is introduced. In this study in situ measurements with low signal amplitudes are used to describe noise. To this noise data signals were added and it was examined how well the signals can be reconstructed. Based on the result of this work and taking commercial available piezoceramic materials into account, the optimal sensitive element of an acoustic neutrino detector is a PZT-5A disc with a diameter of 5 mm and a height of 10 mm. A single detector of this kind is able to detect neutrinos with energies more then one PeV as it

  13. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters

    Science.gov (United States)

    Alexander, Polly; Duncan, Alec; Bose, Neil; Williams, Guy

    2016-09-01

    Autonomous underwater vehicles are improving and expanding in situ observations of sea ice for the validation of satellite remote sensing and climate models. Missions under sea ice, particularly over large distances (up to 100 km) away from the immediate vicinity of a ship or base, require accurate acoustic communication for monitoring, emergency response and some navigation systems. We investigate the propagation of acoustic signals in the Antarctic seasonal ice zone using the BELLHOP model, examining the influence of ocean and sea ice properties. We processed available observations from around Antarctica to generate input variables such as sound speed, surface reflection coefficient (R) and roughness parameters. The results show that changes in the sound speed profile make the most significant difference to the propagation of the direct path signal. The inclusion of the surface reflected signals from a flat ice surface was found to greatly decrease the transmission loss with range. When ice roughness was added, the transmission loss increased with roughness, in a manner similar to the direct path transmission loss results. The conclusions of this work are that: (1) the accuracy of acoustic modelling in this environment is greatly increased by using realistic sound speed data; (2) a risk averse ranging model would use only the direct path signal transmission; and (3) in a flat ice scenario, much greater ranges can be achieved if the surface reflected transmission paths are included. As autonomous missions under sea ice increase in scale and complexity, it will be increasingly important for operational procedures to include effective modelling of acoustic propagation with representative environmental data.

  14. Acoustic Nondestructive Testing and Measurement of Tension for Steel Reinforcing Members: Part 2 - Field Testing

    Science.gov (United States)

    2014-09-01

    steel beam-and-girder designs, but a significant problem is that the anchor tendons (i.e., rods) are inaccessible for expedient inspection and repair . A...embedded in concrete. Acoustic waves are nondestructive. They can travel long distances through engineered structures and can be used to thoroughly...complete post-tensioned anchorage system includes tendons (bars/rods or strands), anchorage devices or bearing plates, ducts, end caps, grout tubes

  15. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Matthias

    2011-10-07

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264{sup +52} {sub -37} m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample

  16. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Directory of Open Access Journals (Sweden)

    Мaryna O. Golofeyeva

    2015-12-01

    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  17. Microwave measurements of the length and thermal expansion of a cylindrical resonator for primary acoustic gas thermometry

    Science.gov (United States)

    Zhang, K.; Feng, X. J.; Zhang, J. T.; Lin, H.; Duan, Y. N.; Duan, Y. Y.

    2017-01-01

    In the application of acoustic gas thermometry to determine the Boltzmann constant and thermodynamic temperatures using resonant cavities, the internal dimensions or the thermal expansion of the cavity have to be known accurately. For this purpose, measurement of the microwave resonances has proved to be an accurate and convenient experimental technique for dimensional measurement of acoustic resonators. We report measurements of the length and longitudinal thermal expansion of a prototype cylindrical cavity made of oxygen-free copper. We studied four non-degenerate transverse magnetic modes for three isotherms at 243, 258 and 273 K. Two procedures were investigated for calculating the length and longitudinal thermal expansion of the cavity at the temperatures examined. The results from both methods agree well. The relative standard uncertainties for the measurements of length and longitudinal thermal expansion are less than 0.47  ×  10-6 and 0.04  ×  10-6, respectively, from 243 to 273 K. The low uncertainty achieved here provides confidence to pursue a determination of the Boltzmann constant and thermodynamic temperature with a cylindrical cavity and microwave techniques.

  18. Improved WiggleZ Dark Energy Survey Distance Measurements to z = 1 with Reconstruction of the Baryonic Acoustic Feature

    CERN Document Server

    Kazin, Eyal A; Blake, Chris; Padmanabhan, Nikhil

    2014-01-01

    We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2<$z$<1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model independent distance measures $D_{\\mathrm V}(r_{\\mathrm s}^\\mathrm{fid}/r_{\\mathrm s})$ of 1716 $\\pm$ 83 Mpc, 2221 $\\pm$ 101 Mpc, 2516 $\\pm$ 86 Mpc (68% CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where $D_{\\mathrm V}$ is the volume-average-distance, and $r_{\\mathrm s}$ is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 percent accuracy measurements are equiv...

  19. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    Science.gov (United States)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  20. A Conceptual Framework for Measuring Clinical Problem-Solving

    Science.gov (United States)

    Bashook, Philip G.

    1976-01-01

    Presents a 3-dimensional conceptual framework for measuring clinical competence: problem-solving process, clinical discipline, and context of care. The intersection of the dimensions defines the clinical practice domain to be measured. For each domain specific problems can be identified and clinicians asked to demonstrate competence in resolving…

  1. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  2. [Measurement of evoked acoustic otoemissions: an early screening test of neonatal deafness].

    Science.gov (United States)

    Morgon, Alain

    2002-01-01

    Every child born with deafness displays a pathological language development. An early and specific approach is mandatory, hence requiring an universal hearing screening. Available evidence indicate that performing acoustic otoemissions prior to six months of age is the most reliable method. The recording of the AOE is performed successfully from the 30th week of conceptual age. To obtain AOE in the newborn, one needs to wait until the 3rd day post delivery in 98% of cases. The reliability of the test, the socio-economical cost, the consequences of the screening and the role of the family have to be discussed.

  3. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.

    Science.gov (United States)

    Droit, C; Martin, G; Ballandras, S; Friedt, J-M

    2010-05-01

    We demonstrate the wireless conversion of frequency modulation to amplitude modulation by radio frequency resonators as means of accurately determining the resonance frequency of passive acoustoelectronic sensors. The emitted frequency modulated radio frequency pulses are generated by a pulsed radar for probing a surface acoustic wave based sensor. The sharp sign transition of the amplitude modulated received signal provides a signal on which a feedback loop is locked to monitor the resonance signal. The strategy is demonstrated using a full software implementation on a generic hardware, resulting in 2 Hz resolution at 1 s integration time limited by the proportional feedback loop.

  4. Characterizing Three-Dimensional Mixing Process in a River Confluence using Hydro-acoustical Backscatter and Flow Measurement

    Science.gov (United States)

    Son, Geunsoo; Kim, Dongsu; Kim, YoungDo; Lyu, Siwan; Kim, Seojun

    2017-04-01

    River confluences are zones where two rivers with different geomorphic and hydraulic characteristics amalgamate, resulting in rapid change in terms of flow regime, sediment entrainment and hydraulic geometry. In these confluence zones, the flow structure is basically complicated responded with concurrent mixing of physical and chemical aquatic properties, and continuous channel morphology could be changed due to erosion and sedimentation. In addition, the confluences are regions in which two rivers join and play an important role in river ecology. In order to characterize the mixing process of confluence for understanding the impacts of a river on the other river, therefore, it has been crucial to analyze the spatial mixing patterns for main streams depending on various inflow conditions of tributaries. However, most conventional studies have mostly relied upon hydraulic or water quality numerical models for understanding mixing pattern analysis of confluences, due to the difficulties to acquire a wide spatial range of in-situ data especially for characterizing this kind of mixing process. Even with intensive in-situ measurements, those researches tended to focus mainly on the hydraulic characteristics such as the flow and morphological complexity of confluence, so that very few studies comprehensively included sediment variation with flow at the same time. In this study, subsequently, flow and sediment mixing characteristics were concurrently investigated in the confluence between Nakdong and Nam river in South Korea, where it has been frequently questioned to determine how Nam river affects Nakdong river that recently have suffered various environmental problems such as green algae bloom and erosion/deposition in the confluence. We basically examined the mixing characteristics of confluence by using acoustic Doppler current profilers (ADCPs) which were used to measure hydraulic factors such as flow rate and depth, as well as measuring the suspended sediment

  5. A METHODOLOGY TO INTEGRATE MAGNETIC RESONANCE AND ACOUSTIC MEASUREMENTS FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson

    2002-09-20

    The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the

  6. Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements.

    Science.gov (United States)

    Powell, Brian S; Kerry, Colette G; Cornuelle, Bruce D

    2013-10-01

    Measurements of acoustic ray travel-times in the ocean provide synoptic integrals of the ocean state between source and receiver. It is known that the ray travel-time is sensitive to variations in the ocean at the transmission time, but the sensitivity of the travel-time to spatial variations in the ocean prior to the acoustic transmission have not been quantified. This study examines the sensitivity of ray travel-time to the temporally and spatially evolving ocean state in the Philippine Sea using the adjoint of a numerical model. A one year series of five day backward integrations of the adjoint model quantify the sensitivity of travel-times to varying dynamics that can alter the travel-time of a 611 km ray by 200 ms. The early evolution of the sensitivities reveals high-mode internal waves that dissipate quickly, leaving the lowest three modes, providing a connection to variations in the internal tide generation prior to the sample time. They are also strongly sensitive to advective effects that alter density along the ray path. These sensitivities reveal how travel-time measurements are affected by both nearby and distant waters. Temporal nonlinearity of the sensitivities suggests that prior knowledge of the ocean state is necessary to exploit the travel-time observations.

  7. Nearfield Acoustical Holography

    Science.gov (United States)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  8. Parametrization of acoustic boundary absorption and dispersion properties in time-domain source/receiver reflection measurement

    NARCIS (Netherlands)

    De Hoop, A.T.; Lam, C.H.; Kooij, B.J.

    2005-01-01

    Closed-form analytic time-domain expressions are obtained for the acoustic pressure associated with the reflection of a monopole point-source excited impulsive acoustic wave by a planar boundary with absorptive and dispersive properties. The acoustic properties of the boundary are modeled as a local

  9. Parametrization of acoustic boundary absorption and dispersion properties in time-domain source/receiver reflection measurement

    NARCIS (Netherlands)

    De Hoop, A.T.; Lam, C.H.; Kooij, B.J.

    2005-01-01

    Closed-form analytic time-domain expressions are obtained for the acoustic pressure associated with the reflection of a monopole point-source excited impulsive acoustic wave by a planar boundary with absorptive and dispersive properties. The acoustic properties of the boundary are modeled as a local

  10. Outcome Measures for Clinical Drug Trials in Autism

    OpenAIRE

    Aman, Michael G; Novotny, Sherie; Samango-Sprouse, Carole; Lecavalier, Luc; Leonard, Elizabeth; Gadow, Kenneth D.; King, Bryan H; Pearson, Deborah A.; Gernsbacher, Morton Ann; Chez, Michael

    2004-01-01

    This paper identifies instruments and measures that may be appropriate for randomized clinical trials in participants with autism spectrum disorders (ASDs). The Clinical Global Impressions scale was recommended for all randomized clinical trials. At this point, however, there is no “perfect” choice of outcome measure for core features of autism, although we will discuss five measures of potential utility. Several communication instruments are recommended, based in part on suitability across t...

  11. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.

    Science.gov (United States)

    Friedt, J-M; Droit, C; Martin, G; Ballandras, S

    2010-01-01

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  12. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, J.-M [SENSeOR, 32 Avenue de l' Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l' Observatoire, 25044 Besancon (France)

    2010-01-15

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  13. Circulating Tumor DNA: Measurement and Clinical Utility.

    Science.gov (United States)

    Donaldson, Joshua; Park, Ben Ho

    2017-08-28

    Circulating tumor DNA (ctDNA) is a component of the "naked" DNA found in blood. It can be isolated from plasma and represents combined genetic material from the primary tumor and metastases. Quantitative and qualitative information about a cancer, including mutations, can be derived using digital polymerase chain reaction and other technologies. This "liquid biopsy" is quicker and more easily repeated than tissue biopsy, yields real-time information about the cancer, and may suggest therapeutic options. All stages of cancer therapy have the ability to benefit from ctDNA, starting with screening for cancer before it is clinically apparent. During treatment of metastatic disease, it is useful to predict response and monitor disease progression. Currently, ctDNA is used in the clinic to select patients who may benefit from epidermal growth factor receptor targeted therapy in non-small cell lung cancer. In the future, ctDNA technology promises useful applications in every part of clinical oncology care. Expected final online publication date for the Annual Review of Medicine Volume 69 is January 29, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  14. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California

    Science.gov (United States)

    Gorgas, T.J.; Wilkens, R.H.; Fu, S.S.; Neil, Frazer L.; Richardson, M.D.; Briggs, K.B.; Lee, H.

    2002-01-01

    We compared in situ and laboratory velocity and attenuation values measured in seafloor sediments from the shallow water delta of the Eel River, California. This region receives a substantial volume of fluvial sediment that is discharged annually onto the shelf. Additionally, a high input of fluvial sediments during storms generates flood deposits that are characterized by thin beds of variable grain-sizes between the 40- and 90-m isobaths. The main objectives of this study were (1) to investigate signatures of seafloor processes on geoacoustic and physical properties, and (2) to evaluate differences between geoacoustic parameters measured in situ at acoustic (7.5 kHz) and in the laboratory at ultrasonic (400 kHz) frequencies. The in situ acoustic measurements were conducted between 60 and 100 m of water depth. Wet-bulk density and porosity profiles were obtained to 1.15 m below seafloor (m bsf) using gravity cores of the mostly cohesive fine-grained sediments across- and along-shelf. Physical and geoacoustic properties from six selected sites obtained on the Eel margin revealed the following. (1) Sound speed and wet-bulk density strongly correlated in most cases. (2) Sediment compaction with depth generally led to increased sound speed and density, while porosity and in situ attenuation values decreased. (3) Sound speed was higher in coarser- than in finer-grained sediments, on a maximum average by 80 m s-1. (4) In coarse-grained sediments sound speed was higher in the laboratory (1560 m s-1) than in situ (1520 m s-1). In contrast, average ultrasonic and in situ sound speed in fine-grained sediments showed only little differences (both approximately 1480 m s-1). (5) Greater attenuation was commonly measured in the laboratory (0.4 and 0.8 dB m-1 kHz-1) than in situ (0.02 and 0.65 dB m-1 kHz-1), and remained almost constant below 0.4 m bsf. We attributed discrepancies between laboratory ultrasonic and in situ acoustic measurements to a frequency dependence of

  15. ESRD - Clinical Performance Measures (CPM) Project

    Data.gov (United States)

    U.S. Department of Health & Human Services — Section 4558 (b) of the Balanced Budget Act (BBA) requires CMS to develop and implement by January 1, 2000, a method to measure and report the quality of renal...

  16. ESRD - Clinical Performance Measures (CPM) Project

    Data.gov (United States)

    U.S. Department of Health & Human Services — Section 4558 (b) of the Balanced Budget Act (BBA) requires CMS to develop and implement by January 1, 2000, a method to measure and report the quality of renal...

  17. Acoustic ground impedance meter

    Science.gov (United States)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  18. Study of baryon acoustic oscillations with SDSS DR12 data and measurement of $\\Omega_\\textrm{DE}(a)$

    CERN Document Server

    Hoeneisen, B

    2016-01-01

    We define Baryon Acoustic Oscillation (BAO) distances $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on cosmological parameters. These BAO distances are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From these BAO distances alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the cosmological parameters in several scenarios. We find $4.3 \\sigma$ tension between the BAO plus $\\theta_\\textrm{MC}$ data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$. Releasing one and/or the other of these constraints obtains agreement with the data. We measure $\\Omega_\\textrm{DE}(a)$ as a function of $a$.

  19. Virtual Acoustics

    Science.gov (United States)

    Lokki, Tapio; Savioja, Lauri

    The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.

  20. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  1. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  2. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  3. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    Directory of Open Access Journals (Sweden)

    P. Mokrý

    2015-02-01

    Full Text Available The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH. The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV. The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  4. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    Science.gov (United States)

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  5. Static rearfoot alignment: a comparison of clinical and radiographic measures.

    Science.gov (United States)

    Lamm, Bradley M; Mendicino, Robert W; Catanzariti, Alan R; Hillstrom, Howard J

    2005-01-01

    Foot structure is typically evaluated using static clinical and radiographic measures. To date, the literature is devoid of a correlation between rearfoot frontal plane radiographic parameters and clinical measures of alignment. In a repeated-measures study comparing radiographic and clinical rearfoot alignment in 24 healthy subjects, radiographic angular measurements were made from standard weightbearing anteroposterior, lateral, long leg calcaneal axial, and rearfoot alignment views. Clinical measurements were made using a jig and scanner to assess the malleolar valgus index and a goniometer to evaluate the resting and neutral calcaneal stance positions. There was a significant correlation between frontal plane radiographic angles (long leg calcaneal axial and rearfoot alignment views) (r = 0.814). Similarly, there was a significant correlation between clinical measures (resting calcaneal stance position and malleolar valgus index) (r = 0.714). A multivariate stepwise regression showed that resting calcaneal stance position can be accurately predicted from 3 of the 15 clinical and radiographic measurements collected: malleolar valgus index, rearfoot alignment view, and long leg calcaneal axial view (r = 0.829). In summary, a commonly used clinical measure of static rearfoot alignment, resting calcaneal stance position, was correlated closely with the malleolar valgus index and both frontal plane radiographic parameters.

  6. Units of measure in clinical information systems.

    Science.gov (United States)

    Schadow, G; McDonald, C J; Suico, J G; Föhring, U; Tolxdorff, T

    1999-01-01

    The authors surveyed existing standard codes for units of measures, such as ISO 2955, ANSI X3.50, and Health Level 7's ISO+. Because these standards specify only the character representation of units, the authors developed a semantic model for units based on dimensional analysis. Through this model, conversion between units and calculations with dimensioned quantities become as simple as calculating with numbers. All atomic symbols for prefixes and units are defined in one small table. Huge permutated conversion tables are not required. This method is also simple enough to be widely implementable in today's information systems. To promote the application of the method the authors provide an open-source implementation of this method in JAVA. All existing code standards for units, however, are incomplete for practical use and require substantial changes to correct their many ambiguities. The authors therefore developed a code for units that is much more complete and free from ambiguities.

  7. Acoustical measurements of sound fields between the stage and the orchestra pit inside an historical opera house

    Science.gov (United States)

    Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki

    2004-05-01

    To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.

  8. Acoustical measurements of sound fields between the stage and the orchestra pit inside an historical opera house

    Science.gov (United States)

    Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki

    2001-05-01

    To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.

  9. Acoustic measurement method in investigation of optical phenomena in a modulated CO II laser plasma

    Science.gov (United States)

    Wojaczek, Dorota A.; Plinski, Edward F.; Rosinski, Lukasz; Trawinski, Robert

    2007-02-01

    The paper describes the results of investigations of optical phenomena on an RF excited slab-waveguide CO II laser. The experiments are performed in two optical arrangements: two-mirror resonator and three-mirror one. The main purpose of the experiments is to check possibilities to observe the optical phenomena using a microphone. The laser plasma is modulated with a self-mixing signal in the three-mirror resonator. The response of the microphone is observed and analyzed. Detection of the laser signature phenomenon with the microphone is experimentally considered. The experiments are done at cw regime of the laser. The investigations are performed at pulse operation of the laser, as well. The response of the microphone is analyzed. It is checked how the laser pulse is reconstructed at a profile of the microphone signal. The output laser pulse with a mapped laser signature in the laser pulse profile is compared to the microphone signal shape. The presence of the laser signature at the acoustic signal is investigated.

  10. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    Science.gov (United States)

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  11. Moisture adsorption desorption characteristics of stainless steel tubing measured by ball surface acoustic wave trace moisture analyzer

    Science.gov (United States)

    Tsuji, Toshishiro; Akao, Shingo; Oizumi, Toru; Takeda, Nobuo; Tsukahara, Yusuke; Yamanaka, Kazushi

    2017-07-01

    A ball surface acoustic wave (SAW) trace moisture analyzer (TMA) was applied to measuring the adsorption and desorption (AD) characteristics of a stainless steel tube. For the first time, two-frequency measurement for precise temperature compensation was attempted at intervals of 3 s using a burst waveform undersampling circuit. We succeeded in measuring the variations of moisture transit time and dry-down dynamics caused by inner surface treatments such as bright annealing (BA), electropolishing (EP), and electrochemical buffing (ECB) using a sample-tube length of only 100 mm at a flow rate of 0.1 L/min. Net moisture adsorption was evaluated from the measured adsorption subtracted by the background adsorption. As a result, it was found that the adsorption on the ECB tube was smaller than those on EP and BA tubes by 1/3 and 1/4, respectively, at a baseline concentration of 13 ppbv. From these results, it was demonstrated that the ball SAW TMA could be used for measuring the AD characteristics of stainless steel tubes with various surface treatments.

  12. In vitro measurement of ambient pressure changes using a realistic clinical setup

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    cosine tapered pulse with a center frequency of 4 MHz and an acoustic pressure of 485 kPa was used for excitation. 64 elements were used in receive and the RF data was filtered and beamformed before further processing. To compensate for variations in bubble response and to make the estimates more robust...... have indicated that the amplitude of the subharmonic response from contrast agents is sensitive to the ambient pressure. This paper presents results from a new experimental setup for measuring the subharmonic response of a contrast agent when subjected to ambient over pressure. The setup is very...... flexible offering completely arbitrary excitation and data acquisition, fast and accurate ambient pressure control, and precise timing. More importantly, it resembles a realistic clinical setup using a single array transducer for transmit and receive. The standard signal processing steps usually seen...

  13. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  14. Semi-spontaneous oral text production: measurements in clinical practice.

    Science.gov (United States)

    Lind, Marianne; Kristoffersen, Kristian Emil; Moen, Inger; Simonsen, Hanne Gram

    2009-12-01

    Functionally relevant assessment of the language production of speakers with aphasia should include assessment of connected speech production. Despite the ecological validity of everyday conversations, more controlled and monological types of texts may be easier to obtain and analyse in clinical practice. This article discusses some simple measurements for the analysis of semi-spontaneous oral text production by speakers with aphasia. Specifically, the measurements are related to the production of verbs and nouns, and the realization of different sentence types. The proposed measurements should be clinically relevant, easily applicable, and linguistically meaningful. The measurements have been applied to oral descriptions of the 'Cookie Theft' picture by eight monolingual Norwegian speakers, four with an anomic type of aphasia and four without any type of language impairment. Despite individual differences in both the clinical and the non-clinical group, most of the measurements seem to distinguish between speakers with and without aphasia.

  15. Low-frequency sound speed and attenuation in sandy seabottom from long-range broadband acoustic measurements.

    Science.gov (United States)

    Wan, Lin; Zhou, Ji-Xun; Rogers, Peter H

    2010-08-01

    A joint China-U.S. underwater acoustics experiment was conducted in the Yellow Sea with a very flat bottom and a strong and sharp thermocline. Broadband explosive sources were deployed both above and below the thermocline along two radial lines up to 57.2 km and a quarter circle with a radius of 34 km. Two inversion schemes are used to obtain the seabottom sound speed. One is based on extracting normal mode depth functions from the cross-spectral density matrix. The other is based on the best match between the calculated and measured modal arrival times for different frequencies. The inverted seabottom sound speed is used as a constraint condition to extract the seabottom sound attenuation by three methods. The first method involves measuring the attenuation coefficients of normal modes. In the second method, the seabottom sound attenuation is estimated by minimizing the difference between the theoretical and measured modal amplitude ratios. The third method is based on finding the best match between the measured and modeled transmission losses (TLs). The resultant seabottom attenuation, averaged over three independent methods, can be expressed as alpha=(0.33+/-0.02)f(1.86+/-0.04)(dB/m kHz) over a frequency range of 80-1000 Hz.

  16. Comparison of modal analysis results of laser vibrometry and nearfield acoustical holography measurements of an aluminum plate

    Science.gov (United States)

    Potter, Jennifer L.

    2011-12-01

    Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green's Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.

  17. Measurements of acoustic environments for urban soundscapes: choice of homogeneous periods, optimization of durations, and selection of indicators.

    Science.gov (United States)

    Brocolini, Laurent; Lavandier, Catherine; Quoy, Mathias; Ribeiro, Carlos

    2013-07-01

    In order to minimize the duration of acoustic measurements and to characterize homogeneous areas from a temporal point of view, a series of six location measurements was carried out continuously during three months in Paris. Around fifty thousand samples of 5-min, 10-min, 15-min, 20-min, 30-min, and 1-h duration measurements were extracted for each location. Each sample is characterized by eleven energy indicators and ten event descriptors. In this paper, analysis of a crossroad location is detailed. Through hierarchical ascendant classification and artificial neural networks classification, it is shown that four homogeneous periods can be detected: two during the night, one during the day, and one transition corresponding either to the awakening or to the moment when the city falls asleep. 10-min measurements are necessary to discriminate these time periods at the crossroad location. At the end of the paper, a comparison with the other locations shows that minimum duration states in between 10 and 20 min. The homogeneous periods are connected to the human activities and depend on the location. Energy indicators such as LAeq, LA10, or LA90 and event indicators are necessary to characterize the different clusters.

  18. Crustal Seismic Attenuation in Germany Measured with Acoustic Radiative Transfer Theory

    Science.gov (United States)

    Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich

    2017-04-01

    This work is carried out in the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty a verification regime was introduced to detect, locate and characterize nuclear explosion testings. The study of seismology can provide essential information in the form of broadband waveform recordings for the identification and verification of these critical events. A profound knowledge of the Earth's subsurface between source and receiver is required for a detailed description of the seismic wave field. In addition to underground parameters such as seismic velocity or anisotropy, information about seismic attenuation values of the medium are required. Goal of this study is the creation of a comprehensive model of crustal seismic attenuation in Germany and adjacent areas. Over 20 years of earthquake data from the German Central Seismological Observatory data archive is used to estimate the spatial dependent distribution of seismic intrinsic and scattering attenuation of S-waves for frequencies between 0.5 and 20 Hz. The attenuation models are estimated by fitting synthetic seismogram envelopes calculated with acoustic radiative transfer theory to observed seismogram envelopes. This theory describes the propagation of seismic S-energy under the assumption of multiple isotropic scattering, the crustal structure of the scattering medium is hereby represented by a half-space model. We present preliminary results of the spatial distribution of intrinsic attenuation represented by the absorption path length, as well as of scattering attenuation in terms of the mean free path and compare the outcomes to results from previous studies. Furthermore catalog magnitudes are compared to moment magnitudes estimated during the inversion process. Additionally site amplification factors of the stations are presented.

  19. Neutral temperature and electron-density measurements in the lower E region by vertical HF sounding in the presence of an acoustic wave

    Science.gov (United States)

    Blanc, E.

    1982-04-01

    It is noted that an acoustic wave generated at ground level and propagating vertically through the lower ionosphere produces partial reflections of radio waves transmitted by a vertical sounder. The Doppler effect of the radio wave produced by the acoustic wave motion depends on the properties of the atmosphere and ionosphere. It is shown that this permits a determination of both the neutral-temperature and the electron-density profiles of the lower E region. The accuracy and the advantages offered by this method are discussed, and some experimental results are compared with those of other measurement techniques.

  20. Effects of a Straw Phonation Protocol on Acoustic Measures of an SATB Chorus Singing Two Contrasting Renaissance Works.

    Science.gov (United States)

    Manternach, Jeremy N; Clark, Chad; Daugherty, James F

    2017-07-01

    Researchers have found that semi-occluded vocal tract (SOVT) exercises may increase vocal economy by reducing phonation threshold pressure and effort while increasing or maintaining consistent acoustic output. This research has focused solely on individual singers. Much singing instruction, however, takes place in choral settings. Choral singers may use different resonance strategies or unconsciously adjust their singing based on the ability to hear their own sound in relation to others. Results of studies with individual singers, then, may not be directly applicable to choral settings. The purpose of this investigation was to measure the effect of an SOVT protocol (ie, straw phonation) on acoustic changes of conglomerate, choral sound. This is a quasi-experimental, one-group, pretest-posttest design. Participants in this study constituted an intact SATB choir (soprano, alto, tenor, and bass) (N = 15 singers) who performed from memory two unaccompanied pieces of varied tempos from memory, participated in a 4-minute straw phonation protocol with a small stirring straw, and then sang each piece a second time. The long-term average spectrum results indicated small, statistically significant increases in spectral energy for both pieces in the 0-10 kHz (.32 and .20 dB Sound Pressure Level) and 2-4 kHz regions (.46 and .25 dB SPL). These results, although not likely audible to average hearing humans, seem consistent with the assertion that singers enjoy vocal benefits with consistent or increased vocal output. SOVT exercises, therefore, may be useful as a time-efficient way to evoke more efficient and economical singing during choral warm-up and voice building procedures. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Traceability of Acoustic Emission measurements for a proposed calibration method - Classification of characteristics and identification using signal analysis

    Science.gov (United States)

    Griffin, James

    2015-01-01

    When using Acoustic Emission (AE) technologies, tensile, compressive and shear stress/strain tests can provide a detector for material deformation and dislocations. In this paper improvements are made to standardise calibration techniques for AE against known metrics such as force. AE signatures were evaluated from various calibration energy sources based on the energy from the first harmonic (dominant energy band) [1,2]. The effects of AE against its calibration identity are investigated: where signals are correlated to the average energy and distance of the detected phenomena. In addition, extra tests are investigated in terms of the tensile tests and single grit tests characterising different materials. Necessary translations to the time-frequency domain were necessary when segregating salient features between different material properties. Continuing this work the obtained AE is summarised and evaluated by a Neural Network (NN) regression classification technique which identifies how far the malformation has progressed (in terms of energy/force) during material transformation. Both genetic-fuzzy clustering and tree rule based classifier techniques were used as the second and third classification techniques respectively to verify the NN output giving a weighted three classifier system. The work discussed in this paper looks at both distance and force relationships for various prolonged Acoustic Emission stresses. Later such analysis was realised with different classifier models and finally implemented into the Simulink simulations. Further investigations were made into classifier models for different material interactions in terms of force and distance which add further dimension to this work with different materials based simulation realisations. Within the statistical analysis section there are two varying prolonged stress tests which together offer the mechanical calibration system (automated solenoid and pencil break calibration system). Taking such a

  2. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  3. Comparisons of auditorium acoustics measurements as a function of location in halls (A)

    DEFF Research Database (Denmark)

    Bradley, J. S.; Gade, Anders Christian; Siebein, G W

    1993-01-01

    In a measurement tour of nine U.S. concert halls measurements were made at 30 or more combinations of source and receiver position in each hall. Each of the three measurement teams (the University of Florida, the Danish Technical University, and the National Research Council of Canada) made paral...

  4. Acoustic Doppler current profiler raw measurements on the Missouri and Yellowstone rivers, 2000-2016, Columbia Environmental Research Center

    Science.gov (United States)

    Bulliner, Edward A.; Elliott, Caroline M.; Jacobson, Robert B.

    2017-01-01

    Between the years 2000 and 2016, scientists and technicians from the U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC) have collected over 400 field-days worth of acoustic Doppler current profiler (ADCP) measurements on the Missouri and Yellowstone Rivers, primarily for the purposes of assessing physical aquatic habitat for the pallid sturgeon. Scientists and technicians collected data using boat-mounted Teledyne Rio Grande ADCPs, which were processed using customized scripting tools and archived in standardized formats. To assess longitudinal variability in depth and velocity distributions along the Missouri River, as well as compare the Missouri River to its unaltered analog, the Yellowstone River, we compiled the collected datasets into a single comma-separated value (csv) file using a series of data-processing scripts written in Python. To allow for the comparison of measurements collected only within a specific window of flow exceedance, we conducted geospatial analyses to attribute each ADCP measurement by a discharge from the most relevant USGS gage location (with the most relevant gage location being the gage located between the same major tributaries as the measurement, even if it was not the closest spatially), and assigned each measurement a flow exceedance percentile based on the relevant gage's record between 2000 and 2016. We also conducted general quality control on the data, discarding any ADCP returns where the ADCP measured a depth-averaged velocity greater than 3 meters per second or a depth greater than 16 meters; these values were considered to be an approximate upper bounds for realistic values on the Missouri and Yellowstone Rivers. The presented csv file lists individual ADCP bins for all measurements that have been archived between 2000 and 2016 by CERC scientists along with their three-dimensional velocity components, depth-averaged velocity magnitude for a given ADCP return, average channel depth for a given ADCP

  5. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  6. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    Science.gov (United States)

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  7. Onset-Duration Matching of Acoustic Stimuli Revisited: Conventional Arithmetic vs. Proposed Geometric Measures of Accuracy and Precision

    Science.gov (United States)

    Friedrich, Björn; Heil, Peter

    2017-01-01

    Onsets of acoustic stimuli are salient transients and are relevant in humans for the perception of music and speech. Previous studies of onset-duration discrimination and matching focused on whether onsets are perceived categorically. In this study, we address two issues. First, we revisit onset-duration matching and measure, for 79 conditions, how accurately and precisely human listeners can adjust the onset duration of a comparison stimulus to subjectively match that of a standard stimulus. Second, we explore measures for quantifying performance in this and other matching tasks. The conventional measures of accuracy and precision are defined by arithmetic descriptive statistics and the Euclidean distance function on the real numbers. We propose novel measures based on geometric descriptive statistics and the log-ratio distance function, the Euclidean distance function on the positive-real numbers. Only these properly account for the fact that the magnitude of onset durations, like the magnitudes of most physical quantities, can attain only positive real values. The conventional (arithmetic) measures possess a convexity bias that yields errors that grow with the width of the distribution of matches. This convexity bias leads to misrepresentations of the constant error and could even imply the existence of perceptual illusions where none exist. This is not so for the proposed (geometric) measures. We collected up to 68 matches from a given listener for each condition (about 34,000 matches in total) and examined inter-listener variability and the effects of onset duration, plateau duration, sound level, carrier, and restriction of the range of adjustable comparison stimuli on measures of accuracy and precision. Results obtained with the conventional measures generally agree with those reported in the literature. The variance across listeners is highly heterogeneous for the conventional measures but is homogeneous for the proposed measures. Furthermore, the proposed

  8. A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.

  9. Comparative measurements of the level of turbulence atmosphere by optical and acoustic devices

    Science.gov (United States)

    Lukin, V. P.; Botugina, N. N.; Gladkih, V. A.; Emaleev, O. N.; Konyaev, P. A.; Odintsov, S. L.; Torgaev, A. V.

    2014-11-01

    The complex measurements of level of atmospheric turbulence are conducted by the differential measurement device of turbulence (DMT), wave-front sensor (WFS), and also by ultrasonic weather-stations. Daytime measurements of structure parameters of refractive index of atmospheric turbulence carried out on horizontal optical paths on the Base Experimental Complex (BEC) of V.E. Zuev Institute of Atmospheric Optics SB RAS (IOA). A comparative analysis over of the got results is brought.

  10. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    Science.gov (United States)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  11. Clinical Relevance of Brain Volume Measures in Multiple Sclerosis

    DEFF Research Database (Denmark)

    De Stefano, Nicola; Airas, Laura; Grigoriadis, Nikolaos

    2014-01-01

    (e.g. SIENA [Structural Image Evaluation using Normalization of Atrophy]). Although these methods are sensitive and reproducible, caution must be exercised when interpreting brain volume data, as numerous factors (e.g. pseudoatrophy) may have a confounding effect on measurements, especially...... therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy...... on reducing the rate of brain volume loss. This article reviews the measurement of brain volume in clinical trials and practice, the effect of DMTs on brain volume change across trials and the clinical relevance of brain volume loss in MS....

  12. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  13. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  14. Study and development of an in situ acoustic absorption measurement method

    NARCIS (Netherlands)

    Tijs, E.

    2013-01-01

    Sound absorbing materials are used in many applications to attenuate unwanted noise. However, existing measurement methods can only be used on a limited number of material packages and under restricted circumstances. This thesis concerns the study and development of (absorption) measurement methods

  15. Additional acoustic attenuation of coastal turbid water -- Measurements compared with predictions using particle size di

    Institute of Scientific and Technical Information of China (English)

    WEN Hongtao; YANG Yanming; LIU Zhenwen; NIU Fuqiang

    2011-01-01

    Based on reverberation method, the viscous absorptions of 0.2-2.0 kg/m3 sediment and glass bead turbid seawater were measured. It is shown that the measurement results were more consistent with the prediction results using particle size distributions tech

  16. Observer bias in randomized clinical trials with measurement scale outcomes

    DEFF Research Database (Denmark)

    Hróbjartsson, Asbjørn; Thomsen, Ann Sofia Skou; Emanuelsson, Frida;

    2013-01-01

    BACKGROUND:Clinical trials are commonly done without blinded outcome assessors despite the risk of bias. We wanted to evaluate the effect of nonblinded outcome assessment on estimated effects in randomized clinical trials with outcomes that involved subjective measurement scales. METHODS......:We conducted a systematic review of randomized clinical trials with both blinded and nonblinded assessment of the same measurement scale outcome. We searched PubMed, EMBASE, PsycINFO, CINAHL, Cochrane Central Register of Controlled Trials, HighWire Press and Google Scholar for relevant studies. Two......%). Heterogeneity was moderate (I(2) = 46%, p = 0.02) and unexplained by metaregression. INTERPRETATION:We provide empirical evidence for observer bias in randomized clinical trials with subjective measurement scale outcomes. A failure to blind assessors of outcomes in such trials results in a high risk...

  17. Determination of the symmetries of an experimentally determined stiffness tensor; application to acoustic measurements

    CERN Document Server

    François, Marc Louis Maurice; Berthaud, Yves

    2009-01-01

    For most materials, the symmetry group is known a priori and deduced from the realization process. This allows many simplifications for the measurements of the stiffness tensor. We deal here with the case where the symmetry is a priori unknown, as for biological or geological materials, or when the process makes the material symmetry axis uncertain (some composites, monocrystals). The measurements are then more complicated and the raw stiffness tensor obtained does not exhibit any symmetry in the Voigt's matricial form, as it is expressed in the arbitrarily chosen specimen's base. A complete ultrasonic measurement of the stiffness tensor from redundant measurements is proposed. In a second time, we show how to make a plane symmetry pole figure able to give visual information about the quasi-symmetries of a raw stiffness tensor determined by any measurement method. Finally we introduce the concept of distance from a raw stiffness tensor to one of the eight symmetry classes available for a stiffness tensor. The...

  18. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  19. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    Science.gov (United States)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  20. A Dry Membrane Protection Technique to Allow Surface Acoustic Wave Biosensor Measurements of Biological Model Membrane Approaches

    Directory of Open Access Journals (Sweden)

    Marius Enachescu

    2013-09-01

    Full Text Available Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences.

  1. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    Science.gov (United States)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  2. Measuring Effects on the Clinical Practice from a Configured EHR

    DEFF Research Database (Denmark)

    Møller-Jensen, John; Simonsen, Jesper; K. Iversen, Rikke

    2006-01-01

    during a series of workshops with the clinicians after which the XML configuration files were written and deployed. In parallel with this, the participants from the University specified a number of effects related to the clinical practice to be measured. Measurements were focused on the requested effects...

  3. Validation of Malingered Amnesia Measures with a Large Clinical Sample.

    Science.gov (United States)

    Greiffenstein, Manfred F.; And Others

    1994-01-01

    A sample of chronic postconcussive patients with and without overt malingering signs was compared with objectively brain-injured patients (total sample=106) on common episodic memory and malingered amnesia measures. Findings validate commonly cited malingering measures and new methods of classifying malingering in real-world clinical samples. (SLD)

  4. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  5. High Performance Acousto-Optic Arrays based on Fiber Bragg Gratings for Measuring Launch Acoustics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations in acousto-optic sensor development for measurement of launch...

  6. Acoustic velocity measurement across the diameter of a liquid metal column

    Energy Technology Data Exchange (ETDEWEB)

    Calder, C.A.; Wilcox, W.W.

    1978-05-15

    Present techniques for measuring sound velocity in liquid metals have been limited by the use of transducers which cannot survive in extreme temperature conditions. These methods also require relatively long measurement times. An optical noncontacting method has been developed which may be used for extremely short experimental times and very high temperatures and pressures. This technique is being incorporated into an isobaric expansion apparatus in which a 1 mm diam wire sample in a high pressure argon gas environment is resistively heated to melt within a time period of only a few microseconds. Before instability of the liquid column occurs, thermal expansion, enthalpy, and temperature are measured. The addition of the sound velocity measurement permits a more complete determination of the thermophysical properties of the liquid metal.

  7. Acoustic remote sensing of ocean flows

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  8. Outcome Measures in Clinical Trials for Multiple Sclerosis.

    Science.gov (United States)

    van Munster, Caspar E P; Uitdehaag, Bernard M J

    2017-02-09

    Due to the heterogeneous nature of the disease, it is a challenge to capture disease activity of multiple sclerosis (MS) in a reliable and valid way. Therefore, it can be difficult to assess the true efficacy of interventions in clinical trials. In phase III trials in MS, the traditionally used primary clinical outcome measures are the Expanded Disability Status Scale and the relapse rate. Secondary outcome measures in these trials are the number or volume of T2 hyperintense lesions and gadolinium-enhancing T1 lesions on magnetic resonance imaging (MRI) of the brain. These secondary outcome measures are often primary outcome measures in phase II trials in MS. Despite several limitations, the traditional clinical measures are still the mainstay for assessing treatment efficacy. Newer and potentially valuable outcome measures increasingly used or explored in MS trials are, clinically, the MS Functional Composite and patient-reported outcome measures, and on MRI, brain atrophy and the formation of persisting black holes. Several limitations of these measures have been addressed and further improvements will probably be proposed. Major improvements are the coverage of additional functional domains such as cognitive functioning and assessment of the ability to carry out activities of daily living. The development of multidimensional measures is promising because these measures have the potential to cover the full extent of MS activity and progression. In this review, we provide an overview of the historical background and recent developments of outcome measures in MS trials. We discuss the advantages and limitations of various measures, including newer assessments such as optical coherence tomography, biomarkers in body fluids and the concept of 'no evidence of disease activity'.

  9. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  10. Two-Phase Flow Modelling Perspectives Based on Novel High-Resolution Acoustic Measurements of Uniform Steady Sheet-Flow

    Science.gov (United States)

    Chauchat, J.; Revil-Baudard, T.; Hurther, D.

    2014-12-01

    Sheet flow is believed to be a major process for morphological evolution of natural systems. An important research effort has been dedicated to laboratory and numerical studies of sheet flow regime that have allowed to make some progress in the understanding of the underlying physical processes. Recent advances made in high resolution measurement techniques allows to give new insights into the small scale physical processes. In this contribution, a novel uniform and steady sheet flow dataset based on an Acoustic Concentration and Velocity Profiler (ACVP) is presented. Profile of colocated velocities (streamwise and wall-normal) and sediment concentration has been measured at high-resolution (3 mm ; 78 Hz for the velocities and 4.9 Hz for the concentration). The measured profiles extend over the whole water column, from the free surface down to the fixed bed and an ensemble averaging over eleven realisations of the same experimental conditions has been used to obtain mean profiles of streamwise velocity, concentration, sediment flux and turbulent shear stress. The present experiment corresponds to a Shields number of θ=0.44 and a suspension number of ws/u*=1.1 corresponding to the lower limit of the no-suspension sheet flow regime. The analysis of the mixing length profile allows to identify two layers, a dilute suspension layer dominated by turbulence and a dense moving bed layer dominated by granular interactions. Our measurements show that the Von Karman parameter is reduced by a factor of more than two and that the Schmidt number is almost constant with a mean value of σs=0.44. Frictional and collisional interactions are encountered in the bed layer. Frictional interactions dominate close to the fixed bed interface whereas collisional interactions seems to control the flow at the transition between the dense and dilute layers. The relevancy of different constitutive laws for two-phase flow models are discussed.

  11. Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples

    Science.gov (United States)

    Nakagawa, Seiji

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 °C, and concurrently with x-ray CT imaging. The described split Hopkinson resonant bar test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples, and a natural rock sample.

  12. Quantifying acoustic doppler current profiler discharge uncertainty: A Monte Carlo based tool for moving-boat measurements

    Science.gov (United States)

    Mueller, David S.

    2017-01-01

    This paper presents a method using Monte Carlo simulations for assessing uncertainty of moving-boat acoustic Doppler current profiler (ADCP) discharge measurements using a software tool known as QUant, which was developed for this purpose. Analysis was performed on 10 data sets from four Water Survey of Canada gauging stations in order to evaluate the relative contribution of a range of error sources to the total estimated uncertainty. The factors that differed among data sets included the fraction of unmeasured discharge relative to the total discharge, flow nonuniformity, and operator decisions about instrument programming and measurement cross section. As anticipated, it was found that the estimated uncertainty is dominated by uncertainty of the discharge in the unmeasured areas, highlighting the importance of appropriate selection of the site, the instrument, and the user inputs required to estimate the unmeasured discharge. The main contributor to uncertainty was invalid data, but spatial inhomogeneity in water velocity and bottom-track velocity also contributed, as did variation in the edge velocity, uncertainty in the edge distances, edge coefficients, and the top and bottom extrapolation methods. To a lesser extent, spatial inhomogeneity in the bottom depth also contributed to the total uncertainty, as did uncertainty in the ADCP draft at shallow sites. The estimated uncertainties from QUant can be used to assess the adequacy of standard operating procedures. They also provide quantitative feedback to the ADCP operators about the quality of their measurements, indicating which parameters are contributing most to uncertainty, and perhaps even highlighting ways in which uncertainty can be reduced. Additionally, QUant can be used to account for self-dependent error sources such as heading errors, which are a function of heading. The results demonstrate the importance of a Monte Carlo method tool such as QUant for quantifying random and bias errors when

  13. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Science.gov (United States)

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  14. A "gentle" nodal suspension for measurements of the acoustic attenuation in materials.

    Science.gov (United States)

    Cesarini, E; Lorenzini, M; Campagna, E; Martelli, F; Piergiovanni, F; Vetrano, F; Losurdo, G; Cagnoli, G

    2009-05-01

    Loss angle measurements in ultralow mechanical loss materials is normally affected by a large systematic error due to the excess losses introduced by the suspension system used to hold the samples. Crystals such as sapphire and silicon or amorphous materials such as fused silica can have loss angles in the range of 10(-10)-10(-7); such materials are of extreme interest in the detection of small displacements as it is required in quantum measurements, frequency stabilization, Micro Electro-Mechanical Systems (MEMS), and gravitational wave research. In the system proposed here the sample is suspended in equilibrium on top of a sphere, touching on one of the nodal points of vibration. The advantage of this system, as compared to others used so far, is twofold: (i) one surface only of the sample is touched and the contact surface is minimized because of the absence of applied forces; (ii) some relevant parameters of the suspension can be measured and eventually varied, giving the experimentalist the possibility to identify whether the measured loss is limited by the suspension system in use or it is an intrinsic property of the sample under investigation. The measurements of a 75 mm diameter and 3 mm thickness disk of Suprasil 311 gave a loss angle phi of 5x10(-8).

  15. Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    Science.gov (United States)

    González, Manuel Á.; González, Miguel Á.

    2016-07-01

    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life.

  16. Addressing electronic clinical information in the construction of quality measures.

    Science.gov (United States)

    Bailey, L Charles; Mistry, Kamila B; Tinoco, Aldo; Earls, Marian; Rallins, Marjorie C; Hanley, Kendra; Christensen, Keri; Jones, Meredith; Woods, Donna

    2014-01-01

    Electronic health records (EHR) and registries play a central role in health care and provide access to detailed clinical information at the individual, institutional, and population level. Use of these data for clinical quality/performance improvement and cost management has been a focus of policy initiatives over the past decade. The Children's Health Insurance Program Reauthorization Act of 2009 (CHIPRA)-mandated Pediatric Quality Measurement Program supports development and testing of quality measures for children on the basis of electronic clinical information, including de novo measures and respecification of existing measures designed for other data sources. Drawing on the experience of Centers of Excellence, we review both structural and pragmatic considerations in e-measurement. The presence of primary observations in EHR-derived data make it possible to measure outcomes in ways that are difficult with administrative data alone. However, relevant information may be located in narrative text, making it difficult to interpret. EHR systems are collecting more discrete data, but the structure, semantics, and adoption of data elements vary across vendors and sites. EHR systems also differ in ability to incorporate pediatric concepts such as variable dosing and growth percentiles. This variability complicates quality measurement, as do limitations in established measure formats, such as the Quality Data Model, to e-measurement. Addressing these challenges will require investment by vendors, researchers, and clinicians alike in developing better pediatric content for standard terminologies and data models, encouraging wider adoption of technical standards that support reliable quality measurement, better harmonizing data collection with clinical work flow in EHRs, and better understanding the behavior and potential of e-measures.

  17. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study

    NARCIS (Netherlands)

    Poortinga, A.; Minnen, van J.; Keijsers, J.G.S.; Riksen, M.J.P.M.; Goossens, D.; Seeger, K.M.

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the

  18. Acoustic cloaking and transformation acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  19. 射波刀在听神经瘤治疗中的应用%Clinical Application of Cyberknife in Acoustic Neuroma

    Institute of Scientific and Technical Information of China (English)

    王朋; 李兵; 朱锡旭

    2011-01-01

    目的:研究射波刀在听神经瘤治疗中的作用及优势.方法:对33例行射波刀治疗的听神经瘤患者进行随访分析,总结射波刀在治疗中的应用优势.结果:28例(85%)患者治愈,5例(15%)好转出院.结论:射波刀治疗能更好地保护面神经,维持面神经功能,在近脑干位置的听神经治疗上更具优势.%Objective To observe the effects of Acoustic neuroma treated by Cyberknife and to summarize the clinical experience. Methods 33 patients with Acoustic neuroma were analyzed, the symptom and the body symhol of patients have taken a turn for the better. Results 28 patients(85%) were cured basically, 5 patients(15%) got better. Conclusion The Cyberknife can protect faeial nerve and maintain the facial nerve funclion better. It has the advantage of the treatment near the brain stem in Acoustic neuroma.[Chinese Medical Equipment Journal , 2011 , 32 ( 7) : 65-66

  20. Spatial variation of deep diving odontocetes' occurrence around a canyon region in the Ligurian Sea as measured with acoustic techniques

    Science.gov (United States)

    Giorli, Giacomo; Neuheimer, Anna; Au, Whitlow

    2016-10-01

    Understanding the distribution of animals is of paramount importance for management and conservation, especially for species that are impacted by anthropogenic threats. In the case of marine mammals there has been a growing concern about the impact of human-made noise, in particular for beaked whales and other deep diving odontocetes. Foraging (measured via echolocation clicks at depth) was studied for Cuvier's beaked whale (Ziphius cavirostris), sperm whale (Physeter macrocephalus), long-finned pilot whales (Globicephala melas) and Risso's dolphin (Grampus griseus) using three passive acoustics recorders moored to the bottom of the ocean in a canyon area in the Ligurian Sea between July and December 2011. A Generalized Linear Model was used to test whether foraging was influenced by location and day of the year, including the possibility of interactions between predictors. Contrary to previous studies conducted by visual surveys in this area, all species were detected at all locations, suggesting habitat overlapping. However, significant differences were found in the occurrence of each species at different locations. Beaked and sperm whales foraged significantly more in the northern and western locations, while long-finned pilot whales and Risso's dolphins hunted more in the northern and eastern location.

  1. Auto-inflammatory challenge of the endolymphatic sac--Cochlear damage measured by distortion product oto-acoustic emissions.

    Science.gov (United States)

    Larsen, Michael; Friis, Morten; Karlsen, Charlotte Vestrup; Poulsen, Steen Seier; Lund, Søren Peter; Qvortrup, Klaus

    2015-08-01

    Twenty-five rats were challenged by an immunologic attack of the endolymphatic sac. After 6 months, distortion product oto-acoustic emissions (DPOAE) revealed a dysfunction of the outer hair cells and immunological active cells were observed in the endolymphatic sac. This information could contribute to the understanding of Ménière's disease. This study investigated if an autoimmune challenge of the endolymphatic sac could affect DPOAE output measurements in rats. Also, a potential autoimmune cell infiltration of the endolymphatic sac was investigated. Eighteen Lewis rats were immunized with a crude endolymphatic sac extract in complete Freund's adjuvant. Seven control animals were injected with Freund's adjuvant in saline. Cochlear damage was estimated by DPOAE dynamics 3 weeks and 6 months after the immunization. Infiltrative cells in the endolymphatic sac were investigated with transmission electron microscopy. The hearing assessment 6 months after immunization revealed a reduction of the DPOAE, on the full range of frequencies (2-63 kHz) in an average of the mean, of 2 dB ± 1.1 in the immunized group compared to the controls (p < 0.05). The same test showed a 2.5 dB decrease from 2 to 5 kHz (p < 0.01). Immunological active cells were observed in the endolymphatic sac in most of the immunized rats.

  2. Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance.

    Science.gov (United States)

    Alcoverro, Benoit; Le Pichon, Alexis

    2005-04-01

    The implementation of the infrasound network of the International Monitoring System (IMS) for the enforcement of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) increases the effort in the design of suitable noise reducer systems. In this paper we present a new design consisting of low impedance elements. The dimensioning and the optimization of this discrete mechanical system are based on numerical simulations, including a complete electroacoustical modeling and a realistic wind-noise model. The frequency response and the noise reduction obtained for a given wind speed are compared to statistical noise measurements in the [0.02-4] Hz frequency band. The effects of the constructive parameters-the length of the pipes, inner diameters, summing volume, and number of air inlets-are investigated through a parametric study. The studied system consists of 32 air inlets distributed along an overall diameter of 16 m. Its frequency response is flat up to 4 Hz. For a 2 m/s wind speed, the maximal noise reduction obtained is 15 dB between 0.5 and 4 Hz. At lower frequencies, the noise reduction is improved by the use of a system of larger diameter. The main drawback is the high-frequency limitation introduced by acoustical resonances inside the pipes.

  3. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  4. Acoustic Imaging of Combustion Noise

    Science.gov (United States)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  5. Acoustical Measurement and Biot Model for Coral Reef Detection and Quantification

    OpenAIRE

    Manik, Henry M.

    2016-01-01

    Coral reefs are coastal resources and very useful for marine ecosystems. Nowadays, the existence of coral reefs is seriously threatened due to the activities of blast fishing, coral mining, marine sedimentation, pollution, and global climate change. To determine the existence of coral reefs, it is necessary to study them comprehensively. One method to study a coral reef by using a propagation of sound waves is proposed. In this research, the measurement of reflection coefficient, transmission...

  6. Experimental Method to Measure Low Frequency Sound Radiation - Nearfield Acoustical Holography.

    Science.gov (United States)

    1982-02-03

    Interferometric Measurements of the Top Plate Vibrations of a Guitar ," Acustica 25, 95-100 (1971) 10. I. M. Firth, " Physics of the Guitar at the Helmholtz and...rectangular plate) and a complex source (an intact, string excited guitar ). The guitar research revealed some interesting results such as: the rose is...source (an In- tact, string excited guitar ). The guitar research revealed some interesting results such as: the rose is an important source of low

  7. High resolution acoustic measurement system and beam pattern reconstruction method for bat echolocation emissions.

    Science.gov (United States)

    Gaudette, Jason E; Kloepper, Laura N; Warnecke, Michaela; Simmons, James A

    2014-01-01

    Measurements of the transmit beam patterns emitted by echolocating bats have previously been limited to cross-sectional planes or averaged over multiple signals using sparse microphone arrays. To date, no high-resolution measurements of individual bat transmit beams have been reported in the literature. Recent studies indicate that bats may change the time-frequency structure of their calls depending on the task, and suggest that their beam patterns are more dynamic than previously thought. To investigate beam pattern dynamics in a variety of bat species, a high-density reconfigurable microphone array was designed and constructed using low-cost ultrasonic microphones and custom electronic circuitry. The planar array is 1.83 m wide by 1.42 m tall with microphones positioned on a 2.54 cm square grid. The system can capture up to 228 channels simultaneously at a 500 kHz sampling rate. Beam patterns are reconstructed in azimuth, elevation, and frequency for visualization and further analysis. Validation of the array measurement system and post-processing functions is shown by reconstructing the beam pattern of a transducer with a fixed circular aperture and comparing the result with a theoretical model. To demonstrate the system in use, transmit beam patterns of the big brown bat, Eptesicus fuscus, are shown.

  8. Measurements of acoustic responses of gaseous propellant injectors. [for rocket combustion

    Science.gov (United States)

    Janardan, B. A.; Daniel, B. R.; Zinn, B. T.

    1976-01-01

    Results are presented for an investigation intended to provide experimental data that can quantitatively describe the way in which various coaxial injector designs affect the stability of gaseous propellant rocket motors. The response factors of configurations that simulate the flow conditions in a gaseous-fuel injector element and a gaseous-oxidizer injector element are measured by using a modified impedance-tube technique and under cold-flow conditions simulating those observed in rocket motors with axial instability. The measured injector response factor data are presented and discussed. It is shown that there is reasonable agreement between the measured injector response factors and those predicted by the Feiler and Heidmann model (1967), and that the orifice length can be varied to shift the resonant frequency of the injector without any change in the magnitude of the response factor at resonance. A change in the injector open-area ratio is found to have a significant effect on the characteristics of the injector response factor.

  9. Laboratory Measurements of Multi-Frequency and Broadband Acoustic Scattering from Turbulent and Double-Diffusive Microstructure. High-Frequency Broadband Acoustic Scattering from Non-Linear Internal Waves during SW06

    Science.gov (United States)

    2010-05-27

    1996; Nero et al, 1998; Love et al, 2004). The broadband system developed for this project was used to measure high-frequency broadband acoustic...Wilson, M. A., and Nero , R.W. (2004). "Unusual swimbladder behavior offish in the Cariaco Trench," Deep-Sea Research 151(1): 1-16. Lundgren B., and...propagating shoreward over the continental shelf," J. Phys. Oceanogr. 33, 2093-2112. Nero , R.W., Thompson, C.H., and Love, R.H. (1998). "Low-frequency

  10. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Skliar, Mikhail [Univ. of Utah, Salt Lake City, UT (United States)

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmental temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested

  11. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  12. Determination of micelle formation of ketorolac tromethamine in aqueous media by acoustic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Savaroglu, Gokhan, E-mail: gsavarog@ogu.edu.tr [Eskisehir Osmangazi University, Department of Physics, 26480 Eskisehir (Turkey); Genc, Luetfi [Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 26470 Eskisehir (Turkey)

    2013-01-20

    Graphical abstract: Value of critical micelle concentration (CMC) were detected by speed of sound and determined by an analytical method based on the Phillips definition of the CMC. Highlights: Black-Right-Pointing-Pointer The aim of this study was to investigate the aggregation behaviour of KT. Black-Right-Pointing-Pointer Influence of KT concentration and temperature upon volumetric properties was studied. Black-Right-Pointing-Pointer CMC of KT aqueous solution was determined by using speeds of sound measurements. - Abstract: Density and speed of sound of ketorolac tromethamine in aqueous solutions have been measured as a function of concentration at atmospheric pressure and in the temperature range from 293.15 to 313.15 K. Apparent molar volumes, apparent isentropic compressibility and isentropic compressibility values have also been calculated from the experimental density and speed of sound data. Partial molar volume and partial molar isentropic compressibility are obtained from fitting procedures the data on apparent molar volume, V{sub {phi}}, and apparent isentropic compressibility, K{sub {phi}(S)}. Partial molar volume, V{sub {phi}}{sup 0}, and partial molar isentropic compressibility, k{sub {phi}(S)}{sup 0}, are informative thermodynamic characteristics that reflect solute hydration. The critical micelle concentration (CMC) was determined from speed of sound data by an analytical method based on the Phillips definition of the CMC. Using these results, it was possible to establish the solvent-drug interactions.

  13. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben [Acoustics Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  14. Acoustic biosensors

    OpenAIRE

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  15. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  16. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    Science.gov (United States)

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured.

  17. Outcome measures in amyotrophic lateral sclerosis clinical trials

    Science.gov (United States)

    Paganoni, Sabrina; Cudkowicz, Merit; Berry, James D

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an average survival of 3–5 years. While therapies for ALS remain limited, basic and translational ALS research has been host to numerous influential discoveries in recent years. These discoveries have led to a large pipeline of potential therapies that await testing in clinical trials. Until recently, ALS clinical trials have relied on a limited cadre of ‘traditional’ outcome measures, including survival and measures of function. These measures have proven useful, although imperfect, in Phase III ALS trials. However, their utility in early-phase ALS trials is limited. For these early trials, outcome measures focused on target engagement or biological pathway analysis might improve trial outcomes and better support the drug development process.

  18. Outcome Measures for Clinical Trials in Down Syndrome.

    Science.gov (United States)

    Esbensen, Anna J; Hooper, Stephen R; Fidler, Deborah; Hartley, Sigan L; Edgin, Jamie; d'Ardhuy, Xavier Liogier; Capone, George; Conners, Frances A; Mervis, Carolyn B; Abbeduto, Leonard; Rafii, Michael; Krinsky-McHale, Sharon J; Urv, Tiina; Group, Outcome Measures Working

    2017-05-01

    Increasingly individuals with intellectual and developmental disabilities, including Down syndrome, are being targeted for clinical trials. However, a challenge exists in effectively evaluating the outcomes of these new pharmacological interventions. Few empirically evaluated, psychometrically sound outcome measures appropriate for use in clinical trials with individuals with Down syndrome have been identified. To address this challenge, the National Institutes of Health (NIH) assembled leading clinicians and scientists to review existing measures and identify those that currently are appropriate for trials; those that may be appropriate after expansion of age range addition of easier items, and/or downward extension of psychometric norms; and areas where new measures need to be developed. This article focuses on measures in the areas of cognition and behavior.

  19. Boundary layer characterization and acoustic measurements of flow-aligned trailing edge serrations

    Science.gov (United States)

    Arce León, Carlos; Merino-Martínez, Roberto; Ragni, Daniele; Avallone, Francesco; Snellen, Mirjam

    2016-12-01

    Trailing edge serrations designed to reduce airfoil self-noise are retrofitted on a NACA 0018 airfoil. An investigation of the boundary layer flow statistical properties is performed using time-resolved stereoscopic PIV. Three streamwise locations over the edge of the serrations are compared. An analysis of the results indicates that, while there is no upstream effect, the flow experiences significant changes as it convects over the serrations and toward its edges. Among the most important, a reduced shear stress and modifications of the turbulence spectra suggest beneficial changes in the unsteady surface pressure that would result in a reduction of trailing edge noise. Microphone array measurements are additionally performed to confirm that noise reduction is indeed observed by the application of the chosen serration design over the unmodified airfoil.

  20. Restricted Acoustic Modal Analysis Applied to Internal Combustor Spectra and Cross-Spectra Measurements

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2006-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two Kulite pressure measurements is developed herein. It is applied to a Pratt & Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the new part of the treatment is the assumption that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present than circumferential mode m 2 is not. Consequently, in the analysis used herein at frequencies above the first cut-off mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. A new result is that the successful use of the same modal span frequencies over a range of operating conditions for this particular engine suggests that the temperature, T, and the velocity, v, of the flow at each operating condition are related by c(sup 2)-v(sup 2) = a constant where c is the speed of sound.