WorldWideScience

Sample records for acneiform eruptions

  1. Acneiform Eruption and Other Dermatologic Side Effects Induced by Targeted Cancer Therapy: A Retrospective Analysis

    Directory of Open Access Journals (Sweden)

    Kurtuluş Didem Yazganoğlu

    2012-06-01

    Full Text Available Background and Design: Epidermal growth factor receptor (EGFR inhibitors may cause different adverse cutaneous reactions including acneiform (pustular, papulopustular eruption. Rarely, other specific targeted cancer therapy agents may cause similar pustular eruptions. The aim of this study was to evaluate the adverse skin reactions, mainly acneiform eruptions caused by these chemotherapeutic agents. Material and Methods: We retrospectively analyzed the data of 23 patients who developed acneiform eruption due to chemotherapeutic agents between May 2007 and April 2011. The drugs causing acneiform eruption, clinical features of eruption, other associated dermatologic adverse reactions and the treatment modalities used for the acneiform reaction were noted. Results: EGFR inhibitors such as erlotinib and cetuximab were the main drugs causing acneiform eruption in 21 patients. Everolimus and bevacizumab in combination with irinotecan were responsible in two patients. The eruption occurred on the face in all patients. The trunk, neck and the scalp were other affected body parts in some patients. The periorbital area on the face was generally spared. Xerosis and paronychia were the main associated adverse cutaneous reactions. Trichomegaly was another finding in two patients. The patients, who could have been followed, responded to topical or systemic antibiotics, or some medications for acne vulgaris/rosacea. Chemotherapy could be continued in all patients. Conclusion: Dermatologists need to know the specific eruptions occurring with chemotherapy drugs, especially EGFR inhibitors in order to develop the best approach without discontinuation of cancer therapy. Acneiform eruptions due to chemotherapeutics are most commonly seen on the face sparing periorbital area. Other reactions including mainly xerosis, paronychia and trichomegaly can also occur.

  2. Vellus hair cysts presenting as an atypical acneiform eruption Cisto de pelo velos apresentando-se como erupção acneiforme atípica

    Directory of Open Access Journals (Sweden)

    Hiram Larangeira de Almeida Jr

    2011-08-01

    Full Text Available A 32-year-old male patient presented for 8 months an asymptomatic therapy-resistant acneiform eruption on his back and buttocks. Skin examination showed several inflammatory papules, which evolved to hyperpigmentation. At the same distribution non inflammatory papules, which resembled rice grains, were also observed. Light microscopy showed small keratin-filled cysts, with an epithelial multilayered wall, without granular layer. Keratin and some vellus hairs were identified inside the cyst, confirming the diagnosis of vellus hair cysts. Diagnosis of vellus hair cysts should be suspected in cases of multiple papules or therapy-resistant cases of acneiform eruptionsUm paciente de 32 anos apresentou há 8 meses uma erupção acneiforme resistente à terapêutica, localizada no dorso e nádegas. Ao exame apresentava inúmeras pápulas inflamatórias, que evoluiam para hiperpigmentação. Na mesma distribuição havia lesões não inflamatórias, lembrando grão de arroz. A microscopia óptica demonstrou cisto dérmico cuja parede era de epitélio estratificado, sem camada granular, preenchido de queratina e com pelos no interior, confirmando o diagnóstico de cisto de pelo veloso. Essa entidade deve ser suspeitada em casos de múltiplas pápulas ou erupções acneiformes resistentes à terapia

  3. Follicular mucinosis presenting as an acneiform eruption: a follow-up study.

    Science.gov (United States)

    Brau-Javier, Cristina N; Santos-Arroyo, Aileen E; De Sanctis-González, Ivette M; Sánchez, Jorge L

    2013-12-01

    It has been proposed by many authors that follicular mucinosis is directly associated with mycosis fungoides (MF). Follicular mucinosis may be classified into 3 main clinical variants: a benign idiopathic form in children and young adults, which includes an acneiform presentation; an idiopathic form in older patients with a benign course; and a third variant that occurs in adults and is associated with MF. Our goal was to study the relationship between the acneiform variant of follicular mucinosis and MF. Eight patients previously diagnosed with the acneiform variant of follicular mucinosis were identified. Biopsy specimens were reviewed to evaluate the histopathologic attributes that characterize the disease and the infiltrate's immunohistochemistry. Also, patient follow-up was assessed to evaluate the clinical course of the disease. Median age of onset of disease was 29.5 years; 95% of lesions were located in the head and neck region. Biopsy specimens showed a moderate to dense perivascular, perifollicular, and interstitial infiltrate of lymphocytes with mucinous deposits within the follicular epithelium. On immunohistochemistry, the infiltrate showed prominent leukocyte common antigen (LCA) positivity and a CD3-positive and CD4-positive infiltrate with rare CD20-positive cells. None of the study patients showed evidence of MF after a mean follow-up of 3 years. The benign course of disease demonstrated in the study patients suggests that the acneiform variant of follicular mucinosis probably represents a subpopulation of the benign idiopathic form of the disease. However, given that histopathologically this variant cannot be distinguished from the lymphoma-associated variant of follicular mucinosis, longitudinal evaluation is still warranted in these patients. PMID:24257190

  4. Analysis of sebum lipid composition and the development of acneiform rash before and after administration of egfr inhibitor

    OpenAIRE

    Nakahara, T; Moroi, Y; Takayama, K.; Nakanishi, Y; Furue, M

    2015-01-01

    Treatment with an epidermal growth factor receptor inhibitor (egfri) in patients having non-small-cell lung cancer can cause frequent and diverse skin toxicities, an acneiform rash being one of the commonest. Although the exact pathophysiology of this rash and its development mechanisms remain unknown, investigators have noted that egfri-induced skin toxicity might be partly associated with sebaceous gland function. Sebum is composed mainly of the lipids squalene (sq), wax ester (we), triglyc...

  5. Pattern of drug eruptions in a tertiary care hospital

    International Nuclear Information System (INIS)

    Background: An adverse drug reaction is unintentional which occurs at doses used for prophylaxis, diagnosis or treatment. Objectives: To determine the frequency of various cutaneous drug eruptions that occur in patients in a tertiary care hospital setting. Patients and Methods: All patients with cutaneous drug eruptions seen at the Dermatology Department of Mayo Hospital, Lahore, over 6 months were enrolled and the pattern of drug eruptions like urticaria, angioedema, fixed drug eruption, maculopapular rash, erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis etc. were recorded, along with drugs that caused it. Results:A total of 160 patients (86 males, 74 females) were included in the study. Mean age of patients was 30.7+-15.4 years. Major eruptions were fixed drug eruption (21.3%) followed by urticaria without angioedema (10%), maculopapular rash (9.3%), lichenoid drug eruption (8.7%), acneiform drug eruption (7.5%), Stevens-Johnson syndrome (6.9%), vesiculobullous eruption (5.6%), erythema multiforme and eczematous eruption (5% each). Common drugs causing eruptions were sulfonamides (16.3%), followed by NSAIDs (14.4%), herbal and homeopathic medications (12.5%), penicillins (9.3%), tetracyclines (8.7%), antituberculous drugs, cephalosporins and antiepileptics (6.3% each). Conclusion: Fixed drug eruption and urticaria without angioedema were commonest eruptions while, sulfonamides and NSAIDs were the major causative drugs. Policy message: Reporting of adverse drug reactions is not done in Pakistan and needs to be done in each hospital. (author)

  6. Changes in sebum levels and the development of acneiform rash in patients with non–small cell lung cancer after treatment with EGFR inhibitors

    Directory of Open Access Journals (Sweden)

    Nakahara T

    2015-01-01

    Full Text Available Takeshi Nakahara,1,2 Yoichi Moroi,2 Koichi Takayama,3 Eriko Itoh,1,2 Makiko Kido-Nakahara,2 Yoichi Nakanishi,3 Masutaka Furue2 1Division of Skin Surface Sensing, 2Department of Dermatology, 3Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan Background: It has recently been shown that patients treated with epidermal growth factor receptor (EGFR inhibitors often develop various cutaneous adverse events. While the pathogenesis underlying these events remains unclear, the relationship between skin toxicity induced by EGFR inhibitors and the sebaceous glands that express EGFR has been previously reported. Objectives: The primary aim of this study was to determine the relationship between cutaneous sebum levels and acneiform rash, a typical skin toxicity of EGFR inhibitors, by measuring the sebum levels before and after EGFR inhibitor treatment. Methods: Eight patients diagnosed with non–small cell lung cancer (NSCLC (three men and five women with an average age of 69.3 years who were initiated on treatment with EGFR inhibitors (either gefitinib [Iressa®] or erlotinib [Tarceva®] were enrolled. Using a Sebumeter®, sebum levels in the face, chest, and back of each patient were measured before and after EGFR inhibitor treatment. The development of acneiform rash in each skin region was also assessed. Results: Changes in sebum level along with the development of an acneiform rash were observed after patients were started on EGFR inhibitor treatment. Patients who developed an EGFR inhibitor–induced acneiform rash tended to have higher pretreatment sebum levels (baseline than did patients who did not experience an acneiform rash. At each time point measurement, sebum levels were found to be significantly higher in patients who had developed an acneiform rash at that time. Patients who developed rash during treatment showed greater differences in sebum level compared with

  7. Jupiter Eruptions

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers. This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter. Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena. According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  8. An erupted compound odontoma.

    Science.gov (United States)

    Gupta, Anil; Vij, Hitesh; Vij, Ruchieka; Malhotra, Ritika

    2014-04-12

    Odontomas are familiar entities but their eruption into the oral cavity is an extraordinary occurrence, which may be associated with pain, infection, malocclusion, etc. Not many cases of erupted odontomas have been reported in the literature. This paper puts forth a case of erupting odontoma in an attempt to add to the list of reported cases of this unique pathology.

  9. Effect of treatment with a colloidal oatmeal lotion on the acneform eruption induced by epidermal growth factor receptor and multiple tyrosine-kinase inhibitors.

    Science.gov (United States)

    Alexandrescu, D T; Vaillant, J G; Dasanu, C A

    2007-01-01

    Current treatment modalities for epidermal growth factor (EGFR)-positive cancers have recently included the use of antibodies and small-molecule tyrosine-kinase inhibitors (TKI). A significant limiting step in the use of these agents is dermatological toxicity, frequently in the form of an acneiform eruption. Present management modalities for this toxicity are largely ineffective. Colloidal oatmeal lotion demonstrates multiple anti-inflammatory properties with known effects on arachidonic acid, cytosolic phospholipase A2 and tumour necrosis factor-alpha pathways, along with an excellent side-effect profile. Treatment with colloidal oatmeal was applied to 11 patients with a rash induced by cetuximab, erlotinib, panitumumab and sorafenib. Of the 10 assessable patients, 6 had complete response and 4 partial response, giving a response rate of 100% with no associated toxicities. Treatment with colloidal oatmeal lotion is efficient in controlling the rash associated with EGFR and multiple TKI, and allows continuation of the antineoplastic treatment.

  10. Mechanism of human tooth eruption

    DEFF Research Database (Denmark)

    Kjær, Inger

    2014-01-01

    discussed in the introduction. Human studies, mainly clinical and radiological, have focused on normal eruption and gender differences. Why a tooth begins eruption and what enables it to move eruptively and later to end these eruptive movements is not known. Pathological eruption courses contribute...

  11. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  12. Multiple asymptomatic cutaneous pilar leiomyoma versus spontaneous eruptive keloids - a case report.

    Science.gov (United States)

    Morariu, Silviu Horia; Suciu, Mircea; Badea, Mihai Alexandru; Vartolomei, Mihai Dorin; Buicu, Corneliu Florin; Cotoi, Ovidiu Simion

    2016-01-01

    Cutaneous piloleiomyoma, angioleiomyoma and genital leiomyoma are variants of superficial cutaneous leiomyoma. The main purpose of this paper was to present clinical, histopathological and immunohistochemical diagnosis criteria for an unusual case of pilar leiomyoma in an 18-year-old male patient. The initial clinical aspect was very similar to spontaneous eruptive keloids: red-violet color, painless, aspect of "crab pincers" of some of the lesions, epidermis atrophy, telangiectasia, located on acneiform zones and compliance with cephalic extremity. The patient had no history of trauma, surgery or acne. Local treatment of one lesion was performed with cryotherapy using liquid nitrogen (-172°C) together with intra-lesion steroid injections, occlusive dressings and silicone gel. Local therapy did not showed notable results, moreover the lesion become painful. Skin biopsy with histological and immunohistochemical analysis revealed the diagnosis of multiple cutaneous pilar leiomyoma without atypia. The particularity of the case stands in the atypical onset followed by explosive increasing of lesions number and the appearance of pathognomonic pain after local therapy. PMID:27151722

  13. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  14. Erupted compound odontome

    Directory of Open Access Journals (Sweden)

    Shekar S

    2009-01-01

    Full Text Available Odontomas are considered to be hamartomas rather than a true neoplasm. They consist chiefly of enamel and dentin, with variable amount of pulp and cementum when fully developed. They are generally asymptomatic and are included under the benign calcified odontogenic tumors. They are usually discovered on routine radiographic examination. Eruption of an odontoma in the oral cavity is rare. Peripheral compound odontomas arise extraosseously and have a tendency to exfoliate. In this article we are reporting a case of a 15-year-old girl with peripheral compound odontoma, with a single rudimentary tooth-like structure in the mandibular right second molar region, which is about to be exfoliated. Its eruption in the oral cavity and location in the mandibular posterior region is associated with aplasia of the mandibular right second molar, making it an interesting case for reporting.

  15. Volcanic eruptions observed with infrasound

    Science.gov (United States)

    Johnson, Jeffrey B.; Aster, Richard C.; Kyle, Philip R.

    2004-07-01

    Infrasonic airwaves produced by active volcanoes provide valuable insight into the eruption dynamics. Because the infrasonic pressure field may be directly associated with the flux rate of gas released at a volcanic vent, infrasound also enhances the efficacy of volcanic hazard monitoring and continuous studies of conduit processes. Here we present new results from Erebus, Fuego, and Villarrica volcanoes highlighting uses of infrasound for constraining quantitative eruption parameters, such as eruption duration, source mechanism, and explosive gas flux.

  16. Erupted complex odontoma delayed eruption of permanent molar.

    Science.gov (United States)

    Ohtawa, Yumi; Ichinohe, Saori; Kimura, Eri; Hashimoto, Sadamitsu

    2013-01-01

    Odontomas, benign tumors that develop in the jaw, rarely erupt into the oral cavity. We report an erupted odontoma which delayed eruption of the first molar. The patient was a 10-year-old Japanese girl who came to our hospital due to delayed eruption of the right maxillary first molar. All the deciduous teeth had been shed. The second premolar on the right side had erupted, but not the first molar. Slight inflammation of the alveolar mucosa around the first molar had exposed a tooth-like, hard tissue. Panoramic radiography revealed a radiopaque mass indicating a lesion approximately 1 cm in diameter. The border of the image was clear, and part of the mass was situated close to the occlusal surface of the first molar. The root of the maxillary right first molar was only half-developed. A clinical diagnosis of odontoma was made. The odontoma was subsequently extracted, allowing the crown of the first molar to erupt almost 5 months later. The dental germ of the permanent tooth had been displaced by the odontoma. However, after the odontoma had been extracted, the permanent tooth was still able to erupt spontaneously, as eruptive force still remained. When the eruption of a tooth is significantly delayed, we believe that it is necessary to examine the area radiographically. If there is any radiographic evidence of a physical obstruction that might delay eruption, that obstruction should be removed before any problems can arise. Regular dental checkups at schools might improve our ability to detect evidence of delayed eruption earlier. PMID:24521551

  17. Erupted complex odontoma delayed eruption of permanent molar.

    Science.gov (United States)

    Ohtawa, Yumi; Ichinohe, Saori; Kimura, Eri; Hashimoto, Sadamitsu

    2013-01-01

    Odontomas, benign tumors that develop in the jaw, rarely erupt into the oral cavity. We report an erupted odontoma which delayed eruption of the first molar. The patient was a 10-year-old Japanese girl who came to our hospital due to delayed eruption of the right maxillary first molar. All the deciduous teeth had been shed. The second premolar on the right side had erupted, but not the first molar. Slight inflammation of the alveolar mucosa around the first molar had exposed a tooth-like, hard tissue. Panoramic radiography revealed a radiopaque mass indicating a lesion approximately 1 cm in diameter. The border of the image was clear, and part of the mass was situated close to the occlusal surface of the first molar. The root of the maxillary right first molar was only half-developed. A clinical diagnosis of odontoma was made. The odontoma was subsequently extracted, allowing the crown of the first molar to erupt almost 5 months later. The dental germ of the permanent tooth had been displaced by the odontoma. However, after the odontoma had been extracted, the permanent tooth was still able to erupt spontaneously, as eruptive force still remained. When the eruption of a tooth is significantly delayed, we believe that it is necessary to examine the area radiographically. If there is any radiographic evidence of a physical obstruction that might delay eruption, that obstruction should be removed before any problems can arise. Regular dental checkups at schools might improve our ability to detect evidence of delayed eruption earlier.

  18. Will Teide erupt again?

    Science.gov (United States)

    Marti, Joan; Geyer, Adelina

    2016-04-01

    The quantification of hazard in volcanic systems characterised by long repose period is difficult because the lack of knowledge of the past volcanic history and also because in many cases volcanism is not perceived as a potential problem, being only regarded as an attraction for tourism or a source of economic benefit, thus hiding the need to conduct hazard assessment. Teide, in the island of Tenerife (Canary Islands), is not an exception to this general rule and, despite being one of the largest composite volcanoes in the World, it is generally considered as a non-active volcano by population, visitors and even by some scientists. However, geological and geophysical evidence, including a large diversity of monitoring signals recorded during last decades, as well as a simple comparison with similar volcanoes that have erupted in recent times after hundreds or even thousands of years of quiescence, recommend to consider Teide as an active volcano and to take the necessary precaution in an island with nearly one million of permanent inhabitants and nearly 5 millions of visitors per year. What is the potential of Teide to erupt again? is the question that relies behind the fact of considering it as active, and that needs to be answered first. Based on the current volcanological, petrological and geophysical knowledge We propose a conceptual model on the magma recharge mechanisms, structure of the plumbing system, and eruption triggers and dynamics of Teide volcano that helps to understand its behaviour and to anticipate future activity. Ramón y Cajal contract (RYC-2012-11024)

  19. Drug Rash (Unclassified Drug Eruption) in Children

    Science.gov (United States)

    ... rash and rashes clinical tools newsletter | contact Share | Drug Eruption, Unclassified (Pediatric) A parent's guide to condition ... lesions coming together into larger lesions typical of drug rashes (eruptions). Overview A drug eruption, also known ...

  20. Carbon sequestration and eruption hazards

    Science.gov (United States)

    Zhang, Y.

    2007-12-01

    In order to reduce the buildup of carbon dioxide in the atmosphere, proposals have been made to sequestrate carbon in ocean, or in coal mines and other underground formations. High gas concentration in ocean or underground formations has to potential to power gas-driven eruptions. In this presentation, possible eruption hazards are explored. Whenever carbon dioxide is sequestrated in the form of carbon dioxide gas, or dissolved and/or absorbed carbon dioxide, it is necessary to exercise caution to avoid gas-driven eruption hazard. It is long known that explosive volcanic eruptions are driven by H2O gas in magma. Lake eruptions powered by dissolved CO2 in lake bottom water were discovered in the 1980's (Kling et al., 1987; Zhang, 1996). Gas-driven ocean eruptions with mechanism similar to lake eruptions have been hypothesized (Zhang, 2003; Zhang and Kling, 2006) although not confirmed. Mud volcanos are commonly thought to be driven by methane-rich fluids in sediment (Milkov, 2000). Recently, Zhang et al. (2007) have proposed that coal outbursts in underground coal mines are driven by dissolved high CO2 concentration in coal, causing coal fragmentation and outburst. That is, coal outbursts may be regarded as a new type of gas-driven eruptions. Therefore, high concentrations of free gas or dissolved/absorbed gas may power eruptions of magma, lake water, ocean water, sediment, and coal. Gas- driven volcanic, lake and ocean eruptions are due to volume expansion from bubble growth, whereas gas-driven coal and sediment eruptions are due to high gas-pressure, leading to fragmentation of coal and sediment. (In explosive volcanism, magma fragmentation is also a critical point.) The threshold conditions for many of these eruptions are not known yet. In planning large (industrial) scale injection of CO2 into a natural reservoir, it is important to know the eruption threshold and design the injection scheme accordingly. More safe sequestration in terms of eruption hazards would

  1. Automated Detection of Solar Eruptions

    CERN Document Server

    Hurlburt, Neal

    2015-01-01

    Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advancing our understanding the drivers of space weather. Both automated and visual identifications are currently used in identifying CMEs. To date, eruptions near the solar surface (which may be precursors to CMEs) have been identified primarily by visual inspection. Here we report on EruptionPatrol (EP): a software module that is designed to automatically identify eruptions from data collected by SDO/AIA. We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15Mm of the solar surface. They possess peak speeds ranging from...

  2. Solar Eruptive Events

    Science.gov (United States)

    Holman, Gordon D.

    2012-01-01

    It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into the forms that energy takes have only recently become available. Solar flares have been phenomena of both academic and practical interest since their discovery in 1859. From the academic point of view, they are the nearest events for studying the explosive release of energy in astrophysical magnetized plasmas. From the practical point of view, they disrupt communication channels on Earth, from telegraph communications in 1859 to radio and television signals today. Flares also wreak havoc on the electrical power grid, satellite operations, and GPS signals, and energetic charged particles and radiation are dangerous to passengers on high-altitude polar flights and to astronauts. Flares are not the only explosive phenomena on the Sun. More difficult to observe but equally energetic are the large coronal mass ejections (CMEs), the ejection of up to ten billion tons of magnetized plasma into the solar wind at speeds that can exceed 1000 km/s. CMEs are primarily observed from the side, with coronagraphs that block out the bright disk of the Sun and lower solar atmosphere so that light scattered from the ejected mass can be seen. Major geomagnetic storms are now known to arise from the interaction of CMEs with Earth's magnetosphere. Solar flares are observed without CMEs, and CMEs are observed without flares. The two phenomena often occur together, however, and almost always do in the case of large flares and fast CMEs. The term solar eruptive event refers to the combination of a flare and a CME. Solar eruptive events generate a lot of heat: They can heat plasma to temperatures as high at 50 million Kelvin, producing radiation across the electromagnetic spectrum. But that s not all. A fascinating aspect of solar eruptive events is the acceleration of electrons and ions to suprathermal often relativistic energies. The accelerated particles are primarily

  3. Climatic Impact of Volcanic Eruptions

    Directory of Open Access Journals (Sweden)

    Gregory A. Zielinski

    2002-01-01

    Full Text Available Volcanic eruptions have the potential to force global climate, provided they are explosive enough to emit at least 1–5 megaton of sulfur gases into the stratosphere. The sulfuric acid produced during oxidation of these gases will both absorb and reflect incoming solar radiation, thus warming the stratosphere and cooling the Earth’s surface. Maximum global cooling on the order of 0.2–0.3°C, using instrumental temperature records, occurs in the first 2 years after the eruption, with lesser cooling possibly up to the 4th year. Equatorial eruptions are able to affect global climate, whereas mid- to high-latitude events will impact the hemisphere of origin. However, regional responses may differ, including the possibility of winter warming following certain eruptions. Also, El Niño warming may override the cooling induced by volcanic activity. Evaluation of different style eruptions as well as of multiple eruptions closely spaced in time beyond the instrumental record is attained through the analysis of ice-core, tree-ring, and geologic records. Using these data in conjunction with climate proxy data indicates that multiple eruptions may force climate on decadal time scales, as appears to have occurred during the Little Ice Age (i.e., roughly AD 1400s–1800s. The Toba mega-eruption of ~75,000 years ago may have injected extremely large amounts of material into the stratosphere that remained aloft for up to about 7 years. This scenario could lead to the initiation of feedback mechanisms within the climate system, such as cooling of sea-surface temperatures. These interacting mechanisms following a mega-eruption may cool climate on centennial time scales.

  4. Historical Significant Volcanic Eruption Locations

    Data.gov (United States)

    Department of Homeland Security — A significant eruption is classified as one that meets at least one of the following criteriacaused fatalities, caused moderate damage (approximately $1 million or...

  5. 1例结肠癌患者应用西妥昔单抗后出现严重痤疮样皮疹的药学监护%Pharmaceutical Care for One Colon Cancer Patient with Severe Acneiform Rash after the Treatment of Cetuximab

    Institute of Scientific and Technical Information of China (English)

    孔树佳; 李砚文

    2015-01-01

    目的:探讨对结肠癌肝转移患者行西妥昔单抗联合氟尿嘧啶+亚叶酸钙+伊立替康+奥沙利铂( FOLFIRINOX)方案化疗后出现严重痤疮样皮疹的治疗实施药学监护的切入点。方法:临床药师参与该患者的临床药物治疗全过程,对患者用药后出现痤疮的原因及治疗用药进行分析,开展药学监护。结果:经分析,该患者应用西妥昔单抗联合FOLFIRINOX方案后出现痤疮样皮疹,为西妥昔单抗引起的不良反应。临床药师建议临床医师使用莫匹罗星及头孢克洛对症治疗,减轻了痤疮样皮疹对该患者继续应用西妥昔单抗治疗的影响,确保了患者能够接受足够疗程的治疗,避免了病情延误。结论:临床药师深入临床开展药学监护,可协助临床医师安全、有效用药,避免或减少药品不良反应的发生。%OBJECTIVE:To probe into the entry point of pharmaceutical care for one colorectal liver metastases patient with severe acneiform rash after the treatment of cetuximab combined with chemotherapy FOLFIRINOX. METHODS:Clinical pharmacists participated in the whole course of the patient's therapeutic regimen,and analyzed the cause of acne and application of acne medication then provided pharmaceutical care for the patient.RESULTS:With the analysis of clinical pharmacists, acneiform rash was turned out to be the adverse reactions induced by cetuximab combined with chemotherapy FOLFIRINOX.The clinicians were advised to use mupirocin and cefaclor as expectant treatment,which released the effect of acneiform rash on the patients with continuously application of cetuximab treatment and ensured the patients could receive enough treatment course,avoid delay of the disease.CONCLUSIONS:The clinical pharmacists go into the clinic to develop pharmaceutical care can assist the clinicians with safety and effective medication,and avoid or reduce the incidence of adverse drug reactions.

  6. Premature dental eruption: report of case.

    LENUS (Irish Health Repository)

    McNamara, C M

    2011-08-05

    This case report reviews the variability of dental eruption and the possible sequelae. Dental eruption of the permanent teeth in cleft palate children may be variable, with delayed eruption the most common phenomenon. A case of premature dental eruption of a maxillary left first premolar is demonstrated, however, in a five-year-old male. This localized premature dental eruption anomaly was attributed to early extraction of the primary dentition, due to caries.

  7. Infrasound research of volcanic eruptions

    Science.gov (United States)

    Marchetti, Emanuele; Ripepe, Maurizio

    2016-04-01

    Volcanic eruptions are efficient sources of infrasound produced by the rapid perturbation of the atmosphere by the explosive source. Being able to propagate up to large distances from the source, infrasonic waves from major (VEI 4 or larger) volcanic eruptions have been recorded for many decades with analogue micro-barometers at large regional distances. In late 1980s, near-field observations became progressively more common and started to have direct impact on the understanding and modeling of explosive source dynamics, to eventually play a primary role in volcano research. Nowadays, infrasound observation from a large variety of volcanic eruptions, spanning from VEI 0 to VEI 5 events, has shown a dramatic variability in terms of signature, excess pressure and frequency content of radiated infrasound and has been used to infer complex eruptive source mechanisms for the different kinds of events. Improved processing capability and sensors has allowed unprecedented precise locations of the explosive source and is progressively increasing the possibility to monitor volcanoes from distant records. Very broadband infrasound observations is also showing the relation between volcanic eruptions and the atmosphere, with the eruptive mass injection in the atmosphere triggering acoustic-gravity waves which eventually might control the ash dispersal and fallout.

  8. Eruptions from the Sun

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    The Sun often exhibits outbursts, launching material from its surface in powerful releases of energy. Recent analysis of such an outburst captured on video by several Sun-monitoring spacecraft may help us understand the mechanisms that launch these eruptions.Many OutburstsSolar jets are elongated, transient structures that are thought to regularly release magnetic energy from the Sun, contributing to coronal heating and solar wind acceleration. Coronal mass ejections (CMEs), on the other hand, are enormous blob-like explosions, violently ejecting energy and mass from the Sun at incredible speeds.But could these two types of events actually be related? According to a team of scientists at the University of Science and Technology of China, they may well be. The team, led by Jiajia Liu, has analyzed observations of a coronal jet that they believe prompted the launch of a powerful CME.Observing an ExplosionGif of a movie of the CME, taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly at a wavelength of 304. The original movie can be found in the article. [Liu et al.]An army of spacecraft was on hand to witness the event on 15 Jan 2013 including the Solar Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), and the Solar Terrestrial Relations Observatory (STEREO). The instruments on board these observatories captured the drama on the northern limb of the Sun as, at 19:32 UT, a coronal jet formed. Just eight minutes later, a powerful CME was released from the same active region.The fact that the jet and CME occurred in the same place at roughly the same time suggests theyre related. But did the initial motions of the CME blob trigger the jet? Or did the jet trigger the CME?Tying It All TogetherIn a recently published study, Liu and collaborators analyzed the multi-wavelength observations of this event to find the heights and positions of the jet and CME. From this analysis, they determined that the coronal jet triggered the release

  9. Dental eruption in afrotherian mammals

    Directory of Open Access Journals (Sweden)

    Lehmann Thomas

    2008-03-01

    Full Text Available Abstract Background Afrotheria comprises a newly recognized clade of mammals with strong molecular evidence for its monophyly. In contrast, morphological data uniting its diverse constituents, including elephants, sea cows, hyraxes, aardvarks, sengis, tenrecs and golden moles, have been difficult to identify. Here, we suggest relatively late eruption of the permanent dentition as a shared characteristic of afrotherian mammals. This characteristic and other features (such as vertebral anomalies and testicondy recall the phenotype of a human genetic pathology (cleidocranial dysplasia, correlations with which have not been explored previously in the context of character evolution within the recently established phylogeny of living mammalian clades. Results Although data on the absolute timing of eruption in sengis, golden moles and tenrecs are still unknown, craniometric comparisons for ontogenetic series of these taxa show that considerable skull growth takes place prior to the complete eruption of the permanent cheek teeth. Specimens showing less than half (sengis, golden moles or two-thirds (tenrecs, hyraxes of their permanent cheek teeth reach or exceed the median jaw length of conspecifics with a complete dentition. With few exceptions, afrotherians are closer to median adult jaw length with fewer erupted, permanent cheek teeth than comparable stages of non-afrotherians. Manatees (but not dugongs, elephants and hyraxes with known age data show eruption of permanent teeth late in ontogeny relative to other mammals. While the occurrence of delayed eruption, vertebral anomalies and other potential afrotherian synapomorphies resemble some symptoms of a human genetic pathology, these characteristics do not appear to covary significantly among mammalian clades. Conclusion Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption

  10. Bayesian analysis of volcanic eruptions

    Science.gov (United States)

    Ho, Chih-Hsiang

    1990-10-01

    The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.

  11. Featured Image: Solar Prominence Eruptions

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    In these images from the Solar Dynamics Observatorys AIA instrument (click for the full resolution!), two solar prominence eruptions (one from June 2011 and one from August 2012) are shown in pre- and post-eruption states. The images at the top are taken in the Fe XII 193 bandpass and the images at the bottom are taken in the He II 304 bandpass. When a team of scientists searched through seven years of solar images taken by the STEREO (Solar Terrestrial Relations Observatory) spacecraft, these two eruptions were found to extend all the way out to a distance of 1 AU. They were the only two examples of clear, bright, and compact prominence eruptions found to do so. The scientists, led by Brian Wood (Naval Research Laboratory), used these observations to reconstruct the motion of the eruption and model how prominences expand as they travel away from the Sun. Theimage to the rightshowsa STEREO observation compared to the teams 3D model of theprominences shape and expansion. To learn more about theresults from this study, check out the paper below.CitationBrian E. Wood et al 2016 ApJ 816 67. doi:10.3847/0004-637X/816/2/67

  12. Generalized Eruptive Syringoma: Case Report

    Directory of Open Access Journals (Sweden)

    Bengü Çevirgen Cemil

    2015-03-01

    Full Text Available Syringomas are benign adnexal tumors of eccrine sweat glands. Clinically, they present as small skin-colored or slightly pigmented papules. Depending of the location, eyelid syringoma is the most frequent and those localized on the other areas, such as the genital region, scalp, and acral areas. Onset of the syringomas is usually before or during the peripubertal period. From Kaposi’s description in the nineteenth century the eruptive form is very rare. Friedman and Butler reported a classification, based on the clinical features. These are a localized form, a familial form, a form associated with Down’s syndrome, and a generalized form that encompasses multiple and eruptive syringoma. The lesions are benign and may spontaneously resolve, or, more commonly, remain stable. Benign disease is generally treated cosmetically. In the present case, we have described a rare form of syringoma which is generalized eruptive syringoma.

  13. Erupted odontoma: a case report.

    Science.gov (United States)

    Raval, Nilesh; Mehta, Dhaval; Vachhrajani, Kanan; Nimavat, Abhishek

    2014-07-01

    Odontomas are nonaggressive, hamartomatous developmental malformations or lesions of odontogenic origin, which consist of enamel, dentin, cementum and pulpal tissue 'Erupted odontoma' is a term used to specifically denote odontomas, which are exposed into the oral cavity. These are rare entities with only 25-30 cases being reported so far in the dental literature. Here, we present a rare case of an erupted odontoma in an adolescent patient who came with a complaint of bad aesthetics due to the presence of multiple small teeth like structures in the upper front teeth region.

  14. Predicting Major Solar Eruptions

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    , whether an active region that produces a flare will also produce a CME. Bobra and Ilonidis then use a feature-selection algorithm to try to understand which features distinguish between flaring regions that dont produce a CME and those that do.Predictors of CMEsThe authors reach several interesting conclusions:Under the right conditions, their algorithm is able to predict whether an active region with a given set of features will produce a CME as well as a flare with a fairly high rate of success.None of the 18 features they tested are good predictors in isolation: its necessary to look at a combination of at least 6 features to have success predicting whether a flare will be accompanied by a CME.The features that are the best predictors are all intensive features ones that stay the same independent of the active regions size. Extensive features ones that change as the active region grows or shrinks are less successful predictors.Only the magnetic field properties of the photosphere were considered, so a logical next step is to extend this study to consider properties of the solar corona above active regions as well. In the meantime, these are interesting first results that may well help us better predict these major solar eruptions.BonusCheck out this video for a great description from NASA of the difference between solar flares and CMEs (as well as some awesome observations of both).CitationM. G. Bobra and S. Ilonidis 2016 ApJ 821 127. doi:10.3847/0004-637X/821/2/127

  15. An Unusual Case Report of Erupted Odontoma

    Directory of Open Access Journals (Sweden)

    Dhaval Mehta

    2013-01-01

    Full Text Available Odontomas are the most common of the odontogenic tumors of the jaws, which are benign, slow growing, and nonaggressive. They are usually asymptomatic and found in routine dental radiographic examination. Odontomas are usually associated with tooth eruption disturbances. Eruption of odontoma in oral cavity is rare entity. Here we report a case of an unusual erupted compound odontoma.

  16. The Longevity of Lava Dome Eruptions

    CERN Document Server

    Wolpert, Robert L; Calder, Eliza S

    2015-01-01

    Understanding the duration of past, on-going and future volcanic eruptions is an important scientific goal and a key societal need. We present a new methodology for forecasting the duration of on-going and future lava dome eruptions based on a database (DomeHaz) recently compiled by the authors. The database includes duration and composition for 177 such eruptions, with "eruption" defined as the period encompassing individual episodes of dome growth along with associated quiescent periods during which extrusion pauses but unrest continues. In a key finding we show that probability distributions for dome eruption durations are both heavy-tailed and composition-dependent. We construct Objective Bayes statistical models featuring heavy-tailed Generalized Pareto distributions with composition-specific parameters to make forecasts about the durations of new and on-going eruptions that depend on both eruption duration-to-date and composition. Our Bayesian predictive distributions reflect both uncertainty about mode...

  17. Nyiragongo Volcano before the Eruption

    Science.gov (United States)

    2002-01-01

    Nyiragongo is an active stratovolcano situated on the Eastern African Rift; it is part of Africa's Virunga Volcanic Chain. In a massive eruption that occurred on January 17, 2002, Nyiragongo sent a vast plume of smoke and ash skyward, and three swifly-moving rivers of lava streaming down its western and eastern flanks. Previous lava flows from Nyiragongo have been observed moving at speeds of up to 40 miles per hour (60 kph). The lava flows from the January 17 eruption destroyed more than 14 villages in the surrounding countryside, forcing tens of thousands to flee into the neighboring country of Rwanda. Within one day the lava ran to the city of Goma, situated on the northern shore of Lake Kivu about 12 miles (19 km) south of Nyiragongo. The lava cut a 200 foot (60 meter) wide swath right through Goma, setting off many fires, as it ran into Lake Kivu. Goma, the most heavily populated city in eastern Democratic Republic of Congo, is home to about 400,000 people. Most of these citizens were forced to flee, while many have begun to return to their homes only to find their homes destroyed. This true-color scene was captured by the Enhanced Thematic Mapper Plus (ETM+), flying aboard the Landsat 7 satellite, on December 11, 2001, just over a month before the most recent eruption. Nyiragongo's large crater is clearly visible in the image. As recently as June 1994, there was a large lava lake in the volcano's crater which had since solidified. The larger Nyamuragira Volcano is located roughly 13 miles (21 km) to the north of Nyiragongo. Nyamuragira last erupted in February and March 2001. That eruption was also marked by columns of erupted ash and long fluid lava flows, some of which are apparent in the image as dark greyish swaths radiating away from Nyamuragira. Both peaks are also notorious for releasing large amounts of sulfur dioxide, which presents another health hazard to people and animals living in close proximity. Image by Robert Simmon, based on data supplied

  18. Fixed drug eruptions with modafinil

    OpenAIRE

    Loknath Ghoshal; Mausumi Sinha

    2015-01-01

    Modafinil is a psychostimulant drug, which has been approved by the US Food and Drug Administration for the treatment of narcolepsy associated excessive daytime sleepiness, sleep disorder related to shift work, and obstructive sleep apnea syndrome. However, presently it is being used as a lifestyle medicine; in India, it has been misused as an "over the counter" drug. Modafinil is known to have several cutaneous side effects. Fixed drug eruption (FDE) is a distinctive drug induced reaction pa...

  19. Eruption patterns of parasitic volcanoes

    OpenAIRE

    Izumi Yokoyama

    2015-01-01

    Eruption patterns of parasitic volcanoes are discussed in order to study their correlation to the activities of their parental polygenetic volcanoes. The distribution density of parasitic vents on polygenetic volcanoes is diversified, probably corresponding to the age and structure of parental volcanoes. Describing existing parasitic cones contextually in relation to parental volcanoes is as indispensable as collecting observational data of their actual formations. In the present paper, spati...

  20. Medical effects of volcanic eruptions

    Science.gov (United States)

    Baxter, Peter J.

    1990-09-01

    Excluding famine and tsunamis, most deaths in volcanic eruptions have been from pyroclastic flows and surges (nuées ardentes) and wet debris flows (lahars). Information on the causes of death and injury in eruptions is sparse but the available literature is summarised for the benefit of volcanologists and emergency planners. In nuées, thermal injury may be at least as important as asphyxia in causing immediate deaths. The high temperature of the gases and entrained particles readily causes severe burns to the skin and the air passages and the presence of both types of injury in an individual may combine to increase the delayed mortality risk from respiratory complications or from infection of burns. Trauma from missiles or body displacement is also common, but the role of asphyxiant or irritant gases, and steam, remains unclear. The ratio of dead: injured is much higher than in other natural disasters. At the periphery of a nuée being protected inside buildings which remain intact appears to greatly increase the chances of survival. In lahars, infected wounds and crush injury are the main delayed causes of death, and the scope for preventive measures, other than evacuation, is small. The evidence from Mount St. Helens, 1980, and other major eruptions indicates that, although mortality is high within the main zone of devastation and in the open, emergency planning should concentrate on the periphery of a nuée where preventive measures are feasible and could save many lives in densely populated areas.

  1. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  2. An ergodic approach to eruption hazard scaling

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    The complexity and indeterminacy of volcanic processes demand the use of statistical methods to analyze the expectations of the occurrence and size of future eruptions. The probability of a volcano producing potentially destructive eruptions in a given time interval may be estimated analyzing the sequence of past eruptions assuming a physically plausible process. Since the threat posed by eruptions depends on their mass or energy release (magnitude) and on their emission rate (intensity), the Volcanic Explosivity Index is a suitable measure to quantify the eruptive events, particularly considering that the largest available global catalogues use that measure. The definition of volcanic hazard is thus posed here in terms of the expected annual release of energy by eruptions in each VEI category. This concept is based on the ergodic property of a large set of volcanoes to release about the same amount of energy in each VEI category over a sufficiently large time interval. This property is however constrained to the VEI range of eruptions that constitute complete catalogues (VEI >2) in the lower end, and to the extreme eruptions that may destroy or significantly alter a volcanic system, such as the large caldera-forming eruptions (VEI < 7). In such conditions, a simple power law for eruptions at the global level relating the global rate of energy release to the eruption magnitude has been proposed as a statistical basis for eruptive event model development. Following the above mentioned arguments, we assume that a similar scaling law rules the annual rate at which energy is released by eruptions at individual volcanoes as log(EmRm)=bM+a, where Em is the energy released by eruptions in the VEI magnitude class M, and Rm is the occurrence rate of such eruptions over times ranges in which catalogues may be considered complete. The parameters b and a depend on the eruptive history of individual volcanoes, the former determining the preferred mode of the volcano to release

  3. Forces in Erupting Flux Ropes: CMEs and Failed Eruptions

    Science.gov (United States)

    Chen, James

    2016-05-01

    A range of dynamical behaviors that can be exhibited by a quasi-statically evolving flux rope is studied. Starting with a CME-like flux rope in equilibrium balanced by the ambient coronal pressure (non-force-free) and an overlying coronal magnetic field (Bc), the poloidal flux is slowly increased, on a timescale much longer than the eruptive timescale of several to tens of minutes. In this configuration, the overlying field Bc provides an external downward restraining force, constituting an effective potential barrier. Slowly increasing poloidal flux causes the flux rope to gradually rise, following a sequence of quasi-static equilibria. As the apex of the flux rope rises past a critical height Z*, slightly higher than the peak of the potential barrier Bc(Z), it expands on a faster, dynamical (Alfvenic) timescale determined by the magnetic field and geometry of the flux rope. The expanding flux rope may reach a new equilibrium at height Z1. Observationally, this behavior would be recognized as a ``failed eruption.'' The new equilibrium flux rope is established if the magnetic tension force due to the toroidal magnetic field component Bt can balance the outward hoop force due to the poloidal component Bp. The flux rope may also expand without reaching a new equilibrium, provided a sufficiennt amount of poloidal flux is injected on a dynamical timescale so that the tension force cannot balance the hoop force. This scenario would result in a CME eruption. The influence of the poloidal flux injection, the Bc(Z) profile, and boundary conditions on the quantitative balance of the forces in an expanding flux rope is elucidated. Potentially observable consequences of the difference scenarios/models are discussed.Work supported by the Naval Research Laboratory Base Research Program

  4. An ergodic approach to eruption hazard scaling

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    The complexity and indeterminacy of volcanic processes demand the use of statistical methods to analyze the expectations of the occurrence and size of future eruptions. The probability of a volcano producing potentially destructive eruptions in a given time interval may be estimated analyzing the sequence of past eruptions assuming a physically plausible process. Since the threat posed by eruptions depends on their mass or energy release (magnitude) and on their emission rate (intensity), the Volcanic Explosivity Index is a suitable measure to quantify the eruptive events, particularly considering that the largest available global catalogues use that measure. The definition of volcanic hazard is thus posed here in terms of the expected annual release of energy by eruptions in each VEI category. This concept is based on the ergodic property of a large set of volcanoes to release about the same amount of energy in each VEI category over a sufficiently large time interval. This property is however constrained to the VEI range of eruptions that constitute complete catalogues (VEI >2) in the lower end, and to the extreme eruptions that may destroy or significantly alter a volcanic system, such as the large caldera-forming eruptions (VEI Popocatepetl are presented to illustrate the method, aimed to provide an objective criterion to assess the relative hazard posed by different volcanoes.

  5. Excitation of atmospheric oscillations by volcanic eruptions

    OpenAIRE

    Kanamori, Hiroo; Mori, Jim; Harkrider, David G.

    1994-01-01

    We investigated the mechanism of atmospheric oscillations with periods of about 300 s which were observed for the 1991 Pinatubo and the 1982 El Chichón eruptions. Two distinct spectral peaks, at T = 270 and 230 s for the Pinatubo eruption and at T = 195 and 266 s for the El Chichón eruptions, have been reported. We found similar oscillations for the 1980 Mount St. Helens and the 1883 Krakatoa eruptions. To explain these observations, we investigated excitation problems for two types of ideali...

  6. Why do Martian Magmas erupt?

    Science.gov (United States)

    Balta, J. B.; McSween, H. Y.

    2011-12-01

    Eruption of silicate lava, whether on Earth or another planet, requires that at some depth the melt has lower density than the surrounding rocks. As the densities of silicate liquids change during crystallization, whether a particular silicate liquid will erupt or be trapped at a level of neutral buoyancy is a complex yet fundamental issue for planetary dynamics. In general, 3 factors drive surface eruptions: inherent buoyancy relative to mantle phases, compositional evolution, and volatile contents. These factors manifest on Earth as terrestrial basalts commonly have compositions close to a density minimum [1]. Recent work has produced estimates of Martian parental magma compositions [2-5] based on shergottite meteorites and from Gusev crater. Using the MELTS algorithm [6] and other density calibrations, we simulated evolution of these liquids, focusing on density changes. For much of the crystallization path, density is controlled by FeO. All of the liquids begin with ρ ~ 2.8 g/cc at 1 bar, and the evolution of liquid density is controlled by the liquidus phases. At low pressures, olivine is the liquidus phase for each melt, and as FeO is not incompatible in olivine, olivine crystallization decreases liquid density, increasing buoyancy with crystallization. However, FeO is incompatible in pyroxene, and thus liquids crystallizing pyroxene become denser and less buoyant with crystallization, producing liquids with densities up to and above 3.0 g/cc. As the olivine-pyroxene saturation relationship is affected by pressure and chemistry, the identity of the liquidus phase and density evolution will vary between magmas. Without spreading centers, Mars has no location where the mantle approaches the surface, and it is likely that any magma which is denser than the crust will stall below or within that crust. The crystallization path of a liquid is a function of pressure, with pyroxene crystallizing first at P > 10 kbar (~80 km depth), close to the base of the Martian

  7. Variations in eruption style during the 1931A.D. eruption of Aniakchak volcano, Alaska

    Science.gov (United States)

    Nicholson, R.S.; Gardner, J.E.; Neal, C.A.

    2011-01-01

    The 1931A.D. eruption of Aniakchak volcano, Alaska, progressed from subplinian to effusive eruptive style and from trachydacite to basaltic andesite composition from multiple vent locations. Eyewitness accounts and new studies of deposit stratigraphy provide a combined narrative of eruptive events. Additional field, compositional, grain size, componentry, density, and grain morphology data document the influences on changing eruptive style as the eruption progressed. The eruption began on 1 May 1931A.D. when a large subplinian eruption column produced vesicular juvenile-rich tephra. Subsequent activity was more intermittent, as magma interacted with groundwater and phreatomagmatic ash and lithic-rich tephra was dispersed up to 600km downwind. Final erupted products were more mafic in composition and the eruption became more strombolian in style. Stratigraphic evidence suggests that two trachydacitic lava flows were erupted from separate but adjacent vents before the phreatomagmatic phase concluded and that basaltic andesite lava from a third vent began to effuse near the end of explosive activity. The estimated total bulk volume of the eruption is 0.9km3, which corresponds to approximately 0.3km3 of magma. Eruption style changes are interpreted as follows: (1) a decrease in magma supply rate caused the change from subplinian to phreatomagmatic eruption; (2) a subsequent change in magma composition caused the transition from phreatomagmatic to strombolian eruption style. Additionally, the explosion and effusion of a similar magma composition from three separate vents indicates how the pre-existing caldera structure controlled the pathway of shallow magma ascent, thus influencing eruption style. ?? 2011 Elsevier B.V..

  8. Variations in eruption style during the 1931 A.D. eruption of Aniakchak volcano, Alaska

    Science.gov (United States)

    Nicholson, Robert S.; Gardner, James E.; Neal, Christina A.

    2011-01-01

    The 1931 A.D. eruption of Aniakchak volcano, Alaska, progressed from subplinian to effusive eruptive style and from trachydacite to basaltic andesite composition from multiple vent locations. Eyewitness accounts and new studies of deposit stratigraphy provide a combined narrative of eruptive events. Additional field, compositional, grain size, componentry, density, and grain morphology data document the influences on changing eruptive style as the eruption progressed. The eruption began on 1 May 1931 A.D. when a large subplinian eruption column produced vesicular juvenile-rich tephra. Subsequent activity was more intermittent, as magma interacted with groundwater and phreatomagmatic ash and lithic-rich tephra was dispersed up to 600 km downwind. Final erupted products were more mafic in composition and the eruption became more strombolian in style. Stratigraphic evidence suggests that two trachydacitic lava flows were erupted from separate but adjacent vents before the phreatomagmatic phase concluded and that basaltic andesite lava from a third vent began to effuse near the end of explosive activity. The estimated total bulk volume of the eruption is 0.9 km3, which corresponds to approximately 0.3 km3 of magma. Eruption style changes are interpreted as follows: (1) a decrease in magma supply rate caused the change from subplinian to phreatomagmatic eruption; (2) a subsequent change in magma composition caused the transition from phreatomagmatic to strombolian eruption style. Additionally, the explosion and effusion of a similar magma composition from three separate vents indicates how the pre-existing caldera structure controlled the pathway of shallow magma ascent, thus influencing eruption style.

  9. Fixed drug eruptions with modafinil

    Directory of Open Access Journals (Sweden)

    Loknath Ghoshal

    2015-01-01

    Full Text Available Modafinil is a psychostimulant drug, which has been approved by the US Food and Drug Administration for the treatment of narcolepsy associated excessive daytime sleepiness, sleep disorder related to shift work, and obstructive sleep apnea syndrome. However, presently it is being used as a lifestyle medicine; in India, it has been misused as an "over the counter" drug. Modafinil is known to have several cutaneous side effects. Fixed drug eruption (FDE is a distinctive drug induced reaction pattern characterized by recurrence of eruption at the same site of the skin or mucous membrane with repeated systemic administration. Only two case reports exist in the literature describing modafinil induced FDE until date. Here, we report two similar cases. The increasing use of this class of drug amongst the medical personnel might be posing a threat to the proper use and encouraging subsequent abuse. There might be a considerable population using these drugs unaware of the possible adverse effects. Authorities should be more alert regarding the sale and distribution of such medicines.

  10. Jupiter Eruptions Captured in Infrared

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers. This infrared image shows two bright plume eruptions obtained by the NASA Infrared Telescope Facility on April 5, 2007. Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena. According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vigorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  11. Global Significant Volcanic Eruptions Database, 4360 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Volcanic Eruptions Database is a global listing of over 600 eruptions from 4360 BC to the present. A significant eruption is classified as one that...

  12. Chronology of Postglacial Eruptive Activity and Calculation of Eruption Probabilities for Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Nathenson, Manuel; Donnelly-Nolan, Julie M.; Champion, Duane E.; Lowenstern, Jacob B.

    2007-01-01

    Medicine Lake volcano has had 4 eruptive episodes in its postglacial history (since 13,000 years ago) comprising 16 eruptions. Time intervals between events within the episodes are relatively short, whereas time intervals between the episodes are much longer. An updated radiocarbon chronology for these eruptions is presented that uses paleomagnetic data to constrain the choice of calibrated ages. This chronology is used with exponential, Weibull, and mixed-exponential probability distributions to model the data for time intervals between eruptions. The mixed exponential distribution is the best match to the data and provides estimates for the conditional probability of a future eruption given the time since the last eruption. The probability of an eruption at Medicine Lake volcano in the next year from today is 0.00028.

  13. Forecasting eruptions using pre-eruptive seismic patterns at Sinabung Volcano, Indonesia

    Science.gov (United States)

    McCausland, W. A.; White, R. A.; Hendrasto, M.; Gunawan, H.; Indrastuti, N.; Triastuti, H.; Suparman, Y.; Putra, A.

    2015-12-01

    Forecasting the size, timing and style of volcanic eruptions is of primary interest to observatories and civil authorities world-wide, yet most observatories only have access to long-term data at a very limited number of volcanoes under their jurisdiction. When extensive long-term data sets are available to responsible agencies, volcanic eruptive size, timing and style can usually be successfully forecast using current monitoring data and knowledge of precursory eruptive patterns, enabling the communication of timely forecasts to civil authorities. Experienced agencies, such as Indonesia's Center for Volcanology and Geologic Hazards Mitigation and the USAID-USGS Volcano Disaster Assistance Program, utilize extensive collective experiences with multiple monitoring streams over multiple eruption cycles and across volcano types to successfully forecast eruption size, style and onset, as well as changes in eruptive style and size within ongoing eruptions. The longest-term real-time monitoring parameter commonly available at volcanoes worldwide is seismic data. Seismic data is a direct measure of rate-dependent strain changes in the magmatic system from the deep magmatic input to shallow eruptive processes. Patterns of pre-eruptive earthquakes coupled with other available monitoring data and conceptual models of magma ascent enable short-term forecasting of eruption size, style, and onset. First order event locations, characterization of background seismicity, and changes in earthquake types and energy release are most important to successful eruption forecasting. This study demonstrates how this approach has been used to successfully forecast eruption onsets, changes in eruptive style, and to change alert levels and extend or contract evacuation zones during the ongoing eruption of Sinabung Volcano, Indonesia.

  14. Mechanism of Human Tooth Eruption: Review Article Including a New Theory for Future Studies on the Eruption Process

    OpenAIRE

    Inger Kjær

    2014-01-01

    Human eruption is a unique developmental process in the organism. The aetiology or the mechanism behind eruption has never been fully understood and the scientific literature in the field is extremely sparse. Human and animal tissues provide different possibilities for eruption analyses, briefly discussed in the introduction. Human studies, mainly clinical and radiological, have focused on normal eruption and gender differences. Why a tooth begins eruption and what enables it to move eruptive...

  15. Explosive Super-eruptions: Problems and Prejudices

    Science.gov (United States)

    Self, S.

    2010-12-01

    A super-eruption is defined as one with a magma yield > 10^15 kg (magnitude (M) 8). The term has mainly been applied to large-scale, caldera and ignimbrite-forming explosive eruptions, but it can be applied to all eruptions that released > 10^15 kg of magma. For effusive volcanism, evidence suggests that individual eruptions of this size ( > ~ 370 km^3 of typical basalt or > 450 km^3 of rhyolite flood lava) arise only during periods of LIP formation. The super-eruption concept raises interesting questions about genesis and storage of magmas that feed these vast events. Deposits of major explosive eruptions are Plinian fallout, ignimbrite sheets, and co-ignimbrite ash fall. Based on earlier suggestions and evidence, widespread outflow ignimbrite (O), co-ignimbrite ash (A), and inter-caldera ignimbrite (I) are all major components of the total super-eruption deposit and may tend towards being subequal. In super-eruption deposits, the reported volume of vent-derived Plinian eruption column fallout is often a minor component of the total volume, yet in several cases (Oruanui, Taupo, 26 ka ago, M 8.1; Bishop Tuff, 760 ka, M 8.2; Bandelier (Otowi) Tuff, 1.6 Ma, M8) it is now recognized that vent-derived columns persisted for most of the eruption. Thus, distally, the ash-fall derived from co-ignimbrite ash clouds may be mixed with contemporaneous fallout from a vertical column. Some major ignimbrites have no reported associated Plinian deposit; the huge Young Toba Tuff (YTT, 74 ka, M 8.8) is a significant example. However, the very widespread Toba ash-fall deposit constitutes ~ 40 % of the total mass of magma erupted and is presumed to be co-ignimbrite. Timing of the onset of column collapse probably controls whether a recognizable Plinian deposit is laid down. All super-eruptions probably produce extensive fallout deposits, and this is generally of vent-derived and pyroclastic-flow-derived origin. Establishing the relationships between large-scale ignimbrites and their

  16. Generalized eruptive histiocytosis mimicking leprosy

    Directory of Open Access Journals (Sweden)

    B C Sharath Kumar

    2011-01-01

    Full Text Available Generalized eruptive histiocytosis (GEH is a rare cutaneous histiocytosis that mainly affects adults and presents with multiple symmetric papules on face, trunk, and proximal extremities. GEH is included in type IIa (histiocytes involving cells of dermal dendrocyte lineage of histiocytic disorders. Clinical and pathological correlations are required for differentiating GEH from other histiocytic disorders and from lepromatous leprosy which clinically mimic GEH and is prevalent in India. We report a case of a middle-aged woman who presented with generalized asymptomatic papules and nodules and was treated for leprosy but was finally diagnosed to have GEH after clinical, histopathological, and immunohistochemical correlation. Furthermore, the newer lesions also showed features of progressive nodular histiocytosis.

  17. Generalized eruptive histiocytosis mimicking leprosy.

    Science.gov (United States)

    Sharath Kumar, B C; Nandini, A S; Niveditha, S R; Gopal, M G

    2011-01-01

    Generalized eruptive histiocytosis (GEH) is a rare cutaneous histiocytosis that mainly affects adults and presents with multiple symmetric papules on face, trunk, and proximal extremities. GEH is included in type IIa (histiocytes involving cells of dermal dendrocyte lineage) of histiocytic disorders. Clinical and pathological correlations are required for differentiating GEH from other histiocytic disorders and from lepromatous leprosy which clinically mimic GEH and is prevalent in India. We report a case of a middle-aged woman who presented with generalized asymptomatic papules and nodules and was treated for leprosy but was finally diagnosed to have GEH after clinical, histopathological, and immunohistochemical correlation. Furthermore, the newer lesions also showed features of progressive nodular histiocytosis.

  18. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  19. Thermal vesiculation during volcanic eruptions

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  20. Andesitic Plinian eruptions at Mt. Ruapehu: quantifying the uppermost limits of eruptive parameters

    Science.gov (United States)

    Pardo, Natalia; Cronin, Shane; Palmer, Alan; Procter, Jonathan; Smith, Ian

    2012-07-01

    New tephro-stratigraphic studies of the Tongariro Volcanic Centre (TgVC) on the North Island (New Zealand) allowed reconstruction of some of the largest, andesitic, explosive eruptions of Mt. Ruapehu. Large eruptions were common in the Late Pleistocene, before a transition to strombolian-vulcanian and phreatomagmatic eruptive styles that have predominated over the past 10,000 years. Considering this is the most active volcano in North Island of New Zealand and the uppermost hazard limits are unknown, we identified and mapped the pyroclastic deposits corresponding to the five largest eruptions since ~27 ka. The selected eruptive units are also characterised by distinctive lithofacies associations correlated to different behaviours of the eruptive column. In addition, we clarify the source of the ~10-9.7 ka Pahoka Tephra, identified by previous authors as the product of one of the largest eruptions of the TgVC. The most common explosive eruptions taking place between ~13.6 and ~10 ka cal years BP involved strongly oscillating, partially collapsing eruptive columns up to 37 km high, at mass discharge rates up to 6 × 108 kg/s and magnitudes of 4.9, ejecting minimum estimated volumes of 0.6 km3. Our results indicate that this volcano (as well as the neighbouring andesitic Mt. Tongariro) can generate Plinian eruptions similar in magnitude to the Chaitén 2008 and Askja 1875 events. Such eruptions would mainly produce pyroclastic fallout covering a minimum area of 1,700 km2 ESE of the volcano, where important touristic, agricultural and military activities are based. As for the 1995/1996 eruption, our field data indicate that complex wind patterns were critical in controlling the dispersion of the eruptive clouds, developing sheared, commonly bilobate plumes.

  1. Solar Eruptions Initiated in Sigmoidal Active Regions

    Science.gov (United States)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  2. Forecasting volcanic eruptions: the narrow margin between eruption and intrusion

    Science.gov (United States)

    Steele, Alexander; Kilburn, Christopher; Wall, Richard; Charlton, Danielle

    2016-04-01

    Volcano-tectonic (VT) seismicity is one of the primary geophysical signals for monitoring volcanic unrest. It measures the brittle response of the crust to changes in stress and provides a natural proxy for gauging the stability of a pressurizing body of magma. Here we apply a new model of crustal extension to observations from the 2015 unrest of Cotopaxi, in Ecuador. The model agrees well with field data and is consistent with accelerating unrest during the pressurization and rupture of a vertically-extended magma source within the volcanic edifice. At andesitic-dacitic stratovolcanoes in subduction zones, unrest after long repose is often characterised by increases in VT event rate that change from an exponential to hyperbolic trend with time. This sequence was observed when renewed unrest was detected in April 2015 at Cotopaxi, following at least 73 years of repose. After about 80 days of elevated seismicity at an approximately steady rate, the numbers of VT events increased exponentially with time for c. 80 days, before increasing for c. 15 days along a faster, hyperbolic trend. Both trends were characterised by the same value of 2 for the ratio of maximum applied stress SF to tensile strength of the crust σT, consistent with the pressurization of an approximately vertical, cylindrical magma body. The hyperbolic trend indicated a potential rupture on 25 September. Rupture appears to have occurred on 21-22 September, when the VT rate rapidly decreased. However, no major eruption accompanied the change, suggesting that a near-surface intrusion occurred instead. Although the quantitative VT trends were consistent with the rupture of a magmatic body, they could not on their own distinguish between an eruptive or intrusive outcome. An outstanding goal remains to identify additional precursory characteristics for quantifying the probability that magma will reach the surface after escaping from a ruptured parent body. Data for this analysis were kindly made available

  3. Toward Forecasting Volcanic Eruptions using Seismic Noise

    CERN Document Server

    Brenguier, Florent; Campillo, Michel; Ferrazzini, Valerie; Duputel, Zacharie; Coutant, Olivier; Nercessian, Alexandre

    2007-01-01

    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.

  4. [Lichenoid drug eruption induced by olanzapine].

    Science.gov (United States)

    Fernández-Torres, R; Almagro, M; del Pozo, J; Robles, O; Martínez-González, C; Mazaira, M; Fonseca, E

    2008-04-01

    Lichenoid drug eruptions can mimic idiopathic lichen planus and other dermatoses. The list of drugs that can cause them is long and growing steadily. Although cutaneous side effects of antipsychotics are rare, various cutaneous manifestations have been reported in association with olanzapine. We present the case of a patient who developed an atypical lichenoid eruption due to olanzapine. A review of the literature in Medline from 1951 to 2007 and in the Indice Médico Español (Spanish Medical Index) revealed no previous cases of lichenoid eruptions associated with the use of this drug. PMID:18358199

  5. Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards

    OpenAIRE

    Lavallée, Yan; Wadsworth, Fabian B.; Vasseur, Jérémie; Russell, James K.; Andrews, Graham D. M.; Hess, Kai-Uwe; von Aulock, Felix W.; Kendrick, Jackie E.; Tuffen, Hugh; Biggin, Andrew J.; Dingwell, Donald B

    2015-01-01

    Super-eruptions generating hundreds of cubic kilometers of pyroclastic density currents are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge environmental impact inferred for this type of eruption, little is yet known about the timescales of deposition and post-depositional flow. Without these timescales, the critical question of the duration of any environmental impact, and the ensuing gravity of its effects for the Earth system, eludes us. The eruption and weld...

  6. A Nanolite Record of Eruption Style Transition

    Science.gov (United States)

    Mujin, M.; Nakamura, M.

    2014-12-01

    Microlites in pyroclasts have been intensively studied to understand magma ascent processes. However, microlites do not record the explosive-effusive transitions in sub-Plinian eruptions when such transitions are governed by the shallow level degassing rather than by the magma ascent rate. To overcome this limitation, we studied the "nanolites" in the quenched products of the 2011 Shinmoedake, Kirishima Volcanic Group, Kyusyu Japan1. Nanolites are the nanometer-scale components of the groundmass minerals and exhibit a steeper slope of crystal size distribution than that of the microlites2. In the 2011 Shinmoedake eruption, the style of activity had undergone transformations from sub-Plinian eruption to Vulcanian explosion and intermittent effusion of lava3. We found that, although the products formed by different eruptive activities have similar microlite characteristics, such products can be distinguished clearly by their mineral assemblage of nanolites. The samples of pumices of sub-Plinian eruptions and Vulcanian explosions and the dense juvenile fragments of lava (in descending order of explosivity) contained, respectively, nanolites of low-Ca pyroxene, low-Ca pyroxene + plagioclase, and low-Ca pyroxene + plagioclase + Fe-Ti oxides. Nanolites are assumed to crystallize when undercooling of the magma due primarily to dehydration increases rapidly near the surface. The water contents of the interstitial glass indicate that the quenched depths did not differ greatly between eruption styles. Hence, the different nanolite assemblages of each eruption style are assumed to have resulted from differences in magma residence time near the surface. Thus, we propose that nanolites in pyroclasts have the potential to indicate the physicochemical conditions of magma at the transition points of eruption styles. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614 2) Sharp et al., 1996, Bull. Volcanol, v.57, p.631-640 3) Miyabuchi et al, 2013, J. Volcanol

  7. Eruption disturbances in Japanese children and adolescents

    OpenAIRE

    Noda, Tadashi; Takagi, Masamichi; Hayashi-Sakai, Sachiko; Taguchi, Yo

    2006-01-01

    The aims of this report were to determine the nature of eruption disturbances and to establish the pattern of managment tor these teeth in a group of Japanese children and adolescents. Data were collected trom the clinical records of patients in the Pediatric Dental Clinic of Niigata University Medical and Dental Hospital. There were 700 patients (364 males and 336 femalse) and 748 teeth (26 primary teeth and 722 permanent teeth) who were treated for eruption disturbances between 1979 and 200...

  8. Azithromycin induced bullous fixed drug eruption

    Science.gov (United States)

    Das, Anupam; Sancheti, Karan; Podder, Indrashis; Das, Nilay Kanti

    2016-01-01

    Fixed drug eruption (FDE) is a common type of drug eruption seen in skin clinics. It is characterized by solitary or multiple, round to oval erythematous patches with dusky red centers, some of which may progress to bulla formation. Bullous FDE may be caused by a number of drugs. We hereby describe a case of azithromycin-induced bullous FDE; to the best of our knowledge, this is the first such case being reported. PMID:26997729

  9. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  10. Flux emergence and coronal eruption

    CERN Document Server

    Archontis, V; 10.1051/0004-6361/200913502

    2010-01-01

    Our aim is to study the photospheric flux distribution of a twisted flux tube that emerges from the solar interior. We also report on the eruption of a new flux rope when the emerging tube rises into a pre-existing magnetic field in the corona. To study the evolution, we use 3D numerical simulations by solving the time-dependent and resistive MHD equations. We qualitatively compare our numerical results with MDI magnetograms of emerging flux at the solar surface. We find that the photospheric magnetic flux distribution consists of two regions of opposite polarities and elongated magnetic tails on the two sides of the polarity inversion line (PIL), depending on the azimuthal nature of the emerging field lines and the initial field strength of the rising tube. Their shape is progressively deformed due to plasma motions towards the PIL. Our results are in qualitative agreement with observational studies of magnetic flux emergence in active regions (ARs). Moreover, if the initial twist of the emerging tube is sma...

  11. Gas-driven eruptions at Mount Ruapehu, New Zealand: towards a coherent model of eruption

    Science.gov (United States)

    Kilgour, G. N.; Mader, H. M.; Mangan, M.; Blundy, J.

    2010-12-01

    Mt. Ruapehu is an andesitic cone volcano situated at the southern end of the Taupo Volcanic Zone. The summit plateau at Ruapehu consists of three craters (South, Central and North). Historical activity has consisted of frequent small phreatic and phreatomagmatic eruptions from South Crater. The active vents of South Crater are submerged beneath Crater Lake - a warm, acidic lake. The most recent eruption at Ruapehu occurred on 25th September, 2007 that generated a moderate steam column to about 4.5 km above Crater Lake, and a directed ballistic and surge deposit of coarse blocks and ash to the north of Crater Lake. It also initiated lahars in two catchments. The eruption occurred during the ski season and it resulted in the temporary closure of the three ski fields. Seismicity for the main eruption lasted for about 4 minutes and included an explosive phase which lasted for less than 1 minute and a post-explosion phase which probably indicated resonance in the conduit together with signals generated from lahars and vent stabilisation. Preceding seismicity occurred ~ 10 min before the eruption. The 2007 eruption appears strikingly similar to phreatic/phreatomagmatic eruptions of 1969 and 1975. In those eruptions, limited precursory seismicity was recorded, the bulk of the erupted deposits were accidental lithics, including lake sediments and older lavas, and only a small amount of juvenile material was erupted (~ 5%). It is likely that all three eruptions were driven by magmatic gases, either stored and pressurised beneath a hydrothermal seal, or rapidly exsolved during a gas release event. This poster outlines the plan that we will use to model this common type of eruption at Ruapehu. We will analyse the volatile content of phenocryst-hosted melt inclusions to determine the degassing depth of historic eruptions. This will allow us to identify where the magmas have been or are degassing beneath Crater Lake. Analogue modelling of gas and fluid flow through a visco

  12. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  13. Reconstructing eruptive source parameters from tephra deposit: a numerical approach for medium-sized explosive eruptions

    CERN Document Server

    Spanu, A; Barsotti, S

    2015-01-01

    Since the seventies, several reconstruction techniques have been proposed, and are currently used, to extrapolate and quantify eruptive parameters from sampled deposit datasets. Discrete numbers of tephra ground loadings or stratigraphic records are usually processed to estimate source eruptive values. Reconstruction techniques like Pyle, Power law and Weibull are adopted as standard to quantify the erupted mass (or volume) whereas Voronoi for reconstructing the granulometry. Reconstructed values can be affected by large uncertainty due to complexities occurring within the atmospheric dispersion and deposition of volcanic particles. Here we want to quantify the sensitivity of reconstruction techniques, and to quantify how much estimated values of mass and grain size differ from emitted and deposited ones. We adopted a numerical approach simulating with a dispersal code a mild explosive event occurring at Mt. Etna, with eruptive parameters similar to those estimated for eruptions occurred in the last decade. T...

  14. Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io

    Science.gov (United States)

    Davies, A.G.; Keszthelyi, L.P.; Williams, D.A.; Phillips, C.B.; McEwen, A.S.; Lopes, R.M.C.; Smythe, W.D.; Kamp, L.W.; Soderblom, L.A.; Carlson, R.W.

    2001-01-01

    The Galileo spacecraft has been periodically monitoring volcanic activity on Io since June 1996, making it possible to chart the evolution of individual eruptions. We present results of coanalysis of Near-Infrared Mapping Spectrometer (NIMS) and solid-state imaging (SSI) data of eruptions at Pele and Pillan, especially from a particularly illuminating data set consisting of mutually constraining, near-simultaneous NIMS and SSI observations obtained during orbit C9 in June 1997. The observed thermal signature from each hot spot, and the way in which the thermal signature changes with time, tightly constrains the possible styles of eruption. Pele and Pillan have very different eruption styles. From September 1996 through May 1999, Pele demonstrates an almost constant total thermal output, with thermal emission spectra indicative of a long-lived, active lava lake. The NIMS Pillan data exhibit the thermal signature of a "Pillanian" eruption style, a large, vigorous eruption with associated open channel, or sheet flows, producing an extensive flow field by orbit C10 in September 1997. The high mass eruption rate, high liquidus temperature (at least 1870 K) eruption at Pillan is the best candidate so far for an active ultramafic (magnesium-rich, "komatiitic") flow on Io, a style of eruption never before witnessed. The thermal output per unit area from Pillan is, however, consistent with the emplacement of large, open-channel flows. Magma temperature at Pele is ???1600 K. If the magma temperature is 1600 K, it suggests a komatiitic-basalt composition. The power output from Pele is indicative of a magma volumetric eruption rate of ???250 to 340 m3 s-1. Although the Pele lava lake is considerably larger than its terrestrial counterparts, the power and mass fluxes per unit area are similar to active terrestrial lava lakes. Copyright 2001 by the American Geophysical Union.

  15. Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption

    Science.gov (United States)

    Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan

    2016-04-01

    Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new pulse of deep magma. While erupted magma and high temperature gases were mostly provided by the shallow part of the system, distal sites and summit low temperature fumaroles recorded a deeper triggering mechanism.

  16. Coronal bright points associated with minifilament eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Yang, Bo; Yang, Dan, E-mail: hjcsolar@ynao.ac.cn [Also at Graduate School of Chinese Academy of Sciences, Beijing, China. (China)

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  17. Russian eruption warning systems for aviation

    Science.gov (United States)

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  18. Coronal bright points associated with minifilament eruptions

    International Nuclear Information System (INIS)

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 109 cm–3. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  19. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2011-12-01

    Full Text Available Simulations of tropical volcanic eruptions using a general circulation model with coupled aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface. This analysis is presented for eruptions with SO2 injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later a near-"super eruption". For each eruption magnitude, simulations are performed with eruptions at 15° N, at four equally spaced times of year. Sensitivity to eruption season of aerosol optical depth (AOD, clear-sky and all-sky shortwave (SW radiative flux is quantified by first integrating each field for four years after the eruption, then calculating for each cumulative field the absolute or percent difference between the maximum and minimum response from the four eruption seasons. Eruption season has a significant influence on AOD and clear-sky SW radiative flux anomalies for both eruption magnitudes. The sensitivity to eruption season for both fields is generally weak in the tropics, but increases in the mid- and high latitudes, reaching maximum values of ~75 %. Global mean AOD and clear-sky SW anomalies show sensitivity to eruption season on the order of 15–20 %, which results from differences in aerosol effective radius for the different eruption seasons. Smallest aerosol size and largest cumulative impact result from a January eruption for Pinatubo-magnitude eruption, and from a July eruption for the near-super eruption. In contrast to AOD and clear-sky SW anomalies, all-sky SW anomalies are found to be insensitive to season of eruption for the Pinatubo-magnitude eruption experiment, due to the reflection of solar radiation by clouds in the mid- to high latitudes. However, differences in all-sky SW anomalies between eruptions in different seasons are significant for the larger eruption magnitude, and the ~15 % sensitivity to

  20. Solar eruptions - soil radon - earthquakes

    International Nuclear Information System (INIS)

    For the first time a new natural phenomenon was established: a contrasting increase in the soil radon level under the influence of solar flares. Such an increase is one of geochemical indicators of earthquakes. Most researchers consider this a phenomenon of exclusively terrestrial processes. Investigations regarding the link of earthquakes to solar activity carried out during the last decade in different countries are based on the analysis of statistical data ΣΕ (t) and W (t). As established, the overall seismicity of the Earth and its separate regions depends of an 11-year long cycle of solar activity. Data provided in the paper based on experimental studies serve the first step on the way of experimental data on revealing cause-and-reason solar-terrestrials bonds in a series solar eruption-lithosphere radon-earthquakes. They need further collection of experimental data. For the first time, through radon constituent of terrestrial radiation objectification has been made of elementary lattice of the Hartmann's network contoured out by bio location method. As found out, radon concentration variations in Hartmann's network nodes determine the dynamics of solar-terrestrial relationships. Of the three types of rapidly running processes conditioned by solar-terrestrial bonds earthquakes are attributed to rapidly running destructive processes that occur in the most intense way at the juncture of tectonic massifs, along transformed and deep failures. The basic factors provoking the earthquakes are both magnetic-structural effects and a long-term (over 5 months) bombing of the surface of lithosphere by highly energetic particles of corpuscular solar flows, this being approved by photometry. As a result of solar flares that occurred from 29 October to 4 November 2003, a sharply contrasting increase in soil radon was established which is an earthquake indicator on the territory of Yerevan City. A month and a half later, earthquakes occurred in San-Francisco, Iran, Turkey

  1. Tranexamic acid-induced fixed drug eruption

    Directory of Open Access Journals (Sweden)

    Natsuko Matsumura

    2015-01-01

    Full Text Available A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary.

  2. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  3. CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Navin Chandra; Magara, Tetsuya [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Schmieder, Brigitte; Aulanier, Guillaume [LESIA, Observatoire de Paris, PSL Research University, CNRS Sarbonne Universités, Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Jansson, F-92195 Meudon (France); Guo, Yang, E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.

  4. Research oriented MSc course on solar eruptions

    Science.gov (United States)

    Vainio, Rami; Heber, Bernd; Agueda, Neus; Kilpua, Emilia; Isavnin, Alexey; Afanasiev, Alexandr; Ganse, Urs; Koskinen, Hannu E. J.

    2014-05-01

    Department of Physics, University of Helsinki, organized a five-credit-point Master-level course on "Solar Eruptions and Space Environment" in spring 2013. The course, attended by nine students, included twenty hours of introductory lectures on solar eruptive phenomena (focusing on energetic particle emissions) as well as experimental and theoretical methods to analyze them. In addition, the course contained ten hours of exercise sessions, where solutions on short calculation exercises were presented and discussed. The main learning method on the course was, however, a coordinated scientific analysis of five solar eruptions observed by the STEREO spacecraft in 2010-2011. The students were grouped in four teams to study the solar eruptive events from four different view points: (1) Analysis of morphology and kinematics of coronal mass ejections, (2) analysis of EUV imaging observations of coronal wave-like transients, (3) solar and interplanetary magnetic field conditions during the eruptions, and (4) emission and transport modelling of near-relativistic electron events associated with the eruptions. Each group of students was assigned a scientist to oversee their work. The students reported weekly on their progress and gave a final presentation (of 30 minutes) in a seminar session at the end of the seven-week course. Grading of the course was based on the home exercises and final presentations. Students were also asked to give anonymous feedback on the course. Learning results on the course were very encouraging, showing that research oriented courses with practical research exercises on specific topics give students deeper knowledge and more practical skills than traditional lectures and home exercises alone.

  5. The Variable Climate Impact of Volcanic Eruptions

    Science.gov (United States)

    Graf, H.

    2011-12-01

    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened

  6. 3D analysis of craniofacial growth and tooth eruption

    DEFF Research Database (Denmark)

    Kreiborg, Sven

    The 9th International Congress on Cleft Palate and Related Craniofacial Anomalies, 3D analysis, craniofacial growth, tooth eruption......The 9th International Congress on Cleft Palate and Related Craniofacial Anomalies, 3D analysis, craniofacial growth, tooth eruption...

  7. Homologous prominence non-radial eruptions: A case study

    CERN Document Server

    Duchlev, P; Madjarska, M S; Dechev, M

    2016-01-01

    The present study provides important details on homologous eruptions of a solar prominence that occurred in active region NOAA 10904 on 2006 August 22. We report on the preeruptive phase of the homologous feature as well as the kinematics and the morphology of a forth from a series of prominence eruptions that is critical in defining the nature of the previous consecutive eruptions. The evolution of the overlying coronal field during homologous eruptions is discussed and a new observational criterion for homologous eruptions is provided. We find a distinctive sequence of three activation periods each of them containing preeruptive precursors such as a brightening and enlarging of the prominence body followed by small surge- like ejections from its southern end observed in the radio 17 GHz. We analyse a fourth eruption that clearly indicates a full reformation of the prominence after the third eruption. The fourth eruption although occurring 11 hrs later has an identical morphology, the same angle of propagati...

  8. Relationship between gestational age, birth weight and deciduous tooth eruption

    Directory of Open Access Journals (Sweden)

    Afrin Mohamed Khalifa

    2014-06-01

    Conclusion: Delayed tooth eruption was related to lower birth weight and prematurity. The delayed eruption in preterm babies may be related to premature birth and not to a delay in dental development.

  9. The variation of magma discharge during basaltic eruptions

    Science.gov (United States)

    Wadge, G.

    1981-12-01

    The rate at which basaltic magma is discharged varies substantially during many eruptions. An individual eruption has an eruption rate ( Qe), the volumetric rate of discharge averaged over the whole or a major part of an eruption, and an effusion rate ( Qf), the volumetric flux rate at any given time. In many examples Qf soon reaches a maximum value after a short period of waxing flow, partly because of magmatic expansion, and then falls more slowly in the later parts of the eruption. The release of elastic strain energy from stored magma and the sub-volcanic reservoir during eruption can produce an exponential form of such waning flow. Comparison of the eruption rates of the historic eruptions of Mauna Loa, Kilauea and Etna shows that for each volcano there is a trend of decreasing Qe with increasing duration of eruption. This relationship is not predicted by a simple elastic model of magma release. Two additional processes are invoked to explain the eruptive histories of these volcanoes: modification of the eruptive conduits, and the continued supply of magma from depth during eruption. Conduits evolving from dikes to plugs by wall-rock erosion or freezing of magma can result in increased early values of Qf and the maintenance of very low values of Qf values for long periods later in the eruption. Discharge variations during three specific eruptions are discussed in detail. Paricutin (1943-1952) had exponentially waning flow, with a time constant of about three years, that is consistent with a deep reservoir. The waning flow of Hekla's 1947-1948 eruption showed some of the characteristics of conduit modification, whilst the 1959 Kilauea Iki eruption is interpreted in terms of a closed system with varying magma rheology.

  10. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-01-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  11. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-05-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  12. Relationship between earthquake and volcanic eruption inferred from historical records

    Institute of Scientific and Technical Information of China (English)

    陈洪洲; 高峰; 吴雪娟; 孟宪森

    2004-01-01

    A large number of seismic records are discovered for the first time in the historical materials about Wudalianchi volcanic group eruption in 1720~1721, which provides us with abundant volcanic earthquake information. Based on the written records, the relationship between earthquake and volcanic eruption is discussed in the paper. Furthermore it is pointed that earthquake swarm is an important indication of volcanic eruption. Therefore, monitoring volcanic earthquakes is of great significance for forecasting volcanic eruption.

  13. Imaging Prominence Eruptions Out to 1 AU

    CERN Document Server

    Wood, Brian E; Linton, Mark G

    2015-01-01

    Views of two bright prominence eruptions trackable all the way to 1AU are here presented, using the heliospheric imagers on the Solar TErrestrial RElations Observatory (STEREO) spacecraft. The two events first erupted from the Sun on 2011 June 7 and 2012 August 31, respectively. Only these two examples of clear prominence eruptions observable this far from the Sun could be found in the STEREO image database, emphasizing the rarity of prominence eruptions this persistently bright. For the 2011 June event, a time-dependent 3-D reconstruction of the prominence structure is made using point-by-point triangulation. This is not possible for the August event due to a poor viewing geometry. Unlike the coronal mass ejection (CME) that accompanies it, the 2011 June prominence exhibits little deceleration from the Sun to 1 AU, as a consequence moving upwards within the CME. This demonstrates that prominences are not necessarily tied to the CME's magnetic structure far from the Sun. A mathematical framework is developed ...

  14. Holocene eruptions of mauna kea volcano, hawaii.

    Science.gov (United States)

    Porter, S C

    1971-04-23

    Postglacial lava flows, interstratified with thick locally derived sheets of tephra, cover some 27.5 square kilometers on the south slope of Mauna Kea. Most of the volcanics were erupted about 4500 years ago and overlie a regionally extensive paleosol which developed largely during the last glaciation.

  15. Fixed drug eruption due to ornidazole

    Directory of Open Access Journals (Sweden)

    Ramji Gupta

    2014-01-01

    Full Text Available A 56-year-old male developed an ulcer on his glans penis and mucosae of upper and lower lips 3 days after taking ofloxacin, cephalexin, and ornidazole. Clinically, a provisional diagnosis of fixed drug eruption was made. The causative drug was confirmed by an oral provocation test which triggered a reactivation of all lesions only with ornidazole.

  16. Gas Eruptions Taper Off in Northwestern Oklahoma.

    Science.gov (United States)

    Preston, Don

    1980-01-01

    Describes the eruption of inflammable natural gas from the ground surface in the Edith area near Camp Houston. Determining the source of the gas, the results established the Chester-Oswago interval as the most likely source. The surface venting has declined steadily; the likelihood of finding its cause is also described. (SK)

  17. Emotional Eruptions, Volcanic Activity and Global Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2011-01-01

    The eruption of Iceland’s Eyjafjallajökull volcano in April 2010 set off a number of environmental, economic and cultural effects obstructing thousands of people in the midst of their global mobility flows. It halted, as well, the exchange of goods and commodities and exposed the vulnerability...

  18. The influence of magma supply rate on eruption style and textures of erupted ash particles

    Science.gov (United States)

    Wright, H. M.; Cashman, K. V.

    2011-12-01

    Persistent low- to moderate-level eruptive activity of basaltic to andesitic volcanoes is difficult to monitor because small changes in magma supply rates can cause abrupt transitions in eruption style. Direct measurement of magma ascent rate is not possible; therefore, we must develop indirect measures of ascent rate. Here, we use a petrologic approach to this problem. We quantify textural variations in Vulcanian and Strombolian eruptive products (erupted between 1999-2006) from Tungurahua volcano, Ecuador. We compare average crystallinities of pyroclasts from a succession of ash eruptions with magma supply rates determined using satellite observations of plume heights and seismic recordings of explosion frequency. We show that tephra crystallinity correlates inversely with magma supply rate, similar to correlations described from decompression experiments of intermediate composition magma. We further suggest that the range of textures present in any individual sample indicates recycling from one eruption to the next and/or simultaneous eruption of particles with different crystallization histories. The correlation between crystallinity and magma supply rate is most easily explained by efficient degassing at very low pressures and degassing-driven crystallization between eruptions. A similar correlation has been shown at Crater Peak, USA (Gardner et al. 1998); Merapi, Indonesia (Hammer et al. 2000); Unzen, Japan (Nakada and Motomura, 1999); and Sakurajima, Japan (Miwa et al., 2009). Futhermore, systematic changes in crystallinity have been shown to extend across a range of eruption styles (including Vulcanian and Strombolian), as at Etna, Italy (Taddeucci et al. 2002) and Croscat, Spain (Cimarelli et al., 2010). This variation with eruption style suggests that the observed transition from intermittent Vulcanian explosions to more continuous periods of Strombolian eruptions and lava fountains can be explained simply by changes in the average crystal content of the

  19. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2011-08-01

    Full Text Available Simulations of tropical volcanic eruptions using a general circulation model with coupled aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface. This analysis is presented for eruptions with SO2 injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later a near-"super eruption". For each eruption magnitude, simulations are performed with eruptions at 15° N, at four equally spaced times of year, and sensitivity to eruption season is quantified as the difference between the maximum and minimum cumulative anomalies.

    Eruption season has a significant influence on aerosol optical depth (AOD and clear-sky shortwave (SW radiative flux anomalies for both eruption magnitudes. The sensitivity to eruption season for both fields is generally weak in the tropics, but increases in the mid- and high latitudes, reaching maximum values of ~80 %. Global mean AOD and clear-sky SW anomalies show sensitivity to eruption season on the order of 15–20 %, which results from differences in aerosol effective radius for the different eruption seasons. Smallest aerosol size and largest cumulative impact result from a January eruption for the Pinatubo-magnitude, and from a July eruption for the near-super eruption. In contrast to AOD and clear-sky SW anomalies, all-sky SW anomalies are found to be insensitive to season of eruption for the Pinatubo-magnitude eruption experiment, due to the reflection of solar radiation by clouds in the mid- to high latitudes. However, differences in all-sky SW anomalies between eruptions in different seasons are significant for the larger eruption magnitude, and the ~15 % sensitivity to eruption season of the global mean all-sky SW anomalies is comparable to the sensitivity of global mean AOD and clear-sky SW anomalies. Our estimates of sensitivity to eruption season

  20. 2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations

    Science.gov (United States)

    Kaneko, Takayuki; Maeno, Fukashi; Nakada, Setsuya

    2016-05-01

    The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.

  1. On the origin of Mount Etna eruptive cycles and Stromboli volcano paroxysms: implications for an alternative mechanism of volcanic eruption

    CERN Document Server

    Nechayev, Andrei

    2014-01-01

    New mechanism of imbalance between magma column and fluid volume, accumulated in the magmatic system, is considered as a driving force of the volcanic eruption. Conditions of eruption based on this mechanism are used to explain main features of the volcanic activity (eruptive cycles and paroxysms) of the volcanoes Etna and Stromboli (Italy).

  2. 2-D Numerical Simulation of Eruption Clouds : Effects of Turbulent Mixing between Eruption Cloud and Air

    Science.gov (United States)

    Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.

    2001-05-01

    Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of

  3. Thermodynamics of gas and steam-blast eruptions

    Science.gov (United States)

    Mastin, L.G.

    1995-01-01

    Eruptions of gas or steam and non-juvenile debris are common in volcanic and hydrothermal areas. From reports of non-juvenile eruptions or eruptive sequences world-wide, at least three types (or end-members) can be identified: (1) those involving rock and liquid water initially at boiling-point temperatures ('boiling-point eruptions'); (2) those powered by gas (primarily water vapor) at initial temperatures approaching magmatic ('gas eruptions'); and (3) those caused by rapid mixing of hot rock and ground- or surface water ('mixing eruptions'). For these eruption types, the mechanical energy released, final temperatures, liquid water contents and maximum theoretical velocities are compared by assuming that the erupting mixtures of rock and fluid thermally equilibrate, then decompress isentropically from initial, near-surface pressure (???10 MPa) to atmospheric pressure. Maximum mechanical energy release is by far greatest for gas eruptions (??????1.3 MJ/kg of fluid-rock mixture)-about one-half that of an equivalent mass of gunpowder and one-fourth that of TNT. It is somewhat less for mixing eruptions (??????0.4 MJ/kg), and least for boiling-point eruptions (??????0.25 MJ/kg). The final water contents of crupted boiling-point mixtures are usually high, producing wet, sloppy deposits. Final erupted mixtures from gas eruptions are nearly always dry, whereas those from mixing eruptions vary from wet to dry. If all the enthalpy released in the eruptions were converted to kinetic energy, the final velocity (vmax) of these mixtures could range up to 670 m/s for boiling-point eruptions and 1820 m/s for gas eruptions (highest for high initial pressure and mass fractions of rock (mr) near zero). For mixing eruptions, vmax ranges up to 1150 m/s. All observed eruption velocities are less than 400 m/s, largely because (1) most solid material is expelled when mr is high, hence vmax is low; (2) observations are made of large blocks the velocities of which may be less than the

  4. Recent Two Distinct Eruptions at Sinabung and Kelud, Indonesia

    Science.gov (United States)

    Nakada, S.; Yoshimoto, M.; Maeno, F.; Iguchi, M.; Zaenudin, A.; Hendrasto, M.

    2014-12-01

    Two distinct eruptions occurred in 2014 at Sinabung and Kelud volcanoes in Indonesia. Lava dome-forming eruption started at Sinabung volcano, N Sumatra, in the end of 2013, which was preceded by the phreatic events since 2010 and shallow inflation with high seismicity since 3 months before eruption. The 2010 eruption was the first historic eruption, and the latest eruption geologically recorded occurred in the 9 to 10th Century. The eruption had continued in a nearly constant rate of magma effusion as of the summer of 2014. The lava complex extended on the SE slope (~2.5 km long from the source), frequently generating pyroclastic flows. The volume of erupted magma reached about 0.1 km3 in the 2014 summer. The lava is porphyritic andesite (SiO2 ~57%). The existence of mafic blobs in rocks and plagioclase microlites more calcic than the phenocryst rims, and the absence of breakdown rim on hornblende phenocrysts suggest magma mixing prior to eruption and relatively fast magma ascent. On the other hand, the Plinian eruption began at Kelud volcano, W Java on the evening of February 13, 2014, which had declined almost within about 6 hours. The eruption cloud rose to 18-25 km in altitude, and tephra deposited on extensive areas. The precursory seismic activity started two weeks before eruption and the intensity increased with time. This short but explosive eruption was one of recent large eruptions (VEI 4) at Kelud, which had repeated every ~20 years. A lava dome of 0.035 km3 was accidentally (?) formed within the crater in 2007-2008. The total volume of tephra of the 2014 eruption is 0.2-0.3 km3 in DRE. The magma is crystal-rich basaltic andesite (SiO2 ~56%; phenocryst proportion of ~60%). The petrological characteristics are close to the 2007-2008 dome lava except higher crystallinity in the latter. Mobilization of crystal-rich chamber magma probably was brought by intrusion of new magma. Thus, these recent examples in Indonesia are less-explosive and explosive

  5. Eruptive history of the youngest Mexican Shield and Mexico's most voluminous Holocene eruption: Cerro El Metate

    Science.gov (United States)

    Oryaëlle Chevrel, Magdalena; Guilbaud, Marie-Noelle; Siebe, Claus

    2016-04-01

    Small to medium-sized shield volcanoes are an important component of many volcanic fields on Earth. The Trans-Mexican Volcanic Belt, one of the most complex and active continental arcs worldwide, displays a large number of such medium-sized volcanoes. In particular the Michoacán-Guanajuato Volcanic Field (MGVF) situated in central Mexico, is the largest monogenetic volcanic field in the world and includes more than 1000 scoria cones and about four hundred medium-sized volcanoes, also known as Mexican shields. The Mexican shields nevertheless represent nearly 70% of the total volume erupted since 1 Ma and hence played a considerable role in the formation of the MGVF. However, the source, storage, and transport as well as the physical properties (density, viscosity, volatile content, etc.) of the magmas involved in these eruptions remain poorly constrained. Here, we focus on Cerro El Metate, the youngest monogenetic andesite shield volcano of the field. New C14 dates for the eruption yield a young age (~AD 1250), which briefly precedes the initial rise of the Tarascan Empire (AD 1350-1521) in this region. This volcano has a minimum volume of ~9.2 km3 DRE, and its viscous lava flows were emplaced during a single eruption over a period of ~35 years covering an area of 103 km2. By volume, this is certainly the largest eruption during the Holocene in Mexico, and it is the largest andesitic effusive eruption known worldwide for this period. Such a large volume of lava erupted in a relatively short time had a significant impact on the environment (modification of the hydrological network, forest fires, etc.), and hence, nearby human populations probably had to migrate. Its eruptive history was reconstructed through detailed mapping, and geochemical and rheological analyses of its thick hornblende-bearing andesitic flows. Early and late flows have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by

  6. Ionospheric disturbances by volcanic eruptions by GNSS-TEC: Comparison between Vulcanian and Plinian eruptions

    Science.gov (United States)

    Nakashima, Y.; Heki, K.; Takeo, A.; Cahyadi, M. N.; Aditiya, A.

    2014-12-01

    Acoustic waves from volcanic eruptions are often observed as infrasound in near fields. Part of them propagate upward and disturb the ionosphere, and can be observed in Total Electron Content (TEC) data derived by Global Navigation Satellite System (GNSS) receivers. In the past, Heki (2006 GRL) detected ionospheric disturbances by the 2004 explosion of the Asama Volcano, central Japan, and Dautermann et al. (2009 JGR) studied the 2003 eruption of the Soufriere Hills volcano in Montserrat, West Indies. Here we present new examples, and try to characterize such disturbances. We first show TEC disturbances by the 2014 February Plinian eruption (VEI 4) of the Kelud volcano, East Java, Indonesia (Figure), observed with a regional GNSS network.The 2014 Kelud eruption broke a lava dome made by 2007 eruption and created a new creator. Significant disturbances were detected with four GPS and two GLONASS satellites, and the wavelet analyses showed that harmonic oscillations started at ~16:25 UT and continued nearly one hour. The frequency of the oscillation was ~3.8 mHz, which coincides with the atmospheric fundamental mode. We also confirmed concentric wavefronts, moving outward by ~0.8m/sec (stronger signals on the northern side). These features are similar to the 2003 Soufriere Hills case, although the signals in the present Kelud case is much clearer. Next, we compare them with ionospheric disturbances by Vulcanian explosions that occurred recently in Japan, i.e. the 2004 Asama case and the 2009 Sakurajima, and the 2011 Shin-moedake eruptions. They are characterized with one-time N-shaped disturbances possibly excited by the compression of the air above the vents. On the other hand, data from nearby seismometers suggested that atmospheric oscillations of various frequencies were excited by this continuous Plinian eruption. Part of such oscillations would have grown large due to atmospheric resonance.

  7. Recent eruptive history of Mount Hood, Oregon, and potential hazards from future eruptions

    Science.gov (United States)

    Crandell, Dwight Raymond

    1980-01-01

    Each of three major eruptive periods at Mount Hood (12,000-15,000(?), 1,500-1,800, and 200-300 years ago) produced dacite domes, pyroclastic flows, and mudflows, but virtually no pumice. Most of the fine lithic ash that mantles the slopes of the volcano and the adjacent mountains fell from ash clouds that accompanied the pyroclastic flows. Widely scattered pumice lapilli that are present at the ground surface on the south, east, and north sides of Mount Hood may have been erupted during the mid-1800's, when the last known activity of the volcano occurred. The geologically recent history of Mount Hood suggests that the most likely eruptive event in the future will be the formation of another dome, probably within the present south-facing crater. The principal hazards that could accompany dome formation include pyroclastic flows and mudflows moving from the upper slopes of the volcano down the floors of valleys. Ash clouds which accompany pyroclastic flows may deposit as much as a meter of fine ash close to their source, and as much as 20 centimeters at a distance of 11 kilometers downwind from the pyroclastic flows. Other hazards that could result from such eruptions include laterally directed explosive blasts that could propel rock fragments outward from the sides of a dome at high speed, and toxic volcanic gases. The scarcity of pumiceous ash erupted during the last 15,000 years suggests that explosive pumice eruptions are not a major hazard at Mount Hood; thus, there seems to be little danger that such an eruption will significantly affect the Portland (Oregon) metropolitan area in the near future.

  8. Learning to recognize volcanic non-eruptions

    Science.gov (United States)

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  9. Pseudoephedrine may cause "pigmenting" fixed drug eruption.

    Science.gov (United States)

    Ozkaya, Esen; Elinç-Aslan, Meryem Sevinç

    2011-05-01

    Fixed drug eruption (FDE) is a distinctive drug eruption characterized by recurrent well-defined lesions in the same location each time the responsible drug is taken. Two different clinical forms have been described: the common classic pigmenting form and the rare nonpigmenting form. Nonpigmenting FDE is mainly characterized by symmetrical large erythematous plaques and the dermal histopathologic reaction pattern. Pseudoephedrine is known as the major inducer of nonpigmenting FDE. Pigmenting FDE from pseudoephedrine has not been reported previously. Here, the first case of pseudoephedrine-induced pigmenting FDE is reported, showing the characteristic features of classic pigmenting FDE such as asymmetry, normal-sized lesions, and the epidermodermal histopathologic reaction pattern. Moreover, a positive occlusive patch-test reaction to pseudoephedrine could be demonstrated on postlesional FDE skin for the first time.

  10. An Erupted Dilated Odontoma: A Rare Presentation.

    Science.gov (United States)

    Sharma, Gaurav; Nagra, Amritpreet; Singh, Gurkeerat; Nagpal, Archna; Soin, Atul; Bhardwaj, Vishal

    2016-01-01

    A dilated odontoma is an extremely rare developmental anomaly represented as a dilatation of the crown and root as a consequence of a deep, enamel-lined invagination and is considered a severe variant of dens invaginatus. An oval shape of the tooth lacking morphological characteristics of a crown or root implies that the invagination happened in the initial stages of morphodifferentiation. Spontaneous eruption of an odontoma is a rare occurrence and the occurrence of a dilated odontoma in a supernumerary tooth is even rarer with only a few case reports documented in the English literature. We present an extremely rare case of erupted dilated odontoma occurring in the supernumerary tooth in anterior maxillary region in an 18-year-old male, which, to the best of our knowledge, is the first ever case reported in English literature.

  11. Localized Eruptive Blue Nevi after Herpes Zoster

    Science.gov (United States)

    Colson, Fany; Arrese, Jorge E.; Nikkels, Arjen F.

    2016-01-01

    A 52-year-old White man presented with a dozen small, well-restricted, punctiform, asymptomatic, blue-gray macules on the left shoulder. A few months earlier, he had been treated with oral acyclovir for herpes zoster (HZ) affecting the left C7–C8 dermatomes. All the blue macules appeared over a short period of time and then remained stable. The patient had not experienced any previous trauma or had tattooing in this anatomical region. The clinical diagnosis suggested blue nevi. Dermatoscopy revealed small, well-limited, dark-blue, compact, homogeneous areas evoking dermal blue nevi. An excisional biopsy was performed and the histological examination confirmed a blue nevus. As far as we are aware of, this is the first report of eruptive blue nevi following HZ, and it should be included in the differential diagnosis of zosteriform dermatoses responding to an isotopic pathway. In addition, a brief review concerning eruptive nevi is presented. PMID:27462219

  12. An Erupted Dilated Odontoma: A Rare Presentation

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2016-01-01

    Full Text Available A dilated odontoma is an extremely rare developmental anomaly represented as a dilatation of the crown and root as a consequence of a deep, enamel-lined invagination and is considered a severe variant of dens invaginatus. An oval shape of the tooth lacking morphological characteristics of a crown or root implies that the invagination happened in the initial stages of morphodifferentiation. Spontaneous eruption of an odontoma is a rare occurrence and the occurrence of a dilated odontoma in a supernumerary tooth is even rarer with only a few case reports documented in the English literature. We present an extremely rare case of erupted dilated odontoma occurring in the supernumerary tooth in anterior maxillary region in an 18-year-old male, which, to the best of our knowledge, is the first ever case reported in English literature.

  13. An Erupted Dilated Odontoma: A Rare Presentation

    Science.gov (United States)

    Sharma, Gaurav; Nagra, Amritpreet; Singh, Gurkeerat; Nagpal, Archna; Soin, Atul; Bhardwaj, Vishal

    2016-01-01

    A dilated odontoma is an extremely rare developmental anomaly represented as a dilatation of the crown and root as a consequence of a deep, enamel-lined invagination and is considered a severe variant of dens invaginatus. An oval shape of the tooth lacking morphological characteristics of a crown or root implies that the invagination happened in the initial stages of morphodifferentiation. Spontaneous eruption of an odontoma is a rare occurrence and the occurrence of a dilated odontoma in a supernumerary tooth is even rarer with only a few case reports documented in the English literature. We present an extremely rare case of erupted dilated odontoma occurring in the supernumerary tooth in anterior maxillary region in an 18-year-old male, which, to the best of our knowledge, is the first ever case reported in English literature. PMID:26989523

  14. Giant eruptions of very massive stars

    CERN Document Server

    Davidson, Kris

    2016-01-01

    Giant eruptions or supernova-impostor events are far more mysterious than true supernovae. An extreme example can release as much radiative energy as a SN, ejecting several M_sun of material. These events involve continuous radiation-driven outflows rather than blast waves. They constitute one of the main unsolved problems in stellar astrophysics, but have received surprisingly little theoretical effort. Here I note some aspects that are not yet familiar to most astronomers.

  15. Crossing the glass transition during volcanic eruptions

    OpenAIRE

    Richard, Dominique

    2015-01-01

    Predicting the occurrence and the evolving nature of volcanic eruptions remains an outstanding challenge. The complexity of volcanic Systems requires the use of many different approaches to gain a more profound understanding of the interplay of parameters such as magma temperature, composition, volatile content, cooling rate and viscosity as they interactively control the rheology of magma. This study focusses on three different scenarios in which the glass transition, a kinetic boundar...

  16. A Statistical Study of Solar Filament Eruptions

    Science.gov (United States)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  17. Eruption products of the 1883 eruption of Krakatau and their final settlement

    Directory of Open Access Journals (Sweden)

    Izumi Yokoyama

    2015-06-01

    Full Text Available Firstly the volume of pyroclastic ejecta during the 1883 eruption of Krakatau is re-examined. To revise the volume of flow deposits, the author basically follows Verbeek’s observation while to estimate the fall deposits, as the last resort, the author assumes that volume ratios fall / flow are common to similar caldera eruptions, and the ratios determined by the caldera- forming eruptions of Novarupta and Pinatubo are applied to the Krakatau eruption. Verbeek’s estimation of the total volume of ejecta, 12 km3 is revised to 19 km3. This is significantly different from the volume of disrupted volcano edifice, 8 km3. Such a result does not support the predecessors’ hypothesis that calderas are formed by collapses of volcano edifices into magma reservoirs in replacement of the total ejecta. Through the discussion on the volume estimation of volcanic ejecta on and around Krakatau, the author recognizes that such estimation should be originally very difficult to attain enough accuracy. Much importance of “caldera deposits” to post-eruption settlements of the ejecta is emphasized. In relation to caldera formation, mechanical stability of a cavity in the crust is discussed. Lastly, upon the basis of subsurface structure, especially caldera deposits, a structural image of Krakatau caldera is presented.

  18. Chain Reconnections observed in Sympathetic Eruptions

    CERN Document Server

    Joshi, Navin Chandra; Magara, Tetsuya; Guo, Yang; Aulanier, Guillaume

    2016-01-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multi-wavelength observations of sympathetic eruptions, associated flares and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close-by active regions. Two filaments i.e., F1 and F2 are observed in between the active regions. Successive magnetic reconnections, caused by different reasons (flux cancellation, shear and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double ribbon solar flare. During this phase we observed the eruption of overlaying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of the filament F1. We suggest that this reconnection destabilized the equi...

  19. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  20. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  1. Solar Multiple Eruptions from a Confined Magnetic Structure

    Science.gov (United States)

    Lee, Jeongwoo; Liu, Chang; Jing, Ju; Chae, Jongchul

    2016-09-01

    How eruption can recur from a confined magnetic structure is discussed based on the Solar Dynamics Observatory observations of the NOAA active region 11444, which produced three eruptions within 1.5 hr on 2012 March 27. The active region (AR) had the positive-polarity magnetic fields in the center surrounded by the negative-polarity fields around. Since such a distribution of magnetic polarity tends to form a dome-like magnetic fan structure confined over the AR, the multiple eruptions were puzzling. Our investigation reveals that this event exhibits several properties distinct from other eruptions associated with magnetic fan structures: (i) a long filament encircling the AR was present before the eruptions; (ii) expansion of the open-closed boundary (OCB) of the field lines after each eruption was suggestive of the growing fan-dome structure, and (iii) the ribbons inside the closed magnetic polarity inversion line evolved in response to the expanding OCB. It thus appears that in spite of multiple eruptions the fan-dome structure remained undamaged, and the closing back field lines after each eruption rather reinforced the fan-dome structure. We argue that the multiple eruptions could occur in this AR in spite of its confined magnetic structure because the filament encircling the AR was adequate for slipping through the magnetic separatrix to minimize the damage to its overlying fan-dome structure. The result of this study provides a new insight into the productivity of eruptions from a confined magnetic structure.

  2. The 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Bull, Katharine F.; Cameron, Cheryl; Coombs, Michelle L.; Diefenbach, Angie; Lopez, Taryn; McNutt, Steve; Neal, Christina; Payne, Allison; Power, John A.; Schneider, David J.; Scott, William E.; Snedigar, Seth; Thompson, Glenn; Wallace, Kristi; Waythomas, Christopher F.; Webley, Peter; Werner, Cynthia A.; Schaefer, Janet R.

    2012-01-01

    Redoubt Volcano, an ice-covered stratovolcano on the west side of Cook Inlet, erupted in March 2009 after several months of escalating unrest. The 2009 eruption of Redoubt Volcano shares many similarities with eruptions documented most recently at Redoubt in 1966–68 and 1989–90. In each case, the eruptive phase lasted several months, consisted of multiple ashproducing explosions, produced andesitic lava and tephra, removed significant amounts of ice from the summit crater and Drift glacier, generated lahars that inundated the Drift River valley, and culminated with the extrusion of a lava dome in the summit crater. Prior to the 2009 explosive phase of the eruption, precursory seismicity lasted approximately six months with the fi rst weak tremor recorded on September 23, 2008. The first phreatic explosion was recorded on March 15, and the first magmatic explosion occurred seven days later, at 22:34 on March 22. The onset of magmatic explosions was preceded by a strong, shallow swarm of repetitive earthquakes that began about 04:00 on March 20, 2009, less than three days before an explosion. Nineteen major ash-producing explosions generated ash clouds that reached heights between 17,000 ft and 62,000 ft (5.2 and 18.9 km) ASL. During ash fall in Anchorage, the Ted Stevens International Airport was shut down for 20 hours, from ~17:00 on March 28 until 13:00 on March 29. On March 23 and April 4, lahars with fl ow depths to 10 m in the upper Drift River valley inundated parts of the Drift River Terminal (DRT). The explosive phase ended on April 4 with a dome collapse at 05:58. The April 4 ash cloud reached 50,000 ft (15.2 km) and moved swiftly to the southeast, depositing up to 2 mm of ash fall in Homer, Anchor Point, and Seldovia. At least two and possibly three lava domes grew and were destroyed by explosions prior to the final lava dome extrusion that began after the April 4 event. The fi nal lava dome ceased growth by July 1, 2009, with an estimated volume of 72

  3. The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2012-01-01

    The explosive outburst at Novarupta (Alaska) in June 1912 was the 20th century's most voluminous volcanic eruption. Marking its centennial, we illustrate and document the complex eruptive sequence, which was long misattributed to nearby Mount Katmai, and how its deposits have provided key insights about volcanic and magmatic processes. It was one of the few historical eruptions to produce a collapsed caldera, voluminous high-silica rhyolite, wide compositional zonation (51-78 percent SiO2), banded pumice, welded tuff, and an aerosol/dust veil that depressed global temperature measurably. It emplaced a series of ash flows that filled what became the Valley of Ten Thousand Smokes, sustaining high-temperature metal-transporting fumaroles for a decade. Three explosive episodes spanned ~60 hours, depositing ~17 km3 of fallout and 11±2 km3 of ignimbrite, together representing ~13.5 km3 of zoned magma. No observers were nearby and no aircraft were in Alaska, and so the eruption narrative was assembled from scattered villages and ship reports. Because volcanology was in its infancy and the early investigations (1915-23) were conducted under arduous expeditionary conditions, many provocative misapprehensions attended reports based on those studies. Fieldwork at Katmai was not resumed until 1953, but, since then, global advances in physical volcanology and chemical petrology have gone hand in hand with studies of the 1912 deposits, clarifying the sequence of events and processes and turning the eruption into one of the best studied in the world. To provide perspective on this century-long evolution, we describe the geologic and geographic setting of the eruption - in a remote, sparsely inhabited wilderness; we review the cultural and scientific contexts at the time of the eruption and early expeditions; and we compile a chronology of the many Katmai investigations since 1912. Products of the eruption are described in detail, including eight layers of regionwide fallout

  4. Eruption Source Parameters for forecasting ash dispersion and deposition from vulcanian eruptions at Tungurahua volcano: Insights from field data from the July 2013 eruption

    Science.gov (United States)

    Parra, René; Bernard, Benjamin; Narváez, Diego; Le Pennec, Jean-Luc; Hasselle, Nathalie; Folch, Arnau

    2016-01-01

    Tungurahua volcano, located in the central area of the Ecuadorian Sierra, is erupting intermittently since 1999 alternating between periods of quiescence and explosive activity. Volcanic ash has been the most frequent and widespread hazard provoking air contamination episodes and impacts on human health, animals and crops in the surrounding area. After two months of quiescence, Tungurahua erupted violently on 14th July 2013 generating short-lived eruptive columns rising up to 9 km above the vent characterized as a vulcanian eruption. The resulting fallout deposits were sampled daily during and after the eruptions to determine grain size distributions and perform morphological and componentry analyses. Dispersion and sedimentation of ash were simulated numerically coupling the meteorological Weather Research Forecasting (WRF) with the volcanic ash dispersion FALL3D models. The combination of field and numerical studies allowed constraining the Eruption Source Parameters (ESP) for this event, which could be used to forecast ash dispersion and deposition from future vulcanian eruptions at Tungurahua. This set of pre-defined ESP was further validated using two different eruptions, as blind test, occurring on 16th December 2012 and 1st February 2014.

  5. Active Eruptions in the NE Lau Basin

    Science.gov (United States)

    Resing, J. A.; Embley, R. W.

    2009-12-01

    NE Lau Response Team: K Rubin, E Baker, J Lupton, M Lilley, T Shank, S Merle, R Dziak, T Collasius (Jason 2 Expedition Leader), N Buck, T Baumberger, D Butterfield, D Clague, D Conlin, J Cowen, R Davis, L Evans, J Huber, M Keith, N Keller, P Michael, E Podowski, A-L Reysenbach, K Roe, H Thomas, S Walker. During a May 2009 cruise to W Mata volcano in the NE Lau Basin, we made the first observations of an active eruption on the deep-sea floor. The cruise was organized after volcanic activity was detected at two sites (W Mata volcano and NE Lau Spreading Center, NELSC) during a Nov. 2008 NOAA-PMEL expedition. At that time, both sites had elevated H2 concentrations and volcaniclastic shards in the hydrothermal plumes. Moored hydrophone data since Jan 2009 indicate that the activity at W Mata has been continuous between these expeditions. Results of our cruise and other work suggest that the NE Lau Basin hosts an unusually high level of magmatic activity, making it an ideal location to study the effects of magmatic processes on hydrothermal activity and associated ecosystems. W Mata was visited with 5 ROV Jason 2 dives and 2 dives with the MBARI autonomous mapping vehicle in May 2009. It was actively erupting at the 1200 m deep summit during each, so a hydrophone was deployed locally to collect acoustic data. Ship and shore-based analysis of HD video, molten lava, rocks, sediments, hot spring waters, and micro- and macro biological specimens collected by Jason 2 have provided a wealth of data. The eruption itself was characterized by extrusion of red, molten lava, extensive degassing, formation of large magma bubbles, explosive pyroclast ejection, and the active extrusion of pillow lavas. The erupting magmas are boninite, a relatively rare magma type found only at convergent margins. The hydrothermal fluids are generally acidic and all diffuse fluids collected were microbially active, even those at pH 20 yrs the PMEL-Vents and NSF RIDGE programs have sought to observe

  6. Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics

    Science.gov (United States)

    Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine

    2013-01-01

    Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.

  7. Predicting eruptions from precursory activity using remote sensing data hybridization

    Science.gov (United States)

    Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.

    2016-07-01

    Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., ~ hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low

  8. Geomorphic consequences of volcanic eruptions in Alaska: A review

    Science.gov (United States)

    Waythomas, Christopher F.

    2015-10-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta-Katmai eruption, the 1989-1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed. A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment-water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large

  9. Relationship between eruptive style and vesicularity of juvenile clasts during eruptive episode A of Towada Volcano, Northeast Japan

    Science.gov (United States)

    Hiroi, Yoshimi; Miyamoto, Tsuyoshi

    2016-10-01

    It has been reported that juvenile pumice lapilli found in plinian eruptions have high vesicularity, while those found in phreatoplinian eruptions have low vesicularity. However, juvenile glass shards from phreatoplinian eruptions consist of large, expanded bubbles such as bubble wall-type glass. These glass shards seem to possess high vesicularity, unlike the pumice lapilli. This study examines the factors causing this difference, especially focusing on the temporal variations in the vesicularity of the juvenile pyroclasts from eruptive episode A of Towada Volcano, Northeast Japan. This examination was conducted through four analyses: density measurements of pumice lapilli, thin section texture classification of pumice lapilli, classification of glass shards, and surface texture classification of pumice lapilli. Further, pumice lapilli from plinian eruptions have a low density, and those from phreatoplinian eruptions are characterized by high density. The density of the pumice lapilli depends on the eruption style and is hence determined after the eruption. A progressive increase in the amount of large bubbles is observed in glass shards ejected during an eruptive magmatic to phreatomagmatic sequence. Because it does not hinge on the eruptive style, it is assumed that the vesicularity of the glass shards is kept from the conduit before contact with water, especially on fragmentation by magma vesiculation in the conduit. The surfaces of the pumice lapilli show a similar increase in vesicularity with time as glass shards. However, this increase is not successive throughout, but decreases temporarily at the phreatomagmatic stage of the eruption, as in the case of density. This indicates that the successive bubble growth continues within the pumice, and additional vesiculation is superposed when the magmatic eruption comes into contact with water. Because of this, different juvenile clasts exhibit different vesicularities upon cooling. Interestingly, magma

  10. Quantifying the condition of eruption column collapse during explosive volcanic eruptions

    Science.gov (United States)

    Koyaguchi, Takehiro; Suzuki, Yujiro

    2016-04-01

    During an explosive eruption, a mixture of pyroclasts and volcanic gas forms a buoyant eruption column or a pyroclastic flow. Generation of a pyroclastic flow caused by eruption column collapse is one of the most hazardous phenomena during explosive volcanic eruptions. The quantification of column collapse condition (CCC) is, therefore, highly desired for volcanic hazard assessment. Previously the CCC was roughly predicted by a simple relationship between magma discharge rate and water content (e.g., Carazzo et al., 2008). When a crater is present above the conduit, because of decompression/compression process inside/above the crater, the CCC based on this relationship can be strongly modified (Woods and Bower, 1995; Koyaguchi et al., 2010); however, the effects of the crater on CCC has not been fully understood in a quantitative fashion. Here, we have derived a semi-analytical expression of CCC, in which the effects of the crater is taken into account. The CCC depends on magma properties, crater shape (radius, depth and opening angle) as well as the flow rate at the base of crater. Our semi-analytical CCC expresses all these dependencies by a single surface in a parameter space of the dimensionless magma discharge rate, the dimensionless magma flow rate (per unit area) and the ratio of the cross-sectional areas at the top and the base of crater. We have performed a systematic parameter study of three-dimensional (3D) numerical simulations of eruption column dynamics to confirm the semi-analytical CCC. The results of the 3D simulations are consistent with the semi-analytical CCC, while they show some additional fluid dynamical features in the transitional state (e.g., partial column collapse). Because the CCC depends on such many parameters, the scenario towards the generation of pyroclastic flow during explosive eruptions is considered to be diverse. Nevertheless, our semi-analytical CCC together with the existing semi-analytical solution for the 1D conduit flow

  11. Erupted complex odontoma of the posterior maxilla: A rarity.

    Science.gov (United States)

    Verma, Sonika; Arul, A Sri Kennath J; Arul, A Sri Sennath J; Chitra, S

    2015-08-01

    Complex odontomas, hamartomas of aborted tooth development, mainly occur in posterior part of the mandible and rarely erupt into the oral cavity. The spontaneous eruption may be associated with pain, inflammation of adjacent soft tissues or recurrent infection. The present case of complex odontoma is of particular interest due to its apparent eruption in the maxillary posterior segment, its association with agenesis of the second molar and impacted third molar; with the lesion being completely asymptomatic.

  12. The largest holocene eruption of the Central Andes found

    OpenAIRE

    Fernandez-Turiel, J. L.; J. Saavedra; Perez-Torrado, J. F.; Rodriguez-Gonzalez, A.; Carracedo, Juan Carlos; Osterrieth, M.; Carrizo, J. I.; Esteban, G.

    2013-01-01

    We present new data and interpretation about a major eruption -spreading 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in NW Argentina. This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. The environmental effects of this voluminous eruption are still noticeable, as evidenced by the high conte...

  13. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    Science.gov (United States)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-01-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for. PMID:27067389

  14. Overview of the 2006 eruption of Mt. Merapi

    Science.gov (United States)

    Ratdomopurbo, Antonius; Beauducel, Francois; Subandriyo, Joko; Agung Nandaka, I. G. Made; Newhall, Christopher G.; Suharna; Sayudi, Dewi Sri; Suparwaka, Heru; Sunarta

    2013-07-01

    In the last part of the 20th century and the beginning of the 21st century, Mt. Merapi in Central-Java Indonesia erupted about every 2-5 years. Most of the eruptions were low in explosivity, with VEI-3 or less. Eruptions usually involve the formation of a lava dome, either in the beginning or in the end of the eruptive episode. For the 2006 eruption, the precursory signal was first observed in the middle of the year 2005 with a decrease in EDM slope distances to points on the rim, an increase of seismicity and a possible increase of SO2 emissions. Those early events marked the beginning of a more continuous period of inflation, which led to the eruption. In total, the pre-eruption displacement of the southern rim reached at least 2.4 m toward the measuring station in Kaliurang (KAL). From late April until June 2006, a lava dome grew on the summit with a volume that gradually increased until it reached about 4.1 million m3 in 38 days. The total of erupted magma was about 5.3 million m3 dense-rock-equivalent (DRE). The dome subsequently collapsed in three steps from June 4 to June 14, leaving an open scar on its southeast side. In this paper we detail the changes of dome morphology that were monitored by taking successive photographs from similar positions. The eruption in 2006 marked a significant change in summit morphology, from west-southwestward opening during the 20th century to the currently southeast orientation. Also, an Mw 6.4 earthquake occurred on 26 May, midway through the eruption, which adds interesting questions about the relationship of the eruption and the earthquake. EDM data from 2006 and previous eruptions show that the summit remains inflated after each eruption, i.e., no significant deflation occurs following eruptions. The lack of post-eruption deflation suggests that magma remains in the shallow parts of the edifice after the eruption. As a result, the complex of summit lava domes and their intrusive roots grow with time and Merapi's rim and

  15. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    Science.gov (United States)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-01-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  16. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes

    Science.gov (United States)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-04-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  17. Setting of the Father's Day Eruption at Kilauea

    Science.gov (United States)

    Swanson, D. A.

    2007-12-01

    The Father's Day eruption and associated intrusion took place within a 10-km segment of Kilauea's east rift zone between Hi`iaka and Napau Craters--a segment that has had more numerous eruptions and intrusions than any other of comparable length during the past 200, probably the past 1000, years. Fifteen known eruptions started in this area in the past 200 years: 1840, 1922, 1923, 1962, August and October 1963, March and December 1965, August and October 1968, February and May 1969, May and November 1973, and March 1980 (only 3 cubic meters!). Three others, not previously designated as distinct eruptions despite having all the appropriate characteristics, took place during on-going eruptions: two in `Alo`i Crater in 1970 and 1972, and one in Napau Crater in 1997. Two of the largest shields on the east rift zone formed during long-lasting eruptions within this area--Kane Nui o Hamo at an unknown date, perhaps the 11-12th century, and Mauna Ulu (1969-1974). In addition, many small intrusions without eruptions are known. Seven short eruptions punctuated a prolonged eruption: four within the segment during the Mauna Ulu eruption, two at the summit and southwest rift zone during that same eruption, and one in Napau Crater in 1997 during the Pu`u `O`o eruption. Thus the Father's Day eruption is not unique by virtue of taking place during an ongoing eruption elsewhere along the rift zone. The increased frequency of activity in the segment during the 20th century is obvious, particularly after 1962. For most of the past 1,000 years, eruptions were centered at Kilauea's summit, with significant but lesser activity along the rift zones. A large summit deflation in 1924 ended the nearly continuous lava lake in Halemaumau, eventually leading to the past 5 decades of dominantly east rift zone activity. This segment of the rift zone contains most of the pit craters on Kilauea and gradually changes from a SE trend near the caldera to an ENE trend that characterizes the rest of

  18. Recurrent fixed drug eruption caused by citiolone.

    Science.gov (United States)

    de Barrio, M; Tornero, P; Prieto, A; Sainza, T; Zubeldia, J M; Herrero, T

    1997-01-01

    Citiolone (N-acetylhomocysteinethiolactone) is a thiolic-derived medication frequently used in Spain and in other countries as a mucolytic agent for the treatment of certain hepatic disorders. Mucolytic drugs have rarely been implicated in the fixed drug eruption etiology. We report on a patient who presented several episodes of fixed exanthema related to citiolone intake. The patch test with citiolone (10% in dimethyl sulfoxide) was negative. The diagnosis was confirmed by a positive controlled oral challenge test. Other mucolytic thiolic-derivatives (N-acetylcysteine) were tolerated by the patient, thus crossreactivity between these drugs seems to be unlikely.

  19. A Comparison Study of a Solar Active-Region Eruptive Filament and a Neighboring Non-Eruptive Filament

    CERN Document Server

    Jiang, Chaowei; Feng, Xueshang; Hu, Qiang

    2015-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using a CESE-MHD-NLFFF code (Jiang & Feng 2013) reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) co-spatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match H{\\alpha} observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much ...

  20. Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Calbuco volcano (southern Chile)

    Science.gov (United States)

    Castruccio, Angelo; Clavero, Jorge; Segura, Andrea; Samaniego, Pablo; Roche, Olivier; Le Pennec, Jean-Luc; Droguett, Bárbara

    2016-09-01

    We conducted geological and petrological analyses of the tephra fallout and pyroclastic density current (PDC) products of the 22-23 April 2015 Calbuco eruptions. The eruptive cycle consisted of two sub-Plinian phases that generated > 15 km height columns and PDCs that travelled up to 6 km from the vent. The erupted volume is estimated at 0.38 km3 (non-DRE), with approximately 90% corresponding to tephra fall deposits and the other 10% to PDC deposits. The erupted products are basaltic-andesite, 54-55 wt.% SiO2, with minor amounts of andesite (58 wt.% SiO2). Despite the uniform composition of the products, there are at least four types of textures in juvenile clasts, with different degrees of vesicularity and types and content of crystals. We propose that the eruption triggering mechanism was either exsolution of volatiles due to crystallization, or a small intrusion into the base of the magma chamber, without significant magma mixing or with a magma compositionally similar to that of the residing magma. In either case the triggering mechanism generated convection and sufficient overpressure to promote the first eruptive phase. The start of the eruption decompressed the chamber, promoting intense vesiculation of the remaining magma and an increase in eruption rate towards the end of the eruption.

  1. Intrusion Triggering of Explosive Eruptions: Lessons Learned from EYJAFJALLAJÖKULL 2010 Eruptions and Crustal Deformation Studies

    Science.gov (United States)

    Sigmundsson, F.; Hreinsdottir, S.; Hooper, A. J.; Arnadottir, T.; Pedersen, R.; Roberts, M. J.; Oskarsson, N.; Auriac, A.; Decriem, J.; Einarsson, P.; Geirsson, H.; Hensch, M.; Ofeigsson, B. G.; Sturkell, E. C.; Sveinbjornsson, H.; Feigl, K.

    2010-12-01

    Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic. This eruption was preceded by an effusive flank eruption of olivine basalt from 20 March - 12 April 2010. Geodetic and seismic observations revealed the growth of an intrusive complex in the roots of the volcano during three months prior to eruptions. After initial horizontal growth, modelling indicates both horizontal and sub-vertical growth in three weeks prior the first eruption. The behaviour is attributed to subsurface variations in crustal stress and strength originating from complicated volcano foundations. A low-density layer may capture magma allowing pressure to build before an intrusion can ascend towards higher levels. The intrusive complex was formed by olivine basalt as erupted on the volcano flank 20 March - 12 April; the intrusive growth halted at the onset of this eruption. Deformation associated with the eruption onset was minor as the dike had reached close to the surface in the days before. Isolated eruptive vents opening on long-dormant volcanoes may represent magma leaking upwards from extensive pre-eruptive intrusions formed at depth. A deflation source activated during the summit eruption of trachyandesite is distinct from, and adjacent to, all documented sources of inflation in the volcano roots. Olivine basalt magma which recharged the volcano appears to have triggered the summit eruption, although the exact mode of triggering is uncertain. Scenarios include stress triggering or propagation of olivine basalt into more evolved magma. The trachyandesite includes crystals that can be remnants of minor recent intrusion of olivine basalt

  2. Catastrophic caldera-forming eruptions II: The subordinate role of magma buoyancy as an eruption trigger

    Science.gov (United States)

    Gregg, Patricia M.; Grosfils, Eric B.; de Silva, Shanaka L.

    2015-10-01

    Recent analytical investigations have suggested that magma buoyancy is critical for triggering catastrophic caldera forming eruptions. Through detailed assessment of these approaches, we illustrate how analytical models have been misapplied for investigating buoyancy and are, therefore, incorrect and inconclusive. Nevertheless, the hypothesis that buoyancy is the critical trigger for larger eruptions warrants further investigation. As such, we utilize viscoelastic finite element models that incorporate buoyancy to test overpressure evolution and mechanical failure in the roof due to the coalescence of large buoyant magma bodies for two model cases. In the first case, we mimic empirical approaches and include buoyancy as an explicit boundary condition. In the second set of models, buoyancy is calculated implicitly due to the density contrast between the magma in the reservoir and the host rock. Results from these numerical experiments indicate that buoyancy promotes only minimal overpressurization of large silicic magma reservoirs (implementations and the results from the numerical experiments, we conclude that buoyancy does not provide an eruption triggering mechanism for large silicic systems. Therefore, correlations of buoyancy with magma residence times, the eruption frequency-volume relationship, and the dimensions of calderas are re-assessed. We find a causal relationship with magma reservoir volume that implicates the mechanical conditions of the host rock as a primary control on eruption frequency. As magma reservoirs grow in size (> 100 km3) they surpass a rheological threshold where their subsequent evolution is controlled by host rock mechanics. Consequently, this results in a thermomechanical division between small systems that are triggered "internally" by magmatic processes and large systems that are triggered "externally" by faulting related to roof uplift or tectonism. Finally, critical assessment of recent analytical approaches illustrates that care

  3. Disentangling the eruption source parameters that control the climate effects of volcanic eruptions

    Science.gov (United States)

    Marshall, Lauren; Schmidt, Anja; Mann, Graham; Carslaw, Kenneth; Dhomse, Sandip; Haywood, Jim; Jones, Andy

    2016-04-01

    Climatic cooling in the 1-2 years following a major volcanic eruption does not scale linearly with the mass of SO2 injected into the atmosphere. The injection height of the emissions, the latitude of the volcano, the season and large scale atmospheric circulations, also influence the climatic response. Complex couplings exist between stratospheric chemistry and circulations, and aerosol induced heating and aerosol microphysical processes such as condensation and evaporation. As yet, there has been no systematic assessment of these relationships when considering different eruption source parameters. A series of simulations with a global composition-climate model with interactive stratospheric chemistry and aerosol microphysics are conducted, in which the eruption latitude and injection height are varied. Parameter combinations are chosen such that injections sample areas in the atmosphere where different chemical and dynamical influences are important (e.g. tropical vs. high latitude eruptions, injections near the tropopause vs. injections in the upper stratosphere). Each experiment is repeated for varying SO2 injection magnitudes. We focus on the analysis of aerosol properties such as the stratospheric aerosol optical depth, effective radius and heating rates, and resultant perturbations to radiative fluxes. Initial results demonstrate the non-linearity in the climatic response as the injection magnitude is increased. Future work will focus on disentangling the contribution of each parameter to the climatic response with additional simulations to investigate the effect of season and the Quasi Biennial Oscillation. Results will aid in the understanding of the impact of past, present and future volcanic eruptions. By analysing sulfate deposition to the polar ice caps, we will assess the uncertainty in, and validity of, the historic volcanic radiative forcing deduced from ice cores.

  4. Groundwater Eruption in China Triggered By the 2004 Sumatra Earthquake

    Science.gov (United States)

    Shi, Z.; Wang, D.; Manga, M.; Wang, C. Y.; Wang, G.

    2014-12-01

    The 2004 Mw9.3 Sumatra earthquake initiated a large, sustained groundwater eruption in Guangdong, China, 3200 km away from the epicenter. The erupted water column reached a height of ~60 m above the ground surface when it was first sighted and the eruption lasted about 10 days. Estimated seismic energy density at the eruption site is only 0.046 J.m-3; thus it is surprising that the earthquake caused such an intense response. A field survey showed that a large amount of gaseous CO2 was released from groundwater during the eruption and suggested that the eruption was caused by the exsolution of CO2 from groundwater. In this study, we use numerical simulation to explore the mechanism of the well eruption. We apply tidal analysis to water level data from 2003 to 2006 to estimate the aquifer parameters before and after the earthquake; the hydraulic diffusivity inferred this way is 0.423 m2/s and 1.371 m2/s before and after the earthquake, respectively. Based on these parameters, we use TOUGH2, a widely used numerical program for simulating two-phase hydrothermal processes, to simulate the evolution of CO2 saturation, the velocity of erupted groundwater and pressure in the well-aquifer system after Sumatra earthquake. The simulations show that the earthquake may have triggered bubbles to nucleate from the CO2-rich groundwater and enhanced the aquifer permeability, leading to increased groundwater discharge to the well. Decreased pore-pressure in the aquifer caused greater exsolution of CO2 and greater discharge, leading to groundwater eruption. Exsolution of CO2 extends radially away from the wellbore as a function of time and the continued exsolution of CO2 sustained the eruption until pressure in the aquifer drops below hydrostatic, which is marked by a ~9 m drop in groundwater level from that before the earthquake. That earthquake trigger eruption and CO2 exsolution has implications for CO2 sequestration.

  5. Can Rock Deformation Experiments Help us to Forecast Volcanic Eruptions?

    Science.gov (United States)

    Smith, R.; Kilburn, C. R.; Sammonds, P. R.

    2009-05-01

    Volcanic eruption forecasting models show that the strength and mechanical properties of volcanic rocks are a primary control on the behaviour of volcanic systems, especially during the approach to eruptions. The progressive failure of these rocks, recorded as sequences of small volcano tectonic earthquakes, can lead to the formation of new magma pathways, allowing eruptions to begin at volcanoes that have not erupted in hundreds of years. Rates and patterns of these small earthquakes, which are typically located within a few km of the volcano summit, are monitored at many volcanoes and used to forecast eruptions. Models of crack growth and interaction have been used to constrain expected patterns in accelerating earthquake rates before the first eruption after a long repose interval. These deterministic models rely on laboratory mechanical data from volcanic rocks tested under the temperature and pressure conditions expected within and beneath a volcanic edifice. Here, we present data from high temperature uniaxial and triaxial deformation of andesite and dacite at temperatures of up to 1000°C, and under confining pressures of up to 50 MPa. These are typical rock types for volcanoes likely to erupt violently after hundreds of years of repose, where these forecasting models have previously been applied. The conditions tested cover the full range of temperatures and pressures expected within the upper 2-3 km of volcanic systems. The eruption forecasting model, with new constraints from this laboratory data, is applied to sequences of VT earthquakes before eruptions and to sequences of acoustic emissions before laboratory sample failure. Both types of data showed accelerating trends within the limits defined in the model, whilst sequences of earthquakes and acoustic emissions not resulting in eruption or sample failure exhibited accelerations outside the model limits. These results support the scaling of laboratory data to field scale and the use of laboratory data

  6. Elastic energy release in great earthquakes and eruptions

    Directory of Open Access Journals (Sweden)

    Agust eGudmundsson

    2014-05-01

    Full Text Available The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy associated with magma chamber rupture and contraction (shrinkage during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1 the strain energy stored in the volcano/fault zone before rupture, and (2 the external applied load (force, pressure, stress, displacement on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU during an eruption is directly proportional to the excess pressure (pe in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3, the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago and largest single (effusive Colombia River basalt lava flows (15-16 million years ago, both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  7. Elastic energy release in great earthquakes and eruptions

    Science.gov (United States)

    Gudmundsson, Agust

    2014-05-01

    The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released (transformed) elastic energy. No similar measures exist for the sizes of volcanic eruptions, making it difficult to compare the energies released in earthquakes and eruptions. Here I provide a new measure of the elastic energy (the potential mechanical energy) associated with magma chamber rupture and contraction (shrinkage) during an eruption. For earthquakes and eruptions, elastic energy derives from two sources: (1) the strain energy stored in the volcano/fault zone before rupture, and (2) the external applied load (force, pressure, stress, displacement) on the volcano/fault zone. From thermodynamic considerations it follows that the elastic energy released or transformed (dU) during an eruption is directly proportional to the excess pressure (pe) in the magma chamber at the time of rupture multiplied by the volume decrease (-dVc) of the chamber, so that . This formula can be used as a basis for a new eruption magnitude scale, based on elastic energy released, which can be related to the moment-magnitude scale for earthquakes. For very large eruptions (>100 km3), the volume of the feeder-dike is negligible, so that the decrease in chamber volume during an eruption corresponds roughly to the associated volume of erupted materials , so that the elastic energy is . Using a typical excess pressures of 5 MPa, it is shown that the largest known eruptions on Earth, such as the explosive La Garita Caldera eruption (27-28 million years ago) and largest single (effusive) Colombia River basalt lava flows (15-16 million years ago), both of which have estimated volumes of about 5000 km3, released elastic energy of the order of 10EJ. For comparison, the seismic moment of the largest earthquake ever recorded, the M9.5 1960 Chile earthquake, is estimated at 100 ZJ and the associated elastic energy release at 10EJ.

  8. The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2012-01-01

    The explosive outburst at Novarupta (Alaska) in June 1912 was the 20th century's most voluminous volcanic eruption. Marking its centennial, we illustrate and document the complex eruptive sequence, which was long misattributed to nearby Mount Katmai, and how its deposits have provided key insights about volcanic and magmatic processes. It was one of the few historical eruptions to produce a collapsed caldera, voluminous high-silica rhyolite, wide compositional zonation (51-78 percent SiO2), banded pumice, welded tuff, and an aerosol/dust veil that depressed global temperature measurably. It emplaced a series of ash flows that filled what became the Valley of Ten Thousand Smokes, sustaining high-temperature metal-transporting fumaroles for a decade. Three explosive episodes spanned ~60 hours, depositing ~17 km3 of fallout and 11±2 km3 of ignimbrite, together representing ~13.5 km3 of zoned magma. No observers were nearby and no aircraft were in Alaska, and so the eruption narrative was assembled from scattered villages and ship reports. Because volcanology was in its infancy and the early investigations (1915-23) were conducted under arduous expeditionary conditions, many provocative misapprehensions attended reports based on those studies. Fieldwork at Katmai was not resumed until 1953, but, since then, global advances in physical volcanology and chemical petrology have gone hand in hand with studies of the 1912 deposits, clarifying the sequence of events and processes and turning the eruption into one of the best studied in the world. To provide perspective on this century-long evolution, we describe the geologic and geographic setting of the eruption - in a remote, sparsely inhabited wilderness; we review the cultural and scientific contexts at the time of the eruption and early expeditions; and we compile a chronology of the many Katmai investigations since 1912. Products of the eruption are described in detail, including eight layers of regionwide fallout

  9. Surface Flux Emergence and Coronal Eruption

    Science.gov (United States)

    Fang, Fang

    2016-05-01

    Among various active regions, delta-sunspots of aggregated spots of opposite polarities, are of particular interest due to their high productivity in energetic and recurrent eruptive events, such as X-class flares and homologous eruptions. We here study the formation of such complex magnetic structures by numerical simulations of magnetic flux emergence from the convection zone into the corona in an active-region scale domain. In our simulation, two pairs of bipolar sunspots form on the surface, originating from two buoyant segments of a single subsurface twisted flux rope. Expansion and rotation of the emerging fields in the two bipoles drive the two opposite polarities into each other with apparent rotating motion, producing a compact delta-sunspot with a sharp polarity inversion line (PIL). The formation of the delta-sunspot in such a realistic-scale domain produces emerging patterns similar to those formed in observations, e.g. the inverted polarity against Hale’s law, the curvilinear motion of the spot, strong transverse field with highly sheared magnetic and velocity fields at the PIL. Strong current builds up at the PIL, giving rise to reconnection, which produces a complex coronal magnetic connectivity with non-potential fields in the delta-spot overlaid by more relaxed fields connecting the two polarities at the two ends.

  10. Base surge in recent volcanic eruptions

    Science.gov (United States)

    Moore, J.G.

    1967-01-01

    A base surge, first identified at the Bikini thermonuclear undersea explosion, is a ring-shaped basal cloud that sweeps outward as a density flow from the base of a vertical explosion column. Base surges are also common in shallow underground test explosions and are formed by expanding gases which first vent vertically and then with continued expansion rush over the crater lip (represented by a large solitary wave in an underwater explosion), tear ejecta from it, and feed a gas-charged density flow, which is the surge cloud. This horizontally moving cloud commonly has an initial velocity of more than 50 meters per second and can carry clastic material many kilometers. Base surges are a common feature of many recent shallow, submarine and phreatic volcanic eruptions. They transport ash, mud, lapilli, and blocks with great velocity and commonly sandblast and knock down trees and houses, coat the blast side with mud, and deposit ejecta at distances beyond the limits of throw-out trajectories. Close to the eruption center, the base surge can erode radial channels and deposit material with dune-type bedding. ?? 1967 Stabilimento Tipografico Francesco Giannini & Figli.

  11. IMAGING A MAGNETIC-BREAKOUT SOLAR ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yao; Du, Guohui; Zhao, Di; Wu, Zhao; Wang, Bing; Ruan, Guiping; Feng, Shiwei; Song, Hongqiang [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Liu, Wei, E-mail: yaochen@sdu.edu.cn, E-mail: weiliu@lmsal.com [Stanford-Lockheed Institute for Space Research, Stanford University, Stanford, CA 94305 (United States)

    2016-04-01

    The fundamental mechanism initiating coronal mass ejections (CMEs) remains controversial. One of the leading theories is magnetic breakout, in which magnetic reconnection occurring high in the corona removes the confinement on an energized low-corona structure from the overlying magnetic field, thus allowing it to erupt. Here, we report critical observational evidence of this elusive breakout reconnection in a multi-polar magnetic configuration that leads to a CME and an X-class, long-duration flare. Its occurrence is supported by the presence of pairs of heated cusp-shaped loops around an X-type null point and signatures of reconnection inflows. Other peculiar features new to the breakout picture include sequential loop brightening, coronal hard X-rays at energies up to ∼100 keV, and extended high-corona X-rays above the later restored multi-polar structure. These observations, from a novel perspective with clarity never achieved before, present crucial clues to understanding the initiation mechanism of solar eruptions.

  12. Fixed Drug Eruption due to Achiote Dye

    Directory of Open Access Journals (Sweden)

    Ian Tattersall

    2016-01-01

    Full Text Available Fixed drug eruption (FDE is a localized type IV sensitivity reaction to a systemically introduced allergen. It usually occurs as a result of new medication, making identification and avoidance of the trigger medication straightforward; however, in a rare subset of cases no pharmacological source is identified. In such cases, the causative agent is often a food or food additive. In this report we describe a case of a FDE in a 12-year-old girl recently immigrated to the United States from Ecuador who had no medication exposure over the course of her illness. Through an exhaustive patient history and literature review, we were able to hypothesize that her presentation was caused by a dietary change of the natural achiote dye used in the preparation of yellow rice to a locally available commercial dye mix containing tartrazine, or Yellow 5, which has previously been implicated in both systemic hypersensitivity reactions and specifically in FDE. This report adds to the small body of available literature on non-pharmacological fixed hypersensitivity eruptions and illustrates an effective approach to the management of such a presentation when history is not immediately revealing.

  13. Fixed Drug Eruption due to Achiote Dye.

    Science.gov (United States)

    Tattersall, Ian; Reddy, Bobby Y

    2016-01-01

    Fixed drug eruption (FDE) is a localized type IV sensitivity reaction to a systemically introduced allergen. It usually occurs as a result of new medication, making identification and avoidance of the trigger medication straightforward; however, in a rare subset of cases no pharmacological source is identified. In such cases, the causative agent is often a food or food additive. In this report we describe a case of a FDE in a 12-year-old girl recently immigrated to the United States from Ecuador who had no medication exposure over the course of her illness. Through an exhaustive patient history and literature review, we were able to hypothesize that her presentation was caused by a dietary change of the natural achiote dye used in the preparation of yellow rice to a locally available commercial dye mix containing tartrazine, or Yellow 5, which has previously been implicated in both systemic hypersensitivity reactions and specifically in FDE. This report adds to the small body of available literature on non-pharmacological fixed hypersensitivity eruptions and illustrates an effective approach to the management of such a presentation when history is not immediately revealing.

  14. Realistic Modeling of Spontaneous Flow Eruptions in the Quiet Sun

    Science.gov (United States)

    Kitiashvili, Irina; Yoon, Seokkwan S

    2014-06-01

    Ground and space observations reveal that the solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The origin and driving forces of the observed eruptions are still unknown. Using realistic numerical simulations we find that small-scale plasma eruptions can be produced by ubiquitous magnetized vortex tubes generated in the Sun's turbulent convection. The vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and strengthen the background magnetic field, and push surrounding material up, generating impulses of Alfven waves and shocks. Our simulations reveal complicated high-speed flows, thermodynamic, and magnetic structures in the erupting vortex tubes. We find that the eruptions are initiated in the subsurface layers, and initially are driven by high-pressure gradients in the subphotosphere and photosphere, and are accelerated by the Lorentz force in the higher atmospheric layers. The eruptions are often quasi-periodic with a characteristic period of 2-5 min. These vortex eruptions have a complicated flow helical pattern, with predominantly downward flows in the vortex tube cores and upward flows in their surroundings. For comparison with observations we calculate full Stokes profiles in different wavelength for different space and ground instruments, such as HMI/SDO, Hinode, NST/BBSO, IMaX/Sunrise. In particular, we find that the observed eruption events are not always associated with strong magnetic field concentrations, and that strong field patches can be a source of several simultaneous eruptions.

  15. Magma plumbing for the 2014-2015 Holuhraun eruption, Iceland

    Science.gov (United States)

    Geiger, Harri; Mattsson, Tobias; Deegan, Frances M.; Troll, Valentin R.; Burchardt, Steffi; Gudmundsson, Ólafur; Tryggvason, Ari; Krumbholz, Michael; Harris, Chris

    2016-08-01

    The 2014-2015 Holuhraun eruption on Iceland was located within the Askja fissure swarm but was accompanied by caldera subsidence in the Bárðarbunga central volcano 45 km to the southwest. Geophysical monitoring of the eruption identified a seismic swarm that migrated from Bárðarbunga to the Holuhraun eruption site over the course of two weeks. In order to better understand this lateral connection between Bárðarbunga and Holuhraun, we present mineral textures and compositions, mineral-melt-equilibrium calculations, whole rock and trace element data, and oxygen isotope ratios for selected Holuhraun samples. The Holuhraun lavas are compositionally similar to recorded historical eruptions from the Bárðarbunga volcanic system but are distinct from the historical eruption products of the nearby Askja system. Thermobarometry calculations indicate a polybaric magma plumbing system for the Holuhraun eruption, wherein clinopyroxene and plagioclase crystallized at average depths of ˜17 km and ˜5 km, respectively. Crystal resorption textures and oxygen isotope variations imply that this multilevel plumbing system facilitated magma mixing and assimilation of low-δ18O Icelandic crust prior to eruption. In conjunction with the existing geophysical evidence for lateral migration, our results support a model of initial vertical magma ascent within the Bárðarbunga plumbing system followed by lateral transport of aggregated magma batches within the upper crust to the Holuhraun eruption site.

  16. Large historical eruptions at subaerial mud volcanoes, Italy

    Directory of Open Access Journals (Sweden)

    M. Manga

    2012-11-01

    Full Text Available Active mud volcanoes in the northern Apennines, Italy, currently have gentle eruptions. There are, however, historical accounts of violent eruptions and outbursts. Evidence for large past eruptions is also recorded by large decimeter rock clasts preserved in erupted mud. We measured the rheological properties of mud currently being erupted in order to evaluate the conditions needed to transport such large clasts to the surface. The mud is well-characterized by the Herschel-Bulkley model, with yield stresses between 4 and 8 Pa. Yield stresses of this magnitude can support the weight of particles with diameters up to several mm. At present, particles larger than this size are not being carried to the surface. The transport of larger clasts to the surface requires ascent speeds greater than their settling speed in the mud. We use a model for the settling of particles and rheological parameters from laboratory measurements to show that the eruption of large clasts requires ascent velocities > 1 m s−1, at least three orders of magnitude greater than during the present, comparatively quiescent, activity. After regional earthquakes on 20 May and 29 May 2012, discharge also increased at locations where the stress changes produced by the earthquakes would have unclamped feeder dikes below the mud volcanoes. The magnitude of increased discharge, however, is less than that inferred from the large clasts. Both historical accounts and erupted deposits are consistent in recording episodic large eruptions.

  17. Effects of scoria-cone eruptions upon nearby human communities

    Science.gov (United States)

    Ort, M.H.; Elson, M.D.; Anderson, K.C.; Duffield, W.A.; Hooten, J.A.; Champion, D.E.; Waring, G.

    2008-01-01

    Scoria-cone eruptions are typically low in volume and explosivity compared with eruptions from stratovolcanoes, but they can affect local populations profoundly. Scoria-cone eruption effects vary dramatically due to eruption style, tephra blanket extent, climate, types of land use, the culture and complexity of the affected group, and resulting governmental action. A comparison of a historic eruption (Pari??cutin, Me??xico) with prehistoric eruptions (herein we primarily focus on Sunset Crater in northern Arizona, USA) elucidates the controls on and effects of these variables. Long-term effects of lava flows extend little beyond the flow edges. These flows, however, can be used for defensive purposes, providing refuges from invasion for those who know them well. In arid lands, tephra blankets serve as mulches, decreasing runoff and evaporation, increasing infiltration, and regulating soil temperature. Management and retention of these scoria mulches, which can open new areas for agriculture, become a priority for farming communities. In humid areas, though, the tephra blanket may impede plant growth and increase erosion. Cultural responses to eruptions vary, from cultural collapse, through fragmentation of society, dramatic changes, and development of new technologies, to little apparent change. Eruptions may also be viewed as retribution for poor behavior, and attempts are made to mollify angry gods. ?? 2008 Geological Society of America.

  18. Erupted complex odontoma: a case report and literature review.

    Science.gov (United States)

    Litonjua, Luis A; Suresh, Lakshmanan; Valderrama, Lucia S; Neiders, Mirdza E

    2004-01-01

    A case involving a 17-year-old girl with a large erupted odontoma associated with a deeply impacted mandibular molar is reported. The molar, which previously had been displaced to the border of the mandible, erupted successfully three years after surgical removal of the odontoma. A review of the literature presents guidelines for treating similar cases.

  19. Textural constraints on the dynamics of the 2000 Miyakejima eruption

    Science.gov (United States)

    Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro

    2016-04-01

    Miyakejima Volcano is a basaltic-andesite stratovolcano active from ~10.000 years, located on the north of the Izu-Bonin arc. During the last 600 years the volcano has been characterized mainly by flank fissure activity, with explosive phreatomagmatic eruptions on the coastal areas. In the last century, the activity became more frequent and regular with intervals of 20 to 70 years (1940, 1962, 1983 and 2000). The last activity started on 27 June 2000, with a minor submarine eruption on the west coast of the volcano, and proceeded with six major summit eruptions from July 8 to August 29. The eruptions led to the formation of a collapse caldera ~1.6 km across. The total erupted tephra represents only 1.7% in volume of the caldera, the high fragmentation of magma produced mainly fine-grained volcanic ash. In order to improve the understanding on the triggering and dynamics of this explosive eruption, we carried out a detailed investigation of the erupted materials with particular attention to the textural features of juvenile pyroclasts (Vesicle and Crystal Size Distributions). The stratigraphic record can be divided into six fall units, corresponding to the six summit eruptions, although juvenile materials were identified only in 4 units (unit 2, 4, 5, 6). We selected about 100 juvenile grains sampled from the bottom to the top of each level, to be analyzed by scanning electron microscopy. The study of juvenile morphological features allowed us to recognize the existence of three characteristic morphotypes, showing marked differences in their external morphologies and internal textures (from poorly to highly crystallized and vesiculated clasts). The distribution of these morphotypes is non-homogeneous along the eruptive sequence indicating changes of dynamics during magma ascent. Juveniles do not show features inherited from the interaction with external water. Vesicle Volume Distributions of the selected ash grains show that the three types of pyroclasts experienced

  20. Erupted odontomas: a report of two unusual cases

    Directory of Open Access Journals (Sweden)

    Santosh Patil

    2012-06-01

    Full Text Available ntroduction: Odontomas are the most common odontogenic tumors of the jaws which are benign, slow growing and nonaggressive. They are usually asymptomatic and are diagnosed on routine radiological examination. The eruptions of odontomas are uncommon and very few cases are reported in the literature. Objective: To report two rare cases of erupted compound odontomas. Case report: Two cases of erupted compound odontomas are reported in middle aged patients. Erupted miniature teeth-like structure were seen on clinical examination. The condition was diagnosed on the basis of conventional intraoral radiographs and histopathological examination. Both cases were treated by surgical excision under local anaesthesia without any complications. Conclusion: Odontomas are benign tumors with uncertain etiology. Odontomas erupting in the oral cavity is an infrequent situation. Surgical excision is the treatment of choice in all such cases followed by histopathological examination to confirm the clinical diagnosis.

  1. Magnetic field restructuring associated with two successive solar eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China)

    2014-08-20

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

  2. Magnetic field restructuring associated with two successive solar eruptions

    International Nuclear Information System (INIS)

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

  3. Magnetic Field Restructuring Associated with Two Successive Solar Eruptions

    CERN Document Server

    Wang, Rui; Yang, Zhongwei; Hu, Huidong

    2014-01-01

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field (NLFFF) extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity, and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the "implosion" phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.

  4. Fixed drug eruption resulting from fluconazole use: a case report

    Directory of Open Access Journals (Sweden)

    Tavallaee Mahkam

    2009-07-01

    Full Text Available Abstract Introduction Fluconazole is a widely used antifungal agent with a possible side effect of fixed drug eruption. However, this adverse drug effect is absent from the reported list of possible side effects of fluconazole. We are presenting a rare case in our report. Case presentation A 25-year-old Iranian woman developed fixed drug eruptions on different sites of her body after taking five doses of fluconazole to treat vaginal candidiasis. A positive patch test, positive oral challenge test and skin biopsy were all found to be consistent with fixed drug eruption. Conclusion Fluconazole is a widely prescribed drug, used mainly to treat candidiasis. Fixed drug eruption as a possible side effect of Fluconazole is not well known and thus, the lesions may be misdiagnosed and mistreated. Based on our findings, which are consistent with a number of other practitioners, we recommend adding fixed drug eruption to the list of possible side effects of fluconazole.

  5. Drawing the Curtain on Enceladus' South-Polar Eruptions

    Science.gov (United States)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-11-01

    For a comprehensive description of Enceladus' south-polar eruptions observed at high resolution, they must be represented as broad curtains rather than discrete jets. Meanders in the fractures from which the curtains of material erupt give rise to optical illusions that look like discrete jets, even along fractures with no local variations in eruptive activity, implying that many features previously identified as "jets" are in fact phantoms. By comparing Cassini images with model curtain eruptions, we are able to obtain maps of eruptive activity that are not biased by the presence of those phantom jets. The average of our activity maps over all times agrees well with thermal maps produced by Cassini CIRS. We can best explain the observed curtains by assuming spreading angles with altitude of up to 14° and zenith angles of up to 8°, for curtains observed in geometries that are sensitive to those quantities.

  6. Predictions of volcanic eruptions at Mt Vesuvius, Italy

    Science.gov (United States)

    Ho, Chih-Hsiang

    1992-06-01

    We present a mathematically-based model for predicting the likelihood of future eruptions of Vesuvius and, by implication, other volcanoes. The volcanic activity of Vesuvius in the period 1630-1989 is described by a compound Poisson distribution with a gamma compounding density. The frequency distribution of eruptions in any given interval of equal length follows a negative binomial distribution (NBD). The assumptions of the NBD model are less restrictive, so the observation time can be extended to include the long repose following the 1944 eruption of Vesuvius. Moreover, this exceedingly flexible model has only two parameters which can be determined easily from the eruptive count data. The future probability of x number of eruptions is predicted on the aggregate behaviour of past volcanic activity. This capability would be useful for long-term planning, such as for land-use development, although not for short-term forecasts of volcanic hazards.

  7. Eruption cyst: A literature review and four case reports

    Directory of Open Access Journals (Sweden)

    N B Nagaveni

    2011-01-01

    Full Text Available Eruption cyst is a benign cyst associated with a primary or permanent tooth in its soft tissue phase after erupting through the bone. It is most prevalent in the Caucasian race. Intraoral examination of four patients revealed eruption cyst. Among these, in three patients it occurred in the maxillary arch and one had it in the mandibular arch. All were associated with permanent tooth. Surgical treatment was done in three cases and in one case the cyst disappeared gradually and tooth erupted in normal pattern. Four cases of eruption cyst from India are presented and literature on this condition is reviewed. It is clinically significant in that knowledge among general dentists is very essential regarding this developmental disturbance to reach the correct diagnosis and to provide proper treatment.

  8. A study of drug eruptions by provocative tests

    Directory of Open Access Journals (Sweden)

    Das J

    2001-09-01

    Full Text Available Sixty cases of drug eruptions were observed during the period of one year. The incidence of drug eruption was 0.47% amongst all Dermatology O.P.D. attendances. Male to female ratio was 7:3. The highest number of cases were seen in the age group of 21-30 years. Fixed drug eruptions were the most frequent (58.3%, followed by urticaria and angioedema (20%. The drug sulphonamides (including co-trimoxazole accounted for the highest number of eruptions (35%. The other drugs which were responsible for the eruptions, in order of frequency, were oxyphenbutazone, ampicillin, analgin, penicillin, tetracycline, ibuprofen, paracetamol, phenylbutazone, acetaminophen and phenobarbitone. The causative drug (s were confirmed by provocation tests in 42 (70% cases.

  9. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  10. What We Can Learn from the Next Large Volcanic Eruption

    Science.gov (United States)

    Robock, A.

    2015-12-01

    The April 1982 eruption of El Chichón in México stimulated interest in the climate response to volcanic eruptions and produced very useful observations and modeling studies. The last large volcanic eruption, the June 15, 1991 eruption of Mt. Pinatubo in the Philippines, was the best observed eruption ever, and serves as a canonical example for studies of aerosol production and transport, climate response, and deposition on ice sheets. However, many aspects of both eruptions were poorly observed, climate model simulations of the response are imperfect, and new scientific issues, such as stratospheric sulfate geoengineering, raise new scientific questions that could be answered by better observations of the next large volcanic eruption. In this talk I will summarize what we know and do not know about large volcanic eruptions, and discuss new questions that can be addressed by being prepared for the next large eruption. These include: How and how fast will SO2 convert to sulfate aerosols? How will the aerosols grow? What will be the size distribution of the resulting sulfate aerosol particles? How will the aerosols be transported throughout the stratosphere? How much fine ash gets to the stratosphere, how long does it stay there, and what are its radiative and chemical impacts? How will temperatures change in the stratosphere as a result of the aerosol interactions with shortwave (particularly near IR) and longwave radiation? Are there large stratospheric water vapor changes associated with stratospheric aerosols? Is there an initial injection of water from the eruption? Is there ozone depletion from heterogeneous reactions on the stratospheric aerosols? As the aerosols leave the stratosphere, and as the aerosols affect the upper troposphere temperature and circulation, are there interactions with cirrus and other clouds?

  11. Case study of a complex active-region filament eruption

    Science.gov (United States)

    Yan, X. L.; Qu, Z. Q.; Kong, D. F.; Deng, L. H.; Xue, Z. K.

    2013-09-01

    Context. We investigated a solar active-region filament eruption associated with a C6.6 class flare and a coronal mass ejection (CME) in NOAA active region 08858 on 2000 February 9. Aims: We aim to better understand the relationship between filament eruptions and the associated flares and CMEs. Methods: Using BBSO, SOHO/EIT, and TRACE observational data, we analyzed the process of the active-region filament eruption in the chromosphere and the corona. Using the SOHO/MDI magnetograms, we investigated the change of the magnetic fields in the photosphere. Using the GOES soft X-ray flux and the SOHO/LASCO images, we identified the flare and CME, which were associated with this active-region filament eruption. Results: The brightenings in the chromosphere are a precursor of the filament expansion. The eruption itself can be divided into four phases: In the initial phase, the intertwined bright and dark strands of the filament expand. Then, the bright strands are divided into three parts with different expansion velocity. Next, the erupting filament-carrying flux rope expands rapidly and combines with the lower part of the expanding bright strands. Finally, the filament erupts accompanied by other dark strands overlying the filament.The overlying magnetic loops and the expansion of the filament strands can change the direction of the eruption. Conclusions: The time delay between the velocity peaks of the filament and that of the two parts of the bright strands clearly demonstrates that the breakup of the bright loops tying on the filament into individual strands is important for its eruption. The eruption is a collection of multiple processes that are physically coupled rather than a single process.

  12. Extrusion cycles during dome-building eruptions

    Science.gov (United States)

    de' Michieli Vitturi, M.; Clarke, A. B.; Neri, A.; Voight, B.

    2013-06-01

    We identify and quantify controls on the timescales and magnitudes of cyclic (periodic) volcanic eruptions using the numerical model DOMEFLOW (de' Michieli Vitturi et al., 2010) which was developed by the authors for magma systems of intermediate composition. DOMEFLOW treats the magma mixture as a liquid continuum with dispersed gas bubbles and crystals in thermodynamic equilibrium with the melt and assumes a modified Poiseuille form of the viscous term for fully developed laminar flow in a conduit of cylindrical cross-section. During ascent, magma pressure decreases and water vapor exsolves and partially degasses from the melt as the melt simultaneously crystallizes, causing changes in mixture density and viscosity. Two mechanisms previously proposed to cause periodic eruption behavior have been implemented in the model and their corresponding timescales explored. The first applies a stick-slip model in which motion of a shallow solid plug is resisted by static/dynamic friction, as described in Iverson et al. (2006). For a constant magma supply rate at depth, this mechanism yields cyclic extrusion with timescales of seconds to tens of seconds with values generally depending on assumed friction coefficients. The second mechanism does not consider friction but treats the plug as a high-viscosity Newtonian fluid. During viscous resistance, pressure beneath the degassed plug can increase sufficiently to overcome dome overburden, plug weight, and viscous forces, and ultimately drive the plug from the conduit. In this second model cycle periods are on the order of hours, and decrease with increasing magma supply rate until a threshold is reached, at which point periodicity disappears and extrusion rate becomes steady (vanishingly short periods). Magma volatile content for fixed chamber pressure has little effect on cycle timescales, but increasing volatile content increases mass flow rate and cycle magnitude as defined by the difference between maximum and minimum

  13. Geochemical surveys in the Lusi mud eruption

    Science.gov (United States)

    Sciarra, Alessandra; Mazzini, Adriano; Etiope, Giuseppe; Inguaggiato, Salvatore; Hussein, Alwi; Hadi J., Soffian

    2016-04-01

    The Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the Java Island. In the framework of the Lusi Lab project (ERC grant n° 308126) we carried out geochemical surveys in the Sidoarjo district (Eastern Java Island, Indonesia) to investigate the gas bearing properties of the Watukosek fault system that crosses the Lusi mud eruption area. Soil gas (222Rn, CO2, CH4) concentration and flux measurements were performed 1) along two detailed profiles (~ 1km long), trending almost W-E direction, and 2) inside the Lusi embankment (about 7 km2) built to contain the erupted mud. Higher gas concentrations and fluxes were detected at the intersection with the Watukosek fault and the antithetic fault system. These zones characterized by the association of higher soil gas values constitute preferential migration pathways for fluids towards surface. The fractures release mainly CO2 (with peaks up to 400 g/m2day) and display higher temperatures (up to 41°C). The main shear zones are populated by numerous seeps that expel mostly CH4. Flux measurements in the seeping pools reveal that φCO2 is an order of magnitude higher than that measured in the fractures, and two orders of magnitude higher for φCH4. An additional geochemical profile was completed perpendicularly to the Watukosek fault escarpement (W-E direction) at the foots of the Penanngungang volcano. Results reveal CO2 and CH4 flux values significantly lower than those measured in the embankment, however an increase of radon and flux measurements is observed approaching the foots of the escarpment. These measurements are complemented with a database of ~350 CH4 and CO2 flux measurements and some soil gas concentrations (He, H2, CO2, CH4 and C2H6) and their isotopic analyses (δ13C-CH4, δD-CH4 and δ13C-CO2). Results show that the whole area is characterized by diffused gas release through seeps, fractures, microfractures and soil degassing. The collected results shed light on the origin of the

  14. Dermatological Diseases Associated with Pregnancy: Pemphigoid Gestationis, Polymorphic Eruption of Pregnancy, Intrahepatic Cholestasis of Pregnancy, and Atopic Eruption of Pregnancy

    OpenAIRE

    Christine Sävervall; Freja Lærke Sand; Simon Francis Thomsen

    2015-01-01

    Dermatoses unique to pregnancy are important to recognize for the clinician as they carry considerable morbidity for pregnant mothers and in some instances constitute a risk to the fetus. These diseases include pemphigoid gestationis, polymorphic eruption of pregnancy, intrahepatic cholestasis of pregnancy, and atopic eruption of pregnancy. This review discusses the pathogenesis, clinical importance, and management of the dermatoses of pregnancy.

  15. Discovery of the 2010 Eruption and the Pre-Eruption Light Curve for Recurrent Nova U Scorpii

    CERN Document Server

    Schaefer, Bradley E; Xiao, Limin; Darnley, Matthew J; Bode, Michael F; Harris, Barbara G; Dvorak, Shawn; Menke, John; Linnolt, Michael; Templeton, Matthew; Henden, Arne A; Pojmański, Grzegorz; Pilecki, Bogumil; Szczygiel, Dorota M; Watanabe, Yasunori

    2010-01-01

    We report the discovery by B. G. Harris and S. Dvorak on JD 2455224.9385 (2010 Jan 28.4385 UT) of the predicted eruption of the recurrent nova U Scorpii (U Sco). We also report on 815 magnitudes (and 16 useful limits) on the pre-eruption light curve in the UBVRI and Sloan r' and i' bands from 2000.4 up to 9 hours before the peak of the January 2010 eruption. We found no significant long-term variations, though we did find frequent fast variations (flickering) with amplitudes up to 0.4 mag. We show that U Sco did not have any rises or dips with amplitude greater than 0.2 mag on timescales from one day to one year before the eruption. We find that the peak of this eruption occurred at JD 2455224.69+-0.07 and the start of the rise was at JD 2455224.32+-0.12. From our analysis of the average B-band flux between eruptions, we find that the total mass accreted between eruptions is consistent with being a constant, in agreement with a strong prediction of nova trigger theory. The date of the next eruption can be ant...

  16. MHD Equilibria and Triggers for Prominence Eruption

    CERN Document Server

    Fan, Yuhong

    2015-01-01

    Magneto-hydrodynamic (MHD) simulations of the emergence of twisted magnetic flux tubes from the solar interior into the corona are discussed to illustrate how twisted and sheared coronal magnetic structures (with free magnetic energy), capable of driving filament eruptions, can form in the corona in emerging active regions. Several basic mechanisms that can disrupt the quasi-equilibrium coronal structures and trigger the release of the stored free magnetic energy are discussed. These include both ideal processes such as the onset of the helical kink instability and the torus instability of a twisted coronal flux rope structure and the non-ideal process of the onset of fast magnetic reconnections in current sheets. Representative MHD simulations of the non-linear evolution involving these mechanisms are presented.

  17. Meprobamate-induced fixed drug eruption.

    Science.gov (United States)

    Zaïem, Ahmed; Kaabi, Widd; Badri, Talel; Lakhoua, Ghozlane; Sahnoun, Rym; Kastalli, Sarrah; Daghfous, Riadh; Lakhal, Mohamed; El Aidli, Sihem

    2014-01-01

    Meprobamate is usually a safe drug prescribed for anxiety disorders. Fixed drug eruption (FDE) is an exceptional cutaneous adverse effect of this drug. We report a case of FDE induced by meprobamate with positive patch test. A 22-year-old woman was prescribed for depression meprobamate, aceprometazine, valpromide and lorazepam. On the second day of treatment, the patient presented red erythematous and pruriginous plaques in the limbs and the face. After stopping the previous treatment, the patient's lesions resolved completely within 3 weeks with residual pigmentation. One month later, patch tests were performed and were positive to meprobamate. Exceptional cases of FDE were reported in literature with meprobamate. None has reported the use of patch test to confirm the diagnosis. PMID:24446836

  18. Peripheral fibroma obstructing the eruption pathway

    Directory of Open Access Journals (Sweden)

    Prashanth Shetty

    2012-01-01

    Full Text Available Reactive hyperplasias comprise a group of fibrous connective tissue lesions that commonly occur in oral mucosa secondary to injury. Peripheral fibroma is also a type of reactive hyperplasia. Peripheral fibroma is a reactive hyperplastic mass that occurs on the gingiva and is derived from connective tissue of the submucosa or periodontal ligament. It may occur at any age, although it does have a predilection for young adults. Females develop these lesions more commonly than do males. Here, we are presenting a case report of a child who is 6 years old and presented to us with a swelling in the lower anterior region which was providing discomfort to the child and also was obstructing the eruption pathway of the permanent central incisor in the region. The lesion was surgically excised.

  19. Fixed drug eruption due to levocetirizine.

    Science.gov (United States)

    Jhaj, Ratinder; Asati, Dinesh Prasad; Chaudhary, Deepa

    2016-01-01

    A fixed drug eruption (FDE) is a cutaneous adverse drug reaction due to Type IV or delayed cell-mediated hypersensitivity. Antihistamines, which antagonize the action of histamine during an allergic reaction by blocking the H1 histamine receptors, are used routinely for the treatment of various allergic disorders such as urticaria, eczemas, and also in itchy lesions of skin like scabies. Levocetirizine, an active (R)-enantiomer of cetirizine, is a newer or second generation antihistamine, with more specific actions and fewer side effects, including cutaneous reactions. FDE due to levocetirizine as well as with cetirizine are rare. We report a case of levocetirizine induced FDE in a 49-year-old male patient with scabies. The patient had a history of cetirizine induced FDE in the past. PMID:27440959

  20. Fixed drug eruption due to levocetirizine

    Directory of Open Access Journals (Sweden)

    Ratinder Jhaj

    2016-01-01

    Full Text Available A fixed drug eruption (FDE is a cutaneous adverse drug reaction due to Type IV or delayed cell-mediated hypersensitivity. Antihistamines, which antagonize the action of histamine during an allergic reaction by blocking the H 1 histamine receptors, are used routinely for the treatment of various allergic disorders such as urticaria, eczemas, and also in itchy lesions of skin like scabies.Levocetirizine, an active (R-enantiomer of cetirizine, is a newer or second generation antihistamine, with more specific actions and fewer side effects, including cutaneous reactions. FDE due to levocetirizine as well as with cetirizine are rare. We report a case of levocetirizine induced FDE in a 49-year-old male patient with scabies. The patient had a history of cetirizine induced FDE in the past.

  1. POLYMORPHOUS LIGHT ERUPTION – A REVIEW

    Directory of Open Access Journals (Sweden)

    Yogeesh Hosahalli Rajaiah

    2013-07-01

    Full Text Available Polymprhouos light eruption is the most common idiopathic photodermatosis. It is a sun induced cutaneous reaction characterized by onset itchy erathematous papules, plaques, vesicles or erythema multiforme type of lesions after brief exposure to sunlight. Sun-exposed areas of the body or rarely the partially covered areas are commonly involved. PLE is more common in temperate climates than in tropics. It begins usually at the onset of summer and moderates as the summer progresses. In most patients it usually runs a benign course. Diagnosis is mainly on clinical grounds. Therapy involves avoidance of sun-exposure and use of sunscreens. Cases not responding to simple measures require PUVA (Psoralen and Ultraviolet A or UVB (ultraviolet B therapy. Other alternative suggested therapies with variable success include oral hydroxychloroquine, beta-carotene, thalidomide and nicotinamide.

  2. Pathogenesis of drug induced acneform eruptions

    Directory of Open Access Journals (Sweden)

    Lobo Audrey

    1992-01-01

    Full Text Available To determine the pathogenesis of drug induced acneform eruption (DAE, 44 patients were evaluated clinically and representative samples histologically. INAH and corticosteroids were the main offenders in 38.6 percent and 36.4 percent patients respectively. Chloroquin precipitated lesions in 9.1 percent of the patients. There were significant differences in the duration of drug-intake before onset, morphology and severity of lesions. Histological differences with different drugs were also noted. Based on clinical and histological findings, pathogenesis of lesions caused by different drugs could be suggested. Keratinization of follicular epithelium was the main effect with corticosteroids and INAH. Suppuration of follicular epithelium was an additional early event with corticosteroids. Type III allergic reaction was responsible for iodine lesions and delayed hypersensitivity for chlorpromazine and chloroquine induced lesions.

  3. Formation of Prominences and Dynamics Before Eruption

    Science.gov (United States)

    Luna, Manuel

    2016-07-01

    Solar prominences have fascinated to astronomers since the first scientific observations of eclipses. Prominences are spectacular manifestations of both quiescent and eruptive solar activity. These are cool and dense structures suspended in the very hot solar corona. The continuous improvements in spatial and temporal resolution from both ground- and space-based instruments have revealed a rich structure and dynamics of prominences. Despite over one century of observations, the magnetic structure of a solar prominence, the origin of its mass, and their dynamics remain vigorously debated issues with profound implications for space weather. In this talk I will address the question of the origin of the cool mass of prominences by reviewing past and recent advances in theoretical modelling.

  4. Tracking eruptive phenomena by infrasound: May 13, 2008 eruption at Mt. Etna

    OpenAIRE

    Cannata, A.; Dipartimento di Scienze Geologiche, Università di Catania; Montalto, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Privitera, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Russo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Gresta, S.; Dipartimento di Scienze Geologiche, Università di Catania, Italy

    2009-01-01

    Active volcanoes produce inaudible infrasound due to the coupling between surface magmatic processes and the atmosphere. Monitoring techniques based on infrasound measurements have been proved capable of producing information during volcanic crises. We report observations collected from an infrasound network on Mt. Etna which enabled us to detect and locate a new summit eruption on May 13, 2008 when poor weather inhibited direct observations. Three families of signals were identified that all...

  5. The Tala Tuff, La Primavera caldera Mexico. Pre-eruptive conditions and magma processes before eruption

    Science.gov (United States)

    Sosa-Ceballos, G.

    2015-12-01

    La Primavera caldera, Jalisco Mexico, is a Pleistocenic volcanic structure formed by dome complexes and multiple pyroclastic flows and fall deposits. It is located at the intersection of the Chapala, Colima, and Tepic grabens in western Mexico. The first volcanic activity associated to La Primavera started ~0.1 Ma with the emission of pre-caldera lavas. The caldera collapse occurred 95 ka and is associated to the eruption of ~20 km3of pumice flows known as the Tala tuff (Mahood 1980). The border of the caldera was replaced by a series of domes dated in 75-30 ky, which partially filled the inner depression of the caldera with pyroclastic flows and falls. For more than a decade the Federal Commission of Electricity in Mexico (CFE) has prospected and evaluated the geothermal potential of the Cerritos Colorados project at La Primavera caldera. In order to better understand the plumbing system that tapped the Tala tuff and to investigate its relation with the potential geothermal field at La Primavera we performed a series of hydrothermal experiments and studied melt inclusions hosted in quartz phenocrysts by Fourier Infra red stectroscopy (FTIR). Although some post caldera products at La Primavera contain fayalite and quartz (suggesting QFM conditions) the Tala tuff does not contain fayalite and we ran experiments under NNO conditions. The absence of titanomagnetite does not allowed us to calculate pre-eruptive temperature. However, the stability of quartz and plagioclase, which are natural phases, suggest that temperature should be less than 750 °C at a pressure of 200 MPa. The analyses of H2O and CO2 dissolved in melt inclusions yielded concentrations of 2-5 wt.% and 50-100 ppm respectively. This data confirm that the pre-eruptive pressure of the Tala tuff is ~200 MPa and in addition to major elements compositions suggest that the Tala tuff is either, compositionally zoned or mixed with other magma just prior to eruption.

  6. Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards

    Directory of Open Access Journals (Sweden)

    Yan eLavallée

    2015-02-01

    Full Text Available Super-eruptions generating hundreds of cubic kilometres of pyroclastic density currents are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge environmental impact inferred for this type of eruption, little is yet known about the timescales of deposition and post-depositional flow. Without these timescales, the critical question of the duration of any environmental impact, and the ensuing gravity of its effects for the Earth system, eludes us. The eruption and welding of ignimbrites requires three transects of the glass transition. Magma needs to: 1 fragment during ascent, 2 liquefy and relax during deposition, agglutination and welding (sintering, and 3 quench by cooling into the glassy state. Here we show that welding is a rapid, syn-depositional process and that the welded ignimbrite sheet may flow for up to a few hours before passing through the glass transition a final time. Geospeedometry reveals that the basal vitrophyre of the Grey’s Landing ignimbrite underwent the glass transition at a rate of ~0.1 °C.min^-1 at 870 °C; that is, 30-180 °C below pre-eruptive geothermometric estimates. Application of a 1-D cooling model constrains the timescale of deposition, agglutination, and welding of the basal vitrophyre to less than 1 hour, and possibly even tens of minutes. Thermo-mechanical iteration of the sintering process indicates an optimal temperature solution for the emplacement of the vitrophyres at 966 °C. The vitrophyres reveal a Newtonian rheology up to 46 MPa, which suggests that the ash particles annealed entirely during welding and that viscous energy dissipation is unlikely from loading conditions alone, unless shear stresses imposed by the overlying ash flow were excessively high and sustained over long distances. The findings underline the value of the term 'lava-like' flow to describe the end rheology of Snake River-type ignimbrites, fully consistent with the typical lithofacies observed.

  7. Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards

    Science.gov (United States)

    Lavallée, Yan; Wadsworth, Fabian; Vasseur, Jérémie; Russell, James; Andrews, Graham; Hess, Kai-Uwe; von Aulock, Felix; Kendrick, Jackie; Tuffen, Hugh; Biggin, Andy; Dingwell, Donald

    2015-02-01

    Super-eruptions generating hundreds of cubic kilometres of pyroclastic density currents are commonly recorded by thick, welded and lava-like ignimbrites. Despite the huge environmental impact inferred for this type of eruption, little is yet known about the timescales of deposition and post-depositional flow. Without these timescales, the critical question of the duration of any environmental impact, and the ensuing gravity of its effects for the Earth system, eludes us. The eruption and welding of ignimbrites requires three transects of the glass transition. Magma needs to: 1) fragment during ascent, 2) liquefy and relax during deposition, agglutination and welding (sintering), and 3) quench by cooling into the glassy state. Here we show that welding is a rapid, syn-depositional process and that the welded ignimbrite sheet may flow for up to a few hours before passing through the glass transition a final time. Geospeedometry reveals that the basal vitrophyre of the Grey’s Landing ignimbrite underwent the glass transition at a rate of ~0.1 °C.min^-1 at 870 °C; that is, 30-180 °C below pre-eruptive geothermometric estimates. Application of a 1-D cooling model constrains the timescale of deposition, agglutination, and welding of the basal vitrophyre to less than 1 hour, and possibly even tens of minutes. Thermo-mechanical iteration of the sintering process indicates an optimal temperature solution for the emplacement of the vitrophyres at 966 °C. The vitrophyres reveal a Newtonian rheology up to 46 MPa, which suggests that the ash particles annealed entirely during welding and that viscous energy dissipation is unlikely from loading conditions alone, unless shear stresses imposed by the overlying ash flow were excessively high and sustained over long distances. The findings underline the value of the term 'lava-like' flow to describe the end rheology of Snake River-type ignimbrites, fully consistent with the typical lithofacies observed.

  8. Introduction to the 2012-2013 Tolbachik eruption special issue

    Science.gov (United States)

    Edwards, Benjamin R.; Belousov, Alexander; Belousova, Marina; Volynets, Anna

    2015-12-01

    The Tolbachik volcanic complex in central Kamchatka holds a special place in global volcanological studies. It is one of 4 areas of extensive historic volcanic activity in the northern part of the Central Kamchatka Depression (the others being Klyuchevskoy, Bezymianny, Shiveluch), and is part of the Klyuchevskoy volcanic group, which is one of the most active areas of volcanism on Earth. Tolbachik is especially well-known due largely to the massive 1975-1976 eruption that became known as the Great Tolbachik Fissure eruption (GTFE; Fedotov, 1983; Fedotov et al., 1984). This was one of the first eruptions in Russia to be predicted based on precursory seismic activity, based on M5 earthquakes approximately one week before the eruption started, and was intensively studied during its course by a large number of Russian scientists. A summary of those studies was published, first in Russian and then in English, and it became widely read for many reasons. One in particular is that the eruption was somewhat unusual for a subduction zone setting; although many subduction zone stratovolcanoes have associated basaltic tephra cone-lava fields, this was the first such Hawaiian-style eruption to be widely observed. After the end of the eruption in 1976, the complex showed no signs of activity until 27 November 2012, when increased seismic activity was registered by the Kamchatka Branch of the Russian Geophysical Survey and a red glow from the eruption site was first noticed through the snowstorm haze. This prompted them, and then the Kamchatka Volcanic Emergency Response Team (KVERT) to issue an alert that activity was coming from the south flank of Plosky Tolbachik volcano, the younger of two volcanic edifices (the older is Ostry Tolbachik) that together make up the bulk of the complex along with tephra cone-lava fields that lie along a NE-SW fissure zone that transects Plosky Tolbachik. The new eruption lasted for more than 250 days and, like the 1975-1976 eruption, was

  9. Impact of explosive eruption scenarios at Vesuvius

    Science.gov (United States)

    Zuccaro, G.; Cacace, F.; Spence, R. J. S.; Baxter, P. J.

    2008-12-01

    In the paper the first attempt at the definition of a model to assess the impact of a range of different volcanic hazards on the building structures is presented. This theoretical approach has been achieved within the activities of the EXPLORIS Project supported by the EU. A time history for Sub-Plinian I eruptive scenario of the Vesuvius is assumed by taking advantage of interpretation of historical reports of volcanic crises of the past [Carafa, G. 1632. In opusculum de novissima Vesuvij conflagratione, epistola isagogica, 2 a ed. Napoli, Naples; Mascolo, G.B., 1634. De incendio Vesuvii excitato xvij. Kal. Ianuar. anno trigesimo primo sæculi Decimiseptimi libri X. Cum Chronologia superiorum incendiorum; & Ephemeride ultimi. Napoli; Varrone, S., 1634. Vesuviani incendii historiae libri tres. Napoli], numerical simulations [Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J. Geophys. Res. Lett. 108, 2202. doi:10.1029/2001 JB000508; Macedonio, G., Costa, A., Longo, A., 2005. HAZMAP: a computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31,837-845; Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241,634-647] and experts' elicitations [Aspinall, W.P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader, H.M. Coles, S.G. Connor, C.B. Connor, L.J. (Eds), Statistics in Volcanology. Geological Society of London on behalf of IAVCEI, pp.15-30; Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press, London] from which the impact on the building structures is derived. This is achieved by an original definition of vulnerability functions for multi-hazard input and a dynamic cumulative damage model. Factors affecting the variability of the final

  10. A basalt trigger for the 1991 eruptions of Pinatubo volcano?

    Science.gov (United States)

    Pallister, J.S.; Hoblitt, R.P.; Reyes, A.G.

    1992-01-01

    THE eruptive products of calc-alkaline volcanos often show evidence for the mixing of basaltic and acid magmas before eruption (see, for example, refs 1, 2). These observations have led to the suggestion3 that the injection of basaltic magma into the base of a magma chamber (or the catastrophic overturn of a stably stratified chamber containing basaltic magma at its base) might trigger an eruption. Here we report evidence for the mixing of basaltic and dacitic magmas shortly before the paroxysmal eruptions of Pinatubo volcano on 15 June 1991. Andesitic scoriae erupted on 12 June contain minerals and glass with disequilibrium compositions, and are considerably more mafic than the dacitic pumices erupted on 15 June. Differences in crystal abundance and glass composition among the pumices may arise from pre-heating of the dacite magma by the underlying basaltic liquid before mixing. Degassing of this basaltic magma may also have contributed to the climatologically important sulphur dioxide emissions that accompanied the Pinatubo eruptions.

  11. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    Science.gov (United States)

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  12. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    Science.gov (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  13. Evolving Coronal Holes and Interplanetary Erupting Stream Disturbances

    Indian Academy of Sciences (India)

    Rajendra Shelke

    2006-06-01

    Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of newcoronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support high-speed flow trailing behind the compression zone of the erupting stream for several days.

  14. Concurrent eruptions at Etna, Stromboli, and Vulcano: casualty or causality?

    Directory of Open Access Journals (Sweden)

    R. Funiciello

    2008-06-01

    Full Text Available Anecdotes of concurrent eruptions at Etna, Stromboli, and Vulcano (Southern Italy have persisted for more than 2000 years and volcanologists in recent and past times have hypothesized a causal link among these volcanoes. Here this hypothesis is tested. To introduce the problem and provide examples of the type of expected volcanic phenomena, narratives of the most notable examples of concurrent eruptions are provided. Then the frequency of eruptions at each individual volcano is analysed for about the last 300 years and the expected probability of concurrent eruptions is calculated to compare it to the observed probability. Results show that the occurrence of concurrent eruptions is often more frequent than a random probability, particularly for the Stromboli-Vulcano pair. These results are integrated with a statistical analysis of the earthquake catalogue to find evidence of linked seismicity in the Etnean and Aeolian areas. Results suggest a moderate incidence of non-random concurrent eruptions, but available data are temporally limited and do not allow an unequivocal identification of plausible triggers; our results, however, are the first attempt to quantify a more-than-2000-years-old curious observation and constitute a starting point for more sophisticated analyses of new data in the future. We look forward to our prediction of a moderate incidence of concurrent eruptions being confirmed or refuted with the passage of time and occurrence of new events.

  15. Database for potential hazards from future volcanic eruptions in California

    Science.gov (United States)

    White, Melissa N.; Ramsey, David W.; Miller, C. Dan

    2011-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the past 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State's citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. This digital release contains information from maps of potential hazards from future volcanic eruptions in the state of California, published as Plate 1 in U.S. Geological Survey Bulletin 1847. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, main report text, and accompanying hazard tables from Bulletin 1847. It should be noted that much has been learned about the ages of eruptive events in the State of California since the publication of Bulletin 1847 in 1989. For the most up to date information on the status of California volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  16. First recorded eruption of Nabro volcano, Eritrea, 2011

    Science.gov (United States)

    Goitom, Berhe; Oppenheimer, Clive; Hammond, James O. S.; Grandin, Raphaël; Barnie, Talfan; Donovan, Amy; Ogubazghi, Ghebrebrhan; Yohannes, Ermias; Kibrom, Goitom; Kendall, J.-Michael; Carn, Simon A.; Fee, David; Sealing, Christine; Keir, Derek; Ayele, Atalay; Blundy, Jon; Hamlyn, Joanna; Wright, Tim; Berhe, Seife

    2015-10-01

    We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of regional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodigious quantity of SO2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic significance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shallow, NW-SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response mitigated the human costs of the eruption.

  17. The Eruption Forecasting Information System (EFIS) database project

    Science.gov (United States)

    Ogburn, Sarah; Harpel, Chris; Pesicek, Jeremy; Wellik, Jay; Pallister, John; Wright, Heather

    2016-04-01

    The Eruption Forecasting Information System (EFIS) project is a new initiative of the U.S. Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) with the goal of enhancing VDAP's ability to forecast the outcome of volcanic unrest. The EFIS project seeks to: (1) Move away from relying on the collective memory to probability estimation using databases (2) Create databases useful for pattern recognition and for answering common VDAP questions; e.g. how commonly does unrest lead to eruption? how commonly do phreatic eruptions portend magmatic eruptions and what is the range of antecedence times? (3) Create generic probabilistic event trees using global data for different volcano 'types' (4) Create background, volcano-specific, probabilistic event trees for frequently active or particularly hazardous volcanoes in advance of a crisis (5) Quantify and communicate uncertainty in probabilities A major component of the project is the global EFIS relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest, including the timing of phreatic eruptions, column heights, eruptive products, etc. and will be initially populated using chronicles of eruptive activity from Alaskan volcanic eruptions in the GeoDIVA database (Cameron et al. 2013). This database module allows us to query across other global databases such as the WOVOdat database of monitoring data and the Smithsonian Institution's Global Volcanism Program (GVP) database of eruptive histories and volcano information. The EFIS database is in the early stages of development and population; thus, this contribution also serves as a request for feedback from the community.

  18. Hybrid Pyroclastic Deposits Accumulated From The Eruptive Transitional Regime of Plinian Eruptions.

    Science.gov (United States)

    di Muro, Andrea; Rosi, Mauro

    In the past 15 years sedimentological studies (Valentine and Giannetti, 1995; Wilson and Hildreth, 1997; Rosi et al., 2001), physical models (Neri et al., 1988; Veitch and Woods, 2000; Kaminski and Jaupart, 2001) and laboratory experiments (Carey et al., 1988) converge at defining a new eruptive regime transitional between the fully convective and the fully collapsing end -members. Buoyant columns and density currents are contemporaneously fed in the transitional dynamic regime and fall beds are intercalated with the density current deposits in the area invested by them. The sedimentological analysis of the well exposed 800yr B.P. plinian eruption of the volcano Quilotoa (Ecuador) enabled us to i) recognize a gradual evolution of the eruptive regime, ii) characterize the fall and density current deposits emplaced during the transitional regime. The eruptive activity began with at least two phreatic explosions and the effusion of a small volume lava dome. Eruptive behaviour then switched to explosive and fed a purely convective column that accumulated a reverse graded pumice fall while rising up to an height of 30 km. A small volume, diluted and slow density current (S1 current) was emplaced in the proximal SW sector just before the column reached its maximum height. Two group s of more voluminous and faster intra-plinian density currents (S2 and S3 currents) were subsequently emplaced contemporaneously with the accumulation of the lower and upper part respectively of a normal graded pumice fall bed. S2 and S3 currents were radially distributed around the crater and deposited bedded layers with facies of decreasing energy when moving away from the crater. Massive beds of small volume were emplaced only i) inside the proximal valley channel near the topography break in slope, ii) outside the valley channel in medial area where the currents impinged against relieves. A thick sequence of pyroclastic flow deposits (S4 currents) accumulated in the valley channels around

  19. Magnetic Field Restructuring Associated with Two Successive Solar Eruptions

    OpenAIRE

    Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong

    2014-01-01

    We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field (NLFFF) extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity, and ...

  20. Eruptive history of Mammoth Mountain and its mafic periphery, California

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-07-13

    This report and accompanying geologic map portray the eruptive history of Mammoth Mountain and a surrounding array of contemporaneous volcanic units that erupted in its near periphery. The moderately alkaline Mammoth eruptive suite, basaltic to rhyodacitic, represents a discrete new magmatic system, less than 250,000 years old, that followed decline of the subalkaline rhyolitic system active beneath adjacent Long Valley Caldera since 2.2 Ma (Hildreth, 2004). The scattered vent array of the Mammoth system, 10 by 20 km wide, is unrelated to the rangefront fault zone, and its broad nonlinear footprint ignores both Long Valley Caldera and the younger Mono-Inyo rangefront vent alignment.

  1. Management of Large Erupting Complex Odontoma in Maxilla

    Directory of Open Access Journals (Sweden)

    Colm Murphy

    2014-01-01

    Full Text Available We present the unusual case of a large complex odontoma erupting in the maxilla. Odontomas are benign developmental tumours of odontogenic origin. They are characterized by slow growth and nonaggressive behaviour. Complex odontomas, which erupt, are rare. They are usually asymptomatic and are identified on routine radiograph but may present with erosion into the oral cavity with subsequent cellulitis and facial asymmetry. This present paper describes the presentation and management of an erupting complex odontoma, occupying the maxillary sinus with extension to the infraorbital rim. We also discuss various surgical approaches used to access this anatomic area.

  2. Ubiquitous Solar Eruptions Driven by Magnetized Vortex Tubes

    CERN Document Server

    Kitiashvili, I N; Lele, S K; Mansour, N N; Wray, A A

    2013-01-01

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruptions events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push surrounding material up, generating quasiperiodic shocks. Our simulations reveal a complicated high-speed flow patterns, and thermodynamic and magnetic structure in the erupting vortex tubes. We found that the eruptions are initiated in the subsurface layers and are driven by the high-pressure gradients in the subphotosphere and photosphere, and by the Lorentz force in the higher atmosphere layers.

  3. Three-dimensional analysis of mandibular growth and tooth eruption

    DEFF Research Database (Denmark)

    Krarup, S.; Darvann, Tron Andre; Larsen, Per;

    2005-01-01

    Normal and abnormal jaw growth and tooth eruption are topics of great importance for several dental and medical disciplines. Thus far, clinical studies on these topics have used two-dimensional (2D) radiographic techniques. The purpose of the present study was to analyse normal mandibular growth...... and tooth eruption in three dimensions based on computer tomography (CT) scans, extending the principles of mandibular growth analysis proposed by Bjork in 1969 from two to three dimensions. As longitudinal CT data from normal children are not available (for ethical reasons), CT data from children......, relocated laterally during growth. Furthermore, the position of tooth buds remained relatively stable inside the jaw until root formation started. Eruption paths of canines and premolars were vertical, whereas molars erupted in a lingual direction. The 3D method would seem to offer new insight into jaw...

  4. Magnetohydrodynamic Modeling of the Solar Eruption on 2010 April 8

    CERN Document Server

    Kliem, B; van Ballegooijen, A; DeLuca, E

    2013-01-01

    The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region that erupted on 2010 April~8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation, include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of magnetofrictional relaxation runs, in particular that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination b...

  5. Eruption of Mount St. Helens, May 18, 1980

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The May 18, 1980 eruption of Mount Saint Helens was the most destructive in the history of the United States. Mt. Saint Helens is located in southwest Washington in...

  6. Eruption cyst treated with a laser powered hydrokinetic system.

    Science.gov (United States)

    Boj, J R; Poirier, C; Espasa, E; Hernandez, M; Jacobson, B

    2006-01-01

    Eruption cysts are benign cysts that appear on the mucosa of a tooth shortly before its eruption. The majority disappear on their own. If they hurt, bleed or are infected they may require surgical treatment to expose the tooth and drain the content. Here we present a clinical case of a six-year-old child with an eruption cyst on the permanent maxillary central left incisor, which was handled using treatment with an Er,Cr-YSGG laser. It did not require suture, there was no haemorrhage, swelling, infection or postoperative pain. The treatment of eruption cysts with this technique facilitates obtaining the cooperation of pediatric patients and makes behavior management by the pediatric dentist easier. PMID:16683666

  7. Recent Developments of NEMO: Detection of Solar Eruptions Characteristics

    CERN Document Server

    Podladchikova, Olena; Leontiev, Pavel; Van der Linden, Ronald

    2011-01-01

    The recent developments in space instrumentation for solar observations and telemetry have caused the necessity of advanced pattern recognition tools for the different classes of solar events. The Extreme ultraviolet Imaging Telescope (EIT) of solar corona on-board SOHO spacecraft has uncovered a new class of eruptive events which are often identified as signatures of Coronal Mass Ejection (CME) initiations on solar disk. It is evident that a crucial task is the development of an automatic detection tool of CMEs precursors. The Novel EIT wave Machine Observing (NEMO) (http://sidc.be/nemo) code is an operational tool that detects automatically solar eruptions using EIT image sequences. NEMO applies techniques based on the general statistical properties of the underlying physical mechanisms of eruptive events on the solar disc. In this work, the most recent updates of NEMO code - that have resulted to the increase of the recognition efficiency of solar eruptions linked to CMEs - are presented. These updates pro...

  8. Helical Kink Instability in a Confined Solar Eruption

    CERN Document Server

    Hassanin, Alshaimaa

    2016-01-01

    A model for strongly writhing confined solar eruptions suggests an origin in the helical kink instability of a coronal flux rope which remains stable against the torus instability. This model is tested against the well observed filament eruption on 2002 May 27 in a parametric MHD simulation study which comprises all phases of the event. Good agreement with the essential observed properties is obtained. These include the confinement, terminal height, writhing, distortion, and dissolution of the filament, and the flare loops. The agreement is robust against variations in a representative range of parameter space. Careful comparisons with the observation data constrain the ratio of the external toroidal and poloidal field components to $B_\\mathrm{et}/B_\\mathrm{ep}\\approx1$ and the initial flux rope twist to $\\Phi\\approx4\\pi$. Different from ejective eruptions, two distinct phases of strong magnetic reconnection can occur. First, the erupting flux is cut by reconnection with overlying flux in the helical current ...

  9. Eruption Forecasting: Success and Surprise at Kasatochi and Okmok Volcanoes

    Science.gov (United States)

    Prejean, S.; Power, J.; Brodsky, E.

    2008-12-01

    In the summer of 2008, the Alaska Volcano Observatory (AVO) successfully forecast eruption at an unmonitored volcano, Kasatochi, and was unable to forecast eruption at a well monitored volcano, Okmok. We use these case studies to explore the limitations and opportunities of seismically monitored and unmonitored systems and to evaluate situations when we can expect to succeed and when we must expect to fail in eruption forecasting. Challenges in forecasting eruptions include interpreting seismicity in context of volcanic history, developing a firm understanding of distance scales over which pre- and co-eruptive seismic signals are observed, and improving our ability to discriminate processes causing tremor. Kasatochi Volcano is a 3 km wide island in the central Aleutian Islands with no confirmed historical activity. Little is known about the eruptive history of the volcano. It was not considered an immediate threat until 3 days prior to eruption. A report of ground shaking by a biology field crew on the island on August 4 was the first indication of unrest. On August 6 a vigorous seismic swarm became apparent on the nearest seismic stations 40 km distant. The aviation color code/volcano alert level at Kasatochi was increased to Yellow/Advisory in response to increasing magnitude and frequency of earthquakes. The color code/alert level was increased to Orange/Watch on August 7 when volcanic tremor was observed in the wake of the largest earthquake in the sequence, a M 5.6. Three hours after the onset of volcanic tremor, eruption was confirmed by satellite data and the color code/alert level increased to Red/Warning. Eruption forecasting was possible only due to the exceptionally large moment release of pre-eruptive seismicity. The key challenge in evaluating the situation was distinguishing between tectonic activity and a volcanic swarm. It is likely there were weeks to months of precursory seismicity, however little instrumental record exists due to the lack of a

  10. Subaqueous explosive eruption and welding of pyroclastic deposits.

    Science.gov (United States)

    Kokelaar, P; Busby, C

    1992-07-10

    Silicic tuffs infilling an ancient submarine caldera, at Mineral King in California, show microscopic fabrics indicative of welding of glass shards and pumice at temperatures >500 degrees C. The occurrence indicates that subaqueous explosive eruption and emplacement of pyroclastic materials can occur without substantial admixture of the ambient water, which would cause chilling. Intracaldera progressive aggradation of pumice and ash from a thick, fast-moving pyroclastic flow occurred during a short-lived explosive eruption of approximately 26 cubic kilometers of magma in water >/=150 meters deep. The thickness, high velocity, and abundant fine material of the erupted gas-solids mixture prevented substantial incorporation of ambient water into the flow. Stripping of pyroclasts from upper surfaces of subaqueous pyroclastic flows in general, both above the vent and along any flow path, may be the main process giving rise to buoyant-convective subaqueous eruption columns and attendant fallout deposits. PMID:17794750

  11. Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    Science.gov (United States)

    Gunn, L. S.; Blake, S.; Jones, M. C.; Rymer, H.

    2014-01-01

    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data have been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010. Data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption duration between the years 1600 and 1669 is found to be statistically different from that following it and the forecasting model is run on two datasets of Mt. Etna flank eruption durations: 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect on the forecasting model result, especially where short durations are involved. By assigning the terms `likely' and `unlikely' to probabilities of 66 % or more and 33 % or less, respectively, the forecasting model based on the 1600-2010 dataset indicates that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 86 days (± 29 days). This approach can easily be adapted for use on other highly active, well

  12. Recurrent patterns in fluid geochemistry data prior to phreatic eruptions

    Science.gov (United States)

    Rouwet, Dmitri; Sandri, Laura; Todesco, Micol; Tonini, Roberto; Pecoraino, Giovannella; Diliberto, Iole Serena

    2016-04-01

    Not all volcanic eruptions are magma-driven: the sudden evaporation and expansion of heated groundwater may cause phreatic eruptions, where the magma involvement is absent or negligible. Active crater lakes top some of the volcanoes prone to phreatic activity. This kind of eruption may occur suddenly, and without clear warning: on September 27, 2014 a phreatic eruption of Ontake, Japan, occurred without timely precursors, killing 57 tourists near the volcano summit. Phreatic eruptions can thus be as fatal as higher VEI events, due to the lack of recognised precursory signals, and because of their explosive and violent nature. In this study, we tackle the challenge of recognising precursors to phreatic eruptions, by analysing the records of two "phreatically" active volcanoes in Costa Rica, i.e. Poás and Turrialba, respectively with and without a crater lake. These volcanoes cover a wide range of time scales in eruptive behaviour, possibly culminating into magmatic activity, and have a long-term multi-parameter dataset mostly describing fluid geochemistry. Such dataset is suitable for being analysed by objective pattern recognition techniques, in search for recurrent schemes. The aim is to verify the existence and nature of potential precursory patterns, which will improve our understanding of phreatic events, and allow the assessment of the associated hazard at other volcanoes, such as Campi Flegrei or Vulcano, in Italy. Quantitative forecast of phreatic activity will be performed with BET_UNREST, a Bayesian Event Tree tool recently developed within the framework of FP7 EU VUELCO project. The study will combine the analysis of fluid geochemistry data with pattern recognition and phreatic eruption forecast on medium and short-term. The study will also provide interesting hints on the features that promote or hinder phreatic activity in volcanoes that host well-developed hydrothermal circulation.

  13. Global monsoon precipitation responses to large volcanic eruptions

    OpenAIRE

    Fei Liu; Jing Chai; Bin Wang; Jian Liu; Xiao Zhang; Zhiyuan Wang

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Comm...

  14. [Clinical analysis of 410 cases of drug eruption].

    Science.gov (United States)

    Mo, Bao-han

    2003-02-01

    An clinical analysis was conducted among a cohort of 410 patients drug eruption with treated in our department from January 1995 to December 2001. We found that the common drugs likely to lead to anaphylactic reactions included cephalosporins, ampicillin types, antipyretic analgesic types, rabies vaccine, sulfonamides, tetracyclines types, etc. The drug eruption mostly presents diverse clinical features resembling the rashes as seen in cases of scarlet fever, measles, urtica, or mucosal edema or ulceration.

  15. Particle-water heat transfer during explosive volcanic eruptions

    OpenAIRE

    Woodcock, D. C.; Gilbert, Jennie; Lane, S. J.

    2012-01-01

    Thermal interaction between volcanic particles and water during explosive eruptions has been quantified using a numerical heat transfer model for spherical particles. The model couples intraparticle conduction with heat transfer from the particle surface by boiling water in order to explore heat loss with time for a range of particle diameters. The results are combined with estimates of particle settling times to provide insight into heat removal during eruption from samples of volcanic parti...

  16. The Chronology of Third Molar Eruption in the Croatian Population

    OpenAIRE

    Brkić, Hrvoje; Vodanović, Marin; Dumančić, Jelena; Lovrić, Željka; Čuković-Bagić, Ivana; Petrovečki, Mladen

    2011-01-01

    Dental age estimation is common in orthodontics, paedodontics, paleodontology and forensic dentistry. The aim of this study was to assess chronological course of eruptive developmental phases of third molar and to establish parameters for the Croatian population. Sample of this study consisted of 1249 orthopantomograms of 530 (42.4%) male and 719 (57.6%) female subjects, aged 10 to 25 years. Eruptive phases were classified in 4 stages. No significant sex difference was found. Esta...

  17. Can Volcanic Eruptions Produce Ice Ages or Mass Extinctions?

    Science.gov (United States)

    Robock, A.; Ammann, C.; Oman, L.; Shindell, D.; Stenchikov, G.

    2006-12-01

    Volcanic eruptions are well known to be important causes of interannual and even interdecadal climate change. But can very large eruptions initiate ice ages, as has been suggested for the Toba eruption ~74,000 years ago? Could flood basalt eruptions, such as the Deccan Traps 65,000,000 years ago or the Siberian Traps 250,000,000 years ago, have produced climate change large enough and long-lasting enough, along with other atmospheric pollution, to have caused mass extinctions? Here we conduct climate model simulations of the effects of a volcanic eruption 100 times larger than the 1991 Pinatubo eruption as a test of the climatic effects of Toba. We use two different state-of-the-art climate models, CCSM 3.0 from the National Center for Atmospheric Research and ModelE from the NASA Goddard Institute for Space Studies, to investigate the dependence of the results on the climate model used. We find that although the "Toba" eruption produces very large global cooling for a couple years, of up to 10°C, the volcanic aerosols leave the atmosphere quickly and the climate largely recovers in a decade. We investigated the mechanism of vegetation response to the cold and dark, but this mechanism was not strong enough to prolong the response enough to allow ice sheets to grow. On the other hand, continuous emissions from massive flood basalt eruptions lasting several decades could make it so cold and dark at the Earth's surface that many species would find it hard to survive. On longer time scales, however, continued large greenhouse gas emissions would have a significant warming effect. With good estimates of the amount and timing of gas and particle emissions into the atmosphere, we have the climate modeling tools to calculate their impact on climate.

  18. Tracking effusive eruptions in near real-time: 2014 Fogo (Cape Verde) eruption

    Science.gov (United States)

    Laiolo, Marco; Coppola, Diego; Cigolini, Corrado; Faria, Bruno; Ripepe, Maurizio

    2015-04-01

    The Fogo volcano (Cape Verde), after almost 20 years of inactivity, entered in a new effusive phase on November 23, 2014. The eruption occurred on the Fogo's Pico cone inside the Cha Caldera where the lava flow caused the evacuation of the Bangaeira and Portela inhabitants. To track the thermal evolution of this eruption, we extended the near-real time processing of the MIROVA (Middle InfraRed Observation of Volcanic Activity) algorithm to Fogo island. MIROVA is a hot-spot detection system based on the analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS) data that provide thermal maps (1 km resolution) and radiant flux estimates, in near real time (1-4 hours from satellite overpass). Thermal output retrieved by MIROVA can be converted into time-average lava discharge rates allowing the identification of ongoing effusive trends. During the first 45 days of activity the eruption shows a waxing-waning trend typical of pressurized closed systems. Preliminary results indicate that MIROVA is particularly efficient to provide near real-time data that are critical for better assessing volcanic risk, and to help the decision-makers during volcanic crisis. Data requested by the UNDAC (United Nations Disaster Assessment and Coordination) team operating in Cape Verde, through the Emergency Response Coordination Center (ERCC) of the European Mechanism of Civil Protection, were provided in near real-time via web to the National Institute of Meteorology and Geophysics and to National Civil Protection. Once compared to seismological data, information provided by MIROVA have been successfully used during the volcanic crisis.

  19. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-chen; Lin, Shih-guei; Suganuma, Katsuaki

    2016-01-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings. PMID:27703220

  20. Solar Eruptive Events (SEE) 2020 Mission Concept

    CERN Document Server

    Lin, R P; Krucker, S; Hudson, H; Hurford, G; Bandler, S; Christe, S; Davila, J; Dennis, B; Holman, G; Milligan, R; Shih, A Y; Kahler, S; Kontar, E; Wiedenbeck, M; Cirtain, J; Doschek, G; Share, G H; Vourlidas, A; Raymond, J; Smith, D M; McConnell, M; Emslie, G

    2013-01-01

    Major solar eruptive events (SEEs), consisting of both a large flare and a near simultaneous large fast coronal mass ejection (CME), are the most powerful explosions and also the most powerful and energetic particle accelerators in the solar system, producing solar energetic particles (SEPs) up to tens of GeV for ions and hundreds of MeV for electrons. The intense fluxes of escaping SEPs are a major hazard for humans in space and for spacecraft. Furthermore, the solar plasma ejected at high speed in the fast CME completely restructures the interplanetary medium (IPM) - major SEEs therefore produce the most extreme space weather in geospace, the interplanetary medium, and at other planets. Thus, understanding the flare/CME energy release process(es) and the related particle acceleration processes are major goals in Heliophysics. To make the next major breakthroughs, we propose a new mission concept, SEE 2020, a single spacecraft with a complement of advanced new instruments that focus directly on the coronal e...

  1. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  2. Evidence of a Pre-eruptive Fluid Phase for the Millennium Eruption, Paektu Volcano, North Korea

    Science.gov (United States)

    Iacovino, K.; Sisson, T. W.; Lowenstern, J. B.

    2014-12-01

    We present initial results of a study of comenditic to trachytic melt inclusions from the Millennium Eruption (ME) of Paektu volcano (AD 946; VEI≥7; 25 km3 DRE). Paektu volcano (aka Changbaishan) is a remote and poorly studied intraplate stratovolcano whose 37 km2 caldera is bisected by the political border between North Korea and China, limiting studies of its proximal deposits. ME magmas are predominantly phenocryst-poor (≤3 vol%) comendites plus a volumetrically minor late-stage, more phenocryst-rich (10-20 vol%) trachyte. Sizeable (100-500 µm diameter) glassy but bubble-bearing melt inclusions are widespread in anorthoclase and hedenbergite phenocrysts, as well as in rarer quartz and fayalite phenocrysts. Comparing the relative enrichments of incompatible volatile and non-volatile elements in melt inclusions along a liquid line of descent shows decreasing volatile/Zr ratios suggesting the partitioning of volatiles into a fluid phase. This suggests that current gas-yield estimates (Horn & Schminke, 2000) for the ME, based on the petrologic method (difference in volatiles between melt inclusions and matrix glass), could be severe underestimates. Establishing the composition and quantity of a pre-eruptive fluid phase is the primary goal of this study and has implications for eruption triggering and for modeling the climatic effects of one of the largest eruptions in the last 10,000 years. Including results from Horne and Schminke (2000), melt inclusions from within a single pumice fall unit show a wide range in dissolved volatile contents and magma chemistries. Concentrations of H2O are moderate (2-3.5 wt% via FTIR), with Cl and F ranging from 500-4600 ppm and 1100-4700 ppm (via EPMA). CO2 is below the detection limit of 2 ppm (FTIR with N2 purge) in bubble-bearing melt inclusions, but is detectable (≤56 ppm) in melt inclusions homogenized at 100 MPa and 850-900 °C for ~30 min (conditions also leading to reduction of dissolved H2O to 0.6-2 wt

  3. Challenges modeling clastic eruptions: applications to the Lusi mud eruption, East Java, Indonesia.

    Science.gov (United States)

    Collignon, Marine; Schmid, Daniel; Mazzini, Adriano

    2016-04-01

    Clastic eruptions involve brecciation and transport of the hosting rocks by ascent fluids (gas and/or liquids), resulting in a mixture of rock clasts and fluids (i.e. mud breccia). This kind of eruptions is often associated with geological features such as mud volcanoes, hydrothermal vents or more generically with piercement structures. Over the past decades, several numerical models, often based on those used in volcanology, have been employed to better understand the behavior of such clastics systems. However, modeling multiphase flow is challenging, and therefore most of the models are considering only one phase flow. Many chemical, mechanical and physical aspects remain still poorly understood. In particular, the rheology of the fluid is one of the most important aspects, but also the most difficult to characterize. Experimental flow curves can be obtained on the finest fraction, but coarser particles (> 1mm) are usually neglected. While these experimental measurements usually work well on magma, they are much more difficult to perform when clay minerals are involved. As an initial step, we use analytical and simplified numerical models (flow in a pipe) to better understand the flow dynamics within a main conduit connected to an overpressured reservoir. The 2D numerical model solves the stokes equations, discretized on a finite element mesh. The solid phase is treated as rigid particles in suspension in the liquid. The gaseous phase (methane and carbon dioxide) is treated in an analytical manner using the equations of state of the H2O-CO2 and H2O-CH4 systems. Here, we present an overview of the state-of-the-art in modeling clastic eruptions as well as the limitations and challenges of such numerical models. We also discuss the challenges associated to the specific case of Lusi. In particular the difficulty to characterize the mud properties and the technical challenges associated with the acquisition of new data and development of more sophisticated models

  4. Ubiquitous Solar Eruptions Driven by Magnetized Vortex Tubes

    Science.gov (United States)

    Kitiashvili, I. N.; Kosovichev, A. G.; Lele, S. K.; Mansour, N. N.; Wray, A. A.

    2013-06-01

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns and thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.

  5. UBIQUITOUS SOLAR ERUPTIONS DRIVEN BY MAGNETIZED VORTEX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Kitiashvili, I. N.; Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Lele, S. K.; Mansour, N. N.; Wray, A. A., E-mail: irinasun@stanford.edu [Center for Turbulence Research, Stanford University, Stanford, CA 94305 (United States)

    2013-06-10

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns and thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.

  6. Potential Hazards of Eruptions around the Tianchi Caldera Lake, China

    Institute of Scientific and Technical Information of China (English)

    WEI Haiquan; HONG Hanjing; R.S.J. SPARKS; J.S. WALDER; HAN Bin

    2004-01-01

    Since the eruption of the Tianchi volcano about 1000 years ago, there have been at least 3 to 5 eruptions of small to moderate size. In addition, hazardous avalanches, rock falls and debris flows have occurred during periods between eruptions. A future eruption of the Tianchi volcano is likely to involve explosive interaction between magma and the caldera lake. The volume of erupted magma is almost in a range of 0.1-0.5 km3. Tephra fallout may damage agriculture in a large area near the volcano. If only 1% of the lake water were ejected during an eruption and then precipitated over an area of 200 km2, the average rainfall would be 100 mm. Moreover, lahars are likely to occur as both tephra and water ejected from the caldera lake fall onto flanks of the volcano. Rocks avalanching into the caldera lake also would bring about grave hazards because seiches would be triggered and lake water with the volume equal to that of the landslide would spill out of the existing breach in the caldera and cause flooding downstream.

  7. Towards an Improved Eruptive History for Mauritius

    Science.gov (United States)

    Moore, J. C.; White, W. M.; Paul, D.

    2007-12-01

    The volcanic island of Mauritius (20°20' S, 57°30' E) is located in the western Indian Ocean, and is understood to be the product of the Réunion mantle plume. Mauritius has a well-established history of episodic volcanism and erosional hiatus, traditionally characterized as three chemically and temporally distinct eruptive phases: 1) the voluminous shield-building lavas of the Older Series (7.8 to 5.5 Ma), 2) the Intermediate Series (3.5 to 1.9 Ma), and 3) the Younger Series (1.00 to 0.00 Ma; Duncan, unpublished data). The Older Series is exposed in remnants of the old shield volcano and is hence analogous to the Hawaiian shield-building phase. Lavas of the Intermediate and Younger Series cover 90% or more of the surface of the island, but are thought to be volumetrically minor. The Intermediate and Younger Series are enriched in incompatible elements, and but have more depleted isotopic signatures than the Older Series and in this and other ways are analogous to Hawaiian post-erosional volcanism. Recent collaboration with the Mauritian Water Resources Unit has permitted the study of a series of newly available drill cores. Dense sampling of a 220-meter core section (#89, Beau Bois, 20°12'25.9'' S, 57°33'50.8'' E) has revealed the presence of nine flow sequences, separated by highly weathered and altered basalt and lateritic soils varying in thickness up to 20 meters. The drill site is located on Intermediate Series lavas, approximately one kilometer inside the topographic rim of the large central caldera complex. Isotopic analysis shows relatively uniform 87Sr/86Sr (0.70377 ± 0.00018) and ǎrepsilonNd (+5.1 ± 0.3) throughout the upper 180 meters of the core. These compositions match those previously reported for the rejuvenescent Intermediate and Younger Series. The deepest sample has more enriched 87Sr/86Sr (0.70422) and ǎrepsilonNd (+4.1), values that fall well within previously established fields for the Older Series. In contrast to recent work ( Paul

  8. Volcanic Eruption: Students Develop a Contingency Plan

    Science.gov (United States)

    Meisinger, Philipp; Wittlich, Christian

    2013-04-01

    Dangerous, loud, sensational, exciting - natural hazards have what it takes to get students attention around the globe. Arising interest is the first step to develop an intrinsic motivation to learn about the matter and endure the hardships that students might discover along the way of the unit. Natural hazards thereby establish a close-knit connection between physical and anthropological geography through analyzing the hazardous event and its consequences for the people living in the affected area. Following a general principle of didactics we start searching right on our doorsteps to offer students the possibility to gain knowledge on the familiar and later transfer it to the unknown example. Even in Southwest Germany - a region that is rather known for its wine than its volcanic activity - we can find a potentially hazardous region. The "Laacher See" volcano (a caldera lake) in northern Rhineland-Palatinate is according to Prof. H.U. Schminke a "potentially active volcano" . Its activity can be proven by seismic activities, or experienced when visiting the lake's southeastern shore, where carbondioxid and sulphur gases from the underlying magma chamber still bubble up. The Laacher See is part of a range of volcanoes (classified from 'potentially active' to 'no longer active') of the East Eifel Volcanic Field. Precariously the Laacher See is located closely to the densely populated agglomerations of Cologne (NE, distance: 45 km) and the former capital Bonn (NE: 35km), as well as Koblenz (E: 24km) and the Rhine river. Apart from that, the towns of Andernach (E: 8km ± 30 000 inhabitants) and Mayen (SW: 11km ±20 000 inhabitants) and many smaller towns and villages are nearby due to economic reasons. The number of people affected by a possible eruption easily exceeds two million people considering the range as prime measurement. The underlying danger, as projected in a simulation presented by Prof. Schminke, is a lava stream running down the Brohltal valley

  9. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  10. Keck observations of eruptions on Io in 2003-2005

    Science.gov (United States)

    de Pater, Imke; Davies, Ashley Gerard; Marchis, Franck

    2016-08-01

    We report observations of four energetic volcanic eruptions on Io: at Tupan Patera on UT 8 March 2003; Tung Yo Patera on UT 28 May 2004; Sui Jen Patera on UT 30 May 2004; and south of Babbar Patera on UT 31 May 2005. The Tung Yo, Sui Jen and south of Babbar Paterae eruptions are in locations where no activity had been seen before. Our observations were obtained at near-infrared wavelengths (1.2-4.7 μm) with the 10-m Keck telescope equipped with adaptive optics. We report single and two-temperature blackbody fits, as well as single-component and dual-component Io Flow Model (IFM) fits (Davies, 1996, Icarus, 124, 45-61) to all four eruptions where applicable. We use 2-μm and 5-μm radiant fluxes, the 2:5-μm radiant flux ratio, and radiant flux density of each thermal source to constrain the likely style of volcanic eruption. All eruptions are characterized by a high temperature IFM component (ranging from 1475 to ∼900 K) from a relatively small area (<1 km2 to several tens of km2), and a lower temperature component with a more extensive surface area. The relationship of the areas at the highest temperatures to the cooler, more extensive area is of particular importance in deriving eruption style. Model fits to the Sui Jen Patera data are strongly suggestive of lava fountaining, although not at a level consistent with a large "outburst" eruption. Activity at Tupan Patera suggests that the entire floor of the patera may have been resurfaced with silicate lava in 2003.

  11. The effect of volcanic eruptions on the hydrological cycle

    Science.gov (United States)

    Iles, Carley; Hegerl, Gabriele

    2015-04-01

    Large explosive volcanic eruptions inject sulphur dioxide into the stratosphere where it is oxidised to sulphate aerosols which reflect sunlight. This causes a reduction in global temperature and precipitation lasting a few years. We investigate the robust features of this precipitation response, comparing climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive to three observational datasets, including one with ocean coverage. Global precipitation decreases significantly following eruptions in CMIP5 models, with the largest decrease in wet tropical regions. This also occurs in observational land data, and ocean data in the boreal cold season. In contrast, the dry tropical ocean regions show an increase in precipitation in CMIP5 models. Monsoon regions dry following eruptions in both models and observations, whilst in response to individual eruptions, the ITCZ shifts away from the hemisphere with the greater concentration of aerosols in CMIP5. The ocean response in CMIP5 is longer lasting than that over land, but observational results are too noisy to confirm this. We detect the influence of volcanism on precipitation in the boreal cold season, although the models underestimate the size of the response, whilst in the warm season the volcanic influence is marginally detectable. We then examine whether the influence of volcanoes can be seen in streamflow records for 50 major world rivers. Significant reductions in flow are found for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When neighbouring rivers are combined into regions, informed by climate model predictions of the precipitation response to eruptions, decreases in streamflow can be detected in northern South American, central African and high-latitude Asian rivers and increases in southern South American and SW North American rivers. An improved understanding of how the hydrological cycle responds to volcanic eruptions is valuable in

  12. Eruptions that Drive Coronal Jets in a Solar Active Region

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    Solar coronal jets are common in both coronal holes and in active regions (e.g., Shibata et al. 1992, Shimojo et al. 1996, Cirtain et al. 2007. Savcheva et al. 2007). Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism (e.g. Yokoyama & Shibata 1995). We present observations of an on-disk active region (NOAA AR 11513) that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale 20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. A full report of this study appears in Sterling et al. (2016).

  13. Global monsoon precipitation responses to large volcanic eruptions

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  14. Preliminary impact assessment of effusive eruptions at Etna volcano

    Science.gov (United States)

    Cappello, Annalisa; Michaud-Dubuy, Audrey; Branca, Stefano; De Beni, Emanuela; Del Negro, Ciro

    2016-04-01

    Lava flows are a recurring and widespread form of volcanic activity that threaten people and property around the world. The growing demographic congestion around volcanic structures increases the potential risks and costs that lava flows represent, and leads to a pressing need for faster and more accurate assessment of lava flow impact. To fully evaluate potential effects and losses that an effusive eruption may cause to society, property and environment, it is necessary to consider the hazard, the distribution of the exposed elements at stake and the associated vulnerability. Lava flow hazard assessment is at an advanced state, whereas comprehensive vulnerability assessment is lacking. Cataloguing and analyzing volcanic impacts provide insight on likely societal and physical vulnerabilities during future eruptions. Here we quantify the lava flow impact of two past main effusive eruptions of Etna volcano: the 1669, which is the biggest and destructive flank eruption to have occurred on Etna in historical time, and the 1981, lasting only 6 days, but characterized by an intense eruptive dynamics. Different elements at stake are considered, including population, hospitals, critical facilities, buildings of historic value, industrial infrastructures, gas and electricity networks, railways, roads, footways and finally land use. All these elements were combined with the 1669 and 1981 lava flow fields to quantify the social damage and economic loss.

  15. The August 2010 Phreatic Eruption of Mount Sinabung, North Sumatra

    Directory of Open Access Journals (Sweden)

    Igan S. Sutawidjaja

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i1.155Mount Sinabung, located in Karo Regency, North Sumatra Province, is a strato volcano having four active craters. Since its latest eruption about 1,200 year ago, a phreatic eruption occurred on August 27th, 2010. The eruption took place in Crater-I, which was initiated by a greyish white plume and then followed by black plumes as high as 2000 m above the crater. Altered rock fragments and ash were erupted during this event. The altered rocks show a development of argillic alterations which was formed in the hydrothermal system in depth. The alteration zone is formed along the northeast-southwest and northwest-southeast trend across the three craters. All of the craters are actively discharging solfataric gases, of which sulphur deposits are resulted, and they have been quarried by the local people. The age of the latest magmatic eruption was dated by 14C method from the charcoal sample found in the pyroclastic flow deposits near Bekerah Village.

  16. Critical decay index at the onset of solar eruptions

    CERN Document Server

    Zuccarello, F P; Gilchrist, S A

    2015-01-01

    Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius $R$ undergoes an eruption when its axis reaches a location where the decay index $-d(\\ln B_{ex})/d(\\ln R)$ of the ambient magnetic field $B_{ex}$ is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time-evolution of the current channel. We use magneto-hydrodynamic (MHD) simulations to investigate if the critical value of the decay index at the onset of the eruption is affected by the magnetic flux rope's internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-eruptive photospheric e...

  17. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  18. Sympathetic Solar Filament Eruptions on 2015 March 15

    CERN Document Server

    Wang, Rui; Zimovets, Ivan; Hu, Huidong; Dai, Xinghua; Yang, Zhongwei

    2016-01-01

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for ...

  19. Temperature and Structure of Active Eruptions from a Handheld Camcorder

    Science.gov (United States)

    Radebaugh, Jani; Carling, Greg T.; Saito, Takeshi; Dangerfield, Anne; Tingey, David G.; Lorenz, Ralph D.; Lopes, Rosaly M.; Howell, Robert R.; Diniega, Serina; Turtle, Elizabeth P.

    2014-11-01

    A commercial handheld digital camcorder can operate as a high-resolution, short-wavelength, low-cost thermal imaging system for monitoring active volcanoes, when calibrated against a laboratory heated rock of similar composition to the given eruptive material. We utilize this system to find full pixel brightness temperatures on centimeter scales at close but safe proximity to active lava flows. With it, observed temperatures of a Kilauea tube flow exposed in a skylight reached 1200 C, compared with pyrometer measurements of the same flow of 1165 C, both similar to reported eruption temperatures at that volcano. The lava lake at Erta Ale, Ethiopia had crack and fountain temperatures of 1175 C compared with previous pyrometer measurements of 1165 C. Temperature calibration of the vigorously active Marum lava lake in Vanuatu is underway, challenges being excessive levels of gas and distance from the eruption (300 m). Other aspects of the fine-scale structure of the eruptions are visible in the high-resolution temperature maps, such as flow banding within tubes, the thermal gradient away from cracks in lake surfaces, heat pathways through pahoehoe crust and temperature zoning in spatter and fountains. High-resolution measurements such as these reveal details of temperature, structure, and change over time at the rapidly evolving settings of active lava flows. These measurement capabilities are desirable for future instruments exploring bodies with active eruptions like Io, Enceladus and possibly Venus.

  20. Suspected drug eruption in seven dogs during administration of flucytosine.

    Science.gov (United States)

    Malik, R; Medeiros, C; Wigney, D I; Love, D N

    1996-10-01

    7 of 8 dogs receiving combination drug therapy consisting of flucytosine together with amphotericin B and/or a triazole for cryptococcosis or aspergillosis developed cutaneous or mucocutaneous eruptions during the course of treatment. Lesions resolved in all cases following discontinuation of flucytosine despite continued administration of other antifungals, suggesting the eruption was referable primarily to the flucytosine component of therapy. Lesions developed 13 to 41 days (median 20 days) after commencing flucytosine (105 to 188 mg/kg/day divided and given every 8 h; median dose rate 150 mg/kg/day). The cumulative dose of flucytosine given prior to the first signs of the drug eruption ranged from 1.7 to 6.8 g/kg (median 2.3 g/kg). The eruptions consisted of depigmentation, followed by ulceration, exudation and crust formation. The scrotum was affected in all 4 male dogs, the nasal plane in 6 of 7 cases, while the lips, vulva, external ear canal and integument were involved in a smaller number of cases. There was considerable variation in the severity of lesions, with changes being most marked when flucytosine was continued for several days after lesions first appeared. Some dogs experienced malaise and inappetence in association with the suspected drug eruption. Healing took a variable period, typically in excess of 2 weeks after discontinuing flucytosine, with up to 2 months being required for total resolution of the lesions. All lesions resolved eventually without scarring or permanent loss of pigment.

  1. Probabilities of future VEI ≥ 2 eruptions at the Central American Volcanic Arc: a statistical perspective based on the past centuries' eruption record

    Science.gov (United States)

    Dzierma, Yvonne; Wehrmann, Heidi

    2014-10-01

    A probabilistic eruption forecast is provided for seven historically active volcanoes along the Central American Volcanic Arc (CAVA), as a pivotal empirical contribution to multi-disciplinary volcanic hazards assessment. The eruption probabilities are determined with a Kaplan-Meier estimator of survival functions, and parametric time series models are applied to describe the historical eruption records. Aside from the volcanoes that are currently in a state of eruptive activity (Santa María, Fuego, and Arenal), the highest probabilities for eruptions of VEI ≥ 2 occur at Concepción and Cerro Negro in Nicaragua, which are likely to erupt to 70-85 % within the next 10 years. Poás and Irazú in Costa Rica show a medium to high eruption probability, followed by San Miguel (El Salvador), Rincón de la Vieja (Costa Rica), and Izalco (El Salvador; 24 % within the next 10 years).

  2. Rosacea-like eruption due to topical pimecrolimus.

    Science.gov (United States)

    El-Heis, S; Buckley, D A

    2015-05-01

    Topical calcineurin inhibitors have been used outside their approved indications for a number of conditions, including topical steroid-induced rosacea. However, tacrolimus ointment itself has been reported to trigger rosacea in a small number of cases. We report a case of a rosacea-like eruption in a 39-year-old woman occurring after the use of pimecrolimus cream for 12 months for atopic dermatitis. Withdrawal of pimecrolimus combined with treatment with oral lymecycline, topical metronidazole, and an emollient resulted in resolution of the eruption. There have been 5 previously reported cases of a topical pimecrolimus-induced rosacea-like eruption suggesting that this rare side-effect may be a class effect of all topical calcineurin inhibitors. Dermatologists prescribing these drugs should be aware of this uncommon complication and may wish to warn patients of its occurrence as a potential side-effect when using topical calcineurin inhibitors in facial skin in adults. PMID:26295863

  3. Rosacea-like eruption due to topical pimecrolimus.

    Science.gov (United States)

    El-Heis, S; Buckley, D A

    2015-05-18

    Topical calcineurin inhibitors have been used outside their approved indications for a number of conditions, including topical steroid-induced rosacea. However, tacrolimus ointment itself has been reported to trigger rosacea in a small number of cases. We report a case of a rosacea-like eruption in a 39-year-old woman occurring after the use of pimecrolimus cream for 12 months for atopic dermatitis. Withdrawal of pimecrolimus combined with treatment with oral lymecycline, topical metronidazole, and an emollient resulted in resolution of the eruption. There have been 5 previously reported cases of a topical pimecrolimus-induced rosacea-like eruption suggesting that this rare side-effect may be a class effect of all topical calcineurin inhibitors. Dermatologists prescribing these drugs should be aware of this uncommon complication and may wish to warn patients of its occurrence as a potential side-effect when using topical calcineurin inhibitors in facial skin in adults.

  4. Observation of Low Level Heating in an Erupting Prominence

    Science.gov (United States)

    Kucera, Therese A.

    2007-01-01

    We present multi-wavelength observations of low level heating in an erupting prominence observed in the UV and EUV over a wide range of temperatures and wavelengths by SOHO's SUMER instrument, TRACE and also in H-alpha by the Yunnan Astronomical Observatory. The eruption occurred on 2004 April 30. The heating is relatively mild, leading only to the ionization of neutral hydrogen and probably helium. It is also localized, occurring along the bottom edge of the erupting prominence and in a kink-like feature in the prominence. The heating is revealed as a decrease in the Lyman absorption. This decrease results in an apparent increase in emission in all the lines observed by SUMER, especially those formed at temperatures -1 0A5. However, this is due to the disappearance of cooler absorbing material in the prominence rather than an increase in these higher temperature species.

  5. A segmental neurofibromatosis case with eruptive seborrheic keratoses.

    Science.gov (United States)

    Takci, Zennure; Simsek, Gulcin Guler; Tekin, Ozlem

    2012-09-01

    Segmental neurofibromatosis (SNF) is a rare variant of neurofibromatosis (NF) type 1 characterized by a restricted distribution of cafe-au-lait macules, and/or neurofibromas, and rarely freckling to a single dermatomal segment. Patients with NF type 1 have an associated increased risk for benign or malignant tumours. The prevalence of typical NF type 1 complications including malignancies in SNF is much lower than the generalized form. Seborrheic keratosis is one of the more common benign epidermal tumour which can be a paraneoplastic syndrome when it arises with an eruptive appearance. To our knowledge in the literature no case of SNF associated with eruptive seborrheic keratoses has been defined. We report the case of a man, aged 51, who had SNF and abruptly developed eruptive seborrheic keratoses. PMID:23139984

  6. Acetaminophen-induced cellulitis-like fixed drug eruption

    Directory of Open Access Journals (Sweden)

    Neila Fathallah

    2011-01-01

    Full Text Available Acetaminophen is a widely used analgesic drug. Its adverse reactions are rare but severe. An 89-year-old man developed an indurated edematous and erythematous plaque on his left arm 1 day after acetaminophen ingestion. Cellulitis was suspected and antibiotictherapy was started but there was no improvement of the rash; there was a spectacular extension of the lesion with occurrence of flaccid vesicles and blisters in the affected sites. The diagnosis of generalized-bullous-fixed drug eruption induced by acetaminophen was considered especially with a reported history of a previous milder reaction occurring in the same site. Acetaminophen was withdrawn and the rash improved significantly. According to the Naranjo probability scale, the eruption experienced by the patient was probably due to acetaminophen. Clinicians should be aware of the ability of acetaminophen to induce fixed drug eruption that may clinically take several aspects and may be misdiagnosed.

  7. Greenland ice core evidence of the 79 AD Vesuvius eruption

    Directory of Open Access Journals (Sweden)

    C. Barbante

    2013-06-01

    Full Text Available Volcanic tephra are independent age horizons and can synchronize strata of various paleoclimate records including ice and sediment cores. The Holocene section of the Greenland Ice Core Project (GRIP ice core is dated by multi-parameter annual layer counting, and contains peaks in acidity, SO42− and microparticle concentrations at a depth of 429.1 to 429.3 m, which have not previously been definitively ascribed to a volcanic eruption. Here, we identify tephra particles and determine that volcanic shards extracted from a depth of 429.3 m in the GRIP ice core are likely due to the 79 AD Vesuvius eruption. The chemical composition of the tephra particles is consistent with the K-phonolitic composition of the Vesuvius juvenile ejecta and differs from the chemical composition of other major eruptions (≥ VEI 4 between 50–100 AD.

  8. The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.

    2014-01-01

    The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.

  9. Changes in methane concentrations after the Pinatubo eruption

    Science.gov (United States)

    Banda, Narcisa; Krol, Maarten; van Weele, Michiel; van Noije, Twan; Röckmann, Thomas

    2014-05-01

    Methane is the second most abundant anthropogenic greenhouse gas. Its variability in the atmosphere in the past decades is not fully understood. Particularly large perturbations in methane concentrations were observed after the eruption of Pinatubo in June 1991. The temporal evolution of methane concentrations in the atmosphere is determined by methane emissions and sinks, the main removal from the atmosphere being the reaction with the hydroxyl radical (OH). Natural methane emission from wetlands are influenced by changes in temperature and precipitation. The abundance of OH in the atmosphere, which determines the methane lifetime, is also sensitive to temperature, humidity and the amount of UV radiation. The eruption of Pinatubo in 1991 was the most recent eruption that caused global scale changes in climate and radiation. Sulphate aerosols formed in the stratosphere led to a reduction of the solar radiation reaching the troposphere. Heterogeneous reactions on sulphate aerosols also caused an enhanced depletion of stratospheric ozone. Related changes in the UV radiation reaching the troposphere affected the photolysis reactions involved in the production and recycling of OH. The decrease in tropospheric temperature in the years following the eruption caused a slowdown in the reaction rate between methane and OH, and a reduction in the water vapour needed to form OH. The impact of changes in climate and UV radiation on the concentrations of methane and OH after the eruption of Pinatubo is assessed using the global chemistry and transport model TM5 coupled to the aerosol microphysics module M7. We find the shielding effect of stratospheric sulphate aerosols to be the dominating effect in the first year after the eruption, leading to a decrease of 14 Tg in the methane sink. The decrease in methane burden in the following years is dominantly attributed to stratospheric ozone depletion.

  10. Quaternary Eruptions of the Mono-Inyo Craters, California

    Science.gov (United States)

    Bursik, M. I.; Pouget, S.; Mangan, M.; Marcaida, M.; Vazquez, J. A.

    2013-12-01

    The eruptive products of the Mono-Inyo Craters volcanic chain include the tephra and associated volcanic rocks of Black Point, islands of Mono Lake, Mono Craters, Inyo Craters, late eruptions of Mammoth Mountain and Red Cones. Most of the eruptions were explosive, and generated numerous pyroclastic flows, surges and falls as well as the prominent domes and lava flows that now cover vents. The eruptions range in age from several hundred years to at least 60,000 yr BP. The Mono-Inyo tephras are dispersed throughout the Sierra Nevada and Basin and Range, providing key time-stratigraphic marker layers. Recent work has not only resulted in high-precision radiometric dating of many of the tephras, but also detailed geochemical data that for the first time provides fingerprinting sufficiently precise to discriminate among the tephras. Lithostratigraphy of many of the layers is herein described for the first time, based on careful sampling and description in the field, and laboratory grain size, grain shape and componentry analyses of the late Pleistocene tephras of the Wilson Creek Formation. Most of the Wilson Creek volcanic layers are fall deposits accumulated within paleolake Russell, which were generated by eruptions of variable intensity and influenced by paleowinds of different orientation. Prevailing winds were generally to the North and East, but often the Pleistocene layers less than 25 ka were dispersed to the West. Many of the fall layers show evidence of wave reworking, generally near the top, although in some cases it is pervasive. Only near the vent do some layers of apparent debris flow origin occur. Maximum pumice sizes range up to nearly 3 cm, and lithics range up to 1 cm in the rhyolitic fall beds, while thicknesses range up to c. 30 cm. These data are consistent with relatively low volume, subplinian style eruptive behavior for most of the life of the Mono-Inyo Craters.

  11. Vulcanian explosions: precursory and eruptive signatures from a multiparameteric perspective

    Science.gov (United States)

    Gottsmann, J.; De Angelis, S.; Fournier, N.; Sacks, S. I.; Van Camp, M. J.; Linde, A. T.; Ripepe, M.

    2012-12-01

    Vulcanian explosions: precursory and eruptive signatures from a multiparameteric perspective Vulcanian eruptions form a continuum ranging from the weaker Strombolian-type to violent sub-Plinian activity. They are short-lived (tens of seconds to tens of minutes) events commonly associated with a Volcanic Eruption Index (VEI) of 2-3. Extrusion of viscous magma and the formation of a lava dome is often interspersed by short-lived vigorous (Vulcanian) explosions. The causes for and the timing of the transition from effusive to explosive activity during dome formation are poorly understood and forecasting this transition remains a challenge. Previous investigations have pointed towards pressure sources at shallow levels in volcanic conduits, which ultimately fuel Vulcanian explosions. Here, we describe and interpret a robust and unique multi-parameter data set documenting the subsurface processes associated with Vulcanian explosions at Soufriere Hills Volcano, Montserrat. We show that explosion priming can be driven by processes in the shallow or the deep magmatic system. The geophysical constraints on the eruption dynamics are consitent with the geological evidence of eruptive products. One geophysical signature is related exclusively to shallow dynamics including conduit destabilisation, syn-eruptive decompression and magma fragmentation, conduit emptying and expulsion of juvenile pumice. By contrast, another explosion was triggered by unprecedented sudden pressurisation of the entire plumbing system from depths of about 10 km resulting in the partial failure of the dome carapace, a violent cannon-like explosion, propagation of pressure waves and pronounced ballistic ejection of dome fragments. The timescale for explosion precursors is on the order of few minutes for both types of explosions, however, the precursory geophysical signatures are indicative of the nature of ensuing explosions. The short precursory phases characterise Vulcanian explosions as freak events

  12. Triggering of the Largest Deccan Eruptions by the Chicxulub Impact

    Science.gov (United States)

    Richards, M. A.; Alvarez, W.; Self, S.; Karlstrom, L.; Renne, P. R.; Manga, M.; Sprain, C. J.; Smit, J.; Vanderkluysen, L.; Gibson, S. A.

    2015-12-01

    Modern constraints on the timing of the Cretaceous-Paleogene (K-Pg) mass extinction and the Chicxulub impact, together with a particularly voluminous and apparently brief eruptive pulse toward the end of the "main-stage" eruptions of the Deccan continental flood basalt province, suggest that these three events may have occurred within less than about a hundred thousand years of each other. Partial melting induced by the Chicxulub event does not provide an energetically plausible explanation for this remarkable coincidence, and both geochronologic and magnetic-polarity data show that Deccan volcanism was underway well before Chicxulub/K-Pg time. However, historical data show that in some cases eruptions from existing volcanic systems are triggered by earthquakes. Seismic modeling of the ground motion due to the Chicxulub impact suggests that the resulting Mw~11 earthquake could have generated seismic energy densities of at least 0.1-1.0 J/m3 throughout the upper ~200 km of the Earth's mantle, sufficient to trigger volcanic eruptions worldwide based upon comparison with historical examples. Triggering may have been caused by a transient increase in the effective permeability of the existing deep magmatic system beneath the Deccan province, or mantle plume "head." We suggest that the Chicxulub impact triggered the enormous Poladpur, Ambenali, and Mahabaleshwar (Wai sub-group) lava flows that may account for >70% of the Deccan Traps main-stage eruptions. This hypothesis is consistent with independent stratigraphic, geochronologic, geochemical, and tectonic constraints, which combine to indicate that at approximately Chicxulub/K-Pg time a huge pulse of mantle plume-derived magma passed through the crust with little interaction, and erupted to form the most extensive and voluminous lava flows known on Earth. This impact-induced pulse of volcanism may have enhanced the K-Pg extinction event, and/or suppressed post-extinction biotic recovery. High-precision radioisotopic

  13. Effects of megascale eruptions on Earth and Mars

    Science.gov (United States)

    Thordarson, T.; Rampino, M.; Keszthelyi, L.P.; Self, S.

    2009-01-01

    Volcanic features are common on geologically active earthlike planets. Megascale or "super" eruptions involving >1000 Gt of magma have occurred on both Earth and Mars in the geologically recent past, introducing prodigious volumes of ash and volcanic gases into the atmosphere. Here we discuss felsic (explosive) and mafi c (flood lava) supereruptions and their potential atmospheric and environmental effects on both planets. On Earth, felsic supereruptions recur on average about every 100-200,000 years and our present knowledge of the 73.5 ka Toba eruption implies that such events can have the potential to be catastrophic to human civilization. A future eruption of this type may require an unprecedented response from humankind to assure the continuation of civilization as we know it. Mafi c supereruptions have resulted in atmospheric injection of volcanic gases (especially SO2) and may have played a part in punctuating the history of life on Earth. The contrast between the more sustained effects of flood basalt eruptions (decades to centuries) and the near-instantaneous effects of large impacts (months to years) is worthy of more detailed study than has been completed to date. Products of mafi c supereruptions, signifi cantly larger than known from the geologic record on Earth, are well preserved on Mars. The volatile emissions from these eruptions most likely had global dispersal, but the effects may not have been outside what Mars endures even in the absence of volcanic eruptions. This is testament to the extreme variability of the current Martian atmosphere: situations that would be considered catastrophic on Earth are the norm on Mars. ?? 2009 The Geological Society of America.

  14. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

    Science.gov (United States)

    Laakso, A.; Kokkola, H.; Partanen, A.-I.; Niemeier, U.; Timmreck, C.; Lehtinen, K. E. J.; Hakkarainen, H.; Korhonen, H.

    2016-01-01

    Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an Earth system model to study the radiative and climate changes occurring after an erupting volcano during solar radiation management (SRM). According to our simulations the radiative impacts of the eruption and SRM are not additive and the radiative effects and climate changes occurring after the eruption depend strongly on whether SRM is continued or suspended after the eruption. In the former case, the peak burden of the additional stratospheric sulfate as well as changes in global mean precipitation are fairly similar regardless of whether the eruption takes place in a SRM or non-SRM world. However, the maximum increase in the global mean radiative forcing caused by the eruption is approximately 21 % lower compared to a case when the eruption occurs in an unperturbed atmosphere. In addition, the recovery of the stratospheric sulfur burden and radiative forcing is significantly faster after the eruption, because the eruption during the SRM leads to a smaller number and larger sulfate particles compared to the eruption in a non-SRM world. On the other hand, if SRM is suspended immediately after the eruption, the peak increase in global forcing caused by the eruption is about 32 % lower compared to a corresponding eruption into a clean background atmosphere. In this simulation, only about one-third of the global ensemble-mean cooling occurs after the eruption, compared to that occurring after an eruption under unperturbed atmospheric conditions. Furthermore, the global cooling signal is seen only for the 12 months after the eruption in the former scenario compared to over 40 months in the latter. In terms of global precipitation rate, we obtain a 36 % smaller decrease in the

  15. Eruptive xanthomas and acute pancreatitis in a patient with hypertriglyceridemia.

    Science.gov (United States)

    Martínez, Desirée Pérez; Díaz, Juan Oscar Fernández; Bobes, Carmen Maciá

    2008-05-12

    Acute pancreatitis and eruptive xanthomas are the only recognised direct complications of severe hypertriglyceridaemia. We present the case of a 33-years old male patient in whom the onset of a type 2 diabetes, added to an unknown familial hyperlipidemia, precipitated a dramatic raise of serum triglyceride levels, that cause in turn an acute pancreatitis and the appearance of dermic eruptive xanthomas. TRANSLATION: This article is translated from Spanish, originally published in Archivos de Medicina. The original work is at doi:10.3823/001.

  16. Eruptive collagenoma: A rarely reported entity in Indian literature

    Directory of Open Access Journals (Sweden)

    Prachi Barad

    2015-01-01

    Full Text Available Eruptive collagenomas are non familial connective tissue nevi of unknown etiology presented with an abrupt onset. While most cases are reported in young adults, there is a paucity of literature in children. We report a case of a 4-year-old girl, who presented with multiple asymptomatic, papules, plaques and nodules on the face, trunk and upper extremities with no systemic involvement. Histopathologically, the lesion showed thickened homogenized collagen fibres highlighted by Masson′s trichrome stain and paucity in elastic fibres by Verhoeff-van Gieson stain, confirming the diagnosis of eruptive collagenoma.

  17. FIXED DRUG ERUPTION OF THE EYELIDS. A DERMOSCOPIC EVALUATION

    Directory of Open Access Journals (Sweden)

    Manuel Valdebran

    2013-07-01

    Full Text Available Fixed drug eruption (FDE usually appears as a solitary or a small number of pruritic, well circumscribed, erythematous macules that evolve into edematous plaques; these lesions typically resolve after discontinuation of the offending drug, leaving hyperpigmentation at the site of lesions. Fixed drug eruption has been mentioned previously as a disease model for elucidating the mechanism of how skin inflammation is caused by skin-resident T cells, a multistep process that results in eventual tissue damage. In this article we discuss the utility of dermoscopy as an additional tool which gives significant information aiding us to infer these complex processes seen in FDE and thus to confirm the diagnosis

  18. Video monitoring analysis of the dynamics at fissure eruptions

    Science.gov (United States)

    Witt, Tanja; Walter, Thomas R.

    2016-04-01

    At basaltic eruption often lava fountains occur. The fountains mainly develop at erupting fissures, underlain by a magma-filled dike transporting the magma horizontally and vertically. Understanding of the dynamics of the deep dike and fracture mechanisms are mainly based on geophysical data as well as observations from seismic or geodetic networks. At the surface, however, new methods are needed to allow detailed interpretation on the eruption velocities, interactions between vents and complexities in the magma paths. With video cameras we collected imaging data from different erupting fissures. We find that lava fountaining is often correlated at distinct vents. From the frames of the videos we calculated the height and velocities of fountains as a function of time. Lava fountains often show a pulsating regime, that may change over time. Comparing the fountain height as a function of time of different vents by an time-dependent cross-correlation, we find a time lag between the pulses at adjacent vents. From this we derive an apparent velocity of temporal separation between vents, associated with the fountaining activity based on the calculated time lag and the vent distances. Although the correlation system can change episodically and sporadically, both the frequency of the fountains and eruption and the rest time between single fountains remain remarkably similar for adjacent lava fountains imply a controlling process in the magma feeder system itself. We present and compare our method for the Kamoamoa eruption 2011 (Hawaii) and the Holuhraun eruption 2014/2015 (Iceland). Both sites show a significant time shift between the single pulses of adjacent vents. We compare our velocities determined by this time shift to the assumed magma flow velocity in the dike as determined by independent models. Therefore we conjecture that the time shift of venting activity may allow to estimate the dynamics of magma and fluid migration at depth, as well as to identify the

  19. Unusually large erupted complex odontoma: A rare case report

    International Nuclear Information System (INIS)

    Odontomas are nonaggressive, hamartomatous developmental malformations composed of mature tooth substances and may be compound or complex depending on the extent of morphodifferentiation or on their resemblance to normal teeth. Among them, complex odontomas are relatively rare tumors. They are usually asymptomatic in nature. Occasionally, these tumors become large, causing bone expansion followed by facial asymmetry. Odontoma eruptions are uncommon, and thus far, very few cases of erupted complex odontomas have been reported in the literature. Here, we report the case of an unusually large, painless, complex odontoma located in the right posterior mandible.

  20. Laboratory studies on electrical effects during volcanic eruptions

    Directory of Open Access Journals (Sweden)

    R. Büttner

    1999-06-01

    Full Text Available This laboratory study reports on electrical phenomena during the explosive eruption of a basaltoid silicate melt. Contact electricity is produced in the phase of thermo-hydraulic fracturing of magma during the explosive interaction with water. The electrical charge produced is directly proportional to the force of the explosion, as the force of explosion is linearly proportional to the surface generated by the thermo-hydraulic fracturing. Simulation of the ejection history using inerted gas as a driving medium under otherwise constant conditions did not result in significant electric charging. The results have the potential to explain in nature observed lightening in eruption clouds of explosive volcanic events.

  1. Unusually large erupted complex odontoma: A rare case report.

    Science.gov (United States)

    Bagewadi, Shivanand B; Kukreja, Rahul; Suma, Gundareddy N; Yadav, Bhawna; Sharma, Havi

    2015-03-01

    Odontomas are nonaggressive, hamartomatous developmental malformations composed of mature tooth substances and may be compound or complex depending on the extent of morphodifferentiation or on their resemblance to normal teeth. Among them, complex odontomas are relatively rare tumors. They are usually asymptomatic in nature. Occasionally, these tumors become large, causing bone expansion followed by facial asymmetry. Odontoma eruptions are uncommon, and thus far, very few cases of erupted complex odontomas have been reported in the literature. Here, we report the case of an unusually large, painless, complex odontoma located in the right posterior mandible.

  2. Unusually large erupted complex odontoma: A rare case report

    Energy Technology Data Exchange (ETDEWEB)

    Bagewadi, Shivanand B.; Kukreja, Rahul; Suma, Gundareddy N.; Yadav, Bhawn; Sharma, Havi [Dept. of Oral Medicine and Radiology, ITS Centre for Dental Studies and Research, Murad Nagar (India)

    2015-03-15

    Odontomas are nonaggressive, hamartomatous developmental malformations composed of mature tooth substances and may be compound or complex depending on the extent of morphodifferentiation or on their resemblance to normal teeth. Among them, complex odontomas are relatively rare tumors. They are usually asymptomatic in nature. Occasionally, these tumors become large, causing bone expansion followed by facial asymmetry. Odontoma eruptions are uncommon, and thus far, very few cases of erupted complex odontomas have been reported in the literature. Here, we report the case of an unusually large, painless, complex odontoma located in the right posterior mandible.

  3. Case report: pre-eruptive intra-coronal radiolucencies revisited.

    LENUS (Irish Health Repository)

    Counihan, K P

    2012-08-01

    Pre-eruptive intra-coronal radiolucency (PEIR) describes a radiolucent lesion located in the coronal dentine, just beneath the enamel-dentine junction of unerupted teeth. The prevalence of this lesion varies depending on the type and quality of radiographic exposure and age of patients used for assessment. The aetiology of pre-eruptive intra-coronal radiolucent lesions is not fully understood, but published clinical and histological evidence suggest that these lesions are resorptive in nature. Issues around the diagnosis, treatment planning and clinical management of this lesion are explored using previously unreported cases.

  4. A case of colistin-induced fixed drug eruption

    Directory of Open Access Journals (Sweden)

    İsmail Necati Hakyemez

    2013-09-01

    Full Text Available Several medicines, especially antimicrobials, play a rolein the etiology of fixed drug eruption (FDE. The clinicalmanifestation is quite typical for a drug-induced reaction.FDE which developed in an 83-year-old male patientwho has been administered colistin due to Acinetobacterpneumonia is presented here since it is very rarely seen.Therefore colistin should also be considered in the differentialdiagnosis of FDE. J Clin Exp Invest 2013; 4 (3:374-376Key words: Fixed drug eruption, etiology, colistin

  5. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    Science.gov (United States)

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  6. Interactions of adjacent pulsating, erupting and creeping solitons

    Institute of Scientific and Technical Information of China (English)

    Song Li-Jun; Li Lu; Zhou Guo-Sheng

    2007-01-01

    This paper investigates the adjacent interactions of three novel solitons for the quintic complex Ginzburg-Landau equation, which are plain pulsating, erupting and creeping solitons. It is found that different performances are presented for different solitons due to isolated regions of the parameter space where they exist. For example, plain pulsating and erupting solitons exhibit mutual annihilation during collisions with the decrease of total energy, but for creeping soliton,the two adjacent pulses present soliton fusion without any loss of energy. Otherwise, the method for restraining the interactions is also found and it can suppress interacions between these two adjacent pulses effectively.

  7. Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua volcano (Ecuador)

    Science.gov (United States)

    Samaniego, Pablo; Le Pennec, Jean-Luc; Robin, Claude; Hidalgo, Silvana

    2011-01-01

    Understanding the processes at the origin of explosive events is crucial for volcanic hazard mitigation, especially during long-lasting eruptions at andesitic volcanoes. This work exposes the case of Tungurahua volcano, whose unrest occurred in 1999. Since this date, the eruptive activity was characterized by low-to moderate explosiveness, including phases with stronger canon-like explosions and regional ash fallout. However, in 2006, a sudden increase of the explosiveness led to pyroclastic flow-forming eruptions on July 14th (VEI 2) and August 16-17th (VEI 3). All magmas emitted from 1999 to 2005, as well as the samples from the 2006 eruptions, have homogeneous bulk-rock andesitic compositions (58-59 wt.% SiO 2), and contain the same mineral assemblage consisting of pl + cpx + opx + mag ± ol. However, during the August 16-17th event, the erupted tephra comprise two types of magmas: a dominant, brown andesitic scoria; and scarce, light-grey pumice representing a subordinate, silica-rich juvenile component. For the andesitic magma, thermobarometric data point to magmatic temperatures ranging from 950 to 1015 °C and pressures in the range of 200 to 250 MPa, which corresponds to 7.5-9.5 km below the summit. Disequilibrium textures in plagioclase and pyroxene phenocrysts, particularly thin overgrowth rims, indicate the recharge of this magma body by mafic magma. Between 1999 and 2005, repeated injections from depth fed the intermittent eruptive activity observed while silica-rich melts were produced by in-situ crystallization in the peripheral parts of the reservoir. In April 2006, the recharge of a primitive magma produced strong convection and homogenisation in the reservoir, as well as pressure increase and higher magma ascent rate after seven years of only moderately explosive activity. This work emphasizes the importance of petrological studies in constraining the pre-eruptive magmatic conditions and processes, as a tool for understanding the fundamental causes

  8. Compound composite odontome erupting into the oral cavity: A rare entity

    Directory of Open Access Journals (Sweden)

    Sunira Chandra

    2010-01-01

    Full Text Available Odontomas are the most common odontogenic tumors. They are usually asymptomatic and are often discovered during routine radiography. Eruption of an odontome into the oral cavity is rare. Odontomas are the most common odontogenic tumors. They are usually asymptomatic and are often discovered during routine radiography. Eruption of an odontome into the oral cavity is rare. We report an unusual case of erupting compound composite odontoma. we report an unusual case of erupting compound composite odontoma.

  9. The limits of predictability of volcanic eruptions from accelerating rates of earthquakes

    OpenAIRE

    Bell, A.F.; Naylor, M.; I. G. Main

    2013-01-01

    Volcanic eruptions are commonly preceded by increased rates of earthquakes. Previous studies argue that in some instances these sequences follow the inverse Omori law (IOL) and that this model could be the basis for forecasting the timing of eruption onset. However, the catalogue of pre-eruptive sequences is small, and the performance of the IOL as a forecasting tool remains largely untested. Here, we use simulations to quantify upper limits to the accuracy and bias of forecast eruption times...

  10. Age and impacts of the caldera-forming Aniakchak II eruption in western Alaska

    NARCIS (Netherlands)

    Blackford, J. J.; Payne, R. J.; Heggen, M. P.; Caballero, A. de la Riva; van der Plicht, J.

    2014-01-01

    The mid-Holocene eruption of Aniakchak volcano (Aniakchak II) in southwest Alaska was among the largest eruptions globally in the last 10,000 years (VEI-6). Despite evidence for possible impacts on global climate, the precise age of the eruption is not well-constrained and little is known about regi

  11. Eruptive shearing of tube pumice: pure and simple

    Science.gov (United States)

    Dingwell, Donald B.; Lavallée, Yan; Hess, Kai-Uwe; Flaws, Asher; Marti, Joan; Nichols, Alexander R. L.; Gilg, H. Albert; Schillinger, Burkhard

    2016-09-01

    Understanding the physicochemical conditions extant and mechanisms operative during explosive volcanism is essential for reliable forecasting and mitigation of volcanic events. Rhyolitic pumices reflect highly vesiculated magma whose bubbles can serve as a strain indicator for inferring the state of stress operative immediately prior to eruptive fragmentation. Obtaining the full kinematic picture reflected in bubble population geometry has been extremely difficult, involving dissection of a small number of delicate samples. The advent of reliable high-resolution tomography has changed this situation radically. Here we demonstrate via the use of tomography how a statistically powerful picture of the shapes and connectivity of thousands of individual bubbles within a single sample of tube pumice emerges. The strain record of tube pumice is modelled using empirical models of bubble geometry and liquid rheology, reliant on a constraint of magmatic water concentration. FTIR analysis reveals an imbalance in water speciation, suggesting post-eruption hydration, further supported by hydrogen and oxygen isotope measurements. Our work demonstrates that the strain recorded in the tube pumice dominated by simple shear (not pure shear) in the late deformational history of vesicular magma before eruption. This constraint in turn implies that magma ascent is conditioned by a velocity gradient (across the conduit) at the point of origin of tube pumice. Magma ascent accompanied by simple shear should enhance high eruption rates inferred independently for these highly viscous systems.

  12. Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    CERN Document Server

    Grasso, J R

    2003-01-01

    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available fro...

  13. Vesicularity of basalt erupted at Reykjanes Ridge crest

    Science.gov (United States)

    Duffield, W.A.

    1978-01-01

    Average vesicularity of basalt drilled at three sites on the west flank of the Reykjanes Ridge increases with decreasing age. This change apparently records concomitant decrease in water depth at the ridge crest where the basalt was erupted and suggests substantial upward growth of the crest during the past 35 Myr. ?? 1978 Nature Publishing Group.

  14. Impact of major volcanic eruptions on stratospheric water vapour

    Science.gov (United States)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  15. Estimation of age from development and eruption of teeth

    Directory of Open Access Journals (Sweden)

    B. S. Manjunatha

    2014-01-01

    Full Text Available The developing dentition is used to assess maturity and estimate the age in many disciplines including anthropology, archeology, forensic science, pediatric dentistry and orthodontics. There is evidence that dental development is less effected than skeletal development by malnutrition and hormonal disorders. There are two methods of dental age assessment, radiographically and by clinically visualization of eruption of teeth. The clinical method to assess dental age is based on the emergence of teeth in the mouth. This method is more suitable since it does not require any special equipment, expertise and is more economical. Tooth formation is the best choice for estimating the age as variations are less as compared to other development factors. Eruption of teeth is one of the changes observed easily among the various dynamic changes that occur from the formation of teeth to the final shedding of teeth. The times of eruption of teeth are fairly constant and this can be made use of in ascertaining the average age of eruption of the tooth. Assessment of age of an individual by examination of teeth is one of the accepted methods of age determination.

  16. Acoustic Surveillance of Hazardous Eruptions (ASHE) in Asia

    Science.gov (United States)

    Garces, M. A.; Taisne, B.; Blanc, E.; Tupper, A. C.; Ngemaes, M.; Mialle, P.; Murayama, T.

    2015-12-01

    The ASHE Ecuador (2004-2012) collaboration between Ecuador, Canada, and the US demonstrated the capability to use real-time infrasound to provide low-latency volcanic eruption notifications to the Volcano Ash Advisory Center (VAAC) in Washington DC. The Atmospheric dynamics Research Infrastructure in Europe (ARISE, 2012-2018) supported by the European Commission fosters integrating innovative methods for remote detection and characterization of distant eruptive sources through collaborations with the VAAC Toulouse and the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). The ASHE Asia project proposes an international collaboration between the Earth Observatory of Singapore, the VAAC Darwin, the Palau National Weather Service, and US and Asian partners, and will receive the support of ARISE, to provide improved early notification of potentially hazardous eruptions in Asia and the Western Pacific using a combination of established technologies and next-generation mobile sensing systems. The increased availability of open seismo-acoustic data in the ASEAN region as well as recent advances in mobile distributed sensors networks will facilitate unprecedented rapid progress in monitoring remote regions for early detection of hazardous volcanic eruptions and other natural disasters.

  17. An Unusual Erupted Complex Composite Odontoma: A Rare Case

    Directory of Open Access Journals (Sweden)

    Dawasaz Ali Azhar

    2013-01-01

    Full Text Available Odontomas are malformations of the dental tissues and may interfere with the eruption of the associated tooth. Complex composite odontoma (CO was described as a distinct entity for the first time by Broca in 1866. This lesion takes place due to the developmental disturbances where the dental components are laid down in a disorganized manner, due to failure of normal morphodifferentiation. Very few cases of erupted complex composite odontomas have been reported in the literature. The case reported here is of an odontoma found in the left mandibular body, associated with an impacted second molar of a 17-year-old Saudi male. Under local anesthesia the odontoma was surgically removed. Histopathological examination confirmed the diagnosis of CO. The impacted second molar which was left in the mandibular body erupted clinically after 6 months. Erupted CO is rarely seen in the mandibular left body. The early diagnosis, followed by a proper treatment at the right time, will result in a favorable prognosis.

  18. SOHO/SUMER Observations of Prominence Oscillation Before Eruption

    CERN Document Server

    Chen, P F; Solanki, S K

    2008-01-01

    Coronal mass ejections (CMEs), as a large-scale eruptive phenomenon, often reveal some precursors in the initiation phase, e.g., X-ray brightening, filament darkening, etc, which are useful for CME modeling and space weather forecast. With the SOHO/SUMER spectroscopic observations of the 2000 September 26 event, we propose another precursor for CME eruptions, namely, long-time prominence oscillations. The prominence oscillation-and-eruption event was observed by ground-based H$\\alpha$ telescopes and space-borne white-light, EUV imaging and spectroscopic instruments. In particular, the SUMER slit was observing the prominence in a sit-and-stare mode. The observations indicate that a siphon flow was moving from the proximity of the prominence to a site at a projected distance of 270$''$, which was followed by repetitive H$\\alpha$ surges and continual prominence oscillations. The oscillation lasted 4 hours before the prominence erupted as a blob-like CME. The analysis of the multiwavelength data indicates that th...

  19. Eruptive Current Sheets Trailing SOHO/LASCO CMEs

    Science.gov (United States)

    Webb, David F.

    2015-04-01

    Current sheets are important signatures of magnetic reconnection during the eruption of solar magnetic structures. Many models of eruptive flare/Coronal Mass Ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with the post-eruption magnetic loop arcade. Current sheets have been interpreted in white light images as narrow rays trailing the outward-moving CME, in ultraviolet spectra as narrow, bright hot features, and with different manifestations in other wavebands. This study continues that of Webb et al. (2003), who analyzed SMM white light CMEs having candidate magnetic disconnection features at the base of the CME. About half of those were followed by coaxial, bright rays suggestive of newly formed current sheets, and Webb et al. (2003) presented detailed results of analysis of those structures. In this work we extend the study of white light eruptive current sheets to the more sensitive and extensive SOHO/LASCO coronagraph data on CMEs. We comprehensively examined all LASCO CMEs during two periods that we identify with the minimum and maximum activity of solar cycle 23. We identified ~130 ray/current sheets during these periods, nearly all of which trailed CMEs with concave-outward backs. The occurrence rate of the ray/current sheets is 6-7% of all CMEs, irrespective of the solar cycle. We analyze the rays for durations, speeds, alignments, and motions and compare the observational results with some model predictions.

  20. Eruption age of the Sverrefjellet volcano, Spitsbergen Island, Norway

    Directory of Open Access Journals (Sweden)

    Allan H. Treiman

    2012-03-01

    Full Text Available Sverrefjellet is a Pleistocene-age basaltic volcanic construct on north-western Spitsbergen Island (Svalbard Archipelago, Norway. Published ages for the Sverrefjellet eruption range between 6000 years and ca. 1 million years before present. The age of eruption is dated here as 1.05±0.07 (1σ My, consistent with Ar–Ar isochron and plateau ages of several analysed samples. Radiogenic Ar represents a small proportion of the released Ar, <15% in nearly all samples. Non-radiogenic Ar components include air, excess 40Ar (seen as inverse isochron intercept values >40Ar/36Ar = 295.5, low-temperature alterations (Ar release at low temperature, with high Cl/K, carbonates and zeolites (Ar release at intermediate temperature and xenolithic material (Ar release at high temperature, high Ca/K. The effects of the largely non-radiogenic argon sources are also seen in the total-gas Ar–Ar “ages”, which range from 1.3 to 10.3 My, significantly larger than the inferred eruption age. It is likely that total-gas Ar–Ar “ages” and whole-rock K–Ar “ages” of similar basalts also exceed their true eruption ages.To access the supplementary material to this article please see Supplementary files under Article Tools online.

  1. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-08-03

    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of

  2. UK Hazard Assessment for a Laki-type Volcanic Eruption

    Science.gov (United States)

    Witham, Claire; Felton, Chris; Daud, Sophie; Aspinall, Willy; Braban, Christine; Loughlin, Sue; Hort, Matthew; Schmidt, Anja; Vieno, Massimo

    2014-05-01

    Following the impacts of the Eyjafjallajokull eruption in 2010, two types of volcanic eruption have been added to the UK Government's National Risk Register for Civil Emergencies. One of these, a large gas-rich volcanic eruption, was identified as a high impact natural hazard, one of the three highest priority natural hazards faced by the UK. This eruption scenario is typified by the Laki eruption in Iceland in 1783-1784. The Civil Contingency Secretariat (CCS) of the UK's Cabinet Office, responsible for Civil Protection in the UK, has since been working on quantifying the risk and better understanding its potential impacts. This involves cross-cutting work across UK Government departments and the wider scientific community in order to identify the capabilities needed to respond to an effusive eruption, to exercise the response and develop increased resilience where possible. As part of its current work, CCS has been working closely with the UK Met Office and other UK agencies and academics (represented by the co-authors and others) to generate and assess the impacts of a 'reasonable worst case scenario', which can be used for decision making and preparation in advance of an eruption. Information from the literature and the findings of an expert elicitation have been synthesised to determine appropriate eruption source term parameters and associated uncertainties. This scenario is then being used to create a limited ensemble of model simulations of the dispersion and chemical conversion of the emissions of volcanic gases during such an eruption. The UK Met Office's NAME Lagrangian dispersion model and the Centre for Ecology and Hydrology's EMEP4UK Eulerian model are both being used. Modelling outputs will address the likelihood of near-surface concentrations of sulphur and halogen species being above specified health thresholds. Concentrations at aviation relevant altitudes will also be evaluated, as well as the effects of acid deposition of volcanic species on

  3. Evolution of magnetic topology of an erupting arched laboratory magnetoplasma

    Science.gov (United States)

    Tripathi, S.; Gekelman, W. N.

    2013-12-01

    Arched magnetoplasma structures ubiquitously exist in the solar atmosphere and affect energetic phenomena such as flares and coronal mass ejections. Presence of an electrical current in such structures generates a twisted magnetic-field and the term arched magnetic flux rope (AMFR) is used for them. In the limit of low electrical current (compared to the current-threshold for the kink instability), the magnetic twist in an AMFR becomes small and it resembles the structure of an arched magnetic flux tube. However, the term arched magnetic flux rope can be used for arched magnetoplasma structures without any loss of generality. We report results on the evolution of the magnetic topology of an erupting laboratory AMFR during its eruption. The AMFR (plasma β ≈ 10-3, Lundquist number ≈ 102-105, AMFR radius/ion-gyroradius ≈ 20, B ≈ 1000 Gauss at footpoints) is created using a lanthanum hexaboride (LaB6) plasma source and it evolves in an ambient magnetoplasma produced by another LaB6 source (See Ref. [2] for details of the experiment). The eruption is triggered by gradually increasing the electrical current in the AMFR and its evolution is captured by a fast-CCD camera. The relative magnitudes of the parameters of the AMFR and the ambient magnetoplasma can be varied to simulate a variety of conditions relevant to solar eruptions. The experiment runs continuously with a 0.5 Hz repetition rate. Hence, the plasma parameters of the AMFR are recorded with a good spatiotemporal resolution (spatial-resolution/AMFR-length ≈ 10-2 - 10-3, temporal-resolution/eruption-time ≈ 10-3) using computer-controlled movable probes. The three-dimensional magnetic-field of the AMFR is directly measured using a three-axis magnetic-loop probe. The pre-eruption phase of the AMFR remains quiescent for ≈ 100 Alfven transit times and the camera images evince a persistent appearance of the AMFR during this phase. In contrast, the post-eruption phase of the AMFR is associated with

  4. RECOVERY FROM GIANT ERUPTIONS IN VERY MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M., E-mail: kashi@astro.umn.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. SE. Minneapolis, MN 55455 (United States)

    2016-01-20

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M{sub ⊙} and 120 M{sub ⊙}, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M{sub ⊙} while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ∼400 km s{sup −1} wind with a mass loss rate that begins around 0.1 M{sub ⊙} yr{sup −1} and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M{sub ⊙} and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  5. WOVOdat, A Worldwide Volcano Unrest Database, to Improve Eruption Forecasts

    Science.gov (United States)

    Widiwijayanti, C.; Costa, F.; Win, N. T. Z.; Tan, K.; Newhall, C. G.; Ratdomopurbo, A.

    2015-12-01

    WOVOdat is the World Organization of Volcano Observatories' Database of Volcanic Unrest. An international effort to develop common standards for compiling and storing data on volcanic unrests in a centralized database and freely web-accessible for reference during volcanic crises, comparative studies, and basic research on pre-eruption processes. WOVOdat will be to volcanology as an epidemiological database is to medicine. Despite the large spectrum of monitoring techniques, the interpretation of monitoring data throughout the evolution of the unrest and making timely forecasts remain the most challenging tasks for volcanologists. The field of eruption forecasting is becoming more quantitative, based on the understanding of the pre-eruptive magmatic processes and dynamic interaction between variables that are at play in a volcanic system. Such forecasts must also acknowledge and express the uncertainties, therefore most of current research in this field focused on the application of event tree analysis to reflect multiple possible scenarios and the probability of each scenario. Such forecasts are critically dependent on comprehensive and authoritative global volcano unrest data sets - the very information currently collected in WOVOdat. As the database becomes more complete, Boolean searches, side-by-side digital and thus scalable comparisons of unrest, pattern recognition, will generate reliable results. Statistical distribution obtained from WOVOdat can be then used to estimate the probabilities of each scenario after specific patterns of unrest. We established main web interface for data submission and visualizations, and have now incorporated ~20% of worldwide unrest data into the database, covering more than 100 eruptive episodes. In the upcoming years we will concentrate in acquiring data from volcano observatories develop a robust data query interface, optimizing data mining, and creating tools by which WOVOdat can be used for probabilistic eruption

  6. Recovery from Giant Eruptions in Very Massive Stars

    Science.gov (United States)

    Kashi, Amit; Davidson, Kris; Humphreys, Roberta M.

    2016-01-01

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption—i.e., following a supernova impostor event. Beginning with reasonable models for evolved VMSs with masses of 80 M⊙ and 120 M⊙, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy. (1) Synthetically removing outer layers of mass of a few M⊙ while reducing the energy of the inner layers. (2) Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a ˜400 km s-1 wind with a mass loss rate that begins around 0.1 M⊙ yr-1 and gradually decreases. This outflow is driven by κ-mechanism radial pulsations. The 1D models have regular pulsations but 3D models will probably be more chaotic. In some cases a plateau in the mass-loss rate may persist about 200 years, while other cases are more like η Car which lost >10 M⊙ and then had an abnormal mass loss rate for more than a century after its eruption. In our model, the post-eruption outflow carried more mass than the initial eruption. These simulations constitute a useful preliminary reconnaissance for 3D models which will be far more difficult.

  7. Critical review of a new volcanic eruption chronology

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    Sigl. et al. (2015, Nature) present historical evidence for 32 volcanic eruptions to evaluate their new polar ice core 10-Be chronology - 24 are dated within three years of sulfur layers in polar ice. Most of them can be interpreted as weather phenomena (Babylonia: disk of sun like moon, reported for only one day, e.g. extinction due to clouds), Chinese sunspot reports (pellet, black vapor, etc.), solar eclipses, normal ice-halos and coronae (ring, bow, etc.), one aurora (redness), red suns due to mist drops in wet fog or fire-smoke, etc. Volcanic dust may facilitate detections of sunspots and formation of Bishop's ring, but tend to inhibit ice-halos, which are otherwise often reported in chronicles. We are left with three reports possibly indicating volcanic eruptions, namely fulfilling genuine criteria for atmospheric disturbances due to volcanic dust, e.g. bluish or faint sun, orange sky, or fainting of stars for months (BCE 208, 44-42, and 32). Among the volcanic eruptions used to fix the chronology (CE 536, 626, 939, 1257), the reports cited for the 930s deal only with 1-2 days, at least one reports an eclipse. In the new chronology, there is a sulfur detection eight years after the Vesuvius eruption, but none in CE 79. It may appear surprising that, from BCE 500 to 1, all five northern sulfur peaks labeled in figure 2 in Sigl et al. are systematically later by 2-4 years than the (corresponding?) southern peaks, while all five southern peaks from CE 100 to 600 labeled in figure 2 are systematically later by 1-4 years than the (corresponding?) northern peaks. Furthermore, in most of their six strongest volcanic eruptions, temperatures decreased years before their sulfur dating - correlated with weak solar activity as seen in radiocarbon, so that volcanic climate forcing appears dubious here. Also, their 10-Be peaks at CE 775 and 994 are neither significant nor certain in dating.

  8. SO2 flux and the thermal power of volcanic eruptions

    Science.gov (United States)

    Henley, Richard W.; Hughes, Graham O.

    2016-09-01

    A description of the dynamics, chemistry and energetics governing a volcanic system can be greatly simplified if the expansion of magmatic gas can be assumed to be adiabatic as it rises towards the surface. The conditions under which this assumption is valid are clarified by analysis of the transfer of thermal energy into the low conductivity wallrocks traversed by fractures and vents from a gas phase expanding over a range of mass flux rates. Adiabatic behavior is predicted to be approached typically within a month after perturbations in the release of source gas have stabilized, this timescale being dependent upon only the characteristic length scale on which the host rock is fractured and the thermal diffusivity of the rock. This analysis then enables the thermal energy transport due to gas release from volcanoes to be evaluated using observations of SO2 flux with reference values for the H2O:SO2 ratio of volcanic gas mixtures discharging through high temperature fumaroles in arc and mantle-related volcanic systems. Thermal power estimates for gas discharge are 101.8 to 104.1 MWH during quiescent, continuous degassing of arc volcanoes and 103.7 to 107.3 MWH for their eruptive stages, the higher value being the Plinean Pinatubo eruption in 1991. Fewer data are available for quiescent stage mantle-related volcanoes (Kilauea 102.1 MWH) but for eruptive events power estimates range from 102.8 MWH to 105.5 MWH. These estimates of thermal power and mass of gas discharges are commensurate with power estimates based on the total mass of gas ejected during eruptions. The sustained discharge of volcanic gas during quiescent and short-lived eruptive stages can be related to the hydrodynamic structure of volcanic systems with large scale gaseous mass transfer from deep in the crust coupled with episodes of high level intrusive activity and gas release.

  9. Aspects of historical eruptive activity and volcanic unrest at Mt. Tongariro, New Zealand: 1846-2013

    Science.gov (United States)

    Scott, Bradley J.; Potter, Sally H.

    2014-10-01

    The 6 August and 21 November 2012 eruptions from Upper Te Maari crater have heightened interest in past activity at Mt. Tongariro, New Zealand. Risks caused by volcanic hazards are increasingly being quantified by using probability estimates through expert elicitation, partly based on the frequency of past eruptions. To maximise the accuracy of these risk values at Mt. Tongariro, a historical eruption catalogue is required. This paper presents the findings of a detailed historical chronology of unrest and eruptions at Mt. Tongariro between 1846 AD and 2013 AD. It builds on the findings of previous researchers, highlighting that volcanic eruptions and unrest have occurred frequently from this volcano. Eruptions are now thought to have occurred at Mt. Tongariro in 1869, 1892, 1896-97, 1899, 1926, 1927, 1934 and 2012. Eruptions also potentially occurred in 1846, 1855, 1886, and 1928, in addition to frequent eruptions from neighbouring Mt. Ngauruhoe. The number of recognised eruptions during the 1896-97 episode has increased to 18, and the Red Crater area has been found to be more active than previously appreciated. Multiple episodes of unrest not resulting in eruptions have also been identified. New eruption recurrence rates are derived from this catalogue, with the baseline probability of the onset of an eruption episode calculated to be 0.07 per year (if 1896-97 and 2012 are considered as one episode each, and all others separately), and the maximum eruption rate within an eruption episode is 18 per year. These new data contribute towards risk assessments for future eruptions at Mt. Tongariro.

  10. Eruption dynamics of Hawaiian-style fountains: The case study of episode 1 of the Kilauea Iki 1959 eruption

    Science.gov (United States)

    Stovall, W.K.; Houghton, B.F.; Gonnermann, H.; Fagents, S.A.; Swanson, D.A.

    2011-01-01

    Hawaiian eruptions are characterized by fountains of gas and ejecta, sustained for hours to days that reach tens to hundreds of meters in height. Quantitative analysis of the pyroclastic products from the 1959 eruption of K??lauea Iki, K??lauea volcano, Hawai'i, provides insights into the processes occurring during typical Hawaiian fountaining activity. This short-lived but powerful eruption contained 17 fountaining episodes and produced a cone and tephra blanket as well as a lava lake that interacted with the vent and fountain during all but the first episode of the eruption, the focus of this paper. Microtextural analysis of Hawaiian fountaining products from this opening episode is used to infer vesiculation processes within the fountain and shallow conduit. Vesicle number densities for all clasts are high (106-107 cm-3). Post-fragmentation expansion of bubbles within the thermally-insulated fountain overprints the pre-fragmentation bubble populations, leading to a reduction in vesicle number density and increase in mean vesicle size. However, early quenched rims of some clasts, with vesicle number densities approaching 107 cm-3, are probably a valid approximation to magma conditions near fragmentation. The extent of clast evolution from low vesicle-to-melt ratio and corresponding high vesicle number density to higher vesicle-to-melt ratio and lower vesicle-number density corresponds to the length of residence time within the fountain. ?? 2010 Springer-Verlag.

  11. Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a large rhyolitic eruption

    OpenAIRE

    Bouvet De Maisonneuve, Caroline; Bachmann, Olivier; Burgisser, Alain

    2009-01-01

    Silicic pumices formed during explosive volcanic eruptions are faithful recorders of the state of the magma in the conduit, close to or at the fragmentation level. We have characterized four types of pumices from the non-welded rhyolitic Kos Plateau Tuff, which erupted 161,000 years ago in the East Aegean Arc, Greece. The dominant type of pumice (>90 vol.%) shows highly elongated tubular vesicles. These tube pumices occur throughout the eruption. Less common pumice types include: (1) “frothy”...

  12. The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: Eruption dynamics and hazard implications

    Science.gov (United States)

    Cobeñas, Gisela; Thouret, Jean-Claude; Bonadonna, Costanza; Boivin, Pierre

    2012-10-01

    'El Misti' volcano near the city of Arequipa in south Peru produced a Plinian eruption c.2030 yr BP that resulted in a tephra deposit consisting of three fallout layers, several pyroclastic density current (PDC) deposits, a late stage, small debris-avalanche deposit, and lahar deposits. This VEI 4 Plinian eruption of El Misti has been selected as one of the reference eruptions for the hazard assessment and risk mitigation plan for the city of Arequipa. The Plinian column of this eruption rose up to 21-24 km and produced a tephra deposit over an area of at least 2580 km2 within the 5 cm-isopach line. The dispersal axis is oriented SW, i.e. towards the area of the basin and city of Arequipa. Later pumice- and lithic-rich PDC deposits were emplaced into radial valleys extending from the volcano up to a distance of at least 13 km. The eruption produced a minimum total bulk volume of 1.2 km3 (0.71 km3 DRE volume) of tephra and PDC deposits. Components of the tephra deposit consist of beige, gray and banded pumices, lithic fragments, a minor amount of cogenetic dacite clasts, and free crystals. The minimum volume of the tephra deposit varies between 0.2 and 0.6 km3 (exponential, power-law integration and inversion of TEPHRA2 analytical model). The tephra deposit is characterized by a bulk density of 1500 kg/m3 which results in a mass of 2.5-9.0 × 1011 kg. The maximum mass discharge rate (MDR) is 1.1 × 108 kg/s based on a plume height of 24 km. The estimated duration of the Plinian eruption ranges between 0.6 and 2.3 h. Grain size distribution, componentry, and SEM analyses of both the tephra and PDC deposits, combined with the reconstructed stratigraphic sequence of the deposit, suggest that the eruption took place in five stages: (1) generation of a 21-24 km-high eruptive column that deposited the lower tephra layer; (2) collapse of the crater walls and partial obstruction of the vent during a period of decreased intensity, which led to the formation of a thin sand

  13. Statistical analysis of eruptions detected and characterized by spatiotemporal data mining of SDO/AIA images

    Science.gov (United States)

    Hurlburt, Neal E.

    2016-05-01

    Identifying and characterizing motions near the solar surface are essential to advance our understanding the drivers of space weather. A method for automatically identifying eruptions near the solar surface (either from filaments or otherwise) has recently been developed and integrated into the Heliophysics Events Knowledgebase. Here we present a survey of eruptions identified by the EruptionPatrol and EruptionCharacterize modules run over six years of SDO/AIA 30.4 nm images. Over twenty-thousand distinct eruptions were identified with velocities ranging from 4-120km/sec, sizes from 20 to 1,000Mm and durations from 2 to 180 minutes.

  14. FOGO-2014: Monitoring the Fogo 2014 Eruption, Cape Verde

    Science.gov (United States)

    Fernandes, Rui; Faria, Bruno

    2015-04-01

    Fogo volcano, located in the Cape Verde Archipelago offshore Western Africa, is a complete stratovolcano system that was created by the Cape Verde hotspot, forming the island of Fogo. The top (Pico do Fogo) reaches ~2830m above sea level, and raises ~1100m above Chã das Caldeiras, an almost flat circular area with approximately 10 kilometres in the north-south direction and 7 kilometres in the east-west direction. Chã das Caldeiras, surrounded towards the West by the ~1000m high Bordeira rampart, has been inhabited since the early 20th Century, because it is one of the most productive agricultural areas in this semi-arid country. Fogo volcano erupted on November 23, 2014 (~10:00UTC) on a subsidiary vent of the main cone, after 19 years of inactivity. C4G (Collaboratory for Geosciences), a distributed research infrastructure created in 2014 in the framework of the Portuguese Roadmap for Strategic Research Infrastructures, immediately offered support to the Cape Verdean authorities, with the goal of complementing the permanent geophysical monitoring network operated in Fogo island by INMG, the Cape Verdean Meteorological and Geophysical Institute. This permanent network is composed of seven seismographic stations and three tiltmeter stations, and the data is transmitted in real time to the INMG geophysical laboratory in São Vicente Island, where it is analysed on a routine basis. Pre-eruptive activity started to be detected by the permanent monitoring network on October 2014, with earthquakes occurring at depths larger than 15 km. These events led to a first volcanic warning to the Cape Verdean Civil Protection Agency. On November 22 several volcano-tectonic earthquakes were recorded at shallow depths, indicating shallow fracturing. On the basis of this activity, INMG issued a formal alert of an impending eruption to the Civil Protection Agency, ~24 hours before the onset of the eruption. Volcanic tremor and clear tiltmeter signals were recorded about one hour

  15. The Largest Holocene Eruption of the Central Andes Found

    Science.gov (United States)

    Fernandez-Turiel, J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Perez-Torrado, F.; Carracedo, J.; Osterrieth, M.; Carrizo, J.; Esteban, G.

    2013-12-01

    We present new data and interpretation about a major eruption -spreading ˜110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in NW Argentina. This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. The environmental effects of this voluminous eruption are still noticeable, as evidenced by the high content of arsenic and other trace elements in the groundwaters of the Chacopampean Plain. The recognition of this significant volcanic event may shed new light on interpretations of critical changes observed in the mid-Holocene paleontological and archaeological records, and offers researchers an excellent, extensive regional chronostratigraphic marker for reconstructing mid-Holocene geological history over a wide geographical area of South America. More than 100 ashes were sampled in Argentina, Chile and Uruguay during different field campaigns. Ash samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), grain size distributions laser diffraction, and geochemically by electron microprobe (EMPA) and laser ablation-HR-ICP-MS. New and published 14C ages were calibrated to calendar years BP. The age of the most recent CBVC eruption is 4407-4093 cal y BP, indirectly dated by 14C of associated organic sediment within the lower part of a proximal fall deposit of this event (26°53'16.05"S-67°44'48.68"W). This is the youngest record of a major volcanic event in the Southern Puna. This age is consistent with other radiocarbon dates of organic matter in palaeosols underlying or overlying distal ash fall deposits. Based on their products, all of rhyolitic composition, we have distinguished 8 main episodes during the evolution of the most recent CBVC eruption: 1) the eruption began with a white rhyolite lava dome extrusion; 2) followed by a Plinian

  16. Human responses to the 1906 eruption of Vesuvius, southern Italy

    Science.gov (United States)

    Chester, David; Duncan, Angus; Kilburn, Christopher; Sangster, Heather; Solana, Carmen

    2015-04-01

    Cultural and political contexts are important in determining the ways in which communities respond to volcanic eruptions. Understanding the manner in which communities and the State apparatus have coped with historic eruptions can provide insights into how responses have influenced vulnerability and resilience. The 1906 eruption of Vesuvius is well suited for such a study as it was one of the first major eruptions in which there was a significant element of State control, and this worked alongside more traditional pre-industrial responses. This eruption was extensively reported in the regional, national and international press and in archives which include still photography. One feature is the rich archive of material published in English language newspapers of record which are analysed fully in the paper for the first time. Many of these data sources are now accessible on-line. The eruption started on April 4th with mild explosive activity and the eruption of lava from 5th to 7th April. On the night of the 7th/8th, activity intensified when a vigorous lava fountain inclined obliquely to the north east, deposited a thick layer of tephra on the towns of Ottaviano and San Giuseppe. This led to roof collapse and a large number of fatalities. There was increased lava emission and a flow progressed south through the outskirts of Boscotrecase cutting the Circumvesuviana railway line and almost reaching Torre Annunziata. Following April 8th the eruption declined and ended on April 21st. In the initial responses to the eruption pre-industrial features were prominent, with the local communities showing social cohesion, self-reliance and little panic. A more negative aspect was the traditional religious response that involved the use of liturgies of divine appeasement and which included the use of saintly relics and images. There is interesting evidence, however, that this coping strategy was driven by the populace rather than by the clergy. The inhabitants of San Giuseppe

  17. Investigating the explosivity of shallow sub-aqueous basaltic eruptions

    Science.gov (United States)

    Murtagh, R.; White, J. D. L.

    2009-04-01

    Volcanic eruptions produce pyroclasts containing vesicles, clearly implying exsolution of volatiles from the magma has occurred. Our aim is to understand the textural characteristics of vesiculated clasts as a quantitative indicator of the eruptive behaviour of a volcano. Assessing water's role in volatile degassing and outgassing has been and is being well documented for terrestrial eruptions; the same cannot be said, however, for their shallow subaqueous counterparts. The eruptive behaviour of Surtseyan volcanoes, which include both subaqueous and subaerial phases (for example, the type-location Surtsey, Iceland in 1963) is under investigation here and for good reason. Volcanic eruptions during which water and basaltic magma come into contact appear to ignite violent eruptions of many of the small "monogenetic" volcanoes so abundant on Earth. A key problem remains that detailed conditions of water-magma interactions are not yet fully understood. Field samples obtained from exposed sequences deposited originally in a subaqueous environment allow for the necessary analysis of lapilli. With the aid of experimental data, mathematical modelling and terrestrial analogues the ambition is to unravel volatile degassing, ascent histories and fragmentation processes, allowing us ultimately to identify both the role water plays in the explosivity of shallow subaqueous eruptions, and the rise history of magma to the point of interaction. The first site, Pahvant Butte is located in southwest Utah, U.S. It is a well preserved tuff cone overlying a subaqueously deposited mound of glassy ash composed of sideromelane and tachylite. It was erupted under ~85m of water into Lake Bonneville approximately 15,300 years ago. Our focus is on samples collected from a well-bedded, broadly scoured coarse ash and lapilli lithofacies on the eastern flank of the edifice. Vesicularity indices span from 52.6% - 60.8%, with very broad vesicularity ranges, 20.6% - 81.0% for one extreme sample. The

  18. Timing and prediction of CO2 eruptions from Crystal Geyser, UT

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, F J; Friedmann, S J

    2006-05-30

    Special instruments were deployed at Crystal Geyser, Utah, in August 2005 creating a contiguous 76-day record of eruptions from this cold geyser. Sensors measured temperature and fluid movement at the base of the geyser. Analysis of the time series that contains the start time and duration of 140 eruptions reveals a striking bimodal distribution in eruption duration. About two thirds of the eruptions were short (7-32 min), and about one third were long (98-113 min). No eruption lasted between 32 and 98 min. There is a strong correlation between the duration of an eruption and the subsequent time until the next eruption. A linear least-squares fit of these data can be used to predict the time of the next eruption. The predictions were within one hour of actual eruption time for 90% of the very short eruptions (7-19 min), and about 45% of the long eruptions. Combined with emission estimates from a previous study, we estimate the annual CO{sub 2} emission from Crystal Geyser to be about 11 gigagrams (11,000 tons).

  19. On the geochemistry of the Kyra eruption sequence of Nisyros volcano on Nisyros and Tilos, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Sterba, Johannes H., E-mail: jsterba@ati.ac.at [Atominstitut der oesterreichischen Universitaeten, Vienna University of Technology (Austria); Steinhauser, Georg; Bichler, Max [Atominstitut der oesterreichischen Universitaeten, Vienna University of Technology (Austria)

    2011-11-15

    The Kyra sequence is a volcanic eruption sequence originating from the eastern flank of Nisyros volcano, Greece. Its eruptions products can be found not only on Nisyros itself but also on the nearby non-volcanic island of Tilos. In an extensive sampling campaign, outcrops of the Kyra eruption products on Nisyros were sampled and corresponding samples on Tilos were taken. The clear stratigraphical relationship between the different units within in the individual outcrops, combined with the chemical information gained by the application of instrumental neutron activation analysis (INAA) to the samples, made a detailed chemo-stratigraphy of the complete eruption sequence possible. It can be shown that the sequence is separated into eight distinguishable eruptions. Furthermore, no eruption products of the caldera-forming eruptions from Nisyros (Lower- and Upper Caldera Pumice) or from Santorin were found on Tilos.

  20. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption

    Science.gov (United States)

    Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang

    2016-05-01

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling.

  1. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption.

    Science.gov (United States)

    Jiang, Chaowei; Wu, S T; Feng, Xuesheng; Hu, Qiang

    2016-05-16

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling.

  2. Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations

    Science.gov (United States)

    Rozhnoi, A.; Hayakawa, M.; Solovieva, M.; Hobara, Y.; Fedun, V.

    2014-01-01

    Data from the Pacific network of VLF receivers have been used to study the response of the lower ionosphere to the January 2011 Mt. Kirishima (South Japan) volcanic eruption. A major explosive eruption occurred on January 27, which was preceded by several small eruptions. Perturbations of nighttime subionospheric VLF signals have been detected on the day of the first small eruption on January 18 (UT) with the maximum observed about 1.5 h after the eruption. The nighttime signal remained disturbed during the subsequent pre-eruptive and eruptive activity of Mt. Kirishima. The daytime perturbations were not observed. The frequency of the maximum spectral amplitude was found to be in the range of periods of 6-30 min, which corresponds to the periods of internal gravity waves. These results suggest that the observed VLF ionospheric effects can possibly be produced by the penetration of gravity waves caused by the volcanic activity into the ionosphere.

  3. Evolution of Magnetic Helicity During Eruptive Flares and Coronal Mass Ejections

    CERN Document Server

    Priest, Eric; Janvier, Miho

    2016-01-01

    During eruptive solar flares and coronal mass ejections, a non-pot{\\-}ential magnetic arcade with much excess magnetic energy goes unstable and reconnects. It produces a twisted erupting flux rope and leaves behind a sheared arcade of hot coronal loops. We suggest that: the twist of the erupting flux rope can be determined from conservation of magnetic flux and magnetic helicity and equipartition of magnetic helicity. It depends on the geometry of the initial pre-eruptive structure. Two cases are considered, in the first of which a flux rope is not present initially but is created during the eruption by the reconnection. In the second case, a flux rope is present under the arcade in the pre-eruptive state, and the effect of the eruption and reconnection is to add an amount of magnetic helicity that depends on the fluxes of the rope and arcade and the geometry.

  4. IPLOR performance in detecting infrasound from volcanic eruptions

    Science.gov (United States)

    Ghica, Daniela; Popa, Mihaela

    2016-04-01

    Plostina infrasound array (IPLOR) is located in the central part of Romania, in Vrancea region, its current configuration consisting of 6 elements equipped with Chaparral Physics sensors deployed over a 2.5 km aperture. The array detectability observed after processing of more than 6 years of data has shown that IPLOR is more effective in measuring mainly infrasound signals produced by natural and anthropogenic impulsive sources. This can be explained by the sensors' characteristics (frequency response, dynamic range) and the large aperture of array. Among the types of events observed with IPLOR, an emphasis can be given to the Mt. Etna volcanic eruptions as one of the powerful infrasound source recorded by the array. Located at about 1320 km distance from volcano, the array has proved efficient in observing both large and small eruptions. In case of the most large eruptive episodes occurred lately (April and October 2013, December 2015), long duration infrasonic signals were detected, the initial impulsive signature of the volcanic explosion being followed by a long train of irregular waves with smaller amplitudes and higher frequency, extended over periods ranging from 6 hours to more than three days (in December 2015). For the purpose of assessing the IPLOR performance in detecting Etna eruptions, the signal interactive analysis was performed using WinPMCC, CEA/DASE version of PMCC software. The infrasound detections obtained were plotted in function of back-azimuth, velocity and frequency, showing that the detectability is dependent both on the diurnal variations of the noise around the array (during the night the human activity diminishes) and on the seasonally dependent stratospheric winds (westward propagation during summer and eastward propagation during winter). In case of the Etna eruptive episodes detected by IPLOR, the back azimuth observed is in good agreement with the expected value (230o), i.e. an average value of 232±2o could be resolved. The

  5. Dynamics of strombolian eruptions at Batu Tara volcano (Indonesia)

    Science.gov (United States)

    Scarlato, P.; Del Bello, E.; Gaudin, D.; Taddeucci, J.; Ricci, T.; Cesaroni, C.

    2015-12-01

    In September 2014, high-speed imaging and acoustic data were acquired during 3 days of almost continuous recording (04-06/09/2015) at Batu Tara Volcano, in the small isolated island of Pulau Komba, in the Flores Sea (about 50 km N of Lembata). This volcano is very similar to the Italian Stromboli Volcano in both eruptive style and edifice morphology. The field experiment aimed at investigating degassing and explosive dynamics using a combination of GPS synchronized devices deployed in direct view of the active vent: i) a high-speed visible camera acquiring images at 500 frames per second (fps),ii) a thermal infrared (FLIR) camera acquiring at 50-200 fps, iii) a visible time lapse camera (GO-PRO) acquiring at 0.2-0.5 Hz (2 - 5 s interval), iv) two broadband microphones (Freq. range of kHz to 0.1 Hz) sampled at 10 kHz. Explosions can be discriminated in type according to their visual, thermal and acoustic features.Some explosions are characterized by a first sudden radial ejection of large spatter and bombs (main pulse), eventually followed by other similar events (secondary pulses), with very little amount of ash involved. In these eruptions, infrasonic waveforms are characterized by a first, high amplitude transient, with a first positive peak pressure followed by rapid dampening, typical of a Strombolian eruption.Other explosions are characterized by the sustained ejection of a dense jet of ash, with abundant decimeter to meter sized spatter and hot blocks.These eruptions are not accompanied by a maximum peak pressure at the eruption onset. Spectrograms show a high frequency component propagating for the entire duration of the signal.These two distinct types are sometimes overlapping and eruptions show a high amplitude transient followed by a high frequency coda. These different evolutions suggest that there are at least two repeatable explosion dynamics occurring in the conduit, with comparable gas overpressure, source depth and amount of gas involved

  6. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

    Directory of Open Access Journals (Sweden)

    A. Laakso

    2015-08-01

    Full Text Available Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an earth system model to study the radiative and climate impacts of an erupting volcano during solar radiation management (SRM. According to our simulations, the radiative impacts of an eruption and SRM are not additive: in the simulated case of concurrent eruption and SRM, the peak increase in global forcing is about 40 % lower compared to a corresponding eruption into a clean background atmosphere. In addition, the recovery of the stratospheric sulfate burden and forcing was significantly faster in the concurrent case since the sulfate particles grew larger and thus sedimented faster from the stratosphere. In our simulation where we assumed that SRM would be stopped immediately after a volcano eruption, stopping SRM decreased the overall stratospheric aerosol load. For the same reasons, a volcanic eruption during SRM lead to only about 1/3 of the peak global ensemble-mean cooling compared to an eruption under unperturbed atmospheric conditions. Furthermore, the global cooling signal was seen only for 12 months after the eruption in the former scenario compared to over 40 months in the latter. In terms of the global precipitation rate, we obtain a 36 % smaller decrease in the first year after the eruption and again a clearly faster recovery in the concurrent eruption and SRM scenario. We also found that an explosive eruption could lead to significantly different regional climate responses depending on whether it takes place during geoengineering or into an unperturbed background atmosphere. Our results imply that observations from previous large eruptions, such as Mt Pinatubo in 1991, are not directly applicable when estimating the potential consequences of a

  7. Classifying the Sizes of Explosive Eruptions using Tephra Deposits: The Advantages of a Numerical Inversion Approach

    Science.gov (United States)

    Connor, C.; Connor, L.; White, J.

    2015-12-01

    Explosive volcanic eruptions are often classified by deposit mass and eruption column height. How well are these eruption parameters determined in older deposits, and how well can we reduce uncertainty using robust numerical and statistical methods? We describe an efficient and effective inversion and uncertainty quantification approach for estimating eruption parameters given a dataset of tephra deposit thickness and granulometry. The inversion and uncertainty quantification is implemented using the open-source PEST++ code. Inversion with PEST++ can be used with a variety of forward models and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg-Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind-field parameterization. The combined inversion/uncertainty-quantification approach is applied to the 1992 eruption of Cerro Negro (Nicaragua), the 2011 Kirishima-Shinmoedake (Japan), and the 1913 Colima (Mexico) eruptions. These examples show that although eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind-field parameters, such as eruption column height. Supplementing the inversion dataset with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind-field parameters. We think the use of such robust models provides a better understanding of uncertainty in eruption parameters, and hence eruption classification, than is possible with more qualitative methods that are widely used.

  8. Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption.

    Science.gov (United States)

    Sigmundsson, Freysteinn; Hreinsdóttir, Sigrún; Hooper, Andrew; Arnadóttir, Thóra; Pedersen, Rikke; Roberts, Matthew J; Oskarsson, Níels; Auriac, Amandine; Decriem, Judicael; Einarsson, Páll; Geirsson, Halldór; Hensch, Martin; Ofeigsson, Benedikt G; Sturkell, Erik; Sveinbjörnsson, Hjörleifur; Feigl, Kurt L

    2010-11-18

    Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect. PMID:21085177

  9. Shallow conduit processes during the ad 1158 explosive eruption of Hekla volcano, Iceland

    Science.gov (United States)

    Janebo, Maria H.; Houghton, Bruce F.; Thordarson, Thorvaldur; Larsen, Gudrun

    2016-10-01

    Hekla is one of the most frequently active felsic volcanic systems in the world, with several known pre-historic large Plinian eruptions and 18 historical subplinian to small Plinian eruptions. A common view is that Plinian eruptions of Hekla are relatively short lived and purely explosive events. In detail, these events exhibit subtle differences in terms of deposit characteristics, reflecting significant differences in eruption behaviour. Of the 18 historical eruptions, two had bulk magma compositions with >66 wt% SiO2: a Plinian eruption in ad 1104 and a smaller, less well characterised, but atypical subplinian eruption in ad 1158. The ad 1158 eruption was a relatively sustained, dry (magmatic) eruption with a more powerful opening phase followed by a lower intensity, waning phase accompanied by minor destabilisation and collapse of the conduit walls. We examine here the dynamics of the ad 1158 eruption, focussing on the role of shallow conduit processes in modulating eruption dynamics. Vesicularity data constrain the relative influence of bubble nucleation, growth, and coalescence. The juvenile pyroclasts are composed of two types of microvesicular pumice (white and grey) with contrasting vesicle number density, vesicle-size distribution, and phenocryst and microlite contents. Textural analysis shows that these pumices reflect heterogeneity developed pre- to syn-eruptively in the conduit and that entrainment of longer resident magma by faster ascending magma permitted magma of contrasting maturity to be fragmented simultaneously. In this regard, the mixed melt of the ad 1158 eruption contrasts with the compositionally homogeneous melt phase of the more powerful ad 1104 Plinian event, which was typified by more uniform conduit and eruption dynamics accompanying higher average ascent rates.

  10. Surface deformation versus eruption rates of the two Eyjafjallajökull 2010 eruptions; implications for the magma plumbing system and origin of melts

    Science.gov (United States)

    Pedersen, R.; Sigmundsson, F.; Hreinsdottir, S.; Arnadottir, T.; Hoskuldsson, A.; Gudmundsson, M. T.; Magnusson, E.

    2010-12-01

    Repeated geodetic measurements reveal how active volcanoes deform at the surface, and data inversion facilitates inferences about the related volume changes of underlying deformation sources. During an eruption, drainage from a shallow magma chamber can lead to direct correlation between magma flow rate and deformation rates, as observed previously in Iceland. In the simplest case, a constant scale factor relates magma flow rates, deformation rates on the surface, and inferred volume contraction of subsurface sources. The scale factor will depend on magma source geometry, compressibility of residing magma and rheological properties of the crustal rocks. During the two eruptions of the Eyjafjallajökull volcano, Iceland, in 2010 an entirely different behaviour was observed. This behaviour may be related to the rather unique plumbing system of this particular Icelandic volcano, which appears to have no shallow magma chamber. For the initial flank eruption, where olivine basalt were erupted during a period of about 3 weeks, the average eruption rate was comparable to the inferred flow rate during formation of a pre-eruptive network of intrusions. Detailed GPS and InSAR measurements have revealed a model for the subsurface magma plumbing system active prior to and during the events with multiple sills around 5 km depth. Such intrusions have occurred intermittently in this particular volcano for the past 18 years. During the subsequent explosive trachy-andesitic summit eruption, the relation between deformation rate and magma flow rate is more complex. A large discrepancy exists between the inferred erupted volume and the computed volume change based on the associated surface deformation. When recalculated to dense rock equivalent, the inferred volume change responsible for the main deformation is about one order of magnitude smaller than the sum of mapped erupted volumes. Furthermore, the spatial pattern of the deformation is complex, and not directly related to the

  11. Obscuration of Flare Emission by an Eruptive Prominence

    CERN Document Server

    Gopalswamy, Nat

    2013-01-01

    We report on the eclipsing of microwave flare emission by an eruptive prominence from a neighboring region as observed by the Nobeyama Radioheliograph at 17 GHz. The obscuration of the flare emission appears as a dimming feature in the microwave flare light curve. We use the dimming feature to derive the temperature of the prominence and the distribution of heating along the length of the filament. We find that the prominence is heated to a temperature above the quiet Sun temperature at 17 GHz. The duration of the dimming is the time taken by the eruptive prominence in passing over the flaring region. We also find evidence for the obscuration in EUV images obtained by the Solar and Heliospheric Observatory (SOHO) mission.

  12. Radiographic visualization of magma dynamics in an erupting volcano.

    Science.gov (United States)

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-01-01

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures. PMID:24614612

  13. Seismicity and tilt associated with the 2003 Anatahan eruption sequence

    Science.gov (United States)

    Pozgay, S.H.; White, R.A.; Wiens, D.A.; Shore, P.J.; Sauter, A.W.; Kaipat, J.L.

    2005-01-01

    On May 10, 2003, the first historical eruption of Anatahan volcano in the western Pacific Mariana Islands was fortuitously recorded by a broadband seismograph installed on the island only 4 days prior to the eruption. This station, located 7 km WNW of the active crater, together with another broadband seismograph on Sarigan Island 45 km to the north, continued to operate throughout the 2-month period of major eruptive activity in May and June and throughout the majority of the following year. In June 2003, the Saipan Emergency Management Office and the US Geological Survey installed two telemetered high-gain short-period seismic stations to monitor the activity in real-time. The only earthquakes detected in the 4-day period from the initial seismograph installation until 6 h prior to the eruption occurred approximately 20 km to the northeast of the island on May 8. The first volcano-tectonic (VT) event located near the volcano occurred at 01:53 GMT on May 10. The number of events per hour then increased dramatically and a period of about 80 discrete earthquakes per hour commenced at about 06:20 GMT, immediately prior to the estimated eruption time of 07:30 from the Volcanic Ash Advisory Center. A long-period tilt signal recorded on the horizontal components of the broadband seismograph, indicating upward movement of the crater region, also commenced at about 06:20. Inflation continued until 09:30, when the direction of tilt reversed. Deflation continued until 17:50, coinciding with a reduction in the number of VT events. The larger VT events were located with a linearized least-squares location algorithm. Magnitudes of located VT events on May 10 ranged from 2.0 to 3.2, but a period of larger VT events were recorded on May 11, with the largest M 4.2. After about 36 h of intense earthquake activity, the number of discrete VT events declined and was replaced by nearly continuous volcanic tremor for the next 6 weeks. Differing types of very long-period events may

  14. Recovery from a Giant Eruption: The Case of Eta Car

    Science.gov (United States)

    Davidson, Kris; Mehner, Andrea; Martin, John C.; Humphreys, Roberta M.

    2016-01-01

    Giant eruptions or SN Impostors are far more mysterious than "real" supernovae, because they are scarcer and because they have received far less theoretical effort. One rather special problem is the disequilibrium state of the post-eruption object. It may be partially observable by watching the star's gradual recovery; which, in principle, may offer clues to the basic instability mechanisms. So far, the only example that can be observed well enough is eta Carinae. This object's history offers tantalizing clues and counter-clues. For instance: (1) Before 2000, the recovery timescale seemed to be of order 150 years; but (2) around 2000, many attributes began to change much more rapidly; and (3) the 150-year recovery process has been punctuated by about three abrupt changes of state. This strange combination of facts has received almost no theoretical attention.

  15. An overview of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Bull, Katharine F.; Buurman, Helena

    2013-06-01

    In March 2009, Redoubt Volcano, Alaska erupted for the first time since 1990. Explosions ejected plumes that disrupted international and domestic airspace, sent lahars more than 35 km down the Drift River to the coast, and resulted in tephra fall on communities over 100 km away. Geodetic data suggest that magma began to ascend slowly from deep in the crust and reached mid- to shallow-crustal levels as early as May, 2008. Heat flux at the volcano during the precursory phase melted ~ 4% of the Drift glacier atop Redoubt's summit. Petrologic data indicate the deeply sourced magma, low-silica andesite, temporarily arrested at 9-11 km and/or at 4-6 km depth, where it encountered and mixed with segregated stored high-silica andesite bodies. The two magma compositions mixed to form intermediate-silica andesite, and all three magma types erupted during the earliest 2009 events. Only intermediate- and high-silica andesites were produced throughout the explosive and effusive phases of the eruption. The explosive phase began with a phreatic explosion followed by a seismic swarm, which signaled the start of lava effusion on March 22, shortly prior to the first magmatic explosion early on March 23, 2009 (UTC). More than 19 explosions (or “Events”) were produced over 13 days from a single vent immediately south of the 1989-90 lava domes. During that period multiple small pyroclastic density currents flowed primarily to the north and into glacial ravines, three major lahars flooded the Drift River Terminal over 35 km down-river on the coast, tephra fall deposited on all aspects of the edifice and on several communities north and east of the volcano, and at least two, and possibly three lava domes were emplaced. Lightning accompanied almost all the explosions. A shift in the eruptive character took place following Event 9 on March 27 in terms of infrasound signal onsets, the character of repeating earthquakes, and the nature of tephra ejecta. More than nine additional

  16. Rosacea-like eruption due to topical pimecrolimus

    OpenAIRE

    El-Heis, S; Buckley, DA

    2015-01-01

    Topical calcineurin inhibitors have been used outside their approved indications for a number of conditions, including topical steroid-induced rosacea. However, tacrolimus ointment itself has been reported to trigger rosacea in a small number of cases. We report a case of a rosacea-like eruption in a 39-year-old woman occurring after the use of pimecrolimus cream for 12 months for atopic dermatitis. Withdrawal of pimecrolimus combined with treatment with oral lymecycline, topical metronidazol...

  17. Dental Eruption: A Survey of its Manifestations in Early Childhood

    Directory of Open Access Journals (Sweden)

    Melissa Cabral de Queiroz SIMEÃO

    2006-08-01

    Full Text Available Objective: To identify signs and symptoms related to eruption, understand the occurrence of these alterations, and finally, identify the frequency and intensity of their appearance. Method: Questionnaires and surveys were conducted with 100 parents or legal guardians of children between the ages of six months and five years of age, and also with 100 pediatricians in the city of Fortaleza. The factors researched were the incidence of signs and symptoms during dental eruption, aiming to discover which were most common, which methods of treatment were used and other aspects related to the quality of information received by the mothers. Results: Of the pediatricians interviewed, 93.9% reported clinical alterations in their patients during dental eruption. The manifestations most commonly found were, in a decreasing order of frequency, irritability, the habit of taking the hand to the mouth, syalorrhea, anorexia, fever, fitful sleep and diarrhea. A great number of mothers reported visiting a doctor upon occurrence of these alterations, and also using teething rings and ointments. The pediatricians, for the most part, reported giving exclusive orientation as a treatment option, and, in some cases, prescribing symptomatic medication. A small part of these professionals referred the patient to a dentist. The mothers reported having received minimum information with regards to dental eruption during the pre-natal period and showed a low level of satisfaction with the information received. Conclusion: The vast majority of the pediatricians and caregivers demonstrated the presence of systemic oral manifestations. Irritability was reported in a higher percentage, followed by the habit of hand-to-mouth, excessive salivation, anorexia, fever, disturbance in the sleep and diarrhea.

  18. The 1982 eruption of El Chichon volcano, southeastern Mexico ( Antarctica).

    Science.gov (United States)

    Tilling, R.I.

    1982-01-01

    Late in the evening on March 28, El Chichon roared into life with a tremendous explosion that sent a column of ash and gases 10 miles high within an hour. There were no immediate warning signals of the eruption of El Chichon, although increased earthquake activity had been noted for months, possibly a few years, before the explosion. Sound waves from the explosion were detected by instruments 7000 miles away in Antarctica.-after Author

  19. Unilateral eruptive vellus hair cysts occurring on the face.

    Science.gov (United States)

    Lew, B-L; Lee, M-H; Haw, C-R

    2006-11-01

    Eruptive vellus hair cysts (EVHC) are small, cystic papules that usually occur on the chest and extremities. Their aetiology is unknown. Fewer than 10 cases of a variant form of EVHC that occur exclusively on the face have been reported. We describe a case of EVHC limited to the right side of the face. To the best of our knowledge, no case of unilateral EVHC has been reported. PMID:17062051

  20. Acetaminophen-induced cellulitis-like fixed drug eruption

    OpenAIRE

    Neila Fathallah; Chaker Ben Salem; Raoudha Slim; Lobna Boussofara; Najet Ghariani; Kamel Bouraoui

    2011-01-01

    Acetaminophen is a widely used analgesic drug. Its adverse reactions are rare but severe. An 89-year-old man developed an indurated edematous and erythematous plaque on his left arm 1 day after acetaminophen ingestion. Cellulitis was suspected and antibiotictherapy was started but there was no improvement of the rash; there was a spectacular extension of the lesion with occurrence of flaccid vesicles and blisters in the affected sites. The diagnosis of generalized-bullous-fixed drug eruption ...

  1. Anticipating abrupt shifts in temporal evolution of probability of eruption

    OpenAIRE

    Rohmer, Jeremy; Loschetter, Annick

    2016-01-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value to a state of high probability value. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of th...

  2. Greenland ice core evidence of the 79 AD Vesuvius eruption

    OpenAIRE

    C. Barbante; N. M. Kehrwald; P. Marianelli; B. M. Vinther; Steffensen, J. P.; Cozzi, G; C. U. Hammer; Clausen, H. B.; Siggaard-Andersen, M.-L.

    2013-01-01

    Volcanic tephra are independent age horizons and can synchronize strata of various paleoclimate records including ice and sediment cores. The Holocene section of the Greenland Ice Core Project (GRIP) ice core is dated by multi-parameter annual layer counting, and contains peaks in acidity, SO42− and microparticle concentrations at a depth of 429.1 to 429.3 m, which have not previously been definitively ascribed to a volcanic eruption. Here, we identify tephra particles...

  3. Arcade Implosion Caused by a Filament Eruption in a Flare

    CERN Document Server

    Wang, Juntao; Fletcher, L; Thalmann, J K; Hudson, H S; Hannah, I G

    2016-01-01

    Coronal implosions - the convergence motion of plasmas and entrained magnetic field in the corona due to a reduction in magnetic pressure - can help to locate and track sites of magnetic energy release or redistribution during solar flares and eruptions. We report here on the analysis of a well-observed implosion in the form of an arcade contraction associated with a filament eruption, during the C3.5 flare SOL2013-06-19T07:29. A sequence of events including magnetic flux-rope instability and distortion, followed by filament eruption and arcade implosion, lead us to conclude that the implosion arises from the transfer of magnetic energy from beneath the arcade as part of the global magnetic instability, rather than due to local magnetic energy dissipation in the flare. The observed net contraction of the imploding loops, which is found also in nonlinear force-free field extrapolations, reflects a permanent reduction of magnetic energy underneath the arcade. This event shows that, in addition to resulting in e...

  4. Structure and evolution of magnetic fields associated with solar eruptions

    International Nuclear Information System (INIS)

    This paper reviews the studies of solar photospheric magnetic field evolution in active regions and its relationship to solar flares. It is divided into two topics, the magnetic structure and evolution leading to solar eruptions and rapid changes in the photospheric magnetic field associated with eruptions. For the first topic, we describe the magnetic complexity, new flux emergence, flux cancelation, shear motions, sunspot rotation and magnetic helicity injection, which may all contribute to the storage and buildup of energy that trigger solar eruptions. For the second topic, we concentrate on the observations of rapid and irreversible changes of the photospheric magnetic field associated with flares, and the implication on the restructuring of the three-dimensional magnetic field. In particular, we emphasize the recent advances in observations of the photospheric magnetic field, as state-of-the-art observing facilities (such as Hinode and Solar Dynamics Observatory) have become available. The linkages between observations, theories and future prospectives in this research area are also discussed. (invited reviews)

  5. Recovery from Giant Eruptions in Very Massive Stars

    CERN Document Server

    Kashi, Amit; Humphreys, Roberta M

    2015-01-01

    We use a hydro-and-radiative-transfer code to explore the behavior of a very massive star (VMS) after a giant eruption -- i.e., following a supernova impostor event. Beginning with a reasonable model for an evolved VMS, we simulate the change of state caused by a giant eruption via two methods that explicitly conserve total energy: 1. Synthetically removing outer layers of mass while reducing the energy of the inner layers. 2. Synthetically transferring energy from the core to the outer layers, an operation that automatically causes mass ejection. Our focus is on the aftermath, not the poorly-understood eruption itself. Then, using a radiation-hydrodynamic code in 1D with realistic opacities and convection, the interior disequilibrium state is followed for about 200 years. Typically the star develops a $\\sim 400 ~\\rm{km}~\\rm{s}^{-1}$ wind with a mass loss rate that begins around $0.1 ~M_\\odot~\\rm{yr^{-1}}$ and gradually decreases. This outflow is driven by $\\kappa$-mechanism radial pulsations. In some cases a...

  6. The physical mechanisms that initiate and drive solar eruptions

    CERN Document Server

    Aulanier, Guillaume

    2013-01-01

    Solar eruptions are due to a sudden destabilization of force-free coronal magnetic fields. But the detailed mechanisms which can bring the corona towards an eruptive stage, then trigger and drive the eruption, and finally make it explosive, are not fully understood. A large variety of storage-and-release models have been developed and opposed to each other since 40 years. For example, photospheric flux emergence vs. flux cancellation, localized coronal reconnection vs. large-scale ideal instabilities and loss of equilibria, tether-cutting vs. breakout reconnection, and so on. The competition between all these approaches has led to a tremendous drive in developing and testing all these concepts, by coupling state-of-the-art models and observations. Thanks to these developments, it now becomes possible to compare all these models with one another, and to revisit their interpretation in light of their common and their different behaviors. This approach leads me to argue that no more than two distinct physical me...

  7. The role of filament activation in a solar eruption

    CERN Document Server

    da Costa, Fatima Rubio; Fletcher, Lyndsay; Romano, Paolo; Labrosse, Nicolas

    2014-01-01

    Observations show that the mutual relationship between filament eruptions and solar flares cannot be described in terms of an unique scenario. In some cases, the eruption of a filament appears to trigger a flare, while in others the observations are more consistent with magnetic reconnection that produces both the flare observational signatures (e.g., ribbons, plasma jets, post-flare loops, etc.) and later the destabilization and eruption of a filament. We study an event which occurred in NOAA 8471, where a flare and the activation of (at least) two filaments were observed on 28 February 1999. By using imaging data acquired in the 1216, 1600, 171 and 195 \\AA\\ TRACE channels and by BBSO in the continnum and in H$\\alpha$, a morphological study of the event is carried out. Using TRACE 1216 and 1600 \\AA\\ data, an estimate of the "pure" Ly$\\alpha$ power is obtained. The extrapolation of the magnetic field lines is done using the SOHO/MDI magnetograms and assuming a potential field. The potential magnetic field ext...

  8. Conservation of erupting ungulate populations on islands – a comment

    Directory of Open Access Journals (Sweden)

    Anne Gunn

    2003-04-01

    Full Text Available A generalised model for herbivores experiencing abundant forage over time is that their numbers erupt and then decline. This model has been applied to fluctuations in caribou (Rangifer tarandus populations especially those on islands. Since this generalised model for erupting herbivores was first proposed, two assumptions have slipped in (1 that an erupting population will crash; and (2 that the crash will be density-dependent. The problem with the assumptions is that, without testing, they can lead to inappropriate management such as culls. The first assumption arises from uncritical use of earlier accounts and the second assumption from not discriminating between the effects of environmental variation from the effects of the high herbivore numbers on forage availability (density-dependence. Often typical densitydependent effects such as lowered initial reproduction, reduced early survival of calves, and subsequent calf, yearling and juvenile survival are used to justify the contention that there are too many herbivores. But such reasoning is flawed unless cause/effect relationships are established and the role of environmental variation is evaluated. We argue that it is overly simplistic to believe that every population’s subsequent performance and fate will follow a singular pattern with only one paramount factor driving and ultimately dictating an inevitable outcome. The relative importance of unpredictable abiotic factors in influencing and causing variation in the response of ungulate populations should be investigated, no matter whether those factors are sporadic or periodic.

  9. An imaging study of a complex solar coronal radio eruption

    CERN Document Server

    Feng, S W; Song, H Q; Wang, B; Kong, X L

    2016-01-01

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions, studies on which are important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II and three reversely-drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closely associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is co-incident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is es...

  10. Sun-to-Earth Analysis of a Major Solar Eruption

    Science.gov (United States)

    Patsourakos, Spiros

    During the interval of 7-10 March 2012, Earth's space environment experienced a barrage of space weather phenomena. Early during 7 March 2012, the biggest proton event of 2012 took place, while on 8 March 2012, an interplanetary shock and coronal mass ejection (CME) arrived at 1 AU. This sequence trigerred the biggest geomagnetic storm of cycle 24 so far. The solar source of these activities was a pair of homologous, eruptive X-class flares associated with two ultra-fast CMEs. The two eruptions originated from NOAA active region 11429 during the early hours of 7 March 2012 and within an hour from each other. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions and monitors, we perform a synergistic Sun-to-Earth study of various observational aspects of the event sequences. We will present an attempt to formulate a cohesive scenario which couples the eruption initiation, interplanetary propagation, and geospace consequences. Our main focus is on building a framework that starting from solar and near-Sun estimates of the magnetic and dynamic content and properties of the Earth-directed CME assess in advance the subsequent geomagnetic response expected, once the associated interplanetary CME reaches 1 AU. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  11. Greenland ice core evidence of the 79 AD Vesuvius eruption

    Directory of Open Access Journals (Sweden)

    C. Barbante

    2012-11-01

    Full Text Available Volcanic tephra are indepenent age horizons and can synchronize strata of various paleoclimate records including ice and sediment cores. Before such paleoclimate records can be synchronized, it is essential to first confidently identify individual independent marker horizons. The Greenland Ice Core Project (GRIP ice core from Central Greenland is often used as a "golden spike" to synchronize Northern Hemisphere paleoclimte records. The Holocene section of the GRIP ice core is dated by multi-parameter annual layer counting, and contains peaks in acidity, SO42− and microparticle concentrations at a depth of 428.4 to 429.6 m, which have not previously been definitively ascribed to a volcanic eruption. Here, we identify tephra particles and determine that volcanic shards extracted from a depth of 429.2 m in the GRIP ice core are likely due to the 79 AD Vesuvius eruption. The chemical compositon of the tephra particles is consistent with the K-phonolitic composition of the Vesuvius juvinile ejecta and differs from the chemical composition of other major eruptions (≥VEI 4 between 50–100 AD.

  12. Environmental impact of the 1.8 ka Taupo eruption, New Zealand: Landscape responses to a large-scale explosive rhyolite eruption

    Science.gov (United States)

    Manville, V.; Segschneider, B.; Newton, E.; White, J. D. L.; Houghton, B. F.; Wilson, C. J. N.

    2009-10-01

    Large-scale ignimbrite eruptions from rhyolitic caldera volcanoes can trigger geologically instantaneous changes in sedimentary systems over huge areas by either burying existing environments or overloading them with vast quantities of unconsolidated particulate material. The post-eruption readjustment of the landscape to such perturbations is one of the most dramatic processes in physical sedimentology, exemplified here by the 1.8 ka Taupo eruption in the central North Island of New Zealand. This eruption generated voluminous fall deposits, then climaxed with emplacement of a c. 30 km 3 non-welded ignimbrite over a near-circular area of c. 20 000 km 2. Approximately 90% of the area, but retrenchment of single thread rivers and a return to pre-eruption gradients and bedloads years to decades later. Typically the modern profile of many streams and rivers follow closely their pre-eruption profiles, and incision and erosion is overwhelmingly confined to the deposits of the eruption itself. Although the general remobilisation pattern is similar for all impacted river systems, detailed studies of the Waikato, Rangitaiki, Mohaka, Ngaruroro and Whanganui catchments show that the relative timing and scale of each eruption response phase differs between each catchment. These reflect differences in catchment physiography and hydrology, and the volume and type of pyroclastic material deposited in each. Ultimately, the landscape response reflects the relative spatial distributions of, and the volumetric ratios between, the volumes of pyroclastic debris, water, and accommodation space in the basin (cf. Kataoka and Manville, this volume).

  13. Eruptive history and magmatic stability of Erebus volcano, Antarctica: Insights from englacial tephra

    Science.gov (United States)

    Iverson, Nels A.; Kyle, Philip R.; Dunbar, Nelia W.; McIntosh, William C.; Pearce, Nicholas J. G.

    2014-11-01

    tephrostratigraphy of the active Antarctic Erebus volcano was determined from englacial tephra on the ice-covered flanks of Erebus and an adjacent volcano. The tephra are used to reconstruct the eruptive history and magmatic evolution of Erebus. More fine-grained and blocky particles define tephra formed in phreatomagmatic eruptions and larger fluidal shards are characteristic of magmatic eruptions and in some cases both eruptive types are identified in a single mixed tephra. The eruptions forming the mixed tephra likely started as phreatomagmatic eruptions which transitioned into Strombolian eruptions as the nonmagmatic water source was exhausted. We reconstructed the eruptive history of Erebus using the tephra layers stratigraphic position, 40Ar/39Ar ages, shard morphology, and grain size. Major and trace element analyses of individual glass shards were measured by electron probe microanalysis and LA-ICP-MS. Trachybasalt, trachyte, and phonolite tephra were identified. All phonolitic tephra are Erebus-derived with compositions similar to volcanic bombs erupted from Erebus over the past 40 years. The tephra show that Erebus magma has not significantly changed for 40 ka. The uniformity of the glass chemical composition implies that the phonolite magma has crystallized in the same manner without change throughout the late Quaternary, suggesting long-term stability of the Erebus magmatic system. Trachyte and trachybasalt tephra were likely erupted from Marie Byrd Land and the McMurdo Sound area, respectively. The trachytic tephra can be regionally correlated and could provide an important time-stratigraphic marker in Antarctic ice cores.

  14. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-10-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  15. Worldwide environmental impacts from the eruption of Thera

    Science.gov (United States)

    Lamoreaux, P. E.

    1995-10-01

    The eruptions of Thera (Santorini) between 1628 and 1450 BC constituted a natural catastrophe unparalleled in all of history. The last major eruption in 1450 BC destroyed the entire Minoan Fleet at Crete at a time when the Minoans dominated the Mediterranean world. In addition, there had to be massive loss of life from ejecta gases, volcanic ash, bombs, and flows. The collapse of a majestic mountain into a caldera 15 km in diameter caused a giant ocean wave, a tsunami, that at its source was estimated in excess of 46 m high. The tsunami destroyed ships as far away as Crete (105 km) and killed thousands of people along the shorelines in the eastern Mediterranean area. At distant points in Asia Minor and Africa, there was darkness from ash fallout, lightning, and destructive earthquakes. Earthquake waves emanating from the epicenter near the ancient volcano were felt as far away as the Norwegian countries. These disturbances caused great physical damage in the eastern Mediterranean and along the rift valley system from Turkey to the south into central Africa. They caused major damage and fires in north Africa from Sinai to Alexandria, Egypt. Volcanic ash spread upward as a pillar of fire and clouds into the atmosphere and blocked out the sun for many days. The ash reached the stratosphere and moved around the world where the associated gases and fine particulate matter impacted the atmosphere, soils, and waters. Ground-hugging, billowing gases moved along the water surface and destroyed all life downwind, probably killing those who attempted to flee from Thera. The deadly gases probably reached the shores of north Africa. Climatic changes were the aftermath of the eruption and the atmospheric plume was to eventually affect the bristlecone pine of California; the bog oaks of Ireland, England, and Germany, and the grain crops of China. Historical eruptions at Krakatau, Tambora, Vesuvius, and, more currently, eruptions at Nevado del Ruiz, Pinatubo, and Mount Saint

  16. Phenytoin/albendazole induced exanthematous eruptions: a case report

    Directory of Open Access Journals (Sweden)

    M. Ravishankar

    2015-06-01

    Full Text Available Exanthematous drug eruptions, often called and ldquo;drug rashes and rdquo; or and ldquo;maculopapular eruptions and rdquo; by non-dermatologists are the most common form of cutaneous drug eruption. Cutaneous reactions are among the most common adverse effects of drugs, including penicillins, cephalosporins, sulfonamides, and allopurinol (with an incidence of up to 50 cases per 1000 new users, and particularly the aromatic amine anti-seizure medications, including carbamazepine, phenytoin, and lamotrigine (with an incidence of up to 100 cases per 1000 new users. Phenytoin is a hydantoin derivative anticonvulsant drug used primarily in the management of complex partial seizures and generalized tonic-clonic seizures. Albendazole is a benzimidazole medication used for the treatment of a variety of parasitic worm infestations. Carbamazepine and phenytoin are among the most common causes of antiepileptic drug-related cutaneous adverse reactions. Manifestations range from a mild erythematous maculopapular rash to life-threatening Stevens-Johnson syndrome and toxic epidermal necrolysis. Albendazole induced rashes and urticaria have been reported in less than 1% of the patients. Here we present the case of a 12-year-old male patient who came to the dermatology outpatient department with complaints of itching and maculopapular eruptions all over the body. The patient gave a history of taking tablet phenytoin and tablet albendazole for neurocysticercosis since 1-week. There was no fever or any other systemic manifestations. There was no history of any other drug intake. A diagnosis of phenytoin/albendazole induced exanthematous eruptions was made. Both the medications were discontinued, and the patient was advised to take syrup sodium valproate 200 mg BD. For the rashes and itching, the patient was advised to take tablet hydroxyzine HCl 10 mg OD, tablet prednisolone and tablet levocetirizine for 5 days. Improvement was seen and the itching reduced

  17. Tidal Control of Jet Eruptions Observed by Cassini ISS

    Science.gov (United States)

    Hurford, T. A.; Helfenstein, P.; Spitale, J. N.

    2012-01-01

    Observations by Cassini's Imaging Science Subsystem (ISS) of Enceladus' south polar region at high phase angles has revealed jets of material venting into space. Observations by Cassini's Composite Infrared Spectrometer (CIRS) have also shown that the south polar region is anomalously warm with hotspots associated with geological features called the Tiger Stripes. The Tiger Stripes are large rifts near the south pole of Enceladus, which are typically about 130 km in length, 2 km wide, with a trough 500 m deep, and are l1anked on each side by 100m tall ridges. Preliminary triangulation of jets as viewed at different times and with different viewing geometries in Cassini ISS images taken between 2005 and 2007 have constrained the locations of eight major eruptions of material and found all of them associated with the south polar fractures unofficially the 'Tiger Stripes', and found four of them coincident with the hotspots reported in 2006 by CIRS. While published ISS observations of jet activity suggest that individual eruption sites stay active on the timescale of years, any shorter temporal variability (on timescales of an orbital period, or 1.3 Earth days, for example) is more difficult to establish because of the spotty temporal coverage and the difficulty of visually isolating one jet from the forest of many seen in a typical image. Consequently, it is not known whether individual jets are continuously active, randomly active, or if they erupt on a predictable, periodic schedule. One mechanism that may control the timing of eruptions is diurnal tidal stress, which oscillates between compression/tension as well as right and left lateral shear at any given location throughout Enceladus' orbit and may allow the cracks to open and close regularly. We examine the stresses on the Tiger Stripe regions to see how well diurnal tidal stress caused by Enceladus' orbital eccentricity may possibly correlate with and thus control the observed eruptions. We then identify

  18. Volcanic eruption source parameters from active and passive microwave sensors

    Science.gov (United States)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  19. Eruptive dynamics during magma decompression: a laboratory approach

    Science.gov (United States)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of

  20. Sponge Cake or Champagne? Bubbles, Magmatic Degassing and Volcanic Eruptions

    Science.gov (United States)

    Cashman, K.; Pioli, L.; Belien, I.; Wright, H.; Rust, A.

    2007-12-01

    Vesiculation is an unavoidable consequence of magma decompression; the extent to which bubbles travel with ascending magma or leave the system by separated or permeable flow will determine the nature of the ensuing eruption. Bubbles travel with the melt from which they exsolve if the rise time of bubbles through the melt (the 'drift velocity') is much less than the rise rate of the magma (sponge cake). This condition is most likely to be met in viscous melts (where bubble rise velocities are low) and in melts that experience rapid decompression (high ascent velocities). Under these conditions, bubble expansion within the melt continues until sufficient bubble expansion causes coalescence and the development of a permeable network. Typical pumice vesicularities of 70-80% and permeabilities of 10-12 m2 constrain this limit under conditions appropriate for subplinian to plinian eruptions (mass fluxes > 106 kg/s). Slower rise rates (and lower mass fluxes) that characterize effusive eruptions produce silicic lavas with a wider range of vesicularities. In general, permeability decreases with decreasing sample vesicularity as bubbles deform (as evidenced by anisotropy in permeability and electrical conductivity) and pore apertures diminish. Degassing efficiency (and resulting densification of magma within the conduit) under these conditions is determined by permeability and the time allowed for gas escape. Bubbles rise through the melt if the drift velocity exceeds the velocity of magma ascent (champagne). This condition is most easily met in volatile-rich, low viscosity (mafic) melts at low to moderate fluxes. At very low magma flux, magma eruption rate is determined by the extent to which magma is entrained and ejected by rising gases (strombolian eruptions); when bubbles are too small, or are rising too slowly, they may not break the surface at all, but instead may be concentrated in a near-surface layer (surface foam). As the magma flux increases, segregation of

  1. Evaluation of climate impacts after a large volcanic eruption during stratospheric sulfur injections

    Science.gov (United States)

    Laakso, Anton; Kokkola, Harri; Partanen, Antti-Ilari; Niemeier, Ulrike; Timmreck, Claudia; Lehtinen, Kari; Hakkarainen, Hanne; Korhonen, Hannele

    2016-04-01

    Solar radiation management (SRM) by injecting sulfur to the stratosphere is one of the most discussed geoengineering methods, because it has been suggested to be affordable and effective and its impacts have been thought to be predictable based on volcanic eruptions. Injecting sulfur to the stratosphere could be seen as an analogy of large volcanic eruptions, where large amounts of sulfur dioxide are released into the stratosphere. In the atmosphere sulfur dioxide oxidizes and forms aqueous sulfuric acid aerosols which reflect incoming solar radiation back to space. If SRM is ever used to cool the climate it is possible that a large volcanic eruption could happen also during the SRM, which would lead temporally to a very strong cooling. The simulations in this study were performed in two steps. In the first step, we used the aerosol-climate model MAECHAM5-HAM-SALSA to define global aerosol fields in scenarios with stratospheric sulfur injections and/or a volcanic eruption. In the second step of the study we performed climate simulations using Max-Planck-Institute's Earth system model (MPI-ESM) by using aerosol fields defined by MAECHAM5-HAM-SALSA. We studied scenarios of volcanic eruptions in two different locations and seasons and during the SRM sulfur injections and without injections. According to our simulations the radiative impacts of the eruption and SRM are not additive and the radiative effects and climate changes occurring after the eruption depend strongly on whether SRM is continued or suspended after the eruption. Adding to this, sulfate burden and radiative forcing after the volcanic eruption decrease significantly faster if the volcanic eruption happens during the geoengineering injections. In this situation, sulfur from the eruption does not only form new particles but it also condenses into pre-existing particles. Furthermore, the new small particles that are formed after the eruption coagulate effectively with the existing larger particles from

  2. A novel approach to estimate the eruptive potential and probability in open conduit volcanoes.

    Science.gov (United States)

    De Gregorio, Sofia; Camarda, Marco

    2016-01-01

    In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.

  3. Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand

    Science.gov (United States)

    Montanaro, Cristian; Scheu, Bettina; Cronin, Shane J.; Breard, Eric C. P.; Lube, Gert; Dingwell, Donald B.

    2016-10-01

    Sudden hydrothermal eruptions occur in many volcanic settings and may include high-energy explosive phases. Ballistics launched by such events, together with ash plumes and pyroclastic density currents, generate deadly proximal hazards. The violence of hydrothermal eruptions (or explosive power) depends on the energy available within the driving-fluids (gas or liquid), which also influences the explosive mechanisms, volumes, durations, and products of these eruptions. Experimental studies in addition to analytical modeling were used here to elucidate the fragmentation mechanism and aspects of energy balance within hydrothermal eruptions. We present results from a detailed study of recent event that occurred on the 6th of August 2012 at Upper Te Maari within the Tongariro volcanic complex (New Zealand). The eruption was triggered by a landslide from this area, which set off a rapid stepwise decompression of the hydrothermal system. Explosive blasts were directed both westward and eastward of the collapsed area, with a vertical ash plume sourced from an adjacent existing crater. All explosions ejected blocks on ballistic trajectories, hundreds of which impacted New Zealand's most popular hiking trail and a mountain lodge, 1.4 km from the explosion locus. We have employed rocks representative of the eruption source area to perform rapid decompression experiments under controlled laboratory conditions that mimic hydrothermal explosions under controlled laboratory conditions. An experimental apparatus for 34 by 70 mm cylindrical samples was built to reduce the influence of large lithic enclaves (up to 30 mm in diameter) within the rock. The experiments were conducted in a temperature range of 250 °C-300 °C and applied pressure between 4 MPa and 6.5 MPa, which span the range of expected conditions below the Te Maari crater. Within this range we tested rapid decompression of pre-saturated samples from both liquid-dominated conditions and the vapor-dominated field

  4. Sequence of the 1895 eruption of the Zao volcano, Tohoku Japan

    Science.gov (United States)

    Miura, Kotaro; Ban, Masao; Ohba, Tsukasa; Fujinawa, Akihiko

    2012-12-01

    The most recent major eruption event of the Zao volcano comprised a series of phreatic eruption episodes on 15 and 19 February, 22 August, and 27-28 September 1895, with several precursory vulcanian eruptions during February-July 1894. All were generated at the Okama crater lake located inside the Umanose caldera. The eruption products consist mainly of hydrothermally altered ash with altered blocks, except for ash from 1984. The eruption deposits of 1895 are divided lithologically into six layers (1-6). Comparison of the document with the lithofacies of deposits shows that layers 1, 2, 3-4, and 5-6 were correlated respectively with eruption episodes of 15 February (episode 1), 19 February (episode 2), 22 August (episode3), and 27-28 September (episode 4). During these four episodes, ca. 0.5%, 0.5%, 1.5%, and 98% of the total mass of the products had been discharged. Based on lithologic, stratigraphic, granulometric, and component analyses and on distributional features for these layers, the following depositional mechanisms were inferred. Layers 1, 3, and 4 were formed mainly from their related small pyroclastic density currents, whereas layer 2 resulted mainly from a small pyroclastic fall. In contrast, layers 5 and 6 are larger-scale near-vent pyroclastic fall deposits from ash clouds and eruption clouds, which might have included some juvenile fragments. The three early episodes in 1985 led to the climactic episode of 27-28 September. Furthermore, the andesitic magma chamber at < 3 kb depth, which caused the 1894 vulcanian eruptions, became a hydrothermal alteration source for the 1895 erupted materials. The chamber was re-activated before 1895 eruption by injection of basaltic magmas from greater depth. The injection reached maximum at the climactic event. The inferred course of that series of eruption episodes provides useful information to predict future volcanic phreatic-type eruptions at this volcano.

  5. Infrasonic crackle and supersonic jet noise from the eruption of Nabro Volcano, Eritrea

    OpenAIRE

    Fee, D.; Matoza, RS; Gee, KL; Neilsen, TB; Ogden, DE

    2013-01-01

    The lowermost portion of an explosive volcanic eruption column is considered a momentum-driven jet. Understanding volcanic jets is critical for determining eruption column dynamics and mitigating volcanic hazards; however, volcanic jets are inherently difficult to observe due to their violence and opacity. Infrasound from the 2011 eruption of Nabro Volcano, Eritrea has waveform features highly similar to the "crackle" phenomenon uniquely produced by man-made supersonic jet engines and rockets...

  6. Water-magma interaction and plume processes in the 2008 Okmok eruption, Alaska

    Science.gov (United States)

    Unema, Joel; Ort, Michael H.; Larsen, Jessica D; Neal, Christina; Schaefer, Janet R.

    2016-01-01

    Eruptions of similar explosivity can have divergent effects on the surroundings due to differences in the behavior of the tephra in the eruption column and atmosphere. Okmok volcano, located on Umnak Island in the eastern Aleutian Islands, erupted explosively between 12 July and 19 August 2008. The basaltic andesitic eruption ejected ∼0.24 km3dense rock equivalent (DRE) of tephra, primarily directed to the northeast of the vent area. The first 4 h of the eruption produced dominantly coarse-grained tephra, but the following 5 wk of the eruption deposited almost exclusively ash, much of it very fine and deposited as ash pellets and ashy rain and mist. Meteorological storms combined with abundant plume water to efficiently scrub ash from the eruption column, with a rapid decrease in deposit thickness with distance from the vent. Grain-size analysis shows that the modes (although not their relative proportions) are very constant throughout the deposit, implying that the fragmentation mechanisms did not vary much. Grain-shape features consistent with molten fuel-coolant interaction are common. Surface and groundwater drainage into the vents provided the water for phreatomagmatic fragmentation. The available water (water that could reach the vent area during the eruption) was ∼2.8 × 1010 kg, and the erupted magma totaled ∼7 × 1011 kg, which yield an overall water:magma mass ratio of ∼0.04, but much of the water was not interactive. Although magma flux dropped from 1 × 107 kg/s during the initial 4 h to 1.8 × 105 kg/s for the remainder of the eruption, most of the erupted material was ejected during the lower-mass-flux period due to its much greater length, and this tephra was dominantly deposited within 10 km downwind of the vent. This highlights the importance of ash scrubbing in the evaluation of hazards from explosive eruptions.

  7. A case of levocetirizine-induced fixed drug eruption and cross-reaction with piperazine derivatives

    OpenAIRE

    Kim, Mi-Yeong; Jo, Eun-Jung; Chang, Yoon-Seok; Cho, Sang-Heon; Min, Kyung-Up; Kim, Sae-Hoon

    2013-01-01

    Fixed drug eruption is an uncommon adverse drug reaction caused by delayed cell-mediated hypersensitivity. Levocetirizine is an active (R)-enatiomer of cetirizine and there have been a few reports of fixed drug eruption related to these antihistamines. We experienced a case of levocetirizine-induced fixed drug eruption and cross-reaction with other piperazine derivatives confirmed by patch test. A 73-year-old female patient presented with recurrent generalized itching, cutaneous bullae format...

  8. Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies

    OpenAIRE

    Ribeiro, V. A. R. M.; Chomiuk, L.; Munari, U.; Steffen, W.; Koning, N.; O'Brien, T. J.; Simon, T.; Woudt, P. A.; Bode, M. F.

    2014-01-01

    Observations of novae at radio frequencies provide us with a measure of the total ejected mass, density profile and kinetic energy of a nova eruption. The radio emission is typically well characterized by the free-free emission process. Most models to date have assumed spherical symmetry for the eruption, although it has been known for as long as there have been radio observations of these systems, that spherical eruptions are to simplistic a geometry. In this paper, we build bipolar models o...

  9. Multi Eruption Solar Energetic Particle Events Observed with SOHO/ERNE

    OpenAIRE

    Al-Sawad, Amjad

    2007-01-01

    A combination of many Solar energetic particle (SEP) events, each one of which is associated with a single eruption, can create one complex intensity-time profile, that will result in masking the observation of the first injected particles detected near Earth for each participated eruption. We defined such SEP events as Multi Eruption Solar Energetic Particle (MESEP) events. We have investigated the intensity-time profile of 333 solar energetic particle events during the operation time of SOH...

  10. Dispersal of key subplinian-Plinian tephras from Hekla volcano, Iceland: implications for eruption source parameters

    Science.gov (United States)

    Janebo, Maria H.; Thordarson, Thorvaldur; Houghton, Bruce F.; Bonadonna, Costanza; Larsen, Gudrun; Carey, Rebecca J.

    2016-10-01

    Hekla is the most active silicic volcano in Iceland, with 18 subplinian-Plinian eruptions since AD 1104. In the period 1970 to 2000, the frequency of such eruptions increased to once every decade. Hekla is currently inflated to above the levels observed prior to the most recent eruptions in 1991 and 2000. The next eruption could pose a hazard to air traffic between North America and Europe because explosive eruptions of Hekla, independent of size, typically start with a subplinian or Plinian phase that produces a sustained ash plume. We present an overview of five of the largest historical Hekla eruptions (taking place in 1104, 1158, 1300, 1693, and 1766). These eruptions cover a compositional range of rhyolite to andesite, previously estimated Volcanic Explosivity Index (VEI) values of 4-5 and are characterised by contrasting wind dispersal (dispersal axes NW-NE). New isopach maps show both greater deposit thicknesses in the proximal region and wider dispersal than previously inferred, resulting in different volume estimates (minimal values ranging between 0.18 and 0.91 km3). New isopleth maps were also compiled and resulted in inferred plume heights of about 13-25 km. These changes in the estimated values of volume and mass eruption rates have large implications on the forecasting and impacts of future Hekla eruptions.

  11. Holocene eruptive activity of El Chichón Volcano, Chiapas, Mexico

    Science.gov (United States)

    Tilling, Robert I.; Rubin, Meyer; Sigurdsson, Haraldur; Carey, Steven; Duffield, Wendell A.; Rose, William I., Jr.

    1984-01-01

    Geologic and radiometric-age data indicate that El Chichón was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated dome-growth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichón's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  12. Early Eruption of Maxillary Pre Molar with Turner's Hypoplasia in a 5-Year-Old Boy.

    Science.gov (United States)

    Rai, Nitya; Mathur, Shivani; Sandhu, Meera; Sachdev, Vinod

    2016-08-01

    Early eruption of permanent maxillary premolar appears to be a unique finding, at such an early chronological age. Untimely eruption of permanent maxillary premolar is discussed in a 5-year-old male patient. On intra oral examination grossly carious primary maxillary first molar (tooth number 54,64) were reported. The erupting teeth presented with a hypomineralized cusp tip. Extraction following space maintainer in 64 region was given. Pediatric dentist should consider these kinds of rarities in eruption pattern while examining a pediatric patient.

  13. Causes and consequences of conduit wall permeability changes during explosive eruptions

    Science.gov (United States)

    Rust, Alison; Hanson, Jonathan

    2015-04-01

    Magmatic volatiles, and in some cases external water, drive explosive volcanic eruptions and so the permeability of magma and conduit wall rocks can modulate the style and intensity of eruptions. Both modelling of eruption dynamics and field studies of lithic clasts indicate that fragmentation levels during explosive silicic eruptions commonly reach depths of kilometres. An important consequence is that substantial deviations from lithostatic pressure are sustained in the conduit during eruption, which, according to finite element modelling, are sufficient to damage a substantial volume of rock around the conduit. Underpressured regions will be susceptible to conduit erosion, widening the conduit; field data provide constraints on erosion rates and erosion depths where subsurface stratigraphy is known. Damage to wall rocks will also increase the rock permeability adjacent to the conduit, which could significantly affect magmatic degassing during and between eruptions. The degree to which external water can interact with magma in the conduit will also depend on wall rock permeability and spatial and temporal variations in pressure. When a major magmatic eruption ceases, deep magma is likely to ascend to fill the lower conduit, and the upper conduit may partially collapse forming vertically extensive breccia. Subvolcanic rocks exposed by exploration and mining of porphyry copper deposits (PCDs) and associated alteration and breccias may provide further field constraints on these models. Although syn- and post-mineralization explosive eruptions likely ruin potential PCDs, earlier eruptions might make space for vertical shallow intrusions and help establish permeable regions conducive to focussing of magmatic fluids required for PCD generation.

  14. Soil radon pulses related to the initial phase of volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Mena, M. [IGFUNAM, Mexico City (Mexico)

    1999-08-01

    Soil radon behaviour related to the initial phase of volcanic eruptions is analysed from reported values related to the explosiveness of four American stratovolcaneos: El Chicon (1982) and Popocatepetl (1994) in Mexico, Poas (1987-1990) in Costa Rica and Cerro Negro (1982) in Nicaragua. The measurements in the field were performed with solid-state nuclear track detectors and electrets. The ratio between the magnitudes of the radon in soil peaks generated when the eruptive period started and the average radon values corresponding to quiescence periods indicate a dependence on the volcanic eruptive index for each one of the eruptive periods.

  15. Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions

    Science.gov (United States)

    Stock, Michael J.; Humphreys, Madeleine C. S.; Smith, Victoria C.; Isaia, Roberto; Pyle, David M.

    2016-03-01

    Magma reservoirs are thought to grow relatively slowly, assembling incrementally under volatile-saturated conditions. Eruptions may be triggered by injections of volatile-rich melt, or generation of over-pressure due to protracted crystallization. Here, we analyse fluorine, chlorine and water in apatite crystals trapped at different stages of magma evolution, and in melt inclusions from clinopyroxene and biotite crystals expelled during an explosive eruption of the Campi Flegrei caldera, Italy, about 4,000 years ago. We combine our geochemical analyses with thermodynamic modelling to reconstruct the evolution of magmatic volatile contents leading up to the explosive eruption. We find that the magma reservoir remained persistently water-undersaturated throughout most of its lifetime. Even crystals in contact with the melt shortly before eruption show that the magma was volatile-undersaturated. Our models suggest that the melt reached volatile saturation at low temperatures, just before eruption. We suggest that late-stage volatile saturation probably triggered the eruption, and conclude that `priming’ of the magma system for eruption may occur on timescales much shorter than the decadal to centennial timescales thought typical for magma reservoir assembly. Thus, surface deformation pulses that record magma assembly at depth beneath Campi Flegrei and other similar magmatic systems may not be immediately followed by an eruption; and explosive eruptions may begin with little warning.

  16. The Evolution of the Electric Current during the Formation and Eruption of Active-region Filaments

    Science.gov (United States)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  17. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    Science.gov (United States)

    Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.

    2016-07-01

    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.

  18. A sight "fearfully grand": eruptions of Lassen Peak, California, 1914 to 1917

    Science.gov (United States)

    Clynne, Michael A.; Christiansen, Robert L.; Stauffer, Peter H.; Hendley, James W.; Bleick, Heather A.

    2014-01-01

    On May 22, 1915, a large explosive eruption at the summit of Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 280 miles to the east. This explosion was the most powerful in a series of eruptions during 1914–17 that were the last to occur in the Cascade Range before the 1980 eruption of Mount St. Helens, Washington. A century after the Lassen eruptions, work by U.S. Geological Survey (USGS) scientists in cooperation with the National Park Service is shedding new light on these events.

  19. Stereoscopic Analysis of the 31 August 2007 Prominence Eruption and Coronal Mass Ejection

    Science.gov (United States)

    Liewer, P. C.; Panasenco, O.; Hall, J. R.

    2013-01-01

    The spectacular prominence eruption and CME of 31 August 2007 are analyzed stereoscopically using data from NASA's twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. The technique of tie pointing and triangulation (T&T) is used to reconstruct the prominence (or filament when seen on the disk) before and during the eruption. For the first time, a filament barb is reconstructed in three-dimensions, confirming that the barb connects the filament spine to the solar surface. The chirality of the filament system is determined from the barb and magnetogram and confirmed by the skew of the loops of the post-eruptive arcade relative to the polarity reversal boundary below. The T&T analysis shows that the filament rotates as it erupts in the direction expected for a filament system of the given chirality. While the prominence begins to rotate in the slow-rise phase, most of the rotation occurs during the fast-rise phase, after formation of the CME begins. The stereoscopic analysis also allows us to analyze the spatial relationships among various features of the eruption including the pre-eruptive filament, the flare ribbons, the erupting prominence, and the cavity of the coronal mass ejection (CME). We find that erupting prominence strands and the CME have different (non-radial) trajectories; we relate the trajectories to the structure of the coronal magnetic fields. The possible cause of the eruption is also discussed.

  20. Eruption age of permanent mandibular first molars and central incisors in the south Indian population

    Directory of Open Access Journals (Sweden)

    Gupta Rakhi

    2007-01-01

    Full Text Available Objective: The existing eruption schedules for permanent and deciduous dentition are based on studies in the Western population. Since Indians differ from Westerners racially, genetically, and environmentally, these studies fail to provide relevant guidance on the eruption schedule in the Indian population. This study aims at determining the eruption pattern of permanent mandibular molars and central incisors in the south Indian population. Materials and Methods: 10,156 apparently healthy Indian children in the age-group of 6-9 years were examined with mouth mirror and probe under adequate illumination for the status of the eruption of the permanent mandibular first molar and permanent mandibular central incisor. Pearson′s Chi-square test with Yates′ continuity correction was used to calculate the P -value for comparison of proportion between girls and boys. The values obtained in our study were compared with the standard values. The Z-test with continuity correction was used to calculate the P -value. Results: As per our study, the permanent mandibular first molars and central incisors erupted one to two years later compared to the values reported in Westerners. The earlier eruption of the permanent mandibular first molars compared to the permanent mandibular central incisors, as well as the earlier eruption of both the teeth in girls compared to boys, were in accordance with the existing literature. Conclusion: The eruption age reported by us may form a standard reference for eruption age in Indians.

  1. Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews

    Science.gov (United States)

    Oikawa, Teruki; Yoshimoto, Mitsuhiro; Nakada, Setsuya; Maeno, Fukashi; Komori, Jiro; Shimano, Taketo; Takeshita, Yoshihiro; Ishizuka, Yoshihiro; Ishimine, Yasuhiro

    2016-05-01

    A phreatic eruption at Mount Ontake (3067 m) on September 27, 2014, led to 64 casualties, including missing people. In this paper, we clarify the eruption sequence of the 2014 eruption from recorded images (photographs and videos obtained by climbers) and interviews with mountain guides and workers in mountain huts. The onset of eruption was sudden, without any clear precursory surface phenomena (such as ground rumbling or strong smell of sulfide). Our data indicate that the eruption sequence can be divided into three phases. Phase 1: The eruption started with dry pyroclastic density currents (PDCs) caused by ash column collapse. The PDCs flowed down 2.5 km SW and 2 km NW from the craters. In addition, PDCs moved horizontally by approximately 1.5 km toward N and E beyond summit ridges. The temperature of PDCs at the summit area partially exceeded 100 °C, and an analysis of interview results suggested that the temperature of PDCs was mostly in the range of 30-100 °C. At the summit area, there were violent falling ballistic rocks. Phase 2: When the outflow of PDCs stopped, the altitude of the eruption column increased; tephra with muddy rain started to fall; and ambient air temperature decreased. Falling ballistic rocks were almost absent during this phase. Phase 3: Finally, muddy hot water flowed out from the craters. These models reconstructed from observations are consistent with the phreatic eruption models and typical eruption sequences recorded at similar volcanoes.

  2. Lithofacies, eruptive phases and processes of Udo monogenetic multiple volcano near Jeju Island, South Sea, Korea

    Institute of Scientific and Technical Information of China (English)

    HWANG Sang-koo

    2004-01-01

    A monogenetic multiple volcano was emergent on Udo island, 3 km offthe sea shore of the eastern promontory of Jeju Island, South Sea,Korea. All of the preserved volcanic successions occur in a regular pattern of sequences,representing an excellent example of an eruptive cycle. The island represents volcanic stratigraphy that comprises a horseshoe-shaped tuff cone, a nested cinder cone on the crater floor of the tuff cone,and basalt lavas which extend northwest from the moat between tuff and cinder cones. The volcanic stratigraphy suggests eruptive styles that start with emergent Surtseyan eruption, progressing through Strombolian eruption and end with lava effusion.

  3. The 1677 eruption of La Palma, Canary Islands

    Directory of Open Access Journals (Sweden)

    Rodríguez Badiola, E.

    1996-08-01

    Full Text Available The 1677 volcanic eruption, located close to the town of Fuencaliente at the south end of La Palma, has been associated with the large volcanic cone of San Antonio, an emission centre showing relatively high energy phreatomagmatic phases. However, detailed geological mapping and a reinterpretation of available eye-witness accounts elearly prove the San Antonio emission centre to be a preexisting volcano related to an eruption that occurred several thousands years earlier. The 1677 eruption, or Volcán de Fuencaliente is a low magnitude eruption composed of a small strombolian vent and a cluster of aligned spatter vents. About 75-125 x 106 m3 of lavas from these spatter vents covered an area of 4.5 x 106 m2 and formed a wide coastal platform with 1.6 x 106 m2 of new land gained from the sea. This modest magnitude eruption is in better accord with the negligible damage caused to the area reported in the contemporary accounts. This revision of the 1677 eruption and its magnitude is relevant for the precise reconstruction of the recent volcanism of La Palma and the correct definition of volcanic hazards in the island.La erupción de 1677, localizada cerca de la población de Fuencaliente en el S de la isla de La Palma, ha sido asociada hasta ahora con el cono volcánico denominado San Antonio. Este centro de emisión presenta fases eruptivas de energía relativamente elevada. El estudio geológico de detalle de esta erupción y la reinterpretación de los relatos de la época indican que el volcán San Antonio es, en realidad, un aparato volcánico preexistente, relacionado con algún episodio eruptivo de varios miles de años de antigüedad. La verdadera erupción de 1677 o Volcán de Fuencaliente, es de baja magnitud y está formada por pequeños centros eruptivos estrombolianos y conos alineados de escorias. El volumen de lavas emitidas es de unos 75-125 x 106 m3 y cubre una extensión de aproximadamente 4.5 x 106 m2, de los cuales 1.6 x 106 m2

  4. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models

    International Nuclear Information System (INIS)

    We use images acquired by the Cassini Imaging Science Subsystem (ISS) to investigate the temporal variation of the brightness and height of the south polar plume of Enceladus. The plume's brightness peaks around the moon's apoapse, but with no systematic variation in scale height with either plume brightness or Enceladus' orbital position. We compare our results, both alone and supplemented with Cassini near-infrared observations, with predictions obtained from models in which tidal stresses are the principal control of the eruptive behavior. There are three main ways of explaining the observations: (1) the activity is controlled by right-lateral strike slip motion; (2) the activity is driven by eccentricity tides with an apparent time delay of about 5 hr; (3) the activity is driven by eccentricity tides plus a 1:1 physical libration with an amplitude of about 0.°8 (3.5 km). The second hypothesis might imply either a delayed eruptive response, or a dissipative, viscoelastic interior. The third hypothesis requires a libration amplitude an order of magnitude larger than predicted for a solid Enceladus. While we cannot currently exclude any of these hypotheses, the third, which is plausible for an Enceladus with a subsurface ocean, is testable by using repeat imaging of the moon's surface. A dissipative interior suggests that a regional background heat source should be detectable. The lack of a systematic variation in plume scale height, despite the large variations in plume brightness, is plausibly the result of supersonic flow; the details of the eruption process are yet to be understood.

  5. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, Francis [Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 (United States); Porco, Carolyn; Mitchell, Colin, E-mail: carolyn@ciclops.org [CICLOPS, Space Science Institute, Boulder, CO 80304 (United States)

    2014-09-01

    We use images acquired by the Cassini Imaging Science Subsystem (ISS) to investigate the temporal variation of the brightness and height of the south polar plume of Enceladus. The plume's brightness peaks around the moon's apoapse, but with no systematic variation in scale height with either plume brightness or Enceladus' orbital position. We compare our results, both alone and supplemented with Cassini near-infrared observations, with predictions obtained from models in which tidal stresses are the principal control of the eruptive behavior. There are three main ways of explaining the observations: (1) the activity is controlled by right-lateral strike slip motion; (2) the activity is driven by eccentricity tides with an apparent time delay of about 5 hr; (3) the activity is driven by eccentricity tides plus a 1:1 physical libration with an amplitude of about 0.°8 (3.5 km). The second hypothesis might imply either a delayed eruptive response, or a dissipative, viscoelastic interior. The third hypothesis requires a libration amplitude an order of magnitude larger than predicted for a solid Enceladus. While we cannot currently exclude any of these hypotheses, the third, which is plausible for an Enceladus with a subsurface ocean, is testable by using repeat imaging of the moon's surface. A dissipative interior suggests that a regional background heat source should be detectable. The lack of a systematic variation in plume scale height, despite the large variations in plume brightness, is plausibly the result of supersonic flow; the details of the eruption process are yet to be understood.

  6. Atypical Papular Purpuric Eruption Induced by Parvovirus B19 Infection

    Directory of Open Access Journals (Sweden)

    Şeyma Kayalı

    2016-03-01

    Full Text Available Parvovirus B19 infection’s most common dermatological manifestation is erythema infectiosum as also known the fifth disease. Rare clinical presentations of parvovirus B 19 like papulopurpuric gloves and socks syndrome and acropetechial syndrome has also been described re­cently. This study presents report of a case with atypical feature and distribution of rash due to parvovirus B19 in­fection. We want to emphasize that pediatricians should consider parvovirus B19 infection of any patient who has leukopenia presenting with petechial/purpuric eruption of an unclear origin.

  7. Kaposi′s Varicelliform Eruption In Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Thappa Devinder Mohan

    2000-01-01

    Full Text Available A 42 year old male having airborne allergic contact dermatitis suddenly developed high grade fever, chills and prostation on 7th day of admission. Two days later he developed generalized papulovescles which became haemorrhagic and crusted within one to two days. These lesions later evolved into grouped erosions. Simultaneously, he developed swelling of the face and generalized lymphadenopathy. Tzanck smear demonstrated giant cell and the patients was diagnosed as having kaposis’s varicelliform eruption. He responded to oral acycolvir. The case is reported for its rarity.

  8. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-07-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background.

  9. Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions

    Science.gov (United States)

    White, Randall A.; McCausland, Wendy

    2016-01-01

    We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from:

  10. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    Science.gov (United States)

    Hao, Zhixin; Sun, Di

    2016-04-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after tropical volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport,therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  11. The First Historic Eruption of Nabro, Eritrea: Insights from Thermal and UV Satellite Data

    Science.gov (United States)

    Sealing, C. R.; Carn, S. A.; Harris, A. J. L.

    2015-12-01

    In June 2011, the first recorded eruption of Nabro volcano, took place at the border of Eritrea and Ethiopia. This eruption was the largest in what could be considered an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Geographic isolation, previous quiescence, and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study were limited. The purpose of this study is to explore the quantity of erupted products and the timing and mechanisms of their emplacement using predominantly free, publicly available satellite data. We use MODIS and OMI data to examine rates of lava effusion and SO2 emission, and quantify the amount of erupted products. We also examine published images from other satellites, such as ALI and SEVIRI in order to understand the temporal evolution of the eruption. Synthesizing these data, we then attempt to infer the mechanisms through which the eruption progressed. Examination of satellite data reveals a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This was followed by a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. This eruption of Nabro continued for nearly 6 weeks, and may be considered the second largest historic eruption in Africa. This type of work highlights the effectiveness and importance of accessible satellite remote sensing data for the study of active volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  12. The 2011 eruption of Grímsvötn volcano, Iceland

    Science.gov (United States)

    Lynch, Rebecca; Thordarson, Thorvaldur

    2015-04-01

    The 2011 eruption of Grímsvötn volcano, Iceland, was much more explosive than previous eruptions, specifically its 2004 eruption. This research examines the degassing processes of the 2011 eruption, through density and vesicule analyses, to help uncover the reasons for the more vigorous eruption. Over 1200 collected tephra samples from the 2011 sequences are measured for density and vesicularity. Several samples are chosen to be representative of eruptive phases; samples from the beginning of the eruption, the mid-eruption and the end phases are chosen. These pumice samples are impregnated with epoxy and made into plugs for use in a Scanning Electron Microscope with which, a nested image approach is taken to image the vesicules of the samples at different magnifications. Each backscatter image is converted to binary and corrected using GIMP. Using ImageJ software, quantitative vesicularity analysis of the images is performed and results are converted to volume. The density, quantitative vesicularity, and volume results are assessed for patterns and the processes of the magma during the ascent in the conduit and eruptive phases are inferred. The objective of this research is to use the microscopic vesicularity analyses of the eruptive products to theorize the larger scale magmatic and degassing processes and to understand why the 2011 Grímsvötn eruption was uncharacteristically explosive. Currently, the results are being examined and have not been included in this abstract, however the research will be finalized in time for presentation at the EGU 2015 conference. Keywords: Grímsvötn volcano, quantitative vesicularity analysis, bubble size distribution, volcanic degassing, conduit processes

  13. Reconstructing eruptive source parameters from tephra deposit: a numerical study of medium-sized explosive eruptions at Etna volcano

    Science.gov (United States)

    Spanu, Antonio; Michieli Vitturi, Mattia de'; Barsotti, Sara

    2016-09-01

    Since the 1970s, multiple reconstruction techniques have been proposed and are currently used, to extrapolate and quantify eruptive parameters from sampled tephra fall deposit datasets. Atmospheric transport and deposition processes strongly control the spatial distribution of tephra deposit; therefore, a large uncertainty affects mass derived estimations especially for fall layer that are not well exposed. This paper has two main aims: the first is to analyse the sensitivity to the deposit sampling strategy of reconstruction techniques. The second is to assess whether there are differences between the modelled values for emitted mass and grainsize, versus values estimated from the deposits. We find significant differences and propose a new correction strategy. A numerical approach is demonstrated by simulating with a dispersal code a mild explosive event occurring at Mt. Etna on 24 November 2006. Eruptive parameters are reconstructed by an inversion information collected after the eruption. A full synthetic deposit is created by integrating the deposited mass computed by the model over the computational domain (i.e., an area of 7.5 × 104 km 2). A statistical analysis based on 2000 sampling tests of 50 sampling points shows a large variability, up to 50 % for all the reconstruction techniques. Moreover, for some test examples Power Law errors are larger than estimated uncertainty. A similar analysis, on simulated grain-size classes, shows how spatial sampling limitations strongly reduce the utility of available information on the total grain size distribution. For example, information on particles coarser than ϕ(-4) is completely lost when sampling at 1.5 km from the vent for all columns with heights less than 2000 m above the vent. To correct for this effect an optimal sampling strategy and a new reconstruction method are presented. A sensitivity study shows that our method can be extended to a wide range of eruptive scenarios including those in which

  14. The Livelihood Analysis in Merapi Prone Area After 2010 Eruption

    Directory of Open Access Journals (Sweden)

    Susy Nofrita

    2014-12-01

    Full Text Available As stated in Regent Regulation No. 20 Year 2011 about Merapi Volcano Disaster-Prone Area, Merapi eruption in 2010 affected larger area than before included Kalitengah Lor, Kalitengah Kidul and Srunen hamlet which was now categorized as prone area zone III or the most dangerous area related to Merapi volcano hazard and was forbidden to live at. But its local people agreed to oppose the regulation and this area had been 100% reoccupied. This research examined about the existing livelihood condition in Kalitengah Lor, Kalitengah Kidul and Srunen that had been changed and degraded after 2010 great eruption. The grounded based information found that 80% of households sample were at the middle level of welfare status, meanwhile the high and low were at 13% and 7% respectively. Each status represented different livelihood strategy in facing the life in prone area with no one considered the Merapi hazard, but more economic motivation and assets preservation. The diversity in strategy was found in diversification of livelihood resources which were dominated by sand mining, farming and dairy farming.

  15. NO2 column changes induced by volcanic eruptions

    Science.gov (United States)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  16. Anticipating abrupt shifts in temporal evolution of probability of eruption

    Science.gov (United States)

    Rohmer, J.; Loschetter, A.

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value to a state of high probability value. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to > 70% could be identified up to 1-3 h in advance. This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  17. Records of Toba eruptions in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    LlANG; Xirong

    2001-01-01

    [1]Rose,W. I., Chesner, C. A., Dispersal of ash in the great Toba eruption, 75 ka, Geology, 1987, 15: 913-917.[2]Acharyya, S. K., Basu, P. K. ,Toba ash on the Indian subcontinent and its implications for correlation of late Pleistocene alluvium, Quaternary Research, 1993, 40: 10-19.[3]Shane, P., Westgate, J., Williams, M. et al., New geochemical evidence for the youngest Toba Tuff in India, Quaternary Research, 1995, 44: 200-204.[4]Westgate, J. A., Sha ne, P. A. R., Pearce, N. J. G. et al., All Toba occurrences across Peninsular India belong to the 75000yr B. P. eruption, Quaternary Research, 1998, 50:107-112.[5]Pattan, J. N., Shane, P., Banakar, V. K., New occurrences of youngest Toba Tuff in abyssal sediments of the Central Indian Basin, Marine Geology, 1999, 155: 243-248.[6]Gasparotto, G., Spadafora, E,, Summa, V. et al., Contribution of grain size and compositional data from the Bengal Fan sediment to the understanding of Toba volcanic event, Marine Geology, 2000, 162: 561-572.[7]Dehn, J., Farrell, J. W., Schmincke, H. U., Neogene tephrochronology from Site 758 on northern Ninetyeast Ridge: Indon isian arc volcanism of the Past 5 Ma, Proceedings of the Ocean Drilling Program, Scientific Results (eds. Weissel, J. P.,Taylor, E., Alt, J. et al.), College Station, Texas, Ocean Drilling Program, 1991, 121: 273-295.[8]Lee M. Y., Wet, K. Y., Chen, Y. G., High-resolution oxygen isotope stratigraphy for the last 150000 years in the southern South China Sea, Terrestrial, Atmospheric and Oceanic Sciences TAO, 1999, 10: 239-254.[9]Biihring, C., Sarnthein, Toba ash layers in the South China Sea: Evidence of contrasting wind directions during eruption ca.74 ka, Geology, 2000, 28: 275-278.[10]Chesner, C. A., Petrogenesis of the Toba tuffs, Sumatra, Indonesia, Journal of Petrology, 1998, 39: 397-438.[11]Rampino, M. R., Self. S., Volcanic winter and accelerated glaciation follow ing the Toba super-eruption, Nature, 1992, 359:50-52.

  18. Photospheric flux cancellation and associated flux rope formation and eruption

    CERN Document Server

    Green, L M; Wallace, A J; 10.1051/0004-6361/201015146

    2010-01-01

    We study an evolving bipolar active region that exhibits flux cancellation at the internal polarity inversion line, the formation of a soft X-ray sigmoid along the inversion line and a coronal mass ejection. The evolution of the photospheric magnetic field is described and used to estimate how much flux is reconnected into the flux rope. About one third of the active region flux cancels at the internal polarity inversion line in the 2.5~days leading up to the eruption. In this period, the coronal structure evolves from a weakly to a highly sheared arcade and then to a sigmoid that crosses the inversion line in the inverse direction. These properties suggest that a flux rope has formed prior to the eruption. The amount of cancellation implies that up to 60% of the active region flux could be in the body of the flux rope. We point out that only part of the cancellation contributes to the flux in the rope if the arcade is only weakly sheared, as in the first part of the evolution. This reduces the estimated flux...

  19. Distinguishing Between Eruptive and Quiescent Solar Active Regions

    Science.gov (United States)

    Georgoulis, M. K.; Labonte, B. J.

    2005-05-01

    We present a method to fully evaluate the energy-helicity formula in solar active regions by using only photospheric vector magnetograms of these active regions. At the moment, the method relies on the linear force-free approximation and provides the total magnetic energy, the magnetic energy of the vacuum (potential) magnetic field, and the non-potential (free) magnetic energy relating to the total magnetic helicity in an active region. The formulation of the technique allows an upgrade to a nonlinear force-free evaluation of the energy-helicity formula, which will be a more realistic approach especially when chromospheric vector magnetograms of solar active regions become available. Even with the linear force-free approximation, however, we find that the magnitudes of the total helicity, as well as the ratios of the free magnetic energy to the total magnetic energy are distinctly higher for eruptive active regions as compared to quiescent active regions. Eruptive active regions produce flares and might trigger CMEs, so the method presents a viable way to discriminate between these two types of active regions even in case a single vector magnetogram of these active regions is available.

  20. Multiple Outflows in the Giant Eruption of a Massive Star

    CERN Document Server

    Humphreys, Roberta M; Gordon, Michael S; Jones, Terry J

    2016-01-01

    The supernova impostor PSN J09132750+7627410 in NGC 2748 reached a maximum luminosity of approximately -14 mag. It was quickly realized that its was not a true supernova, but another example of a non-terminal giant eruption. PSN J09132750+7627410 is distinguished by multiple P Cygni absorption minima in the Balmer emission lines that correspond to outflow velocities of -400, -1100, and -1600 km/s. Multiple outflows have been observed in only a few other objects. In this paper we describe the evolution of the spectrum and the P Cygni profiles for three months past maximum, the post-maximum formation of a cool, dense wind, and the identification of a possible progenitor. One of the possible progenitors is an infrared source. Its pre-eruption spectral energy distribution suggests a bolometric luminosity of -8.3 mag and a dust temperature of 780 degrees K. If it is the progenitor it is above the AGB limit unlike the intermediate luminosity red transients. The three P Cygni profiles could be due to ejecta from the...

  1. Hazard information management, interagency coordination, and impacts of the 2005-2006 eruption of Augustine Volcano: Chapter 28 in The 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Neal, Christina A.; Murray, Thomas L.; Power, John A.; Adleman, Jennifer N.; Whitmore, Paul M.; Osiensky, Jeffery M.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.

    2010-01-01

    Dissemination of volcano-hazard information in coordination with other Federal, State, and local agencies is a primary responsibility of the Alaska Volcano Observatory (AVO). During the 2005-6 eruption of Augustine Volcano in Alaska, AVO used existing interagency relationships and written protocols to provide hazard guidance before, during, and after eruptive events. The 2005-6 eruption was notable because of the potential for volcanogenic tsunami, which required establishment of a new procedure for alerts of possible landslide-induced tsunami in Cook Inlet. Despite repeated ash-cloud generating explosions and far-traveled ash clouds, impacts from the event were relatively minor. Primary economic losses occurred when air carriers chose to avoid flights into potentially unsafe conditions. Post-eruption evaluations by agencies involved in the response indicated weaknesses in information centralization and availability of specific information regarding ash fall hazards in real time.

  2. SMALL-VOLUME BASALTIC VOLCANOES: ERUPTIVE PRODUCTS AND PROCESSES, AND POST-ERUPTIVE GEOMORPHIC EVOLUTION IN CRATER FLAT (PLEISTOCENE), SOUTHERN NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Valentine; F.V. Perry; D. Krier; G.N. Keating; R.E. Kelley; A.H. Cogbill

    2006-04-04

    Five Pleistocene basaltic volcanoes in Crater Flat (southern Nevada) demonstrate the complexity of eruption processes associated with small-volume basalts and the effects of initial emplacement characteristics on post-eruptive geomorphic evolution of the volcanic surfaces. The volcanoes record eruptive processes in their pyroclastic facies ranging from ''classical'' Strombolian mechanisms to, potentially, violent Strombolian mechanisms. Cone growth was accompanied, and sometimes disrupted, by effusion of lavas from the bases of cones. Pyroclastic cones were built upon a gently southward-sloping surface and were prone to failure of their down-slope (southern) flanks. Early lavas flowed primarily southward and, at Red and Black Cone volcanoes, carried abundant rafts of cone material on the tops of the flows. These resulting early lava fields eventually built platforms such that later flows erupted from the eastern (at Red Cone) and northern (at Black Cone) bases of the cones. Three major surface features--scoria cones, lava fields with abundant rafts of pyroclastic material, and lava fields with little or no pyroclastic material--experienced different post-eruptive surficial processes. Contrary to previous interpretations, we argue that the Pleistocene Crater Flat volcanoes are monogenetic, each having formed in a single eruptive episode lasting months to a few years, and with all eruptive products having emanated from the area of the volcanoes main cones rather than from scattered vents. Geochemical variations within the volcanoes must be interpreted within a monogenetic framework, which implies preservation of magma source heterogeneities through ascent and eruption of the magmas.

  3. Eruption dynamics inferred from microlite crystallization experiments: Application to Plinian and dome-forming eruptions of Mt Pelée (Martinique, Lesser Antilles).

    OpenAIRE

    Martel, Caroline

    2012-01-01

    International audience Decompression experiments have been conducted to simulate syn-eruptive crystallization in the volcanic conduit, in order to infer magma ascent rates and conditions during dome-forming and Plinian eruptions of silicic arc volcanoes. The experiments were carried out starting from Mt Pelée rhyolitic interstitial melt (76 wt. % SiO2) and consisted in three consecutive steps: hydration, decompression, and annealing. Hydration (saturated and undersaturated) was performed a...

  4. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    Science.gov (United States)

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J.S.; Soule, S. Adam; McPhee, Darcy K.; Glen, Jonathan M.G.; Karlstrom, Leif; Murphy, Fred

    2014-01-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  5. Diversity in tooth eruption and life history in humans: illustration from a Pygmy population.

    Science.gov (United States)

    Ramirez Rozzi, Fernando

    2016-01-01

    Life history variables (LHV) in primates are closely correlated with the ages of tooth eruption, which are a useful proxy to predict growth and development in extant and extinct species. However, it is not known how tooth eruption ages interact with LHV in polymorphic species such as modern humans. African pygmies are at the one extreme in the range of human size variation. LHV in the Baka pygmies are similar to those in standard populations. We would therefore expect tooth eruption ages to be similar also. This mixed (longitudinal and cross-sectional) study of tooth eruption in Baka individuals of known age reveals that eruption in all tooth classes occurs earlier than in any other human population. Earlier tooth eruption can be related to the particular somatic growth in the Baka but cannot be correlated with LHV. The link between LHV and tooth eruption seems disrupted in H. sapiens, allowing adaptive variations in tooth eruption in response to different environmental constraints while maintaining the unique human life cycle.

  6. Genome-wide association study identifies four loci associated with eruption of permanent teeth

    DEFF Research Database (Denmark)

    Geller, Frank; Feenstra, Bjarke; Zhang, Hao;

    2011-01-01

    The sequence and timing of permanent tooth eruption is thought to be highly heritable and can have important implications for the risk of malocclusion, crowding, and periodontal disease. We conducted a genome-wide association study of number of permanent teeth erupted between age 6 and 14 years, ...

  7. Some observations regarding the thermal flux from Earth's erupting volcanoes for the period 2000 to 2014

    Science.gov (United States)

    Wright, R.; Blackett, M.; Hill-Butler, C.

    2014-12-01

    This presentation will describe 15 years of MODIS observations of the thermal flux from Earth's sub-aerially erupting volcanoes. The MODVOLC algorithm has been providing data regarding volcanic eruptions on Earth to the volcanological community since the launch of Terra MODIS, via the internet, in near-real-time (http:modis.higp.hawaii.edu). During this time, eruptions at 102 volcanoes have been observed, including activity associated with mafic lava flows, lava lakes, vent-based explosive activity and felsic lava domes. This presentation will present an overview of how MODIS has documented every eruption to occur on Earth since 2000, and will describe some of the more interesting result that have been obtained from the analysis of this archive. The total amount of energy radiated into the atmosphere can be divided into two parts: a baseline level of emission which has increased gradually over this 15 period, superimposed on which are large "spikes" attributable to large, lava-flow-forming eruptions. The most intense eruption during this period of time was the 2004 eruption of Nyamuragira, in the Democratic Republic of Congo, whilst the largest magnitude event was the 2012-2013 eruption of Tolbachik, Russia. Spatio-temporal patterns in thermal output will be addressed. Time-series analysis of heat flux from these 102 volcanoes has revealed while some volcanoes exhibit statistically significant periodicity in the magnitude of their heat output, many do not.

  8. The Agro Pontino region, refuge after the Early Bronze Age Avellino eruption of Mount Vesuvius, Italy?

    NARCIS (Netherlands)

    C. Bakels; J. Sevink; W. Kuijper; H. Kamermans

    2015-01-01

    In recent years it was discovered that the Middle to Late Holocene infi ll of the Agro Pontino graben (Central Italy) held a tephra layer originating from the Avellino eruption of the Vesuvius volcano. The eruption is dated to 1995 ± 10 calBC and took therefore place during the Early Bronze Age. Thi

  9. Sequences and clusterings of significant volcanic eruptions in convergent plate margins during 1900 1980

    Science.gov (United States)

    Papadopoulos, G. A.

    1987-07-01

    Magmatic eruptions which lasted at least 15 days and had a Volcanic Explosivity Index ⩾ 1, are defined as significant volcanic eruptions. Data concerning significant eruptions which occurred from 1900 to 1980 show that in seventeen regions of plate convergence which were examined there is a similar time-evolution pattern of the volcanism, namely, periods of frequent volcanic activity with significant eruptions in at least one volcano (usually lasting less than 15 years) alternating with intervals of quiescence lasting from 4.5 to 20 years. Empirical criteria have been applied to classify ordinary periods, sequences, and clusterings of significant eruptions. Taking into account the date of the first eruption on all the volcanoes of a given period of frequent volcanic activity, then, in seven sequences or clusterings occurring in several regions, one may observe a systematic migration of the volcanism along the arc (e.g. in Lesser Sunda-Banda Sea Islands during 1963-1974). A clear positive correlation between the delay-time of the eruptions and the distance of the corresponding volcanoes from the first erupted volcano has been found. It is suggested that large-scale, long-term physical processes in the earth's interior may be responsible for the volcanic activity-volcanic quiescence pattern in plate convergence regions.

  10. Interaction of Volcanic Forcing and El Nino: Sensitivity to the Eruption Magnitude and El Nino Intensity

    KAUST Repository

    Predybaylo, Evgeniya

    2015-04-01

    Volcanic aerosols formed in the stratosphere after strong explosive eruptions influence Earth\\'s radiative balance, affecting atmospheric and oceanic temperatures and circulation. It was observed that the recent volcanic eruptions frequently occurred in El Nino years. Analysis of the paleo data confirms that the probability of a sequent El Nino occurrence after the eruption increases. To better understand the physical mechanism of this interaction we employed ocean-atmosphere coupled climate model CM2.1, developed in the Geophysical Fluid Dynamics Laboratory, and conducted a series of numerical experiments using initial conditions with different El Nino Southern Oscillation (ENSO) strengths forced by volcanic eruptions of different magnitudes, Pinatubo of June 1991 and Tambora of April 1815: (i) strong ENSO/Pinatubo, (ii) weak ENSO/Pinatubo, (iii) strong ENSO/Tambora. The amount of ejected material from the Tambora eruption was about three times greater than that of the Pinatubo eruption. The initial conditions with El Nino were sampled from the CM2.1 long control run. Our simulations show the enhancement of El Nino in the second year after an eruption. We found that the spatial-temporal structure of model responses is sensitive to both the magnitude of an eruption and the strength of El Nino. We analyzed the ocean dynamic in the tropical Pacific for all cases to uncover the physical mechanism, resulting in the enhanced and/or prolonged El Nino.

  11. Hinode Observations of the Onset Stage of a Solar Filament Eruption

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Berger, Thomas E.; Bobra, Monica; Davis, John M.; Jibben, Patricia; Kano, R.; Lundquist, Loraine; Myers, D.; Narukage, N.; Sakao, T.; Shibasaki, K.; Shine, R.; Tarbell, T.; Weber, Mark

    2007-01-01

    We use Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images. The filament undergoes a slow rise for at least 20 min prior to its fast eruption and strong soft X-ray flaring; such slow rises have been previously reported, and the new Hinode data elucidate the physical processes occurring during this period. XRT images show that during the slow-rise phase, a soft X-ray (SXR) sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. MDI and SOT FG/V magnetograms show that the pre-eruption filament is along a neutral line between opposing-polarity enhanced network cells, and the SOT magnetograms show that these opposing fields are flowing together and canceling for at least six hours prior to eruption. From the MDI data we measure the canceling network fields to be approx. 40 G, and we estimate that approx. 10(exp 19) Mx of flux canceled during the five hours prior to eruption; this is only approx. 5% of the total flux spanned by the eruption and flare, but apparently its tether-cutting cancellation was enough to destabilize the sigmoid field holding the filament and resulted in that field's eruption.

  12. The most direct and precise radiocarbon date for the Minoan eruption of Santorini

    DEFF Research Database (Denmark)

    Friedrich, Walter L.; Heinemeier, Jan

    for the Minoan eruption. Together with a second olive tree, excavated only 9 meters from the first one, it enables us to repeat the earlier measurements of the first tree 2006 (Friedrich, W.L . Kromer, B Friedrich, M. Heinemeier, J. Pfeiffer, T. Talamo, S. Santorini Eruption Radiocarbon Dated to 1627-1600 BC...

  13. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991

    Science.gov (United States)

    Haymon, R.M.; Fornari, D.J.; Von Damm, K. L.; Lilley, M.D.; Perfit, M.R.; Edmond, J.M.; Shanks, Wayne C.; Lutz, R.A.; Grebmeier, J.M.; Carbotte, S.; Wright, D.; McLaughlin, E.; Smith, M.; Beedle, N.; Olson, E.

    1993-01-01

    In April, 1991, we witnessed from the submersible Alvin a suite of previously undocumented seafloor phenomena accompanying an in-progress eruption of the mid-ocean ridge on the East Pacific Rise crest at 9°45′N–52′N. The volume of the eruption could not be precisely determined, although comparison of pre- and post-eruption SeaBeam bathymetry indicate that any changes in ridge crest morphology resulting from the eruption were < 10 m high.

  14. Dueling Volcanoes: How Activity Levels At Kilauea Influence Eruptions At Mauna Loa

    Science.gov (United States)

    Trusdell, F.

    2011-12-01

    The eruption of Kilauea at Pu`u `O`o is approaching its 29th anniversary. During this time, Mauna Loa has slowly inflated following its most recent eruption in 1984. This is Mauna Loa's longest inter-eruptive interval observed in HVO's 100 years of operation. When will the next eruption of Mauna Loa take place? Is the next eruption of Mauna Loa tied to the current activity at Kilauea? Historically, eruptive periods at Kilauea and Mauna Loa volcanoes appear to be inversely correlated. In the past, when Mauna Loa was exceptionally active, Kilauea Volcano was in repose, recovery, or in sustained lava lake activity. Swanson and co-workers (this meeting) have noted that explosive activity on Kilauea, albeit sporadic, was interspersed between episodes of effusive activity. Specifically, Swanson and co-workers note as explosive the time periods between 300 B.C.E.-1000 C.E and 1500-1800 C.E. They also point to evidence for low magma supply to Kilauea during these periods and few flank eruptions. During the former explosive period, Mauna Loa was exceedingly active, covering approximately 37% of its surface or 1882 km2, an area larger than Kilauea. This period is also marked by summit activity at Mauna Loa sustained for 300 years. In the 1500-1800 C.E. period, Mauna Loa was conspicuously active with 29 eruptions covering an area of 446 km2. In the late 19th and early 20th century, Kilauea was dominated by nearly continuous lava-lake activity. Meanwhile Mauna Loa was frequently active from 1843 C.E. to 1919 C.E., with 24 eruptions for an average repose time of 3.5 years. I propose that eruptive activity at one volcano may affect eruptions at the other, due to factors that impact magma supply, volcanic plumbing, and flank motion. This hypothesis is predicated on the notion that when the rift zones of Kilauea, and in turn its mobile south flank, are active, Mauna Loa's tendency to erupt is diminished. Kilauea's rift zones help drive the south flank seaward, in turn, as Mauna

  15. Cl constrains on shallow plumbing system and pre-eruptive conditions of the Phlegrean Fields.

    Science.gov (United States)

    Zdanowicz, Géraldine; Balcone-Boissard, Hélène; Boudon, Georges; Civetta, Lucia; Orsi, Giovanni; D'Antonio, Massimo

    2015-04-01

    The bay of Naples is known to concentrate several dangerous volcanoes that erupted a lot of times in prehistorical and historical periods: Vesuvius, Phlegrean Fields and Ischia Island. Phlegrean Fields produced voluminous high-magnitude eruptions including: the Campanian Ignimbrite (39 ka BP), one of the two largest explosive eruptions of the Mediterranean region during the last 200,000 years, with 300 km3 of magma emitted, and the Neapolitan Yellow Tuff (15 ka BP), the second major eruption (40 km3 of magma emitted). The Ischia Island is located in the Bay of Naples and its eruptive history has been recently detailed. We present a geochemical investigation of volatile components on the fallout products of the major explosive eruptions of Phlegrean Fields: the Campanian Ignimbrite (39 ka BP), the Neapolitan Yellow Tuff (15 ka BP), the Pomici Principali (10 ka BP; 0.38 km3 DRE magma), the Agnano Monte-Spina (4.1 ka BP; 0.60 km3 DRE magma); the Astroni 6 (3.8 ka BP; 0.70 km3 DRE magma); the Monte Nuovo (1,538 AD), which is the most recent eruption of the Phlegrean Fields (0.04 km3 DRE magma), and for comparison the Cretaio eruption of the Ischia Island (1,800 a BP; 0.02 km3 DRE magma). Volatiles of magmas (H2O, CO2, SO2, Cl, F) are informative not only because they play a key role in the eruptive dynamic but also because they, and especially chlorine, may allow estimating the pressure of localization of the magma storage and pre-eruptive water content (prior the eruption). In the alkaline magmas involved during the Phlegrean Fields eruptions, H2O is the main volatile species but Cl behaviour is particularly interesting to study. Experimentally, it has been demonstrated that in a pressure, temperature and composition domain a water-saturated magma may be in equilibrium with a fluid phase consisting of a water-rich vapor and a chlorine-rich brine. In that case, the Cl content in magma is buffered. This effect allows determining the pressure of localization of

  16. Futurvolc and the Bardarbunga eruption 2014-15 Iceland, success in the field and laboratory.

    Science.gov (United States)

    Hoskuldsson, Armann; Jonsdottir, Ingibjorg; Thordarson, Thor

    2016-04-01

    The Bardarbunga volcanic system in Iceland started unrest in August 2014. Seismic activity gradually build up, until magma began to be extruded on surface. The first eruption occurred on the 28th of August and was small and subglacial, the second eruption took place outside the glacier, on the 29th of August and lasted for few hours. Third and largest eruption started on early morning 31st of August. This was to be the largest eruption in Iceland since Laki eruption 1783. The eruption used the same fissure that had opened up on the 28th but was much larger. The fissure was about 2 km long with a curtain of fire along the whole fissure, curtains reaching up to 150 m into the air. The area in which the eruption took place is a glacial river outwash plain, thus relatively flat. Although the eruption site is remote, being in the highlands north of the icecap Vatnajökull, at an average altitude of some 700 m, the flat sandur plain offered a unique opportunity to combine satellite and on site observations methods. The eruption ended on the 27th of February 2015, thus lasting for almost 6 months, during this time some 1.44 km3 of lava was erupted. From day one satellite data from NOAA AVHRR, MODIS, LANDSAT 7 and 8, ASTER, EO-1 ALI, EO-1 HYPERION, SENTINEL-1, RADARSAT-2 COSMO SKYMED and TERRASAR X where collected and used in combination with onsite observation. Resulting data give unique information on the effusion rates in basaltic fissure eruptions and its evolution with time. Further information on flow behavior and cooling of basaltic lava being emplaced in a relatively flat land can be used for future and past predictions. In this talk we shall show how valuable the combination of satellite data to field observation are to be able to precisely monitor on of the largest lava eruption on earth for the past 200 years. The role of Futurevolc and preparedness involved in that work greatly enhanced and facilitated synchronization of onsite and remote data during the

  17. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. I. Unusual History of an Eruptive Filament

    CERN Document Server

    Grechnev, V V; Slemzin, V A; Chertok, I M; Filippov, B P; Rudenko, G V; Temmer, M

    2013-01-01

    This is the first of four companion papers, which analyze a complex eruptive event of 18 November 2003 in AR 10501 and the causes of the largest Solar Cycle 23 geomagnetic storm on 20 November 2003. Analysis of a complete data set, not considered before, reveals a chain of eruptions to which hard X-ray and microwave bursts responded. A filament in AR 10501 was not a passive part of a larger flux rope, as usually considered. The filament erupted and gave origin to a CME. The chain of events was as follows: i) an eruption at 07:29 accompanied by a not reported M1.2 class flare associated with the onset of a first southeastern CME1, which is not responsible for the superstorm; ii) a confined eruption at 07:41 (M3.2 flare) that destabilized the filament; iii) the filament acceleration (07:56); iv) the bifurcation of the eruptive filament that transformed into a large cloud; v) an M3.9 flare in AR 10501 associated to this transformation. The transformation of the filament could be due to its interaction with the m...

  18. Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—a case study of the 2010 eruption of Eyjafjallajökull, Iceland

    Science.gov (United States)

    Dürig, Tobias; Gudmundsson, Magnús Tumi; Karmann, Sven; Zimanowski, Bernd; Dellino, Pierfrancesco; Rietze, Martin; Büttner, Ralf

    2015-11-01

    The 2010 eruption of Eyjafjallajökull volcano was characterized by pulsating activity. Discrete ash bursts merged at higher altitude and formed a sustained quasi-continuous eruption column. High-resolution near-field videos were recorded on 8-10 May, during the second explosive phase of the eruption, and supplemented by contemporary aerial observations. In the observed period, pulses occurred at intervals of 0.8 to 23.4 s (average, 4.2 s). On the basis of video analysis, the pulse volume and the velocity of the reversely buoyant jets that initiated each pulse were determined. The expansion history of jets was tracked until the pulses reached the height of transition from a negatively buoyant jet to a convective buoyant plume about 100 m above the vent. Based on the assumption that the density of the gas-solid mixture making up the pulse approximates that of the surrounding air at the level of transition from the jet to the plume, a mass flux ranging between 2.2 and 3.5 · 104 kg/s was calculated. This mass eruption rate is in good agreement with results obtained with simple models relating plume height with mass discharge at the vent. Our findings indicate that near-field measurements of eruption source parameters in a pulsating eruption may prove to be an effective monitoring tool. A comparison of the observed pulses with those generated in calibrated large-scale experiments reveals very similar characteristics and suggests that the analysis of near-field sensors could in the future help to constrain the triggering mechanism of explosive eruptions.

  19. Counteracting the climate effects of volcanic eruptions using short-lived greenhouse gases

    Science.gov (United States)

    Fuglestvedt, Jan S.; Samset, Bjørn H.; Shine, Keith P.

    2014-12-01

    A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.

  20. The eruption of Vesuvius of 79 AD and its impact on human environment in Pompeii

    Institute of Scientific and Technical Information of China (English)

    LisettaGiacomelli; AnnamariaPerrotta; RobertoScandone; ClaudioScarpati

    2003-01-01

    The eruption of Vesuvius of 79 AD caused extensive destructions all over the Campanian area, engulfing the cities of Pompeii, Herculaneum, Oplonti and Stabiae.The eruption followed a long quiescence period and the inhabitants of the area were surprised by the volcanic events. The first part of the eruption was characterized by a widespread dispersal of pumices from a high erup-tive column. The second part of the eruption, character-ized by pyroclastic flows emplacement, caused the major damages with extensive life losses in most of the towns surrounding the volcano. In Pompeii, the major casual-ties during the first phase resulted from roof collapses;during the second phase, people were killed either by physical trauma due to the kinetic energy of the flow or by suffucation because of the ash-rich atmosphere.

  1. Interdisciplinary studies of eruption at Chaitén volcano, Chile

    Science.gov (United States)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Holitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Luis, Lara; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-01-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000-year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004semi; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008semi; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  2. Measuring Water Vapor and Ash in Volcanic Eruptions with a Millimeter-Wave Radar/Imager

    CERN Document Server

    Bryan, Sean; Vanderkluysen, Loÿc; Groppi, Christopher; Paine, Scott; Bliss, Daniel W; Aberle, James; Mauskopf, Philip

    2016-01-01

    Millimeter-wave remote sensing technology can significantly improve measurements of volcanic eruptions, yielding new insights into eruption processes and improving forecasts of drifting volcanic ash for aviation safety. Radiometers can measure water vapor density and temperature inside eruption clouds, improving on existing measurements with infrared cameras that are limited to measuring the outer cloud surface. Millimeter-wave radar can measure the 3D mass flow of volcanic ash inside eruption plumes and drifting fine ash clouds, offering better sensitivity than existing weather radar measurements and the unique ability to measure ash particle size in-situ. Here we present sensitivity calculations in the context of developing the WAMS (Water and Ash Millimeter-wave Spectrometer) instrument. WAMS, a radar/radiometer system constructed with off-the-shelf components, would be able to measure water vapor and ash throughout an entire eruption cloud, a unique capability.

  3. Partially-erupting prominences: a comparison between observations and model-predicted observables

    CERN Document Server

    Tripathi, D; Qiu, J; Fletcher, L; Liu, R; Gilbert, H; Mason, H E

    2009-01-01

    AIM: To investigate several partially-erupting prominences to study their relationship with other CME-associated phenomena and to compare these observations with observables predicted by a model of partially-expelled flux ropes (Gibson & Fan, 2006a, b). METHODS: We have studied 6 selected events with partially-erupting prominences using multi wavelength observations recorded by the Extreme-ultraviolet Imaging Telescope (EIT), Transition Region and Coronal Explorer (TRACE), Mauna Loa Solar Observatory (MLSO), Big Bear Solar Observatory (BBSO) and soft X-ray telescope (SXT). The observational features associated with partially-erupting prominences were then compared with the predicted observables from the model. RESULTS: The partially-expelled-flux-rope (PEFR) model of Gibson & Fan (2006a, b) can explain the partial eruption of these prominences, and in addition predicts a variety of other CME-related observables that provide evidence for internal reconnection during eruption. We find that all of the pa...

  4. Intrusion of eccentric dikes: The case of the 2001 eruption and its role in the dynamics of Mt. Etna volcano

    OpenAIRE

    Bonforte, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Gambino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Neri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia

    2009-01-01

    The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamics of the volcano, marking the passage from a period (March 1993–June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high ...

  5. Weight, height and eruption times of permanent teeth of children aged 4–15 years in Kampala, Uganda

    OpenAIRE

    Kutesa, Annet; Nkamba, Eriab Moses; Muwazi, Louis; Buwembo, William; Rwenyonyi, Charles Mugisha

    2013-01-01

    Background Tooth eruption is a continuous biological process by which developing teeth emerge through the jaws and the overlying mucosa to enter into the oral cavity. Tooth eruption time and sequence are important factors in dental treatment planning, particularly in orthodontics, but also in forensic dentistry to estimate age of a child. Tooth eruption time is influenced by many factors. In this study we set out to determine the timing of eruption of permanent teeth and assess its associatio...

  6. The 2006 lava dome eruption of Merapi Volcano (Indonesia): Detailed analysis using MODIS TIR

    Science.gov (United States)

    Carr, Brett B.; Clarke, Amanda B.; Vanderkluysen, Loÿc

    2016-02-01

    Merapi is one of Indonesia's most active and dangerous volcanoes. Prior to the 2010 VEI 4 eruption, activity at Merapi during the 20th century was characterized by the growth and collapse of a series of lava domes. Periods of very slow growth were punctuated by short episodes of increased eruption rates characterized by dome collapse-generated pyroclastic density currents (PDCs). An eruptive event of this type occurred in May-June, 2006. For effusive eruptions such as this, detailed extrusion rate records are important for understanding the processes driving the eruption and the hazards presented by the eruption. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA's Aqua and Terra satellites to estimate extrusion rates at Merapi Volcano during the 2006 eruption using the method of Harris and Ripepe (2007). We compile a set of 75 nighttime MODIS images of the eruptive period to produce a detailed time series of thermal radiance and extrusion rate that reveal multiple phases of the 2006 eruption. These data closely correspond to the published ground-based observational record and improve observation density and detail during the eruption sequence. Furthermore, additional analysis of radiance values for thermal anomalies in Band 21 (λ = 3.959 μm) of MODIS images results in a new framework for detecting different styles of activity. We successfully discriminate among slow dome growth, rapid dome growth, and PDC-producing dome collapse. We also demonstrate a positive correlation between PDC frequency and extrusion rate, and provide evidence that extrusion rate can increase in response to external events such as dome collapses or tectonic earthquakes. This study represents a new method of documenting volcanic activity that can be applied to other similar volcanic systems.

  7. Satellite observations of lightning-generated NOx in volcanic eruption clouds

    Science.gov (United States)

    Carn, Simon; Krotkov, Nickolay; Pickering, Ken; Allen, Dale; Bucsela, Eric

    2016-04-01

    The generation of NO2 by lightning flashes is known to be an important source of NOx in the free troposphere, particularly in the tropics, with implications for ozone production. Although UV-visible satellite observations of lightning-generated NOx (LNOx) in thunderstorms have been previously reported, here we present the first satellite observations of LNOx generated by lightning in explosive volcanic eruption clouds (vLNOx) from the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite. To date we have identified vLNOx in operational OMI NO2 measurements (OMNO2) during the high-latitude eruptions of Okmok (Aleutian Is; July 2008), Kasatochi (Aleutian Is; August 2008), Redoubt (Alaska; March 2009) and Grimsvötn (Iceland; May 2011), although analysis of OMNO2 data for other eruptions is underway. We use World Wide Lightning Location Network (WWLLN) observations to verify the occurrence and location of lightning flashes in the volcanic eruption clouds. All the vLNOx anomalies are associated with strong UV Aerosol Index (UVAI) signals due to volcanic ash. Preliminary analysis shows that the maximum vLNOx column detected by OMI decreases linearly with time since eruption, and suggests that the vLNOx signal is transient and can be detected up to ~5-6 hours after an eruption. Detection of vLNOx is hence only possible for eruptions occurring a few hours before the daytime OMI overpass. Based on the number of lightning flashes detected by WWLLN in each eruption cloud, we also estimate the vLNOx production efficiency (moles vLNOx per flash). Preliminary estimates for the 2008 Kasatochi eruption suggest that this is significantly higher than the production efficiency in thunderstorms, but may be biased high due to the low detection efficiency of WWLLN (models. Although vLNOx is undoubtedly a very minor fraction of global LNOx production, explosive volcanic eruptions may inject NOx into the stratosphere where it has implications for ozone chemistry.

  8. Transitions between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi volcano, Java, Indonesia

    Science.gov (United States)

    Preece, Katie; Gertisser, Ralf; Barclay, Jenni; Charbonnier, Sylvain J.; Komorowski, Jean-Christophe; Herd, Richard A.

    2016-08-01

    Transitions between explosive and effusive activity are commonly observed during dome-forming eruptions and may be linked to factors such as magma influx, ascent rate and degassing. However, the interplay between these factors is complex and the resulting eruptive behaviour often unpredictable. This paper focuses on the driving forces behind the explosive and effusive activity during the well-documented 2010 eruption of Merapi, the volcano's largest eruption since 1872. Time-controlled samples were collected from the 2010 deposits, linked to eruption stage and style of activity. These include scoria and pumice from the initial explosions, dense and scoriaceous dome samples formed via effusive activity, as well as scoria and pumice samples deposited during subplinian column collapse. Quantitative textural analysis of groundmass feldspar microlites, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size distribution analysis, reveal that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. High-An (up to ˜80 mol% An) microlites from early erupted samples reveal that the eruption was likely preceded by an influx of hotter or more mafic magma. Transitions between explosive and effusive activity in 2010 were driven primarily by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in cycles of effusive and explosive activity. Explosivity during the 2010 eruption was enhanced by the presence of a `plug' of cooled magma within the shallow magma plumbing system, which acted to hinder degassing, leading to overpressure prior to initial explosive activity.

  9. Eruption Forecasting in Alaska: A Retrospective and Test of the Distal VT Model

    Science.gov (United States)

    Prejean, S. G.; Pesicek, J. D.; Wellik, J.; Cameron, C.; White, R. A.; McCausland, W. A.; Buurman, H.

    2015-12-01

    United States volcano observatories have successfully forecast most significant US eruptions in the past decade. However, eruptions of some volcanoes remain stubbornly difficult to forecast effectively using seismic data alone. The Alaska Volcano Observatory (AVO) has responded to 28 eruptions from 10 volcanoes since 2005. Eruptions that were not forecast include those of frequently active volcanoes with basaltic-andesite magmas, like Pavlof, Veniaminof, and Okmok volcanoes. In this study we quantify the success rate of eruption forecasting in Alaska and explore common characteristics of eruptions not forecast. In an effort to improve future forecasts, we re-examine seismic data from eruptions and known intrusive episodes in Alaska to test the effectiveness of the distal VT model commonly employed by the USGS-USAID Volcano Disaster Assistance Program (VDAP). In the distal VT model, anomalous brittle failure or volcano-tectonic (VT) earthquake swarms in the shallow crust surrounding the volcano occur as a secondary response to crustal strain induced by magma intrusion. Because the Aleutian volcanic arc is among the most seismically active regions on Earth, distinguishing distal VT earthquake swarms for eruption forecasting purposes from tectonic seismicity unrelated to volcanic processes poses a distinct challenge. In this study, we use a modified beta-statistic to identify pre-eruptive distal VT swarms and establish their statistical significance with respect to long-term background seismicity. This analysis allows us to explore the general applicability of the distal VT model and quantify the likelihood of encountering false positives in eruption forecasting using this model alone.

  10. Characterizing the first historic eruption of Nabro, Eritrea: Insights from thermal and UV remote sensing

    Science.gov (United States)

    Sealing, Christine R.

    June 2011 saw the first historic eruption of Nabro volcano, one of an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Due to its remote location, little was known about this event in terms of the quantity of erupted products and the timing and mechanisms of their emplacement. Geographic isolation, previous quiescence and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study are limited. Using free, publicly available satellite data, I examined rates of lava effusion and SO2 emission in order to quantify the amount of erupted products and understand the temporal evolution of the eruption, as well as explore what information can be gleaned about eruption mechanisms using remote sensing data. These data revealed a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This gave way to a period of rapid effusion, producing a ˜17 km long lava flow, and a volume of ˜22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. The 2011 eruption of Nabro lasted nearly 6 weeks, and may be considered the second largest historic eruption in Africa. Work such as this highlights the importance of satellite remote sensing for studying and monitoring volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  11. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii

    Science.gov (United States)

    Moore, R.B.

    1992-01-01

    Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200-400 years old: 50%, 15, 14.3: (III) 400-750 years old: 20%, 54, 6.6; (IV) 750-1500 years old: 5%, 37, 20.8; (V) 1500-3000 years old: <1%, 1, unknown. At least 4.5-6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ. ?? 1992 Springer-Verlag.

  12. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand

    Science.gov (United States)

    Chardot, Lauriane; Jolly, Arthur D.; M. Kennedy, Ben; Fournier, Nicolas; Sherburn, Steven

    2015-09-01

    Eruption forecasting is a challenging task because of the inherent complexity of volcanic systems. Despite remarkable efforts to develop complex models in order to explain volcanic processes prior to eruptions, the material Failure Forecast Method (FFM) is one of the very few techniques that can provide a forecast time for an eruption. However, the method requires testing and automation before being used as a real-time eruption forecasting tool at a volcano. We developed an automatic algorithm to issue forecasts from volcanic tremor increase episodes recorded by Real-time Seismic Amplitude Measurement (RSAM) at one station and optimised this algorithm for the period August 2011-January 2014 which comprises the recent unrest period at White Island volcano (Whakaari), New Zealand. A detailed residual analysis was paramount to select the most appropriate model explaining the RSAM time evolutions. In a hindsight simulation, four out of the five small eruptions reported during this period occurred within a failure window forecast by our optimised algorithm and the probability of an eruption on a day within a failure window was 0.21, which is 37 times higher than the probability of having an eruption on any day during the same period (0.0057). Moreover, the forecasts were issued prior to the eruptions by a few hours which is important from an emergency management point of view. Whereas the RSAM time evolutions preceding these four eruptions have a similar goodness-of-fit with the FFM, their spectral characteristics are different. The duration-amplitude distributions of the precursory tremor episodes support the hypothesis that several processes were likely occurring prior to these eruptions. We propose that slow rock failure and fluid flow processes are plausible candidates for the tremor source of these episodes. This hindsight exercise can be useful for future real-time implementation of the FFM at White Island. A similar methodology could also be tested at other

  13. Fluid Chemistry Through an Eruption Cycle at Axial Seamount 1998-2011

    Science.gov (United States)

    Butterfield, D. A.; Chadwick, B.; Lilley, M. D.; Roe, K. K.; Lupton, J. E.; Dziak, R. P.; Walker, S. L.; Olson, E. J.; Evans, L. J.

    2011-12-01

    A primary goal for the NeMO seafloor observatory at Axial Seamount was to monitor and study a hydrothermal system through the cycle from one eruption to the next. With the January 1998 eruption and the April 2011 eruption discovered during Jason ROV operations in late July this year, that goal has now been accomplished. Based on observations and fluid temperature/chemistry measurements before and after both eruptions, there are common features leading up to and following the eruptions. Both eruptions at Axial originated in the SE corner of the caldera associated with the S Rift Zone. Isolated snowblower vents were found on new lava following both eruptions. Centimeter-thick orange hydrothermal mats formed rapidly on the new lava flows. There is some evidence that the fluids from ASHES vent field, located near the SW caldera wall, were hottest before the 1998 eruption. A second high-temperature vent field is located in the SE caldera just east of the recent lava flows. Lava flows came close to both high-temperature fields in 2011, but did not flow over any known chimneys. Recorded time series for several high-temperature vents show increasing temperatures from 2001 through 2010. Vent fluid chlorinity decreased at ASHES for 0.5 to 2 years following the 1998 eruption. As of 3.5 months after the 2011 eruption, ASHES fluid chlorinity did not change significantly. High gas contents reflect magma degassing throughout the entire history of fluid sampling at Axial. Spatial and temporal patterns of vent fluid chemistry will be presented.

  14. High resolution infrared acquisitions droning over the LUSI mud eruption.

    Science.gov (United States)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  15. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    Science.gov (United States)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  16. Gas release from the LUSI eruption site: large scale estimates.

    Science.gov (United States)

    Sciarra, A.; Mazzini, A.; Etiope, G.; Husein, A.; Hadi, S.

    2015-12-01

    The spectacular Indonesian Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the island of Java. Previous studies investigated the mechanisms of reactivation of the Watukosek fault system that crosses Lusi locality and continues to the NE of Java. Results show that the quake triggered lateral movement of this strike-slip system resulting in several aligned eruptions sites including Lusi. Geochemical studies of the erupted fluids reveal a mantle signature and point to a connection with the neighboring Arjuno-Welirang volcanic complex indicating that Lusi is a sedimentary hosted geothermal system. In order to better understand 1) the geometry of the Lusi subsurface plumbing system, 2) to estimate the type and the amount of gas released, and 3) how tectonic structures may control this activity, we conducted a comprehensive survey around the Lusi crater. We sampled more than 60 seepage sites to analyze the composition of the gas released and conducted a flux measurements survey of over 350 stations (CO2 and CH4). In addition we completed three CO2, CH4, radon profiles (120 points) perpendicular to the NE-SW oriented Watukosek strike-slip fault system and complemented that with geoelectric surveys. Results show that the whole area is characterized by diffused gas release through seeps, fractures, microfractures and soil degassing. Overall the highest gas flux were recorded at stations crossing the fractured zones that coincide with the position of the Watukosek fault system. The fractures release mainly CO2 (with peaks up to 400 g/m2day) and display higher temperatures (up to 41°C). This main shear zone is populated by numerous seeps that expel mostly CH4. Flux measurements in the seeping pools reveal that φCO2 is an order of magnitude higher than that measured in the fractures, and two orders of magnitude for φCH4. Radon measurements vary from 30 and 90 Bq/m3 on the edges of the study area to 6000 Bq/m3in the proximity of the faulted

  17. Deriving Lava Eruption Temperatures on Io Using Lava Tube Skylights

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2015-12-01

    The eruption temperature of Io's silicate lavas constrains Io's interior state and composition [1] but reliably measuring this temperature remotely is a challenge that has not yet been met. Previously, we established that eruption processes that expose large areas at the highest temperatures, such as roiling lava lakes or lava fountains, are suitable targets for this task [2]. In this study we investigate the thermal emission from lava tube skylights for basaltic and ultramafic composition lavas. Tube-fed lava flows are known on Io so skylights could be common. Unlike the surfaces of lava flows, lava lakes, and lava fountains which all cool very rapidly, skylights have steady thermal emission on a scale of days to months. The thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [3]. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing angle. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. If the skylight is not resolved, observations distributed over weeks that show a stationary and steady hot spot allow the presence of a skylight to be confidently inferred. This inference allows subsequent refining of observation design to improve viewing geometry of the target. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [4]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to

  18. Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances

    DEFF Research Database (Denmark)

    Fatemifar, Ghazaleh; Hoggart, Clive J; Paternoster, Lavinia;

    2013-01-01

    Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption, we performed a population-based genome-wide association study of 'age at first tooth' and 'number of tee...... for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development....

  19. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption

    Science.gov (United States)

    Jolly, A.D.; Jousset, P.; Lyons, J.J.; Carniel, R.; Fournier, R.; Fry, B.; Miller, C.

    2016-01-01

    The 6 August 2012 Te Maari eruption comprises a complex eruption sequence including multiple eruption pulses, a debris avalanche that propagated ~ 2 km from the vent, and the formation of a 500 m long, arcuate chasm, located ~ 300 m from the main eruption vent. The eruption included 6 distinct impulses that were coherent across a local infrasound network marking the eruption onset at 11:52:18 (all times UTC). An eruption energy release of ~ 3 × 1012 J was calculated using a body wave equation for radiated seismic energy. A similar calculation based on the infrasound record, shows that ~ 90% of the acoustic energy was released from three impulses at onset times 11:52:20 (~ 20% of total eruption energy), 11:52:27 (~ 50%), and 11:52:31 (~ 20%). These energy impulses may coincide with eyewitness accounts describing an initial eastward directed blast, followed by a westward directed blast, and a final vertical blast. Pre-eruption seismic activity includes numerous small unlocatable micro-earthquakes that began at 11:46:50. Two larger high frequency earthquakes were recorded at 11:49:06 and 11:49:21 followed directly by a third earthquake at 11:50:17. The first event was located within the scarp based on an arrival time location from good first P arrival times and probably represents the onset of the debris avalanche. The third event was a tornillo, characterised by a 0.8 Hz single frequency resonance, and has a resonator attenuation factor of Q ~ 40, consistent with a bubbly fluid filled resonator. This contrasts with a similar tornillo event occurring 2.5 weeks earlier having Q ~ 250–1000, consistent with a dusty gas charged resonator. We surmise from pre-eruption seismicity, and the observed attenuation change, that the debris avalanche resulted from the influx of fluids into the hydrothermal system, causing destabilisation and failure. The beheaded hydrothermal system may have then caused depressurisation frothing of the remaining gas charged system leading to the

  20. Plinian vs. phreatomagmatic eruptions at Grímsvötn volcano, Iceland

    Science.gov (United States)

    Haddadi, Baptiste; Sigmarsson, Olgeir; Larsen, Guðrún

    2016-04-01

    Grímsvötn is a subglacial central volcano located under the Vatnajökull ice cap, above the assumed centre of the Iceland mantle plume. Historical explosive eruptions are mostly of phreatomagmatic character whereas pure magmatic behaviour may characterize the largest eruptions. What causes this different eruption behaviour is uncertain. Here, we report petrological estimates of crystallization depth and volatile degassing as recorded by sulfur concentrations in melt inclusions (MI) hosted by ferromagnesian minerals and the groundmass glass. Tephra from four eruptions, AD 1823, 1873, 2004 and 2011, were selected. The 2011 and 1873 are the largest known historical eruptions, whereas the 2004 eruption is probably amongst the smallest. The repose time preceding those eruptions is surprisingly similar, or 6 to 7 years, and the major-element compositions are uniform. Plagioclase, clinopyroxene (cpx) and olivine are the three coexisting phases at the liquidus in the quartz-tholeiites of Grímsvötn. The cpx-melt geothermobarometer (Putirka 2008) applied to the 2011 tephra reveals that cpx crystallized over a large range of P from 60 to 640 MPa (depth range: 1.7-18km) and T between 1060 and 1175°C before the Plinian eruption, therefore mobilizing the entire crustal magma system. In contrast, the phreatomagmatic tephra do not record the shallowest crystallization but interestingly all four tephra have identical median entrapment pressure of approximately 400 MPa. Therefore, the depth from which the magma bodies are derived, does not explain the difference in explosivity between those eruptions nor the variable magma volume (V) produced. Sulfur concentrations in MI are only slightly higher in the Plinian products, the difference (10%) being insufficient to explain the different eruption regimes. The ΔS, the difference between the maximum S concentrations in MI and the mean of the groundmass glass for a given eruption, is higher in the Plinian tephra. Based on literature

  1. The 2011 Eruption of the Recurrent Nova T Pyxidis; the Discovery, the Pre-eruption Rise, the Pre-eruption Orbital Period, and the Reason for the Long Delay

    CERN Document Server

    Schaefer, Bradley E; Linnolt, Michael; Stubbings, Rod; Pojmanski, Grzegorz; Plummer, Alan; Kerr, Stephen; Nelson, Peter; Carstens, Rolf; Streamer, Margaret; Richards, Thomas; Myers, Gordon; Dillon, William G

    2011-01-01

    We report the discovery by M. Linnolt on JD 2455665.7931 (UT 2011 April 14.29) of the sixth eruption of the recurrent nova T Pyxidis. This discovery was made just as the initial fast rise was starting, so with fast notification and response by observers worldwide, the entire initial rise was covered (the first for any nova) with fine time resolution and in three filters. The speed of the rise peaked at 9 mag/day, while the light curve is well fit over only the first two days by a model with a uniformly expanding sphere. We also report the discovery by R. Stubbings of a pre-eruption rise starting 11 days before the eruption, peaking 1.1 mag brighter than its long-time average, and then fading back towards quiescence five days before the eruption. This unique and mysterious behavior is only the fourth known anticipatory rise/dip closely spaced before a nova eruption. We present 19 timings of photometric minima from 1986 to February 2011, where the orbital period is fast increasing with P/Pdot=+313,000 years. Fr...

  2. Understanding Volcanic Conduit Dynamics: from Experimental Fragmentation to Volcanic Eruptions

    Science.gov (United States)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Scheu, B.; Dingwell, D. B.

    2011-12-01

    The investigation of conduit dynamics at high pressure, under controlled laboratory conditions is a powerful tool to understand the physics behind volcanic processes before an eruption. In this work, we analyze the characteristics of the seismic response of an "experimental volcano" focusing on the dynamics of the conduit behavior during the fragmentation process of volcanic rocks. The "experimental volcano" is represented by a shock tube apparatus, which consists of a low-pressure voluminous tank (3 x 0.40 m), for sample recovery; and a high-pressure pipe-like conduit (16.5 x 2,5 cm), which represents the volcanic source mechanism, where rock samples are pressurized and fragmented. These two serial steel pipes are connected and sealed by a set of diaphragms that bear pressures in a range of 4 to 20 MPa. The history of the overall process of an explosion consists of four steps: 1) the slow pressurization of the pipe-like conduit filled with solid pumice and gas, 2) the sudden removal of the diaphragms, 3) the rapid decompression of the system and 4) the ejection of the gas-particle mixture. Each step imprints distinctive features on the microseismic records, reflecting the conduit dynamics during the explosion. In this work we show how features such as waveform characteristics, the three components of the force system acting on the conduit, the independent components of the moment tensor, the volumetric change of the source mechanism, the arrival time of the shock wave and its velocity, are quantified from the experimental microseismic data. Knowing these features, each step of the eruptive process, the conduit conditions and the source mechanism characteristics can be determined. The procedure applied in this experimental approach allows the use of seismic field data to estimate volcanic conduit conditions before an eruption takes place. We state on the hypothesis that the physics behind the pressurization and depressurization process of any conduit is the same

  3. Regional odontodysplasia in the primary dentition associated with eruption failure

    Directory of Open Access Journals (Sweden)

    Santanu Mukhopadhyay

    2016-01-01

    Full Text Available Regional odontodysplasia (RO is an uncommon nonhereditary developmental anomaly of dental hard tissues derived from ectoderm and mesoderm. The condition is more common in females, may affect primary and permanent dentitions with the maxilla, involves twice as frequently as mandible. The exact etiology of RO is unknown. Diagnosis is usually made by clinical and radiographic findings, sometimes supplemented with histopathologic examination. Clinically, teeth are hypoplastic with surface pits and grooves, and have brownish or yellowish discoloration. On the radiograph, there is reduced radiodensity of enamel and dentin with a lack of contrast between them. In this article, we described a case of a 3½-year-old girl with RO. The left maxillary quadrant was affected. The patient also showed eruption failure. Treatment of RO is, to a great extent, individualized. As the condition was asymptomatic, the present case was managed conservatively.

  4. Gas flux estimates at the LUSI eruption site.

    Science.gov (United States)

    Sciarra, Alessandra; Mazzini, Adriano; Husein, Alwii; Hadi J., Soffian; Etiope, Giuseppe

    2015-04-01

    The spectacular Indonesian Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the island of Java (Mazzini et al., 2007). Previous studies investigated the mechanisms of reactivation of the Watukosek fault system that crosses Lusi locality (Mazzini et al., 2009) and continues to the NE of Java. Results show that the quake triggered lateral movement of this strike-slip system resulting in several aligned eruptions sites including Lusi. Geochemical studies of the erupted fluids reveal a mantle signature and point to a connection with the neighboring Arjuno-Welirang volcanic complex (Mazzini et al., 2012) indicating that Lusi is a sedimentary hosted geothermal system. In order to estimate the amount of gas that is being released around the Lusi crater (~7 km2), we recently conducted a survey of over 300 stations (CO2 and CH4 flux measurements) using a closed-chamber flux-meter system and collected gas samples to analyze the composition of the seeps. In addition 20 soil gas concentrations were collected using a steel probe driven into the ground to a depth of 0.7-0.8 m to avoid the major influence of meteorological variables. Results show that the highest CO2 flux is present along the NE-SW oriented Watukosek fault (with peaks up to 400 g/m2day) and along the ~E-W oriented Siring antithetic fault (with peaks up to 110 g/m2day). The pools have overall a CH4-dominated composition, while the dry fault-related fractures are CO2-dominated which is in agreement with higher recorded temperatures at these sites. Flux measurements in the seeping pools reveal that CO2 flux is an order of magnitude higher than that measured in the fault zones, and two order of magnitude for CH4 flux. C02 and CH4 microseepage is occurring in significant amount throughput the mud-covered area with average values of 297 and 95 g/m2day, respectively. CH4 flux shows the highest values in the W and NW sector of the Lusi area, while CO2 flux highlights the presence of three

  5. Modeling CO2 air dispersion from gas driven lake eruptions

    Science.gov (United States)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  6. Flurbiprofen-induced generalized bullous fixed drug eruption.

    Science.gov (United States)

    Balta, I; Simsek, H; Simsek, G G

    2014-01-01

    Fixed drug eruption (FDE) is an unusual drug-related side effect that results in recurrent lesions whenever the causative drugs are used. FDEs usually occur as a single, sharply demarcated, round erythematous patch or plaque, occasionally with localized bullae. The most common offending agents include antimicrobials, nonsteroidal anti-inflammatory drugs, and antiepileptics. There are some reports where contact dermatitis and cutaneous vasculitis have been associated with the use of flurbiprofen. We present the case of a 50-year-old man with flurbiprofen-induced generalized bullous FDE. To the best of our knowledge, the most serious form of FDE, the generalized bullous FDE, to be caused by flurbiprofen has not been reported previously.

  7. On the Bright Loop Top Emission in Post Eruption Arcades

    CERN Document Server

    Sharma, Rohit; Isobe, Hiroaki; Ghosh, Avyarthana

    2016-01-01

    The observations of post eruption arcades (PEAs) in X-rays and EUV reveal strong localised brightenings at the loop top regions. The origin of these brightenings and their dynamics is not well understood to date. Here, we study the dynamics of PEAs using one-dimensional hydrodynamic modelling with the focus on the the understanding of the formation of localised brightening.Our findings suggest that these brightenings are the result of collisions between the counter-streaming chromospheric evaporation from both the foot points. We further perform forward modelling of the emission observed in simulated results in various spectral lines observed by the Extreme-Ultraviolet Imaging Telescope aboard Hinode. The forward modelled intensities in various spectral lines are in close agreement with a flare observed in December 17, 2006 by EIS.

  8. Magnetic field in atypical prominence structures: Bubble, tornado and eruption

    CERN Document Server

    Levens, P J; Ariste, A López; Labrosse, N; Dalmasse, K; Gelly, B

    2016-01-01

    Spectropolarimetric observations of prominences have been obtained with the THEMIS telescope during four years of coordinated campaigns. Our aim is now to understand the conditions of the cool plasma and magnetism in `atypical' prominences, namely when the measured inclination of the magnetic field departs, to some extent, from the predominantly horizontal field found in `typical' prominences. What is the role of the magnetic field in these prominence types? Are plasma dynamics more important in these cases than the magnetic support? We focus our study on three types of `atypical' prominences (tornadoes, bubbles and jet-like prominence eruptions) that have all been observed by THEMIS in the He I D_3 line, from which the Stokes parameters can be derived. The magnetic field strength, inclination and azimuth in each pixel are obtained by using the Principal Component Analysis inversion method on a model of single scattering in the presence of the Hanle effect. The magnetic field in tornadoes is found to be more ...

  9. Precursors and electron-positron pair loading from erupting fireballs

    CERN Document Server

    Ramirez-Ruiz, E; Lazzati, D; Ramirez-Ruiz, Enrico; Fadyen, Andrew I. Mac; Lazzati, Davide

    2002-01-01

    Recent observations suggest that long-duration gamma-ray bursts and their afterglows are produced by highly relativistic jets emitted in core-collapse explosions. As the jet makes its way out of the stellar mantle, a bow shock runs ahead and a strong thermal precursor is produced as the shock breaks out. Such erupting fireballs produce a very bright gamma-ray precursor as they interact with the thermal break-out emission. The prompt gamma-ray emission propagates ahead of the fireball before it becomes optically thin, leading to electron-positron pair loading and radiative acceleration of the external medium. The detection of such precursors would offer the possibility of diagnosing not only the radius of the stellar progenitor and the initial Lorentz factor of the collimated fireball, but also the density of the external environment.

  10. Odontomas--silent tormentors of teeth eruption, shedding and occlusion.

    Science.gov (United States)

    Kulkarni, Vinaya Kumar; Deshmukh, Jeevanand; Banda, Naveen Reddy; Banda, Vanaja Reddy

    2012-12-14

    Odontomas are the most common odontogenic tumours of the jaws, characterised by their slow growth and non-aggressive behaviour. They usually remain asymptomatic, and are diagnosed on routine radiographs. Clinically, they are often associated with delayed eruption or impaction of permanent teeth and retained primary teeth. The purpose of this paper is to review the literature and report two cases of odontomas. In the first case, a compound odontoma was associated with an unerupted maxillary permanent right central incisor, in an 11-year-old boy. In the second case, a 12-year-old girl had retained mandibular primary left central incisor and its unerupted successor was associated with a compound odontoma, a site considered rare for compound odontoma to occur. The clinical features, diagnosis and treatment of these cases have been discussed.

  11. Building the Volcanic Oceanic Crust One Eruption at a Time (Invited)

    Science.gov (United States)

    Sinton, J. M.; Rubin, K. H.; White, S. M.; Colman, A.; Bowles, J. A.; Gronvold, K.

    2010-12-01

    The physical and chemical characteristics of lava flow fields formed during individual volcanic eruptions provides critical information on the nature of underlying magma reservoirs and the diking events that feed magma to the surface. Chemical variability of individual flow fields can constrain important parameters, such as the depth, geometry, melt percentage, and cooling rate of magma reservoirs and, in some case, whether or not dikes traveled vertically from magma reservoirs to the surface, with examples from the East Pacific Rise, Juan de Fuca Ridge and Iceland. Lava flow morphology and the length of ridge activated during individual eruptions constrain eruption rates and, in some cases, how eruption rates and magma sources vary during the course of long-lived eruptions. Although the study of submarine volcanic eruptions has historically been dominated by study of very recent flow fields or remotely detected “events”, a recent cruise to the Galápagos Spreading Center demonstrated that volcanic geology can be deciphered for areas of seafloor using the same basic methods commonly employed on-land: near-bottom geological observations, remote images at the appropriate spatial resolution, and petrologic and geochronologic study of samples. For the Galápagos study we used the AUV Sentry to obtain very high resolution (~1-m spatial scale) bathymetry, 26 Alvin dives, 17 camera-tows, and on-shore chemical and magnetic paeleointensity sample analyses to identify the areal extents, chemical variability and age constraints of at least 14 previously unknown discrete eruptive units in two areas with highly contrasting average magma supply defined by variations in crustal thickness and spreading rate. Preliminary general results of this study indicate that, at high magma supply, relatively low-volume eruptions are fed from shallow, moderately to highly differentiated, melt-dominated magma chambers to elongate fissures at relatively high average eruption rates. At low

  12. Air pressure waves from Mount St. Helens eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.W.

    1987-10-20

    Weather station barograph records as well as infrasonic recordings of the pressure wave from the Mount St. Helens eruption of May 18, 1980, have been used to estimate an equivalent explosion airblast yield for this event. Pressure amplitude versus distance patterns in various directions compared with patterns from other large explosions, such as atmospheric nuclear tests, the Krakatoa eruption, and the Tunguska comet impact, indicate that the wave came from an explosion equivalent of a few megatons of TNT. The extent of tree blowdown is considerably greater than could be expected from such an explosion, and the observed forest damage is attributed to outflow of volcanic material. The pressure-time signature obtained at Toledo, Washington, showed a long, 13-min duration negative phase as well as a second, hour-long compression phase, both probably caused by ejacta dynamics rather than standard explosion wave phenomenology. The peculiar audibility pattern, with the blast being heard only at ranges beyond about 100 km, is explicable by finite amplitude propagation effects. Near the source, compression was slow, taking more than a second but probably less than 5 s, so that it went unnoticed by human ears and susceptible buildings were not damaged. There was no damage as Toledo (54 km), where the recorded amplitude would have broken windows with a fast compression. An explanation is that wave emissions at high elevation angles traveled to the upper stratosphere, where low ambient air pressures caused this energetic pressure oscillation to form a shock wave with rapid, nearly instantaneous compression. Atmospheric refraction then returned part of this wave to ground level at long ranges, where the fast compressions were clearly audible. copyright American Geophysical Union 1987

  13. Devastating landslides related to the 2002 Papandayan eruption

    Directory of Open Access Journals (Sweden)

    Rudy Dalimin Hadisantono

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol1no2.20063Papandayan is an A-type active strato volcano located at some 20 km SW of Garut or about 70 km SE of Bandung the capital city of West Java Province. Geographically, the summit of this volcano lies at the intersection between 07º 19’ 42” S and 107º 44” E. The 2002 Papandayan eruption was preceded by two felt earthquakes, 8 times of A-type volcanic earthquakes and 150 times of B- type volcanic earthquake. These events were followed by a phreatic eruption that took place on 11 November at 16.02 local time. Field observation shows that the summit region, mainly around the craters consists of rocks that have hydrothermally altered to yield clay rich material. This clay rich material covers most of the crater fl oors and the crater rim. Mount Nangklak that forms part of the rim also contains a lava plug from the Old Papandayan volcano. This mountain is covered by fi ne grained, unconsolidated material, and altered rocks. Much of this altered rocks coincides with solfataric and fumarolic activities of 80 to > 300°C. The summit area also contains high discharge of water either originating from the springs or surface water. The increase in seismicity, the fi ne-grained hydrothermal altered rocks, and the existence of some faults that pass through the summit region might have weaken the stability of the summit area. As the result, a landslide occurred on the north fl ank of Mount Nangklak where the landslide material blocked the upper course of Cibeureum Gede River. This landslide material had formed big mudfl ows that caused several houses of fi ve villages were partly burried, some bridges were devastated and several hectares of cultivated land were damaged.    

  14. The eruption of the Breccia Museo (Campi Flegrei, Italy): Fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics

    Science.gov (United States)

    Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Scarpati, Claudio; Adabbo, Mariarosaria

    1995-11-01

    The Breccia Museo Member (BMM) was formed by an explosive eruption that occurred in the SW sector of Campi Flegrei about 20 ka ago. The eruptive sequence consists of the Lower Pumice Flow Unit and the overlying Upper Pumice Flow Unit with its associated lithic Breccia Unit. Interlayered with the Breccia Unit is a welded deposit that mainly consists of spatter clasts (Spatter Unit). The products of this eruption range in composition from trachytic to trachyphonolitic with K 2O decreasing from 9.5 to 7 wt.%; Na 2O correspondingly increases from 2.6 to 7.2 wt.% with increasing differentiation (Nb from 23 to 122 ppm). The phenocrysts are mostly sanidine (Or 88-63) with subordinate plagioclase (An 33-27), clinopyroxene (Ca 47Mg 44Fe 9 to Ca 46Mg 35Fe 19), biotite, titanomagnetite, and apatite. The observed major- and trace-element variations are fully consistent with about 80% fractional crystallization of a sanidine-dominated assemblage starting from the least differentiated trachytes. The compositions of the erupted products are compatible with the progressive tapping of a shallow magma chamber that was thermally and chemically zoned. The incompatible trace elements indicate a slightly different magma composition with respect to trachytes of the Campi Flegrei mainland. The geochemical stratigraphy suggests that after an early eruptive phase during which the upper, most differentiated level of the magma chamber was tapped, the sudden collapse of the roof of the reservoir triggered drainage of the remaining magma, which ranged in composition from trachyte to trachyphonolite, and formed the Breccia Unit and the Upper Pumice Flow Unit. The strongly differentiated trachyphonolite composition of the spatter clasts also suggests that they likely originated from the uppermost part of the reservoir soon after the eruption of Lower Pumice Flow Unit and the collapse of the chamber roof. This is in agreement with the eruptive model proposed by Perrotta and Scarpati (1994).

  15. Global Temperature Response to the Major Volcanic Eruptions in Multiple Reanalysis Datasets

    Science.gov (United States)

    Fujiwara, M.; Hibino, T.; Mehta, S. K.; Gray, L. J.; Mitchell, D.; Anstey, J.

    2015-12-01

    Global temperature response to the eruptions of Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991 is investigated using nine reanalysis datasets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR). Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979-2009 (for eight reanalysis datasets) and 1958-2001 (for four reanalysis datasets), by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately. In response to the Mount Pinatubo eruption, most reanalysis datasets show strong warming signals (up to 2-3 K for one-year average) in the tropical lower stratosphere and weak cooling signals (down to -1 K) in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis datasets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis datasets.

  16. Eruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin: 1996-2012

    Science.gov (United States)

    Embley, Robert W.; Merle, Susan G.; Baker, Edward T.; Rubin, Kenneth H.; Lupton, John E.; Resing, Joseph A.; Dziak, Robert P.; Lilley, Marvin D.; Chadwick, William W.; Shank, T.; Greene, Ron; Walker, Sharon L.; Haxel, Joseph; Olson, Eric; Baumberger, Tamara

    2014-10-01

    present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996-2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ˜2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996-2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.

  17. Detection of crustal deformation prior to the 2014 Mt. Ontake eruption by the stacking method

    Science.gov (United States)

    Miyaoka, Kazuki; Takagi, Akimichi

    2016-04-01

    The phreatic eruption of Mt. Ontake in central Japan occurred in September 27, 2014. No obvious crustal deformation was observed prior to the eruption, and the magnitudes of other precursor phenomena were very small. In this study, we used the stacking method to detect crustal deformation prior to the eruption. The stacking method is a technique to improve the signal-to-noise ratio by stacking multiple records of crustal deformation. We succeeded in detecting a slight crustal deformation caused by a volume change in the shallow region beneath the volcano's summit from 1 month prior to the eruption. We also detected a slight crustal deformation that may have been caused by a volume increase in the deep region from one and a half months before the eruption. The magnitude of the volume change in the shallow region did not differ significantly in the 2014 eruption compared to the volume change during the small Mt. Ontake eruption in 2007, and the volume change in the deep region was rather smaller in 2014 than in 2007.

  18. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  19. Steady subsidence of a repeatedly erupting caldera through InSAR observations: Aso, Japan

    Science.gov (United States)

    Nobile, Adriano; Acocella, Valerio; Ruch, Joel; Aoki, Yosuke; Borgstrom, Sven; Siniscalchi, Valeria; Geshi, Nobuo

    2016-04-01

    The relation between unrest and eruption at calderas is still poorly understood. Aso caldera, Japan, shows minor episodic eruptions, mainly phreatic, associated with steady subsidence. We analyse the recent deformation of Aso using SAR images from 1993 to 2011 and compare this with the eruptive activity. Although the dataset suffers from limitations (e.g., atmospheric effects, coherence loss, low signal to noise ratio), we observe a steady subsidence signal from 1996 to 1998, that suggests an overall contraction of a magmatic source below the caldera centre, from 4.5 to 7 km depth. Because of the similar volumes of the contracting source and erupted material, we propose that the contraction may have been induced by the release of the magmatic fluids feeding the eruptions. If confirmed by further data, this hypothesis suggests that degassing processes play a crucial role in triggering minor eruptions within open conduit calderas, as at Aso. These features underline the importance of defining any eruptive potential also from deflating magmatic systems with open conduit.

  20. Ground Deformation during Papandayan Volcano 2002 Eruption as Detected by GPS Surveys

    Directory of Open Access Journals (Sweden)

    Hasanuddin Z. Abidin

    2003-05-01

    Full Text Available Papandayan is an A-type active volcano located in the southern part of Garut Regency, about 70 km southeast of Bandung, Indonesia. Its earliest recorded eruption, and most violent and devastating outburst occurred in 1772 and the latest eruptions occurred in the period of 11 November to 8 December 2002, and consisted of freatic, freatomagmatic and magmatic types of eruption.During the latest eruption period, GPS surveys were conducted at several points inside and around the crater in a radial mode using the reference point located at Papandayan observatory around 10 km from the crater. At the points closest to the erupting craters, GPS displacements up to a few dm were detected, whereas at the points outside the crater, the displacements were in the cm level. The magnitude of displacements observed at each point also show a temporal variation according to the eruption characteristics. The results show that deformation during eruption tends to be local, e.g. just around the crater. Pressure source is difficult to be properly modeled from GPS results, due to limited GPS data available and differences in topography, geological structure and/or rheology related to each GPS station.

  1. A reappraisal of the 1835 eruption of Cosigüina and its atmospheric impact

    Science.gov (United States)

    Self, S.; Rampino, M. R.; Carr, M. J.

    1989-10-01

    In the “great” January 1835 eruption of Cosigüina volcano, Nicaragua, andesitic magma and lithic material were erupted over a period of at least three days. Proximal facies consist of clastogenic lava, scoria-fall, and lithic ash-fall produced by phreatomagmatic to vulcanian or plinian activity, together with surge deposits and lithic block-falls. Pyroclastic flow deposits covered some flanks of the volcano and entered the sea in the Gulf of Fonseca. Little record exists of the distal ash-fall, thus the total bulk volume erupted can only be roughly constrained to 2.9 5.6 km3. Furthermore, the amount of juvenile material is thought to be small. A recent study of volatiles in 1835 scoria suggests sulfur release from the magma was negligible. This reappraisal indicates that the Cosigüina eruption probably had little global climatic impact. Despite its violent nature, the magnitude of the eruption was modest. The eruption occurred too late to initiate the Northern Hemisphere cooling trend form 1828 1836. Dry fogs and other atmospheric optical phenomena usually observed after eruptions that contribute significantly to the stratospheric aerosol burden were not recorded after 1835.

  2. Double eruption cyst in a newborn boy. Case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Marissa ZARAKAS, Kyriaki TSINIDOU, Corina TRIANTAFYLLOU, Eleftheria MEGALOGIANNI, Konstantinos I. TOSIOS

    2012-04-01

    Full Text Available SUMMARY: Eruption cyst is a dentigerous cyst of the soft tissue of the jaws that forms around the crown of an erupting primary or permanent tooth, due to separation of the dental follicle from the crown. Eruption cysts usually present as solitary swellings on the alveolar ridge mucosa, whereas multiple eruption cysts presenting simultaneously or in short intervals are uncommon.The case of a 2 month old Caucasian boy with two adjacent eruption cysts, manifesting as a congenital bilobular tumor of smooth surface and blue color, on the mandibular central incisors area is presented. The lesion was diagnosed as a “hemangioma”, but it progressively grew in size and changed in color. The patient’s and family medical history were non contributory.Radiographic examination revealed the superficial location of the primary mandibular central incisors within the soft tissues, and showed no abnormal bone resorption. With the diagnosis of double eruption cyst,a monthly follow-up of the patient was suggested and a month after the clinical examination the cyst disappeared spontaneously without noticeable hemorrhage.A year later the primary mandibular central incisors had erupted normally and there was no residual lesion.

  3. Observational Features of Large-Scale Structures as Revealed by the Catastrophe Model of Solar Eruptions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares,eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory,we look into the physics behind those features investigated in a succession of previous works,and discuss the approaches they used.

  4. A dynamic magnetic tension force as the cause of failed solar eruptions

    Science.gov (United States)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan; Savcheva, Antonia; Deluca, Edward E.

    2015-12-01

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  5. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon

    2015-04-03

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  6. Multiple dendrochronological responses to the eruption of Cinder Cone, Lassen Volcanic National Park, California

    Science.gov (United States)

    Sheppard, P.R.; Ort, M.H.; Anderson, K.C.; Clynne, M.A.; May, E.M.

    2009-01-01

    Two dendrochronological properties – ring width and ring chemistry – were investigated in trees near Cinder Cone in Lassen Volcanic National Park, northeastern California, for the purpose of re-evaluating the date of its eruption. Cinder Cone is thought to have erupted in AD 1666 based on ring-width evidence, but interpreting ring-width changes alone is not straightforward because many forest disturbances can cause changes in ring width. Old Jeffrey pines growing in Cinder Cone tephra and elsewhere for control comparison were sampled. Trees growing in tephra show synchronous ring-width changes at AD 1666, but this ring-width signal could be considered ambiguous for dating the eruption because changes in ring width can be caused by other events. Trees growing in tephra also show changes in ring phosphorus, sulfur, and sodium during the late 1660s, but inter-tree variability in dendrochemical signals makes dating the eruption from ring chemistry alone difficult. The combination of dendrochemistry and ring-width signals improves confidence in dating the eruption of Cinder Cone over the analysis of just one ring-growth property. These results are similar to another case study using dendrochronology of ring width and ring chemistry at Parícutin, Michoacán, Mexico, a cinder cone that erupted beginning in 1943. In both cases, combining analysis with ring width and ring chemistry improved confidence in the dendro-dating of the eruptions.

  7. The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon

    Science.gov (United States)

    McKay, Daniele; Donnelly-Nolan, Julie M.; Madin, Ian P.; Champion, Duane E.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    The northwest rift zone (NWRZ) eruption took place at Newberry Volcano ~7000 years ago after the volcano was mantled by tephra from the catastrophic eruption that destroyed Mount Mazama and produced the Crater Lake caldera. The NWRZ eruption produced multiple lava flows from a variety of vents including cinder cones, spatter vents, and fissures, possibly in more than one episode. Eruptive behaviors ranged from energetic Strombolian, which produced significant tephra plumes, to low-energy Hawaiian-style. This paper summarizes and in part reinterprets what is known about the eruption and presents information from new and ongoing studies. Total distance spanned by the eruption is 32 km north-south. The northernmost flow of the NWRZ blocked the Deschutes River upstream from the city of Bend, Oregon, and changed the course of the river. Renewed mafic activity in the region, particularly eruptions such as the NWRZ with tephra plumes and multiple lava flows from many vents, would have significant impacts for the residents of Bend and other central Oregon communities.

  8. Recolonization of the intertidal and shallow subtidal community following the 2008 eruption of Alaska's Kasatochi Volcano

    Directory of Open Access Journals (Sweden)

    S. C. Jewett

    2014-03-01

    Full Text Available The intertidal and nearshore benthic communities of Kasatochi Island are described following a catastrophic volcanic eruption in 2008. Prior to the eruption, the island was surrounded by a dense bed of canopy-forming dragon kelp Eualaria fistulosa which supported a productive nearshore community. The eruption extended the coastline of the island approximately 400 m offshore to roughly the 20 m isobath. One year following the eruption a reconnaissance survey found the intertidal zone devoid of life. Subtidally, the canopy kelp, as well as limited understory algal species and associated benthic fauna on the hard substratum, were buried by debris from the eruption. The resulting substrate was comprised almost entirely of medium and coarse sands with a depauperate benthic community. Comparisons of habitat and biological communities with other nearby Aleutian Islands and the Icelandic submarine volcanic eruption of Surtsey confirm dramatic reductions in flora and fauna consistent with the initial stages of recovery from a large-scale disturbance event. Four and five years following the eruption brief visits revealed dramatic intertidal and subtidal recolonization of the flora and fauna in some areas. Signs of nesting and fledging of young pigeon guillemots Cepphus columba suggest that the recovery of the nearshore biota may have begun affecting higher trophic levels. Recolonization or lack thereof was tied to bathymetric changes from coastal and nearshore erosion over the study period.

  9. Erupting filaments with large enclosing flux tubes as sources of high-mass 3-part CMEs, and erupting filaments in the absence of enclosing flux tubes as sources of low-mass unstructured CMEs

    CERN Document Server

    Hutton, Joe

    2016-01-01

    The 3-part appearance of many CMEs arising from erupting filaments emerges from a large magnetic flux tube structure, consistent with the form of the erupting filament system. Other CMEs arising from erupting filaments lack a clear 3-part structure and reasons for this have not been researched in detail. This paper aims to further establish the link between CME structure and the structure of the erupting filament system and to investigate whether CMEs which lack a 3-part structure have different eruption characteristics. A survey is made of 221 near-limb filament eruptions observed from 2013/05/03-2014/06/30 by EUV imagers and coronagraphs. 92 filament eruptions are associated with 3-part structured CMEs, 41 eruptions are associated with unstructured CMEs. The remaining 88 are categorized as failed eruptions. For 34% of the 3-part CMEs, processing applied to EUV images reveals the erupting front edge is a pre-existing loop structure surrounding the filament, which subsequently erupts with the filament to form...

  10. The ash-fall hazard from a Plinian eruption at Colima Volcano, Mexico

    Directory of Open Access Journals (Sweden)

    Rita Fonseca

    2010-06-01

    Full Text Available The historical eruptive activity at Colima Volcano has been characterized by Strombolian and Merapi type eruptions and Vulcanian explosions associated with dome growth, which have ended in a Plinian eruption about every 100 years. The situation now prevailing at Colima Volcano is similar to that which preceded these explosive eruptions, when a dome fills the crater. This study proposes seven scenarios for the ash-fall from a Plinian eruption, based on historical eruptive activity, isopach thickness from the 1913 Plinian eruption, land use, socioeconomic data, and a 15-year statistical wind study realized with daily radiosonde data grouped according to four altitudinal levels: 4,000-9,000 (I; 9,000-14,000 (II; 14,000-17,000 (III and 17,000-28,000 (IV m a.s.l., based on common wind speeds and directions. We have integrated the wind distribution at level IV and estimated the ash dispersion for a Plinian eruption. From January to March, the main impact would be towards the northeast, in April and in October, towards the east, in May, towards the north-northeast or north-northwest, from June to August, towards the northwest, in September, towards the west, and in November and December, towards the west-southwest. The fallout would damage the coniferous forests of the Colima National Park, two lagoons and three lakes. More than 30 million people living in Guadalajara, Mexico City, Leon and Colima would suffer eye, respiratory and skin problems. The proximal areas, such as Ciudad Guzman, would be subject to roof collapsing and communication problems. The agricultural and livestock sectors would suffer severe financial losses. The Queseria sugar mill, the Atenquique paper mill, and the cement plants in Zapotiltic would halt work due to chimney obstruction and machinery abrasion. Four thermoelectric plants, twenty airports and four commercial ports would be affected if the eruption occurs in summer.

  11. Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer

    Science.gov (United States)

    Nostro, C.; Stein, R.S.; Cocco, M.; Belardinelli, M.E.; Marzocchi, W.

    1998-01-01

    During the past 1000 years, eruptions of Vesuvius have often been accompanied by large earthquakes in the Apennines 50-60 km to the northeast. Statistical investigations had shown that earthquakes often preceded eruptions, typically by less than a decade, but did not provide a physical explanation for the correlation. Here, we explore elastic stress interaction between earthquakes and eruptions under the hypothesis that small stress changes can promote events when the Apennine normal faults and the Vesuvius magma body are close to failure. We show that earthquakes can promote eruptions by compressing the magma body at depth and opening suitably oriented near-surface conduits. Voiding the magma body in turns brings these same normal faults closer to Coulomb failure, promoting earthquakes. Such a coupling is strongest if the magma reservoir is a dike oriented normal to the regional extension axis, parallel to the Apennines, and the near-surface conduits and fissures are oriented normal to the Apennines. This preferred orientation suggests that the eruptions issuing from such fissures should be most closely linked in time to Apennine earthquakes. Large Apennine earthquakes since 1400 are calculated to have transferred more stress to Vesuvius than all but the largest eruptions have transferred to Apennine faults, which may explain why earthquakes more commonly lead than follow eruptions. A two-way coupling may thus link earthquakes and Vesuvius eruptions along a 100-km-long set of faults. We test the statistical significance of the earthquake-eruption correlation in the two-way coupling zone, and find a correlation significant at the 95% confidence level.

  12. Joint Inversions of Gas Emissions and Ground Deformation During and Following Volcanic Eruptions

    Science.gov (United States)

    Edmonds, M.; McCormick, B. T.

    2015-12-01

    Volcanic eruptions are associated with complex, time-dependent gas emissions and ground deformation. Observations of such signals are a primary gauge of eruption mechanisms, progress and cessation and as such, are critical for hazard assessment. It is often the case that gas emissions and deformation continue for months to years after the end of an eruption. Interpretation of such signals are critical for making decisions about whether an eruption may be considered over or not, yet very little is understood about the processes behind them and how they are coupled. However, the link between the deformation measured and the gases emitted during and after eruptions is fundamental. It has long been recognised that the presence of exsolved fluids enhances magma compressibility, leading to smaller-than-expected syn-eruptive volume changes observed at the surface (by InSAR or by GPS networks). The fluid phase present in the magma prior to eruption contains an assemblage of volatile species, most of which we are able to measure at the surface. Our improved understanding of volatile saturation in silicate melts and the availability of thermodynamic models to predict the partitioning of sulfur between fluid and melt means that coupled interpretations of gas emissions and deformation are now possible, given independent estimates of erupted volumes and other intrinsic parameters such as pressure, temperature and oxygen fugacity. We illustrate, using a well constrained example of a prolonged, multi-episode eruption, the utility in developing coupled models to describe volume changes and outgassing processes with a view to enhancing our ability to interpret these critical monitoring data streams.

  13. Catastrophic eruptions of the directed-blast type at Mount St. Helens, bezymianny and Shiveluch volcanoes

    Science.gov (United States)

    Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.

    1985-01-01

    This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for

  14. Chronology and impact of the 2011 Puyehue-Cordón Caulle eruption, Chile

    Science.gov (United States)

    Elissondo, M.; Baumann, V.; Bonadonna, C.; Pistolesi, M.; Cioni, R.; Bertagnini, A.; Biass, S.; Herrero, J. C.; Gonzalez, R.

    2015-09-01

    We present a detailed chronological reconstruction of the 2011 eruption of Puyehue-Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific reports and satellite images. Chronology of associated volcanic processes and their local and regional effects (i.e. precursory activity, tephra fallout, lahars, pyroclastic density currents, lava flows) are also presented. The eruption had a severe impact on the ecosystem and on various economic sectors, including aviation, tourism, agriculture, and fishing industry. Urban areas and critical infrastructures, such as airports, hospitals and roads, were also impacted. The concentration of PM10 (Particulate Matter ≤ 10 μm) was measured during and after the eruption, showing that maximum safety threshold levels of daily and annual exposures were surpassed in several occasions. Probabilistic analysis of atmospheric and eruptive conditions have shown that the main direction of dispersal is directly towards east of the volcano and that the climactic phase of the eruption, dispersed toward south-east, has a probability of occurrence within 1 %. The management of the crisis, including evacuation of people, is discussed, as well as the comparison with the impact associated with other recent eruptions located in similar areas and having similar characteristics (i.e. Quizapu, Hudson, and Chaitén volcanoes). This comparison shows that the regions downwind and very close to the erupting volcanoes suffered very similar problems, without a clear relation with the intensity of the eruption (e.g. health problems, damage to vegetation, death of animals, roof collapse, air traffic disruptions, road closure, lahars and flooding). This suggests that a detailed collection of impact data can be largely beneficial for the development of plans for the management of an eruptive crisis and the mitigation of associated risk of the Andean region.

  15. Animal Health and Productivity Status of Cattle After The Eruption of Mount Merapi

    Directory of Open Access Journals (Sweden)

    Yulvian Sani

    2011-12-01

    Full Text Available The eruption of Merapi from October 26th to November 6th, 2010 has affected social life and environment around the Merapi. The eruption has caused destruction of land and water resources, plants, death of animals and human casualities. The lava, dust and stones released from the eruption of Merapi had caused residential destruction, casualities, agricultural land and plants destruction, and contamination of water. The eruption has directly affected 4 districts including Sleman (Yogyakarta, Magelang, Boyolali and Klaten (Central Java categorized as Disaster Risk Area (DRA. The purpose of this assessment is to analyse the impacts of Merapi eruption in animal health and productivity in particular for dairy and beef cattle. A total of 2.828 heads of cattle was reported died during the eruption of Merapi, and 1.962 heads died at the time of eruption and 36 heads at the arrival on evacuation areas. Animal that found died including 423 heads of beef cattle (0.13% and 2.405 heads of dairy cattle (3.2%. Clinical sains noted after the eruption were reduction of milk production, loss of appetite, diarrhoea, respiratory disturbances, mastitis and collapse. The main problems for livestock were reduction of milk production, collapse of dairy milk corporation activities and contamination of water resources. Other than dairy cattle mortality, the reduction of milk production may be caused by subclinical mastitis and environmental distress due to temperature and noise of eruption for few days. The subclinical mastitis should be further investigated to establish rehabilitation programme for dairy milk agribussiness activity in particular around the DRA of Merapi.

  16. Chronology and impact of the 2011 Puyehue-Cordón Caulle eruption, Chile

    Directory of Open Access Journals (Sweden)

    M. Elissondo

    2015-09-01

    Full Text Available We present a detailed chronological reconstruction of the 2011 eruption of Puyehue-Cordón Caulle volcano (Chile based on information derived from newspapers, scientific reports and satellite images. Chronology of associated volcanic processes and their local and regional effects (i.e. precursory activity, tephra fallout, lahars, pyroclastic density currents, lava flows are also presented. The eruption had a severe impact on the ecosystem and on various economic sectors, including aviation, tourism, agriculture, and fishing industry. Urban areas and critical infrastructures, such as airports, hospitals and roads, were also impacted. The concentration of PM10 (Particulate Matter ≤ 10 μm was measured during and after the eruption, showing that maximum safety threshold levels of daily and annual exposures were surpassed in several occasions. Probabilistic analysis of atmospheric and eruptive conditions have shown that the main direction of dispersal is directly towards east of the volcano and that the climactic phase of the eruption, dispersed toward south-east, has a probability of occurrence within 1 %. The management of the crisis, including evacuation of people, is discussed, as well as the comparison with the impact associated with other recent eruptions located in similar areas and having similar characteristics (i.e. Quizapu, Hudson, and Chaitén volcanoes. This comparison shows that the regions downwind and very close to the erupting volcanoes suffered very similar problems, without a clear relation with the intensity of the eruption (e.g. health problems, damage to vegetation, death of animals, roof collapse, air traffic disruptions, road closure, lahars and flooding. This suggests that a detailed collection of impact data can be largely beneficial for the development of plans for the management of an eruptive crisis and the mitigation of associated risk of the Andean region.

  17. Impacts of high-latitude volcanic eruptions on ENSO and AMOC.

    Science.gov (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S

    2015-11-10

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  18. Constraints on Determining the Eruption Style and Composition of Terrestrial Lavas from Space

    Science.gov (United States)

    Wright, Robert; Glaze, Lori; Baloga, Stephen M.

    2011-01-01

    The surface temperatures of active lavas relate to cooling rates, chemistry, and eruption style. We analyzed 61 hyperspectral satellite images acquired by the National Aeronautics and Space Administration s Earth Observing-1 (EO-1) Hyperion imaging spectrometer to document the surface temperature distributions of active lavas erupted at 13 volcanoes. Images were selected to encompass the range of common lava eruption styles, specifically, lava fountains, flows, lakes, and domes. Our results reveal temperature distributions for terrestrial lavas that correlate with composition (i.e., a statistically significant difference in the highest temperatures retrieved for mafic lavas and intermediate and felsic lavas) and eruption style. Maximum temperatures observed for mafi c lavas are approx.200 C higher than for intermediate and felsic lavas. All eruption styles exhibit a low-temperature mode at approx.300 C; lava fountains and 'a' a flows also exhibit a higher-temperature mode at approx.700 C. The observed differences between the temperatures are consistent with the contrasting rates at which the lava surfaces are thermally renewed. Eruption styles that allow persistent and pervasive thermal renewal of the lava surface (e.g., fractured crusts on channel-fed 'a' a flows) exhibit a bimodal temperature distribution; eruption styles that do not (e.g., the continuous skin of pahoehoe lavas) exhibit a single mode. We conclude that insights into composition and eruption style can only be gained remotely by analyzing a large spatio-temporal sample of data. This has implications for determining composition and eruption style at the Jovian moon Io, for which no in situ validation is available.

  19. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.

    2005-01-01

    Two bodies in the Solar System exhibit high-temperature active volcanism: Earth and Io. While there are important differences in the eruptions on Earth and Io, in low-spatial-resolution data (corresponding to the bulk of available and foreseeable data of Io), similar styles of effusive and explosive volcanism yield similar thermal flux densities. For example, a square metre of an active pahoehoe flow on Io looks very similar to a square metre of an active pahoehoe flow on Earth. If, from observed thermal emission as a function of wavelength and change in thermal emission with time, the eruption style of an ionian volcano can be constrained, estimates of volumetric fluxes can be made and compared with terrestrial volcanoes using techniques derived for analysing terrestrial remotely-sensed data. In this way we find that ionian volcanoes fundamentally differ from their terrestrial counterparts only in areal extent, with Io volcanoes covering larger areas, with higher volumetric flux. Io outbursts eruptions have enormous implied volumetric fluxes, and may scale with terrestrial flood basalt eruptions. Even with the low-spatial resolution data available it is possible to sometimes constrain and classify eruption style both on Io and Earth from the integrated thermal emission spectrum. Plotting 2 and 5 m fluxes reveals the evolution of individual eruptions of different styles, as well as the relative intensity of eruptions, allowing comparison to be made from individual eruptions on both planets. Analyses like this can be used for interpretation of low-resolution data until the next mission to the jovian system. For a number of Io volcanoes (including Pele, Prometheus, Amirani, Zamama, Culann, Tohil and Tvashtar) we do have high/moderate resolution imagery to aid determination of eruption mode from analyses based only on low spatial-resolution data.

  20. Masculinization of the eruption pattern of permanent mandibular canines in opposite sex twin girls.

    Science.gov (United States)

    Heikkinen, Tuomo; Harila, Virpi; Tapanainen, Juha S; Alvesalo, Lassi

    2013-08-01

    The aim of this study is to explore the effect of prenatal androgenization on the clinical eruption of permanent teeth expressing dimorphism and bimaturism. The eruption curves of permanent teeth (except third molars), including those that make up the canine complex (permanent canines, lower first premolars), are compared among opposite sex twins (OS twins) relative to single-born boys and girls. The comparisons are made with regard to three phases of eruption (pierced mucosa, half- erupted, and completely erupted) from a cross-sectional sample of dental casts, using Kaplan-Meier survival and Cox regression analyzes. The casts were collected from 2159 school children from the US Collaborative Perinatal Project, including 39 pairs of OS-twins, of which 12 pairs (30.8%) were Euro-Americans and 27 pairs (69.2%) were of African-American ancestry. The eruption patterns of the incisors, upper first molars, and lower canines were found to be significantly masculinized (delayed) among OS twin girls. The differences in most other teeth were either not significant, or the number of observations of active eruption phases were too few, such as in the upper first molars and incisors, to yield strong evidence and meaningful results. The masculinization of the tooth eruption pattern in OS twin girls is intriguing because of the lower canine responses during puberty, as well as canine primordial formation during early fetal androgenization of their co-twin during the 8th to 14th gestational weeks. The present results offer a challenge for future research exploring tooth eruption mechanisms, and may also highlight some cases of delayed or ectopic canines, which are biased toward females. PMID:23754587

  1. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  2. Bromine release during Plinian eruptions along the Central American Volcanic Arc

    Science.gov (United States)

    Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.

    2010-12-01

    Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75

  3. Neotectonic earth movements related to the 1999 eruption of Cameroon Mountain, West Africa

    Institute of Scientific and Technical Information of China (English)

    C. E. Suh; S. N. Ayonghe; E. S. Njumbe

    2001-01-01

    @@ The 1999 eruption of Cameroon Mountain was restricted to two sites and controlled by fissures subparallel to one another. Brittle failure, vertical displacement, horizontal displacement and ground deflation are the main types of ground deformation around these sites. The eruptive vents at both sites have a NE-SW trend parallel to the principal eruptive fissures and brittle discontinuities in rock bodies in this vicinity. SH (greatest horizontal stress) is inferred to have a SW-NE trend parallel to the direction of vent migration and fracture propagation.

  4. An approach to source characterization of tremor signals associated with eruptions and lahars

    Science.gov (United States)

    Kumagai, Hiroyuki; Mothes, Patricia; Ruiz, Mario; Maeda, Yuta

    2015-11-01

    Tremor signals are observed in association with eruption activity and lahar descents. Reduced displacement ( D R) derived from tremor signals has been used to quantify tremor sources. However, tremor duration is not considered in D R, which makes it difficult to compare D R values estimated for different tremor episodes. We propose application of the amplitude source location (ASL) method to characterize the sources of tremor signals. We used this method to estimate the tremor source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We considered the source amplitude to be the maximum value during tremor. We estimated the cumulative source amplitude ( I s) as the offset value of the time-integrated envelope of the vertical seismogram of tremor corrected for geometrical spreading and medium attenuation in the 5-10-Hz band. For eruption tremor signals, we also estimated the cumulative source pressure ( I p) from an infrasonic envelope waveform corrected for geometrical spreading. We studied these parameters of tremor signals associated with eruptions and lahars and explosion events at Tungurahua volcano, Ecuador. We identified two types of eruption tremor at Tungurahua: noise-like inharmonic waveforms and harmonic oscillatory signals. We found that I s increased linearly with increasing source amplitude for lahar tremor signals and explosion events, but I s increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. We found a linear relation between I s and I p for both explosion events and eruption tremor. Because I p may be proportional to the total mass involved during an eruption episode, this linear relation suggests that I s may be useful to quantify eruption size. The I s values we estimated for inharmonic eruption tremor were

  5. A Pediatric Case of Acute Generalized Pustular Eruption without Streptococcal Infection

    Science.gov (United States)

    Tabata, Nobuko; Yoshizawa, Hideka

    2016-01-01

    Generalized pustular lesions characterized by acute onset with fever occur in pustulosis acuta generalisata, acute generalized exanthematous pustulosis, and generalized pustular psoriasis. In the present report, we describe a pediatric case of generalized pustular eruption that was not completely consistent with clinical features. Our patient had no evidence of a post-streptococcal infection. We observed scattered symmetric eruption of discrete pustules with an inflammatory halo on normal skin. The eruption was absent on her palms and soles of the feet. To the best of our knowledge, there are no reports in the English literature of cases with clinical features similar to those of our patient. PMID:27462226

  6. Eruptive malpositioning of the mandibular permanent lateral incisors: three case reports.

    Science.gov (United States)

    Bradley, E J; Bell, R A

    1990-01-01

    Ectopic eruption of the mandibular permanent lateral incisors involving the loss of the adjacent primary canines is not uncommon, yet the extreme distalization and transposition of such teeth (partial or true) has been reported infrequently. Three cases that illustrate various anomalous eruption-exfoliation patterns are presented. Theories that attempt to explain the etiology of anomalous eruption positions are discussed. However, the multifactorial process of growth and development makes it difficult to identify specific primary etiological factors. Treatment options also are discussed and illustrated, with emphasis on early orthodontic intervention for optimal results.

  7. Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects

    OpenAIRE

    Raible, Christoph C.; Brönnimann, Stefan; Auchmann, Renate; Brohan, Philip; Frölicher, Thomas L.; Graf, Hans-F.; Jones, Phil; Luterbacher, Jürg; Muthers, Stefan; Neukom, Raphael; Robock, Alan; Self, Stephen; Sudrajat, Adjat; Timmreck, Claudia; Wegmann, Martin

    2016-01-01

    The eruption of Tambora (Indonesia) in April 1815 had substantial effects on global climate and led to the ‘Year Without a Summer’ of 1816 in Europe and North America. Although a tragic event—tens of thousands of people lost their lives—the eruption also was an ‘experiment of nature’ from which science has learned until today. The aim of this study is to summarize our current understanding of the Tambora eruption and its effects on climate as expressed in early instrumental observations, clim...

  8. Geochronology of the largest explosive eruptions in Kamchatka and their reflection in the Greenland Ice sheet

    International Nuclear Information System (INIS)

    Results of multi-year detailed studied on dating of the largest explosive eruptions on the Kamchatka and their reflections in the Greenland Ice Sheet are summarized. The eruptions age determination was conducted by the 14C -dating of buried organic residues. The analysis showed that out of two acid peaks probable for caldera-forming eruptions the peak of 6476 year before our era is considered the most preferable one. Its maximum value (710 ppb) for the whole profile of the Greenland Ice Sheet corresponds to the largest volume of pyroclastics of the caldera-forming (above 120 km3)

  9. Why did we lose the 59 climbers in 2014 Ontake Volcano Eruption?

    Science.gov (United States)

    Kimata, F.

    2015-12-01

    The first historical eruption at Ontake volcano, central Japan was in 1979, and it was a phreatic eruption. Until then, most Japanese volcanologists understood that Ontake is a dormant or an extinct volcano. Re-examination of active volcanoes was done after the eruption.After the first historical eruption in 1979, two small eruptions are repeated in 1991 and 2007. Through the three eruptions, nobody has got injured. The last eruption on September 27, 2014, we lost 65 people included missing. Because it was fine weekend and there were many climbers on the summit. The eruption was almost at lunchtime. Clearly, casualties by tsunamis are inhabitants along the coastlines, and casualties by eruption are visitors not inhabitants around the volcano. Basically, visitors have small information of Ontake volcano. After the accident, one mountain guide tells us that we never have long broken such as lunch around the summit, because an active creator is close, and they are afraid of the volcano gas accidents. All casualties by eruption were lost their lives in the area of 1.0 km distance from the 2014 creators. In 2004 Sumatra Earthquake Tsunami, we could not recognize the tsunami inspiration between the habitants in Banda Aceh, Sumatra. They have no idea of tsunami, and they called "Rising Sea" never"Tsunami". As the result, they lost many habitants close to the coast. In 2011 Tohoku Earthquake Tsunami, when habitants felt strong shaking close to coast, they understood the tsunami coming. 0ver 50 % habitants decide to evacuate from the coast. However, 20-30 % habitants believe in themselves no tsunami attacking for them. As a result we lost many habitants. Additionally, the tsunami height was higher than broadcasting one by JMA. According to the results of the questionnaire survey in climbers or bereaved families of the eruption day on Ontake volcano (Shinano Mainich Newspaper, 2015), 39 % of them were climbing no understand of "Ontake active volcano". Moreover, only 10

  10. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  11. Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large caldera-forming eruption

    Science.gov (United States)

    Smith, Victoria C.; Isaia, Roberto; Engwell, Sam L.; Albert, Paul. G.

    2016-06-01

    The Campanian Ignimbrite eruption dispersed ash over much of the central eastern Mediterranean Sea and eastern Europe. The eruption started with a Plinian phase that was followed by a series of pyroclastic density currents (PDCs) associated with the collapse of the Plinian column and the caldera. The glass compositions of the deposits span a wide geochemical range, but the Plinian fallout and PDCs associated with column collapse, the Lower Pumice Flow, only erupted the most evolved compositions. The later PDCs, the Breccia Museo and Upper Pumice Flow, erupted during and after caldera collapse, tap a less evolved component, and intermediate compositions that represent mixing between the end-members. The range of glass compositions in the Campanian Ignimbrite deposits from sites across the central and eastern Mediterranean Sea allow us to trace the dispersal of the different phases of this caldera-forming eruption. We map the fallout from the Plinian column and the plumes of fine material associated with the PDCs (co-PDCs) across the entire dispersal area. This cannot be done using the usual grain-size methods as deposits in these distal regions do not retain characteristics that allow attribution to either the Plinian or co-PDC phases. The glass compositions of the tephra at ultra-distal sites (>1500 km from the vent) match those of the uppermost PDC units, suggesting that most of the ultra-distal dispersal was associated with the late co-PDC plume that was generated during caldera collapse.

  12. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  13. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier

    2014-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be

  14. Voluminous Icelandic Basaltic Eruptions Appear To Cause Abrupt Global Warming

    Science.gov (United States)

    Ward, P. L.

    2011-12-01

    Beginning on June 21, 1783, Laki volcano in southern Iceland erupted 14.7 km3 basalt, ejecting 24 Mt SO_{2} into the stratosphere where it was blown eastward and northward and 98 Mt into the troposphere where the jet stream transported it southeastward to Europe. The "dry fog" observed in Europe with an estimated mean concentration of 60 ppbv SO2, raised daytime temperatures as much as 3.3^{o}C, causing the warmest July in England from 1659 when measurements began until 1983. SO2, tropospheric O_{3}, NO2, and fine ash absorb ultraviolet energy from the sun that causes the bonds between and within their atoms to oscillate at 47 times higher frequency than the bonds in CO_{2} absorbing infrared radiation. Temperature is proportional to the kinetic energy of these oscillations, i.e. the frequency squared. Thus these gases are raised to much higher temperatures than greenhouse gases. The Stefan-Boltzmann law says that radiation from these molecules is a constant times temperature raised to the fourth power. As a result, SO2 and ash radiate far more energy back to earth than CO_{2}, causing warming. Another way to look at the energy involved shows that 15 ppbv SO2 in the 0.3-0.42 μm wavelength band absorbs as much solar energy per unit volume as 388,000 ppbv CO_{2} absorbs infrared energy in the 12.7-17.5 μm band. Basaltic volcanoes such as Laki emit 10 to 100 times more SO2 than more evolved magmas and are less explosive, leaving most of the SO_{2} in the troposphere. All 14 Dansgaard-Oeschger (DO) sudden warmings between 46 and 11 ka are contemporaneous with the highest levels of sulfate in the GISP2 drill hole near Summit Greenland. These DO events typically warmed the northern hemisphere out of the ice age within decades, but as volcanism waned, ocean temperatures cooled the world back into an ice age within centuries. The world finally exited the ice age when voluminous volcanism continued from 11.6 to 9.6 ka. Basaltic table mountains or tuyas in Iceland document

  15. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions

    Science.gov (United States)

    Mastin, L.G.; Guffanti, M.; Servranckx, R.; Webley, P.; Barsotti, S.; Dean, K.; Durant, A.; Ewert, J.W.; Neri, A.; Rose, William I.; Schneider, D.; Siebert, L.; Stunder, B.; Swanson, G.; Tupper, A.; Volentik, A.; Waythomas, C.F.

    2009-01-01

    During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called "eruption source parameters", such as plume height H, mass eruption rate ???, duration D, and the mass fraction m63 of erupted debris finer than about 4??{symbol} or 63????m, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus ??? yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions (??? 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; "brief" or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's ??? 1500

  16. Ash Redistribution Following a Potential Volcanic Eruption at Yucca Mountain

    Science.gov (United States)

    Pelletier, J. D.; Delong, S. B.; Cline, M. L.; Harrington, C. D.; Keating, G.

    2005-12-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially-distributed numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a spatially-distributed framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats

  17. VHub - Cyberinfrastructure for volcano eruption and hazards modeling and simulation

    Science.gov (United States)

    Valentine, G. A.; Jones, M. D.; Bursik, M. I.; Calder, E. S.; Gallo, S. M.; Connor, C.; Carn, S. A.; Rose, W. I.; Moore-Russo, D. A.; Renschler, C. S.; Pitman, B.; Sheridan, M. F.

    2009-12-01

    Volcanic risk is increasing as populations grow in active volcanic regions, and as national economies become increasingly intertwined. In addition to their significance to risk, volcanic eruption processes form a class of multiphase fluid dynamics with rich physics on many length and time scales. Risk significance, physics complexity, and the coupling of models to complex dynamic spatial datasets all demand the development of advanced computational techniques and interdisciplinary approaches to understand and forecast eruption dynamics. Innovative cyberinfrastructure is needed to enable global collaboration and novel scientific creativity, while simultaneously enabling computational thinking in real-world risk mitigation decisions - an environment where quality control, documentation, and traceability are key factors. Supported by NSF, we are developing a virtual organization, referred to as VHub, to address this need. Overarching goals of the VHub project are: Dissemination. Make advanced modeling and simulation capabilities and key data sets readily available to researchers, students, and practitioners around the world. Collaboration. Provide a mechanism for participants not only to be users but also co-developers of modeling capabilities, and contributors of experimental and observational data sets for use in modeling and simulation, in a collaborative environment that reaches far beyond local work groups. Comparison. Facilitate comparison between different models in order to provide the practitioners with guidance for choosing the "right" model, depending upon the intended use, and provide a platform for multi-model analysis of specific problems and incorporation into probabilistic assessments. Application. Greatly accelerate access and application of a wide range of modeling tools and related data sets to agencies around the world that are charged with hazard planning, mitigation, and response. Education. Provide resources that will promote the training of the

  18. Volcanic Eruptions, Landscape Disturbance, and Potential Impacts to Marine and Terrestrial Ecosystems in Alaska: An Example from the August 2008 Eruption of Kasatochi Volcano

    Science.gov (United States)

    Waythomas, C. F.; Drew, G. S.

    2011-12-01

    The magnitude, style, and sometimes-prolonged nature of volcanic activity in Alaska has had significant impact on ecological habitat. The accumulation of volcaniclastic deposits during eruptions have destroyed or altered areas important to the success of various species and it may take years to decades for landforms and surfaces to recover and become habitable again. Kasatochi volcano, in the Aleutian Islands of Alaska, erupted explosively on August 7-8, 2008 and the rich nesting habitat for several species of seabirds on the island was completely destroyed. The eruption produced thick pyroclastic fall and flow deposits and several SO2 rich ash-gas plumes that reached 14 to 18 km above sea level. Pyroclastic deposits are several tens of meters thick, blanket the entire island, and initially extended seaward to increase the diameter of the island by about 800 m. Wave and gully erosion have modified these deposits and have exhumed some pre-eruption surfaces. Analysis of surface erosional features observed in satellite and time-lapse camera images and field studies have shown that by September 2009, gully erosion removed 300,000-600,000 m3 of mostly fine-grained volcanic sediment from the volcano flanks and much of this has reached the ocean. Sediment yield estimates from two representative drainage basins are about 104 m3km-2yr-1 and are comparable to sediment yields at other active volcanoes outside of Alaska. Coastal erosion rates at Kasatochi are as high as 80-140 myr-1 and parts of the northern coastline have already been eroded back to pre-eruption positions. As of March, 2011 about 72% of the material emplaced beyond the pre-eruption coastline on the northern sector of the island has been removed by wave erosion. Parts of the southern coastline have prograded beyond the post-eruption shoreline as a result of long-shore transport of sediment from north to south. As of March 2011, the total volume of material eroded by wave action was about 107 m3. The preferred

  19. Case report: Management of severe posterior open bite due to primary failure of eruption.

    LENUS (Irish Health Repository)

    Mc Cafferty, J

    2010-06-01

    Primary failure of tooth eruption (PFE) is a rare condition affecting any or all posterior quadrants. Unilateral involvement of maxillary and mandibular quadrants causes a dramatic posterior open bite that requires complex management strategies.

  20. Inter-eruptive volcanism at Usu volcano: Micro-earthquakes and dome subsidence

    Science.gov (United States)

    Aoyama, H.; Onizawa, S.; Kobayashi, T.; Tameguri, T.; Hashimoto, T.; Oshima, H.; Mori, H.

    2009-12-01

    Post-eruptive crustal activity after the 2000 eruption of Usu volcano was investigated by seismic and geodetic field observations. Remarkable features of the magmatic eruptions that occur almost every 30 years include lava dome formation and strong precursory earthquakes. On the other hand, rapid dome subsidence was observed by electronic distance meter (EDM) measurement after the 1977-1982 summit eruption. Since the 2000 eruption, seismic activity at a shallow part under the summit crater has remained at a high level relative to that after the 1977-1982 eruption, although eruption occurred at the western foot of the volcano during the 2000 eruption. To reveal the shallow crustal activity in the inter-eruptive period around the summit area, seismicity and crustal deformation have been investigated since 2006. Dense temporary seismic observations and hypocenter relocation analysis using a three-dimensional velocity structure model revealed that the focal area is localized along the U-shaped fault that developed in the dome-forming stage of the 1977-1982 eruption. Three major focal clusters are distributed on the southwestern side of Usu-Shinzan cryptodome, which was built up during the 1977-1982 eruption. For the seven major events with magnitudes larger than 1, the focal mechanism was a large dip-slip component, which suggests the subsidence of Usu-Shinzan cryptodome. Interferomatetric satellite aperture radar (InSAR) image analysis and repeated GPS measurements revealed subsidence of the summit dome, which is almost centered at the Usu-Shinzan cryptodome. The area of rapid deformation is restricted to a small area around the summit crater. The estimated rate of dome subsidence relative to the crater floor is about 3 cm/year. These results strongly suggest that subsidence of Usu-Shinzan is associated with the small earthquakes along the U-shaped fault that surrounds the cryptodome. According to prior seismic and geodetic studies, it is thought that most of the

  1. Zircon from historic eruptions in Iceland: Reconstructing storage and evolution of silicic magmas

    Science.gov (United States)

    Carley, T.L.; Miller, C.F.; Wooden, J.L.; Bindeman, I.N.; Barth, A.P.

    2011-01-01

    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), ??r??faj??kull (1362 AD) and Torfaj??kull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions. ?? 2011 Springer-Verlag.

  2. Predicting lower third molar eruption on panoramic radiographs after cephalometric comparison of profile and panoramic radiographs

    DEFF Research Database (Denmark)

    Begtrup, Anders; Grønastøð, Halldis Á; Christensen, Ib Jarle;

    2012-01-01

    and to find a simple and reliable method for predicting the eruption of the mandibular third molar by measurements on panoramic radiographs. The material consisted of profile and panoramic radiographs, taken before orthodontic treatment, of 30 males and 23 females (median age 22, range 18-48 years......Previous studies have suggested methods for predicting third molar tooth eruption radiographically. Still, this prediction is associated with uncertainty. The aim of the present study was to elucidate the association between cephalometric measurements on profile and panoramic radiographs...... the length from the ramus to the incisors (olr-id) showed a statistically significant correlation. By combining this length with the mesiodistal width of the lower second molar, the prediction of eruption of the lower third molar was strengthened. A new formula for calculating the probability of eruption...

  3. FIXED DRUG ERUPTION DUE TO METRONIDAZOLE: REVIEW OF LITERATURE AND A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Wahlang JB

    2012-03-01

    Full Text Available Fixed drug eruption (FDE is common type of drug eruption seen in skin clinics. FDE usually occurs within hours of administration of the offending agent. Most commonly implicated are sulphonamides, salicylates, oxyphenbutazones, tetracycline, dapsone, chlordiazepoxide, barbiturates, phenolphthalein, morphine, codeine,quinine and derivatives, phenacetin, erythromycin, griseofulvin, mebendazole, meprobamate etc. We hereby report a case of fixed drug eruption on glans penis due to metronidazole, a nitroimidazole-derivative clinically indicated in trichomoniasis, amebiasis, giardiasis, anaerobic and mixed antibacterial infections. A patientadministered metronidazole IV developed erythematous superficial non-tender ulceration over the glans penis on the second day of treatment with Inj. Metronidazole. A provisional diagnosis of metronidazole induced fixed drug eruption was made, metronidazole inj. was stopped and the patient was managed with Tab. Prednisolone30mg/day tapered over 10 days and Fusidic acid+Betamethasone cream.

  4. Idiosyncrasies of volcanic sul