WorldWideScience

Sample records for acoustic chemometric monitoring

  1. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  2. Acoustic chemometric prediction of total solids in bioslurry

    DEFF Research Database (Denmark)

    Ihunegbo, Felicia; Madsen, Michael; Esbensen, Kim;

    2012-01-01

    several earlier dedicated attempts. A full-scale feasibility study based on standard addition experiments involving natural plant biomass was conducted using multivariate calibration (Partial Least Squares Regression, PLS-R) of acoustic signatures against dry matter content (total solids, TS). Prediction...

  3. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the noi

  4. Fault monitoring using acoustic emissions

    Science.gov (United States)

    Zhang, Danlu; Venkatesan, Gopal; Kaveh, Mostafa; Tewfik, Ahmed H.; Buckley, Kevin M.

    1999-05-01

    Automatic monitoring techniques are a means to safely relax and simplify preventive maintenance and inspection procedures that are expensive and necessitate substantial down time. Acoustic emissions (AEs), that are ultrasonic waves emanating from the formation or propagation of a crack in a material, provide a possible avenue for nondestructive evaluation. Though the characteristics of AEs have been extensively studied, most of the work has been done under controlled laboratory conditions at very low noise levels. In practice, however, the AEs are buried under a wide variety of strong interference and noise. These arise due to a number of factors that, other than vibration, may include fretting, hydraulic noise and electromagnetic interference. Most of these noise events are transient and not unlike AE signals. In consequence, the detection and isolation of AE events from the measured data is not a trivial problem. In this paper we present some signal processing techniques that we have proposed and evaluated for the above problem. We treat the AE problem as the detection of an unknown transient in additive noise followed by a robust classification of the detected transients. We address the problem of transient detection using the residual error in fitting a special linear model to the data. Our group is currently working on the transient classification using neural networks.

  5. Acoustic Monitoring for Spaceflight Vehicle Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will develop and demonstrate acoustic sensor technology enabling real-time, remotely performed measuring and monitoring of sound pressure levels and noise...

  6. Condition Monitoring and Management from Acoustic Emissions

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik Bohl

    2005-01-01

    In the following, I will use technical terms without explanation as it gives the freedom to describe the project in a shorter form for those who already know. The thesis is about condition monitoring of large diesel engines from acoustic emission signals. The experiments have been focused...

  7. Binding of 8-methoxypsoralen to DNA in vitro: Monitoring by spectroscopic and chemometrics approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoyue; Zhang, Guowen, E-mail: gwzhang@ncu.edu.cn; Wang, Langhong

    2014-10-15

    8-Methoxypsoralen (8-MOP) is a naturally occurring furanocoumarin with a variety of biological and pharmacological activities. The binding mechanism of 8-MOP to calf thymus DNA (ctDNA) at physiological pH was investigated by multi-spectroscopic techniques including UV–vis absorption, fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy along with DNA melting studies and viscosity measurements. The multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics approach was introduced to resolve the expanded UV–vis spectral data matrix, and both the pure spectra and the equilibrium concentration profiles for the components (8-MOP, ctDNA and 8-MOP-ctDNA complex) in the system were successfully obtained to monitor the 8-MOP-ctDNA interaction. The results suggested that 8-MOP could bind to ctDNA via intercalation binding as evidenced by significant increases in melting and relative viscosity of ctDNA and competitive study using acridine orange (AO) as a fluorescence probe. The positive values of enthalpy and entropy change suggested that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Further, FT-IR and CD spectra analysis indicated that 8-MOP preferentially bound to A–T base pairs with no major perturbation in ctDNA double helix conformation. Moreover, molecular docking was employed to exhibit the specific binding mode of 8-MOP to ctDNA intuitively. - Highlights: • The interaction processes of 8-MOP with ctDNA was monitored by MCR-ALS approach. • The binding mode of 8-MOP to ctDNA was an intercalation. • 8-MOP most likely bound to adenine and thymine base pairs of ctDNA. • Molecular docking illustrated the specific binding.

  8. Distributed acoustic sensing for pipeline monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hill, David; McEwen-King, Magnus [OptaSense, QinetiQ Ltd., London (United Kingdom)

    2009-07-01

    Optical fibre is deployed widely across the oil and gas industry. As well as being deployed regularly to provide high bandwidth telecommunications and infrastructure for SCADA it is increasingly being used to sense pressure, temperature and strain along buried pipelines, on subsea pipelines and downhole. In this paper we present results from the latest sensing capability using standard optical fibre to detect acoustic signals along the entire length of a pipeline. In Distributed Acoustic Sensing (DAS) an optical fibre is used for both sensing and telemetry. In this paper we present results from the OptaSense{sup TM} system which has been used to detect third party intervention (TPI) along buried pipelines. In a typical deployment the system is connected to an existing standard single-mode fibre, up to 50km in length, and was used to independently listen to the acoustic / seismic activity at every 10 meter interval. We will show that through the use of advanced array processing of the independent, simultaneously sampled channels it is possible to detect and locate activity within the vicinity of the pipeline and through sophisticated acoustic signal processing to obtain the acoustic signature to classify the type of activity. By combining spare fibre capacity in existing buried fibre optic cables; processing and display techniques commonly found in sonar; and state-of-the-art in fibre-optic distributed acoustic sensing, we will describe the new monitoring capabilities that are available to the pipeline operator. Without the expense of retrofitting sensors to the pipeline, this technology can provide a high performance, rapidly deployable and cost effective method of providing gapless and persistent monitoring of a pipeline. We will show how this approach can be used to detect, classify and locate activity such as; third party interference (including activity indicative of illegal hot tapping); real time tracking of pigs; and leak detection. We will also show how an

  9. Acoustic emission monitoring of wind turbine blades

    Science.gov (United States)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  10. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Laboratory

    2012-05-04

    The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

  11. Acoustic Flow Monitor System - User Manual

    Science.gov (United States)

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  12. Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations.

    Science.gov (United States)

    Clementschitsch, Franz; Jürgen, Kern; Florentina, Pötschacher; Karl, Bayer

    2005-11-01

    The key objective for the optimisation of recombinant protein production in bacteria is to optimize the exploitation of the host cell's synthesis potential. Recent studies show that the novel concept of transcription rate control allows the tuning of recombinant gene expression in relation to the metabolic capacity of the host cell. To adjust the inducer-biomass ratio to a tolerable level, real-time knowledge about key process variables is paramount. Since there are no reliable online-sensors for key variables such as biomass or recombinant product, it is necessary to relate available online signals to process variables by mathematical models. To improve chemometric modelling of process variables, dielectric spectroscopy and a multi-wavelength online fluorescence sensor for two-dimensional fluorescence spectroscopy were applied in a series of recombinant Escherichia coli fed-batch cultivations applying two different process operation states. Dielectric spectroscopy signals were closely correlated to biomass, while two-dimensional fluorescence spectroscopy allowed the monitoring of fluorescent biogenic components. Chemometric modelling of key process variables with two different modelling techniques showed that this sensor combination greatly improved the estimation (i.e. reduce error magnitude) of process variables in recombinant E. coli cultivations, thereby enhancing process monitoring capabilities. PMID:16139381

  13. Detection of respiratory compromise by acoustic monitoring, capnography, and brain function monitoring during monitored anesthesia care.

    Science.gov (United States)

    Tanaka, Pedro P; Tanaka, Maria; Drover, David R

    2014-12-01

    Episodes of apnea in sedated patients represent a risk of respiratory compromise. We hypothesized that acoustic monitoring would be equivalent to capnography for detection of respiratory pauses, with fewer false alarms. In addition, we hypothesized that the patient state index (PSI) would be correlated with the frequency of respiratory pauses and therefore could provide information about the risk of apnea during sedation. Patients undergoing sedation for surgical procedures were monitored for respiration rate using acoustic monitoring and capnography and for depth of sedation using the PSI. A clinician blinded to the acoustic and sedation monitor observed the capnograph and patient to assess sedation and episodes of apnea. Another clinician retrospectively reviewed the capnography and acoustic waveform and sound files to identify true positive and false positive respiratory pauses by each method (reference method). Sensitivity, specificity, and likelihood ratio for detection of respiratory pause was calculated for acoustic monitoring and capnography. The correlation of PSI with respiratory pause events was determined. For the 51 respiratory pauses validated by retrospective analysis, the sensitivity, specificity, and likelihood ratio positive for detection were 16, 96 %, and 3.5 for clinician observation; 88, 7 %, and 1.0 for capnography; and 55, 87 %, and 4.1 for acoustic monitoring. There was no correlation between PSI and respiratory pause events. Acoustic monitoring had the highest likelihood ratio positive for detection of respiratory pause events compared with capnography and clinician observation and, therefore, may provide the best method for respiration rate monitoring during these procedures. PMID:24420342

  14. Combination of optical spectroscopy and chemometric techniques. A possible way for on-line monitoring of spent nuclear fuel (SNF) reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, D.; Legin, A. [St. Petersburg State Univ. (Russian Federation). Chemistry Dept.; Babain, V.; Agafonova-Moroz, M.; Lumpov, A. [FSUE RPA Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2012-07-01

    UV-Vis spectroscopic measurements were performed in model mixtures simulating solutions obtained in the course of PUREX spent nuclear fuel reprocessing. Mixtures contained constant concentrations of nitric acid and uranium with varied content of neptunium and plutonium. Spectral data were processed with classical chemometric technique - PLS regression. This approach has shown significant improvement in analytical precision of actinides determination compared to standard univariate data processing. The combination of spectroscopic measurements with chemometric data processing shows good promise for the development of on-line spectroscopic techniques for SNF reprocessing monitoring. (orig.)

  15. Acoustic monitoring techniques for corrosion degradation in cemented waste canisters

    International Nuclear Information System (INIS)

    This report describes work carried out to investigate acoustic emission as a monitor of corrosion and degradation of wasteforms where the waste is potentially reactive metal. Electronic monitoring equipment has been designed, built and tested to allow long-term monitoring of a number of waste packages simultaneously. Acoustic monitoring experiments were made on a range of 1 litre cemented Magnox and aluminium samples cast into canisters comparing the acoustic events with hydrogen gas evolution rates and electrochemical corrosion rates. The attenuation of the acoustic signals by the cement grout under a range of conditions has been studied to determine the volume of wasteform that can be satisfactorily monitored by one transducer. The final phase of the programme monitored the acoustic events from full size (200 litre) cemented, inactive, simulated aluminium swarf wastepackages prepared at the AEA waste cementation plant at Winfrith. (Author)

  16. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  17. Operational monitoring of acoustic sensor networks

    Directory of Open Access Journals (Sweden)

    Boltenkov V.A.

    2015-06-01

    Full Text Available Acoustic sensor networks (ASN are widely used to monitor water leaks in the power generating systems. Since the ASN are used in harsh climatic conditions the failures of microphone elements of ASN are inevitable. That's why the failure detection of ASN elements is a problem of current interest. Two techniques of operational monitoring ASN are developed. Both of them are based on the placement of the test sound source within a network. The signal processing for ASN sensors had to detect the failed element. Techniques are based time difference of arrival (TDOA estimating at the each pair of ASN elements. TDOA estimates as argmaximum of cross-correlation function (CCF for signals on each microphone sensors pair. The M-sequence phase-shift keyed signal is applied as a test acoustic signal to ensure high accuracy of the CCF maximum estimation at low signal/noise ratio (SNR. The first technique is based on the isolation principle for TDOA sum at three points. It require to locate the test sound source in the far field. This is not always possible due to technological reasons. For the second proposed technique test sound source can be located near the ASN. It is based on a system of hyperbolic equations solving for each of the four elements of the ASN. Both techniques has been tested in the computer imitation experiment. It was found that for the SNR to –5 dB both techniques show unmistakable indicators of control quality. The second method requires significantly more time control.

  18. Approach to on-line monitoring of PUREX process using chemometric processing of the optical spectral data

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, D.; Legin, A. [St. Petersburg State Univ. (Russian Federation). Chemistry Dept.; Babain, V.; Agafonova-Moroz, M.; Lumpov, A. [FSUE RPA Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2013-05-01

    Optical spectroscopic measurements in the UV-Vis and IR ranges were performed in model solutions of aqueous and organic phases of the PUREX process for spent nuclear fuel (SNF) reprocessing. Chemometric processing of the spectral data with PLS (partial least squares) regression allowed simultaneous quantification of several key components (uranium, neptunium, plutonium, nitric acid) in these mixtures in an effective and elegant way. The content of all key components was quantitively determined with mean relative errors not exceeding 10%. It was shown that the employment of the whole spectra or their certain continuous regions for a PLS calibration enables to decrease the analytical errors compared to the use of a single wavelength in an ordinary least squares approach. The results of this research imply that the development of on-line techniques for SNF reprocessing monitoring is fully possible and can be based on optical spectroscopy methods combined with multivariate data processing techniques. (orig.)

  19. Acoustic Emission Monitoring of Cementitious Wasteforms

    International Nuclear Information System (INIS)

    A summary is presented of the potential of non-destructive acoustic emission (AE) method to be applied for structures immobilising nuclear wastes. The use and limitations of the method are discussed with given examples of experimental configurations and results obtained from AE monitoring and data analysis of two different processes addressing particular issues related to the nuclear waste immobilisation. These are (a) corrosion of aluminium, classified as intermediate level waste (ILW) in the UK, encapsulated in cementitious structures and (b) partial melting and solidification during cooling of granite at a pressure of 0.15 GPa which simulates the conditions in a deep borehole disposal of canisters of vitrified high level waste (HLW). Methodology for analysis of the collected data and characterisation of the potential AE sources is performed at different steps including simple signals count and more complex signal parameter-based approach and advanced signal processing. The AE method has been shown as a potential tool for monitoring and inspection of structures immobilising nuclear wastes in relation to the time progress of different interactions of the waste with the encapsulating matrix or the wasteform with the hosting environment for permanent disposal. (author)

  20. Acoustic Monitoring of the Arctic Ice Cap

    Science.gov (United States)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  1. Acoustic Signature Monitoring and Management of Naval Platforms

    NARCIS (Netherlands)

    Basten, T.G.H.; Jong, C.A.F. de; Graafland, F.; Hof, J. van 't

    2015-01-01

    Acoustic signatures make naval platforms susceptible to detection by threat sensors. The variable operational conditions and lifespan of a platform cause variations in the acoustic signature. To deal with these variations, a real time signature monitoring capability is being developed, with advisory

  2. Study on Acoustic Catheter of Boiler Tube Leakage Monitoring Systems

    Science.gov (United States)

    Lv, Yongxing; Feng, Qiang

    Boiler tube leakage is the major reason of affecting the safe operation of the unit now, there are 3 methods of the "four tube" leakage detection: Traditional method, filtering method and acoustic spectrum analysis, acoustic spectrum analysis is the common method, but this method have low sensitivity and the sensor damage easily. Therewith, designed the special acoustic catheter with acoustic resonance cavity type, proved by experiments, the acoustic catheter with acoustic resonance cavity type can enhance leakage sound, can accurately extract leakage signals, has high sensitivity, and can avoid the effect of sensor by fire and hot-gas when the furnace is in positive pressure situation, reduce the installation and maintenance costs of the boiler tube leakage monitor system.

  3. OPERATING PROCEDURE FOR THE PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    Energy Technology Data Exchange (ETDEWEB)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-08-29

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor acoustic signals in high-pressure natural gas (NG) transmission lines. Of particular interest are the three acoustic signals associated with a pipeline fracture. The system is portable (less than 30 lbm) and can be used at all line pressures up to 1000 psig. The PAMP requires a shut-off valve equipped 1/2 inch NPT access port in the pipeline. It is fully functional over the typical pressure range found in the natural gas transmission pipelines in the West Virginia, Virginia, Pennsylvania, and Ohio areas. With the use of the PAMP, a full spectrum of acoustic signals can be recorded and defined in terms of acoustic energy in decibels. To detect natural gas pipeline infringements and leaks, the acoustic energy generated inside the line is monitored with a sensitive pressure-equalized microphone and a step function type {Delta}p transducer. The assembly is mounted on a 1000 psig pipe fitting-tree called the PAMP. The electronics required to record, store and analyze the data are described within this report in the format of an operating manual.

  4. A Flexible Acoustic Sensor Network for Various Monitoring Applications

    NARCIS (Netherlands)

    Basten, T.G.H.; Wessels, P.W.

    2013-01-01

    Acoustic monitoring using a sensor network is a powerful instrument to assess and manage complex noise situations. It can provide a basis to identify appropriate and cost effective measures, and to assess their effect by comparing before and after implementation. It can also be an instrument for com

  5. Monitoring of rapid sand filters using an acoustic imaging technique

    NARCIS (Netherlands)

    Allouche, N.; Simons, D.G.; Rietveld, L.C.

    2012-01-01

    A novel instrument is developed to acoustically image sand filters used for water treatment and monitor their performance. The instrument consists of an omnidirectional transmitter that generates a chirp with a frequency range between 10 and 110 kHz, and an array of hydrophones. The instrument was e

  6. Monitoring of rapid sand filters using an acoustic imaging technique

    OpenAIRE

    Allouche, N.; Simons, D.G.; Rietveld, L. C.

    2012-01-01

    A novel instrument is developed to acoustically image sand filters used for water treatment and monitor their performance. The instrument consists of an omnidirectional transmitter that generates a chirp with a frequency range between 10 and 110 kHz, and an array of hydrophones. The instrument was extensively tested in a lab before being deployed in an industrial rapid sand filter, made available by a Dutch drinking water company. This filter was monitored over a period of 10 days. We perform...

  7. Acoustic monitoring systems tests at Indian Point Unit 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.; Rao, G.V.; Craig, J.

    1979-12-01

    This report describes the results of a program to test acoustic monitoring systems on Indian Point Unit No. 1 under actual plant operating conditions, less the reactor core. The two types of systems evaluated were the monitoring of acoustic emissions generated by growing flaws and the monitoring of acoustic signals from leaks.

  8. Acoustic monitoring systems tests at Indian Point Unit 1. Final report

    International Nuclear Information System (INIS)

    This report describes the results of a program to test acoustic monitoring systems on Indian Point Unit No. 1 under actual plant operating conditions, less the reactor core. The two types of systems evaluated were the monitoring of acoustic emissions generated by growing flaws and the monitoring of acoustic signals from leaks

  9. Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations

    DEFF Research Database (Denmark)

    Ödman, Peter; Johansen, C.L.; Olsson, L.;

    2010-01-01

    -one-batch-out cross-validation, and the best models had root mean square error of cross-validation values of 1.02 g l(-1) biomass and 0.8 g l(-1) total amino acids, respectively. The fluorescence data were also explored by parallel factor analysis. The analysis revealed four spectral profiles present......Fed-batch cultivations of Streptomyces coelicolor, producing the antibiotic actinorhodin, were monitored online by multiwavelength fluorescence spectroscopy and off-gas analysis. Partial least squares (PLS), locally weighted regression, and multilinear PLS (N-PLS) models were built for prediction...

  10. Smart acoustic emission system for wireless monitoring of concrete structures

    Science.gov (United States)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical

  11. Signal processing methodologies for an acoustic fetal heart rate monitor

    Science.gov (United States)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  12. Nonintrusive Monitoring and Control of Metallurgical Processes by Acoustic Measurements

    Science.gov (United States)

    Yu, Hao-Ling; Khajavi, Leili Tafaghodi; Barati, Mansoor

    2011-06-01

    The feasibility of developing a new online monitoring technique based on the characteristic acoustic response of gas bubbles in a liquid has been investigated. The method is intended to monitor the chemistry of the liquid through its relation to the bubble sound frequency. A low-temperature model consisting of water and alcohol mixtures was established, and the frequency of bubbles rising under varying concentrations of methanol was measured. It was shown that the frequency of the sound created by bubble pulsation varies with the percentage of alcohol in water. The frequency drops sharply with the increase in methanol content up to 20 wt pct, after which the decreases is gradual. Surface tension seems to be a critical liquid property affecting the sound frequency through its two-fold effects on the bubble size and the pulsation domain. The dependence between the frequency and the liquid composition suggests the feasibility of developing an acoustic-based technique for process control purposes.

  13. Acoustic module of the Acquabona (Italy debris flow monitoring system

    Directory of Open Access Journals (Sweden)

    A. Galgaro

    2005-01-01

    Full Text Available Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys.

  14. Acoustic module of the Acquabona (Italy) debris flow monitoring system

    Science.gov (United States)

    Galgaro, A.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2005-02-01

    Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys).

  15. Acoustic monitoring of a fluidized bed coating process

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; Veski, Peep; Pedersen, Joan G.;

    2007-01-01

    point perspective. The acoustic monitoring has the potential of summarising the commonly used means to monitor the coating process. The best partial least squares (PLS) regressions, obtained by the high frequency accelerometer, showed for the release a correlation coefficient of 0.92 and a root mean...... square error of prediction (RMSEP) of 5.84% (31-82.8%), and for the estimated amount of film applied a correlation coefficient of 0.95 and RMSEP of 0.52% (0.6-6%). The results of the preliminary investigation are considered promising. There is however a need for further investigations on sampling...

  16. SAMARUC a Programmable system for Passive acoustic monitoring of cetaceans

    OpenAIRE

    Miralles Ricós, Ramón; Lara Martínez, Guillermo-Fernan; CARRIÓN GARCÍA, ALICIA; Esteban, José Antonio

    2013-01-01

    This paper reports the work carried out by iTEAM researchers in Passive Acoustic Monitoring (PAM) for underwater monitoring of cetaceans. It includes a description of novel signal processing algorithms for detection and classification of aquatic mammal species as well as a hardware system called SAMARUC specially designed in collaboration with marine biologists. Ministerio de Ciencia e Innovación within the Project number TEC2011-23403 Miralles Ricós, R.; Lara Martínez, G.; Carrión Gar...

  17. Use of information system data of jet crushing acoustic monitoring for the process management

    Directory of Open Access Journals (Sweden)

    T.M. Bulanaya

    2012-12-01

    Full Text Available The graphic interpretation of amplitude and frequency of acoustic signals of loose material jet grinding process are resulted. Criteria of process management is determined on the basis of the acoustic monitoring data of jet mill acting.

  18. Employing Acoustic Emission for Monitoring Oil Film Regimes

    Directory of Open Access Journals (Sweden)

    David Mba

    2013-07-01

    Full Text Available The major purpose of a gear lubricant is to provide adequate oil film thickness to reduce and prevent gear tooth surface failures. Real time monitoring for gear failures is important in order to predict and prevent unexpected failures which would have a negative impact on the efficiency, performance and safety of the gearbox. This paper presents experimental results on the influence of specific oil film thickness on Acoustic Emission (AE activity for operational helical gears. Variation in film thickness during operations was achieved by spraying liquid nitrogen onto the rotating gear wheel. The experimental results demonstrated a clear relationship between the root mean square (r.m.s value of the AE signal and the specific film thickness. The findings demonstrate the potential of Acoustic Emission technology to quantify lubrication regimes on operational gears.

  19. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Dimitrios. G. Aggelis

    2015-03-01

    Full Text Available The study describes the acoustic emission (AE activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis. The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure.

  20. Use of acoustic monitoring system for debris flow discharge evaluation

    Science.gov (United States)

    Galgaro, A. G.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2003-04-01

    In 1997 an automated system for monitoring of debris flows has been installed in the Acquabona channel Dolomites, Italy. Induction geophones, with a specific frequency of 10 Hz, measure the amplitude of vertical ground vibrations generated by the passage of a flowing mass along the channel. Continuous acoustic logs and ultrasonic hydrograph recorded at the lower-channel measurement station for the debris flow of August 17, 1998, show a striking correspondence. This correspondence, already observed in different flow sites, is represented by the best fit between flow depth and flow sensor amplitude. Average front velocity for surges, calculated from the signal peak time shift and the distance between the sensors along the flow path, range between 2.00 and 7.7 m/s. As the ultrasonic sensor provides a way to measure the variation of the flow section area with the flow depth, the debris flow peak discharge may be estimated; obtained values of debris flow peak discharge range from 4 and 30 m3/s. Volumes were calculated by integrating instantaneous discharges through the hydrograph and by integrating the geophone log (acoustic flux). Volumes of 13700 m3 and 15500 m3 have been respectively obtained. The slight difference between the two values may result from the fact that acoustic records: i) are sensitive to the high frequencies, typical of the debris flow tails; ii) sum up the contributions sent by the whole flowing mass, while the ecometer detect the flow depth at every time at only one section. As a consequence the rising of the whole geophone log gives a higher value at the integration result. This only acoustic system can give a reasonably proxy for discharge and total volumes involved, which are among the most important parameters for debris flow hazard assessment and planning countermeasures. This methodology can be used in other debris flow sites if they are calibrated by the acoustic characterization of debris, obtained by both seismic surveys and SPT tests, and

  1. Aero-acoustic Measurement and Monitoring of Dynamic Pressure Fields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative and practical measurement and monitoring system optimally defines dynamic pressure fields, including sound fields. It is based on passive acoustic...

  2. SensIs - Underwater acoustic network for ice-monitoring

    CERN Document Server

    Reinen, Tor Arne; Knudsen, Finn Tore

    2016-01-01

    Routing for low latency underwater acoustic network-communication is investigated. The application is monitoring of ice-threats to offshore operations in the Arctic - to provide warnings that enable operators to react to such threats. The scenario produces relatively high traffic load, and the network should favour low delay and adequate reliability rather than energy usage minimization. The ICRP (Information-Carrying based Routing Protocol), originally proposed by Wei Liang et al. in 2007, is chosen as basis. ICRP obtains unicast routing paths by sending data payload as broadcast packets when no route information is available. Thus, data can be delivered without the cost of reactive signalling latency. In this paper we explore the capabilities of a slightly enhanced/adapted ICRP, tailored to the ice monitoring application. By simulations and experiments at sea it is demonstrated that the protocol performs well and can manage the applications high traffic load - this provided that the point-to-point links pro...

  3. FRP/steel composite damage acoustic emission monitoring and analysis

    Science.gov (United States)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  4. Tools for automated acoustic monitoring within the R package monitoR

    Science.gov (United States)

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    The R package monitoR contains tools for managing an acoustic-monitoring program including survey metadata, template creation and manipulation, automated detection and results management. These tools are scalable for use with small projects as well as larger long-term projects and those with expansive spatial extents. Here, we describe typical workflow when using the tools in monitoR. Typical workflow utilizes a generic sequence of functions, with the option for either binary point matching or spectrogram cross-correlation detectors.

  5. Tools for automated acoustic monitoring within the R package monitoR

    DEFF Research Database (Denmark)

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    The R package monitoR contains tools for managing an acoustic-monitoring program including survey metadata, template creation and manipulation, automated detection and results management. These tools are scalable for use with small projects as well as larger long-term projects and those...... with expansive spatial extents. Here, we describe typical workflow when using the tools in monitoR. Typical workflow utilizes a generic sequence of functions, with the option for either binary point matching or spectrogram cross-correlation detectors....

  6. Remote Acoustic Monitoring of North Atlantic Right Whales (Eubalaena glacialis) Reveals Seasonal and Diel Variations in Acoustic Behavior

    OpenAIRE

    Matthews, Leanna P.; Jessica A McCordic; Susan E Parks

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for femal...

  7. A multi-channel acoustics monitor for perioperative respiratory monitoring: preliminary data.

    Science.gov (United States)

    Jafarian, Kamal; Amineslami, Majid; Hassani, Kamran; Navidbakhsh, Mahdi; Lahiji, Mohammad Niakan; Doyle, D John

    2016-02-01

    This study pertains to a six-channel acoustic monitoring system for use in patient monitoring during or after surgery. The base hardware consists of a USB data acquisition system, a custom-built six-channel amplification system, and a series of microphones of various designs. The software is based on the MATLAB platform with data acquisition drivers installed. The displayed information includes: time domain signals, frequency domain signals, and tools to aid in the detection of endobronchial intubation. We hypothesize that the above mentioned arrangement may be helpful to the anesthesiologist in recognizing clinical conditions like wheezing, bronchospasm, endobronchial intubation, and apnea. The study also evaluated various types of microphone designs used to transduce breath sounds. The system also features selectable band-pass filtering using MATLAB algorithms as well as a collection of recordings obtained with the system to establish what respiratory acoustic signals look like under various conditions. PMID:25869899

  8. Acoustic emission monitoring of recycled aggregate concrete under bending

    Science.gov (United States)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  9. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.

    2011-09-30

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  10. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  11. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    Science.gov (United States)

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  12. Acoustic Monitoring of Adhesive Bond Curing in Wood Laminates.

    Science.gov (United States)

    Biernacki, Jacek Marek

    Challenges in manufacturing of wood products, such as glulam, include difficulty in controlling bonding variables and assessing bond quality. This dissertation investigates an ultrasonic method as a means of monitoring of curing and assessing bond quality in wood laminates. The effect of curing on ultrasonic transmission was studied using specimens of clear Douglas-fir, 100 x 200 x 600 mm, with the adhesive bond in the center of the specimen. Monitoring was performed simultaneously at normal and angular (5 ^circ nominal) incidence to the bond plane. Acoustic measurements were supplemented with destructive cure monitoring, standard bond strength measurement, monitoring of bulk viscosity curing, gel time measurement, and microscopic (SEM) examination. Angular incidence gave greater sensitivity to bond quality and curing status than did normal incidence. Analysis of wave propagation showed that displacement for transmission at a small angle (on the order of 5^circ ) was nearly parallel to the bond, which seems to explain greater sensitivity of angular incidence. Experimental results showed that this method was effective in detection of curing phases, such as spread, penetration, and hardening, defective bonds, and the effect of clamping pressure. An "unloading effect", measured as a relative transmission reduction after the clamping load was released, was sensitive to defective bonds, including uncured (kissing), underspread, and uneven spread bonds. Thick bonds (0.5 and 1.0 mm) caused the greatest increase in transmission, since waves at start of curing were highly attenuated. In angular transmission, thick-bond curing curves showed a characteristic inflection, which may be used to identify thick bonds and measure the curing rate. The results of this dissertation could be utilized to develop commercial systems in glulam manufacturing, which could evaluate: (a) phase of and completion of curing (b) bond quality (c) optimum clamping pressure. Similar systems could also

  13. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    Science.gov (United States)

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  14. ONKALO POSE experiment. Phase 3: acoustic and ultrasonic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Montes, J.; Flynn, W.; Huang, J. [Applied Seismology Consultants, Shrewsbury (United Kingdom)

    2014-01-15

    The objectives of the third phase of the POSE experiment are to determine the in situ state of stress at Olkiluoto and the spalling strength of Olkiluoto rock, by internal heating of the experimental hole (ONK-EH3) using 8 vertically installed heaters. This report presents the results from the Acoustic and ultrasonic monitoring carried out around the third experimental hole of the POSE niche between November 2012 and May 2013. The experiment was monitored using an array of 24 transducers installed along 4 monitoring drillholes and data was automatically acquired and processed using the system installed at the niche by Applied Seismology Consultants in May 2012. Daily ultrasonic surveys were carried out between 14{sup th} November 2012 and 21{sup st} May 2013, monitoring the changes in transmission velocities of P and S-waves with an estimated error of ±2 m x s{sup -1} (ASC, 2013). Changes in transmission velocities closely follow the evolution of the temperature profile in the hole wall. An increase in both P-and S-wave transmission velocities is observed at all depth levels and surveyed raypaths during the heating phase, with the highest changes observed in raypaths skimming the hole surface and depths between 2.33 m and 3.7 m. This observation indicates the closure of in situ and excavation-induced microcracks due to thermal stress. After the heaters were switched off, P-wave velocities show a marked decrease, in all raypaths reaching values below those measured at the start of the monitoring approximately 4 weeks after the heaters were switched off. The highest decrease was observed along raypaths surveying the region skimming the hole wall. This decrease below original background values indicates the induction of rock degradation as microcracking induced through the heating-cooling cycle. Changes in P- and S-wave transmission velocity were used to calculate changes in Young's modulus and Poisson's ratio along the different raypaths and depth levels

  15. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    Science.gov (United States)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  16. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    Science.gov (United States)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  17. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    Science.gov (United States)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  18. Acoustic Emissions (AE) Electrical Systems' Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Acoustic Emissions (AE) are associated with physical events, such as thermal activity, dielectric breakdown, discharge inception, as well as crack nucleation and...

  19. Acoustical method of whole-body hydration status monitoring

    Science.gov (United States)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  20. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  1. Automatic classification of urban traffic noise onboard an acoustic monitoring system

    NARCIS (Netherlands)

    Wessels, P.W.; Zon, A.T. van; Basten, T.G.H.

    2013-01-01

    Recent developments in acoustic monitoring systems make it possible to measure complex noise situations, like urban traffic noise, continuously. Monitoring provides more insight in the noise situation, from which more specific and (cost) effective measures can be taken. Monitoring also allows direct

  2. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will; Young, R. Paul [Applied Seismology Consultants Ltd., Shrewsbury (United Kingdom)

    2005-12-15

    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set

  3. Remote acoustic monitoring of North Atlantic right whales (Eubalaena glacialis reveals seasonal and diel variations in acoustic behavior.

    Directory of Open Access Journals (Sweden)

    Leanna P Matthews

    Full Text Available Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities.

  4. Remote acoustic monitoring of North Atlantic right whales (Eubalaena glacialis) reveals seasonal and diel variations in acoustic behavior.

    Science.gov (United States)

    Matthews, Leanna P; McCordic, Jessica A; Parks, Susan E

    2014-01-01

    Remote acoustic monitoring is a non-invasive tool that can be used to study the distribution, behavior, and habitat use of sound-producing species. The North Atlantic right whale (Eubalaena glacialis) is an endangered baleen whale species that produces a variety of stereotyped acoustic signals. One of these signals, the "gunshot" sound, has only been recorded from adult male North Atlantic right whales and is thought to function for reproduction, either as reproductive advertisement for females or as an agonistic signal toward other males. This study uses remote acoustic monitoring to analyze the presence of gunshots over a two-year period at two sites on the Scotian Shelf to determine if there is evidence that North Atlantic right whales may use these locations for breeding activities. Seasonal analyses at both locations indicate that gunshot sound production is highly seasonal, with an increase in the autumn. One site, Roseway West, had significantly more gunshot sounds overall and exhibited a clear diel trend in production of these signals at night. The other site, Emerald South, also showed a seasonal increase in gunshot production during the autumn, but did not show any significant diel trend. This difference in gunshot signal production at the two sites indicates variation either in the number or the behavior of whales at each location. The timing of the observed seasonal increase in gunshot sound production is consistent with the current understanding of the right whale breeding season, and our results demonstrate that detection of gunshots with remote acoustic monitoring can be a reliable way to track shifts in distribution and changes in acoustic behavior including possible mating activities. PMID:24646524

  5. Assessment of error rates in acoustic monitoring with the R package monitoR

    Science.gov (United States)

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    Detecting population-scale reactions to climate change and land-use change may require monitoring many sites for many years, a process that is suited for an automated system. We developed and tested monitoR, an R package for long-term, multi-taxa acoustic monitoring programs. We tested monitoR with two northeastern songbird species: black-throated green warbler (Setophaga virens) and ovenbird (Seiurus aurocapilla). We compared detection results from monitoR in 52 10-minute surveys recorded at 10 sites in Vermont and New York, USA to a subset of songs identified by a human that were of a single song type and had visually identifiable spectrograms (e.g. a signal:noise ratio of at least 10 dB: 166 out of 439 total songs for black-throated green warbler, 502 out of 990 total songs for ovenbird). monitoR’s automated detection process uses a ‘score cutoff’, which is the minimum match needed for an unknown event to be considered a detection and results in a true positive, true negative, false positive or false negative detection. At the chosen score cut-offs, monitoR correctly identified presence for black-throated green warbler and ovenbird in 64% and 72% of the 52 surveys using binary point matching, respectively, and 73% and 72% of the 52 surveys using spectrogram cross-correlation, respectively. Of individual songs, 72% of black-throated green warbler songs and 62% of ovenbird songs were identified by binary point matching. Spectrogram cross-correlation identified 83% of black-throated green warbler songs and 66% of ovenbird songs. False positive rates were  for song event detection.

  6. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    Science.gov (United States)

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-01

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information. PMID:27505037

  7. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors

    Directory of Open Access Journals (Sweden)

    Lei Qin

    2014-10-01

    Full Text Available Acoustic emission (AE is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1–3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  8. On the use of horizontal acoustic doppler profilers for continuous bed shear stress monitoring

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2013-01-01

    Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean. Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler (ADCP) to monitor bed shear stress, applying a prescribed

  9. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Frouin, J.; Maurer, J.; Sathish, S.; Eylon, D.; Na, J.K.; Matikas, T.E.

    2000-07-01

    Variation in acoustic nonlinearity has been monitored in real time during fatigue, on four dog-bone specimens of Ti-6Al-4V, under low cycle fatigue conditions, from the virgin state all the way to fracture. The results of these experiments show that the acoustic nonlinearity undergoes large changes during the fatigue and follows a similar trend for the material under given fatigue test conditions. Transmission electron microscopic (TEM) examination of the samples with similar composition fatigues to different stages indicates a gradual change in the microstructure and dislocation density, which correlates with the changes in acoustic nonlinearity.

  10. A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory, and prototype development.

    Science.gov (United States)

    Zeqiri, Bajram; Gélat, Pierre N; Hodnett, Mark; Lee, Nigel D

    2003-10-01

    This paper describes a new concept for an ultrasonic cavitation sensor designed specifically for monitoring acoustic emissions generated by small microbubbles when driven by an applied acoustic field. Its novel features include a hollow, open-ended, cylindrical shape, with the sensor being a right circular cylinder of height 32 mm and external diameter 38 mm. The internal diameter of the sensor is 30 mm; its inner surface is fabricated from a 110-microm layer of piezoelectrically active film whose measurement bandwidth is sufficient to enable acoustic emissions up to and beyond 10 MHz to be monitored. When in use, the sensor is immersed within the liquid test medium and high frequency (megahertz) acoustic emissions occurring within the hollow body of the sensor are monitored. In order to shield the sensor response from events occurring outside the cylinder, the outer surface of the sensor cylinder is encapsulated within a special 4-mm thick polyurethane-based cavitation shield with acoustic properties specifically developed to be minimally perturbing to the 40 kHz applied acoustic field but attenuating to ultrasound generated at megahertz frequencies (plane-wave transmission loss > 30 dB at 1 MHz). This paper introduces the rationale behind the new sensor, describing details of its construction and the materials formulation program undertaken to develop the cavitation shield. PMID:14609074

  11. Acoustic monitoring of terrorist intrusion in a drinking water network

    NARCIS (Netherlands)

    Quesson, B.A.J.; Sheldon-Robert, M.K.; Vloerbergh, I.N.; Vreeburg, J.H.G.

    2009-01-01

    In collaboration with Kiwa Water Research, TNO (Netherlands Organisation for Applied Scientific Research) has investigated the possibilities to detect and classify aberrant sounds in water networks, using acoustic sensors. Amongst the sources of such sounds are pumps, drills, mechanical impacts, whi

  12. An effective sensor for tool wear monitoring in face milling : acoustic emmision

    OpenAIRE

    Mathew, M. T.; P S Pai; Rocha, L A

    2008-01-01

    Acoustic Emission (AE) has been widely used for monitoring manufacturing processes particularly those involving metal cutting. Monitoring the condition of the cutting tool in the machining process is very important since tool condition will affect the part size, quality and an unexpected tool failure may damage the tool, work-piece and sometimes the machine tool itself. AE can be effectively used for tool condition monitoring applications because the emissions from process c...

  13. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    Science.gov (United States)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  14. Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.

    Science.gov (United States)

    Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela

    2016-01-01

    We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier.

  15. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  16. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    International Nuclear Information System (INIS)

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  17. Passive acoustic monitoring of toothed whales with implications for mitigation, management and biology

    DEFF Research Database (Denmark)

    Kyhn, Line Anker

    acoustic monitoring (PAM). PAM is particularly suited to study small inconspicuous for these species. Among the small odontocetes, four produce the same special echolocation click type, the narrow band high frequency (NBHF) click that has evolved through convergent evolution. Clicks of the individual NBHF...... focus of chapter II in this thesis was specifically to try to find a method to combine traditional transect survey distance sampling and acoustic monitoring by means of cue counting to be able to estimate densities from datalogger data. The problem is how to derive a detection function, i.e. a function......-recapture design to describe the detection function. From the detection function we then calculated the effective detection radius, which we then used to estimate the density of porpoises in the area. As cue for the acoustic detections we tested different durations with click trains. We obtained the cue production...

  18. Experimental study of advanced continuous acoustic-emission monitoring of BWR components. Final report

    International Nuclear Information System (INIS)

    This report presents the results of a four year research program on the utilization of acoustic emission techniques on light water reactor component applications. Two techniques of the acoustic emission technology were applied to specific problems occurring within the light water reactor system. Crack detection AE monitoring was applied to thermal cycle fatigue cracking problems and stress corrosion cracking problems. Leak detection AE monitoring was applied to valve leakage in the main steam safety relief valves and incontainment packing gland valves. The report provides AE data showing how AE crack detection can be used as an on-line diagnostic monitoring tool. By having an active monitor on light water reactor components, the inservice inspection of the components is being performed during operation rather than refueling periods, thereby reducing critical path time during outages. The resultant benefit is increased plant availability and a reduction in accumulated radiation exposure

  19. Advanced Computing Methods for Knowledge Discovery and Prognosis in Acoustic Emission Monitoring

    Science.gov (United States)

    Mejia, Felipe

    2012-01-01

    Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…

  20. Statistical fracture of E-glass fibres using a bundle tensile test and acoustic emission monitoring

    OpenAIRE

    R'Mili, M.; Moevus, M.; Godin, N.

    2009-01-01

    Statistical fracture of E-glass fibres using a bundle tensile test and acoustic emission monitoring correspondance: Corresponding author.Tel.: +33472436127; fax: +33472438528. (R?Mili, M.) (R?Mili, M.) Universite de Lyon--> , INSA-Lyon--> , MATEIS--> , 7 Avenue Jean Capelle--> , 69621 Villeurbanne Cedex--> - FRANCE (R?Mili, M.) Universite de Lyon--> , INSA-Lyo...

  1. A scalable acoustic sensor network for model based monitoring of urban traffic noise

    NARCIS (Netherlands)

    Basten, T.G.H.; Wessels, P.W.; Eerden, F.J.M. van der

    2012-01-01

    A good understanding of the acoustic environment due to traffic in urban areas is very important. Long term monitoring within large areas provides a clear insight in the actual noise situation. This is needed to take appropriate and cost efficient measures; to asses the effect of measures by compari

  2. An integrated vision for environmental monitoring and the role of acoustic communication networks

    OpenAIRE

    Jesus, S.M.

    2012-01-01

    Current pace of ocean resources exploitation have set the alarm for tighter environmental monitoring. Recent European legislation requires very accurate measurements of reference values for all types of ocean pollution, including acoustic noise. For near shore or offshore construction, platforms or infrastructures extensive measurements should be carried out before during and after exploitation activities have taken place. Environmental monitoring requires the deployment of sensors with speci...

  3. Density can be misleading for low-density species: benefits of passive acoustic monitoring.

    Directory of Open Access Journals (Sweden)

    Tracey L Rogers

    Full Text Available Climate-induced changes may be more substantial within the marine environment, where following ecological change is logistically difficult, and typically expensive. As marine animals tend to produce stereotyped, long-range signals, they are ideal for repeatable surveying. In this study we illustrate the potential for calling rates to be used as a tool for determining habitat quality by using an Antarctic pack-ice seal, the leopard seal, as a model.With an understanding of the vocal behavior of a species, their seasonal and diurnal patterns, sex and age-related differences, an underwater passive-acoustic survey conducted alongside a visual survey in an arc of 4,225 km across the Davis Sea, Eastern Antarctica, showed that while acoustic and visual surveys identified similar regions as having high densities, the acoustic surveys surprisingly identified the opposite regions as being 'critical' habitats. Density surveys of species that cannot be differentiated into population classes may be misleading because overall density can be a negative indicator of habitat quality.Under special circumstances acoustics can offer enormous advantage over traditional techniques and open up monitoring to regions that are remote, difficult and expensive to work within, no longer restricting long-term community assessment to resource-wealthy communities. As climatic change affects a broad range of organisms across geographic boundaries we propose that capitalizing on the significant advances in passive acoustic technology, alongside physical acoustics and population modeling, can help in addressing ecological questions more broadly.

  4. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion

    International Nuclear Information System (INIS)

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume–velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. (paper)

  5. Distributed feedback fiber laser acoustic emission sensor for concrete structure health monitoring

    Science.gov (United States)

    Hao, Gengjie; Huang, Wenzhu; Zhang, Wentao; Sun, Baochen; Li, Fang

    2014-05-01

    This paper introduces a highly-sensitive fiber optical acoustic emission (AE) sensor and a parameter analysis method aiming at concrete structure health monitoring. Distributed feedback fiber-laser (DFB-FL), which is encapsulated to have a high acoustic sensitivity, is used for sensor unit of the AE sensor. The AE signal of concrete beam in different work stages, based on the four-point bending experiment of the concrete beam, is picked up, and the relationship between the concrete beam work stages and the AE parameter is found. The results indicate that DFB-FLAES can be used as sensitive transducers for recording acoustic events and forecasting the imminent failure of the concrete beam.

  6. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    Science.gov (United States)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  7. Robust procedures in chemometrics

    DEFF Research Database (Denmark)

    Kotwa, Ewelina

    . applying a multivariate and multi-way data analytical frame-work in fields where less sophisticated data analysis methods are currently used, and 2. developing new, more robust alternatives to already existing multivariate tools. The first part of the study was realised by applying two- and three......-way chemometrical methods, such as PCA and PARAFAC models for analysing spatial and depth profiles of sea water samples, defined by three data modes: depth, variables and geographical location. Emphasis was also put on predicting fluorescence values, as being a natural measure of biological activity, by applying...

  8. A fully automatic wildlife acoustic monitor and survey system

    OpenAIRE

    Boucher, Neil; Jinnai, Michihiro; Smolders, Andrew

    2012-01-01

    International audience We describe a fully automated, PC based wildlife monitoring and survey system that is used for diverse species studies. The system uses a wide-area recorder that can record over areas of up to several square kilometres. The recorder can run, unattended for more than a month. The recordings can either be analysed in real time to produce a particular response (e.g. send an SMS if a rare parrot is detected), or can be analysed later on a PC. Any number of different spec...

  9. Chemometrics review for chemical sensor development, task 7 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-01

    This report, the seventh in a series on the evaluation of several chemical sensors for use in the U.S. Department of Energy`s (DOE`s) site characterization and monitoring programs, concentrates on the potential use of chemometrics techniques in analysis of sensor data. Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods that employ formal logic to: design or select optimal measurement procedures and experiments and provide maximum relevant chemical information by analyzing chemical data. The report emphasizes the latter aspect. In a formal sense, two distinct phases are in chemometrics applications to analytical chemistry problems: (1) the exploratory data analysis phase and (2) the calibration and prediction phase. For use in real-world problems, it is wise to add a third aspect - the independent validation and verification phase. In practical applications, such as the ERWM work, and in order of decreasing difficulties, the most difficult tasks in chemometrics are: establishing the necessary infrastructure (to manage sampling records, data handling, and data storage and related aspects), exploring data analysis, and solving calibration problems, especially for nonlinear models. Chemometrics techniques are different for what are called zeroth-, first-, and second-order systems, and the details depend on the form of the assumed functional relationship between the measured response and the concentrations of components in mixtures. In general, linear relationships can be handled relatively easily, but nonlinear relationships can be difficult.

  10. Chemometrics review for chemical sensor development, task 7 report

    International Nuclear Information System (INIS)

    This report, the seventh in a series on the evaluation of several chemical sensors for use in the U.S. Department of Energy's (DOE's) site characterization and monitoring programs, concentrates on the potential use of chemometrics techniques in analysis of sensor data. Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods that employ formal logic to: design or select optimal measurement procedures and experiments and provide maximum relevant chemical information by analyzing chemical data. The report emphasizes the latter aspect. In a formal sense, two distinct phases are in chemometrics applications to analytical chemistry problems: (1) the exploratory data analysis phase and (2) the calibration and prediction phase. For use in real-world problems, it is wise to add a third aspect - the independent validation and verification phase. In practical applications, such as the ERWM work, and in order of decreasing difficulties, the most difficult tasks in chemometrics are: establishing the necessary infrastructure (to manage sampling records, data handling, and data storage and related aspects), exploring data analysis, and solving calibration problems, especially for nonlinear models. Chemometrics techniques are different for what are called zeroth-, first-, and second-order systems, and the details depend on the form of the assumed functional relationship between the measured response and the concentrations of components in mixtures. In general, linear relationships can be handled relatively easily, but nonlinear relationships can be difficult

  11. Wireless surface acoustic wave sensors for displacement and crack monitoring in concrete structures

    Science.gov (United States)

    Perry, M.; McKeeman, I.; Saafi, M.; Niewczas, P.

    2016-03-01

    In this work, we demonstrate that wireless surface acoustic wave devices can be used to monitor millimetre displacements in crack opening during the cyclic and static loading of reinforced concrete structures. Sensors were packaged to extend their gauge length and to protect them against brittle fracture, before being surface-mounted onto the tensioned surface of a concrete beam. The accuracy of measurements was verified using computational methods and optical-fibre strain sensors. After packaging, the displacement and temperature resolutions of the surface acoustic wave sensors were 10 μ {{m}} and 2 °C respectively. With some further work, these devices could be retrofitted to existing concrete structures to facilitate wireless structural health monitoring.

  12. Apparatus and method for acoustic monitoring of steam quality and flow

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N.; Pantea, Cristian

    2016-09-13

    An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.

  13. Acoustic Emission Based In-process Monitoring in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo;

    The applicability of acoustic emission (AE) measurements for in-process monitoring in the Robot Assisted Polishing (RAP) process was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate removal of the...... improving the efficiency of the process. It also allows for intelligent process control and generally enhances the robustness and reliability of the automated RAP system in industrial applications.......The applicability of acoustic emission (AE) measurements for in-process monitoring in the Robot Assisted Polishing (RAP) process was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate removal...... of the part from the machine tool. In this study, development of surface roughness during polishing rotational symmetric surfaces by the RAP process was inferred from AE measurements. An AE sensor was placed on a polishing tool, and a cylindrical rod of Vanadis 4E steel having an initial turned surface...

  14. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    Science.gov (United States)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  15. Acoustic Telemetry Validates a Citizen Science Approach for Monitoring Sharks on Coral Reefs

    OpenAIRE

    Vianna, Gabriel M. S.; Meekan, Mark G; Bornovski, Tova H.; Jessica J Meeuwig

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of ...

  16. Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines; Bearings, Pumps, Gearboxes, Engines and Rotating Structures.

    OpenAIRE

    Mba, David; Rao, Raj B. K. N.

    2006-01-01

    One of the earliest documented applications of Acoustic Emission Technology (AET) to rotating machinery monitoring was in the late 1960s. Since then there has been an explosion in research and application based studies covering bearings, pumps, gearboxes, engines and rotating structures. This paper presents a comprehensive and critical review to date on the application of Acoustic Emission Technology to condition monitoring and diagnostics of rotating machinery.

  17. STUDY ON STABILITY OF UNDERGROUND STRUCTURAL ENGINEERING BY ACOUSTIC EMISSION MONITORING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    来兴平; 张冰川; 蔡美峰

    2000-01-01

    A simulation acoustic emission (AE) signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal. This paper introduces the artificial monitoring system, its application at underground roadway and its monitoring results, and tries to explore theoretically analyzing method of stability of underground concrete roadway by AE parameters. A simulation AE signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal It shows the nice future of the application in the active damage detection of composite material.

  18. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo;

    2015-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  19. A Device for Fetal Monitoring by Means of Control Over Cardiovascular Parameters Based on Acoustic Data

    Science.gov (United States)

    Khokhlova, L. A.; Seleznev, A. I.; Zhdanov, D. S.; Zemlyakov, I. Yu; Kiseleva, E. Yu

    2016-01-01

    The problem of monitoring fetal health is topical at the moment taking into account a reduction in the level of fertile-age women's health and changes in the concept of perinatal medicine with reconsideration of live birth criteria. Fetal heart rate monitoring is a valuable means of assessing fetal health during pregnancy. The routine clinical measurements are usually carried out by the means of ultrasound cardiotocography. Although the cardiotocography monitoring provides valuable information on the fetal health status, the high quality ultrasound devices are expensive, they are not available for home care use. The recommended number of measurement is also limited. The passive and fully non-invasive acoustic recording provides an alternative low-cost measurement method. The article describes a device for fetal and maternal health monitoring by analyzing the frequency and periodicity of heart beats by means of acoustic signal received on the maternal abdomen. Based on the usage of this device a phonocardiographic fetal telemedicine system, which will allow to reduce the antenatal fetal mortality rate significantly due to continuous monitoring over the state of fetus regardless of mother's location, can be built.

  20. On the Application of the Raspberry Pi as an Advanced Acoustic Sensor Network for Noise Monitoring

    Directory of Open Access Journals (Sweden)

    Juan Emilio Noriega-Linares

    2016-10-01

    Full Text Available The concept of Smart Cities and the monitoring of environmental parameters is an area of research that has attracted scientific attention during the last decade. These environmental parameters are well-known as important factors in their affection towards people. Massive monitoring of this kind of parameters in cities is an expensive and complex task. Recent technologies of low-cost computing and low-power devices have opened researchers to a wide and more accessible research field, developing monitoring devices for deploying Wireless Sensor Networks. Gathering information from them, improved urban plans could be carried out and the information could help citizens. In this work, the prototyping of a low-cost acoustic sensor based on the Raspberry Pi platform for its use in the analysis of the sound field is described. The device is also connected to the cloud to share results in real time. The computation resources of the Raspberry Pi allow treating high quality audio for calculating acoustic parameters. A pilot test was carried out with the installation of two acoustic devices in the refurbishment works of a neighbourhood. In this deployment, the evaluation of these devices through long-term measurements was carried out, obtaining several acoustic parameters in real time for its broadcasting and study. This test has shown the Raspberry Pi as a powerful and affordable computing core of a low-cost device, but also the pilot test has served as a query tool for the inhabitants of the neighbourhood to be more aware about the noise in their own place of residence.

  1. An acoustic-array based structural health monitoring technique for wind turbine blades

    Science.gov (United States)

    Aizawa, Kai; Poozesh, Peyman; Niezrecki, Christopher; Baqersad, Javad; Inalpolat, Murat; Heilmann, Gunnar

    2015-04-01

    This paper proposes a non-contact measurement technique for health monitoring of wind turbine blades using acoustic beamforming techniques. The technique works by mounting an audio speaker inside a wind turbine blade and observing the sound radiated from the blade to identify damage within the structure. The main hypothesis for the structural damage detection is that the structural damage (cracks, edge splits, holes etc.) on the surface of a composite wind turbine blade results in changes in the sound radiation characteristics of the structure. Preliminary measurements were carried out on two separate test specimens, namely a composite box and a section of a wind turbine blade to validate the methodology. The rectangular shaped composite box and the turbine blade contained holes with different dimensions and line cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiation from both structures when the speaker was located inside the box and also inside the blade segment. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference (CLSPR) were employed to locate the different damage types on both the composite box and the wind turbine blade. The same experiment was repeated by using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLSPR techniques can be used to identify the damage in the test structures with sufficiently high fidelity.

  2. Effects of different analysis techniques and recording duty cycles on passive acoustic monitoring of killer whales.

    Science.gov (United States)

    Riera, Amalis; Ford, John K; Ross Chapman, N

    2013-09-01

    Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency. PMID:23968036

  3. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach.

    Science.gov (United States)

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-03-22

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches.

  4. Remote structural health monitoring with serially multiplexed fiber optic acoustic emission sensors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Development and testing of a serially multiplexed fiber optic sensor system is described. The sensor differs from conventional fiber optic acoustic systems, as it is capable of sensing AE emissions at several points along the length of a single fiber. Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of crack locations. Laboratory experiments on plain concrete beams and post-tensioned FRP tendons were performed to evaluate the crack detection capability of the sensor system. The acoustic emission sensor was able to detect initiation, growth and location of the cracks in concrete as well as in the FRP tendons. The AE system is potentially suitable for applications involving health monitoring of structures following an earthquake.

  5. Ambient Noise Surface Wave Tomography for Geotechnical Monitoring Using "Large N" Distributed Acoustic Sensing

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Martin, E. R.; Wagner, A. M.; Robertson, M.; Bjella, K.; Gelvin, A.; Ulrich, C.; Wu, Y.; Freifeld, B. M.; Daley, T. M.; Dou, S.

    2015-12-01

    Surface wave tomography using ambient noise sources has found broad application at the regional scale but has not been adopted fully for geotechnical applications despite the abundance of noise sources in this context. The recent development of Distributed Acoustic Sensing (DAS) provides a clear path for inexpensively recording high spatial resolution (survey as well as direct-push data on ice content. We also compare vintages of ambient noise DAS data to evaluate the short-term repeatability of the technique in the face of changing noise environments. The resulting dataset demonstrates the utility of using DAS for real-time shear-modulus monitoring in support of critical infrastructure.

  6. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Science.gov (United States)

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  7. Mechanical degradation of cross-ply laminates monitored by acoustic emission

    Science.gov (United States)

    Paipetis, A.; Xyrafa, M.; Barkoula, N. M.; Matikas, T. E.; Aggelis, D. G.

    2011-04-01

    This study deals with the investigation of cross ply composites failure by acoustic emission (AE). Broadband AE sensors monitor the different sources of failure in coupons of this material during a tensile loading-unloading test. The cumulative number of AE activity, and other qualitative indices based on the shape of the waves, were well correlated to the sustained load. AE parameters indicate the shift of failure mechanisms within the composite as the load increases. The ultimate goal is a methodology based on NDT techniques for real time characterization of the degradation and identification of the fracture stage of advanced composite materials.

  8. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    Science.gov (United States)

    O'Donnell, Matthew; Ye, Jing Yong; Norris, Theodore B.; Baker, Jr., James R.; Balogh, Lajos P.; Milas, Susanne M.; Emelianov, Stanislav Y.; Hollman, Kyle W.

    2008-05-06

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  9. Laser ablation of absorbing liquids under transparent cover: acoustical and optical monitoring

    Science.gov (United States)

    Samokhin, A. A.; Il'ichev, N. N.; Pivovarov, P. A.; Sidorin, A. V.

    2016-06-01

    Phase transition induced with infrared (λ = 2920 nm and λ = 2940 nm) nanosecond laser pulses in strongly absorbing liquids (water, ethanol) under transparent solid cover is investigated with the help of acoustical and optical monitoring. LiNbO3 transducer is used for registration of pressure pulses generated in irradiated liquids. Optical signals due to scattering and specular reflection of probing optical beams are explored with the schemes involving total internal reflection and interference effects. Combination of these two optical diagnostic methods permits for the first time to show that irradiation of covered liquids leads to vapor cavity formation which is divided from the cover with thin (submicron) liquid film despite the fact that radiation intensity maximum is located just at the liquid-plate boundary. The cavity formation is due to explosive boiling which occurs when the superheated liquid reaches its superheating limit in near critical region. After the first acoustical signal, the second signal is observed with several hundreds microseconds time delay which is caused by the vapor cavity collapse. Some results of optical and acoustical diagnostics in the case of free liquid surface are also presented.

  10. Health monitoring of Ceramic Matrix Composites from waveform-based analysis of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Maillet Emmanuel

    2015-01-01

    Full Text Available Ceramic Matrix Composites (CMCs are anticipated for use in the hot section of aircraft engines. Their implementation requires the understanding of the various damage modes that are involved and their relation to life expectancy. Acoustic Emission (AE has been shown to be an efficient technique for monitoring damage evolution in CMCs. However, only a waveform-based analysis of AE can offer the possibility to validate and precisely examine the recorded AE data with a view to damage localization and identification. The present work fully integrates wave initiation, propagation and acquisition in the analysis of Acoustic Emission waveforms recorded at various sensors, therefore providing more reliable information to assess the relation between Acoustic Emission and damage modes. The procedure allows selecting AE events originating from damage, accurate determination of their location as well as the characterization of effects of propagation on the recorded waveforms. This approach was developed using AE data recorded during tensile tests on carbon/carbon composites. It was then applied to melt-infiltrated SiC/SiC composites.

  11. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    Directory of Open Access Journals (Sweden)

    Holger Klinck

    Full Text Available In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical

  12. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in Kevlar (R) 49 Composites

    Science.gov (United States)

    Waller, Jess M.; Saulsberry, Regor L.; Andrade, Eduardo

    2009-01-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar(Registeres TradeMark) 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio < 1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  13. Assessment of Groundwater Quality by Chemometrics.

    Science.gov (United States)

    Papaioannou, Agelos; Rigas, George; Kella, Sotiria; Lokkas, Filotheos; Dinouli, Dimitra; Papakonstantinou, Argiris; Spiliotis, Xenofon; Plageras, Panagiotis

    2016-07-01

    Chemometric methods were used to analyze large data sets of groundwater quality from 18 wells supplying the central drinking water system of Larissa city (Greece) during the period 2001 to 2007 (8.064 observations) to determine temporal and spatial variations in groundwater quality and to identify pollution sources. Cluster analysis grouped each year into three temporal periods (January-April (first), May-August (second) and September-December (third). Furthermore, spatial cluster analysis was conducted for each period and for all samples, and grouped the 28 monitoring Units HJI (HJI=represent the observations of the monitoring site H, the J-year and the period I) into three groups (A, B and C). Discriminant Analysis used only 16 from the 24 parameters to correctly assign 97.3% of the cases. In addition, Factor Analysis identified 7, 9 and 8 latent factors for groups A, B and C, respectively. PMID:27329059

  14. Structural Health Monitoring of Wind Turbine Blades: Acoustic Source Localization Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Mabrok Bouzid

    2015-01-01

    Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.

  15. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    Science.gov (United States)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  16. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  17. A portable Raman acoustic levitation spectroscopic system for the identification and environmental monitoring of algal cells.

    Science.gov (United States)

    Wood, Bayden R; Heraud, Philip; Stojkovic, Slobodanka; Morrison, Danielle; Beardall, John; McNaughton, Don

    2005-08-01

    We report the coupling of a portable Raman spectrometer to an acoustic levitation device to enable environmental monitoring and the potential taxonomic identification of microalgae. Spectra of living cells were recorded at 785 nm using a fiber-optic probe coupled to a portable Raman spectrometer. The spectra exhibit an excellent signal-to-noise ratio and clearly show bands from chlorophyll a and beta-carotene. Spectra of levitated photobleached microalgae clearly show a reduction in chlorophyll a concentration relative to beta-carotene after 10 min of exposure to a quartz halogen lamp. Spectra recorded from levitated nitrogen-limited cells also show a significant reduction in bands associated with chlorophyll a, as compared to nitrogen-replete cells. To investigate the diagnostic capability of the technique, four species of microalgae were analyzed. Good quality spectra of all four species were obtained showing varying ratios of beta-carotene to chlorophyll. The combination of an acoustic levitation device and a portable Raman spectrometer shows potential as a taxonomic and environmental monitoring tool with direct application to field studies in remote environments. PMID:16053309

  18. Laser tattoo removal as an ablation process monitored by acoustical and optical methods

    Science.gov (United States)

    Cencič, Boris; Gregorčič, Peter; Možina, Janez; Jezeršek, Matija

    2013-07-01

    Strength of the laser-tissue interaction varies even within a single tattoo because of the inhomogeneous distribution of the tattoo pigment embedded in the skin. A monitoring system is therefore developed for simultaneous monitoring of the laser tattoo removal process based on acoustical and optical techniques. A laser-beam-deflection probe is used for measuring the acoustical signals accompanying the breakdown, and a CCD camera captures the level and the spatial distribution of the plasma radiation. Using these methods we examine the degree of excitation-pulse absorption within the pigment and the degree of the structural changes of the skin. A Nd:YAG laser with a top-hat beam profile, designed for tattoo removal, is used as the excitation source in our experiments. Special attention is given to structural changes in the skin, which depend on the applied fluence. Tattoo removal with multiple pulses is also analyzed. Experiments are made in vitro (skin phantoms) and ex vivo (marking tattoos on the pig skin). The presented results are important for the understanding and optimization of the process used in medical therapies.

  19. Acoustic emission (AE) health monitoring of diaphragm type couplings using neural network analysis

    Science.gov (United States)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce

    2005-05-01

    This paper presents the latest results obtained from Acoustic Emission (AE) monitoring and detection of cracks and/or damage in diaphragm couplings, which are used in some aircraft and engine drive systems. Early detection of mechanical failure in aircraft drive train components is a key safety and economical issue with both military and civil sectors of aviation. One of these components is the diaphragm-type coupling, which has been evaluated as the ideal drive coupling for many application requirements such as high speed, high torque, and non-lubrication. Its flexible axial and angular displacement capabilities have made it indispensable for aircraft drive systems. However, diaphragm-type couplings may develop cracks during their operation. The ability to monitor, detect, identify, and isolate coupling cracks on an operational aircraft system is required in order to provide sufficient advance warning to preclude catastrophic failure. It is known that metallic structures generate characteristic Acoustic Emission (AE) during crack growth/propagation cycles. This phenomenon makes AE very attractive among various monitoring techniques for fault detection in diaphragm-type couplings. However, commercially available systems capable of automatic discrimination between signals from crack growth and normal mechanical noise are not readily available. Positive classification of signals requires experienced personnel and post-test data analysis, which tend to be a time-consuming, laborious, and expensive process. With further development of automated classifiers, AE can become a fully autonomous fault detection technique requiring no human intervention after implementation. AE has the potential to be fully integrated with automated query and response mechanisms for system/process monitoring and control.

  20. Passive acoustic monitoring of coastally associated Hawaiian spinner dolphins, Stenella longirostris, ground-truthed through visual surveys.

    Science.gov (United States)

    Heenehan, Heather L; Tyne, Julian A; Bejder, Lars; Van Parijs, Sofie M; Johnston, David W

    2016-07-01

    Effective decision making to protect coastally associated dolphins relies on monitoring the presence of animals in areas that are critical to their survival. Hawaiian spinner dolphins forage at night and rest during the day in shallow bays. Due to their predictable presence, they are targeted by dolphin-tourism. In this study, comparisons of presence were made between passive acoustic monitoring (PAM) and vessel-based visual surveys in Hawaiian spinner dolphin resting bays. DSG-Ocean passive acoustic recording devices were deployed in four bays along the Kona Coast of Hawai'i Island between January 8, 2011 and August 30, 2012. The devices sampled at 80 kHz, making 30-s recordings every four minutes. Overall, dolphins were acoustically detected on 37.1% to 89.6% of recording days depending on the bay. Vessel-based visual surveys overlapped with the PAM surveys on 202 days across the four bays. No significant differences were found between visual and acoustic detections suggesting acoustic surveys can be used as a proxy for visual surveys. Given the need to monitor dolphin presence across sites, PAM is the most suitable and efficient tool for monitoring long-term presence/absence. Concomitant photo-identification surveys are necessary to address changes in abundance over time. PMID:27475147

  1. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    Science.gov (United States)

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  2. Research on the Monitoring System of CNC Grinding Process Based on Acoustic Emission

    Institute of Scientific and Technical Information of China (English)

    HU Zhongxiang; TENG Jiaxu; YANG Junwei; HUO Xiaojing; SHI Xiaojun

    2006-01-01

    Using on-line monitoring during the CNC grinding process, the hazard case such as the crushing of grinding wheel and various safety accidents could be avoided, and the optimum time for dressing and replacing grinding wheel could also be determined, and hence, the service life of the grinding wheel could be prolonged and grinding quality could be improved. To overcome the limitation of some traditional techniques in which some parameters including the grinding power and force, torque and so on were monitored, the acoustic emission (AE) technique, which provides high sensitivity and responding speed, were developed in the present paper. The mechanism of AE during grinding was reviewed. Moreover, a virtual AE monitoring system, which could monitor the grinding state under different working conditions during the grinding, has been developed based on the Virtual Instruments technique. Some experiments were also performed on the internal grinder. The results showed that the AE signals became stronger with increasing the main shaft speed and grinding depth or decreasing the distance between the AE sensor and grinding area.

  3. An effective sensor for tool wear monitoring in face milling: Acoustic emission

    Indian Academy of Sciences (India)

    M T Mathew; P Srinivasa Pai; L A Rocha

    2008-06-01

    Acoustic Emission (AE) has been widely used for monitoring manufacturing processes particularly those involving metal cutting. Monitoring the condition of the cutting tool in the machining process is very important since tool condition will affect the part size, quality and an unexpected tool failure may damage the tool, work-piece and sometimes the machine tool itself. AE can be effectively used for tool condition monitoring applications because the emissions from process changes like tool wear, chip formation i.e. plastic deformation, etc. can be directly related to the mechanics of the process. Also AE can very effectively respond to changes like tool fracture, tool chipping, etc. when compared to cutting force and since the frequency range is much higher than that of machine vibrations and environmental noises, a relatively uncontaminated signal can be obtained. AE signal analysis was applied for sensing tool wear in face milling operations. Cutting tests were carried out on a vertical milling machine. Tests were carried out for a given cutting condition, using single insert, two inserts (adjacent and opposite) and three inserts in the cutter. AE signal parameters like ring down count and rms voltage were measured and were correlated with flank wear values (VB max). The results of this investigation indicate that AE can be effectively used for monitoring tool wear in face milling operations.

  4. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    Directory of Open Access Journals (Sweden)

    Costas D Arvanitis

    Full Text Available The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001 larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2 = 0.78. Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  5. Estimating population size of a nocturnal burrow-nesting seabird using acoustic monitoring and habitat mapping

    Directory of Open Access Journals (Sweden)

    Steffen Oppel

    2014-04-01

    Full Text Available Population size assessments for nocturnal burrow-nesting seabirds are logistically challenging because these species are active in colonies only during darkness and often nest on remote islands where manual inspections of breeding burrows are not feasible. Many seabird species are highly vocal, and recent technological innovations now make it possible to record and quantify vocal activity in seabird colonies. Here we test the hypothesis that remotely recorded vocal activity in Cory’s shearwater (Calonectris borealis breeding colonies in the North Atlantic increases with nest density, and combined this relationship with cliff habitat mapping to estimate the population size of Cory’s shearwaters on the island of Corvo (Azores. We deployed acoustic recording devices in 9 Cory’s shearwater colonies of known size to establish a relationship between vocal activity and local nest density (slope = 1.07, R2 = 0.86, p < 0.001. We used this relationship to predict the nest density in various cliff habitat types and produced a habitat map of breeding cliffs to extrapolate nest density around the island of Corvo. The mean predicted nest density on Corvo ranged from 6.6 (2.1–16.2 to 27.8 (19.5–36.4 nests/ha. Extrapolation of habitat-specific nest densities across the cliff area of Corvo resulted in an estimate of 6326 Cory’s shearwater nests (95% confidence interval: 3735–10,524. This population size estimate is similar to previous assessments, but is too imprecise to detect moderate changes in population size over time. While estimating absolute population size from acoustic recordings may not be sufficiently precise, the strong positive relationship that we found between local nest density and recorded calling rate indicates that passive acoustic monitoring may be useful to document relative changes in seabird populations over time.

  6. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors.

    Science.gov (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui

    2012-01-01

    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009

  7. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li

    2012-03-01

    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  8. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  9. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  10. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    Science.gov (United States)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  11. Continuous wide area monitoring of fish shoaling behavior with acoustic waveguide sensing and bioclutter implications

    Science.gov (United States)

    Makris, Nicholas C.; Ratilal, Purnima; Symonds, Deanelle T.; Nero, Redwood W.

    2001-05-01

    Field measurements are used to show that the detailed behavior of fish shoals can be continuously monitored at roughly 1-min intervals over wide areas spanning hundreds of square kilometers by long range acoustic waveguide sensing. The technique was used on the New Jersey Continental Shelf to produce unprecedented video images of shoal formation, fragmentation, and migration. Simultaneous line-transect measurements show the imaged shoals to contain pelagic fish with densities of at least one individual per meter3. The technique relies upon acoustic waveguide propagation in the continental shelf. Here, trapped modes dominate propagation and suffer only cylindrical spreading loss rather than the spherical loss suffered in free-space transmission or short-range propagation in the ocean. In contrast, standard methods for fish surveyance involve line transect measurements from slow moving research vessels that significantly under-sample fish distributions in time and space, leaving an incomplete behavioral picture. The implications of this bioclutter phenomenon on the Navy's long range active sonar operations in continental shelf environments are discussed.

  12. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Zhigang Sun

    2013-01-01

    Full Text Available Piezoelectric transducers have a long history of applications in nondestructive evaluation of material and structure integrity owing to their ability of transforming mechanical energy to electrical energy and vice versa. As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM technologies capable of providing on-demand diagnosis of the structure without interrupting the aircraft operation are attracting increasing R&D efforts. Piezoelectric transducers play an essential role in these endeavors. This paper is set forth to review a variety of ingenious ways in which piezoelectric transducers are used in today’s SHM technologies as a means of generation and/or detection of diagnostic acoustic waves.

  13. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    Science.gov (United States)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  14. Nuclear safeguards for an underground final repository - Research for acoustic-seismic monitoring

    International Nuclear Information System (INIS)

    Final repositories for spent nuclear fuel need to be put under safeguards of the International Atomic Energy Agency (IAEA) to detect potential access, during and after the emplacement phase. Tasked by the German Support Programme for the IAEA we have measured acoustic and seismic signals from various mining activities in the Gorleben exploratory mine. Geophone spectra show excitation up to several kHz, often with considerable broad-band content. With periodic machinery harmonic series appear. Seismic signal strengths from different sources vary by three (including blast shots by six) orders of magnitude, in power-law fits the decrease with distance is with exponents -2 to -0.8. Many sources could be detected by amplitude at several 100 m distance, blasts at several km. By a ring of underground geophones around a repository in salt monitoring for undeclared activities seems principally possible.

  15. Acoustic Monitoring of a Previously Unstudied Whale Shark Aggregation in the Red Sea

    KAUST Repository

    Cochran, Jesse

    2012-01-01

    The whale shark (Rhincodon, typus), is a large, pelagic, filter feeder for which the available information is limited. The Red Sea populations in particular are practically unstudied. An aggregation site was recently discovered off the western coast of Saudi Arabia. We report the use of passive acoustic monitoring to assess the spatial and temporal behavior patterns of whale sharks in this new site. The aggregation occurs in the spring and peaks in April/ May. Whale sharks showed a preference for a single near shore reef and even a specific area within it. There is no evidence of sexual segregation as the genders were present in roughly equal proportion and used the same habitat at similar times. This information can be used to guide future studies in the area and to inform local management. Continued study will add to the collective knowledge on Red Sea whale sharks, including the population dynamics within the region and how they interact with the global whale shark community.

  16. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs.

    Directory of Open Access Journals (Sweden)

    Gabriel M S Vianna

    Full Text Available Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations.

  17. Acoustic telemetry validates a citizen science approach for monitoring sharks on coral reefs.

    Science.gov (United States)

    Vianna, Gabriel M S; Meekan, Mark G; Bornovski, Tova H; Meeuwig, Jessica J

    2014-01-01

    Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations. PMID:24760081

  18. Effect of fiber orientation in uni-directional glass epoxy laminate using acoustic emission monitoring

    Institute of Scientific and Technical Information of China (English)

    V. Arumugam; S. Barath Kumar; C. Santulli; A. Joseph Stanley

    2011-01-01

    Acoustic emission (AE) can be used for in situ structural health monitoring of the composite laminates.One of the main issues of AE is to characterize different damage mechanisms from the detected AE signals.In the present work,pure resin and GFRP composites laminates with different stacking sequences such as 0°,90°,angle ply[±45°],cross-ply [0°/90°] are used to trigger different failure mechanisms when subjected to tensile test with AE monitoring.The study of failure mechanisms is facilitated by the choice of different oriented specimens in which one or two such mechanisms predominate.Range of peak frequencies in each orientation is investigated using FFT analysis.Fast Fourier Transform (FFT) enabled calculating the frequency content of each damage mechanism.Randomly selected hits from each range of peak frequencies for the specimens with different orientations subjected to tensile test with AE monitoring are analyzed using short time FFT (STFFT) analysis.STFFT analysis is used to highlight the possible failure mechanism associated with each signal.The predominance of failure modes in each orientation is useful in the study of discrimination of failure modes in composite laminates from AE data.

  19. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico.

    Science.gov (United States)

    Hildebrand, John A; Baumann-Pickering, Simone; Frasier, Kaitlin E; Trickey, Jennifer S; Merkens, Karlina P; Wiggins, Sean M; McDonald, Mark A; Garrison, Lance P; Harris, Danielle; Marques, Tiago A; Thomas, Len

    2015-11-12

    Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010-2013). Beaked whale species detected include: Gervais' (Mesoplodon europaeus), Cuvier's (Ziphius cavirostris), Blainville's (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf - BWG). For Gervais' and Cuvier's beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais' beaked whales were present throughout the monitoring period, but Cuvier's beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais' and Cuvier's beaked whales had a high density throughout the monitoring period.

  20. Validation of an acoustic location system to monitor Bornean orangutan (Pongo pygmaeus wurmbii) long calls.

    Science.gov (United States)

    Spillmann, Brigitte; van Noordwijk, Maria A; Willems, Erik P; Mitra Setia, Tatang; Wipfli, Urs; van Schaik, Carel P

    2015-07-01

    The long call is an important vocal communication signal in the widely dispersed, semi-solitary orangutan. Long calls affect individuals' ranging behavior and mediate social relationships and regulate encounters between dispersed individuals in a dense rainforest. The aim of this study was to test the utility of an Acoustic Location System (ALS) for recording and triangulating the loud calls of free-living primates. We developed and validated a data extraction protocol for an ALS used to record wild orangutan males' long calls at the Tuanan field site (Central Kalimantan). We installed an ALS in a grid of 300 ha, containing 20 SM2+ recorders placed in a regular lattice at 500 m intervals, to monitor the distribution of calling males in the area. The validated system had the following main features: (i) a user-trained software algorithm (Song Scope) that reliably recognized orangutan long calls from sound files at distances up to 700 m from the nearest recorder, resulting in a total area of approximately 900 ha that could be monitored continuously; (ii) acoustic location of calling males up to 200 m outside the microphone grid, which meant that within an area of approximately 450 ha, call locations could be calculated through triangulation. The mean accuracy was 58 m, an error that is modest relative to orangutan mobility and average inter-individual distances. We conclude that an ALS is a highly effective method for detecting long-distance calls of wild primates and triangulating their position. In combination with conventional individual focal follow data, an ALS can greatly improve our knowledge of orangutans' social organization, and is readily adaptable for studying other highly vocal animals. PMID:25773926

  1. The application of acoustic emission measurements on laboratory testpieces to large scale pressure vessel monitoring

    International Nuclear Information System (INIS)

    A test pressure vessel containing 4 artificial defects was monitored for emission whilst pressure cycling to failure. Testpieces cut from both the failed vessel and from as-rolled plate material were tested in the laboratory. A marked difference in emission characteristics was observed between plate and vessel testpieces. Activity from vessel material was virtually constant after general yield and emission amplitudes were low. Plate testpieces showed maximum activity at general yield and more frequent high amplitude emissions. An attempt has been made to compare the system sensitivities between the pressure vessel test and laboratory tests. In the absence of an absolute calibration device, system sensitivities were estimated using dummy signals generated by the excitation of an emission sensor. The measurements have shown an overall difference in sensitivity between vessel and laboratory tests of approximately 25db. The reduced sensitivity in the vessel test is attributed to a combination of differences in sensors, acoustic couplant, attenuation, and dispersion relative to laboratory tests and the relative significance of these factors is discussed. Signal amplitude analysis of the emissions monitored from laboratory testpieces showed that, whith losses of the order of 25 to 30db, few emissions would be detected from the pressure vessel test. It is concluded that no reliable prediction of acoustic behaviour of a structure may be made from laboratory test unless testpieces of the actual structural material are used. A considerable improvement in detection sensitivity, is also required for reliable detection of defects in low strength ductile materials and an absolute method of system calibration is required between tests

  2. Development of Generic Methodology for Designing a Structural Health Monitoring Installation Based on the Acoustic Emission Technique

    NARCIS (Netherlands)

    Gagar, D.; Martinez, M.J.; Foote, P.

    2014-01-01

    The Acoustic Emission (AE) technique can be used to perform damage detection and localisation for structural health monitoring purposes. Implementation in aircraft structures however poses a significant challenge as its performance in terms of damage detection and localisation is not well understood

  3. Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring netsworks

    NARCIS (Netherlands)

    Risch, D.; Castellote, M.; Clark, C.W.; Lucke, K.; Verdaat, J.P.

    2014-01-01

    Background - Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of th

  4. Remote erosion and corrosion monitoring of subsea pipelines using acoustic telemetry and wet-mate connector technology

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Howard; Barlow, Stewart [Teledyne ODI, Thousand Oaks, CA (United States); Clarke, Daniel [Teledyne Cormon, Thousand Oaks, CA (United States); Green, Dale [Teledyne Benthos, North Falmouth, MA (United States)

    2009-07-01

    This paper will present a novel approach for monitoring erosion and corrosion using proven sub sea technologies: intrusive erosion and corrosion monitoring, acoustic telemetry and wet-mateable connector technology. Intrusive metal loss based monitoring systems on sub sea pipelines are increasingly being used because of their ability to directly measure erosion and corrosion. These systems are integrated with the sub sea production control system or located close to the platform and hard-wired. However, locations remote from a sub sea control system or platform requires a dedicated communication system and long lengths of cable that can be cost prohibitive to procure and install. The system presented consists of an intrusive erosion or corrosion monitor with pressure and temperature transmitters, a retrievable electronics module with an acoustic modem, a data storage module, and a replaceable power module. Time-stamped erosion and corrosion data can be transmitted via an acoustic link to a surface platform, a vessel of opportunity or to a relaying modem. Acoustic signals can be transmitted up to 6 km from the monitoring location. The power module along with data module and acoustic modem are mounted on the erosion and corrosion module using wet-mateable connectors, allowing retrieval by remotely operated vehicles. The collected data can be used to assess the cumulative erosion and corrosion as well as use the real-time metal loss rate data to correlate with operational parameters. Benefits include optimization of corrosion inhibitor dosage rates, mitigation of damage caused by solids production, and increased flow assurance. (author)

  5. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  6. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    Science.gov (United States)

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features. PMID:24181982

  7. Clinical Studies of Real-Time Monitoring of Lithotripter Performance Using Passive Acoustic Sensors

    Science.gov (United States)

    Leighton, T. G.; Fedele, F.; Coleman, A. J.; McCarthy, C.; Ryves, S.; Hurrell, A. M.; De Stefano, A.; White, P. R.

    2008-09-01

    This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated

  8. A novel technique for acoustic emission monitoring in civil structures with global fiber optic sensors

    Science.gov (United States)

    Verstrynge, E.; Pfeiffer, H.; Wevers, M.

    2014-06-01

    The application of acoustic emission (AE)-based damage detection is gaining interest in the field of civil structural health monitoring. Damage progress can be detected and located in real time and the recorded AEs hold information on the fracture process which produced them. One of the drawbacks for on-site application in large-scale concrete and masonry structures is the relatively high attenuation of the ultrasonic signal, which limits the detection range of the AE sensors. Consequently, a large number of point sensors are required to cover a certain area. To tackle this issue, a global damage detection system, based on AE detection with a polarization-modulated, single mode fiber optic sensor (FOS), has been developed. The sensing principle, data acquisition and analysis in time and frequency domain are presented. During experimental investigations, this AE-FOS is applied for the first time as a global sensor for the detection of crack-induced AEs in a full-scale concrete beam. Damage progress is monitored during a cyclic four-point bending test and the AE activity, detected with the FOS, is related to the subsequent stages of damage progress in the concrete element. The results obtained with the AE-FOS are successfully linked to the mechanical behavior of the concrete beam and a qualitative correspondence is found with AE data obtained by a commercial system.

  9. Environmental influences on the spatial ecology of juvenile smalltooth sawfish (Pristis pectinata): results from acoustic monitoring.

    Science.gov (United States)

    Simpfendorfer, Colin A; Yeiser, Beau G; Wiley, Tonya R; Poulakis, Gregg R; Stevens, Philip W; Heupel, Michelle R

    2011-01-01

    To aid recovery efforts of smalltooth sawfish (Pristis pectinata) populations in U.S. waters a research project was developed to assess how changes in environmental conditions within estuarine areas affected the presence, movements, and activity space of this endangered species. Forty juvenile P. pectinata were fitted with acoustic tags and monitored within the lower 27 km of the Caloosahatchee River estuary, Florida, between 2005 and 2007. Sawfish were monitored within the study site from 1 to 473 days, and the number of consecutive days present ranged from 1 to 125. Residency index values for individuals varied considerably, with annual means highest in 2005 (0.95) and lowest in 2007 (0.73) when several P. pectinata moved upriver beyond detection range during drier conditions. Mean daily activity space was 1.42 km of river distance. The distance between 30-minute centers of activity was typically <0.1 km, suggesting limited movement over short time scales. Salinity electivity analysis demonstrated an affinity for salinities between 18 and at least 24 psu, suggesting movements are likely made in part, to remain within this range. Thus, freshwater flow from Lake Okeechobee (and its effect on salinity) affects the location of individuals within the estuary, although it remains unclear whether or not these movements are threatening recovery.

  10. Environmental influences on the spatial ecology of juvenile smalltooth sawfish (Pristis pectinata: results from acoustic monitoring.

    Directory of Open Access Journals (Sweden)

    Colin A Simpfendorfer

    Full Text Available To aid recovery efforts of smalltooth sawfish (Pristis pectinata populations in U.S. waters a research project was developed to assess how changes in environmental conditions within estuarine areas affected the presence, movements, and activity space of this endangered species. Forty juvenile P. pectinata were fitted with acoustic tags and monitored within the lower 27 km of the Caloosahatchee River estuary, Florida, between 2005 and 2007. Sawfish were monitored within the study site from 1 to 473 days, and the number of consecutive days present ranged from 1 to 125. Residency index values for individuals varied considerably, with annual means highest in 2005 (0.95 and lowest in 2007 (0.73 when several P. pectinata moved upriver beyond detection range during drier conditions. Mean daily activity space was 1.42 km of river distance. The distance between 30-minute centers of activity was typically <0.1 km, suggesting limited movement over short time scales. Salinity electivity analysis demonstrated an affinity for salinities between 18 and at least 24 psu, suggesting movements are likely made in part, to remain within this range. Thus, freshwater flow from Lake Okeechobee (and its effect on salinity affects the location of individuals within the estuary, although it remains unclear whether or not these movements are threatening recovery.

  11. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    Science.gov (United States)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  12. Acoustic monitoring in the Ross Sea, Antarctica, using hydrophone of the Ocean Bottom Seismometer

    Science.gov (United States)

    Yun, Sukyoung; Lee, Won Sang; Kuk Hong, Jong; Yoo, Hyun Jae; Park, Yongcheol; Schmidt-Aursch, Mechita; Geissler, Wolfram H.

    2016-04-01

    Although a number of active source seismic experiments have been conducted over the last few decades to investigate the crustal structure in the Ross Sea, Antarctica, long-term observation to monitor underwater tectonic activities and changes in the cryospheric environment still remains challenging due to existence of sea ice in the study region. Korea Polar Research Institute has accomplished successful deployment of ocean bottom seismometers (OBS) in the Ross Sea collaborating with Alfred Wegener Institute during the period of 2011-2012 and 2014 by Korean icebreaker RV Araon. The OBS system manufactured by K.U.M. contains a hydrophone sensor that allow us to monitor underwater acoustics generated by tectonic and ice-related events. We present spectrograms of the continuous hydroacoustic data and various types of signals, e.g. seismic T-waves, iceequakes, and tremors. There are periodic and harmonic tremors that might be related with tidal modulation, and the seasonal variation of the background noise seems to be related with sea ice concentration.

  13. A novel technique for acoustic emission monitoring in civil structures with global fiber optic sensors

    International Nuclear Information System (INIS)

    The application of acoustic emission (AE)-based damage detection is gaining interest in the field of civil structural health monitoring. Damage progress can be detected and located in real time and the recorded AEs hold information on the fracture process which produced them. One of the drawbacks for on-site application in large-scale concrete and masonry structures is the relatively high attenuation of the ultrasonic signal, which limits the detection range of the AE sensors. Consequently, a large number of point sensors are required to cover a certain area. To tackle this issue, a global damage detection system, based on AE detection with a polarization-modulated, single mode fiber optic sensor (FOS), has been developed. The sensing principle, data acquisition and analysis in time and frequency domain are presented. During experimental investigations, this AE-FOS is applied for the first time as a global sensor for the detection of crack-induced AEs in a full-scale concrete beam. Damage progress is monitored during a cyclic four-point bending test and the AE activity, detected with the FOS, is related to the subsequent stages of damage progress in the concrete element. The results obtained with the AE-FOS are successfully linked to the mechanical behavior of the concrete beam and a qualitative correspondence is found with AE data obtained by a commercial system. (papers)

  14. Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    2007-01-01

    Full Text Available Many ancient masonry towers are present in Italian territory. In some cases these structures are at risk on account of the intensity of the stresses they are subjected to due to the high level of regional seismicity. In order to preserve this inestimable cultural heritage, a sound safety assessment should take into account the evolution of damage phenomena. In this connection, acoustic emission (AE monitoring can be highly effective. This study concerns the structural stability of three medieval towers rising in the centre of Alba, a characteristic town in Piedmont (Italy. During the monitoring period a correlation between peaks of AE activity in the masonry of these towers and regional seismicity was found. Earthquakes always affect structural stability. Besides that, the towers behaved as sensitive earthquake receptors. Here a method to correlate bursts of AE activity in a masonry building and regional seismicity is proposed. In particular, this method permits to identify the premonitory signals that precede a catastrophic event on a structure, since, in most cases, these warning signs can be captured well in advance.

  15. Acoustic Emission Monitoring of Lightning-Damaged CFRP Laminates during Compression-after-Impact Test

    International Nuclear Information System (INIS)

    Carbon-fiber reinforced plastic(CFRP) laminates made of nano-particle-coated carbon fibers and damaged by a simulated lightning strike were tested under compression-after-impact(CAI) mode, during which the damage progress due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. Conductive nano-particles were coated directly on the fibers, from which CFRP coupons were made. The coupon were subjected to the strikes with a high voltage/current impulse of 10-40 kA within a few . The effects of nano-particle coating and the degree of damage induced by the simulated lightning strikes on AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. The assessment during the CAI tests of damaged CFRP showed that AE monitoring appeared to be useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

  16. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  17. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    International Nuclear Information System (INIS)

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected

  18. Acoustic habitat and shellfish mapping and monitoring in shallow coastal water - Sidescan sonar experiences in The Netherlands

    Science.gov (United States)

    van Overmeeren, Ronnie; Craeymeersch, Johan; van Dalfsen, Jan; Fey, Frouke; van Heteren, Sytze; Meesters, Erik

    2009-11-01

    Sidescan sonar has been applied in a number of shallow water environments along the Dutch coast to map and monitor shellfish and seabed habitats. The littoral setting of these surveys may hamper data acquisition flying the towfish in zones of turbulence and waves, but also offers valuable opportunities for understanding, interpreting and validating sidescan sonar images because of the ability to ground-truth during low water periods, enabling easy identification and validation. Acoustical images of some of the mussel banks on the tidal flats of the Wadden Sea, recorded at high tide, show a marked resemblance with optical Google Earth images of the same banks. These sonar images may thus serve as ' acoustic type signatures' for the interpretation of sonar patterns recorded in deeper water where ground-truthing is more difficult and more expensive. Similarly, acoustic type signatures of (Japanese) oyster banks were obtained in the estuaries in the southwest of the Netherlands. Automated acoustic pattern recognition of different habitats and acoustical estimation of faunal cover and density are possible applications of sidescan sonar. Both require that the backscattering observed on the sidescan sonar images is directly caused by the biological component of the seafloor. Filtering offers a simple and effective pre-processing technique to separate the faunal signals from linear trends such as emanating from wave ripples or the central tracks of the towfish. Acoustically estimating the faunal density is approached by in-situ counting peaks in backscattering in unit squares. These counts must be calibrated by ground-truthing. Ground-truthing on littoral mussel banks in the Wadden Sea has been carried out by measuring their cover along lines during low tide. Due to its capacity of yielding full-cover, high resolution images of large surfaces, sidescan sonar proves to be an excellent, cost-effective tool for quantitative time-lapse monitoring of habitats.

  19. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    Directory of Open Access Journals (Sweden)

    L. Girard

    2012-06-01

    Full Text Available We present a custom acoustic emission (AE monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node integrated into a Wireless Sensor Network (WSN customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  20. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    Directory of Open Access Journals (Sweden)

    L. Girard

    2012-11-01

    Full Text Available We present a custom acoustic emission (AE monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node integrated into a wireless sensor network (WSN customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  1. Soundscapes of the Southern Ocean: Passive Acoustic Monitoring in the Weddell Sea

    OpenAIRE

    Menze, Sebastian; Kindermann, Lars; van Opzeeland, Ilse; Rettig, Stefanie; Bombosch, Annette; Zitterbart, Daniel; Boebel, Olaf

    2013-01-01

    The Southern Ocean provides an important habitat for marine mammals, both residential and migratory, yet long term studies of their habitat usage are hampered by the region’s seasonal inaccessibility. To overcome this problem, two autonomous underwater passive acoustic recorders were deployed in the Weddell Sea in 2008 to collect multiyear passive acoustic data. The recorders were retrieved in 2010 and the acoustic recordings were analyzed in terms of broad- and narrow-band noise. Noise in th...

  2. The Contact State Monitoring for Seal End Faces Based on Acoustic Emission Detection

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2016-01-01

    Full Text Available Monitoring the contact state of seal end faces would help the early warning of the seal failure. In the acoustic emission (AE detection for mechanical seal, the main difficulty is to reduce the background noise and to classify the dispersed features. To solve these problems and achieve higher detection rates, a new approach based on genetic particle filter with autoregression (AR-GPF and hypersphere support vector machine (HSSVM is presented. First, AR model is used to build the dynamic state space (DSS of the AE signal, and GPF is used for signal filtering. Then, multiple features are extracted, and a classification model based on HSSVM is constructed for state recognition. In this approach, AR-GPF is an excellent time-domain method for noise reduction, and HSSVM has advantage on those dispersed features. Finally experimental data shows that the proposed method can effectively detect the contact state of the seal end faces and has higher accuracy rates than some other existing methods.

  3. Fatigue crack growth monitoring of idealized gearbox spline component using acoustic emission

    Science.gov (United States)

    Zhang, Lu; Ozevin, Didem; Hardman, William; Kessler, Seth; Timmons, Alan

    2016-04-01

    The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. The acoustic emission (AE) method is a direct way of detecting active flaws; however, the method suffers from the influence of background noise and location/sensor based pattern recognition method. It is important to identify the source mechanism and adapt it to different test conditions and sensors. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method in a laboratory environment. The test sample has the major details of the spline component on a flattened geometry. The AE data is continuously collected together with strain gauges strategically positions on the structure. The fatigue test characteristics are 4 Hz frequency and 0.1 as the ratio of minimum to maximum loading in tensile regime. It is observed that there are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The frequency spectra of continuous emissions and burst emissions are compared to understand the difference of sudden crack growth and gradual crack growth. The predicted crack growth rate is compared with the AE data using the cumulative AE events at the notch tip. The source mechanism of sudden crack growth is obtained solving the inverse mathematical problem from output signal to input signal. The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method The AE data is continuously collected together with strain gauges. There are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The source mechanism of

  4. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    Science.gov (United States)

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

  5. Wear monitoring of single point cutting tool using acoustic emission techniques

    Indian Academy of Sciences (India)

    P Kulandaivelu; P Senthil Kumar; S Sundaram

    2013-04-01

    This paper examines the flank and crater wear characteristics of coated carbide tool inserts during dry turning of steel workpieces. A brief review of tool wear mechanisms is presented together with new evidence showing that wear of the TiC layer on both flank and rake faces is dominated by discrete plastic deformation, which causes the coating to be worn through to the underlying carbide substrate when machining at high cutting speeds and feed rates. Wear also occurs as a result of abrasion, as well as cracking and attrition, with the latter leading to the wearing through the coating on the rake face under low speed conditions. When moderate speeds and feeds are used, the coating remains intact throughout the duration of testing. Wear mechanism maps linking the observed wear mechanisms to machining conditions are presented for the first time. These maps demonstrate clearly that transitions from one dominant wear mechanism to another may be related to variations in measured tool wear rates. Comparisons of the present wear maps with similar maps for uncoated carbide tools show that TiC coatings dramatically expand the range of machining conditions under which acceptable rates of tool wear might be experienced. However, the extent of improvement brought about by the coatings depends strongly on the cutting conditions, with the greatest benefits being seen at higher cutting speeds and feed rates. Among these methods, tool condition monitoring using Acoustic Techniques (AET) is an emerging one. Hence, the present work was carried out to study the stability, applicability and relative sensitivity of AET in tool condition monitoring in turning.

  6. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics.

    Science.gov (United States)

    Ji, Zhengchao; Sun, Wanyang; Sun, Guoxiang; Zhang, Jin

    2016-08-01

    A fast micellar electrokinetic chromatography fingerprint method combined with quantification was developed and validated to evaluate the quality of Fufang Danshen Pills, a traditional Chinese Medicine, which has been used in the treatment of cardiovascular system diseases, in which the tetrahedron optimization method was first used to optimize the background electrolyte solution. Subsequently, the index of the fingerprint information amount of I was performed as an excellent objective indictor to investigate the experimental conditions. In addition, a systematical quantified fingerprint method was constructed for evaluating the quality consistency of 20 batches of test samples obtained from the same drug manufacturer. The fingerprint analysis combined with quantitative determination of two components showed that the quality consistency of the test samples was quite good within the same commercial brand. Furthermore, the partial least squares model analysis was used to explore the fingerprint-efficacy relationship between active components and antioxidant activity in vitro, which can be applied for the assessment of anti-oxidant activity of Fufang Danshen pills and provide valuable medicinal information for quality control. The result illustrated that the present study provided a reliable and reasonable method for monitoring the quality consistency of Fufang Danshen pills.

  7. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics.

    Science.gov (United States)

    Ji, Zhengchao; Sun, Wanyang; Sun, Guoxiang; Zhang, Jin

    2016-08-01

    A fast micellar electrokinetic chromatography fingerprint method combined with quantification was developed and validated to evaluate the quality of Fufang Danshen Pills, a traditional Chinese Medicine, which has been used in the treatment of cardiovascular system diseases, in which the tetrahedron optimization method was first used to optimize the background electrolyte solution. Subsequently, the index of the fingerprint information amount of I was performed as an excellent objective indictor to investigate the experimental conditions. In addition, a systematical quantified fingerprint method was constructed for evaluating the quality consistency of 20 batches of test samples obtained from the same drug manufacturer. The fingerprint analysis combined with quantitative determination of two components showed that the quality consistency of the test samples was quite good within the same commercial brand. Furthermore, the partial least squares model analysis was used to explore the fingerprint-efficacy relationship between active components and antioxidant activity in vitro, which can be applied for the assessment of anti-oxidant activity of Fufang Danshen pills and provide valuable medicinal information for quality control. The result illustrated that the present study provided a reliable and reasonable method for monitoring the quality consistency of Fufang Danshen pills. PMID:27279557

  8. Development of Generic Methodology for Designing a Structural Health Monitoring Installation Based on the Acoustic Emission Technique

    OpenAIRE

    Gagar, D.; Martinez, M.J.; Foote, P.

    2014-01-01

    The Acoustic Emission (AE) technique can be used to perform damage detection and localisation for structural health monitoring purposes. Implementation in aircraft structures however poses a significant challenge as its performance in terms of damage detection and localisation is not well understood when used with complex structural geometries and variable operational service environments. This paper presents initial developments towards a generic methodology for optimal design of a structura...

  9. Acoustic eyes: a novel sound source localization and monitoring technique with 3D sound probes

    NARCIS (Netherlands)

    Basten, T.G.H.; Bree, H.E. de; Sadasivan, S.

    2008-01-01

    In this paper the most recent advances are discussed on a new acoustic far field sound source localization technique using (at least) two three dimensional sound probes. The compact and broadband probes are based upon three orthogonally placed acoustic particle velocity sensors (Microflowns) and a s

  10. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [Project Director - AK

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  11. A new setup for studying thermal microcracking through acoustic emission monitoring

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Baud, Patrick; Schmittbuhl, Jean

    2016-04-01

    Thermal stressing is common in geothermal environments and has been shown in the laboratory to induce changes in the physical and mechanical properties of rocks. These changes are generally considered to be a consequence of the generation of thermal microcracks and debilitating chemical reactions. Thermal microcracks form as a result of the build-up of internal stresses due to: (1) the thermal expansion mismatch between the different phases present in the material, (2) thermal expansion anisotropy within individual minerals, and (3) thermal gradients. The generation of cracks during thermal stressing has been monitored in previous studies using the output of acoustic emissions (AE), a common proxy for microcrack damage, and through microstructural observations. Here we present a new experimental setup which is optimised to record AE from a rock sample at high temperatures and under a servo-controlled uniaxial stress. The design is such that the AE transducer is embedded in the top of the piston, which acts as a continuous wave guide to the sample. In this way, we simplify the ray path geometry whilst minimising the number of interfaces between the microcrack and the transducer, maximising the quality of the signal. This allows for an in-depth study of waveform attributes such as energy, amplitude, counts and duration. Furthermore, the capability of this device to apply a servo-controlled load on the sample, whilst measuring strain in real time, leads to a spectrum of possible tests combining mechanical and thermal stress. It is also an essential feature to eliminate the build-up of stresses through thermal expansion of the pistons and the sample. We plan a systematic experimental study of the AE of thermally stressed rock during heating and cooling cycles. We present results from pilot tests performed on Darley Dale sandstone and Westerly granite. Understanding the effects of thermal stressing in rock is of particular interest at a geothermal site, where

  12. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Marco Brunoldi

    Full Text Available Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus has been implemented and installed in the Portofino Marine Protected Area (MPA, Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on. The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon, deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation.

  13. Acoustic emission analysis for structural health monitoring of hot metal components; Schallemissionsanalyse zur Zustandsueberwachung von heissen Metallkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Eberhard [Fraunhofer-Institut fuer Keramische Technologien und Systeme, Dresden (Germany). Institutsteil Materialdiagnostik

    2015-07-01

    For the application of acoustic emission analysis on hot components such as pipes special application techniques are necessary to protect the sensor from the heat. The Fraunhofer IKTS-MD has developed a waveguide solution that meets these requirements. Major challenges in the application of acoustic emission analysis in an industrial environment is the strong ambient noise. This requirement meets the developed acoustic measurement system at the Fraunhofer Institute by a high measurement dynamics, storage and assessment of the complete waveforms and by special algorithms. The attractiveness of the method lies in the relatively low number of sensors with which the integrity of large plant areas (e.g. several meters under high alternating load standing superheated steam pipe) can be permanently monitored. [German] Fuer die Anwendung der Schallemissionsanalyse an heissen Komponenten wie Rohrleitungen sind besondere Applikationstechniken notwendig, um den Sensor vor der Hitze zu schuetzen. Das Fraunhofer IKTS-MD hat dafuer eine Wellenleiterloesung entwickelt, die diese Anforderungen erfuellt. Wesentliche Herausforderung bei der Anwendung der Schallemissionsanalyse in industrieller Umgebung ist das starke Umgebungsrauschen. Dieser Anforderung begegnet das am Fraunhofer-Institut entwickelte akustische Messsystem durch eine hohe Messwertdynamik, Speicherung und Bewertung der vollstaendigen Wellenformen sowie durch spezielle Auswertealgorithmen. Die Attraktivitaet des Verfahrens liegt in der vergleichsweise geringen Anzahl von Sensoren, mit denen die Integritaet grosser Anlagenbereiche (z.B. mehrere Meter unter hoher Wechsellast stehender Heissdampfleitung) dauerhaft ueberwacht werden kann.

  14. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    Science.gov (United States)

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  15. Chemometrics in Fingerprinting by Means of Thin Layer Chromatography

    Directory of Open Access Journals (Sweden)

    Łukasz Komsta

    2012-01-01

    Full Text Available The paper is written as an introductory review, presenting summary of current knowledge about chemometric fingerprinting in the context of TLC, due to a rather small interest in the literature about joining TLC and chemometrics. The paper shortly covers the most important aspects of the chemometric fingerprinting in general, creating the TLC fingerprints, denoising, baseline removal, warping/registering, and chemometric processing itself. References being good candidates as a starting point are given for each topic and processing step.

  16. Artificial Neural Network Model for Monitoring Oil Film Regime in Spur Gear Based on Acoustic Emission Data

    Directory of Open Access Journals (Sweden)

    Yasir Hassan Ali

    2015-01-01

    Full Text Available The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ. The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.

  17. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen' s Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  18. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    International Nuclear Information System (INIS)

    Full-text: Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed Wavelet Transform analysis and Modal Location (WTML) based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) technique and DeltaTlocation. The results of the study show that the WTML method produces more accurate location results compared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure. (author)

  19. Online monitoring of Accessories for Underground Electrical Installations through Acoustics Emissions

    Directory of Open Access Journals (Sweden)

    Casals-Torrens P.

    2012-04-01

    Full Text Available The acoustic waves caused by Partial Discharges inside the dielectric materials, can be detected by acoustic emission (AE sensors and analyzed in the time domain. The experimental results presented, show the online detection capability of these sensors in the environment near a cable accessory, such as a splice or terminal. The AE sensors are immune to electromagnetic interference and constitute a detection method non-intrusive and non-destructive, which ensures a galvanic decoupling with respect to electric networks, this technique of partial discharge detection can be applied as a test method for preventive or predictive maintenance (condition-based maintenance to equipments or facilities of medium and high voltage in service and represents an alternative method to electrical detection systems, conventional or not, that continue to rely on the detection of current pulses. This paper presents characterization tests of the sensors AE through comparative tests of partial discharge on accessories for underground power cables.

  20. Chemometrics applications in biotech processes: a review.

    Science.gov (United States)

    Rathore, Anurag S; Bhushan, Nitish; Hadpe, Sandip

    2011-01-01

    Biotech unit operations are often characterized by a large number of inputs (operational parameters) and outputs (performance parameters) along with complex correlations amongst them. A typical biotech process starts with the vial of the cell bank, ends with the final product, and has anywhere from 15 to 30 such unit operations in series. The aforementioned parameters can impact process performance and product quality and also interact amongst each other. Chemometrics presents one effective approach to gather process understanding from such complex data sets. The increasing use of chemometrics is fuelled by the gradual acceptance of quality by design and process analytical technology amongst the regulators and the biotech industry, which require enhanced process and product understanding. In this article, we review the topic of chemometrics applications in biotech processes with a special focus on recent major developments. Case studies have been used to highlight some of the significant applications.

  1. Does chemometrics enhance the performance of electroanalysis?

    International Nuclear Information System (INIS)

    This review explores the question whether chemometrics methods enhance the performance of electroanalytical methods. Electroanalysis has long benefited from the well-established techniques such as potentiometric titrations, polarography and voltammetry, and the more novel ones such as electronic tongues and noses, which have enlarged the scope of applications. The electroanalytical methods have been improved with the application of chemometrics for simultaneous quantitative prediction of analytes or qualitative resolution of complex overlapping responses. Typical methods include partial least squares (PLS), artificial neural networks (ANNs), and multiple curve resolution methods (MCR-ALS, N-PLS and PARAFAC). This review aims to provide the practising analyst with a broad guide to electroanalytical applications supported by chemometrics. In this context, after a general consideration of the use of a number of electroanalytical techniques with the aid of chemometrics methods, several overviews follow with each one focusing on an important field of application such as food, pharmaceuticals, pesticides and the environment. The growth of chemometrics in conjunction with electronic tongue and nose sensors is highlighted, and this is followed by an overview of the use of chemometrics for the resolution of complicated profiles for qualitative identification of analytes, especially with the use of the MCR-ALS methodology. Finally, the performance of electroanalytical methods is compared with that of some spectrophotometric procedures on the basis of figures-of-merit. This showed that electroanalytical methods can perform as well as the spectrophotometric ones. PLS-1 appears to be the method of practical choice if the %relative prediction error of ∼±10% is acceptable

  2. Does chemometrics enhance the performance of electroanalysis?

    Science.gov (United States)

    Ni, Yongnian; Kokot, Serge

    2008-09-26

    This review explores the question whether chemometrics methods enhance the performance of electroanalytical methods. Electroanalysis has long benefited from the well-established techniques such as potentiometric titrations, polarography and voltammetry, and the more novel ones such as electronic tongues and noses, which have enlarged the scope of applications. The electroanalytical methods have been improved with the application of chemometrics for simultaneous quantitative prediction of analytes or qualitative resolution of complex overlapping responses. Typical methods include partial least squares (PLS), artificial neural networks (ANNs), and multiple curve resolution methods (MCR-ALS, N-PLS and PARAFAC). This review aims to provide the practising analyst with a broad guide to electroanalytical applications supported by chemometrics. In this context, after a general consideration of the use of a number of electroanalytical techniques with the aid of chemometrics methods, several overviews follow with each one focusing on an important field of application such as food, pharmaceuticals, pesticides and the environment. The growth of chemometrics in conjunction with electronic tongue and nose sensors is highlighted, and this is followed by an overview of the use of chemometrics for the resolution of complicated profiles for qualitative identification of analytes, especially with the use of the MCR-ALS methodology. Finally, the performance of electroanalytical methods is compared with that of some spectrophotometric procedures on the basis of figures-of-merit. This showed that electroanalytical methods can perform as well as the spectrophotometric ones. PLS-1 appears to be the method of practical choice if the %relative prediction error of approximately +/-10% is acceptable.

  3. Does chemometrics enhance the performance of electroanalysis?

    Energy Technology Data Exchange (ETDEWEB)

    Ni Yongnian [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Department of Chemistry, Nanchang University, Nanchang, Jiangxi 330047 (China)], E-mail: ynni@ncu.edu.cn; Kokot, Serge [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland 4001 (Australia)

    2008-09-26

    This review explores the question whether chemometrics methods enhance the performance of electroanalytical methods. Electroanalysis has long benefited from the well-established techniques such as potentiometric titrations, polarography and voltammetry, and the more novel ones such as electronic tongues and noses, which have enlarged the scope of applications. The electroanalytical methods have been improved with the application of chemometrics for simultaneous quantitative prediction of analytes or qualitative resolution of complex overlapping responses. Typical methods include partial least squares (PLS), artificial neural networks (ANNs), and multiple curve resolution methods (MCR-ALS, N-PLS and PARAFAC). This review aims to provide the practising analyst with a broad guide to electroanalytical applications supported by chemometrics. In this context, after a general consideration of the use of a number of electroanalytical techniques with the aid of chemometrics methods, several overviews follow with each one focusing on an important field of application such as food, pharmaceuticals, pesticides and the environment. The growth of chemometrics in conjunction with electronic tongue and nose sensors is highlighted, and this is followed by an overview of the use of chemometrics for the resolution of complicated profiles for qualitative identification of analytes, especially with the use of the MCR-ALS methodology. Finally, the performance of electroanalytical methods is compared with that of some spectrophotometric procedures on the basis of figures-of-merit. This showed that electroanalytical methods can perform as well as the spectrophotometric ones. PLS-1 appears to be the method of practical choice if the %relative prediction error of {approx}{+-}10% is acceptable.

  4. Non-contact acoustic emission measurement for condition monitoring of bearings in rotating machines using laser interferometry

    International Nuclear Information System (INIS)

    For advanced maintenance and safety in nuclear power plants, it is necessary to combine various technologies that are used to monitor the status of different equipment. Non-contact measurement methods offer technical advantages over contact measurement methods, such as the ability to perform spot measurements, adapt to high-temperature environments, and inspect dynamic parts. The acoustic emission (AE) method can detect earlier abnormal signs in bearings than vibration analysis, which is commonly used in power plants. The AE method is also able to detect various other events such as wear and leakage of materials. However, currently, non-contact AE measurement is not used for condition monitoring in power plants. To verify the feasibility of a non-contact AE measurement method using laser interferometry for condition monitoring technology, laboratory tests were conducted using a rotating machine fitted with bearings that had deliberately been made defective. The AE signals propagating from these defects were measured using a Michelson interferometer on the rotating polished shaft, and a piezoelectric sensor positioned on the bearing housing. This paper demonstrates that the non-contact AE method can detect various stages of deterioration in bearings, and therefore, the method can be considered as a useful future tool for condition monitoring of bearings in rotating machines. (author)

  5. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    The Black Thunder Coal Mine (BTCM) near Gillette, Wyoming was used as a test bed to determine the feasibility of detecting explosion-induced geomagnetic disturbances with ground-based induction magnetometers. Two magnetic observatories were fielded at distances of 50 km and 64 km geomagnetically north from the northernmost edge of BTCM. Each observatory consisted of three separate but mutually orthogonal magnetometers, Global Positioning System (GPS) timing, battery and solar power, a data acquisition and storage system, and a three-axis seismometer. Explosions with yields of 1 to 3 kT of TNT equivalent occur approximately every three weeks at BTCM. We hypothesize that explosion-induced acoustic waves propagate upward and interact collisionally with the ionosphere to produce ionospheric electron density (and concomitant current density) perturbations which act as sources for geomagnetic disturbances. These disturbances propagate through an ionospheric Alfven waveguide that we postulate to be leaky (due to the imperfectly conducting lower ionospheric boundary). Consequently, wave energy may be observed on the ground. We observed transient pulses, known as Q-bursts, with pulse widths about 0.5 s and with spectral energy dominated by the Schumann resonances. These resonances appear to be excited in the earth-ionosphere cavity by Alfven solitons that may have been generated by the explosion-induced acoustic waves reaching the ionospheric E and F regions and that subsequently propagate down through the ionosphere to the atmosphere. In addition, we observe late time (> 800 s) ultra low frequency (ULF) geomagnetic perturbations that appear to originate in the upper F region ({approximately}300 km) and appear to be caused by the explosion-induced acoustic wave interacting with that part of the ionosphere. We suggest that explosion-induced Q-bursts may be discriminated from naturally occurring Q-bursts by association of the former with the late time explosion-induced ULF

  6. Passive acoustic monitoring using a towed hydrophone array results in identification of a previously unknown beaked whale habitat.

    Science.gov (United States)

    Yack, Tina M; Barlow, Jay; Calambokidis, John; Southall, Brandon; Coates, Shannon

    2013-09-01

    Beaked whales are diverse and species rich taxa. They spend the vast majority of their time submerged, regularly diving to depths of hundreds to thousands of meters, typically occur in small groups, and behave inconspicuously at the surface. These factors make them extremely difficult to detect using standard visual survey methods. However, recent advancements in acoustic detection capabilities have made passive acoustic monitoring (PAM) a viable alternative. Beaked whales can be discriminated from other odontocetes by the unique characteristics of their echolocation clicks. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the Southern California Bight (SCB) and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study. The three year field effort has resulted in (1) the successful classification and tracking of Cuvier's (Ziphius cavirostris), Baird's (Berardius bairdii), and unidentified Mesoplodon beaked whale species and (2) the identification of areas of previously unknown beaked whale habitat use. Identification of habitat use areas will contribute to a better understanding of the complex relationship between beaked whale distribution, occurrence, and preferred habitat characteristics on a relatively small spatial scale. These findings will also provide information that can be used to promote more effective management and conservation of beaked whales in the SCB, a heavily used Naval operation and training region.

  7. Contribution of acoustic emission to monitor the effect of phosphate based inhibitor on the corrosion behavior of steel reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Nahali, Haifa [Laboratoire MATEIS CNRS UMR5511 (Equipe CorrIS), INSA-Lyon, Villeurbanne (France); Univ. de Tunis El Manar, Belvedere (Tunisia). Unite de Recherche ' ' Mecanique-Energetique' ' ; Dhouibi, Leila [Univ. de Tunis El Manar, Belvedere (Tunisia). Unite de Recherche ' ' Mecanique-Energetique' ' ; Idrissi, Hassane [Laboratoire MATEIS CNRS UMR5511 (Equipe CorrIS), INSA-Lyon, Villeurbanne (France)

    2014-11-01

    One of the most important causes of reinforced concrete structures deterioration is the corrosion of the reinforcement steel. This corrosion depends on the presence of aggressive agents such as chlorides in the surrounding medium. Numerous protection techniques have been employed to mitigate this corrosion. Among them, the use of corrosion inhibitors has been considered as one of the most effective solutions. In the present work, the influence of phosphate based inhibitor on the corrosion of reinforcing steels embedded in mortar, and immersed in sodium chloride solution, was investigated by acoustic emission technique. The monitoring of specimens shows that the phosphate based inhibitor addition in the mortar increase the threshold of chloride concentrations, causing the breakdown of steel passivation layer. Thus, the acoustic signatures of concrete fracture and of structure degradation during the corrosion of these specimens have been highlighted. Similarly, the mechanism of phosphate action in terms of preventing steel from corrosion in mortar specimens was analysed by characterization methods (SEM, XRD) of the steel-mortar interface.

  8. In situ monitoring the pulse CO2 laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    International Nuclear Information System (INIS)

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ∼830 J cm-2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt >> α-1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  9. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    Directory of Open Access Journals (Sweden)

    Zhengzhao Liang

    2013-01-01

    Full Text Available To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE and far infrared (FIR techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE was calculated to predict the tunnel rock burst. The results showed that the vertical stress enhanced the stability of the tunnel, and the tunnels with higher confining pressure demonstrated a more abrupt and strong rock burst. Abnormal temperature changes around the wall were observed prior to the rock burst of the tunnel. Analysis of the AE events showed that a sudden drop and then a quiet period could be considered as the precursors to forecast the rock burst hazard. Statistical analysis indicated that rock fragment spalling occurred earlier than the abnormal temperature changes, and the abnormal temperature occurred earlier than the descent of the AE b-value. The analysis indicated that the temperature changes were more sensitive than the AE b-value changes to predict the tunnel rock bursts.

  10. In situ monitoring the pulse CO 2 laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    Science.gov (United States)

    Khosroshahi, M. E.; pour, F. Anoosheh; Hadavi, M.; Mahmoodi, M.

    2010-10-01

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO 2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ≈830 J cm -2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt ≫ α-1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  11. Contribution of acoustic emission to monitor the effect of phosphate based inhibitor on the corrosion behavior of steel reinforcement

    International Nuclear Information System (INIS)

    One of the most important causes of reinforced concrete structures deterioration is the corrosion of the reinforcement steel. This corrosion depends on the presence of aggressive agents such as chlorides in the surrounding medium. Numerous protection techniques have been employed to mitigate this corrosion. Among them, the use of corrosion inhibitors has been considered as one of the most effective solutions. In the present work, the influence of phosphate based inhibitor on the corrosion of reinforcing steels embedded in mortar, and immersed in sodium chloride solution, was investigated by acoustic emission technique. The monitoring of specimens shows that the phosphate based inhibitor addition in the mortar increase the threshold of chloride concentrations, causing the breakdown of steel passivation layer. Thus, the acoustic signatures of concrete fracture and of structure degradation during the corrosion of these specimens have been highlighted. Similarly, the mechanism of phosphate action in terms of preventing steel from corrosion in mortar specimens was analysed by characterization methods (SEM, XRD) of the steel-mortar interface.

  12. Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jerome L. Wright

    2003-07-01

    Full Text Available This paper describes the development of a surface-acoustic-wave (SAW sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene, which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

  13. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    Science.gov (United States)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  14. Comparison of optical and acoustical monitoring during a crack propagation, implication for slow earthquake dynamics

    Science.gov (United States)

    Lengliné, Olivier; Schmittbuhl, Jean; Elkhoury, Jean; Toussaint, Renaud; Daniel, Guillaume; Maloy, Knut Jurgen

    2010-05-01

    Observations of aseismic transients in several tectonic context suggest that they might be linked to seismicity. However a clear observation and description of these phenomena and their interaction is lacking. This owes to the difficulty of characterizing with a sufficient resolution processes taking place at depth. Here we aim to study these interactions between aseismic and seismic slip taking advantage of an unique experimental setup. We conducted a series of mode I crack propagation experiments on transparent materials (PMMA). The crack advance is trapped in a weakness plane which is the interface between two previously sandblasted and annealed plexiglass plates. A fast video camera taking up to 500 frames per second ensures the tracking of the front rupture. The acoustic system is composed of a maximum of 44 channels continuously recording at 5 MHz for a few tens of seconds. Piezo-electric sensors are composed of a 32 elements linear array and individual sensors surrounding the crack front. An automatic detection and localization procedure allows us to obtain the position of acoustic emission (A.E.) that occurred during the crack advance. Crack front image processing reveals an intermittent opening which might be linked to the time and space clustering of the AE. An analogy between the mode I (opening) and the mode III (antiplane slip) allows us to interpret our results in term of slip on faults. Our experiment thus helps to reveal the interplay between seismic and aseismic slip on faults.

  15. A new strategy toward Internet of Things: structural health monitoring using a combined fiber optic and acoustic emission wireless sensor platform

    Science.gov (United States)

    Nguyen, A. D.; Page, C.; Wilson, C. L.

    2016-04-01

    This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.

  16. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N.

    2016-01-12

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  17. Failure monitoring of E-glass/vinylester composites using fiber grating acoustic sensor

    Science.gov (United States)

    Azmi, A. I.; Raju; Peng, G. D.

    2013-06-01

    This paper reports an application of an optical fiber sensor in a continuous and in situ failure testing of an E-glass/vinylester top hat stiffener (THS). The sensor head was constructed from a compact phase-shifted fiber Bragg grating (PS-FBG). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.

  18. Project of a Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring (NRTSSS)

    OpenAIRE

    D'Anna, Giuseppe; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Calore, Daniele; Envirtech S.p.A.; Mangano, Giorgio; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; D'Alessandro, Antonino; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Favali, Paolo; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia

    2011-01-01

    The INGV seismic network ensures reliable and continuous monitoring of the Italian territory. However, the peculiarity of the Italian peninsula, characterised by an intense offshore geodynamic and seismic activity, requires the extension of the seismic monitoring to the sea. The aim of this project is: - to identify bottleneck is related to the construction, installation and use of underwater seismic station; - to define the most appropriate and low-cost architecture to guarantee the...

  19. Monitoring of quality and stability characteristics and fatty acid compositions of refined olive and seed oils during repeated pan- and deep-frying using GC, FT-NIRS, and chemometrics.

    Science.gov (United States)

    Zribi, Akram; Jabeur, Hazem; Aladedunye, Felix; Rebai, Ahmed; Matthäus, Bertrand; Bouaziz, Mohamed

    2014-10-22

    Refined olive, corn, soybean, and sunflower oils were used as cooking oils for deep-frying at two different temperatures, 160 and 190 °C, and for pan-frying of potatoes at 180 °C for 10 successive sessions under the usual domestic practice. Several chemical parameters were assayed during frying operations to evaluate the status of the frying oils. Refined olive oil, as frying oil, was found to be more stable than the refined seed oils. In fact, this oil has proven the greatest resistance to oxidative deterioration, and its trans-fatty acid contents and percentages of total polar compounds were found to be lower at 160 °C during deep-frying. Finally, chemometric analysis has demonstrated that the lowest deterioration of the quality of all refined oils occurred in the refined olive oil during deep-frying at 160 °C and the highest deterioration occurred in the refined sunflower oil during pan-frying at 180 °C.

  20. Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes

    International Nuclear Information System (INIS)

    Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10∼40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terns of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes

  1. Supervised and unsupervised condition monitoring of non-stationary acoustic emission signals

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur; Pontoppidan, Niels Henrik; Larsen, Jan

    2005-01-01

    We are pursuing a system that monitors the engine condition under multiple load settings, i.e. under non-stationary operating conditions. The running speed when data acquired under simulated marine conditions (different load settings on the propeller curve) was in the range from approximately 70...... approaches perform well, which indicates that unsupervised models, modelled without faulty data, may be used for accurate condition monitoring....... condition changes across load changes. In this paper we approach this load interpolation problem with supervised and unsupervised learning, i.e. model with normal and fault examples and normal examples only, respectively. We apply non-linear methods for the learning of engine condition changes. Both...

  2. Active monitoring of formaldehyde diffusion into histological tissues with digital acoustic interferometry.

    Science.gov (United States)

    Bauer, Daniel R; Stevens, Benjamin; Chafin, David; Theiss, Abbey P; Otter, Michael

    2016-01-01

    The preservation of certain labile cancer biomarkers with formaldehyde-based fixatives can be considerably affected by preanalytical factors such as quality of fixation. Currently, there are no technologies capable of quantifying a fixative's concentration or the formation of cross-links in tissue specimens. This work examined the ability to detect formalin diffusion into a histological specimen in real time. As formaldehyde passively diffused into tissue, an ultrasound time-of-flight (TOF) shift of several nanoseconds was generated due to the distinct sound velocities of formalin and exchangeable fluid within the tissue. This signal was resolved with a developed digital acoustic interferometry algorithm, which compared the phase differential between signals and computed the absolute TOF with subnanosecond precision. The TOF was measured repeatedly across the tissue sample for several hours until diffusive equilibrium was realized. The change in TOF from 6-mm thick ex vivo human tonsil fit a single-exponential decay ([Formula: see text]) with rate constants that varied drastically spatially between 2 and 10 h ([Formula: see text]) due to substantial heterogeneity. This technology may prove essential to personalized cancer diagnostics by documenting and tracking biospecimen preanalytical fixation, guaranteeing their suitability for diagnostic assays, and speeding the workflow in clinical histopathology laboratories. PMID:26866049

  3. Acoustic emission monitoring of a fatigue test of an F/A-18 bulkhead

    Science.gov (United States)

    Scala, C. M.; McCardle, J. F.; Bowles, S. J.

    This paper describes the application of acoustic emission (AE) to identify cracking in several fatigue-critical regions on the port and starboard sides of an l/A-18 aircraft bulkhead undergoing fatigue testing. AE data acquisition was carried out using an array of three sensors on each side of the bulkhead. AE features stored by each array included relative arrival times of AE events at the three sensors, event rise time at the first-hit sensor, and the load level and the position on the load cycle of event occurrence. AE data processing involved a comparison between the features of those AE events stored during the fatigue testing and predicted features for cracking in the complex-shaped bulkhead. Feature prediction was based on wave propagation characteristics obtained by Pentel-lead calibration, and the known load cycle dependence of crack-related AE events. The AE processing was completed following failure of the bulkhead, and gave the correct locations of all cracks, greater than about 1 mm in depth, present in the bulkhead during the fatigue testing. The study shows that AE associated with cracking can be distinguished, even when many extraneous sources are present, and demonstrates that AE is a promising technique for nondestructive evaluation of a complex structure such as the F/A-18 bulkhead.

  4. Using Complementary Acoustic and Optical Techniques for Quantitative Monitoring of Biomolecular Adsorption at Interfaces

    Directory of Open Access Journals (Sweden)

    Rupert Konradi

    2012-09-01

    Full Text Available The great wealth of different surface sensitive techniques used in biosensing, most of which claim to measure adsorbed mass, can at first glance look unnecessary. However, with each technique relying on a different transducer principle there is something to be gained from a comparison. In this tutorial review, different optical and acoustic evanescent techniques are used to illustrate how an understanding of the transducer principle of each technique can be exploited for further interpretation of hydrated and extended polymer and biological films. Some of the most commonly used surface sensitive biosensor techniques (quartz crystal microbalance, optical waveguide spectroscopy and surface plasmon resonance are briefly described and five case studies are presented to illustrate how different biosensing techniques can and often should be combined. The case studies deal with representative examples of adsorption of protein films, polymer brushes and lipid membranes, and describe e.g., how to deal with strongly vs. weakly hydrated films, large conformational changes and ordered layers of biomolecules. The presented systems and methods are compared to other representative examples from the increasing literature on the subject.

  5. Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    Directory of Open Access Journals (Sweden)

    Thomas J. Carlson

    2012-05-01

    Full Text Available Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI, specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality.

  6. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening

    Science.gov (United States)

    Sun, Tao; Samiotaki, Gesthimani; Wang, Shutao; Acosta, Camilo; Chen, Cherry C.; Konofagou, Elisa E.

    2015-12-01

    Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n  =  60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r2  =  0.77) (2) the permeability of the opened BBB (r2  =  0.82) (3) the likelihood of safe opening (P  drug circulation time. In addition, avoiding adverse effects in the brain and assessing the pharmacokinetics of the compounds delivered can also be achieved by monitoring and controlling the stable cavitation emissions.

  7. Bird biodiversity assessments in temperate forest: the value of point count versus acoustic monitoring protocols

    Directory of Open Access Journals (Sweden)

    Brian T. Klingbeil

    2015-05-01

    Full Text Available Effective monitoring programs for biodiversity are needed to assess trends in biodiversity and evaluate the consequences of management. This is particularly true for birds and faunas that occupy interior forest and other areas of low human population density, as these are frequently under-sampled compared to other habitats. For birds, Autonomous Recording Units (ARUs have been proposed as a supplement or alternative to point counts made by human observers to enhance monitoring efforts. We employed two strategies (i.e., simultaneous-collection and same-season to compare point count and ARU methods for quantifying species richness and composition of birds in temperate interior forests. The simultaneous-collection strategy compares surveys by ARUs and point counts, with methods matched in time, location, and survey duration such that the person and machine simultaneously collect data. The same-season strategy compares surveys from ARUs and point counts conducted at the same locations throughout the breeding season, but methods differ in the number, duration, and frequency of surveys. This second strategy more closely follows the ways in which monitoring programs are likely to be implemented. Site-specific estimates of richness (but not species composition differed between methods; however, the nature of the relationship was dependent on the assessment strategy. Estimates of richness from point counts were greater than estimates from ARUs in the simultaneous-collection strategy. Woodpeckers in particular, were less frequently identified from ARUs than point counts with this strategy. Conversely, estimates of richness were lower from point counts than ARUs in the same-season strategy. Moreover, in the same-season strategy, ARUs detected the occurrence of passerines at a higher frequency than did point counts. Differences between ARU and point count methods were only detected in site-level comparisons. Importantly, both methods provide similar

  8. Monitoring Gas Void Fraction In Two-Phase Flow With Acoustic Emission

    OpenAIRE

    Addali, Abdulmajid

    2010-01-01

    The two-phase gas/liquid flow phenomenon can be encountered over a range of gas and liquid flow rates in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Monitoring and measurement of their characteristics, such as the gas void fraction, are necessary to minimise the disruption of downstream process facilities. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the...

  9. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring

    OpenAIRE

    Zhigang Sun; Bruno Rocha; Kuo-Ting Wu; Nezih Mrad

    2013-01-01

    Piezoelectric transducers have a long history of applications in nondestructive evaluation of material and structure integrity owing to their ability of transforming mechanical energy to electrical energy and vice versa. As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM) technologies capable of providing on-demand diagnosis of the structure without i...

  10. Monitoring fin whale (Balaenoptera physalus) acoustic presence by means of a low frequency seismic hydrophone in Western Ionian Sea, EMSO site.

    Science.gov (United States)

    Sciacca, Virginia; Caruso, Francesco; Chierici, Francesco; De Domenico, Emilio; Embriaco, Davide; Favali, Paolo; Giovanetti, Gabriele; Larosa, Giuseppina; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Simeone, Francesco; Viola, Salvatore; Beranzoli, Laura; Marinaro, Giuditta

    2015-04-01

    In 2012, the NEMO-SN1 multidisciplinary seafloor platform was deployed in the Gulf of Catania at a depth of 2100 m. By using the low bandwidth seismic hydrophone SMID DT405D (1Hz whales (Balaenoptera physalus) acoustic activity in the area. The presence of a genetically isolated population of fin whales has been confirmed in recent years in highly productive areas of the Mediterranean Sea. The species acoustic activity has also been monitored in the past within the Western Mediterranean. Despite this, still very little is known about the routes the population follows seasonally throughout the whole basin and, particularly, in the Ionian area. The most common vocalizations attributed to this population are known as "20Hz pulses" and they are grouped in two main types of calls: type "A", downsweep (17Hz whale acoustic signals, recorded for the first time in the area. Furthermore, our results show a previous unknown acoustic presence of fin whales offshore Eastern Sicily throughout all seasons of the investigated year. The new long-term multidisciplinary projects connected to "KM3NeT" and "EMSO" will give us the chance to better understand the animals' occurrence in the area and to investigate their acoustic behavior and population dynamics.

  11. Chemometrics and modernization of traditional Chinese medicine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Development of chromatographic fingerprinting and its related chemometric methods in the research of quality control of traditional Chinese medicines(TCMs) are discussed. The quality control methods for guarantying the authentication and stability of products and semi-products of TCMs are firstly assessed. The technique based on chromatographic fingerprinting is essentially a kind of high-through put and integral tools to explore the complexity of herbal medicines. In order to further control the comprehensive quality of TCMs,confirmation and identification of their important chemical components are necessary. Some new strategies are proposed to trace the chemical changes of chromatographic fingerprints both in product processing and/or after their administration by modern chromatographic techniques and chemometrics. Combined with systems biology and bioinformatics,it seems possible for one to reveal the working mechanism of TCMs and to further control their intrinsic quality comprehensively.

  12. Functional Data Analysis Applied in Chemometrics

    DEFF Research Database (Denmark)

    Muller, Martha

    the worlds of statistics and chemometrics. We want to provide a glimpse of the essential and complex data pre-processing that is well known to chemometricians, but is generally unknown to statisticians. Pre-processing can potentially have a strong in uence on the results of consequent data analysis. Our......In this thesis we explore the use of functional data analysis as a method to analyse chemometric data, more specically spectral data in metabolomics. Functional data analysis is a vibrant eld in statistics. It has been rapidly expanding in both methodology and applications since it was made well...... known by Ramsay & Silverman's monograph in 1997. In functional data analysis, the data are curves instead of data points. Each curve is measured at discrete points along a continuum, for example, time or frequency. It is assumed that the underlying process generating the curves is smooth...

  13. Acoustic monitoring (RFM of total hip arthroplasty results of a cadaver study

    Directory of Open Access Journals (Sweden)

    Unger AC

    2009-06-01

    Full Text Available Abstract Introduction At present there are no reliable non-traumatic and non-invasive methods to analyse the healing process and loosening status after total hip replacement. Therefore early as well as late loosening of prosthesis and interface component problems are difficult to be found or diagnosed at any time. Methods In a cadaver study the potential application of Resonance Frequency Monitoring (RFM will be evaluated as a non-invasive and non-traumatic method to monitor loosening and interface problems in hip replacement. In a 65 year old female cadaver different stability scenarios for a total hip replacement (shaft, head/modular head and cup, ESKA, Luebeck, Germany are simulated in cemented and cement less prosthesis and then analysed with RFM. The types of stability vary from secure/press-fit to interface-shaft disruption. Results The RFM shows in cemented as well as cement less prosthesis significant intra-individual differences in the spectral measurements with a high dynamic (20 dB difference corresponding to the factor 100 (10000%, regarding the simulated status of stability in the prosthesis system. Conclusion The results of the study demonstrate RFM as a highly sensitive non-invasive and non-traumatic method to support the application of RFM as a hip prosthesis monitoring procedure. The data obtained shows the possibility to use RFM for osteointegration surveillance and early detection of interface problems, but will require further evaluation in clinical and experimental studies.

  14. Aspects of recent developments in analytical chemometrics

    Institute of Scientific and Technical Information of China (English)

    LIANG; Yizeng; WU; Hailong; SHEN; Guoli; JIANG; Jianhui; LIANG; Sheng

    2006-01-01

    Some aspects of recent developments in analytical chemometrics are discussed, in particular the developments viewed from the angle of the research efforts undertaken in authors' laboratories. The topics concerned include resolution of high-order chemical data, morphological theory and methodology for chemical signal processing, multivariate calibration and chemical pattern recognition for solving complex chemical problems, and resolution of two-way chemical data from hyphenated chromatographic instruments.

  15. Near-Real-Time Sismo-acoustic Submarine Station for offshore monitoring

    Science.gov (United States)

    D'Anna, Giuseppe; D'Alessandro, Antonino; Fertitta, Gioacchino; Fraticelli, Nicola; Calore, Daniele

    2016-04-01

    From the early 1980's, Italian seismicity is monitored by the National Seismic Network (NSN). The network has been considerably enhanced by INGV since 2005 by 24-bit digital stations equipped with broad-band sensors. The NSN is nowadays constituted by about 300 on-land seismic station able to detect and locate also small magnitude earthquake in the whole Italian peninsula. However, the lack of offshore seismic stations does not allow the accurate estimation of hypocentral and focal parameters of small magnitude earthquakes occurring in offshore areas. As in the Mediterranean area there is an intense offshore seismic activity, an extension of the seismic monitoring to the sea would be beneficial. There are two types of stations that could be used to extend the network towards the sea: the first type is connected to the coast though a cable, the second type is isolated (or stand alone) and works autonomously. Both solutions have serious limitations: the first one, for several technical and economic problems, linked to the indispensable transmission/alimentation cable, cannot be installed far from the coast; the second one, allows access to the recorded data, only after they are recovered from the seabed. It is clear that these technical solutions are not suitable for the real time monitoring of the offshore seismicity or for the realization of a tsunami warning system. For this reason, in early 2010, the OBSLab of Gibilmanna begins the design of a submarine station able to overcome the limitations of the two systems above. The station isbuilt under the project EMSO-MedIT. The two stations built have already been tested in dock and ready for installation. One of this station will be installed, in few time, in the southern Tyrrhenian Sea, near the epicentre of the Palermo 2002 main shock. The sea bottom station will be equipped with 2 very broadband 3C seismometers, a broad band hydrophone, a differential and an absolute pressure gauge. The station includes a submarine

  16. A study on the condition monitoring of check valve at nuclear power plants using the acoustic emission and a neural network technique

    International Nuclear Information System (INIS)

    The analysis of Acoustic Emission (AE) signals produced during object leakage is promising for condition monitoring of the components. In this study, an advanced condition monitoring technique based on acoustic emission detection and artificial neural networks was applied to a check valve, one of the components being used extensively in a safety system of a nuclear power plant. AE testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disk movement for valve degradation such as wear and leakage due to foreign object interference in a check valve. It is clearly demonstrated that the evaluation of different types of failure modes such as disk wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters. It is also shown that the leak size can be determined with an artificial neural network

  17. Identification of a Critical Time with Acoustic Emission Monitoring during Static Fatigue Tests on Ceramic Matrix Composites: Towards Lifetime Prediction

    Directory of Open Access Journals (Sweden)

    Nathalie Godin

    2016-02-01

    Full Text Available Non-oxide fiber-reinforced ceramic-matrix composites are promising candidates for some aeronautic applications that require good thermomechanical behavior over long periods of time. This study focuses on the behavior of a SiCf/[Si-B-C] composite with a self-healing matrix at intermediate temperature under air. Static fatigue experiments were performed below 600 °C and a lifetime diagram is presented. Damage is monitored both by strain measurement and acoustic emission during the static fatigue experiments. Two methods of real-time analysis of associated energy release have been developed. They allow for the identification of a characteristic time that was found to be close to 55% of the measured rupture time. This critical time reflects a critical local energy release assessed by the applicability of the Benioff law. This critical aspect is linked to a damage phase where slow crack growth in fibers is prevailing leading to ultimate fracture of the composite.

  18. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    International Nuclear Information System (INIS)

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the ω-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization

  19. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Olofsson, Tomas; Wennerstroem, Erik [Uppsala Univ., Dept. of Technical Sciences (Sweden). Signals and Systems

    2006-12-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the {omega}-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization.

  20. Symbiosis of chemometrics and metabolomics: Past, present, and future

    NARCIS (Netherlands)

    Greef, J. van der; Smilde, A.K.

    2005-01-01

    Metabolomics is a growing area in the field of systems biology. Metabolomics has already a long history and also the connection of metabolomics with chemometrics goes back some time. This review discusses the symbiosis of metabolomics and chemometrics with emphasis on the medical domain, puts the co

  1. Acoustic sensor engineering evaluation test report. [microphones for monitoring inside the space shuttle orbiter

    Science.gov (United States)

    Phillips, E. L., Jr.; Bronson, R. D.

    1976-01-01

    Two types of one-inch diameter sound pressure level sensors, which are candidates for monitoring ambient noise in the shuttle orbiter crew compartment during rest periods, were exposed to temperature, passive humidity, and vibration. One unexposed sensor of each type served as a reference unit. Except for the humidity exposures, each of the three capacitive microphones was individually tested in sequence with the essential voltage power supply and preamplifier. One unit exibited anomalous characteristics after the humidity exposure but returned to normal after being dried in an oven at 115 deg for two hours. Except for the humidity exposures, each of the three piezoelectric microphones was individually tested with a laboratory type amplifier. Two apparent failures occurred during these tests. The diaphragm on one was found ruptured after the fourth cycle of the humidity test. A second sensor showed an anomaly after the random vibration tests at which time its sensitivity was consistent at about one-half its former value.

  2. Acoustics short-term passive monitoring using sonobuoys in the Bering, Chukchi, and Western Beaufort Seas conducted by Alaska Fisheries Scientific Center, National Marine Mammal Laboratory from 2007-08-01 to 2015-09-28 (NCEI Accession 0138863)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Mammal Laboratory (NMML) has conducted passive acoustic monitoring in the Bering, Chukchi, and Western Beaufort Seas to determine...

  3. A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy.

    Science.gov (United States)

    Rehder, Sönke; Wu, Jian X; Laackmann, Julian; Moritz, Hans-Ulrich; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S

    2013-01-23

    The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectroscopy measurements. The recrystallisation kinetic parameters (overall recrystallisation rate constant β and the time needed to reach 50% of the equilibrated level t(50)), were determined using a multivariate curve resolution approach. The acoustic levitation device coupled with non-invasive spectroscopy enabled monitoring of the recrystallisation process of the difficult-to-handle (adhesive) amorphous sample. The application of multivariate curve resolution enabled isolation of the underlying pure spectra, which corresponded well with the reference spectra of amorphous and crystalline ibuprofen. The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS. This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development. PMID:23069619

  4. Design of copper/carbon-coated fiber Bragg grating acoustic sensor net for integrated health monitoring of nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chong, See Yenn [Department of Aerospace Engineering, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756 (Korea, Republic of); Lee, Jung-Ryul, E-mail: leejrr@jbnu.ac.k [Department of Aerospace Engineering, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756 (Korea, Republic of); Yun, Chang-Yong [Department of Aerospace Engineering, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756 (Korea, Republic of); Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 335, Gwahangno, Yuseong-gu, Daejon 305-701 (Korea, Republic of)

    2011-05-15

    Research highlights: We develop a cost-effective fiber Bragg grating (FBG) acoustic sensor net for nuclear power plants using copper/carbon (Cu/C)-coated fiber. A chemical method is proposed to remove the Cu/C coating. A 5 mm FBG is successfully inscribed in a Ge-doped silica core through a 7 mm-long silica section with the coating removed. The Cu/C-coated fiber net shows good thermal resistance (<345 {sup o}C). The Cu/C-coated FBG sensor using the metallic adhesive successfully detects the acousto-ultrasonic waves generated by pencil lead breaking and laser beam excitation. - Abstract: A nuclear power plant (NPP) is a harsh environment that gives rise to age-related degradation of the plant structures, and eventually leads to radiation leakage that threatens humans. Integrated structural health monitoring (ISHM) technology is a strong candidate for the prevention of the NPP accidents during operation. Prior studies have shown that fiber Bragg gratings (FBGs) and metal-coated fibers have good radiation and high temperature resistance. In this study, a FBG acoustic sensor using a metallic adhesive for installation and a relatively economical copper/carbon (Cu/C)-coated fiber is developed for ISHM of high temperature NPP structures. A chemical method is proposed to remove the Cu/C coating. A 5 mm FBG was successfully inscribed in a Ge-doped silica core through a 7 mm-long silica section with the coating removed. The Cu/C-coated fiber with the same core/clad structure as the standard SMF allowed no-loss fusion splicing, and showed good adaptability to the economical standard fiber, adaptor, connector, and instruments. It showed also good thermal resistance (<345 {sup o}C) with no degradation in optical power during the optical transmission. The metallic adhesive used to install the FBG in a one-end-free configuration showed superior bonding reliability during temperature cycles ranging from 25 {sup o}C to 345 {sup o}C. The FBG reflectivity was stabilized at a 58% drop

  5. Efficacy assessment of local doxycycline treatment in periodontal patients using multivariate chemometric approach.

    Science.gov (United States)

    Bogdanovska, Liljana; Poceva Panovska, Ana; Nakov, Natalija; Zafirova, Marija; Popovska, Mirjana; Dimitrovska, Aneta; Petkovska, Rumenka

    2016-08-25

    The aim of our study was application of chemometric algorithms for multivariate data analysis in efficacy assessment of the local periodontal treatment with doxycycline (DOX). Treatment efficacy was evaluated by monitoring inflammatory biomarkers in gingival crevicular fluid (GCF) samples and clinical indices before and after the local treatment as well as by determination of DOX concentration in GCF after the local treatment. The experimental values from these determinations were submitted to several chemometric algorithms: principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA). The data structure and the mutual relations of the selected variables were thoroughly investigated by PCA. The PLS-DA model identified variables responsible for discrimination of classes of data, before and after DOX treatment. The OPLS-DA model compared the efficacy of the two commonly used medications in periodontal treatment, chlorhexidine (CHX) and DOX, at the same time providing insight in their mechanism of action. The obtained results indicate that application of multivariate chemometric algorithms can be used as a valuable approach for assessment of treatment efficacy. PMID:27283484

  6. Assessment of systolic and diastolic function in heart failure using ambulatory monitoring with acoustic cardiography.

    Science.gov (United States)

    Dillier, Roger; Zuber, Michel; Arand, Patricia; Erne, Susanne; Erne, Paul

    2011-08-01

    INTRODUCTION. The circadian variation of heart function and heart sounds in patients with and without heart failure (HF) is poorly understood. We hypothesized HF patients would exhibit less circadian variation with worsened cardiac function and sleep apnea. METHODS. We studied 67 HF patients (age 67.4 ± 8.2 years; 42% acute HF) and 63 asymptomatic control subjects with no history of HF (age 61.6 ± 7.7 years). Subjects wore a heart sound/ECG/respiratory monitor. The data were analyzed for sleep apnea, diastolic heart sounds, and systolic time intervals. RESULTS. The HF group had significantly greater prevalence of the third heart sound and prolongation of electro-mechanical activation time, while the control group had an age-related increase in the prevalence of the fourth heart sound. The control group showed more circadian variation in cardiac function. The HF subjects had more sleep apnea and higher occurrence of heart rate non-dipping. CONCLUSIONS. The control subjects demonstrated an increasing incidence of diastolic dysfunction with age, while systolic function was mostly unchanged with aging. Parameters related to systolic function were significantly worse in the HF group with little diurnal variation, indicating a constant stimulation of sympathetic tone in HF and reduction of diurnal regulation. PMID:21361859

  7. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  8. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions--in vitro and in vivo study.

    Science.gov (United States)

    Winkler, Itai; Adam, Dan

    2011-05-01

    The object of this study was to evaluate the monitoring of thermal ablation therapy by measuring the nonlinear response to ultrasound insonation at the region being treated. Previous reports have shown that during tissue heating, microbubbles are formed. Under the application of ultrasound, these microbubbles may be driven into nonlinear motion that produces acoustic emissions at sub-harmonic frequencies and a general increase of emissions at low frequencies. These low frequency emissions may be used to monitor ablation surgery. In this study, a modified commercial ultrasound system was used for transmitting ultrasound pulses and for recording raw RF-lines from a scan plane in porcine (in vitro) and rabbit (in vivo) livers during radio-frequency ablation (RFA). The transmission pulse was 15 cycles in length at 4 MHz (in vitro) and 3.6 MHz (in vivo). Thermocouples were used for monitoring temperatures during the RFA treatment.In the in vitro experiments, recorded RF signals (A-lines) were segmented, and the total energy was measured at two different frequency bands: at a low frequency band (LFB) of 1-2.5 MHz and at the transmission frequency band (TFB) of 3.5-4.5 MHz. The mean energy at the LFB and at the TFB increased substantially in areas adjacent to the RF needle. These energies also changed abruptly at higher temperatures, thus, producing great variance in the received energy. Mean energies in areas distant from RF needle showed little change and variation during treatment. It was also shown that a 3 dB increase of energy at the low frequency band was typically obtained in regions in which temperature was above 53.3 ± 5° C. Thus, this may help in evaluating regions undergoing hyperthermia. In the in vivo experiments, an imaging algorithm based on measuring the LFB energy was used. The algorithm performs a moving average of the LFB energies measured at segments within the scan plane.Results show that a colored region is formed on the image and that it is

  9. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    Science.gov (United States)

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

  10. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2009 and March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Andrews, Jennifer [ASC, Applied Seismology Consultants, Shrewsbury, Shropshire (United Kingdom)

    2010-09-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, 2009, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox and Duckworth 2009). Further information on the previous monitoring periods can be found in Appendix 1. This report covers the period between 1st October 2009 and 31st March 2010 and is the tenth 6-monthly processing and interpretation of the results from the experiment.

  11. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2010 and September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon (ASC Applied Seismology Consultants (United Kingdom))

    2011-05-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox et al. 2009a, b, 2010). Appendix I contains further information about previous monitoring periods. This report covers the period between 1st April 2010 and 30th September 2010 and is the eleventh 6-monthly processing and interpretation of the results from the experiment

  12. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2009 and September 2009

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will [ASC, Applied Seismology Consultants, Shrewsbury, Shropshire (United Kingdom)

    2009-12-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox and Duckworth 2009). Further information on the previous monitoring undertaken can be found in Appendix 1. This report covers the period between 1st April 2009 and 30th September 2009 and is the ninth 6-monthly processing and interpretation of the results from the experiment.

  13. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2008 and March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Duckworth, Damion [ASC, Applied Seismology Consultants, Shrewsbury, Shropshire (United Kingdom)

    2009-06-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009). Further information on the previous monitoring undertaken can be found in Appendix 1. This report covers the period between 1st October 2008 and 31st March 2009 and is the eighth 6-monthly processing and interpretation of the results from the experiment.

  14. Acoustic emission monitoring of stress corrosion cracking in type 304 stainless steel pipes under cyclic heating and cooling

    International Nuclear Information System (INIS)

    Acoustic emission (AE) monitoring was performed during the SCC process in sensitized Type 304 stainless steel pipes under cyclic heating and cooling. The specimens with 20 mm inner diameter and 22 mm outer diameter were solution-treated at 10500C for 30 min and then sensitized at 6500C for 2 hr in vacuum. Test temperature was varied between 1450C and 2900C in triangular wave form with 8 hr period. Two types of loading conditions were used: (1) test condition 1: σsub(theta) (hoop stress) = 157 (MPa) (16 (kg/mm)), σsub(z) (axial stress) = 275 (MPa) (28 (kg/mm)), (2) test condition 2: σsub(theta) = 157 (MPa) (16 (kg/mm)), σsub(z) that altered between 157 MPa and 275 MPa in phase with the test temperature. Dissolved oxygen concentration was about 8 ppm. Main results were as follows: (1) The SCC process under both test condition 1 and test condition 2 could be divided into the former and the latter stages, according to the differences of AE activities per one temperature cycle, (2) The crack of 60 μm in hoop direction could be detected by AE techniques, (3) The maximum AE signal amplitudes in the latter stage were 1.9 mV and 4.5 mV at sensor output under test condition 1 and test condition 2, respectively, (4) The crack growth rates in radial direction, estimated from the AE measurement results, were about 3.4 x 10-9 m/sec for test condition 1 and about 7.7 x 10-9 m/sec for test condition 2, respectively. (author)

  15. Development of hydroacoustical techniques for the monitoring and classification of benthic habitats in Puck Bay: Modeling of acoustic waves scattering by seagrass

    Science.gov (United States)

    Raczkowska, A.; Gorska, N.

    2012-12-01

    Puck Bay is an area of high species biodiversity belonging to the Coastal Landscape Park of Baltic Sea Protected Areas (BSPA) and is also included in the list of the World Wide Fund for Nature (WWF) and covered by the protection program "Natura 2000". The underwater meadows of the Puck Bay are important for Europe's natural habitats due to their role in enhancing the productivity of marine ecosystems and providing shelter and optimal feeding conditions for many marine organisms. One of the dominant species comprising the underwater meadows of the Southern Baltic Sea is the seagrass Zostera marina. The spatial extent of underwater seagrass meadows is altered by pollution and eutrophication; therefore, to properly manage the area one must monitor its ecological state. Remote acoustic methods are useful tools for the monitoring of benthic habitats in many marine areas because they are non-invasive and allow researchers to obtain data from a large area in a short period of time. Currently there is a need to apply these methods in the Baltic Sea. Here we present an analysis of the mechanism of scattering of acoustic waves on seagrass in the Southern Baltic Sea based on the numerical modeling of acoustic wave scattering by the biological tissues of plants. The study was conducted by adapting a model developed on the basis of DWBA (Distorted Wave Born Approximation) developed by Stanton and Chu (2005) for fluid-like objects, including the characteristics of the Southern Baltic seagrass. Input data for the model, including the morphometry of seagrass leaves, their angle of inclination and the density plant cover, was obtained through the analysis of biological materials collected in the Puck Bay in the framework of a research project financed by the Polish Government (Development of hydroacoustic methods for studies of underwater meadows of Puck Bay, 6P04E 051 20). On the basis of the developed model, we have analyzed the dependence of the target strength of a single

  16. A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy

    DEFF Research Database (Denmark)

    Rehder, Sönke; Wu, Jian-Xiong; Laackmann, Julian;

    2013-01-01

    . This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution......The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman....... The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS...

  17. Undersea acoustic telemetry across the North Anatolian Fault, Marmara Sea: results from the first 6 months of monitoring of the fault displacement

    Science.gov (United States)

    Royer, J. Y.; Deschamps, A.; Piete, H.; Sakic, P.; Ballu, V.; Apprioual, R.; Kopp, H.; Lange, D.; Ruffine, L.; Géli, L.

    2015-12-01

    Located in the Marmara Sea, the Istanbul-Silivri segment of the North Anatolian Fault (NAF) is known to be a seismic gap since 1766, although, in the last century, the NAF has caused major devastating earthquakes over most of its extent. This fault segment, void of seismicity, may be either creeping aseismically or blocked and accumulating enough strain to produce an earthquake of magnitude 7 or greater. This section of the NAF may thus represent a major seismic and tsunamigenic hazard for the Istanbul megalopolis, located only 40 km away. The objective of the MARSITE project, funded by the European Union and coordinated by the Observatory of the University of Kandilli (KOERI), is to determine the blocking state of the Istanbul-Silivri fault segment. In this context, an array of 10 acoustic transponders has been deployed on either sides of the fault, in the eastern part of the Kumburgaz Basin, to measure the displacements of the fault over a period of 3 to 5 years. The telemetric beacons (4 from the University of Brest and 6 from the GEOMAR Institute in Kiel) form two arrays fitted in one another. The principle of the experiment is to repeatedly measure the distance (ie two-way-travel time of acoustic pings) between pairs of beacons and thus to monitor the deformation of an array of 9 baselines, 500m to 3000m long, of which 5 cross obliquely the assumed fault trace. The French and German arrays are independent but ensure a redundancy of rangings along common baselines. Each acoustic transponder also monitors the temperature, pressure, sound-velocity and attitude (tiltmeters), every one or two hours. Data are stored in each beacon and can be downloaded from the surface using an acoustic modem. We present here the first 6 months of recording by the French array, from November 1st, 2014 to April 25, 2015. All acoustic transponders worked nominally for 6 months and appear to have remained stable on the seafloor. Recorded sea-bottom temperatures provide evidence for

  18. Fatigue crack propagation of aluminum alloy based on acoustic emission monitoring%铝合金疲劳裂纹扩展声发射监测

    Institute of Scientific and Technical Information of China (English)

    朱荣华; 刚铁

    2013-01-01

    The acoustic emission technique was used to monitor the fatigue crack propagation of 7N01 aluminum alloy single-edge notched three-point bend specimens under different stress ratio and peak load. The relationship between the crack growth rate, acoustic emission count rate and stress intensity factor range was established. The results show that most of the a-coustic emission signals were produced in the low stress cyclic loading stage because the acoustic emission activity in low-stress phase was mainly related to the plastic deformation and crack closure in crack tip, and the acoustic emission count exponentially grew with the stress intensity factor. Based on the relationship between the acoustic emission count rate and crack growth rate, the remaining life of fatigue-damaged structures could be predicted.%采用声发射(acoustic emission,AE)技术对7N01铝合金单边缺口三点弯曲试样不同应力比、不同峰值载荷下疲劳裂纹扩展过程中声发射信号进行了监测,建立了裂纹扩展速率、声发射计数(count)与应力强度因子之间的关系.结果表明,大部分的声发射信号主要产生于疲劳循环载荷的低应力阶段,这主要是低应力阶段的声发射活动主要与裂纹尖端的塑性变形和裂纹闭合现象有关,声发射计数与应力强度因子之间呈指数增长的关系.基于所建立的声发射计数率与裂纹扩展速率的关系,可以预测疲劳损伤结构的剩余寿命.

  19. GC fingerprints coupled to pattern-recognition multivariate SIMCA chemometric analysis for Brazilian gasoline quality studies

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Hatanaka, Rafael; Flumignan, Danilo Luiz; Oliveira, Jose Eduardo de [Sao Paulo State Univ., Araraquara, SP (Brazil). Center for Monitoring and Research of the Quality of Fuels, Biofuels, Crude Oil and Derivatives

    2009-10-15

    ASTM D6729 gas chromatographic fingerprinting coupled to pattern-recognition multivariate soft independent modeling of class analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality. SIMCA, was performed on gas chromatographic fingerprints to classify the quality of representative commercial gasoline samples selected by hierarchical cluster analysis and collected over a 5 month period from gas stations in Sao Paulo State, Brazil. Following an optimized ASTM D6729 gas chromatographic-SIMCA algorithm, it was possible to correctly classify the majority of commercial gasoline samples. The method could be employed for rapid monitoring to discourage adulteration. (orig.)

  20. Guidelines for validation of chemometric models for food authentication

    OpenAIRE

    Veer, van der, P.; Ruth, van, A.; Akkermans, W.

    2011-01-01

    The aim of this report is to describe a set of generic guidelines for in-house validation of a method for authenticity testing that are based on a combination of chemical fingerprinting techniques and chemometric classification models.

  1. Monitoring of the production quality of fibre-reinforced pressure vessels using acoustic emission testing; Ueberwachung der Fertigungsqualitaet von Faserverbund-Druckbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Duffner, Eric; Gregor, Christian; Bohse, Juergen [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    2011-07-01

    The investigation aimed at the validation of a test method for ensuring the production quality of reinforced-fibre pressure vessels in real fabrication conditions. The method is based on characteristics and permissible limiting values derived from acoustic emission curves during the first pressure test. The method had already been tested successfully on reinforced-fibre pressure vessels with metal liners and had been patented. With the current investigations, the possibility of detection fabrication defects in carbon fibre / glass fibre hybrid pressure vessels with polymer liners was evaluated. For this, fibre-reinforced pressure vessels were monitored by acoustic emission measurement during the first hydraulic pressure test; this test is commonly used for quality assurance of this type of pressure vessel, although without acoustic emission testing. Acoustic emission curves were registered for pressure vessels of a serial production, and the mean characteristics and their scatter were determined as reference values. These were compared with the acoustic emission curves of selectively induced fabrication defects. Fabrication defects are defects that may occur in serial production and are difficult or impossible to detect by conventional quality assurance methods. All investigated pressure vessel were then subject to stress until failure (leakage, bursting). This made it possible to verify the real influence of fabrication defects on the burst pressure and/or the fatigue characteristics of the pressure vessels and to assess the validity of acoustic emission testing. [German] Ziel der Untersuchung ist die Validierung einer Pruefmethodik zur Sicherung der Fertigungsqualitaet von Faserverbund - Druckbehaeltern unter realen Fertigungsbedingungen. Das Verfahren basiert auf Merkmalen und zulaessigen Grenzwerten, die aus Schallemissionsverlaeufen bei der Erstdruckpruefung abgeleitet werden [1]. Die Methodik konnte zuvor bereits erfolgreich an Faserverbund - Druckbehaeltern

  2. Chemometrics: A new scenario in herbal drug standardization

    Directory of Open Access Journals (Sweden)

    Ankit Bansal

    2014-08-01

    Full Text Available Chromatography and spectroscopy techniques are the most commonly used methods in standardization of herbal medicines but the herbal system is not easy to analyze because of their complexity of chemical composition. Many cutting-edge analytical technologies have been introduced to evaluate the quality of medicinal plants and significant amount of measurement data has been produced. Chemometric techniques provide a good opportunity for mining more useful chemical information from the original data. Then, the application of chemometrics in the field of medicinal plants is spontaneous and necessary. Comprehensive methods and hyphenated techniques associated with chemometrics used for extracting useful information and supplying various methods of data processing are now more and more widely used in medicinal plants, among which chemometrics resolution methods and principal component analysis (PCA are most commonly used techniques. This review focuses on the recent various important analytical techniques, important chemometrics tools and interpretation of results by PCA, and applications of chemometrics in quality evaluation of medicinal plants in the authenticity, efficacy and consistency.

  3. Evaluation of a Laser-Acoustic System for Continuously Monitoring Suspended-Sediment Concentration and Grain Size in the Colorado River in Grand Canyon

    Science.gov (United States)

    Topping, D. J.; Melis, T. S.; Rubin, D. M.

    2003-12-01

    Sandbars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are important for habitat, protecting archeological sites, and recreation. These deposits have eroded substantially following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94%; sandbars in the upstream portion of Grand Canyon have decreased in size by about 25% during only the last 15 years. Recent work has shown that sand transport in the post-dam river is supply limited, and is equally regulated by the discharge of water and short-term changes in the grain size of sand available for transport. During and following tributary floods, fine sand supplied to the Colorado River travels downstream as an elongating sediment wave. As the front of a sediment wave passes a given location, sand on the bed first fines and sand-transport rates increase independently of the discharge of water. Subsequently, the bed is winnowed and sand-transport rates decrease independently of discharge. By virtue of this process, sand supplied by tributaries is typically exported from the upstream portion of Grand Canyon within months under normal dam releases. Thus, newly input sand may be available to rebuild sandbars during controlled floods conducted only following large tributary floods. Accurate monitoring of sand transport in such a river requires frequent measurements of suspended-sediment concentration and grain size, and cannot be accomplished by using stable sediment-rating curves constructed from a sparser dataset of suspended-sediment measurements. To monitor sediment transport in the Colorado River, we have designed and are evaluating a laser-acoustic system for measuring the concentration and grain size of suspended sediment every 15 minutes. This system consists of (1) a subaqueously deployed laser-diffraction instrument (either a LISST 100 or a LISST 25X

  4. Identification and spatial patterns of coastal water pollution sources based on GIS and chemometric approach

    Institute of Scientific and Technical Information of China (English)

    ZHOU Feng; GUO Huai-cheng; LIU Yong; HAO Ze-jia

    2007-01-01

    Comprehensive and joint applications of GIS and chemometric approach were applied in identification and spatial patterns of coastal water pollution sources with a large data set (5 years (2000-2004), 17 parameters) obtained through coastal water monitoring of Southern Water Control Zone in Hong Kong. According to cluster analysis the pollution degree was significantly different between September-next May (the 1st period) and June-August (the 2nd period). Based on these results, four potential pollution sources, such as organic/eutrophication pollution, natural pollution, mineral/anthropic pollution and fecal pollution were identified by factor analysis/principal component analysis. Then the factor scores of each monitoring site were analyzed using inverse distance weighting method, and the results indicated degree of the influence by various potential pollution sources differed among the monitoring sites. This study indicated that hybrid approach was useful and effective for identification of coastal water pollution source and spatial pattern.

  5. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  6. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed

  7. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  8. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  9. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    Science.gov (United States)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  10. A New Hyphenated μ Trap—GC—Surface Acoustic Wave (SAW) Based Electronic Nose For Monitoring Of Coffee Quality

    Science.gov (United States)

    Carvalho, Mauro; Voigt, Achim; Rapp, Michael

    2009-05-01

    An easy-to-use and versatile analytical method for complex matrix analisis like coffee was developed. The system consists of a microtrap sample preparation, a home made simplified gaschomatographic separation unit and an 8-fold surface acoustic wave based sensors (SAW) array detector. For the coffee quality analysis a successful discrimination of three coffee samples could be achieved. The system would be further developed into a fully automated, low cost version that can be broadly used by the coffee producers.

  11. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy and Implications for Composite Structures

    Science.gov (United States)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry R. L.

    2010-01-01

    Broad-band modal acoustic emission (AE) data was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy tows and an IM7 composite overwrapped pressure vessel (COPV) subjected to an intermittent load hold tensile stress profile known to activate the Felicity ratio (FR). Damage progression was followed by inspecting the Fast Fourier Transforms (FFTs) associated with acoustic emission events. FFT analysis revealed the occurrence of cooperative micromechanical damage events in a frequency range between 100 kHz and 1 MHz. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The implications of using FR* to predict failure in carbon/epoxy composite materials and related composite components such as COPVs are discussed. Trends in the FFT data are also discussed; namely, the difference between the low and high energy events, the difference between early and late-life events, comparison of IM7 and T1000 damage progression, and lastly, the similarity of events occurring at the onset of significant acoustic emission used to calculate the FR.

  12. In situ monitoring the pulse CO{sub 2} laser interaction with 316-L stainless steel using acoustical signals and plasma analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khosroshahi, M.E., E-mail: khosro@aut.ac.ir [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of); Anoosheh pour, F. [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of); Hadavi, M. [Amirkabir University of Technology, Faculty of Mining and Metallurgical Eng., Tehran (Iran, Islamic Republic of); Mahmoodi, M. [Amirkabir University of Technology, Faculty of Biomedical Eng., Biomaterial Group, Laser and Nanobiophotonics Lab., Tehran (Iran, Islamic Republic of)

    2010-10-01

    In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO{sub 2} laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case {approx}830 J cm{sup -2}) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., d{sub t} >> {alpha}{sup -1}) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.

  13. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    Science.gov (United States)

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  14. Online-monitoring of MO-surge arresters with passive surface acoustic wave radio sensors; Online-Temperaturmessung an MO-Ueberspannungsableitern mit funkabfragbaren Oberflaechenwellensensoren

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichsen, V. [Siemens AG, Berlin (Germany). Bereich Energieuebertragung und -verteilung; Scholl, G. [Siemens AG, Muenchen (Germany). Fachzentrum Oberflaechenwellentechnik und Funksensorik

    1998-08-24

    Today no practicable and economical solutions are available for an overall online-monitoring of high-voltage metal oxide surge arresters, which should comprise a surge counter function, an energy monitor and the monitoring of electrical aging if required. A permanent measurement of the arrester temperature on high potential, which basically could provide all these functions, has not yet been realized due to the related technical problems. However, newly developed high-frequency temperature measuring systems based on wireless passive surface acoustic wave temperature sensors are now offering this possibility for the first time. They are actually being field-tested in a 420-kV-arrester and have shown a good performance so far. (orig.) [Deutsch] Zu einem geschlossenen Online-Monitoringkonzept von Hochspannungs-Metalloxid-Ableitern, das eine Ansprechzaehlerfunktion, einen Energiemonitor and gegebenenfalls eine Ueberwachung elektrischer Kennlinienalterung enthalten sollte, fehlen bis heute geeignete, wirtschaftlich vertretbare Loesungen. Eine dauernde Messung der Ableitertemperatur auf Hochspannungspotential, mit der an sich alle genannten Funktionen einfach realisiert werden koennten, scheiterte bisher an der technischen Umsetzbarkeit. Neuentwickelte funkabfragbare Oberflaechenwellen-Temperatursensoren eroeffenen nun erstmalig diese Moeglichkeit. Eingebaut in einem 420-kV-Ableiter, befinden sie sich zur Zeit in einem Feldversuch in praktischer Erprobung und erfuellen dort alle in sie gesetzten Erwartungen. (orig.)

  15. Intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation for preservation of facial nerve function in patients with large acoustic neuroma

    Institute of Scientific and Technical Information of China (English)

    LIU Bai-yun; TIAN Yong-ji; LIU Wen; LIU Shu-ling; QIAO Hui; ZHANG Jun-ting; JIA Gui-jun

    2007-01-01

    Background Although various monitoring techniques have been used routinely in the treatment of the lesions in the skull base, iatrogenic facial paresis or paralysis remains a significant clinical problem. The aim of this study was to investigate the effect of intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation on preservation of facial nerve function.Method From January to November 2005, 19 patients with large acoustic neuroma were treated using intraoperative facial motor evoked potentials monitoring with transcranial electrical stimulation (TCEMEP) for preservation of facial nerve function. The relationship between the decrease of MEP amplitude after tumor removal and the postoperative function of the facial nerve was analyzed.Results MEP amplitude decreased more than 75% in 11 patients, of which 6 presented significant facial paralysis (H-B grade 3), and 5 had mild facial paralysis (H-B grade 2). In the other 8 patients, whose MEP amplitude decreased less than 75%, 1 experienced significant facial paralysis, 5 had mild facial paralysis, and 2 were normal.Conclusions Intraoperative TCEMEP can be used to predict postoperative function of the facial nerve. The decreased MEP amplitude above 75 % is an alarm point for possible severe facial paralysis.

  16. Simultaneous Determination of Amiloride and Hydrochlorothiazide in a Compound Tablet by Diffuse Reflectance Spectroscopy and Chemometrics

    Science.gov (United States)

    Tang, J.; Li, X.; Feng, Y.; Liang, B.

    2016-09-01

    This paper studies the simultaneous determination of amiloride hydrochloride (AMH) and hydrochlorothiazide (HCTZ) in amiloride hydrochloride tablets by ultraviolet-visible-shortwave near-infrared diffuse reflectance spectroscopy (UV-Vis-swNIR DRS) and chemometrics. Quantitative models for the two components were established by partial least squares (PLS) and support vector regression (SVR), respectively. For the PLS models of AMH and HCTZ, the determination coefficient R2 of the calibration set was 0.9503 and 0.9538, and the coefficient R2 of the prediction set was 0.8983 and 0.9260, respectively. The root mean square error of the calibration set (RMSEC) was 0.8 mg and 8.1 mg, while the root mean square error of the prediction set (RMSEP) was 1.0 mg and 8.7 mg, respectively. For the SVR models of AMH and HCTZ, the R2 of the calibration set was 0.9668 and 0.9609; the R2 of the prediction set was 0.9145 and 0.9446, respectively. The RMSEC was 0.7 and 7.5 mg, and the RMSEP was 0.9 and 8.9 mg, respectively. The results show that SVR modeling has a satisfactory prediction effect. The proposed method based on UV-vis-swNIR and chemometrics is efficient, nondestructive, and expected to be used for online quality monitoring in the production of drugs.

  17. Chemometrics applications in biotechnology processes: predicting column integrity and impurity clearance during reuse of chromatography resin.

    Science.gov (United States)

    Rathore, Anurag S; Mittal, Shachi; Lute, Scott; Brorson, Kurt

    2012-01-01

    Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost-effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance.

  18. Chemometrics and the identification of counterfeit medicines-A review.

    Science.gov (United States)

    Krakowska, B; Custers, D; Deconinck, E; Daszykowski, M

    2016-08-01

    This review article provides readers with a number of actual case studies dealing with verifying the authenticity of selected medicines supported by different chemometric approaches. In particular, a general data processing workflow is discussed with the major emphasis on the most frequently selected instrumental techniques to characterize drug samples and the chemometric methods being used to explore and/or model the analytical data. However, further discussion is limited to a situation in which the collected data describes two groups of drug samples - authentic ones and counterfeits. PMID:27133184

  19. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  20. Bat Species Occurrence and Long-Term Bat Population Monitoring on Refuges Using Acoustical Detection - 2012-2015 Summary

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Long-term trend monitoring efforts for bats on National Wildlife Refuges have been prompted by a paucity of significant population information and precipitous...

  1. LEGACY - EOP Acoustic tagging and monitorings of cultured and wild juvenile crimson jobfish (Pristipomoides filamentosus) in a nursery habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw data from Vemco receivers that monitored the Kaneohe, Oahu nursery grounds while tagged juvenile snapper were released in 2006 (cultured) and 2007 (wild). Also...

  2. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  3. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  4. Chemometric Optimization Studies in Catalysis Employing High-Throughput Experimentation

    NARCIS (Netherlands)

    Pereira, S.R.M.

    2008-01-01

    The main topic of this thesis is the investigation of the synergies between High-Throughput Experimentation (HTE) and Chemometric Optimization methodologies in Catalysis research and of the use of such methodologies to maximize the advantages of using HTE methods. Several case studies were analysed

  5. Chemometrics in multispectral imaging for quality inspection of postharvest products

    NARCIS (Netherlands)

    Noordam, Jan Corstiaan

    2005-01-01

    This thesis describes different novel chemometric techniques applied to multispectral images for quality inspection on agricultural food products. These images do not only have a huge number of spectral bands which makes training set selection a challenging task, they also contain classes with small

  6. Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission

    Science.gov (United States)

    Zitto, Miguel E.; Piotrkowski, Rosa; Gallego, Antolino; Sagasta, Francisco; Benavent-Climent, Amadeo

    2015-08-01

    The complex Morlet Continuous Wavelet Transform (CWT) was applied to acoustic emission (AE) signals from dynamic tests conducted on a reinforced concrete slab with a shaking table. The steel reinforcement bars did not yield during the tests, but a severe loss of bond between reinforcement bars and surrounding concrete was detected. Comparison of the evolution of the scale position of maximum values of CWT coefficients and the histories of response acceleration obtained in different seismic simulations allowed us to identify the (45-64 kHz) frequency band corresponding to the fracture of concrete. The Cumulative Acoustic Emission Energy (CAE) obtained by reconstructing the AE signals in this scale (frequency) band was compared with the Cumulative Dissipated Energy (CDE) of the tested structure. The CDE is accepted as a good parameter for characterizing the mechanical damage in structures. A reasonably good agreement was found between the normalized histories of CAE and CDE. This made it possible to categorize the cracking of concrete as the main source of damage in the reinforced concrete slab. Conversely, the differences between the CAE and CDE curves observed for high levels of peak acceleration applied to the shaking table can be attributed to the deformation of the steel that formed the columns. The AE coming from the plastic deformation of the steel is not detected by CAE due to the threshold amplitude (45 dB) used in the AE monitoring, but the strain energy dissipated by the steel through plastic deformations is included in the CDE. Further, a study of the evolution of the b-value in the successive seismic simulations revealed that the b-value can capture the inception of severe cracking in the concrete, which the tests described in this study attributed mainly to the loss of bond between reinforcing steel and surrounding concrete.

  7. Structural health monitoring of liquid-filled tanks: a Bayesian approach for location of acoustic emission sources

    International Nuclear Information System (INIS)

    Acoustic emission (AE) is a well-established nondestructive testing method for assessing the condition of liquid-filled tanks. Often the tank can be tested without the need for accurate location of AE sources. But sometimes, accurate location is required, such as in the case of follow-up inspections after AE has indicated a significant defect. Traditional computed location techniques that considered only the wave traveling through the shell of the tank have not proved reliable when applied to liquid-filled tanks. This because AE sensors are often responding to liquid-borne waves, that are not considered in the traditional algorithms. This paper describes an approach for locating AE sources on the wall of liquid filled tanks that includes two novel aspects: (i) the use of liquid-borne waves, and (ii) the use of a probabilistic algorithm. The proposed algorithm is developed within a Bayesian framework that considers uncertainties in the wave velocities and the time of arrival. A Markov Chain Monte Carlo is used to estimate the distribution of the AE source location. This approach was applied on a 102 inch diameter (29 000 gal) railroad tank car by estimating the source locations from pencil lead break with waveforms recorded. Results show that the proposed Bayesian approach for source location can be used to calculate the most probable region of the tank wall where the AE source is located. (paper)

  8. Acoustic habitat and shellfish mapping and monitoring in shallow coastal water - Sidescan sonar experiences in The Netherlands

    NARCIS (Netherlands)

    Overmeeren, R. van; Craeymeersch, J.; Dalfsen, J. van; Fey, F.; Heteren, S. van; Meesters, E.

    2009-01-01

    Sidescan sonar has been applied in a number of shallow water environments along the Dutch coast to map and monitor shellfish and seabed habitats. The littoral setting of these surveys may hamper data acquisition flying the towfish in zones of turbulence and waves, but also offers valuable opportunit

  9. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  10. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  11. Food intake monitoring: an acoustical approach to automated food intake activity detection and classification of consumed food

    International Nuclear Information System (INIS)

    Obesity and nutrition-related diseases are currently growing challenges for medicine. A precise and timesaving method for food intake monitoring is needed. For this purpose, an approach based on the classification of sounds produced during food intake is presented. Sounds are recorded non-invasively by miniature microphones in the outer ear canal. A database of 51 participants eating seven types of food and consuming one drink has been developed for algorithm development and model training. The database is labeled manually using a protocol with introductions for annotation. The annotation procedure is evaluated using Cohen's kappa coefficient. The food intake activity is detected by the comparison of the signal energy of in-ear sounds to environmental sounds recorded by a reference microphone. Hidden Markov models are used for the recognition of single chew or swallowing events. Intake cycles are modeled as event sequences in finite-state grammars. Classification of consumed food is realized by a finite-state grammar decoder based on the Viterbi algorithm. We achieved a detection accuracy of 83% and a food classification accuracy of 79% on a test set of 10% of all records. Our approach faces the need of monitoring the time and occurrence of eating. With differentiation of consumed food, a first step toward the goal of meal weight estimation is taken. (paper)

  12. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  13. Acoustic Emission Health Monitoring of Fill Purge COPV's Used in Aerospace and Automotive Applications and Designed for Long Cycle Life

    Science.gov (United States)

    Waller, Jess

    2013-01-01

    Cumulative composite damage in composite pressure vessels (CPVs) currently is not monitored on-orbit. Consequently, hazards due to catastrophic burst before leak (BBL) or compromised CPV reliability cannot be ascertained or mitigated, posing a risk to crew and mission assurance. The energy associated with CPV rupture can be significant, especially with high pressure gases are under containment, and the energy releases can be severe enough to cause injury, death, loss of assets or mission. Dual-Use Rationale: CPVs similar to those used by NASA on ISS, for example, are finding increasing use in automotive and transportation industry applications. These CPVs generally have a nonload sharing liner and are repeatedly filled over their service lifetime, typically with hydrogen or compressed natural gas (CNG). The same structural health monitoring equipment and software developed by NASA WSTF for evaluating, in real-time, the health of NASA CPVs on ISS will be used to evaluate the health of automotive CPVs, the only differences being the type and design of the CPV, and the in-service lifetime pressure histories. HSF Need(s)/Performance Characteristic(s) Supported: 1) Enable on-board vehicle systems management for mission critical functions at destinations with > 3 second time delay 2) Enable autonomous nominal operations and FDIR for crewed and un-crewed systems 3) Reduce on-board crew time to sustain and manage vehicle by factor of 2x at destinations with > 6 second time delay (see Crew Autonomy sheet) 4) Reduce earth-based mission ops "back room engineering" requirements for distant mission support delay (see Mission Autonomy sheet)

  14. Determination of Commercials Cooking Oils and Fats Using Chemometrics Methods

    International Nuclear Information System (INIS)

    In this study, chemometric method has been used in determining the oil quality. The samples used were olive oil, sunflower oil and butter from two different brands. Two different conditions were applied, either it was fresh or fried. Titratio, a conventional method was used to determine free fatty acids content (FFA), iodine value (IV), and peroxide value (PV). Twelve samples were then used for analysis and their FTIR spectra were measured at 4000-400 cm-1. The computer stimulation was used to process the data based on their pattern recognition which optimized by principal component analysis (PCA) and partial least squares (PLS). PCA model was used to distinguish the properties between fresh and fried oil. The PLS model was used to predict the value for validation test in comparison with conventional results. Results showed the validation value for fresh oil was 0.90. This indicated the chemometric method was in agreement with conventional method. (author)

  15. 大型听神经瘤显微切除术中电生理监测的临床意义%Clinical significance of neurophysiological monitoring in microsurgery for large acoustic neuroma

    Institute of Scientific and Technical Information of China (English)

    戴易; 徐善水; 江晓春; 陶进; 陈建民; 王宣之; 狄广福; 夏大勇

    2012-01-01

    目的:探讨大型听神经瘤显微切除术中电生理监测对面神经功能的保护技巧及意义.方法:以2008年10月~2012年2月术中行电生理监测者为监测组(n=37),2006年1月~2008年7月术中未行电生理监测者为对照组(n=31).统计分析两组肿瘤全切除率、面神经解剖和功能保留率.结果:监测组的肿瘤全切除率、面神经解剖和功能保留率均明显高于对照组(P<0.05).结论:听神经瘤术中行电生理监测可有效保护面神经功能.%Objective: To assess the clinical significance of applying neurophysiological monitoring to preventing the facial nerve from injury during microsurgery of large acoustic neuroma. Methods: Between Oct. 2008 and Feb. 2012, 37 patients with large acoustic neuroma undergone microsurgery assisted with neurophysiological monitoring were recruited as monitored group, while another 31 undergone the similar surgery between Jan. 2006 and Jul. 2008 without monitoring were included in control group. Two groups were statistically compared regarding the total resection rate for the tumor, rates for both facial anatomical retaining and intact facial nerve function. Results: The results were significantly better in the monitored group than the control group concerning the total resection rate for the mass, retained anatomical facial nerve and facial nerve function pre-served( P < 0. 05 ). Conclusion: Applying neurophysiological monitoring to microsurgery for large acoustic neuroma may lead to preservation of facial nerve function.

  16. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    Science.gov (United States)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  17. Multivariate analysis and chemometric characterisation of textile wastewater streams:

    OpenAIRE

    Kavšek, Darja; Bednárová, Adriána; Jerič, Tina; Vajnhandl, Simona; Majcen Le Marechal, Alenka; Brodnjak-Vončina, Darinka

    2013-01-01

    The aim of this work was to design a quick and reliable method for the evaluation and classification of wastewater streams into treatable and non-treatable effluents for reuse/recycling. Different chemometric methods were used for this purpose handling the enormous amount of data, and additionally to find any hidden information, which would increase our knowledge and improve the classification. The data obtained from the processes description, together with the analytical results of measured ...

  18. Screening Brazilian commercial gasoline quality by hydrogen nuclear magnetic resonance spectroscopic fingerprintings and pattern-recognition multivariate chemometric analysis.

    Science.gov (United States)

    Flumignan, Danilo Luiz; Boralle, Nivaldo; de Oliveira, José Eduardo

    2010-06-30

    The identification of gasoline adulteration by organic solvents is not an easy task, because compounds that constitute the solvents are already in gasoline composition. In this work, the combination of Hydrogen Nuclear Magnetic Resonance ((1)H NMR) spectroscopic fingerprintings with pattern-recognition multivariate Soft Independent Modeling of Class Analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality in a Monitoring Program for Quality Control of Automotive Fuels. SIMCA was performed on spectroscopic fingerprints to classify the quality of representative commercial gasoline samples selected by Hierarchical Cluster Analysis (HCA) and collected over a 6-month period from different gas stations in the São Paulo state, Brazil. Following optimized the (1)H NMR-SIMCA algorithm, it was possible to correctly classify 92.0% of commercial gasoline samples, which is considered acceptable. The chemometric method is recommended for routine applications in Quality-Control Monitoring Programs, since its measurements are fast and can be easily automated. Also, police laboratories could employ this method for rapid screening analysis to discourage adulteration practices. PMID:20685442

  19. Application of chemometric methods for assessment and modelling of microbiological quality data concerning coastal bathing water in Greece

    Directory of Open Access Journals (Sweden)

    Agelos Papaioannou

    2014-12-01

    Full Text Available Background. Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. Design and methods. This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006 by chemometric methods. Results. Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean, group B (clean and group C (contaminated. Conclusions. The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece.

  20. 声发射技术在抽杆疲劳实验中的应用%Application of acoustic emission (AE) technique in crack monitor during fatigue test of pump rods

    Institute of Scientific and Technical Information of China (English)

    夏永发; 李海玲

    2007-01-01

    The acoustic emission(AE)real time monitoring of fatigue damage of pump rods samples during fatigue test was introduced.Under severe environmental noise caused by vibration,the real time monitoring of the fatigue crack initiation and expansion was realized successfully by using the parameters analysis method combined by AE Hits and Amplitude.The characters of the methods are simple and real time,which can provide a more accurate and impersonal basis for judging whether the fatigue test piece has been destroyed,thus can provide a scientific assistant method for accurately determining the life of pump rod.

  1. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2008-12-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing.

  2. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  3. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  4. Overview of the Usage of Chemometric Methods for Remediation Techniques of Radionuclides

    Science.gov (United States)

    Yilmaz, C.; Aslani, M. A. A.

    The aim of this study is to investigate the treatment of chemometric tools on remediation techniques for removal of Cs-137, Sr-90 and Ra-226 from environmental samples. In this study; statistical data are collected from literature about applications of chemometric methods.

  5. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2008 and September 2008

    International Nuclear Information System (INIS)

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation [Pettitt et al., 1999], and during stages of canister heating and tunnel pressurisation [Haycox et al., 2005a and 2005b; Haycox et al., 2006a and 2006b; Zolezzi et al., 2007 and Duckworth et al., 2008]. Further information on this monitoring can be found in Appendix I. This report covers the period between 1st April 2008 and 30th September 2008 and is the seventh instalment of the 6-monthly processing and interpretation of the results from the experiment

  6. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2008 and September 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2009-03-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation [Pettitt et al., 1999], and during stages of canister heating and tunnel pressurisation [Haycox et al., 2005a and 2005b; Haycox et al., 2006a and 2006b; Zolezzi et al., 2007 and Duckworth et al., 2008]. Further information on this monitoring can be found in Appendix I. This report covers the period between 1st April 2008 and 30th September 2008 and is the seventh instalment of the 6-monthly processing and interpretation of the results from the experiment.

  7. Outcomes of facial nerve reservation during acoustic neuroma surgery under neural electrophysiological monitoring%神经电生理监测在听神经瘤切除术中保留面神经的效果

    Institute of Scientific and Technical Information of China (English)

    张旸; 徐海涛; 许媛; 陆小明; 刘宁; 鲁艾林

    2015-01-01

    Objective To summarize the outcomes of facial nerve reservation during acoustic neuroma surgery under neural electrophysiological monitoring .Methods Acoustic neuroma resection under microscope was performed via suboccipital retrosigmoid approach in 161 patients .Intraoperative continuous monitoring of evoked potential of the facial nerve was carried out during operation .The facial nerve function was valuated during and after surgery .Results The results of facial nerve function after surgery in 101 cases were consistent with those monitored during operation with an accordance rate of 62.7% .Conclusion The anatomy and facial nerve reservation during acoustic neuroma resection can be improved by intraoperative continuous monitoring of evoked potential of the facial nerve .Some interference factors need to be eliminated in order to improve the accuracy of intraoperative neurophysiological monitoring .%目的:总结电生理监测对听神经瘤术中保留面神经的效果。方法听神经瘤患者161例,采用经枕下乙状窦后入路,显微镜下实施听神经瘤切除术。术中采用神经电生理技术监测面神经诱发电位;术中和术后评估面神经功能。结果术后面神经功能评估结果与术中神经电生理监测结果一致率为62.7%(101/161)。结论神经电生理监测技术应用于听神经瘤显微外科手术可提高面神经解剖和神经功能保留效果;但同时应排除干扰因素,提高电生理监测的准确性。

  8. Application of chemometric techniques to classify the quality of surface water in the watershed of the river Bermudez in Heredia, Costa Rica

    International Nuclear Information System (INIS)

    The application of selected chemometric techniques have been investigated: cluster analysis, principal component analysis and factor analysis, to classify the quality of rivers water and evaluate pollution data. Fourteen physicochemical parameters were monitored at 10 stations located in the watershed of the river Bermudez, from August 2005 to February 2007. The results have identified the existence of two natural clusters of monitoring sites with similar characteristics of contamination and identify the DQO, DBO, NO3-, SO4-2 and SST, as the main variables that discriminate between sampling sites. (author)

  9. Monitoring microbe-induced physical property changes using high-frequency acoustic waveform data: Toward the development of a microbial megascope

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kenneth Hurst

    2002-05-20

    A laboratory investigation was undertaken to determine the effect of microbe generated gas bubbles in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of denitrifying bacteria on saturated flow conditions was evaluated in light of the stimulated production of N{sub 2} gas and the resulting plugging of the pore throats. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude.

  10. Assessing the performance of the photo-acoustic infrared gas monitor for measuring CO(2), N(2)O, and CH(4) fluxes in two major cereal rotations.

    Science.gov (United States)

    Tirol-Padre, Agnes; Rai, Munmun; Gathala, Mahesh; Sharma, Sheetal; Kumar, Virender; Sharma, Parbodh C; Sharma, Dinesh K; Wassmann, Reiner; Ladha, Jagdish

    2014-01-01

    Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time-consuming. The photo-acoustic infrared gas monitoring system (PAS) with on-line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2 O, CO2 , and CH4 fluxes measured by GC and PAS from agricultural fields under the rice-wheat and maize-wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS-CH4 (PCH4 ) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm(-3) increase in water vapor. The daily CO2 , N2 O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93-98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2 O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC- and PAS-N2 O (PN2 O) fluxes in wheat and maize were not different but the PAS-CO2 (PCO2 ) flux in wheat was 14-39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2 O fluxes across N levels were higher than those of GC-CH4 and GC-N2 O fluxes by about 2- and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2 O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity. PMID:23929733

  11. 小型矿山声发射监测与强地压活动预测%Acoustic Emission Monitoring and Predict of Strong Ground Pressure Activities in Small Mines

    Institute of Scientific and Technical Information of China (English)

    欧阳治华; 江露

    2012-01-01

    鄂东地区许多小型矿山经多年空场法开采,已形成大量采空区。资金缺乏使得小型矿山只能选用简易的单通道YSSC型岩体声发射监测仪,人工定时定点读数,监测重点区域。以垴窖铁矿为例,通过有限元数值分析,将声发射监测点布置在声发射源可能发生的区域(即应力集中区),解决该仪器无法对声发射源定位的问题。信号去噪则是通过非生产时段的声发射监测,直接避免噪音干扰监测数据,提高预测强地压活动的准确性,以保证矿山安全生产。%There is a large number of mined-out areas in small-scale mines,eastern Hubei,because of mining with open stoping method for several years.For lack of funds,the small-scale mines can only select YSSC single-channel acoustic emission instrument to monitor ground pressure activations in some major areas,with artificial record of data at a fixed time.Taking Naojiao iron mine as an example,acoustic emission monitoring points was arranged at the area(stress concentration area) in which acoustic emission source might occur based on the finite element analysis,so as to solve the problem that this instrument can not located acoustic emission source.Single de-noising was achieved by acoustic emission monitoring in non-production periods to avoid the noise disturbing the monitoring data directly,then the accuracy of forecasting in strong ground pressure activities could be enhanced,in order to ensure mine safety.

  12. Study Acoustic Emissions from Composites

    Science.gov (United States)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  13. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  14. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  15. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  16. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  17. Application of NIR chemometric methods for quantification of the crystalline fraction of warfarin sodium in drug product.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Akhtar, Sohail; Siddiqui, Akhtar; Rahman, Ziyaur; Khan, Mansoor A

    2016-01-01

    Monitoring of the physical state of warfarin sodium (WS) in products is essential for minimizing product quality variability in order to ensure consistent clinical performance. This study reports the development of chemometric models for quantifying the crystalline and amorphous fractions of WS in commercial drug products using NIR spectroscopy. Formulations based on commercially available products with different API to excipient ratio were used for the study. For each content, two formulations containing either lactose monohydrate or lactose anhydrous as the predominant formulation excipient were prepared. Two formulations containing either 100% amorphous WS (AWS) or crystalline WS (CWS) were prepared and mixed in various ratios to obtain sample matrices containing AWS/CWS 0-100%. The uniformity of the samples was confirmed by near infrared chemical imaging. Data were mathematically pretreated by multiplicative signal correction and Savitzky-Golay second derivative. Principal component regression and partial least square regression models were developed from mathematically treated data. All the models showed linear trend for amorphous and crystalline fractions of the WS as indicated by correlation and R(2) > 0.99 and >0.98, respectively. The models demonstrated good performance parameters with a low-root mean squared error, standard error and bias. The model predicted CWS and AWS contents were in very close agreement with the actual values. The study indicated the utility of NIR chemometric methods in quantification of the crystalline and/or amorphous fraction of WS in its products. PMID:26161939

  18. Prediction of class membership of biodiesels using chemometrics.

    Science.gov (United States)

    Mustafa, Zylia; Milina, Rumyana; Simeonova, Pavlina A; Tsakovski, Stefan L; Simeonov, Vasil D

    2015-01-01

    Recently, serious scientific and technological attention is paid to creation of alternative energy sources, including biofuels. The assessment of the quality of the biofuels produced and of the raw materials needed for the production technology is an important scientific challenge. One of the major sources for biodiesel production is plant oils material (sunflower, rapeseed, palm, soya etc.). Since plants are complex system from the biota it is not easy to find specific chemical components responsible for their ability to serve as biodiesels. The characterization and classification of plant sources as biofuel material could be reliably estimated only by the use of multivariate statistical approaches (chemometrics). The chemometric expertise makes it possible not only to classify different biofuel sources into similarity classes but also to predict the membership of unknown by origin chemically analyzed samples to already existing classes. The present study deals with the prediction of the class membership of several unknown by origin samples, which are included in a large data set with FAME profiles of biodiesel plant sources. Using a data set from chromatographic analysis of fatty acid methyl esters profiles (FAME) of different plant biodiesel sources and applying the chemometric technique know as partial least squares-discriminant analysis (PLS - DA) a pattern recognition procedure is developed to: I. Model classes of similarity of biodiesel plant sources using their FAME profiles not taking into account the samples with unknown origin; II. Classify correctly the samples with unknown origin to the previously defined classes of biodiesel sources (palm oil, soybean oil, peanut oil, rapeseed oil, sunflower oil and maize oil). The prediction is successfully achieved for all samples with previously unknown origin. This pattern recognition approach is applied for the first time in the field of biodiesel classification and modeling tasks. PMID:25438133

  19. Chemometric Methods for Biomedical Raman Spectroscopy and Imaging

    Science.gov (United States)

    Reddy, Rohith K.; Bhargava, Rohit

    The vibrational spectrum is a quantitative measure of a sample's molecular composition. Hence, classical chemometric methods, especially regression-based, have focused on exact mapping between identity and sample composition. While this approach works well for molecular identifications and scientific investigations, problems of biomedical interest often involve complex mixtures of stochastically varying compositions and complex spatial distributions of molecules contributing to the recorded signals. Hence, the challenge often is not to predict the identity of materials but to determine chemical markers that help rapidly detect species (e.g. impurities, conformations, strains of bacteria) in large areas or indicate changes in function in complex tissue (e.g. cancer or tissue engineering). Hence, the rate of data analysis has to be rapid, has to be robust with respect to stochastic variance and the provided information is usually related to biomedical context and not to molecular compositions. The emergence of imaging techniques and clinical applications are spurring growth in this area. In this chapter, we discuss chemometric methods that are useful in this milieu. We first review methods for data pre-processing with a focus on the key challenges facing a spectroscopist. Next, we survey some of the well known, widely used pattern classification techniques under the framework of supervised and unsupervised classification. We discuss the applicability, advantages and drawbacks of each of these techniques and help the reader not only gain useful insights into the techniques themselves but also acquire an understating of the underlying ideas and principles. We conclude by providing examples of the coupled use of chemometric and statistical tools to develop robust classification protocols for prostate and breast tissue pathology. We specifically focus on the critical factors and pitfalls at each step in converting spectral data sets into hi-fidelity images useful for

  20. Chemometrics approach to substrate development, case: semisyntetic cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Hansen, Birgitte Vedel

    1998-01-01

    from food production facilities.The Chemometrics approach to substrate development is illustrated by the development of a semisyntetic cheese substrate. Growth, colour formation and mycotoxin production of 6 cheese related fungi were studied on 9 types of natural cheeses and 24 synthetic cheese......, the most frequently occurring contaminant on semi-hard cheese. Growth experiments on the substrate were repeatable and reproducible. The substrate was also suitable for the starter P. camemberti. Mineral elements in cheese were shown to have strong effect on growth, mycotoxin production and colour...

  1. Acoustic Bat Inventory and Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Sheldon-Hart Mountain National Wildlife Refuge Complex (Complex) occupies close to 1 million acres in the Great Basin. In 2009 and 2010, the Complex initiated...

  2. Using an autonomous passive acoustic observational system to monitor the environmental impact of the Gulf of Mexico oil spill on deep-diving marine mammals

    Science.gov (United States)

    Sidorovskaia, N.; Ackleh, A.; Ma, B.; Tiemann, C.; Ioup, J. W.; Ioup, G. E.

    2012-12-01

    The Littoral Acoustic Demonstration Center (LADC) is a consortium of scientists from four universities and the U.S. Navy, which performs acoustic measurements and analysis in littoral waters. For the present work, six passive autonomous broadband acoustic sensors were deployed by LADC in the vicinity of the Deep Water Horizon oil spill site in the Northern Gulf of Mexico in fall 2010. The objective of the project is to assess long-term impact of the spill on the deep-diving residential population of marine mammals, particularly, sperm and beaked whales. Collected data were processed to detect, extract, and count acoustic signals produced by different types of marine mammals. As a next step, a statistical model which uses acoustic inputs was developed to estimate residential populations of different types of marine mammals at different distances from the spill site. The estimates were compared to population estimates from years prior to the spill, using pre-spill collected data in the area by LADC from 2001, 2002, and 2007. The results indicate different responses from sperm and beaked whales in the first months following the spill. A recently published article by our research group (Ackleh et al., J. Acoust. Soc. Am. 131, 2306-2314) provides a comparison of 2007 and 2010 estimates showing a decrease in acoustic activity and abundance of sperm whales at the 9-mile distant site, whereas acoustic activity and abundance at the 25-mile distant site has clearly increased. This may indicate that some sperm whales have relocated farther away from the spill subject to food source availability. The beaked whale population appears to return to 2007 numbers after the spill even at the closest 9-mile distant site. Several acoustically observed changes in the animals' habitat associated with the spill, such as anthropogenic noise level, prey presence, etc., can be connected with the observed population trends. Preliminary results for interpreting observed population trends will

  3. Monitor

    Data.gov (United States)

    US Agency for International Development — A custom-built, dual-language (English and Spanish) system (http://www.monitor.net.co/) developed by DevTech that debuted in January 2011. It features a central PMP...

  4. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  5. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing; Analyse der Schallemissionssignale aus Ermuedungsrisswachstum und Korrosionsprozessen. Untersuchung der Moeglichkeiten fuer die kontinuierliche Zustandsueberwachung von Transportbehaeltern mittels Schallemissionspruefung

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Janne

    2016-05-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  6. Chemometric techniques in oil classification from oil spill fingerprinting.

    Science.gov (United States)

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wong, Kok Fah; Retnam, Ananthy; Zali, Munirah Abdul; Mokhtar, Mazlin; Yusri, Mohd Ayub

    2016-10-15

    Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources.

  7. Acoustic emission

    International Nuclear Information System (INIS)

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  8. 面神经电生理监测在大型听神经瘤术中的应用%Intraoperative electrophysiologic monitoring of the facial nerve in operation of large acoustic neuromas

    Institute of Scientific and Technical Information of China (English)

    赵学明; 药天乐; 万大海; 王永红; 范益民; 郝解贺

    2011-01-01

    Objective To explore intraoperative protection of facial nerve and evaluate its function after operation in large acoustic neuromas surgery by electrophysiologic monitoring. Method A total of 42 patients'clinical data with large acoustic neuromas between Jun, 2007 and Mar, 2010 were analyzed retrospectively,who were treated microsurgically with intraoperative electrophysiological monitoring in our department. Results The facial nerve was preserved anatomically in 37 patients (88%). The function of facial nerve was kept well in 30 cases (71%). Stimulative intensity of 1 ~ 3 V at the end of operation is related to the good function of facial nerve. The proximal - to - distal amplitude ratio of facial nerve after surgery less than 0. 3 presented with a bad facial function. ConclusionsIntraoperative monitoring has significantly decreased facial nerve morbidity in large acoustic neuromas surgery. Stimulative intensity at the exit of facial nerve from brainstem is related to the facial nerve function negatively. The proximal - to - distal amplitude ratio can predict the facial nerve function positively following acoustic neuromas resection.%目的 探讨大型听神经瘤术中面神经监测对面神经保护及评估术后面神经功能的临床意义。方法回顾性分析我科2007年6月至2010年3月术中行面神经监测的42例大型听神经瘤的临床资料。结果 面神经解剖保留37例(88%),面神经功能保留30例(71%)。术末刺激强度1~3V即引起肌电反应者预后良好;而术末面神经近端与远端波幅之比<0.3者预后差。结论 大型听神经瘤术中面神经监测可显著降低术后面神经瘫痪的发生率,术末面神经脑干端的刺激强度与面神经功能呈负相关,而面神经近端与远端波幅之比与面神经功能呈正相关。

  9. Monitoring

    Science.gov (United States)

    ... its main source of fuel. To keep your blood sugar level on target and avoid problems with your eyes, kidneys, heart and feet, you should eat right ... better. And monitoring doesn’t stop at measuring blood sugar levels. Because ... blood testing) Eye health (eye exams) Foot health (foot exams and ...

  10. The Role of Intraoperative Facial Nerve Monitoring in Acoustic Neuroma Resection%术中神经监测在听神经瘤切除术中对面神经的保护作用

    Institute of Scientific and Technical Information of China (English)

    沈上杭; 王占祥; 陈玉英; 刘希尧; 谭国伟; 郭剑锋

    2009-01-01

    BACKGROUND & OBJECTIVE: To maintain the anatomic and functional intactness of facial nerve is one of the goal of acoustic neuroma resection. In this article, we investigated the role of intraoperative facial nerve monitoring in acoustic neuroma resection. METHODS: Clinical data of 57 patients with acoustic neuroma treated in our hospital were retrospectively analyzed. Among 57 patients, tumors were removed under microscope without intranperative facial nerve monitoring in 35 cases and with intraoperative monitoring in 22 cases. Post operative facial nerve function was followed up in all patients. RESULTS: House-Brackmann system was used for evaluating the function of facial nerve 3 months after operation. Among 22 cases with intraoperative facial nerve monitoring, facial nerve intactness was observed in 18 cases, Grade Ⅰ facial paralysis in 2 cases and Grade Ⅱ facial paralysis in 2 cases, repectively. The monitoring group had 2 cases Among 35 cases without intracperative facial nerve monitoring, intact faical function was observed in 14 cases, Grade Ⅰfacial paralysis in 12 cases, Grade Ⅱ facial paralysis in 6 cases, grade Ⅲ facial paralysis in 2 cases, and Grade Ⅴ facial paralysis in 1 case, respectively.Patients with intraoperative facial nervemonitoring had better performance in facial nerve function than those without monitoring (P< 0.05). CONCLUSION: Intraoperative nerve monitoring techniques facilitates the localization and preservation of the facial nerve in acoustic neuroma resection.%背景与目的:面神经瘫痪是听神经瘤切除术中最常见的并发症,近年来随着术中神经监测技术的应用,术后面神经功能已得到较好的保护.本研究旨在探讨术中神经监测在听神经瘤手术中对面神经功能的保护作用.方法:分析本院收治手术的57例听神经瘤患者,其中直接显微镜下切除肿瘤(非监测组)35例,显微镜下切除肿瘤过程中使用术中神经监测仪对

  11. Characterization and Classification of Crude Oils Using a Combination of Spectroscopy and Chemometrics

    OpenAIRE

    Peinder, Peter de

    2009-01-01

    Research has been carried out to the utility of chemometric models to predict long residue (LR) and short residue (SR) properties of a crude oil directly from its absorption or magnetic resonance spectrum. Such a combined spectroscopic-chemometric approach might offer a fast alternative for the elaborate crude oil assays that are currently used in petrochemical industries. Six different spectroscopic techniques have been explored: infrared (IR), near IR (NIR), Raman, UV-Vis, 1H-NMR and 13C-NM...

  12. [Prediction of Encapsulation Temperatures of Copolymer Films in Photovoltaic Cells Using Hyperspectral Imaging Techniques and Chemometrics].

    Science.gov (United States)

    Lin, Ping; Chen, Yong-ming; Yao, Zhi-lei

    2015-11-01

    A novel method of combination of the chemometrics and the hyperspectral imaging techniques was presented to detect the temperatures of Ethylene-Vinyl Acetate copolymer (EVA) films in photovoltaic cells during the thermal encapsulation process. Four varieties of the EVA films which had been heated at the temperatures of 128, 132, 142 and 148 °C during the photovoltaic cells production process were used for investigation in this paper. These copolymer encapsulation films were firstly scanned by the hyperspectral imaging equipment (Spectral Imaging Ltd. Oulu, Finland). The scanning band range of hyperspectral equipemnt was set between 904.58 and 1700.01 nm. The hyperspectral dataset of copolymer films was randomly divided into two parts for the training and test purpose. Each type of the training set and test set contained 90 and 10 instances, respectively. The obtained hyperspectral images of EVA films were dealt with by using the ENVI (Exelis Visual Information Solutions, USA) software. The size of region of interest (ROI) of each obtained hyperspectral image of EVA film was set as 150 x 150 pixels. The average of reflectance hyper spectra of all the pixels in the ROI was used as the characteristic curve to represent the instance. There kinds of chemometrics methods including partial least squares regression (PLSR), multi-class support vector machine (SVM) and large margin nearest neighbor (LMNN) were used to correlate the characteristic hyper spectra with the encapsulation temperatures of of copolymer films. The plot of weighted regression coefficients illustrated that both bands of short- and long-wave near infrared hyperspectral data contributed to enhancing the prediction accuracy of the forecast model. Because the attained reflectance hyperspectral data of EVA materials displayed the strong nonlinearity, the prediction performance of linear modeling method of PLSR declined and the prediction precision only reached to 95%. The kernel-based forecast models were

  13. [Prediction of Encapsulation Temperatures of Copolymer Films in Photovoltaic Cells Using Hyperspectral Imaging Techniques and Chemometrics].

    Science.gov (United States)

    Lin, Ping; Chen, Yong-ming; Yao, Zhi-lei

    2015-11-01

    A novel method of combination of the chemometrics and the hyperspectral imaging techniques was presented to detect the temperatures of Ethylene-Vinyl Acetate copolymer (EVA) films in photovoltaic cells during the thermal encapsulation process. Four varieties of the EVA films which had been heated at the temperatures of 128, 132, 142 and 148 °C during the photovoltaic cells production process were used for investigation in this paper. These copolymer encapsulation films were firstly scanned by the hyperspectral imaging equipment (Spectral Imaging Ltd. Oulu, Finland). The scanning band range of hyperspectral equipemnt was set between 904.58 and 1700.01 nm. The hyperspectral dataset of copolymer films was randomly divided into two parts for the training and test purpose. Each type of the training set and test set contained 90 and 10 instances, respectively. The obtained hyperspectral images of EVA films were dealt with by using the ENVI (Exelis Visual Information Solutions, USA) software. The size of region of interest (ROI) of each obtained hyperspectral image of EVA film was set as 150 x 150 pixels. The average of reflectance hyper spectra of all the pixels in the ROI was used as the characteristic curve to represent the instance. There kinds of chemometrics methods including partial least squares regression (PLSR), multi-class support vector machine (SVM) and large margin nearest neighbor (LMNN) were used to correlate the characteristic hyper spectra with the encapsulation temperatures of of copolymer films. The plot of weighted regression coefficients illustrated that both bands of short- and long-wave near infrared hyperspectral data contributed to enhancing the prediction accuracy of the forecast model. Because the attained reflectance hyperspectral data of EVA materials displayed the strong nonlinearity, the prediction performance of linear modeling method of PLSR declined and the prediction precision only reached to 95%. The kernel-based forecast models were

  14. Component development and integration issues for bio/chemometric appliations of VCSEL and MOEMS arrays

    Science.gov (United States)

    Castracane, James; Baks, Christian; Oktyabrsky, Serge; Xu, Bai; Yao, Yahong

    2001-05-01

    The rapid advancement of electro-optical components and micro-mechanical devices has led to increased functionality in decreasing package sizes. In particular, the development of massively parallel arrays of optical sources such as Vertical Cavity Surface Emitting Lasers (VCSEL) and innovative micro-opto-electro-mechanical systems (MOEMS) has opened the door for new possibilities. Recently, there has been a drive toward integration of the sensing, processing and actuation functions in a single package for fully integrated performance. One area which can benefit from this research is real time, spectroscopic analysis of biological and chemical samples. Numerous situations require a compact, self-contained bio/chemometric system for rapid, low cost spectral analysis or monitoring. To fully realize this potential, further component development and integration issues must be addressed. This paper will present the status of the VCSEL and MOEMS programs at the Institute and initial integration activities. The VCSELs are based on multiple quantum well Ga/As/InGaAs and GaAs/AlGaAs architectures with monolithic, epitaxially grown distributed Bragg reflectors. The VCSEL arrays have 6-15 micron apertures, 100 micron pitch and a mA threshold current. In parallel, the MOEMS program is focused on the development of active, reconfigurable diffractive and reflective arrays whose surface topology can be changed in real time. These MOEMS arrays can be sued to redirect light for flexible interrogation of samples. The combination of these two technologies offers a unique opportunity for fully functional systems on a chip.

  15. Chemometric expertise of the quality of groundwater sources for domestic use.

    Science.gov (United States)

    Spanos, Thomas; Ene, Antoaneta; Simeonova, Pavlina

    2015-01-01

    In the present study 49 representative sites have been selected for the collection of water samples from central water supplies with different geographical locations in the region of Kavala, Northern Greece. Ten physicochemical parameters (pH, electric conductivity, nitrate, chloride, sodium, potassium, total alkalinity, total hardness, bicarbonate and calcium) were analyzed monthly, in the period from January 2010 to December 2010. Chemometric methods were used for monitoring data mining and interpretation (cluster analysis, principal components analysis and source apportioning by principal components regression). The clustering of the chemical indicators delivers two major clusters related to the water hardness and the mineral components (impacted by sea, bedrock and acidity factors). The sampling locations are separated into three major clusters corresponding to the spatial distribution of the sites - coastal, lowland and semi-mountainous. The principal components analysis reveals two latent factors responsible for the data structures, which are also an indication for the sources determining the groundwater quality of the region (conditionally named "mineral" factor and "water hardness" factor). By the apportionment approach it is shown what the contribution is of each of the identified sources to the formation of the total concentration of each one of the chemical parameters. The mean values of the studied physicochemical parameters were found to be within the limits given in the 98/83/EC Directive. The water samples are appropriate for human consumption. The results of this study provide an overview of the hydrogeological profile of water supply system for the studied area.

  16. Acoustic Transmitters for Underwater Neutrino Telescopes

    CERN Document Server

    Ardid, Miguel; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to...

  17. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    Science.gov (United States)

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species. PMID:26233026

  18. Eliminate indeterminacies of independent component analysis for chemometrics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An improved method has been proposed to eliminate the indeterminacies of independent component analysis (ICA) for chemomet- rics. Following the arrangement of principal components analysis (PCA), the ICA mixing matrix is selected as signal content indexes, and ICA output are sorted and directed. After many times reputations, independent components (Ics) are paired according to the maximum correlation coefficient, and then the mean values of each IC substitutes the original Ics. This indicates that the ICA inde- terminacies are eliminated. A simulation example is tested to validate this improvement. Finally, a set of experimental LC-MS data is processed without any prior knowledge or specific limitation and the results show that the improved ICA can directly separate the mixed signals in chemometrics, and it is simpler and more reasonable than the simple to use interactive self-modeling mixture analysis (SIMPLISMA).

  19. IMMAN: free software for information theory-based chemometric analysis.

    Science.gov (United States)

    Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo

    2015-05-01

    The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA

  20. IMMAN: free software for information theory-based chemometric analysis.

    Science.gov (United States)

    Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo

    2015-05-01

    The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA

  1. Development and Validation of Chemometric Assisted Spectrophotometric Technique for Simultaneous Estimation of Cinitapride and Pantoprazole from Bulk and Combined Dosage Form

    OpenAIRE

    Jasmine Karanjia

    2015-01-01

    This paper describes two sensitive, accurate and precise chemometric spectrophotometric methods for the simultaneous determination of Cinitapride hydrogen tartarate (CNT) and Pantoprazole sodium (PANTO) in bulk powder and capsules without prior separation. Multivariate calibration chemometric methods are proposed for simultaneous determination of CNT and PANTO. The chemometric methods applied are Principal Component Regression (PCR) and Partial Least Squares (PLS). These approaches are succes...

  2. Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements.

    Science.gov (United States)

    Platikanov, S; Rodriguez-Mozaz, S; Huerta, B; Barceló, D; Cros, J; Batle, M; Poch, G; Tauler, R

    2014-07-01

    Chemometric techniques like Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS) are used to explore, analyze and model relationships among different water quality parameters in wastewater treatment plants (WWTP). Different data sets generated by laboratory analysis and by an automatic multi-parametric monitoring system with a new designed optical device have been investigated for temporal variations on water quality parameters measured in the water influent and effluent of a WWTP over different time scales. The obtained results allowed the discovery of the more important relationships among the monitored parameters and of their cyclic dependence on time (daily, monthly and annual cycles) and on different plant management procedures. This study intended also the modeling and prediction of concentrations of several water components and parameters, especially relevant for water quality assessment, such as Dissolved Organic Matter (DOM), Total Organic Carbon (TOC) nitrate, detergent, and phenol concentrations. PLS models were built to correlate target concentrations of these constituents with UV spectra measured in samples collected at (1) laboratory conditions (in synthetic water mixtures); and at (2) WWTP conditions (in real water samples from the plant). Using synthetic water mixtures, specific wavelengths were selected with the aim to establish simple and reliable prediction models, which gave good relative predictions with errors of around 3-4% for nitrates, detergent and phenols concentrations and of around 15% for the DOM in external validation. In the case of nitrate and TOC concentrations modeling in real water samples from the effluent of the WWTP using the reduced spectral data set, results were also promising with low prediction errors (less than 20%).

  3. Acoustic monitoring of co-seismic changes in gas bubble rupture rate in a hydrothermal reservoir: field evaluation of a possible precursor and mechanism for remote seismic triggering

    Science.gov (United States)

    Crews, J. B.

    2015-12-01

    Remotely triggered seismicity is a phenomenon in which an earthquake at one location triggers others over distances up to thousands of kilometers. The mechanism by which low-amplitude dynamic oscillations of the confining stress can produce such an effect, often after a time delay of minutes-to-days, is unclear, but a concentration of remotely triggered seismic events in carbon-dioxide-rich volcanic and geothermal regions suggests that an increase in pore fluid pressure associated with the nucleation and growth of carbon-dioxide gas bubbles may reduce the effective stress in critically loaded geologic faults. While this hypothesis has been tested in bench-scale laboratory experiments, field detection of seismically initiated gas bubble growth in groundwater may provide further evidence for this remote triggering mechanism. In the present study, a hydrophone continuously records the acoustic power spectrum in CH-10B, a hydrothermal well located in Long Valley Caldera, California - a site that is susceptible to remotely seismic triggering. This well exhibits co-seismic changes in water level in response to near and distant earthquakes, including every magnitude-six or greater at any location on Earth. Exploiting the inverse relationship between gas bubble radius and the peak acoustic frequency emitted when a gas bubble ruptures, this investigation seeks to detect changes in the acoustic power spectrum arising from a shift in the size-distribution or count rate of rupturing gas bubbles, coincident with a distant earthquake. By resolving the timing and intensity of the onset of a change in gas bubble rupture rate after the passage of seismic wave from a distant source, it may be possible to establish the extent to which seismically initiated gas bubble growth contributes to co-seismic borehole water level response, pore fluid pressure perturbations, and the onset of remotely triggered seismicity.

  4. Acoustic Emission Health Monitoring of Fill Purge COPV's Used in Aerospace and Automotive Applications and Designed for Long Cycle Life Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract Problem Description: Cumulative composite damage in composite pressure vessels (CPVs) currently is not monitored on-orbit. Consequently, hazards due to...

  5. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  6. Clinical investigation on 22 cases of acoustic neuromas with intraoperative facial nerve function monitoring%听神经瘤术中面神经功能监测22例临床研究

    Institute of Scientific and Technical Information of China (English)

    贺宇波; 吉宏明; 赵建伟; 陈胜利; 张刚利; 李荔荣

    2011-01-01

    目的 探讨术中面神经监测对术后面神经功能保留的影响.方法 使用英国牛津公司Medelec神经生理术中监测仪,对22例听神经瘤术中进行面神经自发面肌电图及电刺激诱发面肌电图监测.结果 通过术中监测自发肌电图结合电刺激诱发肌电图可以精确判断面神经的位置;本组22例大中型听神经瘤,术后6月面神经H-B分级Ⅰ-Ⅱ级13例,Ⅲ级2例,Ⅳ级1例,Ⅴ级1例,Ⅵ级5例.结论 术中肌电图监测可以提示面神经的位置和走行,为手术时避免损伤神经提供依据;肿瘤切除后可帮助确认面神经结构是否完整;全切肿瘤后引出肌电图的最小电刺激强度与面神经预后密切相关.%Objective To explore the influence of intraoperative monitoring on postoperative facial nerve function in acoustic neuroma patients. Methods The facial nerve spontaneous and stimulated electromyography( EMG ) of 22 cases of acoustic neuromas were monitored by Oxford company Medelec intraoperative neurophysiologic monitor. Results The position of facial nerve was correctly located via intraoperative monitoring spontaneous EMG combined with stimulated EMG. According to House-Brackmann facial nerve grading system,the facial nerve was grade I - II in 13 of 22 cases after operation for 6 months,grade Ⅲ in 2 cases,grade Ⅳ in one case,grade Vin one case,and grade VI in 5 cases. Conclusion Intraoprative electromyography( EMG ) could reveal the position of facial nerve and avoid the nerve injury. EMG could help confirm the integrity of the postoperative facial nerve. The minimal stimulated intensity which can derive EMG is related with the prognosis of facial nerve function after total resection of the tumor.

  7. Thermally induced solid-state transformation of cimetidine. A multi-spectroscopic/chemometrics determination of the kinetics of the process and structural elucidation of one of the products as a stable N{sub 3}-enamino tautomer

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Natalia L.; Simonetti, Sebastian O.; Maggio, Rubén M.; Kaufman, Teodoro S., E-mail: kaufman@iquir-conicet.gov.ar

    2015-05-22

    Highlights: • Thermally stressed cimetidine above its melting point affords a stable N{sub 3} tautomer. • Multi-spectroscopic/chemometric approach developed to monitor tautomerization. • First combined use of NMR, UV and IR spectroscopies with chemometrics. • Solid cimetidine suffers first order degradation upon submission to dry heat. • Theoretical chemistry analysis confirmed the relative stability of cimetidine tautomer. - Abstract: Exposure of cimetidine (CIM) to dry heat (160–180 °C) afforded, upon cooling, a glassy solid containing new and hitherto unknown products. The kinetics of this process was studied by a second order chemometrics-assisted multi-spectroscopic approach. Proton and carbon-13 nuclear magnetic resonance (NMR), as well as ultraviolet and infrared spectroscopic data were jointly used, whereas multivariate curve resolution with alternating least squares (MCR-ALS) was employed as the chemometrics method to extract process information. It was established that drug degradation follows a first order kinetics. One of the products was structurally characterized by mono- and bi-dimensional NMR experiments. It was found to be the N{sub 3}-enamino tautomer (TAU) of CIM, resulting from the thermal isomerization of the double bond of the cyanoguanidine moiety of the drug, from the imine form to its N{sub 3}-enamine state. The thus generated tautomer demonstrated to be stable for months in the glassy solid and in methanolic solutions. A theoretical study of CIM and TAU revealed that the latter is less stable; however, the energy barrier for tautomer interconversion is high enough, precluding the process to proceed rapidly at room temperature.

  8. Online monitoring of accessories for underground electrical installations through acoustics emissions; Monitoreo en linea de accesorios de instalaciones electricas subterraneas mediante emisiones acusticas

    Energy Technology Data Exchange (ETDEWEB)

    Casals-Torrens, P. [Universidad Politecnica de Cataluna, Barcelona (Espana)]. E-mail: p.casals@upc.edu; Gonzalez-Parada, A. [Universidad de Guanajuato, Guanajuato (Mexico)]. E-mail: gonzaleza@salamanca.ugto.mx; Bosch-Tous, R. [Universidad Politecnica de Cataluna, Barcelona (Espana)

    2012-04-15

    The acoustic waves caused by Partial Discharges inside the dielectric materials, can be detected by acoustic emission (AE) sensors and analyzed in the time domain. The experimental results presented, show the online detection capability of these sensors in the environment near a cable accessory, such as a splice or terminal. The AE sensors are immune to electromagnetic interference and constitute a detection method non-intrusive and non-destructive, which ensures a galvanic decoupling with respect to electric networks, this technique of partial discharge detection can be applied as a test method for preventive or predictive maintenance (condition-based maintenance) to equipment or facilities of medium and high voltage in service and represents an alternative method to electrical detection systems, conventional or not, that continue to rely on the detection of current pulses. This paper presents characterization tests of the sensors AE through comparative tests of partial discharge on accessories for underground power cables. [Spanish] Las ondas acusticas provocadas por las descargas parciales en el interior de un dielectrico pueden ser detectadas por sensores de Emisiones Acusticas (EA) y analizadas en el dominio del tiempo. Los resultados experimentales que se presentan, evidencian la capacidad de deteccion en linea de estos sensores, en el entorno proximo a un accesorio de cable, empalme o terminal. Los sensores EA son inmunes a las interferencias electromagneticas, son un metodo de deteccion no destructivo y garantizan desacople galvanico respecto a la red electrica; esta tecnica de deteccion de descargas parciales puede ser aplicada como metodo de prueba para mantenimiento preventivo o predictivo (mantenimiento basado en la condicion), en equipos o instalaciones de media y alta tension en servicio, y representa una alternativa a los sistemas electricos de deteccion, convencionales o no, que continuan basandose en la deteccion del impulsos de corriente. En el

  9. Discrimination of sugarcane according to cultivar by 1H NMR and chemometric analyses

    Energy Technology Data Exchange (ETDEWEB)

    Alves Filho, Elenilson G.; Silva, Lorena M.A.; Choze, Rafael; Liao, Luciano M. [Laboratorio de Ressonancia Magnetica Nuclear, Instituto de Quimica, Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Honda, Neli K.; Alcantara, Glaucia B. [Departamento de Quimica, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil)

    2012-07-01

    Several technologies for the development of new sugarcane cultivars have mainly focused on the increase in productivity and greater disease resistance. Sugarcane cultivars are usually identified by the organography of the leaves and stems, the analysis of peroxidase and esterase isoenzyme activities and the total soluble protein as well as soluble solid content. Nuclear magnetic resonance (NMR) associated with chemometric analysis has proven to be a valuable tool for cultivar assessment. Thus, this article describes the potential of chemometric analysis applied to 1H high resolution magic angle spinning (HRMAS) and NMR in solution for the investigation of sugarcane cultivars. For this purpose, leaves from eight different cultivars of sugarcane were investigated by {sup 1}H NMR spectroscopy in combination with chemometric analysis. The approach shows to be a useful tool for the distinction and classification of different sugarcane cultivars as well as to access the differences on its chemical composition. (author)

  10. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  11. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  12. Chemometrics of differentially expressed proteins from colorectal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Lay-Chin Yeoh; Saravanan Dharmaraj; Boon-Hui Gooi; Manjit Singh; Lay-Harn Gam

    2011-01-01

    AIM: To evaluate the usefulness of differentially expressed proteins from colorectal cancer (CRC) tissues for differentiating cancer and normal tissues. METHODS: A Proteomic approach was used to identify the differentially expressed proteins between CRC and normal tissues. The proteins were extracted using Tris buffer and thiourea lysis buffer (TLB) for extraction of aqueous soluble and membrane-associated proteins, respectively. Chemometrics, namely principal component analysis (PCA) and linear discriminant analysis (LDA), were used to assess the usefulness of these proteins for identifying the cancerous state of tissues. RESULTS: Differentially expressed proteins identified were 37 aqueous soluble proteins in Tris extracts and 24 membrane-associated proteins in TLB extracts. Based on the protein spots intensity on 2D-gel images, PCA by applying an eigenvalue > 1 was successfully used to reduce the number of principal components (PCs) into 12 and seven PCs for Tris and TLB extracts, respectively, and subsequently six PCs, respectively from both the extracts were used for LDA. The LDA classification for Tris extract showed 82.7% of original samples were correctly classified, whereas 82.7% were correctly classified for the cross-validated samples. The LDA for TLB extract showed that 78.8% of original samples and 71.2% of the cross-validated samples were correctly classified. CONCLUSION: The classification of CRC tissues by PCA and LDA provided a promising distinction between normal and cancer types. These methods can possibly be used for identification of potential biomarkers among the differentially expressed proteins identified.

  13. Chemometric evaluation of trace elements in Brazilian medicinal plants

    International Nuclear Information System (INIS)

    The growing interest in herbal medicines has required standardization in order to ensure their safe use, therapeutic efficacy and quality of the products. Despite the vast flora and the extensive use of medicinal plants by the Brazilian population, scientific studies on the subject are still insufficiency In this study, 59 medicinal plans were analyzed for the determination of As, Ba, Br, Ca, Cl, Cs, Co, Cr, Fe, Hf, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis and Cu, Ni, Pb, Cd and Hg by atomic absorption. The results were analyzed by chemometric methods: correlation analysis, principal component analysis and cluster analysis, in order to verify whether or not there is similarity with respect to their mineral and trace metal contents. Results obtained permitted to classify distinct groups among the analyzed plants and extracts so that these data can be useful in future studies, concerning the therapeutic action the elements here determined may exert. (author)

  14. Application of Chemometrics in the Determination of Spirits Authenticity

    Directory of Open Access Journals (Sweden)

    Estrella Patricia Zayas Ruiz

    2013-02-01

    Full Text Available The authenticity of food and food ingredients is a major problem today for the industry and manytechnologies have been applied to detect adulteration and contamination of food. This paper presentsresults of a study conducted at University College Dublin, Ireland, about vodka and whiskey andmixtures thereof, and another study in Cuba, at the Faculty of Chemical Engineering of the HigherPolytechnic Institute «Jose Antonio Echeverria», in collaboration with the Cuban Research Institute ofSugarcane Derivatives (ICIDCA, with historical data of Cuban rums. In the first study three techniqueswere used to determine whether pure drinks could be separated from mixtures: mid-infrared spectroscopywith a Fourier transform and Attenuated Total Reflectance cell, near infrared spectroscopy and ultravioletvisiblespectroscopy. In the second historical determinations of acidity, acetaldehyde, ethyl acetate,methanol, isoamyl alcohol, isobutanol, propanol and ethanol content of different types of Cuban agedrums to establish the possibility to differentiate the aged rum Vigía from the rest of Cuban aged onesby means of that analytic information. Unscramble software was used to apply Chemometrics. PrincipalComponent Analysis and various pretreatments were applied to data acquired experimentally toreduce the dispersion thereof. Near spectroscopy, Ultraviolet visible and Mid-infrared spectroscopyhave potential for the separation of pure whiskey and vodka from mixtures thereof The Cuban agedrums differ from Vigía aged rum successfully with the use of Principal Component Analysis applied tochemical data.

  15. Chemometric evaluation of trace elements in Brazilian medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Paulo S.C. da; Francisconi, Lucilaine S.; Goncalves, Rodolfo D.M.R., E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator de Pesquisas

    2013-07-01

    The growing interest in herbal medicines has required standardization in order to ensure their safe use, therapeutic efficacy and quality of the products. Despite the vast flora and the extensive use of medicinal plants by the Brazilian population, scientific studies on the subject are still insufficiency In this study, 59 medicinal plans were analyzed for the determination of As, Ba, Br, Ca, Cl, Cs, Co, Cr, Fe, Hf, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Ta, Th, U, Zn and Zr by neutron activation analysis and Cu, Ni, Pb, Cd and Hg by atomic absorption. The results were analyzed by chemometric methods: correlation analysis, principal component analysis and cluster analysis, in order to verify whether or not there is similarity with respect to their mineral and trace metal contents. Results obtained permitted to classify distinct groups among the analyzed plants and extracts so that these data can be useful in future studies, concerning the therapeutic action the elements here determined may exert. (author)

  16. Chemometric approach for prediction of uranium pathways in the soil

    Energy Technology Data Exchange (ETDEWEB)

    Stojanovic, Mirjana; Nihajlovic, Marija; Petrovic, Jelena; Petrovic, Marija; Sostaric, Tanja; Milojkovic, Jelena [Inst. for Technology of Nuclear and Other Mineral Raw Materials, Belgrad (Serbia); Pezo, Lato [Univ. Belgrad (Serbia). Inst. of General and Physical Chemistry

    2014-10-01

    Understanding the effect of soil parameters (pH, Eh and organic and inorganic ligands availability) on uranium mobility under different geochemical conditions is fundamental for reliable prediction of its behaviour and fate in the environment. In this study, the impact of total and available phosphorus content, humus and acidity of Serbian agricultural soils on the content of total and available uranium were evaluated by Response Surface Methodology (RSM), second order polynomial regression models (SOPs) and artificial neural networks (ANNs). The performance of ANNs was compared with the performance of SOPs and experimental results. SOPs showed high coefficients of determination (0.785-0.956), while ANN model performed high prediction accuracy: 0.8893-0.904. According to the results, total and available uranium content in the soil were mostly affected by pH, statistically significant at p < 0.05 level. For the same responses the total phosphorus was found to be also very influential, statistically significant at p < 0.05 and p < 0.10 levels. The impact of available phosphorus and humus was much more influential on total and available uranium content, compared to total phosphorus content. Proposed chemometric approach will be very helpful in preserving the natural resources and practical application for risk assessment modeling of uranium environmental pathways.

  17. Chemometrics applications in biotech processes: assessing process comparability.

    Science.gov (United States)

    Bhushan, Nitish; Hadpe, Sandip; Rathore, Anurag S

    2012-01-01

    A typical biotech process starts with the vial of the cell bank, ends with the final product and has anywhere from 15 to 30 unit operations in series. The total number of process variables (input and output parameters) and other variables (raw materials) can add up to several hundred variables. As the manufacturing process is widely accepted to have significant impact on the quality of the product, the regulatory agencies require an assessment of process comparability across different phases of manufacturing (Phase I vs. Phase II vs. Phase III vs. Commercial) as well as other key activities during product commercialization (process scale-up, technology transfer, and process improvement). However, assessing comparability for a process with such a large number of variables is nontrivial and often companies resort to qualitative comparisons. In this article, we present a quantitative approach for assessing process comparability via use of chemometrics. To our knowledge this is the first time that such an approach has been published for biotech processing. The approach has been applied to an industrial case study involving evaluation of two processes that are being used for commercial manufacturing of a major biosimilar product. It has been demonstrated that the proposed approach is able to successfully identify the unit operations in the two processes that are operating differently. We expect this approach, which can also be applied toward assessing product comparability, to be of great use to both the regulators and the industry which otherwise struggle to assess comparability.

  18. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  19. Chemometric evaluation of urinary steroid hormone levels as potential biomarkers of neuroendocrine tumors.

    Science.gov (United States)

    Plenis, Alina; Miękus, Natalia; Olędzka, Ilona; Bączek, Tomasz; Lewczuk, Anna; Woźniak, Zofia; Koszałka, Patrycja; Seroczyńska, Barbara; Skokowski, Jarosław

    2013-01-01

    Neuroendocrine tumors (NETs) are uncommon tumors which can secrete specific hormone products such as peptides, biogenic amines and hormones. So far, the diagnosis of NETs has been difficult because most NET markers are not specific for a given tumor and none of the NET markers can be used to fulfil the criteria of high specificity and high sensitivity for the screening procedure. However, by combining the measurements of different NET markers, they become highly sensitive and specific diagnostic tests. The aim of the work was to identify whether urinary steroid hormones can be identified as potential new biomarkers of NETs, which could be used as prognostic and clinical course monitoring factors. Thus, a rapid and sensitive reversed-phase high-performance liquid chromatographic method (RP-HPLC) with UV detection has been developed for the determination of cortisol, cortisone, corticosterone, testosterone, epitestosterone and progesterone in human urine. The method has been validated for accuracy, precision, selectivity, linearity, recovery and stability. The limits of detection and quantification were 0.5 and 1 ng mL-1 for each steroid hormone, respectively. Linearity was confirmed within a range of 1-300 ng mL-1 with a correlation coefficient greater than 0.9995 for all analytes. The described method was successfully applied for the quantification of six endogenous steroid levels in human urine. Studies were performed on 20 healthy volunteers and 19 patients with NETs. Next, for better understanding of tumor biology in NETs and for checking whether steroid hormones can be used as potential biomarkers of NETs, a chemometric analysis of urinary steroid hormone levels in both data sets was performed. PMID:24135941

  20. Chemometric Evaluation of Urinary Steroid Hormone Levels as Potential Biomarkers of Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Barbara Seroczyńska

    2013-10-01

    Full Text Available Neuroendocrine tumors (NETs are uncommon tumors which can secrete specific hormone products such as peptides, biogenic amines and hormones. So far, the diagnosis of NETs has been difficult because most NET markers are not specific for a given tumor and none of the NET markers can be used to fulfil the criteria of high specificity and high sensitivity for the screening procedure. However, by combining the measurements of different NET markers, they become highly sensitive and specific diagnostic tests. The aim of the work was to identify whether urinary steroid hormones can be identified as potential new biomarkers of NETs, which could be used as prognostic and clinical course monitoring factors. Thus, a rapid and sensitive reversed-phase high-performance liquid chromatographic method (RP-HPLC with UV detection has been developed for the determination of cortisol, cortisone, corticosterone, testosterone, epitestosterone and progesterone in human urine. The method has been validated for accuracy, precision, selectivity, linearity, recovery and stability. The limits of detection and quantification were 0.5 and 1 ng mL−1 for each steroid hormone, respectively. Linearity was confirmed within a range of 1–300 ng mL−1 with a correlation coefficient greater than 0.9995 for all analytes. The described method was successfully applied for the quantification of six endogenous steroid levels in human urine. Studies were performed on 20 healthy volunteers and 19 patients with NETs. Next, for better understanding of tumor biology in NETs and for checking whether steroid hormones can be used as potential biomarkers of NETs, a chemometric analysis of urinary steroid hormone levels in both data sets was performed.

  1. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  2. Attempt to separate the fluorescence spectra of adrenaline and noradrenaline using chemometrics

    DEFF Research Database (Denmark)

    Nikolajsen, Rikke P; Hansen, Åse Marie; Bro, R

    2000-01-01

    An investigation was conducted on whether the fluorescence spectra of the very similar catecholamines adrenaline and noradrenaline could be separated using chemometric methods. The fluorescence landscapes (several excitation and emission spectra were measured) of two data sets with respectively 16...... regression (Unfold-PLSR) on the larger data set and parallel factor analysis (PARAFAC) of the six samples of the smaller set showed that there was no difference between the fluorescence landscapes of adrenaline and noradrenaline. It can be concluded that chemometric separation of adrenaline and noradrenaline...

  3. Grape juice quality control by means of ¹H nmr spectroscopy and chemometric analyses

    Directory of Open Access Journals (Sweden)

    Caroline Werner Pereira da Silva Grandizoli

    2014-01-01

    Full Text Available This work shows the application of ¹H NMR spectroscopy and chemometrics for quality control of grape juice. A wide range of quality assurance parameters were assessed by single ¹H NMR experiments acquired directly from juice. The investigation revealed that conditions and time of storage should be revised and indicated on all labels. The sterilization process of homemade grape juices was efficient, making it possible to store them for long periods without additives. Furthermore, chemometric analysis classified the best commercial grape juices to be similar to homemade grape juices, indicating that this approach can be used to determine the authenticity after adulteration.

  4. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  5. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    International Nuclear Information System (INIS)

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, 1H HR-MAS NMR and 1H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  6. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  7. Acoustic dispersive prism

    OpenAIRE

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  8. Acoustic Transmitters for Underwater Neutrino Telescopes

    Directory of Open Access Journals (Sweden)

    Carlos D. Llorens

    2012-03-01

    Full Text Available In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars, high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

  9. Sonification of acoustic emission data

    Science.gov (United States)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  10. Experimental Study on Bridge Monitoring Based on Optical Fiber Acoustic Emission Sensing Technology%基于光纤声发射传感技术的桥梁监测实验研究

    Institute of Scientific and Technical Information of China (English)

    单宁

    2011-01-01

    The optical fiber sensor can meet the requirements of the real-time health monitoring of the bridge structure with its features of good wearing, small size and easy to realize the distribution detection. A extrinsic optical fiber F-P sensor structure has been designed in this work and the sensing mechanism of the optical fiber F-P acoustic emission has been analyzed. A detection system based on the optical fiber F-P acoustic emission technolgy has been fabricated for detecting the health state of the concrete bridge on-line in real time. The experimemtal results showed that the sesor has the features of simple structure, small size, cost-effectiveness and easy-to-fabricate. It can be used for the bridge health detection effectively and is easy to produce commercially.%光纤传感器耐久性好,体积小,质量轻,易于实现分布式检测,能满足桥梁等土木结构的实时健康监测.该文设计了一非本征光纤法布里-珀罗(F-P)传感器结构,分析了光纤F-P声发射传感机理,建立了基于光纤F-P声发射传感技术的检测系统,用于混凝土桥梁健康状况的实时在线检测.实验结果表明,该传感器结构简单,体积小,成本低,制作容易,能有效用于桥梁健康监测,易于实现商品化.

  11. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring

    Directory of Open Access Journals (Sweden)

    Corinne Dejous

    2016-06-01

    Full Text Available Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath or liquid (e.g., modified nucleosides as urinary biomarkers. Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP synthesized for adenosine-5′-monophosphate (AMP as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm−1 of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3′AMP and CMP, in accordance with previously published results on bulk MIP.

  12. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring

    Science.gov (United States)

    Nozawa, Takashi; Ozawa, Kazumi; Asakura, Yuuki; Kohyama, Akira; Tanigawa, Hiroyasu

    2014-12-01

    Understanding the cracking process of the composites is essential to establish the design basis for practical applications. This study aims to investigate the damage accumulation process and its anisotropy for nano-infiltration transient eutectic sintered (NITE) SiC/SiC composites by various characterization techniques such as the acoustic emission (AE), digital image correlation (DIC) and electrical resistivity (ER) measurements. Cracking behavior below the proportional limit stress (PLS) was specifically addressed. Similar to the other generic SiC/SiC composites, the 1st AE event was identified below the PLS for NITE SiC/SiC composites with a dependency of fabric orientation. The DIC results support that the primary failure mode depending on fiber orientation affected more than the other minor modes did. Detailed AE waveform analysis by wavelet shows a potential to classify the failure behavior depending on architecture. Cracking below the PLS is a potential concern in component deign but the preliminary ER measurements imply that the impact of cracking below the PLS on composite function was limited.

  13. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring.

    Science.gov (United States)

    Dejous, Corinne; Hallil, Hamida; Raimbault, Vincent; Lachaud, Jean-Luc; Plano, Bernard; Delépée, Raphaël; Favetta, Patrick; Agrofoglio, Luigi; Rebière, Dominique

    2016-01-01

    Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5'-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm(-1) of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3'AMP and CMP, in accordance with previously published results on bulk MIP. PMID:27331814

  14. Damage Monitoring for Full-Scale Aircraft Statics Test Based on Acoustic Emission%基于声发射的全尺寸飞机静强度损伤监测

    Institute of Scientific and Technical Information of China (English)

    韩晖; 宁宁; 肖迎春; 刘国强; 李明

    2015-01-01

    More applications of Acoustic Emission (AE)have been implemented in structure health monitoring of aircraft.In this paper,the development and orientation principium of AE were introduced,then damage monitoring during static test of a full-scale aircraft was carried out.Through analyzing the parameters of AE,structural damage in some area was caught.The result shows that AE has advantages in damage monitoring for full-scale aircraft static test,it could avoid severe structural damages for expensive aircraft during statics test,and provide reference for damage tolerance design of airplanes.%声发射技术在飞机结构无损检测中的运用日益广泛,对声发射技术的发展现状、定位原理进行了介绍,并运用声发射技术完成了某型机全尺寸静强度试验的损伤监测。通过对采集的幅度、能量等信号参数进行分析,及时发现了飞机某部位结构的损伤。结果表明,声发射技术在飞机静强度试验损伤监测中可及时捕捉裂纹的形成和扩展过程,对发现金属结构损伤具有一定优势,可避免造价高昂的飞机在试验过程中发生大的结构性破坏,从而为飞机结构的损伤容限设计提供参考。

  15. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  16. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  17. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  18. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  19. Application of neurophysiological monitoring and microsurgical technique in acoustic neurinoma resection%神经电生理监测技术和显微外科技术在听神经瘤手术中应用

    Institute of Scientific and Technical Information of China (English)

    牛朝诗; 凌士营; 计颖; 丁宛海; 姜晓峰; 刘会林; 陈海宁; 魏祥品; 傅先明

    2010-01-01

    目的 研究神经电生理监测技术和显微外科技术联合应用在听神经瘤切除中的作用,探讨对面听神经功能的保护作用.方法 听神经瘤113例,经枕下,乙状窦后入路显微外科切除肿瘤,术中进行脑神经肌电图、脑干听觉诱发电位监测,并在术末行面神经电刺激判断面神经的保留情况,经随访评价术后面神经功能情况.结果 在电生理监测下经枕下,乙状窦后入路显微切除113例听神经瘤,肿瘤全切除102例(90.3%),次全切除6例(5.3%),大部切除5例(4.4%).术后1周至出院前,根据House-Brackman面神经功能分级对面神经功能进行评估:Ⅰ、Ⅱ级86例(76.1%),Ⅲ、Ⅳ级12例(10.6%),Ⅴ、Ⅵ级15例(13.3%).面神经解剖保留98例(86.7%).听神经解剖保留40例(35.4%).同时,当术末电刺激小于或等于4 mA时预示术后面听神经功能恢复尚可.结论 神经电生理监测辅助应用于听神经瘤显微外科手术中可提高肿瘤全切除率以及面神经解剖保留率和功能保留率.同时,术末电刺激可为术后神经功能恢复进行预后评估.%Objective To investigate the application of neurophysiological monitoring and microsurgi-eal technique in acoustic neurinoma resection, exploring the significance of neurophysiological monitoring in facial and auditory nerve reservation of acoustic neuronma microsurgery. Methods Accompanied with EMG and BAEP nerve monitoring, 113 patients harboring acoustic neuroma were treated surgically by the subocipi-tal retrosigmoid approach for reserving facial and auditory nerve. The facial nerve was stimulated to evaluate its function during late-operation. Postoperative facial and auditory nerve function were valuated in all the postop-erative following up. Results All of them were treated microsurgically via the suboccipitai retrosigmoid ap-proach. Total tumors resection was achieved in 102 cases (90.3%), subtotal resection in 6 cases(5.3%) and partial resection in 5 case (4

  20. Balance Transmission Mechanism in Underwater Acoustic Sensor Networks

    OpenAIRE

    Jiabao Cao; Jinfeng Dou; Shunle Dong

    2015-01-01

    With the rapid development of underwater acoustic modem technology, underwater acoustic sensor networks (UWASNs) have more applications in long-term monitoring of the deployment area. In the underwater environment, the sensors are costly with limited energy. And acoustic communication medium poses new challenges, including high path loss, low bandwidth, and high energy consumption. Therefore, designing transmission mechanism to decrease energy consumption and to optimize the lifetime of UWASN...

  1. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype. Repository between April 2007 and September 2007

    Energy Technology Data Exchange (ETDEWEB)

    Zolezzi, F.; Haycox, J.R.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2008-07-01

    This six-month period of ultrasonic monitoring in the Prototype Repository Experiment, has been undertaken with the following objectives; - Produce accurate source locations for AEs so as to delineate the spatial and temporal extent of any brittle microcracking within the rock mass around the deposition hole and locate any movements on pre-existing macroscopic fractures; - Conduct regular ultrasonic surveys to assess the effect of heating and other environmental changes on the velocity and amplitude of transmitted ultrasonic waves; - Investigate changes in dynamic moduli and crack density to show how the properties of the rock volume around the deposition hole change through the experiment; - Relate the AE and ultrasonic measurements to the measured in situ stress regime and other operating parameters such as temperature and fluid pressure; - Outline how the results from this reporting period relate to previous monitoring periods, and into the overall experimental aims and objectives.

  2. Vibro-acoustic monitoring of technical condition of mine fans in main deaeration system; Wibroakustyczne monitorowanie stanu technicznego kopalnianych wentylatorow glownego odpowietrzania

    Energy Technology Data Exchange (ETDEWEB)

    Zakrzewski, T. [Politechnika Slaska, Gliwice (Poland)

    1994-12-01

    In hard coal mines a variety of stationery machines and equipment indispensable to ensure continuity of operation at performance of a definite process is used. To ensure their reliability and stability of performance, the continuous monitoring of technical equipment by tests of vibration processes going together with operation of every machinery, is necessary. The article presents the estimation method of technical condition of main deaeration fans, based on on-line register of vibration processes generated by main kinematic pairs of driving system during their normal operation. Due to regular measurement of vibration one can predict, by extrapolation, when a machine has to be repaired and plan necessary repairs in advance. The monitoring trend method allows enlogation of inter repair periods and considerable reduction of repair costs. (author) 9 refs., 7 figs., 1 tab.

  3. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  4. Experimental Design, Near-Infrared Spectroscopy, and Multivariate Calibration: An Advanced Project in a Chemometrics Course

    Science.gov (United States)

    de Oliveira, Rodrigo R.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2012-01-01

    A chemometrics course is offered to students in their fifth semester of the chemistry undergraduate program that includes an in-depth project. Students carry out the project over five weeks (three 8-h sessions per week) and conduct it in parallel to other courses or other practical work. The students conduct a literature search, carry out…

  5. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  6. Acoustics in the Martian Atmosphere

    Science.gov (United States)

    Williams, J.-P.

    2000-10-01

    With the advent of the first attempt to deliver an acoustic microphone to the Martian surface aboard the failed Mars Polar Lander, there has been growing interests in the development of acoustic sensors to compliment scientific payloads on future spacecraft. Terrestrial scientist have been very successful in using infrasound (sound at frequencies below human detection, detect and monitor atmospheric phenomena related to weather, tornadoes, mountain waves, microbaroms, ionospheric and auroral disturbances, and meteror/fireballs, as well as anthropogenic sources such as aircraft and nuclear explosions. Sounds on Mars at the audible frequencies (20 Hz to 20 kHz) will be severely attenuated due to viscous relaxation and thermal diffusion (collectively referred to as classical attenuation) which will be much more severe in the colder, less dense Martian atmosphere. Molecular relaxation of carbon dioxide will also contribute to the sound absorption in the lower audible frequencies. Since classical attenuation increases as a function of the frequency squared, at low infrasonic frequencies ( < 10 Hz), classical attenuation becomes less significant and sound absorption in the Martian atmosphere becomes more similar to that of the terrestrial atmosphere for the same frequencies. At these longer wavelengths, geometric spreading will dominate as the source of attenuation as the acoustic energy is spread out over an ever increasing spherical wave front. This implies that infrasound (10 to 0.01 Hz) will be a useful frequency range for future acoustic sensors developed for scientific payloads delivered to the Martian surface.

  7. Acoustic counter-sniper system

    Science.gov (United States)

    Duckworth, Gregory L.; Gilbert, Douglas C.; Barger, James E.

    1997-02-01

    BBN has developed, tested, and fielded pre-production versions of a versatile acoustics-based counter-sniper system. This system was developed by BBN for the DARPA Tactical Technology Office to provide a low cost and accurate sniper detection and localization system. The system uses observations of the shock wave from supersonic bullets to estimate the bullet trajectory, Mach number, and caliber. If muzzle blast observations are also available from unsilenced weapons, the exact sniper location along the trajectory is also estimated. A newly developed and very accurate model of the bullet ballistics and acoustic radiation is used which includes bullet deceleration. This allows the use of very flexible acoustic sensor types and placements, since the system can model the bullet's flight, and hence the acoustic observations, over a wide area very accurately. System sensor configurations can be as simple as two small four element tetrahedral microphone arrays on either side of the area to be protected, or six omnidirectional microphones spread over the area to be monitored. Increased performance can be obtained by expanding the sensor field in size or density, and the system software is easily reconfigured to accommodate this at deployment time. Sensor nodes can be added using wireless network telemetry or hardwired cables to the command node processing and display computer. The system has been field tested in three government sponsored tests in both rural and simulated urban environments at the Camp Pendleton MOUT facility. Performance was characterized during these tests for various shot geometries and bullet speeds and calibers.

  8. Monitoring and characterization of yeasts behavior under fermentation processes using technometric approaches

    OpenAIRE

    Castro, Cristiana C.

    2013-01-01

    Tese de doutoramento em Chemical and Biological Engineering Technometrics concerns on the development and use of statistical methods in different fields, such as biotechnological processes, in order to understand their multivariate and multidimensional complexity. Chemical changes occurring within these processes can be monitored using chemometric tools that combined with bioinformatic methodologies, can provide an enlarged overview of the process, enabling the unbiased study ...

  9. Acoustic emission monitoring in Cooke 4 gold mine in South Africa -summary of the main findings of a 5-year SATREPS project-

    Science.gov (United States)

    Naoi, M.; Nakatani, M.; Moriya, H.; Otsuki, K.; Kgarume, T.; Philipp, J.; Murakami, O.; Masakale, T.; Ribeiro, L.; Yabe, Y.; Kawakata, H.; Ward, A.; Durrheim, R.; Ogasawara, H.

    2015-12-01

    We deployed a network targeting acoustic emissions (AEs) down to Mw~ -5 at 1-km depth in the Cooke 4 mine in South Africa as a part of a 5-year project called "Observational Studies in South African Mines to Mitigate Seismic Risks." This network of 30 sensors spans ~100 m, and collected waveform data for more than 4.5-million triggers in 5 years. We provide an overview of the main findings. 1) Naoi et al. (2015; Pageoph) reported that 90% of observed AEs aggregated along the advancing mining front. Their size distribution obeyed the Gutenberg-Richter law down to Mw -4, and their b-values were invariant with time from blasting, contradicting a previous study. 2) Moriya et al. (under review) showed that this AE aggregation consists of several tabular clusters, which were formed regularly as the mining front advanced. Although large earthquakes (Mw > 1) were not found, the clusters likely represent the preparation process of large shear fracture events because their geometry resembles large shear fractures, known by in-situ wall-rock observation, which formed concurrently with large seismic events. 3) Naoi et al. (2015; Tectonophysics) reported that the remaining 10% of AEs exhibit very sharp, planar distributions, with high b-values. They are likely events located on pre-existing geological faults loaded by mining-induced stresses. Such on-fault events are rare for intraplate faults, where microseismic events generally occur in the surrounding region. 4) Naoi et al. (2015; JGR) found planar clusters that newly emerged ahead of a mining front and gradually expanded to 20 m. They likely represent the evolution of a slow-slip patch on a pre-existing fault. The b-value of those AEs decreased drastically from 2.5 to 1.5, consistent with stress buildup by the approaching mining front. This project is supported by JST/JICA, SATREPS, JSPS KAKENHI Grant Numbers 21224012, 21246134, 26249137, 26887022, and MEXT's Earthquake and Volcano Hazards Observation and Research Program.

  10. One sensor acoustic emission localization in plates.

    Science.gov (United States)

    Ernst, R; Zwimpfer, F; Dual, J

    2016-01-01

    Acoustic emissions are elastic waves accompanying damage processes and are therefore used for monitoring the health state of structures. Most of the traditional acoustic emission techniques use a trilateration approach requiring at least three sensors on a 2D domain in order to localize sources of acoustic emission events. In this paper, we present a new approach which requires only a single sensor to identify and localize the source of acoustic emissions in a finite plate. The method proposed makes use of the time reversal principle and the dispersive nature of the flexural wave mode in a suitable frequency band. The signal shape of the transverse velocity response contains information about the propagated paths of the incoming elastic waves. This information is made accessible by a numerical time reversal simulation. The effect of dispersion is reversed and the original shape of the flexural wave is restored at the origin of the acoustic emission. The time reversal process is analyzed first for an infinite Mindlin plate, then by a 3D FEM simulation which in combination results in a novel acoustic emission localization process. The process is experimentally verified for different aluminum plates for artificially generated acoustic emissions (Hsu-Nielsen source). Good and reliable localization was achieved for a homogeneous quadratic aluminum plate with only one measurement. PMID:26372509

  11. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  12. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  13. Cystic acoustic neuromas

    OpenAIRE

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  15. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  16. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  17. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis in the Pearl River Estuary, China.

    Directory of Open Access Journals (Sweden)

    Zhi-Tao Wang

    Full Text Available A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world's largest known population of Indo-Pacific humpback dolphins (Sousa chinensis. Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts.

  18. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis) in the Pearl River Estuary, China.

    Science.gov (United States)

    Wang, Zhi-Tao; Nachtigall, Paul E; Akamatsu, Tomonari; Wang, Ke-Xiong; Wu, Yu-Ping; Liu, Jian-Chang; Duan, Guo-Qin; Cao, Han-Jiang; Wang, Ding

    2015-01-01

    A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world's largest known population of Indo-Pacific humpback dolphins (Sousa chinensis). Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts.

  19. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis) in the Pearl River Estuary, China.

    Science.gov (United States)

    Wang, Zhi-Tao; Nachtigall, Paul E; Akamatsu, Tomonari; Wang, Ke-Xiong; Wu, Yu-Ping; Liu, Jian-Chang; Duan, Guo-Qin; Cao, Han-Jiang; Wang, Ding

    2015-01-01

    A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world's largest known population of Indo-Pacific humpback dolphins (Sousa chinensis). Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts. PMID:26580966

  20. Detecting and identifying damage in sandwich polymer composite by using acoustic emission

    DEFF Research Database (Denmark)

    McGugan, M.; Sørensen, Bent F.; Østergaard, R.;

    2006-01-01

    Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material ispresented. The contribution of the acoustic emission...... monitoring technique in defining different failure modes identified during the testing is discussed. The development of in-situ structural monitoring and control systems is considered.......Acoustic emission is a useful monitoring tool for extracting extra information during mechanical testing of polymer composite sandwich materials. The study of fracture mechanics within test specimens extracted from wind turbine blade material ispresented. The contribution of the acoustic emission...

  1. ACOUSTIC EMISSION MONITORING FOR WIND TURBINE BLADE COMPOSITE MATERIAL UNDER COMPRESSIVE DAMAGE FAILURE CONDITION%风电叶片复合材料压缩损伤破坏声发射监测

    Institute of Scientific and Technical Information of China (English)

    周伟; 张晓霞; 韦子辉; 钟旸

    2011-01-01

    研究了风电叶片单向复合材料的压缩力学特性及其声发射响应特征.结果表明,复合材料的横向和纵向压缩力学性能及其声发射响应特性明显不同,纵向压缩强度、模量高,失效应变小,对应的声发射相对能量、幅度高,但撞击累积总数少.复合材料具有脆性破坏的特点,横向压缩以45°剪切失效为主,纵向压缩以层间劈裂为主.风电叶片复合材料压缩损伤破坏与声发射的相对能量、幅度、撞击等参量特征有关.%The compressive tests and acoustic emission (AE) response characteristics of wind turbine blade composite material were conducted.The results showed that transverse compressive properties and corresponding AE characteristics of composite material were different to longitudinal direction.High compressive strength, high modulus, low failure strain, high AE relative energy, high amplitude and less cumulative hits were obtained in longitudinal direction.Furthermore, composite specimens exhibited brittle characteristics.The main failure modes of transverse and longitudinal compression were 45° shear failure and layer splitting, respectively.The AE monitoring results such as energy, amplitude, hits and other parameters in compressive tests were useful for monitoring the damage development and failure of the specimen.

  2. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  3. A rapid and non-invasive method for authenticating the origin of pistachio samples by NIR spectroscopy and chemometrics

    OpenAIRE

    Vitale, Raffaele; BEVILACQUA, MARTA; Bucci, R.; Magrì, A.D.; Magri, A.L.; Marini, F.

    2013-01-01

    In this study, near-infrared spectroscopy coupled to chemometrics is used to build an analytical protocol to authenticate the origin of pistachio nuts (Pistacia vera L.), a high value-added food product. In particular, 483 samples from six different origins (Sicily, India, Iran, Syria, Turkey and U.S.A.) were analyzed by NIR spectroscopy. Spectra were recorded on half seeds cut longitudinally in reflectance mode. Spectral data were then processed by chemometrics to build classification mo...

  4. Classification of Tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Cynkar, Wies, E-mail: wies.cynkar@awri.com.au [Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064 (Australia); Dambergs, Robert [Australian Wine Research Institute, Tasmanian Institute of Agricultural Research, University of Tasmania, Private Bag 98, Hobart Tasmania 7001 (Australia); Smith, Paul; Cozzolino, Daniel [Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064 (Australia)

    2010-02-15

    Rapid methods employing instruments such as electronic noses (EN) or gas sensors are used in the food and beverage industries to monitor and assess the composition and quality of products. Similar to other food industries, the wine industry has a clear need for simple, rapid and cost effective techniques for objectively evaluating the quality of grapes, wine and spirits. In this study a mass spectrometry based electronic nose (MS-EN) instrument combined with chemometrics was used to predict the geographical origin of Tempranillo wines produced in Australia and Spain. The MS-EN data generated were analyzed using principal components analysis (PCA), partial least squares discriminant analysis (PLS-DA) and stepwise linear discriminant analysis (SLDA) with full cross validation (leave-one-out method). The SLDA classified correctly 86% of the samples while PLS-DA 85% of Tempranillo wines according to their geographical origin. The relative benefits of using MS-EN will provide capability for rapid screening of wines. However, this technique does not provide the identification and quantitative determination of individual compounds responsible for the different aroma notes in the wine.

  5. Classification of Tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics

    International Nuclear Information System (INIS)

    Rapid methods employing instruments such as electronic noses (EN) or gas sensors are used in the food and beverage industries to monitor and assess the composition and quality of products. Similar to other food industries, the wine industry has a clear need for simple, rapid and cost effective techniques for objectively evaluating the quality of grapes, wine and spirits. In this study a mass spectrometry based electronic nose (MS-EN) instrument combined with chemometrics was used to predict the geographical origin of Tempranillo wines produced in Australia and Spain. The MS-EN data generated were analyzed using principal components analysis (PCA), partial least squares discriminant analysis (PLS-DA) and stepwise linear discriminant analysis (SLDA) with full cross validation (leave-one-out method). The SLDA classified correctly 86% of the samples while PLS-DA 85% of Tempranillo wines according to their geographical origin. The relative benefits of using MS-EN will provide capability for rapid screening of wines. However, this technique does not provide the identification and quantitative determination of individual compounds responsible for the different aroma notes in the wine.

  6. Chemometric model for simultaneous spectrophotometric estimation of phenobarbitone and phenytoin sodium in tablets using back-propagation neural network

    Directory of Open Access Journals (Sweden)

    Satyanarayana D

    2006-01-01

    Full Text Available A chemometric model for the simultaneous estimation of phenobarbitone and phenytoin sodium anticonvulsant tablets using the back-propagation neural network calibration has been presented. The use of calibration datasets constructed from the spectral data of pure components is proposed. The calibration sets were designed such that the concentrations were orthogonal and span the possible mixture space fairly evenly. Spectra of phenobarbitone and phenytoin sodium were recorded at several concentrations within their linear range and used to compute the calibration mixture between wavelengths 220 and 260 nm at an interval of 1 nm. The back-propagation neural network model was optimized using three different sets of calibration and monitoring data for the number of hidden sigmoid neurons. The calibration model was thoroughly evaluated at several concentration levels using spectra obtained for 95 synthetic binary mixtures prepared using orthogonal designs. The optimized model showed sufficient robustness even when the calibration sets were constructed from different sets of pure spectra of components. Although the components showed complete spectral overlap, the model could accurately estimate the drugs, with satisfactory precision and accuracy, in tablet dosage with no interference from excipients, as indicated by the recovery study results.

  7. Passive Acoustic Studies of North Atlantic Right Whales

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Passive acoustic monitoring buoys have been deployed in shallow waters between North Carolina and Northern Florida since 2003. These units are bottom mounted...

  8. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  9. Potential of acoustic emissions from three point bending tests as rock failure precursors

    Institute of Scientific and Technical Information of China (English)

    Agioutantis Z.; Kaklis K.; Mavrigiannakis S.; Verigakis M.; Vallianatos F.; Saltas V.

    2016-01-01

    Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. This paper presents results from acoustic emission mea-surements obtained during three point bending tests on Nestos marble under laboratory conditions. Acoustic emission activity was monitored using piezoelectric acoustic emission sensors, and the potential for accurate prediction of rock damage based on acoustic emission data was investigated. Damage local-ization was determined based on acoustic emissions generated from the critically stressed region as scat-tered events at stresses below and close to the strength of the material.

  10. ACOUSTICAL STANDARDS NEWS.

    Science.gov (United States)

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  11. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    , the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... work. Based on first- and second-order perturbation theory, assuming small acoustic amplitudes, we derived the time-dependent governing equations under adiabatic conditions. The adiabatic first- and second-order equations are solved analytically for the acoustic field between two orthogonally......-of-the-art in the field. Furthermore, the analytical solution for the acoustic streaming in rectangular channels with arbitrary large height-to-width ratios is derived. This accommodates the analytical theory of acoustic streaming to applications within acoustofluidics....

  12. Program to develop acoustic emission-flaw relationship for inservice monitoring of nuclear pressure vessels. Annual report, July 1, 1976--October 1, 1977

    International Nuclear Information System (INIS)

    Laboratory mechanical tests were conducted to evaluate AE during uniaxial tensile, fracture and fatigue crack growth in A533B pressure vessel steel. The A533B steel included two heats of Class 1, one heat of Class 2 and a weldment made for the Heavy Section Steel Technology (HSST) Program. Specimen types included uniaxial tensile specimens, size 2 compact tension specimens for fatigue crack growth and fracture tests, and a single-edge notch specimen also for fatigue crack growth through material that was uniformly strained 3% prior to fatigue testing. In addition, AE monitoring was conducted on the HSST V-7B 6-inch thick pressure vessel test. AE data were partitioned into four ranges of signal amplitude and rise time. All the AE data were analyzed, with respect to mechanical behavior of A533B steel. Linear elastic fracture mechanics analysis methods were used to relate AE parameters to fracture and fatigue crack growth parameters. AE data from the V-7B vessel test were correlated with stress intensity factor and crack opening displacement. AE data from the fatigue crack growth tests were investigated using models based on fatigue crack growth rate, fatigue crack area and theoretical crack tip plastic zone size

  13. Semi-automatic long-term acoustic surveying

    DEFF Research Database (Denmark)

    Andreassen, Tórur; Surlykke, Annemarie; Hallam, John

    2014-01-01

    Increasing concern about decline in biodiversity has created a demand for population surveys. Acoustic monitoring is an efficient non-invasive method, which may be deployed for surveys of animals as diverse as insects, birds, and bats. Long-term unmanned automatic monitoring may provide unique...... to determine bat behavior and correct for the bias toward loud bats inherent in acoustic surveying. © 2013 Elsevier B.V....

  14. Blue and fin whale acoustics and ecology off Antarctic Peninsula

    OpenAIRE

    Sirovic, Ana

    2006-01-01

    Blue (Balaenoptera musculus) and fin whales (B. physalus) in the Southern Ocean were subjects of extensive whaling industry during the twentieth century. Their current population numbers remain low, making population monitoring using traditional visual surveys difficult. Both blue and fin whales produce low frequency, regularly repeated calls and are suitable for acoustic monitoring. Eight, continuously recording acoustic recorders were deployed off the Western Antarctic Peninsula (WAP) betwe...

  15. Inspection of copper canister for spent nuclear fuel by means of ultrasound. Copper characterization, FSW monitoring with acoustic emission and ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences, Uppsala (Sweden))

    2009-08-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2008. The first part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We present results of attenuation measurement performed for a number of samples taken from a real canister; two from the lid and four from different parts of canister wall. Ultrasonic attenuation of the material originating from canister lid is relatively low (less that 50 dB/m) and essentially frequency independent in the frequency range up to 5 MHz. However, for the material originating from the extruded canister part considerable variations of the attenuation are observed, which can reach even 200 dB/m at 3.5 MHz. In the second part of the report we present further development of the concept of the friction stir welding process monitoring by means of multiple sensors formed into a uniform circular array (UCA). After a brief introduction into modeling Lamb waves and UCA we focus on array processing techniques that enable estimating direction of arrival of multimodal Lamb waves. We consider two new techniques, the Capon beamformer and the broadband multiple signal classification technique (MUSIC). We present simulation results illustrating their performance. In the final part we present the phase shift migration algorithm for ultrasonic imaging of layered media using synthetic aperture concept. We start from explaining theory of the phase migration concept, which is followed by the results of experiments performed on copper blocks with drilled holes. We show that the proposed algorithm performs well for immersion inspection of metal objects and yields both improved spatial resolution and suppressed grain noise

  16. Classification of different tomato seed cultivars by multispectral visible-near infrared spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Shrestha, Santosh; Deleuran, Lise Christina; Gislum, René

    2016-01-01

    The feasibility of rapid and non-destructive classification of five different tomato seed cultivars was investigated by using visible and short-wave near infrared (Vis-NIR) spectra combined with chemometric approaches. Vis-NIR spectra containing 19 different wavelengths ranging from 375 nm to 970...... nm were extracted from multispectral images of tomato seeds. Principal component analysis (PCA) was used for data exploration, while partial least squares discriminant analysis (PLS-DA) and support vector machine discriminant analysis (SVM-DA) were used to classify the five different tomato cultivars....... The results showed very good classification accuracy for two independent test sets ranging from 94% to 100% for all tomato cultivars irrespective of chemometric methods. The overall classification error rates were 3.2% and 0.4% for the PLS-DA and SVM-DA calibration models, respectively. The results indicate...

  17. Chemometric simultaneous estimation of clopidogrel bisulphate and aspirin from combined dosage form

    Directory of Open Access Journals (Sweden)

    Rajput S

    2008-01-01

    Full Text Available Two chemometric methods, inverse least square and classical least square, were applied to simultaneous assay of clopidogrel bisulphate and aspirin in their combined dosage tablet formulation. Twelve mixed solutions were prepared for the chemometric calibration as training set and 10 mixed solutions were prepared as validation set. The absorbance data matrix was obtained by measuring the absorbance at 16 wavelength points, from 220 to 250 nm with the interval of 2 nm (Dl= 2 nm. The developed calibrations were successfully tested for laboratory mixtures as well as commercial tablet formulation for their clopidogrel bisulphate and aspirin concentration. Mean recoveries for clopidogrel bisulphate and aspirin were found to be in good agreement with the label claim.

  18. NMR spectroscopy and chemometrics to evaluate different processing of coconut water.

    Science.gov (United States)

    Sucupira, N R; Alves Filho, E G; Silva, L M A; de Brito, E S; Wurlitzer, N J; Sousa, P H M

    2017-02-01

    NMR and chemometrics was applied to understand the variations in chemical composition of coconut water under different processing. Six processing treatments were applied to coconut water and analyzed: two control (with and without sulphite), and four samples thermally processed at 110°C and 136°C (with and without sulphite). Samples processed at lower temperature and without sulphite presented pink color under storage. According to chemometrics, samples processed at higher temperature exhibited lower levels of glucose and malic acid. Samples with sulphite processed at 136°C presented lower amount of sucrose, suggesting the degradation of the carbohydrates after harshest thermal treatment. Samples with sulphite and processed at lower temperature showed higher concentration of ethanol. However, no significant changes were verified in coconut water composition as a whole. Sulphite addition and the temperature processing to 136°C were effective to prevent the pinking and to maintain the levels of main organic compounds. PMID:27596412

  19. Fingerprinting profile of polysaccharides from Lycium barbarum using multiplex approaches and chemometrics.

    Science.gov (United States)

    Liu, Wei; Xu, Jinnan; Zhu, Rui; Zhu, Yiqing; Zhao, Yang; Chen, Pei; Pan, Chun; Yao, Wenbing; Gao, Xiangdong

    2015-07-01

    Techniques including ultraviolet-visible spectra (UV), high performance size-exclusion chromatography (HPSEC), Fourier-transform infrared spectroscopy (FT-IR) and pre-column derivatization high-performance liquid chromatography (PCD-HPLC) were used in the fingerprinting analysis of Lycium barbarum polysaccharides (LBPs) from different locations and varieties. Multiple fingerprinting profiles were used to evaluate the similarity and classification of different LBPs with the help of chemometrics. The results indicated that sixteen batches of LBPs had good consistency, and fingerprinting techniques were simple and robust for quality control of LBPs as well as related products. In addition, fingerprinting techniques combined with chemometrics could also be used to identify different cultivation locations of LBPs samples. Finally, four monosaccharides (galacturonic acid, glucose, galactose and arabinose) and the absorptions of stretching vibration of ester carbonyl groups as well as NH variable angle vibration of -CONH- could be selected as herbal markers to distinguish different samples. PMID:25847838

  20. Acoustic estimation of suspended sediment concentration

    Institute of Scientific and Technical Information of China (English)

    ZHU; Weiqing(

    2001-01-01

    [1]Morse, P. H. , Theoretical Acoustics, New York: McGraw-Hill Book Co. , 1968.[2]Skudrjuk, E., Die Grundlagen der Akustik, Wien: Springer-Verlag, 1954.[3]Olshevskii, V. V., Statistical Characteristics of Sea Reverberation, Moscow: Nauka Publisher, 1966.[4]Thorne, P. D., Hardcastl, P. J., Soulsby, R. L., Analysis of acoustic measurements of suspended sediments, J. Geop.Res. , 1993, 98: 899.[5]Guo Jijie, Ren Laifa, Li Yunwu, ln-situ calibration of acoustic measurement of suspended sedienmt, Acta Oceanologica Sini-ca, 1998, (20): 120-125.[6]Zhang Shuying, Li Yunwu, Development and application of an acoustic suspended sediemnt monitoring system, Acta Oceanologica Sinica, 1998, (20): 114-119.[7]Zhang Shuying, Li Yunwu, A theoretical analysis of acoustic suspended sediment obsvervation, Acta Acoustica, 1999, (24):267-274.[8]Zhu Weiqing, Pan Feng, Zhu Min et al. , IOA-1 Multi-function Acoustic Doppler Current Profiler (MADCP), OCEAN'2000,Rhode Island, USA.

  1. Monitoring of pipeline hydrostatic testing with artificial flaws applying acoustic emission and ultra-sonic techniques; Monitoracao de teste hidrostatico de tubos com descontinuidades artificiais empregando as tecnicas de emissao acustica e ultra-som

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sergio Damasceno [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2003-07-01

    Charts and parameters used to perform and analyzing the acoustic emission data collected during the hydrostatic test in pipe samples build in API XL 60 with 20 inches of diameter and 14 millimeters of thickness are shown. These pipes had internal and external artificial flaws done by electro-erosion process with aspect ratio 1 x 20. A relationship between acoustic emission results, ultrasound and J-Integral were established using the applied pressurization sequence. Characteristics values of acoustic emission signals were shown as a criteria of field tests. (author)

  2. Acoustic sensor array extracts physiology during movement

    Science.gov (United States)

    Scanlon, Michael V.

    2001-08-01

    An acoustic sensor attached to a person's neck can extract heart and breath sounds, as well as voice and other physiology related to their health and performance. Soldiers, firefighters, law enforcement, and rescue personnel, as well as people at home or in health care facilities, can benefit form being remotely monitored. ARLs acoustic sensor, when worn around a person's neck, picks up the carotid artery and breath sounds very well by matching the sensor's acoustic impedance to that of the body via a gel pad, while airborne noise is minimized by an impedance mismatch. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that obscure the meaningful physiology. To exacerbate signal extraction, these interfering signals are usually covariant with the heart sounds, in that as a person walks faster the heart tends to beat faster, and motion noises tend to contain low frequency component similar to the heart sounds. A noise-canceling configuration developed by ARL uses two acoustic sensor on the front sides of the neck as physiology sensors, and two additional acoustic sensor on the back sides of the neck as noise references. Breath and heart sounds, which occur with near symmetry and simultaneously at the two front sensor, will correlate well. The motion noise present on all four sensor will be used to cancel the noise on the two physiology sensors. This report will compare heart rate variability derived from both the acoustic array and from ECG data taken simultaneously on a treadmill test. Acoustically derived breath rate and volume approximations will be introduced as well. A miniature 3- axis accelerometer on the same neckband provides additional noise references to validate footfall and motion activity.

  3. Chemometrics and vibrational spectroscopy as green tools for mine phytoremediation strategies

    Science.gov (United States)

    Mokgalaka-Matlala, N. S.; Regnier, T.; Combrinck, S.; Kouekam, C. R.; Weiersbye, I. M.

    This study describes the use of near infrared (NIR) spectroscopy in combination with chemometrics to characterise Combretum erythrophyllum plant material to determine differences in the chemical profiles of samples harvested from mine contaminated areas and those of natural populations. The chemometric computation of near infrared vibrational spectra was used to generate principal component analysis and partial least squares models. These models were used to determine seasonal differences in the chemical matrices of samples harvested from the mine sites with different levels of contamination. Principal component analysis scatter plots illustrated clustering of phenolic profiles of samples depending on whether they originated from contaminated or uncontaminated soils. A partial least squares model was developed to link the variations in the chemical composition and levels of contamination in all samples collected in the same season (autumn). The levels of total soluble phenolic compounds in leaf extracts of C. erythrophyllum were measured using the Folin-Ciocalteau assay. Data analysis of the samples revealed that plants harvested from mine sites, particularly in summer, produced a higher level of phenolic compounds than those of the natural population, thereby displaying a good correlation with the chemometric models.

  4. Application of mass spectrometry based electronic nose and chemometrics for fingerprinting radiation treatment

    International Nuclear Information System (INIS)

    Volatile compounds were isolated from apples and grapes employing solid phase micro extraction (SPME) and subsequently analyzed by GC/MS equipped with a transfer line without stationary phase. Single peak obtained was integrated to obtain total mass spectrum of the volatile fraction of samples. A data matrix having relative abundance of all mass-to-charge ratios was subjected to principal component analysis (PCA) and linear discriminant analysis (LDA) to identify radiation treatment. PCA results suggested that there is sufficient variability between control and irradiated samples to build classification models based on supervised techniques. LDA successfully aided in segregating control from irradiated samples at all doses (0.1, 0.25, 0.5, 1.0, 1.5, 2.0 kGy). SPME-MS with chemometrics was successfully demonstrated as simple screening method for radiation treatment. - Highlights: • Total mass spectra obtained from HS-MS for control and irradiated fruits. • Grapes and apples are chosen for present study. • Total mass spectrum was analyzed by two chemometric techniques (PCA and LDA). • Successful segregation of control and irradiated samples achieved using chemometrics

  5. Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics

    Science.gov (United States)

    Retnaningtyas, Yuni; Nuri; Lukman, Hilmia

    2016-01-01

    Infrared (IR) spectroscopy combined with chemometrics has been developed for simple analysis of flavonoid in the medicinal plant extract. Flavonoid was extracted from medicinal plant leaves by ultrasonication and maceration. IR spectra of selected medicinal plant extract were correlated with flavonoid content using chemometrics. The chemometric method used for calibration analysis was Partial Last Square (PLS) and the methods used for classification analysis were Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogies (SIMCA), and Support Vector Machines (SVM). In this study, the calibration of NIR model that showed best calibration with R2 and RMSEC value was 0.9916499 and 2.1521897, respectively, while the accuracy of all classification models (LDA, SIMCA, and SVM) was 100%. R2 and RMSEC of calibration of FTIR model were 0.8653689 and 8.8958149, respectively, while the accuracy of LDA, SIMCA, and SVM was 86.0%, 91.2%, and 77.3%, respectively. PLS and LDA of NIR models were further used to predict unknown flavonoid content in commercial samples. Using these models, the significance of flavonoid content that has been measured by NIR and UV-Vis spectrophotometry was evaluated with paired samples t-test. The flavonoid content that has been measured with both methods gave no significant difference. PMID:27529051

  6. Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics.

    Science.gov (United States)

    Wulandari, Lestyo; Retnaningtyas, Yuni; Nuri; Lukman, Hilmia

    2016-01-01

    Infrared (IR) spectroscopy combined with chemometrics has been developed for simple analysis of flavonoid in the medicinal plant extract. Flavonoid was extracted from medicinal plant leaves by ultrasonication and maceration. IR spectra of selected medicinal plant extract were correlated with flavonoid content using chemometrics. The chemometric method used for calibration analysis was Partial Last Square (PLS) and the methods used for classification analysis were Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogies (SIMCA), and Support Vector Machines (SVM). In this study, the calibration of NIR model that showed best calibration with R (2) and RMSEC value was 0.9916499 and 2.1521897, respectively, while the accuracy of all classification models (LDA, SIMCA, and SVM) was 100%. R (2) and RMSEC of calibration of FTIR model were 0.8653689 and 8.8958149, respectively, while the accuracy of LDA, SIMCA, and SVM was 86.0%, 91.2%, and 77.3%, respectively. PLS and LDA of NIR models were further used to predict unknown flavonoid content in commercial samples. Using these models, the significance of flavonoid content that has been measured by NIR and UV-Vis spectrophotometry was evaluated with paired samples t-test. The flavonoid content that has been measured with both methods gave no significant difference. PMID:27529051

  7. Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics

    Directory of Open Access Journals (Sweden)

    Lestyo Wulandari

    2016-01-01

    Full Text Available Infrared (IR spectroscopy combined with chemometrics has been developed for simple analysis of flavonoid in the medicinal plant extract. Flavonoid was extracted from medicinal plant leaves by ultrasonication and maceration. IR spectra of selected medicinal plant extract were correlated with flavonoid content using chemometrics. The chemometric method used for calibration analysis was Partial Last Square (PLS and the methods used for classification analysis were Linear Discriminant Analysis (LDA, Soft Independent Modelling of Class Analogies (SIMCA, and Support Vector Machines (SVM. In this study, the calibration of NIR model that showed best calibration with R2 and RMSEC value was 0.9916499 and 2.1521897, respectively, while the accuracy of all classification models (LDA, SIMCA, and SVM was 100%. R2 and RMSEC of calibration of FTIR model were 0.8653689 and 8.8958149, respectively, while the accuracy of LDA, SIMCA, and SVM was 86.0%, 91.2%, and 77.3%, respectively. PLS and LDA of NIR models were further used to predict unknown flavonoid content in commercial samples. Using these models, the significance of flavonoid content that has been measured by NIR and UV-Vis spectrophotometry was evaluated with paired samples t-test. The flavonoid content that has been measured with both methods gave no significant difference.

  8. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  9. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  10. In-situ Damage Monitoring of Aluminum Alloy Based on Acoustic Emission and Bispectrum Analysis%基于声发射和双谱分析的铝合金损伤原位监测研究

    Institute of Scientific and Technical Information of China (English)

    朱荣华; 刚铁; 万楚豪

    2013-01-01

    以列车车体材料7N01铝合金为研究对象,基于声发射和数字图像技术对7N01铝合金三点弯曲损伤过程进行了监测,采用传统的声发射参数与双谱法分析了7N01铝合金裂纹萌生及失稳扩展的声发射特征.结果表明:声发射能量和质心频率可有效预报7N01铝合金微裂纹的萌生.声发射信号的双谱等高线图显示两个频率成分之间的耦合关系,使得识别7N01铝合金三点弯曲过程中的不同阶段变得相对容易.7N01铝合金试样缺口尖端的损伤演变过程的数字图像监测结果,验证了声发射能量和质心频率对裂纹萌生的预测.实验结果显示声发射监测技术为裂纹演变行为的预测提供了依据.%This work was performed on 7N01 aluminum alloy which used in the body of high-speed train and damage was monitored based on acoustic emission (AE) and digital image technology during three-point bending failure of 7N01 aluminum alloy,conventional AE parameters and bispectrum analysis were used to study the characteristic of AE signals during the crack initiation and unstable propagation of 7N01 aluminum alloy.The result shows that AE energy and centroid frequency (CF) were effective indicators to predict the crack initiation of 7N01 aluminum alloy.Bispectrum contour map of AE signals shows the coupling relationship of the two frequency components which makes it easy to identify different stages during three-point bending of 7N01 aluminum alloy.The digital images of damage evolution from monitoring the notch tip region of 7N01 sample verify the prediction of AE signals.The results indicate that AE technique provides the basis for predicting the initiation of microcrack.

  11. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  12. Low frequency acoustic microscope

    Science.gov (United States)

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  13. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  14. Localized acoustic surface modes

    Science.gov (United States)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  15. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  16. What Is an Acoustic Neuroma

    Science.gov (United States)

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  17. Neurophysiological monitoring for preservation of facial nerve function in microsurgery for acoustic neuroma%听神经瘤显微切除术中神经电生理监测保护面神经的效果观察

    Institute of Scientific and Technical Information of China (English)

    苏杰; 严畅; 陈伟强; 杨光

    2011-01-01

    目的:探讨听神经瘤显微切除术中的电生理监测对面神经功能的保护作用.方法:46例听神经瘤患者分别行单纯显微镜下切除肿瘤(非监测组,22例),显微镜下切除肿瘤过程中应用术中神经监测仪对面神经进行监测(监测组,24例),观察术中面神经实时监测情况,随访所有患者术后面神经功能.结果:术后3个月根据House-Brackmann面神经功能分级对病例面瘫情况进行评价,监测组Ⅰ级21例,Ⅱ级2例,Ⅲ级1例;非监测组Ⅰ级13例,Ⅱ级5例,Ⅲ级2例,Ⅴ级2例,差异有统计学意义(P<0.05).结论:听神经瘤手术中行神经电生理监测可有效保护面神经.%Objective:To assess the value of neurophysiological monitoring in preserving the facial nerve in microsurgery for acoustic neuroma. Methods: Forty-six patients with acoustic neuroma were divided into monitoring group and non-monitoring group. The tumor was removed under the microscope without intraoperative facial nerve monitoring in 22 cases and with intraoperative monitoring in 24 cases. All the patients were followed up. Results: House-Brackmann system was used to evaluate the function of the facial nerve 3 months after the operation. Among the 24 cases in monitoring group,grade Ⅰ was observed in 21 cases,grade Ⅱ in 2 cases and grade Ⅲ in 1 case;among the 22 cases in non monitoring group,grade Ⅰ was observed in 13 cases,grade Ⅱ in 5 cases,grade Ⅲ in 2 cases and grade Ⅴ in 2 cases. The difference was significant( P < 0.05 ). Conclusions: Neurophysiological monitoring may effectively preserve the facial nerve function in microsurgery for acoustic neuroma.

  18. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be explai......Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...... with surface scattering is presented. Each of the two scattering effects is modeled as frequency dependent functions....

  19. An introduction to acoustic emission

    Science.gov (United States)

    Scruby, C. B.

    1987-08-01

    The technique of acoustic emission (AE) uses one or more sensors to 'listen' to a wide range of events that may take place inside a solid material. Depending on the source of this high frequency sound, there are broadly three application areas: structural testing and surveillance, process monitoring and control, and materials characterization. In the first case the source is probably a defect which radiates elastic waves as it grows. Provided these waves are detectable, AE can be used in conjunction with other NDT techniques to assess structural integrity. Advances in deterministic and statistical analysis methods now enable data to be interpreted in greater detail and with more confidence than before. In the second area the acoustic signature of processes is monitored, ranging from for instance the machining of metallic components to the mixing of foodstuffs, and changes correlated with variations in the process, with the potential for feedback and process control. In the third area, AE is used as an additional diagnostic technique for the study of, for instance, fracture, because it gives unique dynamic information on defect growth.

  20. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  1. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  2. Ocean acoustic hurricane classification.

    Science.gov (United States)

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  3. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  4. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  5. A Small Acoustic Goniometer for General Purpose Research

    Directory of Open Access Journals (Sweden)

    Michael L. Pook

    2016-04-01

    Full Text Available Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed.

  6. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  7. Chemometric resolution of coeluting peaks of eleven antihypertensives from multiple classes in high performance liquid chromatography: a comprehensive research in human serum, health product and Chinese patent medicine samples.

    Science.gov (United States)

    Zhao, Juan; Wu, Hai-Long; Niu, Jing-Fang; Yu, Yong-Jie; Yu, Li-Li; Kang, Chao; Li, Quan; Zhang, Xiao-Hua; Yu, Ru-Qin

    2012-08-01

    A novel chemometric-assisted high performance liquid chromatography method coupled with diode array detector (HPLC-DAD) was presented for the simultaneous determination of eleven antihypertensives from multiple classes in most concerned matrix systems. With the aid of second-order calibration which enables specific information of analytes to be well extracted, the heavily overlapping profiles between analytes and the coeluting interferences can be successfully separated and thus accurately quantified. A great advantage of the novel strategy lies in the fact that the analysis could be carried out with the same isocratic mobile phase (methanol/KH(2)PO(4): 58:42, v/v, pH 2.60) in a short time regardless of the changes of matrices, such as human serum, health product and Chinese patent medicine. Both qualitative and quantitative results indicate that the hybrid strategy that using HPLC-DAD coupled with second-order chemometric method would be a high performance approach for the purpose of simultaneously quantifying multiple classes of antihypertensives in complex systems. Additionally, the analytical strategy can potentially benefit drug monitoring in both therapeutic research and pharmaceutical quality control. Moreover, the accuracy and reliability of the proposed methodology has been evaluated using several statistical parameters such as root mean squared error of prediction (RMSEP), figures of merit (FOM) and reproducibility of inter-day analysis. PMID:22795572

  8. Acoustic sniper localization system

    Science.gov (United States)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  9. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    OpenAIRE

    Schmidt, Anne Marie Due; KIRKEGAARD, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to inve...

  10. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  11. Hybrid approach combining chemometrics and likelihood ratio framework for reporting the evidential value of spectra.

    Science.gov (United States)

    Martyna, Agnieszka; Zadora, Grzegorz; Neocleous, Tereza; Michalska, Aleksandra; Dean, Nema

    2016-08-10

    Many chemometric tools are invaluable and have proven effective in data mining and substantial dimensionality reduction of highly multivariate data. This becomes vital for interpreting various physicochemical data due to rapid development of advanced analytical techniques, delivering much information in a single measurement run. This concerns especially spectra, which are frequently used as the subject of comparative analysis in e.g. forensic sciences. In the presented study the microtraces collected from the scenarios of hit-and-run accidents were analysed. Plastic containers and automotive plastics (e.g. bumpers, headlamp lenses) were subjected to Fourier transform infrared spectrometry and car paints were analysed using Raman spectroscopy. In the forensic context analytical results must be interpreted and reported according to the standards of the interpretation schemes acknowledged in forensic sciences using the likelihood ratio approach. However, for proper construction of LR models for highly multivariate data, such as spectra, chemometric tools must be employed for substantial data compression. Conversion from classical feature representation to distance representation was proposed for revealing hidden data peculiarities and linear discriminant analysis was further applied for minimising the within-sample variability while maximising the between-sample variability. Both techniques enabled substantial reduction of data dimensionality. Univariate and multivariate likelihood ratio models were proposed for such data. It was shown that the combination of chemometric tools and the likelihood ratio approach is capable of solving the comparison problem of highly multivariate and correlated data after proper extraction of the most relevant features and variance information hidden in the data structure. PMID:27282749

  12. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    Science.gov (United States)

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension. PMID:19418043

  13. Provenance of pottery determined by soil physicochemical and chemometric methods: A case study from Frederiksgave, Ghana

    DEFF Research Database (Denmark)

    Rasmussen, Lars Holm; Bredwa-Mensah, Y.; Borggaard, Ole K.;

    2009-01-01

    The suitability of using traditional soil chemical and mineralogical methods combined with chemometrics to trace provenance of archaeological samples was tested on potsherds from Frederiksgave, a former Danish plantation in southern Ghana, in use from 18301850. Soil and six potsherds from...... Frederiksgave, together with potsherds from two likely production sites at Ga and Dangme Shai, were investigated by visual inspection, total element analysis and X-ray diffraction and the results analyzed by principal component analysis (PCA) and cluster analysis. The investigation clearly showed that the...

  14. Simultaneous Voltammetric Determination of Three Herbicides in Food and Water Samples with the Aid of Chemometrics

    Institute of Scientific and Technical Information of China (English)

    NI Yong-nian; WANG Lin; KOKOT Serge

    2009-01-01

    Differential pulse stripping voltammetry method(DPSV) was applied to the determination of three herbicides,ametryn,cyanatryn,and dimethametryn.It was found that their voltammograms overlapped strongly,and it is difficult to determine these compounds individually from their mixtures.With the aid of chemometrics,classical least squares(CLS),principal component regression(PCR) and partial least squares(PLS),voltammogram resolution and quantitative analysis of the synthetic mixtures of the three compounds were successfully performed.The proposed method was also applied to the analysis of some real samples with satisfactory results.

  15. Estimating colony sizes of emerging bats using acoustic recordings

    Science.gov (United States)

    Kloepper, Laura N.; Linnenschmidt, Meike; Blowers, Zelda; Branstetter, Brian; Ralston, Joel; Simmons, James A.

    2016-01-01

    The decline of bats demands more widespread monitoring of populations for conservation and management. Current censusing methods are either prone to bias or require costly equipment. Here, we report a new method using passive acoustics to determine bat count census from overall acoustic amplitude of the emerging bat stream. We recorded the video and audio of an emerging colony of Mexican free-tailed bats from two cave locations across multiple nights. Instantaneous bat counts were calculated from the video frames, and the bat stream’s acoustic amplitude corresponding to each video frame was determined using three different methods for calculating acoustic intensity. We found a significant link between all three acoustic parameters and bat count, with the highest R2 of 0.742 linking RMS pressure and bat count. Additionally, the relationship between acoustics and population size at one cave location could accurately predict the population size at another cave location. The data were gathered with low-cost, easy-to-operate equipment, and the data analysis can be easily accomplished using automated scripts or with open-source acoustic software. These results are a potential first step towards creating an acoustic model to estimate bat population at large cave colonies worldwide. PMID:27069667

  16. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  17. Acoustic integrated extinction

    CERN Document Server

    Norris, Andrew N

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross-section as a function of wavelength. Sohl et al. [1] derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency.

  18. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  19. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  20. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  1. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... treatment Summary Types Of Post-treatment Issues Resources Medical Resources Considerations When Selecting a Healthcare Professional Healthcare ... ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic Neuroma ...

  2. Acoustics lecturing in Mexico

    Science.gov (United States)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  3. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  4. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  5. Holographic imaging of surface acoustic waves

    CERN Document Server

    Bruno, Francois; Royer, Daniel; Atlan, Michael

    2014-01-01

    We report on an experimental demonstration of surface acoustic waves monitoring on a thin metal plate with heterodyne optical holography. Narrowband imaging of local optical pathlength modulation is achieved with a frequency-tunable time-averaged laser Doppler holographic imaging scheme on a sensor array, at video-rate. This method enables robust and quantitative mapping of out-of-plane vibrations of nanometric amplitudes at radiofrequencies.

  6. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  7. Acoustic surface cavitation

    OpenAIRE

    Zijlstra, Aaldert Geert

    2011-01-01

    Merely the presence of compressible entities, known as bubbles, greatly enriches the physical phenomena encountered when introducing ultrasound in a liquid. Mediated by the response of these bubbles, the otherwise diffuse and relatively low energy density of the acoustic field can induce strong, localized liquid motion, high internal temperatures and pressures as well as secondary acoustic emissions. In turn, these effects give rise to considerable stresses exerted on nearby objects and molec...

  8. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    Science.gov (United States)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-01-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications. PMID:25418084

  9. Acoustic Manifestations of Natural versus Triggered Lightning

    Science.gov (United States)

    Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.

    2010-12-01

    Positive leaders are rarely detected by VHF lightning detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered lightning and to assess which types of thunder signals have electromagnetic activity detected by the lightning mapping array (LMA). Towards this end we are investigating the lightning detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with lightning. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from lightning, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of lightning data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, lightning activity around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting lightning flashes including a comparison between a natural and a triggered one.

  10. Electrochemical monitoring of citric acid production by Aspergillus niger.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E; Ciosek, Patrycja; Wróblewski, Wojciech

    2014-05-01

    Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.

  11. Prediction of cereal feed value using spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn; Gislum, René

    2009-01-01

    Feed value in form of FEsv (Feed unit / kg dry matter, for piglets) and FEso (Feed unit / kg dry matter, for sows), EDOM (Enzyme Degradable Organic Matter) and EDOMi (Enzyme Degradable Organic Matter, Ileum) is used in the feed evaluation system for pigs. Analysis of feed value have highlighted...... of EDOM, EDOMi, FEso and FEsv. The outcome of a successful NIRS calibration will be a relatively cheap tool to monitor, diversify and evaluate the quality of cereals for animal feed, a possible tool to assess the feed value of new varieties in the variety testing and a useful, cheap and rapid tool...... for cereal breeders. A collection of 1213 grain samples of wheat, triticale, barley and rye, and related chemical reference analyses to describe the feed value have been established. The samples originate from available field trials over a three-year period. The chemical reference analyses are dry matter...

  12. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  13. Simultaneous kinetic spectrophotometric determination of norfloxacin and rifampicin in pharmaceutical formulation and human urine samples by use of chemometrics approaches

    Institute of Scientific and Technical Information of China (English)

    KOKOT; Serge

    2008-01-01

    A kinetic spectrophotometric method with aid of chemometrics is proposed for the simultaneous determination of norfloxacin and rifampicin in mixtures. The proposed method was applied for the simultaneous determination of these two compounds in pharmaceutical formulation and human urine samples,and the results obtained are similar to those obtained by high performance liquid chromatography.

  14. Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced raman spectroscopy an chemometric analysis

    Science.gov (United States)

    The intrinsic surface-enhanced Raman scattering (SERS) was used for differentiating and classifying bacterial species with chemometric data analysis. Such differentiation has often been conducted with an insufficient sample population and strong interference from the food matrices. To address these ...

  15. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  16. Simultaneous chemometric determination of pyridoxine hydrochloride and isoniazid in tablets by multivariate regression methods.

    Science.gov (United States)

    Dinç, Erdal; Ustündağ, Ozgür; Baleanu, Dumitru

    2010-08-01

    The sole use of pyridoxine hydrochloride during treatment of tuberculosis gives rise to pyridoxine deficiency. Therefore, a combination of pyridoxine hydrochloride and isoniazid is used in pharmaceutical dosage form in tuberculosis treatment to reduce this side effect. In this study, two chemometric methods, partial least squares (PLS) and principal component regression (PCR), were applied to the simultaneous determination of pyridoxine (PYR) and isoniazid (ISO) in their tablets. A concentration training set comprising binary mixtures of PYR and ISO consisting of 20 different combinations were randomly prepared in 0.1 M HCl. Both multivariate calibration models were constructed using the relationships between the concentration data set (concentration data matrix) and absorbance data matrix in the spectral region 200-330 nm. The accuracy and the precision of the proposed chemometric methods were validated by analyzing synthetic mixtures containing the investigated drugs. The recovery results obtained by applying PCR and PLS calibrations to the artificial mixtures were found between 100.0 and 100.7%. Satisfactory results obtained by applying the PLS and PCR methods to both artificial and commercial samples were obtained. The results obtained in this manuscript strongly encourage us to use them for the quality control and the routine analysis of the marketing tablets containing PYR and ISO drugs. PMID:20645279

  17. Chemometric analysis for discrimination of extra virgin olive oils from whole and stoned olive pastes.

    Science.gov (United States)

    De Luca, Michele; Restuccia, Donatella; Clodoveo, Maria Lisa; Puoci, Francesco; Ragno, Gaetano

    2016-07-01

    Chemometric discrimination of extra virgin olive oils (EVOO) from whole and stoned olive pastes was carried out by using Fourier transform infrared (FTIR) data and partial least squares-discriminant analysis (PLS1-DA) approach. Four Italian commercial EVOO brands, all in both whole and stoned version, were considered in this study. The adopted chemometric methodologies were able to describe the different chemical features in phenolic and volatile compounds contained in the two types of oil by using unspecific IR spectral information. Principal component analysis (PCA) was employed in cluster analysis to capture data patterns and to highlight differences between technological processes and EVOO brands. The PLS1-DA algorithm was used as supervised discriminant analysis to identify the different oil extraction procedures. Discriminant analysis was extended to the evaluation of possible adulteration by addition of aliquots of oil from whole paste to the most valuable oil from stoned olives. The statistical parameters from external validation of all the PLS models were very satisfactory, with low root mean square error of prediction (RMSEP) and relative error (RE%). PMID:26920315

  18. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics.

    Science.gov (United States)

    Liu, Wei; Liu, Changhong; Hu, Xiaohua; Yang, Jianbo; Zheng, Lei

    2016-11-01

    Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of transgenic rice seeds from its non-transgenic counterparts was examined by terahertz spectroscopy imaging system combined with chemometrics. Principal component analysis (PCA), least squares support vector machines (LS-SVM), PCA-back propagation neural network (PCA-BPNN), and random forest (RF) models with the first and second derivative and standard normal variate transformation (SNV) pre-treatments were applied to classify rice seeds based on genotype. The results demonstrated that differences between non-transgenic and transgenic rice seeds did exist, and an excellent classification (accuracy was 96.67% in the prediction set) could be achieved using the RF model combined with the first derivative pre-treatment. The results indicated that THz spectroscopy imaging together with chemometrics would be a promising technique to identify transgenic rice seeds with high efficiency and without any sample preparation. PMID:27211665

  19. Analysis of volatiles in Pinotage wines by stir bar sorptive extraction and chemometric profiling.

    Science.gov (United States)

    Weldegergis, Berhane T; Crouch, Andrew M

    2008-11-12

    A fast, simple, cost-effective, and reliable method based on stir bar sorptive extraction (SBSE) in the headspace mode was used for the analysis of 39 volatile components in Pinotage wines. The method was sensitive, with LODs ranging from 50.0 pg/L to 281 ng/L and LOQs between 180 pg/L and 938 ng/L. Precision was between 6 and 20%. The intermediate precision was within the acceptable range. Moreover, good calibration curves with R(2) > 0.99 for all compounds were achieved. The method was successfully applied for the analysis of 87 young Pinotage wines of vintages 2005 and 2006 collected from various South African regions. To characterize the results based on vintage and origin, the obtained concentrations of the compounds were subjected to chemometric analysis. Exploratory factor analysis (FA), principal component analysis (PCA), and analysis of variance (one-way ANOVA) were consecutively done. The chemometrics approach revealed a reasonable correlation among the volatile components of these wines, as well as with respect to their year of production.

  20. Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety Discrimination of Soil

    Science.gov (United States)

    Yu, Ke-Qiang; Zhao, Yan-Ru; Liu, Fei; He, Yong

    2016-06-01

    The aim of this work was to analyze the variety of soil by laser-induced breakdown spectroscopy (LIBS) coupled with chemometrics methods. 6 certified reference materials (CRMs) of soil samples were selected and their LIBS spectra were captured. Characteristic emission lines of main elements were identified based on the LIBS curves and corresponding contents. From the identified emission lines, LIBS spectra in 7 lines with high signal-to-noise ratio (SNR) were chosen for further analysis. Principal component analysis (PCA) was carried out using the LIBS spectra at 7 selected lines and an obvious cluster of 6 soils was observed. Soft independent modeling of class analogy (SIMCA) and least-squares support vector machine (LS-SVM) were introduced to establish discriminant models for classifying the 6 types of soils, and they offered the correct discrimination rates of 90% and 100%, respectively. Receiver operating characteristic (ROC) curve was used to evaluate the performance of models and the results demonstrated that the LS-SVM model was promising. Lastly, 8 types of soils from different places were gathered to conduct the same experiments for verifying the selected 7 emission lines and LS-SVM model. The research revealed that LIBS technology coupled with chemometrics could conduct the variety discrimination of soil.

  1. Quality Evaluation of Potentilla fruticosa L. by High Performance Liquid Chromatography Fingerprinting Associated with Chemometric Methods

    Science.gov (United States)

    Liu, Wei; Wang, Dongmei; Liu, Jianjun; Li, Dengwu; Yin, Dongxue

    2016-01-01

    The present study was performed to assess the quality of Potentilla fruticosa L. sampled from distinct regions of China using high performance liquid chromatography (HPLC) fingerprinting coupled with a suite of chemometric methods. For this quantitative analysis, the main active phytochemical compositions and the antioxidant activity in P. fruticosa were also investigated. Considering the high percentages and antioxidant activities of phytochemicals, P. fruticosa samples from Kangding, Sichuan were selected as the most valuable raw materials. Similarity analysis (SA) of HPLC fingerprints, hierarchical cluster analysis (HCA), principle component analysis (PCA), and discriminant analysis (DA) were further employed to provide accurate classification and quality estimates of P. fruticosa. Two principal components (PCs) were collected by PCA. PC1 separated samples from Kangding, Sichuan, capturing 57.64% of the variance, whereas PC2 contributed to further separation, capturing 18.97% of the variance. Two kinds of discriminant functions with a 100% discrimination ratio were constructed. The results strongly supported the conclusion that the eight samples from different regions were clustered into three major groups, corresponding with their morphological classification, for which HPLC analysis confirmed the considerable variation in phytochemical compositions and that P. fruticosa samples from Kangding, Sichuan were of high quality. The results of SA, HCA, PCA, and DA were in agreement and performed well for the quality assessment of P. fruticosa. Consequently, HPLC fingerprinting coupled with chemometric techniques provides a highly flexible and reliable method for the quality evaluation of traditional Chinese medicines. PMID:26890416

  2. Discriminating the Geographical Origins of Chinese White Lotus Seeds by Near-Infrared Spectroscopy and Chemometrics

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2015-01-01

    Full Text Available The traceability of a Chinese white lotus seed (WLS with Protected Designation of Origin (PDO was investigated using near-infrared (NIR spectroscopy and chemometrics. Three chemometrics methods, discrimination analysis (DA, class modeling, and a newly proposed strategy, the fusion of DA and class modeling, were investigated to compare their capacity to trace the geographical origins of WLS. Least squares support vector machine (LS-SVM was developed to distinguish the PDO WLS from non-PDO WLS of four main producing areas. A class modeling technique, one-class partial least squares (OCPLS, was developed only using the data of PDO WLS. By the fusion of LS-SVM and OCPLS, the best prediction sensitivity and specificity were 0.900 and 0.973, respectively. The results indicate that fusion of DA and class modeling can enhance the specificity for detection of non-PDO products. The conclusion is that DA and class modeling should be combined for tracing food geographical origins.

  3. Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra.

    Science.gov (United States)

    Galtier, O; Dupuy, N; Le Dréau, Y; Ollivier, D; Pinatel, C; Kister, J; Artaud, J

    2007-07-01

    The authentication of virgin olive oil samples requires usually the use of sophisticated and time consuming analytical techniques. There is a need for fast and simple analytical techniques for the objective of a quality control methodology. Virgin olive oils present characteristic NIR spectra. Chemometric treatment of NIR spectra was assessed for the quantification of fatty acids and triacylglycerols in virgin olive oil samples (n=125) and for their classification (PLS1-DA) into five very geographically closed registered designations of origin (RDOs) of French virgin olive oils ("Aix-en-Provence", "Haute-Provence", "Nice", "Nyons" and "Vallée des Baux"). The spectroscopic interpretation of regression vectors showed that each RDO was correlated to one or two specific components of virgin olive oils according to their cultivar compositions. The results were quite satisfactory, in spite of the similarity of cultivar compositions between two denominations of origin ("Aix-en-Provence" and "Vallée des Baux"). Chemometric treatments of NIR spectra allow us to obtain similar results than those obtained by time consuming analytical techniques such as GC and HPLC, and constitute a help fast and robust for authentication of those French virgin olive oils. PMID:17605993

  4. Discrimination of Transgenic Rice containing the Cry1Ab Protein using Terahertz Spectroscopy and Chemometrics

    Science.gov (United States)

    Xu, Wendao; Xie, Lijuan; Ye, Zunzhong; Gao, Weilu; Yao, Yang; Chen, Min; Qin, Jianyuan; Ying, Yibin

    2015-07-01

    Spectroscopic techniques combined with chemometrics methods have proven to be effective tools for the discrimination of objects with similar properties. In this work, terahertz time-domain spectroscopy (THz-TDS) combined with discriminate analysis (DA) and principal component analysis (PCA) with derivative pretreatments was performed to differentiate transgenic rice (Hua Hui 1, containing the Cry1Ab protein) from its parent (Ming Hui 63). Both rice samples and the Cry1Ab protein were ground and pressed into pellets for terahertz (THz) measurements. The resulting time-domain spectra were transformed into frequency-domain spectra, and then, the transmittances of the rice and Cry1Ab protein were calculated. By applying the first derivative of the THz spectra in conjunction with the DA model, the discrimination of transgenic from non-transgenic rice was possible with accuracies up to 89.4% and 85.0% for the calibration set and validation set, respectively. The results indicated that THz spectroscopic techniques and chemometrics methods could be new feasible ways to differentiate transgenic rice.

  5. Processing of chromatographic data for chemometric analysis of peptide profiles from cheese extracts: a novel approach.

    Science.gov (United States)

    Piraino, Paolo; Parente, Eugenio; McSweeney, Paul L H

    2004-11-17

    Chemometric analysis of chromatograms plays a fundamental role in characterization of foods or in detection of adulteration. Data for multivariate analysis of chromatographic profiles are usually obtained by visual matching (VM) of peaks, the identities of which, as for peptide profiles from cheese extracts, are often unknown. To avoid the main disadvantages of VM, which is subjective and time-consuming, a novel approach was developed. Fuzzy logic was employed to handle in a systematic way uncertainty in the position of peptide peaks, and chromatograms were processed by a rule-based membership function. Processed data consisted of classes of retention time wherein peak heights were accumulated by using the distance from the center of the class as a weight. The novel approach (fuzzy approach, FA) was compared with VM by using a real data set and by performing multivariate descriptive statistical techniques (principal component analysis, multidimensional scaling, and nonhierarchical cluster analysis). FA provided a fast, reliable, and objective alternative to VM and could be successfully applied for chemometric analysis of chromatographic profiles whenever knowledge of the identity of peaks is lacking or unnecessary. PMID:15537294

  6. Improved Discrimination for Brassica Vegetables Treated with Agricultural Fertilizers Using a Combined Chemometric Approach.

    Science.gov (United States)

    Yuan, Yuwei; Hu, Guixian; Chen, Tianjin; Zhao, Ming; Zhang, Yongzhi; Li, Yong; Xu, Xiahong; Shao, Shengzhi; Zhu, Jiahong; Wang, Qiang; Rogers, Karyne M

    2016-07-20

    Multielement and stable isotope (δ(13)C, δ(15)N, δ(2)H, δ(18)O, (207)Pb/(206)Pb, and (208)Pb/(206)Pb) analyses were combined to provide a new chemometric approach to improve the discrimination between organic and conventional Brassica vegetable production. Different combinations of organic and conventional fertilizer treatments were used to demonstrate this authentication approach using Brassica chinensis planted in experimental test pots. Stable isotope analyses (δ(15)N and δ(13)C) of B. chinensis using elemental analyzer-isotope ratio mass spectrometry easily distinguished organic and chemical fertilizer treatments. However, for low-level application fertilizer treatments, this dual isotope approach became indistinguishable over time. Using a chemometric approach (combined isotope and elemental approach), organic and chemical fertilizer mixes and low-level applications of synthetic and organic fertilizers were detectable in B. chinensis and their associated soils, improving the detection limit beyond the capacity of individual isotopes or elemental characterization. LDA shows strong promise as an improved method to discriminate genuine organic Brassica vegetables from produce treated with chemical fertilizers and could be used as a robust test for organic produce authentication. PMID:27355562

  7. TLC Profiles of Selected Cirsium Species with Chemometrics in Construction of Their Fingerprints.

    Science.gov (United States)

    Hawrył, Anna; Ziobro, Agata; Świeboda, Ryszard; Hawrył, Mirosław; Waksmundzka-Hajnos, Monika

    2016-08-01

    The dried aerial parts of 12 plants of Cirsium species were extracted with the Soxhlet apparatus using dichloromethane and methanol as solvents. Next, the extracts were separated by TLC methods to obtain the fingerprint chromatograms. The analysis was performed on silica gel or RP-18 layers as stationary phases using the following eluents: ethyl acetate/formic acid/acetic acid/water (12/1.5/1.5/4; v/v) for silica gel, and 5% (v/v) aqueous solution of formic acid/methanol (70/30; v/v) for the first development and the same system in the proportion of 50/50 (v/v) for the second development for RP-18. The double development was applied in the case of RP-18 plates. The analysis was performed for all Cirsium methanolic extracts and five selected standards (naringin, apigenin, rutin, caffeic acid and chlorogenic acid). The results were analyzed using chemometrics. The comparison of individual Cirsium species and the identification of unknown species were performed using the similarity indices (Pearson's correlation coefficient, determination coefficient and congruence coefficient), distance indices (Euclidean distance, Manhattan distance and Chebyshev's distance) and Multi-Scale Structural SIMilarity. Based on chemometric analysis, the first extract of the widely grown species is identified as Cirsium arvense and the second one as Cirsium rivulare. PMID:27130878

  8. Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods

    Science.gov (United States)

    Glavanović, Siniša; Glavanović, Marija; Tomišić, Vladislav

    2016-03-01

    The UV spectrophotometric methods for simultaneous quantitative determination of paracetamol and tramadol in paracetamol-tramadol tablets were developed. The spectrophotometric data obtained were processed by means of partial least squares (PLS) and genetic algorithm coupled with PLS (GA-PLS) methods in order to determine the content of active substances in the tablets. The results gained by chemometric processing of the spectroscopic data were statistically compared with those obtained by means of validated ultra-high performance liquid chromatographic (UHPLC) method. The accuracy and precision of data obtained by the developed chemometric models were verified by analysing the synthetic mixture of drugs, and by calculating recovery as well as relative standard error (RSE). A statistically good agreement was found between the amounts of paracetamol determined using PLS and GA-PLS algorithms, and that obtained by UHPLC analysis, whereas for tramadol GA-PLS results were proven to be more reliable compared to those of PLS. The simplest and the most accurate and precise models were constructed by using the PLS method for paracetamol (mean recovery 99.5%, RSE 0.89%) and the GA-PLS method for tramadol (mean recovery 99.4%, RSE 1.69%).

  9. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics.

    Science.gov (United States)

    Li, Xiaoli; Zhang, Yuying; He, Yong

    2016-01-01

    This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea. PMID:27468701

  10. Near Infrared Spectroscopy Calibration for Wood Chemistry: Which Chemometric Technique Is Best for Prediction and Interpretation?

    Directory of Open Access Journals (Sweden)

    Brian K. Via

    2014-07-01

    Full Text Available This paper addresses the precision in factor loadings during partial least squares (PLS and principal components regression (PCR of wood chemistry content from near infrared reflectance (NIR spectra. The precision of the loadings is considered important because these estimates are often utilized to interpret chemometric models or selection of meaningful wavenumbers. Standard laboratory chemistry methods were employed on a mixed genus/species hardwood sample set. PLS and PCR, before and after 1st derivative pretreatment, was utilized for model building and loadings investigation. As demonstrated by others, PLS was found to provide better predictive diagnostics. However, PCR exhibited a more precise estimate of loading peaks which makes PCR better for interpretation. Application of the 1st derivative appeared to assist in improving both PCR and PLS loading precision, but due to the small sample size, the two chemometric methods could not be compared statistically. This work is important because to date most research works have committed to PLS because it yields better predictive performance. But this research suggests there is a tradeoff between better prediction and model interpretation. Future work is needed to compare PLS and PCR for a suite of spectral pretreatment techniques.

  11. Acoustic probe for solid-gas-liquid suspensions. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The proposed research will develop an acoustic probe for monitoring particle size and volume fraction in slurries in the absence and presence of gas. The goals are to commission and verify the probe components and system operation, develop theory for the forward and inverse problems for acoustic wave propagation through a three phase medium, and experimentally verify the theoretical analysis. The acoustic probe will permit measurement of solid content in gas-liquid-solid waste slurries in tanks across the DOE complex.'

  12. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  13. Phononic crystals and acoustic metamaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Lu

    2009-12-01

    Full Text Available Phononic crystals have been proposed about two decades ago and some important characteristics such as acoustic band structure and negative refraction have stimulated fundamental and practical studies in acoustic materials and devices since then. To carefully engineer a phononic crystal in an acoustic “atom” scale, acoustic metamaterials with their inherent deep subwavelength nature have triggered more exciting investigations on negative bulk modulus and/or negative mass density. Acoustic surface evanescent waves have also been recognized to play key roles to reach acoustic subwavelength imaging and enhanced transmission.

  14. A comprehensive strategy using chromatographic profiles combined with chemometric methods: Application to quality control of Polygonum cuspidatum Sieb. et Zucc.

    Science.gov (United States)

    Gao, Fangyuan; Xu, Zihua; Wang, Weizhong; Lu, Guocai; Vander Heyden, Yvan; Zhou, Tingting; Fan, Guorong

    2016-09-30

    For the strict quality control of herbs, a comprehensive strategy based on chromatographic profiles and chemometric methods which could reliably select quantitative indices, robustly quantitate multi-markers and systematically compare different chemometric methods was proposed and successfully applied to the quality analysis of P. cuspidatum. Based on the construction of chromatographic profiles by an efficient accelerated solvent extraction (ASE) and reliable high-performance liquid chromatography-ultraviolet (HPLC-UV) methods, different chemometric methods were employed, namely similarity analyses (SA), hierarchical clustering analysis (HCA) and linear discriminant analysis (LDA). The differences in classification of herb samples were studied for the first time. To reasonably determine the quality of herbs and evaluate different chemometric methods, a comprehensive strategy containing three key steps was performed including selection of quantitative indices, development of a reliable quantification method and adoption of an easily calculated and visible parameter. The quantitative method which was acceptable with good linearity with correlation coefficients >0.9995 and satisfactory repeatability (RSD<1.5%), precision (RSD<2.84%), reproducibility (RSD<2.88%), stability (RSD<2.85%) and recoveries (91.5%-105.6%, RSD<2.83%) was applied to quality evaluation of fourteen batches of the P. cuspidatum samples through simultaneous quantitative determination of fifteen marker compounds. The limits of quantitation of fifteen compounds ranged from 1 to 60μg/ml. From the results of the quality evaluation, it was found that the different calculation theories of the chemometric methods resulted in the variation of classifiers of samples: SA classified samples through the mean values and HCA & LDA classified similar objects.

  15. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  16. Peak latency prolongation of Ⅴ wave in brainstem auditory evoked potential during intraoperative monitoring of acoustic neuroma surgery%脑干听觉诱发电位的Ⅴ波PL延长在听神经瘤手术监护中的应用价值

    Institute of Scientific and Technical Information of China (English)

    包国庆; 朱沂; 李建新; 杨小朋

    2012-01-01

    目的 探讨BAEP的Ⅴ波PL延长在听神经瘤手术中的应用价值. 方法 回顾性分析55例听神经瘤手术患者行BAEP术前检查、术中监护及术后疗效评估,分析Ⅴ波PL延长不同指标的监测结果. 结果 以Ⅴ波PL延长>0.6 ms为标准,脑干或听神经损伤的灵敏度100%,特异度95.3%,误诊率4.7%,漏诊率0%,符合率96.4%.以Ⅴ波PL延长>1.0 ms为标准,灵敏度58.3%,特异度97.7%,误诊率2.3%,漏诊率41.7%,符合率89.1%. 结论 BAEP监护听神经瘤手术中,V波PL延长>0.6 ms有较高的敏感度和特异度,作为术中监护报警指标更合适.%Objective To explore the applied value of peak latency (PL) prolongation of Ⅴ wave in brainstem auditory evoked potential (BAEP) during intraoperative monitoring of acoustic neuroma surgery. Methods The preoperative BAEP examination data,intraoperative monitoring and postoperative evaluation data in 55 patients with acoustic neuroma were retrospectively analyzed; the monitoring results under the circumstance that different degrees of prolongation of PL of Ⅴ wave were chosen were analyzed. Results The PL prolongation of Ⅴ wave >0.6 ms was used as the baseline,the sensitivity of diagnosing the brainstem or acoustic nerve injury was 100%,the specificity was 95.3%,the misdiagnosis rate was 4.7%,the missed diagnosis rate was 0% and the accordance rate was 96.4%.The PL prolongation of Ⅴ wave >1.0 ms was used as the baseline,the sensitivity of diagnosing the brainstem or acoustic nerve injury was 58.3%,the specificity was 97.7%,the misdiagnosis rate was 2.3%,the missed diagnosis rate was 41.7% and the accordance rate was 89.1%. Conclusion It is more suitable that using thePL prolongation of Ⅴ wave >0.6 ms as the baseline,enjoying high sensitivity and specificity,during the intraoperative monitoring of acoustic neuroma.

  17. Comparative Study of Bio-implantable Acoustic Generator Architectures

    Science.gov (United States)

    Christensen, D.; Roundy, S.

    2013-12-01

    This paper is a comparative study of the design spaces of two bio-implantable acoustically excited generator architectures: the thickness-stretch-mode circular piezoelectric plate and the bending-mode unimorph piezoelectric diaphragm. The generators are part of an acoustic power transfer system for implanted sensors and medical devices such as glucose monitors, metabolic monitors, drug delivery systems, etc. Our studies indicate that at small sizes the diaphragm architecture outperforms the plate architecture. This paper will present the results of simulation studies and initial experiments that explore the characteristics of the two architectures and compare their performance.

  18. Meals on Wheels? A Decade of Megafaunal Visual and Acoustic Observations from Offshore Oil & Gas Rigs and Platforms in the North and Irish Seas

    OpenAIRE

    Todd, Victoria Louise Georgia; Warley, Jane Clare; Todd, Ian Boyer

    2016-01-01

    A decade of visual and acoustic detections of marine megafauna around offshore Oil & Gas (O&G) installations in the North and Irish Seas are presented. Marine megafauna activity was monitored visually and acoustically by Joint Nature Conservation Committee (JNCC) qualified and experienced Marine Mammal Observers (MMO) and Passive Acoustic Monitoring (PAM) Operators respectively, with real-time towed PAM in combination with industry standard software, PAMGuard. Monitoring was performed during ...

  19. Wavefront Modulation and Subwavelength Diffractive Acoustics with an Acoustic Metasurface

    OpenAIRE

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-01-01

    Metasurfaces are a family of novel wavefront shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality as their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a desig...

  20. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    Science.gov (United States)

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  1. Tracking beaked whales with a passive acoustic profiler float.

    Science.gov (United States)

    Matsumoto, Haru; Jones, Christopher; Klinck, Holger; Mellinger, David K; Dziak, Robert P; Meinig, Christian

    2013-02-01

    Acoustic methods are frequently used to monitor endangered marine mammal species. Advantages of acoustic methods over visual ones include the ability to detect submerged animals, to work at night, and to work in any weather conditions. A relatively inexpensive and easy-to-use acoustic float, the QUEphone, was developed by converting a commercially available profiler float to a mobile platform, adding acoustic capability, and installing the ERMA cetacean click detection algorithm of Klinck and Mellinger [(2011). J. Acoust. Soc. Am. 129(4), 1807-1812] running on a high-power DSP. The QUEphone was tested at detecting Blainville's beaked whales at the Atlantic Undersea Test and Evaluation Center (AUTEC), a Navy acoustic test range in the Bahamas, in June 2010. Beaked whale were present at AUTEC, and the performance of the QUEphone was compared with the Navy's Marine Mammal Monitoring on Navy Ranges (M3R) system. The field tests provided data useful to evaluate the QUEphone's operational capability as a tool to detect beaked whales and report their presence in near-real time. The range tests demonstrated that the QUEphone's beaked whale detections were comparable to that of M3R's, and that the float is effective at detecting beaked whales. PMID:23363092

  2. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  3. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  4. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  5. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  6. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  7. Application of acoustic emission to flaw detection in engineering materials

    Science.gov (United States)

    Moslehy, F. A.

    1990-01-01

    Monitoring of structures under operating loads to provide an early warning of possible failure to locate flaws in test specimens subjected to uniaxial tensile loading is presented. Test specimens used are mild steel prismatic bars with small holes at different locations. When the test specimen is loaded, acoustic emission data are automatically collected by two acoustic transducers located at opposite sides of the hole and processed by an acoustic emission analyzer. The processed information yields the difference in arrival times at the transducers, which uniquely determines the flaw location. By using this technique, flaws were located to within 8 percent of their true location. The use of acoustic emission in linear location to locate a flaw in a material is demonstrated. It is concluded that this one-dimensional application could be extended to the general flaw location problem through triangulation.

  8. Densitometry By Acoustic Levitation

    Science.gov (United States)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  9. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...

  10. Strong acoustic wave action

    Science.gov (United States)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  11. Structural Acoustics and Vibrations

    Science.gov (United States)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  12. Variable-Position Acoustic Levitation

    Science.gov (United States)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  13. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Science.gov (United States)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  14. Study of Acoustic Emissions from Composites

    Science.gov (United States)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  15. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  16. Exploitation of process knowledge for the monitoring and closed loop control of fermentation processes; Erschliessen von Prozesswissen fuer das Monitoring und die Regelung von Fermentationsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Bianca; Hitzmann, Bernd [Hohenheim Univ., Stuttgart (Germany). FG Prozessanalytik und Getreidetechnologie; John, Jinu Mulamoottil

    2011-07-01

    The significance of process knowledge for the monitoring and closed loop control of biotechnical processes is demonstrated. An important problem of the development of chemometric models is the expense of calibration measurements required to calculate values of process variables from unselective measurements. To reduce this expense a method was developed which uses a dynamic process model instead of measurements. As an example the chemometric modeling will be discussed of a baker's yeast cultivation measuring fluorescence spectra and estimating biomass, glucose, and ethanol concentrations. We demonstrate the exploitation of process knowledge during an Escherichia colifermentation for the closed loop control of glucose concentration by using an extended Kalman filter. Here the effective dead time and the measurement noise will be compensated by this method. The glucose set point is 0.05g/L. The yield of the process exceeds by far that of batch fermentations. (orig.)

  17. Underwater Acoustic Networking Techniques

    CERN Document Server

    Otnes, Roald; Casari, Paolo; Goetz, Michael; Husøy, Thor; Nissen, Ivor; Rimstad, Knut; van Walree, Paul; Zorzi, Michele

    2012-01-01

    This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.

  18. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  19. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  20. Portable acoustic myography

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Danneskiold-Samsøe, Bente; Bartels, Else Marie

    2013-01-01

    Muscle sound gives a local picture of muscles involved in a particular movement and is independent of electrical signals between nerve and muscle. Sound recording (acoustic myography) is a well-known noninvasive technique that has suffered from not being easily applicable, as well as not being ab...