WorldWideScience

Sample records for aclarubicin reverses topoisomerase

  1. Postincubation with aclarubicin reverses topoisomerase II mediated DNA cleavage, strand breaks, and cytotoxicity induced by VP-16

    DEFF Research Database (Denmark)

    Petersen, L N; Jensen, P B; Sørensen, B S

    1994-01-01

    In previous studies, we found that VP-16 (etoposide) induced cytotoxicity and protein-concealed strand break formation was prevented in a small cell lung cancer (SCLC) cell line, when the cells were incubated with aclarubicin prior to treatment with VP-16. In the present work, we studied the effect...... of adding aclarubicin to the cell suspension after VP-16. In a clonogenic assay, we found that the cytotoxicity induced by VP-16 in SCLC cells was inhibited when cells were postincubated with aclarubicin. The addition of aclarubicin at any time in relation to VP-16 was able to stop further cytotoxicity...... induced by the topoisomerase II (topo-II) targeting drug. Aclarubicin was also found to antagonize the cytotoxicity induced by VM-26 (teniposide), and m-AMSA. With the alkaline elution technique we found that postincubating the cells with aclarubicin inhibited VP-16-induced DNA strand break formation...

  2. Genome stability: recent insights in the topoisomerase reverse gyrase and thermophilic DNA alkyltransferase.

    Science.gov (United States)

    Vettone, Antonella; Perugino, Giuseppe; Rossi, Mosè; Valenti, Anna; Ciaramella, Maria

    2014-09-01

    Repair and defence of genome integrity from endogenous and environmental hazard is a primary need for all organisms. Natural selection has driven the evolution of multiple cell pathways to deal with different DNA damaging agents. Failure of such processes can hamper cell functions and induce inheritable mutations, which in humans may cause cancerogenicity or certain genetic syndromes, and ultimately cell death. A special case is that of hyperthermophilic bacteria and archaea, flourishing at temperatures higher than 80 °C, conditions that favor genome instability and thus call for specific, highly efficient or peculiar mechanisms to keep their genome intact and functional. Over the last few years, numerous studies have been performed on the activity, function, regulation, physical and functional interaction of enzymes and proteins from hyperthermophilic microorganisms that are able to bind, repair, bypass damaged DNA, or modify its structure or conformation. The present review is focused on two enzymes that act on DNA catalyzing unique reactions: reverse gyrase and DNA alkyltransferase. Although both enzymes belong to evolutionary highly conserved protein families present in organisms of the three domains (Eucarya, Bacteria and Archaea), recently characterized members from hyperthermophilic archaea show both common and peculiar features.

  3. Phase I-II study of aclarubicin for treatment of acute myeloid leukemia.

    Science.gov (United States)

    Machover, D; Gastiaburu, J; Delgado, M; Goldschmidt, E; Hulhoven, R; Misset, J L; de Vassal, F; Tapiero, H; Ribaud, P; Schwarzenberg, L

    1984-06-01

    Aclarubicin (ACM) was administered as induction treatment to 40 patients with acute myeloid leukemia (AML) who were either refractory to initial induction chemotherapy or in relapse. Thirty-eight patients with AML, 2-80 years of age (mean +/- SE, 35.0 +/- 3.2), were evaluated during this study. Seventeen of these patients were given ACM after an unsuccessful attempt had been made to attain a complete remission (CR) with various regimens that included doxorubicin or daunorubicin; this group was considered resistant to these drugs. ACM was administered by rapid iv injection. Thirteen patients received a single course of ACM at a daily dose of 10-30 mg/m2 until a maximum total dose of 300 mg/m2 was reached or until unacceptable toxicity appeared. Of these patients, two (15%) attained a CR. The other 25 patients were given 10-day courses of ACM at a daily dose of 15 mg/m2 with 10-day intervals between courses; courses were repeated until the blast cells were cleared from peripheral blood and bone marrow or until progressive disease became evident. With this regimen, 11 patients (44%) attained a CR. The overall CR rate for the 38 patients was 34%. Total doses necessary to achieve a CR ranged from 150 to 600 mg/m2. A CR was attained by six patients who were previously resistant to a regimen containing moderate doses of doxorubicin. The incidence and severity of the toxic effects were related to the dose of ACM administered per course of therapy. The incidence of mucositis, diarrhea, vomiting, and infection in patients who received doses greater than 150 mg/m2/course was significantly higher than that observed in patients who received a dose of 150 mg/m2/course. In the latter patients, toxicity was within acceptable limits. Alopecia was not observed. Three patients had transient T-wave inversion, and reversible atrial flutter developed in one patient. Our results indicate that ACM is a major new drug for the treatment of AML.

  4. Fluoroquinolone-dependent DNA supercoiling by Vaccinia topoisomerase I.

    Science.gov (United States)

    Kamau, Edwin; Grove, Anne

    2004-09-10

    Vaccinia topoisomerase I is a site-specific DNA strand transferase that acts through a DNA-(3'-phosphotyrosyl)-enzyme intermediate, resulting in relaxation of supercoiled DNA. Although Vaccinia topoisomerase I is not an essential enzyme, its role in early transcription makes it a potential antiviral target. We describe the interaction of Vaccinia topoisomerase I with fluoroquinolone antibiotics otherwise known to target DNA gyrase and topoisomerase IV in bacterial cells. The fluoroquinolone enrofloxacin inhibits DNA relaxation by Vaccinia topoisomerase I at concentrations similar to those required for inhibition by the coumarin drugs coumermycin and novobiocin. When Vaccinia topoisomerase I is presented with relaxed DNA in the presence of enrofloxacin, it executes the reverse reaction, supercoiling the DNA. Further characterization indicates that enrofloxacin does not interfere with the initial strand scission by Vaccinia topoisomerase I. The structurally related fluoroquinolones moxifloxacin and lomefloxacin have no effect on the topoisomerase at the concentrations at which enrofloxacin mediates DNA supercoiling. The mechanism with which Vaccinia topoisomerase I supercoils relaxed DNA, an energetically unfavorable, yet ATP-independent process, must entail protein-DNA contacts downstream of the cleavage site, as opposed to the free rotation mechanism proposed for DNA relaxation; as proposed for fluoroquinolone-mediated inhibition of gyrase, the drug may target a preformed topoisomerase I-DNA complex to induce conformational changes in the enzyme that permit such contacts.

  5. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  6. Topoisomerase II and leukemia

    Science.gov (United States)

    Pendleton, MaryJean; Lindsey, R. Hunter; Felix, Carolyn A.; Grimwade, David; Osheroff, Neil

    2014-01-01

    Type II topoisomerases are essential enzymes that modulate DNA under- and overwinding, knotting, and tangling. Beyond their critical physiological functions, these enzymes are the targets for some of the most widely prescribed anticancer drugs (topoisomerase II poisons) in clinical use. Topoisomerase II poisons kill cells by increasing levels of covalent enzyme-cleaved DNA complexes that are normal reaction intermediates. Drugs such as etoposide, doxorubicin, and mitoxantrone are frontline therapies for a variety of solid tumors and hematological malignancies. Unfortunately, their use is also associated with the development of specific leukemias. Regimens that include etoposide or doxorubicin are linked to the occurrence of acute myeloid leukemias that feature rearrangements at chromosomal band 11q23. Similar rearrangements are seen in infant leukemias and are associated with gestational diets that are high in naturally occurring topoisomerase II–active compounds. Finally, regimens that include mitoxantrone and epirubicin are linked to acute promyelocytic leukemias that feature t(15;17) rearrangements. The first part of this article will focus on type II topoisomerases and describe the mechanism of enzyme and drug action. The second part will discuss how topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential. PMID:24495080

  7. [Therapeutic trials of aclarubicin in previously treated acute leukemias and hematosarcomas].

    Science.gov (United States)

    Machover, D; Goldschmidt, E; Benavides, M; Gastiaburu, J; Vandenbulcke, J M; Delgado, M; Misset, J L; Mathe, G

    1987-01-01

    In a phase I-II trial, 38 patients with acute myeloid leukemia (AML) were given single drug induction therapy with aclarubicin (ACM) according to two dosing schedules: treatment 1: 10 to 30 mg/m2/d to a maximum total dose of 300 mg/m2 or until development of unacceptable toxicity: treatment 2: 15 mg/m2/d in ten-day courses separated by ten-day intervals. Response rates were 15% with treatment 1 and 44% with treatment 2 (overall response rate 34%). Complete remission (CR) was achieved in 6 patients who had previously failed to respond to adriamycin (ADM). Toxicity was more frequent and more severe in those patients given more than 150 mg/m2 ACM per course. The main side effects were oropharyngeal mucositis and diarrhea. Three patients exhibited T wave inversion and one had an episode of auricular flutter. In a separate trial in 16 patients with AML we used cyclic chemotherapy combining ACM (20 mg/m2/d) and ARA-C (200 mg/m2/d) for seven consecutive days. Complete remission rate was 50%. Severe ventricular rhythm disorders were seen in two patients. In a phase I-II study, 19 patients with acute lymphoid leukemia (ALL) and 8 patients with non-Hodgkin lymphoma (NHL) were given ACM alone according to the regimen designated treatment 1 described above. Response rates were 11% (2/19) in ALL and 25% (2/8) in NHL. A review of the literature is presented in the discussion of the original trials reported herein.

  8. An RNA Topoisomerase

    Science.gov (United States)

    Wang, Hui; di Gate, Russell J.; Seeman, Nadrian C.

    1996-09-01

    A synthetic strand of RNA has been designed so that it can adopt two different topological states (a circle and a trefoil knot) when ligated into a cyclic molecule. The RNA knot and circle have been characterized by their behavior in gel electrophoresis and sedimentation experiments. This system allows one to assay for the existence of an RNA topoisomerase, because the two RNA molecules can be interconverted only by a strand passage event. We find that the interconversion of these two species can be catalyzed by Escherichia coli DNA topoisomerase III, indicating that this enzyme can act as an RNA topoisomerase. The conversion of circles to knots is accompanied by a small amount of RNA catenane generation. These findings suggest that strand passage must be considered a potential component of the folding and modification of RNA structures.

  9. DNA Topoisomerases as Targets for Antibacterial Agents.

    Science.gov (United States)

    Hiasa, Hiroshi

    2018-01-01

    DNA topoisomerases are proven therapeutic targets of antibacterial agents. Quinolones, especially fluoroquinolones, are the most successful topoisomerase-targeting antibacterial drugs. These drugs target type IIA topoisomerases in bacteria. Recent structural and biochemical studies on fluoroquinolones have provided the molecular basis for both their mechanism of action, as well as the molecular basis of bacterial resistance. Due to the development of drug resistance, including fluoroquinolone resistance, among bacterial pathogens, there is an urgent need to discover novel antibacterial agents. Recent advances in topoisomerase inhibitors may lead to the development of novel antibacterial drugs that are effective against fluoroquinolone-resistant pathogens. They include type IIA topoisomerase inhibitors that either interact with the GyrB/ParE subunit or form nick-containing ternary complexes. In addition, several topoisomerase I inhibitors have recently been identified. Thus, DNA topoisomerases remain important targets of antibacterial agents.

  10. Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, Bhupesh; Patel, Asmita; Slesarev, Alexei; Mondragon, Alfonso (NWU); (FSI)

    2010-09-02

    Topoisomerases are involved in controlling and maintaining the topology of DNA and are present in all kingdoms of life. Unlike all other types of topoisomerases, similar type IB enzymes have only been identified in bacteria and eukarya. The only putative type IB topoisomerase in archaea is represented by Methanopyrus kandleri topoisomerase V. Despite several common functional characteristics, topoisomerase V shows no sequence similarity to other members of the same type. The structure of the 61 kDa N-terminal fragment of topoisomerase V reveals no structural similarity to other topoisomerases. Furthermore, the structure of the active site region is different, suggesting no conservation in the cleavage and religation mechanism. Additionally, the active site is buried, indicating the need of a conformational change for activity. The presence of a topoisomerase in archaea with a unique structure suggests the evolution of a separate mechanism to alter DNA.

  11. Inhibition of topoisomerase II by liriodenine.

    Science.gov (United States)

    Woo, S H; Reynolds, M C; Sun, N J; Cassady, J M; Snapka, R M

    1997-08-15

    The cytotoxic oxoaporphine alkaloid liriodenine, isolated from Cananga odorata, was found to be a potent inhibitor of topoisomerase II (EC 5.99.1.3) both in vivo and in vitro. Liriodenine treatment of SV40 (simian virus 40)-infected CV-1 cells caused highly catenated SV40 daughter chromosomes, a signature of topoisomerase II inhibition. Strong catalytic inhibition of topoisomerase II by liriodenine was confirmed by in vitro assays with purified human topoisomerase II and kinetoplast DNA. Liriodenine also caused low-level protein-DNA cross-links to pulse-labeled SV40 chromosomes in vivo, suggesting that it may be a weak topoisomerase II poison. This was supported by the finding that liriodenine caused topoisomerase II-DNA cross-links in an in vitro assay for topoisomerase II poisons. Verapamil did not increase either liriodenine-induced protein-DNA cross-links or catalytic inhibition of topoisomerase II in SV40-infected cells. This indicates that liriodenine is not a substrate for the verapamil-sensitive drug efflux pump in CV-1 cells.

  12. Topoisomerase II poisoning by indazole and imidazole complexes ...

    Indian Academy of Sciences (India)

    Unknown

    of topoisomerase II by forming a ternary cleavage complex of DNA, drug and topoisomerase II. The thymidine incorporation assays show that the inhibition of cancer cell proliferation correlates with topoisomerase II poisoning. The present study on topoisomerase II poisoning by these two compounds opens a new avenue ...

  13. Isolation and quantitation of topoisomerase complexes accumulated on Escherichia coli chromosomal DNA.

    Science.gov (United States)

    Aedo, Sandra; Tse-Dinh, Yuk-Ching

    2012-11-01

    DNA topoisomerases are important targets in anticancer and antibacterial therapy because drugs can initiate cell death by stabilizing the transient covalent topoisomerase-DNA complex. In this study, we employed a method that uses CsCl density gradient centrifugation to separate unbound from DNA-bound GyrA/ParC in Escherichia coli cell lysates after quinolone treatment, allowing antibody detection and quantitation of the covalent complexes on slot blots. Using these procedures modified from the in vivo complexes of enzyme (ICE) bioassay, we found a correlation between gyrase-DNA complex formation and DNA replication inhibition at bacteriostatic (1× MIC) norfloxacin concentrations. Quantitation of the number of gyrase-DNA complexes per E. coli cell permitted an association between cell death and chromosomal gyrase-DNA complex accumulation at norfloxacin concentrations greater than 1× MIC. When comparing levels of gyrase-DNA complexes to topoisomerase IV-DNA complexes in the absence of drug, we observed that the gyrase-DNA complex level was higher (∼150-fold) than that of the topoisomerase IV-DNA complex. In addition, levels of gyrase and topoisomerase IV complexes reached a significant increase after 30 min of treatment at 1× and 1.7× MIC, respectively. These results are in agreement with gyrase being the primary target for quinolones in E. coli. We further validated the utility of this method for the study of topoisomerase-drug interactions in bacteria by showing the gyrase covalent complex reversibility after removal of the drug from the medium, and the resistant effect of the Ser83Leu gyrA mutation on accumulation of gyrase covalent complexes on chromosomal DNA.

  14. c-erbB2 and topoisomerase IIα protein expression independently predict poor survival in primary human breast cancer: a retrospective study

    International Nuclear Information System (INIS)

    Fritz, Peter; Cabrera, Cristina M; Dippon, Jürgen; Gerteis, Andreas; Simon, Wolfgang; Aulitzky, Walter E; Kuip, Heiko van der

    2005-01-01

    c-erbB2 (also known as HER-2/neu) and topoisomerase IIα are frequently overexpressed in breast cancer. The aim of the study was to analyze retrospectively whether the expression of c-erbB2 and topoisomerase IIα protein influences the long-term outcome of patients with primary breast cancer. In this study c-erbB2 and topoisomerase IIα protein were evaluated by immunohistochemistry in formalin-fixed paraffin-embedded tissue from 225 samples of primary breast cancer, obtained between 1986 and 1998. The prognostic value of these markers was analyzed. Of 225 primary breast tumor samples, 78 (34.7%) showed overexpression of either c-erbB2 (9.8%) or topoisomerase IIα protein (24.9%), whereas in 21 tumors (9.3%) both proteins were found to be overexpressed. Patients lacking both c-erbB2 and topoisomerase IIα overexpression had the best long-term survival. Overexpression of either c-erbB2 or topoisomerase IIα was associated with shortened survival, whereas patients overexpressing both c-erbB2 and topoisomerase IIα showed the worst disease outcome (P < 0.0001). Treatment with anthracyclines was not capable of reversing the negative prognostic impact of topoisomerase IIα or c-erbB2 overexpression. The results of this exploratory study suggest that protein expression of c-erbB2 and topoisomerase IIα in primary breast cancer tissues are independent prognostic factors and are not exclusively predictive factors for anthracycline response in patients with primary breast cancer

  15. Nitric Oxide Down-Regulates Topoisomerase I and Induces Camptothecin Resistance in Human Breast MCF-7 Tumor Cells.

    Directory of Open Access Journals (Sweden)

    Nilesh K Sharma

    Full Text Available Camptothecin (CPT, a topoisomerase I poison, is an important drug for the treatment of solid tumors in the clinic. Nitric oxide (·NO, a physiological signaling molecule, is involved in many cellular functions, including cell proliferation, survival and death. We have previously shown that ·NO plays a significant role in the detoxification of etoposide (VP-16, a topoisomerase II poison in vitro and in human melanoma cells. ·NO/·NO-derived species are reported to modulate activity of several important cellular proteins. As topoisomerases contain a number of free sulfhydryl groups which may be targets of ·NO/·NO-derived species, we have investigated the roles of ·NO/·NO-derived species in the stability and activity of topo I. Here we show that ·NO/·NO-derived species induces a significant down-regulation of topoisomerase I protein via the ubiquitin/26S proteasome pathway in human colon (HT-29 and breast (MCF-7 cancer cell lines. Importantly, ·NO treatment induced a significant resistance to CPT only in MCF-7 cells. This resistance to CPT did not result from loss of topoisomerase I activity as there were no differences in topoisomerase I-induced DNA cleavage in vitro or in tumor cells, but resulted from the stabilization/induction of bcl2 protein. This up-regulation of bcl2 protein in MCF-7 cells was wtp53 dependent as pifithrine-α, a small molecule inhibitor of wtp53 function, completely reversed CPT resistance, suggesting that wtp53 and bcl2 proteins played important roles in CPT resistance. Because tumors in vivo are heterogeneous and contaminated by infiltrating macrophages, ·NO-induced down-regulation of topoisomerase I protein combined with bcl2 protein stabilization could render certain tumors highly resistant to CPT and drugs derived from it in the clinic.

  16. Analysis of RuvABC and RecG Involvement in the Escherichia coli Response to the Covalent Topoisomerase-DNA Complex▿

    Science.gov (United States)

    Sutherland, Jeanette H.; Tse-Dinh, Yuk-Ching

    2010-01-01

    Topoisomerases form a covalent enzyme-DNA intermediate after initial DNA cleavage. Trapping of the cleavage complex formed by type IIA topoisomerases initiates the bactericidal action of fluoroquinolones. It should be possible also to identify novel antibacterial lead compounds that act with a similar mechanism on type IA bacterial topoisomerases. The cellular response and repair pathways for trapped topoisomerase complexes remain to be fully elucidated. The RuvAB and RecG proteins could play a role in the conversion of the initial protein-DNA complex to double-strand breaks and also in the resolution of the Holliday junction during homologous recombination. Escherichia coli strains with ruvA and recG mutations are found to have increased sensitivity to low levels of norfloxacin treatment, but the mutations had more pronounced effects on survival following the accumulation of covalent complexes formed by mutant topoisomerase I defective in DNA religation. Covalent topoisomerase I and DNA gyrase complexes are converted into double-strand breaks for SOS induction by the RecBCD pathway. SOS induction following topoisomerase I complex accumulation is significantly lower in the ruvA and recG mutants than in the wild-type background, suggesting that RuvAB and RecG may play a role in converting the initial single-strand DNA-protein cleavage complex into a double-strand break prior to repair by homologous recombination. The use of a ruvB mutant proficient in homologous recombination but not in replication fork reversal demonstrated that the replication fork reversal function of RuvAB is required for SOS induction by the covalent complex formed by topoisomerase I. PMID:20601468

  17. Analysis of RuvABC and RecG involvement in the escherichia coli response to the covalent topoisomerase-DNA complex.

    Science.gov (United States)

    Sutherland, Jeanette H; Tse-Dinh, Yuk-Ching

    2010-09-01

    Topoisomerases form a covalent enzyme-DNA intermediate after initial DNA cleavage. Trapping of the cleavage complex formed by type IIA topoisomerases initiates the bactericidal action of fluoroquinolones. It should be possible also to identify novel antibacterial lead compounds that act with a similar mechanism on type IA bacterial topoisomerases. The cellular response and repair pathways for trapped topoisomerase complexes remain to be fully elucidated. The RuvAB and RecG proteins could play a role in the conversion of the initial protein-DNA complex to double-strand breaks and also in the resolution of the Holliday junction during homologous recombination. Escherichia coli strains with ruvA and recG mutations are found to have increased sensitivity to low levels of norfloxacin treatment, but the mutations had more pronounced effects on survival following the accumulation of covalent complexes formed by mutant topoisomerase I defective in DNA religation. Covalent topoisomerase I and DNA gyrase complexes are converted into double-strand breaks for SOS induction by the RecBCD pathway. SOS induction following topoisomerase I complex accumulation is significantly lower in the ruvA and recG mutants than in the wild-type background, suggesting that RuvAB and RecG may play a role in converting the initial single-strand DNA-protein cleavage complex into a double-strand break prior to repair by homologous recombination. The use of a ruvB mutant proficient in homologous recombination but not in replication fork reversal demonstrated that the replication fork reversal function of RuvAB is required for SOS induction by the covalent complex formed by topoisomerase I.

  18. Topoisomerases, new targets in cancer chemotherapy

    NARCIS (Netherlands)

    Zijlstra, J G; de Jong, Steven; de Vries, Liesbeth; Mulder, Nanno

    1990-01-01

    The enzymes involved in the regulation of the three-dimensional structure of DNA, topoisomerase I and II, are important for the handling of DNA during vital cellular processes such as translation, transcription and mitosis. The enzymes are currently being studied intensively, they are being

  19. Topoisomerase IB of Deinococcus radiodurans resolves guanine ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... structure in vitro and it may be one such protein that could resolve G4 DNA under normal growth conditions in. D. radiodurans. [Kota S and Misra HS 2015 Topoisomerase IB of ..... 2004 Intracellular transcription of G-rich DNAs induces forma- tion of G-loops, novel structures containing G4 DNA. Genes. Dev.

  20. Topoisomerase IB of Deinococcus radiodurans resolves guanine ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... [Kota S and Misra HS 2015 Topoisomerase IB of Deinococcus radiodurans resolves guanine quadruplex DNA structures in vitro. J. Biosci. 40 833–843] ... known for its efficient DNA double strand break repair. (Zahradka et al. ..... These samples were analysed on 12% native PAGE in KCl buffer (a). For CD ...

  1. Targeting bacterial topoisomerases: how to counter mechanisms of resistance.

    Science.gov (United States)

    Tse-Dinh, Yuk-Ching

    2016-06-01

    DNA gyrase and topoisomerase IV are type IIA bacterial topoisomerases that are targeted by highly effective antibiotics. However, resistance via multiple mechanisms arises to limit the efficacies of these drugs. Continued research on type IIA bacterial topoisomerases has provided novel approaches to counter the most common resistance mechanism for utilization of these proven targets in antibacterial therapy. Bacterial topoisomerase I is being explored as an alternative target that is not expected to show cross-resistance. Dual targeting or combination therapy could be strategies for circumventing the development of resistance to topoisomerase-targeting antibiotics. Bacterial topoisomerases are high-value bactericidal targets that could continue to be exploited for antibacterial therapy, if new tactics to counter resistance can be adopted.

  2. Role for DNA topoisomerase II in prostatic growth

    International Nuclear Information System (INIS)

    Nelson, W.G. V.

    1987-01-01

    In the studies presented the role of the mammalian type II topoisomerase in the proliferation of normal and neoplastic rat prostate cells in vitro and in vivo was evaluated. First, the utility of mammalian type II topoisomerase inhibitors for the study of the biologic functions of the enzyme was assessed. Novobiocin inhibited rat topoisomerase II, but also interacted directly with chromatin in rat ventral prostate nuclei as well. Teniposide and amsacrine both trapped topoisomerase II in a covalent enzyme-DNA reaction intermediate that could be recovered using a K-SDS precipitation assay. The specific trapping of covalent topoisomerase II-DNA complexes by teniposide was exploited to implicate topoisomerase II in DNA replication in cultured Dunning R3327-G rat prostatic adenocarcinoma cells. In 3 H-thymidine pulse and pulse-chase labelling experiments, newly replicated DNA was found to be enriched among DNA linked topoisomerase II following teniposide treatment. Additional experiments demonstrated that topoisomerase II formed covalent complexes in the presence of teniposide directly with nascent DNA chains. On the basis of this data, a model for topoisomerase II function in untangling intertwined daughter DNA strands during replication by acting in the wake of the DNA replication fork near the site of DNA synthesis was proposed

  3. The importance of topoisomerases for chromatin regulated genes

    DEFF Research Database (Denmark)

    Fredsøe, Jacob Christian; Pedersen, Jakob Madsen; Rødgaard, Morten Terpager

    2013-01-01

    DNA topoisomerases are enzymes, which function to relieve torsional stress in the DNA helix by introducing transient breaks into the DNA molecule. By use of Saccharomyces cerevisiae and microarray technology we have previously shown that topoisomerases are required for the activation of chromatin...... topoisomerases for optimal activation, but in contrast to the PHO5 gene, topoisomerases are not required for chromatin remodeling of the GAL1/10 promoter region, indicating a different role of the enzymes. We are currently performing a detailed investigation of the GAL genes to elucidate the precise role...

  4. Type IA topoisomerase inhibition by clamp closure.

    Science.gov (United States)

    Leelaram, Majety Naga; Bhat, Anuradha Gopal; Godbole, Adwait Anand; Bhat, Rajeshwari Subray; Manjunath, Ramanathapuram; Nagaraja, Valakunja

    2013-08-01

    Bacterial DNA topoisomerase I (topoI) catalyzes relaxation of negatively supercoiled DNA. The enzyme alters DNA topology through protein-operated DNA gate, switching between open and closed conformations during its reaction. We describe the mechanism of inhibition of Mycobacterium smegmatis and Mycobacterium tuberculosis topoI by monoclonal antibodies (mAbs) that bind with high affinity and inhibit at 10-50 nM concentration. Unlike other inhibitors of topoisomerases, the mAbs inhibited several steps of relaxation reaction, namely DNA binding, cleavage, strand passage, and enzyme-DNA dissociation. The enhanced religation of the cleaved DNA in presence of the mAb indicated closing of the enzyme DNA gate. The formation of enzyme-DNA heterocatenane in the presence of the mAbs as a result of closing the gate could be inferred by the salt resistance of the complex, visualized by atomic force microscopy and confirmed by fluorescence measurements. Locking the enzyme-DNA complex as a closed clamp restricted the movements of the DNA gate, affecting all of the major steps of the relaxation reaction. Enzyme trapped on DNA in closed clamp conformation formed roadblock for the elongating DNA polymerase. The unusual multistep inhibition of mycobacterial topoisomerases may facilitate lead molecule development, and the mAbs would also serve as valuable tools to probe the enzyme mechanism.

  5. Increment of DNA topoisomerases in chemically and virally transformed cells

    International Nuclear Information System (INIS)

    Crespi, M.D.; Mladovan, A.G.; Baldi, A.

    1988-01-01

    The activities of topoisomerases I and II were assayed in subcellular extracts obtained from nontumorigenic BALB/c 3T3 A31 and normal rat kidney (NRK) cell lines and from the same cells transformed by benzo[a]pyrene (BP-A31), Moloney (M-MSV-A31) and Kirsten (K-A31) sarcoma viruses, and simian virus 40 (SV-NRK). The enzymatic activity of topoisomerase I was monitored by the relaxation of negatively supercoiled pBR322 DNA and by the formation of covalent complexes between 32 P-labeled DNA and topoisomerase I. Topoisomerase II activity was determined by decatenation of kinetoplast DNA (k-DNA). It was found that nuclear and cytoplasmic type I topoisomerase specific activities were higher in every transformed cell line than in the normal counterparts. These differences cannot be attributed to an inhibitory factor present in A31 cells. When chromatin was treated at increasing ionic strengths, the 0.4 M NaCl extract showed the highest topoisomerase I specific activity. Spontaneously transformed A31 cells showed topoisomerase I activity similar to that of extracts of cells transformed by benzo[a]pyrene. Topoisomerase II specific activity was also increased in SV-NRK cells, as judged by the assay for decatenation of k-DNA to yield minicircle DNA

  6. Topoisomerase II poisoning by indazole and imidazole complexes ...

    Indian Academy of Sciences (India)

    Unknown

    of topoisomerase II by forming a ternary cleavage complex of DNA, drug and topoisomerase II. The thymidine incorporation assays ... sage reaction is central to the various functions of topo II, as well as for targeting the .... or imidazole. These cationic ligands may be released from the main molecules in biological systems.

  7. A study of topoisomerase activity in human testicular cancers.

    Science.gov (United States)

    Sano, K; Shuhin, T

    1995-01-01

    Topoisomerases are widely detected in rapidly proliferating cancer cells. Many anti-topoisomerase agents are utilized for cancer chemotherapy. Testicular cancers are highly chemotherapy sensitive, however, 10% of them are refractory to the standard regimen. To investigate the topoisomerase activities in human testicular neoplasms, we examined the activity of topoisomerase I (TopoI) and topoisomerase II (TopoII) in 29 testicular tumors. TopoI activity was observed irrespective of pathological types of the tumor (21/29). TopoII was detected in seminoma and teratocarcinoma (5/29). In our experience, seminoma was relatively sensitive to chemotherapy including anti-TopoII agents. Our results suggest that Topol inhibitors could be more effective against seminoma as well as the other types of testicular tumors.

  8. A functional type I topoisomerase from Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Roper Benjamin J

    2009-03-01

    Full Text Available Abstract Background Pseudomonas aeruginosa encodes a putative topoisomerase with sequence similarity to the eukaryotic type IB topoisomerase from Vaccinia virus. Residues in the active site are conserved, notably Tyr292 which would be predicted to form the transient covalent bond to DNA. Results The gene encoding the P. aeruginosa topoisomerase I was cloned and expressed in E. coli. The enzyme relaxes supercoiled DNA, while a mutant containing a Tyr292 to Phe substitution at the active site was found to be catalytically inert. This is consistent with the role of Tyr in forming the covalent intermediate. Like Vaccinia topoisomerase, the P. aeruginosa topoisomerase relaxes DNA in the absence of ATP, but unlike Vaccinia topoisomerase, P. aeruginosa topoisomerase does not relax supercoiled DNA without MgCl2 present. In addition, high concentration of NaCl is not able to substitute for MgCl2 as seen for Vaccinia topoisomerase. A truncated derivative of the topoisomerase lacking residues 1–98 relaxes DNA, with both full length and truncated enzyme exhibiting equivalent requirements for divalent cations and the ability to relax DNA to completion, suggesting a shared domain organization. DNA-binding assays suggest an only modest preference for the CCCTT pentameric sequence required for transesterification by Vaccinia topoisomerase IB. Conclusion P. aeruginosa encodes a functional topoisomerase with significant similarity to the type IB enzyme encoded by poxviruses. In contrast to the Vaccinia-encoded homolog, the P. aeruginosa-encoded enzyme requires divalent cations for catalytic activity, relaxes DNA to completion, and does not exhibit a strong preference for the pentameric sequence stringently required by the Vaccinia-encoded homolog. A comparison with the structure of poxviral topoisomerase in complex with DNA suggests that bacterial homologs of the eukaryotic type IB topoisomerase may exhibit a relaxed sequence preference due to the lack of

  9. BACTERIAL CELL KILLING MEDIATED BY TOPOISOMERASE I DNA CLEAVAGE ACTIVITY

    Science.gov (United States)

    Cheng, Bokun; Shukla, Shikha; Vasunilashorn, Sarinnapha; Mukhopadhyay, Somshuvra; Tse-Dinh, Yuk-Ching

    2005-01-01

    DNA topoisomerases are important clinical targets for antibacterial and anticancer therapy. At least one type IA DNA topoisomerases can be found in every bacterium, making it a logical target for antibacterial agents that can convert the enzyme into poison by trapping its covalent complex with DNA. However, it has not been possible previously to observe the consequence of having such stabilized covalent complex of bacterial topoisomerase I in vivo. We isolated a mutant of recombinant Yersinia pestis topoisomerase I that forms a stabilized covalent complex with DNA by screening for the ability to induce the SOS response in Escherichia coli. Overexpression of this mutant topoisomerase I resulted in bacterial cell death. From sequence analysis and site-directed mutagenesis, it was determined that a single amino acid substitution in the TOPRIM domain changing a strictly conserved glycine residue to serine in either the Y. pestis or E. coli topoisomerase I can result in a mutant enzyme that has the SOS inducing and cell killing properties. Analysis of the purified mutant enzymes showed that they have no relaxation activity but retain the ability to cleave DNA and form a covalent complex. These results demonstrate that perturbation of the active site region of bacterial topoisomerase I can result in stabilization of the covalent intermediate, with the in vivo consequence of bacterial cell death. Small molecules that induce similar perturbation in the enzyme-DNA complex should be candidates as leads for novel antibacterial agents. PMID:16159875

  10. Phytochemicals as Anticancer and Chemopreventive Topoisomerase II Poisons

    Science.gov (United States)

    Ketron, Adam C.

    2013-01-01

    Phytochemicals are a rich source of anticancer drugs and chemopreventive agents. Several of these chemicals appear to exert at least some of their effects through interactions with topoisomerase II, an essential enzyme that regulates DNA supercoiling and removes knots and tangles from the genome. Topoisomerase II-active phytochemicals function by stabilizing covalent protein-cleaved DNA complexes that are intermediates in the catalytic cycle of the enzyme. As a result, these compounds convert topoisomerase II to a cellular toxin that fragments the genome. Because of their mode of action, they are referred to as topoisomerase II poisons as opposed to catalytic inhibitors. The first sections of this article discuss DNA topology, the catalytic cycle of topoisomerase II, and the two mechanisms (interfacial vs. covalent) by which different classes of topoisomerase II poisons alter enzyme activity. Subsequent sections discuss the effects of several phytochemicals on the type II enzyme, including demethyl-epipodophyllotoxins (semisynthetic anticancer drugs) as well as flavones, flavonols, isoflavones, catechins, isothiocyanates, and curcumin (dietary chemopreventive agents). Finally, the leukemogenic potential of topoisomerase II-targeted phytochemicals is described. PMID:24678287

  11. Exploring DNA topoisomerases as targets of novel therapeutic agents in the treatment of infectious diseases.

    Science.gov (United States)

    Tse-Dinh, Y-C

    2007-03-01

    DNA topoisomerases are ubiquitous enzymes needed to overcome topological problems encountered during DNA replication, transcription, recombination and maintenance of genomic stability. They have proved to be valuable targets for therapy, in part because some anti-topoisomerase agents act as poisons. Bacterial DNA gyrase and topoisomerase IV (type IIA topoisomerases) are targets of fluoroquinolones while human topoisomerase I (a type IB topoisomerase) and topoisomerase II are targets of various anticancer drugs. Bacterial type IA topoisomerase share little sequence homology to type IB or type IIA topoisomerases, but all topoisomerases have the potential of having the covalent phosphotyrosine DNA cleavage intermediate trapped by drug action. Recent studies have demonstrated that stabilization of the covalent complex formed by bacterial topoisomerase I and cleaved DNA can lead to bacterial cell death, supporting bacterial topoisomerase I as a promising target for the development of novel antibiotics. For current antibacterial therapy, the prevalence of fluoroquinolone-resistant bacterial pathogens has become a major public health concern, and efforts are directed towards identifying novel inhibitors of bacterial type IIA topoisomerases that are not affected by fluoroquinolone resistant mutations on the gyrase or topoisomerase IV genes. For anti-viral therapy, poxviruses encode their own type IB topoisomerases; these enzymes differ in drug sensitivity from human topoisomerase I. To confront potential threat of small pox as a weapon in terrorist attacks, vaccinia virus topoisomerase I has been targeted for discovery of anti-viral agents. These new developments of DNA topoisomerases as targets of novel therapeutic agents being reviewed here represent excellent opportunities for drug discovery in the treatment of infectious diseases.

  12. Anti-topoisomerase drugs as potent inducers of chromosomal aberrations

    Directory of Open Access Journals (Sweden)

    Loredana Bassi

    2000-12-01

    Full Text Available DNA topoisomerases catalyze topological changes in DNA that are essential for normal cell cycle progression and therefore they are a preferential target for the development of anticancer drugs. Anti-topoisomerase drugs can be divided into two main classes: "cleavable complex" poisons and catalytic inhibitors. The "cleavable complex" poisons are very effective as anticancer drugs but are also potent inducers of chromosome aberrations so they can cause secondary malignancies. Catalytic inhibitors are cytotoxic but they do not induce chromosome aberrations. Knowledge about the mechanism of action of topoisomerase inhibitors is important to determine the best anti-topoisomerase combinations, with a reduced risk of induction of secondary malignancies.As topoisomerases de DNA catalisam alterações topológicas no DNA que são essenciais para a progressão do ciclo celular normal e, portanto, são um alvo preferencial para o desenvolvimento de drogas anticâncer. Drogas anti-topoisomerases podem ser divididas em duas classes principais: drogas anti-"complexos cliváveis" e inibidores catalíticos. As drogas anti-"complexos cliváveis" são muito eficazes como drogas anticancerígenas, mas são também potentes indutores de aberrações cromossômicas, podendo causar neoplasias malignas secundárias. Inibidores catalíticos são citotóxicos mas não induzem aberrações cromossômicas. Conhecimento a respeito do mecanismo de ação de inibidores de topoisomerases é importante para determinar as melhores combinações anti-topoisomerases, com um reduzido risco de indução de neoplasias malignas secundárias.

  13. Synthesis and topoisomerase II inhibitory and cytotoxic activity of oxiranylmethoxy- and thiiranylmethoxy-chalcone derivatives.

    Science.gov (United States)

    Na, Younghwa; Nam, Jung-Min

    2011-01-01

    In order to find potential anticancer drug candidate targeting topoisomerases enzyme, we have designed and synthesized oxiranylmethoxy- and thiiranylmethoxy-retrochalcone derivatives and evaluated their pharmacological activity including topoisomerases inhibitory and cytotoxic activity. Of the compounds prepared compound 25 showed comparable or better cytotoxic activity against cancer cell lines tested. Compound 25 inhibited MCF7 (IC(50): 0.49 ± 0.21 μM) and HCT15 (IC(50): 0.23 ± 0.02 μM) carcinoma cell growth more efficiently than references. In the topoisomerases inhibition test, all the compounds were inactive to topoisomerase I but moderate inhibitors to topoisomerase II enzyme. Especially, compound 25 inhibited topoisomerase II activity with comparable extent to etoposide at 100 μM concentrations. Correlation between cytotoxicity and topoisomerase II inhibitory activity implies that compound 25 can be a possible lead compound for anticancer drug impeding the topoisomerase II function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. A Fluorescence-Based Assay for Identification of Bacterial Topoisomerase I Poisons.

    Science.gov (United States)

    Annamalai, Thirunavukkarasu; Cheng, Bokun; Keswani, Neelam; Tse-Dinh, Yuk-Ching

    2018-01-01

    Bacterial Topoisomerase I is a potential target for the identification of novel topoisomerase poison inhibitors that could provide leads for a new class of antibacterial compounds. Here we describe in detail a fluorescence-based cleavage assay that is successfully used in HTS for the discovery of bacterial topoisomerase Ι poisons.

  15. Beyond topoisomerase inhibition: antitumor 1,4-naphthoquinones as potential inhibitors of human monoamine oxidase.

    Science.gov (United States)

    Coelho-Cerqueira, Eduardo; Netz, Paulo A; do Canto, Vanessa P; Pinto, Angelo C; Follmer, Cristian

    2014-04-01

    Monoamine oxidase (MAO) action has been involved in the regulation of neurotransmitters levels, cell signaling, cellular growth, and differentiation as well as in the balance of the intracellular polyamine levels. Although so far obscure, MAO inhibitors are believed to have some effect on tumors progression. 1,4-naphthoquinone (1,4-NQ) has been pointed out as a potential pharmacophore for inhibition of both MAO and DNA topoisomerase activities, this latter associated with antitumor activity. Herein, we demonstrated that certain antitumor 1,4-NQs, including spermidine-1,4-NQ, lapachol, and nor-lapachol display inhibitory activity on human MAO-A and MAO-B. Kinetic studies indicated that these compounds are reversible and competitive MAO inhibitors, being the enzyme selectivity greatly affected by substitutions on 1,4-NQ ring. Molecular docking studies suggested that the most potent MAO inhibitors are capable to bind to the MAO active site in close proximity of flavin moiety. Furthermore, ability to inhibit both MAO-A and MAO-B can be potentialized by the formation of hydrogen bonds between these compounds and FAD and/or the residues in the active site. Although spermidine-1,4-NQs exhibit antitumor action primarily by inhibiting topoisomerase via DNA intercalation, our findings suggest that their effect on MAO activity should be taken into account when their application in cancer therapy is considered. © 2013 John Wiley & Sons A/S.

  16. Molecular mechanism of the camptothecin resistance of Glu710Gly topoisomerase IB mutant analyzed in vitro and in silico.

    Science.gov (United States)

    Tesauro, Cinzia; Morozzo della Rocca, Blasco; Ottaviani, Alessio; Coletta, Andrea; Zuccaro, Laura; Arnò, Barbara; D'Annessa, Ilda; Fiorani, Paola; Desideri, Alessandro

    2013-09-03

    DNA topoisomerases are key enzymes that modulate the topological state of DNA through the breaking and rejoining of DNA strands. Human topoisomerase IB can be inhibited by several compounds that act through different mechanisms, including clinically used drugs, such as the derivatives of the natural compound camptothecin that reversibly bind the covalent topoisomerase-DNA complex, slowing down the religation of the cleaved DNA strand, thus inducing cell death. Three enzyme mutations, which confer resistance to irinotecan in an adenocarcinoma cell line, were recently identified but the molecular mechanism of resistance was unclear. The three resistant mutants have been investigated in S. cerevisiae model system following their viability in presence of increasing amounts of camptothecin. A systematical analysis of the different catalytic steps has been made for one of these mutants (Glu710Gly) and has been correlated with its structural-dynamical properties studied by classical molecular dynamics simulation. The three mutants display a different degree of camptothecin resistance in a yeast cell viability assay. Characterization of the different steps of the catalytic cycle of the Glu710Gly mutant indicated that its resistance is related to a high religation rate that is hardly affected by the presence of the drug. Analysis of the dynamic properties through simulation indicate that the mutant displays a much lower degree of correlation in the motion between the different protein domains and that the linker almost completely loses its correlation with the C-terminal domain, containing the active site tyrosine. These results indicate that a fully functional linker is required to confer camptothecin sensitivity to topoisomerase I since the destabilization of its structural-dynamical properties is correlated to an increase of religation rate and drug resistance.

  17. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  18. The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2? by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation

    OpenAIRE

    Zhao, Wuli; Jiang, Guohua; Bi, Chongwen; Li, Yangbiao; Liu, Jingbo; Ye, Cheng; He, Hongwei; Li, Liang; Song, Danqing; Shao, Rongguang

    2015-01-01

    DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2?. Here, we validated cyclizing-berberine A35, which is a dual t...

  19. Conversion of DNA gyrase into a conventional type II topoisomerase

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1996-01-01

    -dependent manner. Novobiocin, a competitive inhibitor of ATP binding by gyrase, inhibits this reaction. The truncated enzyme, unlike gyrase, does not introduce a right-handed wrap when bound to DNA and stabilizes DNA crossovers; characteristics reminiscent of conventional type II topoisomerases. This new enzyme...

  20. A novel filarial topoisomerase II inhibitor produced by native isolate ...

    African Journals Online (AJOL)

    A novel inhibitor of filarial topoisomerase II was isolated from the culture filtrate of native isolate Micrococcus luteus B1252. The methanolic extract of the cell pellet was partially purified by silica column chromatography and preparative high performance liquid chromatography (HPLC). The active fraction obtained from HPLC ...

  1. Targeting Mycobacterium tuberculosis topoisomerase I by small-molecule inhibitors.

    Science.gov (United States)

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K; Ekins, Sean; Nagaraja, Valakunja

    2015-03-01

    We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Topoisomerase II poisoning by indazole and imidazole complexes ...

    Indian Academy of Sciences (India)

    ... compounds. This is because they could be effective lead candidates for the development of more potent and less toxic ruthenium containing topoisomerase II poisons. Specificity of action on this molecular target may reduce the toxic effects of these ruthenium-containing molecules and thus improve their therapeutic index.

  3. Next generation topoisomerase I inhibitors: Rationale and biomarker strategies.

    Science.gov (United States)

    Teicher, Beverly A

    2008-03-15

    Topoisomerase I (TopoI), an essential enzyme, produces a DNA single strand break allowing DNA relaxation for replication. The enzymatic mechanism involves sequential transesterifcations. The breakage and closure reactions generate phosphodiester bonds and similar free energies, so the reaction is freely reversible. The TopoI reaction intermediate consists of enzyme covalently linked to DNA dubbed a 'cleavable complex'. Covalently bound TopoI-DNA complexes can be recovered. Camptothecin analogs, topotecan and irinotecan, are approved TopoI-targeted drugs. Both have limitations due to the equilibrium between the camptothecin lactone and ring-opened forms. Several strategies are being explored to develop improved TopoI inhibitors. Homocamptothecins, in which the metabolically labile camptothecin lactone is replaced with a more stable seven-membered beta-hydroxylactone, are potent anticancer agents. Gimatecan is a seven-position modified lipophilic camptothecin developed to provide rapid uptake and accumulation in cells and a stable TopoI-DNA-drug ternary complex. Diflomotecan, a homocamptothecin, and gimatecan are in Phase II clinical trial. Among non-camptothecins, edotecarin, an indolocarbazole that results in DNA C/T-G cleavage compared with T-G/A for camptothecins, is in Phase II clinical trial. Indenoisoquinolines were identified as TopoI inhibitors by the NCI 60-cell line COMPARE analysis. Co-crystal structures of two indenoisoquinolines with TopoI-DNA elucidated the structure of the ternary complex. Indenoisoquinolines are in preclinical development. Dibenzonaphthyridinone TopoI inhibitors have undergone extensive structure-activity examination. ARC-111 was selected for in-depth preclinical study. Biomarkers are under investigation to predict clinical efficacy from preclinical models, to allow determination of drug targeting in vivo and to aid selection of patients most likely to benefit from TopoI inhibitor therapy. gamma-H2AX formation may be a useful

  4. RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals

    Science.gov (United States)

    Ahmad, Muzammil; Xue, Yutong; Lee, Seung Kyu; Martindale, Jennifer L.; Shen, Weiping; Li, Wen; Zou, Sige; Ciaramella, Maria; Debat, Hélène; Nadal, Marc; Leng, Fenfei; Zhang, Hongliang; Wang, Quan; Siaw, Grace Ee-Lu; Niu, Hengyao; Pommier, Yves; Gorospe, Myriam; Hsieh, Tao-Shih; Tse-Dinh, Yuk-Ching; Xu, Dongyi; Wang, Weidong

    2016-01-01

    DNA Topoisomerases are essential to resolve topological problems during DNA metabolism in all species. However, the prevalence and function of RNA topoisomerases remain uncertain. Here, we show that RNA topoisomerase activity is prevalent in Type IA topoisomerases from bacteria, archaea, and eukarya. Moreover, this activity always requires the conserved Type IA core domains and the same catalytic residue used in DNA topoisomerase reaction; however, it does not absolutely require the non-conserved carboxyl-terminal domain (CTD), which is necessary for relaxation reactions of supercoiled DNA. The RNA topoisomerase activity of human Top3β differs from that of Escherichia coli topoisomerase I in that the former but not the latter requires the CTD, indicating that topoisomerases have developed distinct mechanisms during evolution to catalyze RNA topoisomerase reactions. Notably, Top3β proteins from several animals associate with polyribosomes, which are units of mRNA translation, whereas the Top3 homologs from E. coli and yeast lack the association. The Top3β-polyribosome association requires TDRD3, which directly interacts with Top3β and is present in animals but not bacteria or yeast. We propose that RNA topoisomerases arose in the early RNA world, and that they are retained through all domains of DNA-based life, where they mediate mRNA translation as part of polyribosomes in animals. PMID:27257063

  5. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage.

    Science.gov (United States)

    Barker, Catherine R; McNamara, Anne V; Rackstraw, Stephen A; Nelson, David E; White, Mike R; Watson, Alastair J M; Jenkins, John R

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.

  6. Role of Flexibility in Protein-DNA-Drug Recognition: The Case of Asp677Gly-Val703Ile Topoisomerase Mutant Hypersensitive to Camptothecin

    Science.gov (United States)

    D'Annessa, Ilda; Tesauro, Cinzia; Fiorani, Paola; Chillemi, Giovanni; Castelli, Silvia; Vassallo, Oscar; Capranico, Giovanni; Desideri, Alessandro

    2012-01-01

    Topoisomerases I are ubiquitous enzymes that control DNA topology within the cell. They are the unique target of the antitumor drug camptothecin that selectively recognizes the DNA-topoisomerase covalent complex and reversibly stabilizes it. The biochemical and structural-dynamical properties of the Asp677Gly-Val703Ile double mutant with enhanced CPT sensitivity have been investigated. The mutant displays a lower religation rate of the DNA substrate when compared to the wild-type protein. Analyses of the structural dynamical properties by molecular dynamics simulation show that the mutant has reduced flexibility and an active site partially destructured at the level of the Lys532 residue. These results demonstrate long-range communication mechanism where reduction of the linker flexibility alters the active site geometry with the consequent lowering of the religation rate and increase in drug sensitivity. PMID:22315664

  7. Role of Flexibility in Protein-DNA-Drug Recognition: The Case of Asp677Gly-Val703Ile Topoisomerase Mutant Hypersensitive to Camptothecin

    Directory of Open Access Journals (Sweden)

    Ilda D'Annessa

    2012-01-01

    Full Text Available Topoisomerases I are ubiquitous enzymes that control DNA topology within the cell. They are the unique target of the antitumor drug camptothecin that selectively recognizes the DNA-topoisomerase covalent complex and reversibly stabilizes it. The biochemical and structural-dynamical properties of the Asp677Gly-Val703Ile double mutant with enhanced CPT sensitivity have been investigated. The mutant displays a lower religation rate of the DNA substrate when compared to the wild-type protein. Analyses of the structural dynamical properties by molecular dynamics simulation show that the mutant has reduced flexibility and an active site partially destructured at the level of the Lys532 residue. These results demonstrate long-range communication mechanism where reduction of the linker flexibility alters the active site geometry with the consequent lowering of the religation rate and increase in drug sensitivity.

  8. Identification of a minimal functional linker in human topoisomerase I by domain swapping with Cre recombinase

    DEFF Research Database (Denmark)

    Hougaard, Rikke Frøhlich; Juul, Sissel; Vinther, Maria

    2008-01-01

    . In this study we replace 86 amino acids including the linker domain of the cellular type IB topoisomerase, human topoisomerase I, with four, six, or eight amino acids from the corresponding short loop region in Cre recombinase. In vitro characterization of the resulting chimeras, denoted Cropos, reveals...... that six amino acids from the Cre linker loop constitute the minimal length of a functional linker in human topoisomerase I....

  9. Developing T lymphocytes are uniquely sensitive to a lack of topoisomerase III alpha

    DEFF Research Database (Denmark)

    Mönnich, Maren; Hess, Isabell; Wiest, Waltraud

    2010-01-01

    All organisms possess at least one type IA DNA topoisomerase. These topoisomerases function as part of a DNA structure-specific "dissolvasome," also known as the RTR complex, which has critical functions in faithful DNA replication, recombination, and chromosome segregation. In humans, the hetero......All organisms possess at least one type IA DNA topoisomerase. These topoisomerases function as part of a DNA structure-specific "dissolvasome," also known as the RTR complex, which has critical functions in faithful DNA replication, recombination, and chromosome segregation. In humans...

  10. Dual-Acting Histone Deacetylase-Topoisomerase I Inhibitors

    Science.gov (United States)

    Guerrant, William; Patil, Vishal; Canzoneri, Joshua C.; Yao, Li-Pan; Hood, Rebecca; Oyelere, Adegboyega K.

    2013-01-01

    Current chemotherapy regimens are comprised mostly of single-target drugs which are often plagued by toxic side effects and resistance development. A pharmacological strategy for circumventing these drawbacks could involve designing multivalent ligands that can modulate multiple targets while avoiding the toxicity of a single-targeted agent. Two attractive targets, histone deacetylase (HDAC) and topoisomerase I (Topo I), are cellular modulators that can broadly arrest cancer proliferation through a range of downstream effects. Both are clinically validated targets with multiple inhibitors in therapeutic use. We describe herein the design and synthesis of dual-acting histone deacetylase-topoisomerase I inhibitors. We also show that these dual-acting agents retain activity against HDAC and Topo I, and potently arrest cancer proliferation. PMID:23622981

  11. DNA topoisomerase II enzyme activity appears in mouse sperm ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... Sperm suspensions of 4 male mice (A, B, C and D), having an initial motility grade of 3.5 were used to examine the presence of DNA topoisomerase II (top 2) activity in sperm heads. The initial percentage motile of male A was 75%, male B was 80%, male C was 70% and male D was 60%. Top 2 activity was.

  12. Dual-Acting Histone Deacetylase-Topoisomerase I Inhibitors

    OpenAIRE

    Guerrant, William; Patil, Vishal; Canzoneri, Joshua C.; Yao, Li-Pan; Hood, Rebecca; Oyelere, Adegboyega K.

    2013-01-01

    Current chemotherapy regimens are comprised mostly of single-target drugs which are often plagued by toxic side effects and resistance development. A pharmacological strategy for circumventing these drawbacks could involve designing multivalent ligands that can modulate multiple targets while avoiding the toxicity of a single-targeted agent. Two attractive targets, histone deacetylase (HDAC) and topoisomerase I (Topo I), are cellular modulators that can broadly arrest cancer proliferation thr...

  13. DNA topoisomerases participate in fragility of the oncogene RET.

    Directory of Open Access Journals (Sweden)

    Laura W Dillon

    Full Text Available Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH-induced DNA breakage within the RET oncogene, in which 144 APH-induced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication.

  14. DNA topoisomerase II enzyme activity appears in mouse sperm ...

    African Journals Online (AJOL)

    Sperm suspensions of 4 male mice (A, B, C and D), having an initial motility grade of 3.5 were used to examine the presence of DNA topoisomerase II (top 2) activity in sperm heads. The initial percentage motile of male A was 75%, male B was 80%, male C was 70% and male D was 60%. Top 2 activity was examined by ...

  15. Reverse gyrase functions in genome integrity maintenance by protecting DNA breaks in vivo

    DEFF Research Database (Denmark)

    Han, Wenyuan; Feng, Xu; She, Qunxin

    2017-01-01

    Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophili...... genomic DNA degradation during MMS treatment, accompanied by a higher rate of cell death. Taken together, these results indicate that TopR1 probably facilitates genome integrity maintenance by protecting DNA breaks from thermo-degradation in vivo....

  16. Inhibition of Zn(II binding type IA topoisomerases by organomercury compounds and Hg(II.

    Directory of Open Access Journals (Sweden)

    Bokun Cheng

    Full Text Available Type IA topoisomerase activities are essential for resolving DNA topological barriers via an enzyme-mediated transient single strand DNA break. Accumulation of topoisomerase DNA cleavage product can lead to cell death or genomic rearrangement. Many antibacterial and anticancer drugs act as topoisomerase poison inhibitors that form stabilized ternary complexes with the topoisomerase covalent intermediate, so it is desirable to identify such inhibitors for type IA topoisomerases. Here we report that organomercury compounds were identified during a fluorescence based screening of the NIH diversity set of small molecules for topoisomerase inhibitors that can increase the DNA cleavage product of Yersinia pestis topoisomerase I. Inhibition of relaxation activity and accumulation of DNA cleavage product were confirmed for these organomercury compounds in gel based assays of Escherichia coli topoisomerase I. Hg(II, but not As(III, could also target the cysteines that form the multiple Zn(II binding tetra-cysteine motifs found in the C-terminal domains of these bacterial topoisomerase I for relaxation activity inhibition. Mycobacterium tuberculosis topoisomerase I activity is not sensitive to Hg(II or the organomercury compounds due to the absence of the Zn(II binding cysteines. It is significant that the type IA topoisomerases with Zn(II binding domains can still cleave DNA when interfered by Hg(II or organomercury compounds. The Zn(II binding domains found in human Top3α and Top3β may be potential targets of toxic metals and organometallic complexes, with potential consequence on genomic stability and development.

  17. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases.

    Science.gov (United States)

    Vann, Kendra R; Sedgeman, Carl A; Gopas, Jacob; Golan-Goldhirsh, Avi; Osheroff, Neil

    2015-07-28

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10-100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption.

  18. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases

    Science.gov (United States)

    2016-01-01

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10–100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160

  19. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    Directory of Open Access Journals (Sweden)

    Sapetto-Rebow Beata

    2011-11-01

    Full Text Available Abstract Background Genetic alterations in human topoisomerase II alpha (TOP2A are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm, a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization. Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.

  20. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    LENUS (Irish Health Repository)

    Sapetto-Rebow, Beata

    2011-11-23

    Abstract Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.

  1. Bacterial topoisomerase I as a target for discovery of antibacterial compounds.

    Science.gov (United States)

    Tse-Dinh, Yuk-Ching

    2009-02-01

    Bacterial topoisomerase I is a potential target for discovery of new antibacterial compounds. Mutant topoisomerases identified by SOS induction screening demonstrated that accumulation of the DNA cleavage complex formed by type IA topoisomerases is bactericidal. Characterization of these mutants of Yersinia pestis and Escherichia coli topoisomerase I showed that DNA religation can be inhibited while maintaining DNA cleavage activity by decreasing the binding affinity of Mg(II) ions. This can be accomplished either by mutation of the TOPRIM motif involved directly in Mg(II) binding or by altering the charge distribution of the active site region. Besides being used to elucidate the key elements for the control of the cleavage-religation equilibrium, the SOS-inducing mutants of Y. pestis and E. coli topoisomerase I have also been utilized as models to study the cellular response following the accumulation of bacterial topoisomerase I cleavage complex. Bacterial topoisomerase I is required for preventing hypernegative supercoiling of DNA during transcription. It plays an important role in transcription of stress genes during bacterial stress response. Topoisomerase I targeting poisons may be particularly effective when the bacterial pathogen is responding to host defense, or in the presence of other antibiotics that induce the bacterial stress response.

  2. Synthesis and antibacterial evaluation of anziaic acid and analogues as topoisomerase I inhibitors

    OpenAIRE

    Lin, Hao; Annamalai, Thirunavukkarasu; Bansod, Priyanka; Tse-Dinh, Yuk-Ching; Sun, Dianqing

    2013-01-01

    Naturally occurring anziaic acid was very recently reported as a topoisomerase I inhibitor with antibacterial activity. Herein total synthesis of anziaic acid and structural analogues is described and the preliminary structure-activity relationship (SAR) has been developed based on topoisomerase inhibition and whole cell antibacterial activity.

  3. SOS Induction by Stabilized Topoisomerase IA Cleavage Complex Occurs via the RecBCD Pathway▿ †

    OpenAIRE

    Sutherland, Jeanette H.; Cheng, Bokun; Liu, I-Fen; Tse-Dinh, Yuk-Ching

    2008-01-01

    Accumulation of mutant topoisomerase I cleavage complex can lead to SOS induction and cell death in Escherichia coli. The single-stranded break associated with mutant topoisomerase I cleavage complex is converted to double-stranded break, which then is processed by the RecBCD pathway, followed by association of RecA with the single-stranded DNA.

  4. The RNA splicing factor ASF/SF2 inhibits human topoisomerase I mediated DNA relaxation

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Tange, Thomas Ø.; Sinnathamby, Thayaline

    2002-01-01

    Human topoisomerase I interacts with and phosphorylates the SR-family of RNA splicing factors, including ASF/SF2, and has been suggested to play an important role in the regulation of RNA splicing. Here we present evidence to support the theory that the regulation can go the other way around...... mutants of the two proteins to interact directly, suggesting that an interaction between the RS-domain of ASF/SF2 and a region between amino acid residues 208-735 on topoisomerase I accounts for the observed effect. Consistently, phosphorylation of the RS-domain with either topoisomerase I or a human cell...... extract reduced the inhibition of relaxation activity. Taken together with the previously published studies of the topoisomerase I kinase activity, these observations suggest that topoisomerase I activity is shifted from relaxation to kinasing by specific interaction with SR-splicing factors....

  5. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage

    OpenAIRE

    Barker, Catherine R.; McNamara, Anne V.; Rackstraw, Stephen A.; Nelson, David E.; White, Mike R.; Watson, Alastair J. M.; Jenkins, John R.

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the inc...

  6. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Rachael E Hawtin

    2010-04-01

    Full Text Available Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research.Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent.As a first-in-class anticancer

  7. Regulation of Xenopus laevis DNA topoisomerase I activity by phosphorylation in vitro

    International Nuclear Information System (INIS)

    Kaiserman, H.B.; Ingebritsen, T.S.; Benbow, R.M.

    1988-01-01

    DNA topoisomerase I has been purified to electrophoretic homogeneity from ovaries of the frog Xenopus laevis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction revealed a single major band at 110 kDa and less abundant minor bands centered at 62 kDa. Incubation of the most purified fraction with immobilized calf intestinal alkaline phosphatase abolished all DNA topoisomerase enzymatic activity in a time-dependent reaction. Treatment of the dephosphorylated X. laevis DNA topoisomerase I with a X. laevis casein kinase type II activity and ATP restored DNA topoisomerase activity to a level higher than that observed in the most purified fraction. In vitro labeling experiments which employed the most purified DNA topoisomerase I fraction, [γ- 32 P]ATP, and the casein kinase type II enzyme showed that both the 110- and 62-kDa bands became phosphorylated in approximately molar proportions. Phosphoamino acid analysis showed that only serine residues became phosphorylated. Phosphorylation was accompanied by an increase in DNA topoisomerase activity in vitro. Dephosphorylation of DNA topoisomerase I appears to block formation of the initial enzyme-substrate complex on the basis of the failure of the dephosphorylated enzyme to nick DNA in the presence of camptothecin. The authors conclude that X. laevis DNA topoisomerase I is partially phosphorylated as isolated and that this phosphorylation is essential for expression of enzymatic activity in vitro. On the basis of the ability of the casein kinase type II activity to reactivate dephosphorylated DNA topoisomerase I, they speculate that this kinase may contribute to the physiological regulation of DNA topoisomerase I activity

  8. Human topoisomerase IIIalpha is a single-stranded DNA decatenase that is stimulated by BLM and RMI1

    DEFF Research Database (Denmark)

    Yang, Jay; Bachrati, Csanad Z; Ou, Jiongwen

    2010-01-01

    -passage mechanism. We generated single-stranded catenanes that resemble the proposed dissolution intermediate recognized by human topoisomerase IIIalpha. We demonstrate that human topoisomerase IIIalpha is a single-stranded DNA decatenase that is specifically stimulated by the BLM-RMI1 pair. In addition, RMI1......Human topoisomerase IIIalpha is a type IA DNA topoisomerase that functions with BLM and RMI1 to resolve DNA replication and recombination intermediates. BLM, human topoisomerase IIIalpha, and RMI1 catalyze the dissolution of double Holliday junctions into noncrossover products via a strand...

  9. Prospects for developing new antibacterials targeting bacterial type IIA topoisomerases.

    Science.gov (United States)

    Tomašić, Tihomir; Mašič, Lucija Peterlin

    2014-01-01

    The modulation of DNA topology by DNA gyrase and topoisomerase IV, both of which are type IIA topoisomerases and found in most bacteria, is a function vital to DNA replication, repair and decatenation. Despite the potential for resistance development, DNA gyrase and/or topoisomerase IV have been proven to be and remain highly attractive targets in antibacterial drug discovery due to their potential for dual targeting. The search for new GyrA and/or ParC inhibitors that can overcome the increasing spread of multidrug-resistant bacteria has been successfully focused in the last decades on the modification of the known fluoroquinolone scaffold as primarily guided by ligand-based design via classical structure-activity relationship studies and the optimisation of physicochemical properties. This focus has resulted in several novel fluoroquinolones that have been introduced into clinical practice since 2000, and several of these new compounds are currently in different phases of clinical trials. Due to increasing resistance to fluoroquinolones, a significant part of DNA gyrase research has shifted to the discovery of new GyrB and/or ParE inhibitors, which are commonly identified through fragment-based design as well as virtual screening techniques and structure-based hit optimisation programs. This research often results in lead compounds with potent inhibitory activity and promising antibacterial activity profiles. Nevertheless, it is important to understand how different physicochemical properties (e.g., logD and total polar surface area) and different structural motifs influence the compounds' permeability to ensure the efficient discovery of potent, small-molecule antibacterials particularly against Gram-negative strains.

  10. Identification of anziaic acid, a lichen depside from Hypotrachyna sp., as a new topoisomerase poison inhibitor.

    Directory of Open Access Journals (Sweden)

    Bokun Cheng

    Full Text Available Topoisomerase inhibitors are effective for antibacterial and anticancer therapy because they can lead to the accumulation of the intermediate DNA cleavage complex formed by the topoisomerase enzymes, which trigger cell death. Here we report the application of a novel enzyme-based high-throughput screening assay to identify natural product extracts that can lead to increased accumulation of the DNA cleavage complex formed by recombinant Yersinia pestis topoisomerase I as part of a larger effort to identify new antibacterial compounds. Further characterization and fractionation of the screening positives from the primary assay led to the discovery of a depside, anziaic acid, from the lichen Hypotrachyna sp. as an inhibitor for both Y. pestis and Escherichia coli topoisomerase I. In in vitro assays, anziaic acid exhibits antibacterial activity against Bacillus subtilis and a membrane permeable strain of E. coli. Anziaic acid was also found to act as an inhibitor of human topoisomerase II but had little effect on human topoisomerase I. This is the first report of a depside with activity as a topoisomerase poison inhibitor and demonstrates the potential of this class of natural products as a source for new antibacterial and anticancer compounds.

  11. Deacetylation of topoisomerase I is an important physiological function of E. coli CobB

    Science.gov (United States)

    Zhou, Qingxuan; Zhou, Yan Ning; Jin, Ding Jun

    2017-01-01

    Abstract Escherichia coli topoisomerase I (TopA), a regulator of global and local DNA supercoiling, is modified by Nε-Lysine acetylation. The NAD+-dependent protein deacetylase CobB can reverse both enzymatic and non-enzymatic lysine acetylation modification in E. coli. Here, we show that the absence of CobB in a ΔcobB mutant reduces intracellular TopA catalytic activity and increases negative DNA supercoiling. TopA expression level is elevated as topA transcription responds to the increased negative supercoiling. The slow growth phenotype of the ΔcobB mutant can be partially compensated by further increase of intracellular TopA level via overexpression of recombinant TopA. The relaxation activity of purified TopA is decreased by in vitro non-enzymatic acetyl phosphate mediated lysine acetylation, and the presence of purified CobB protects TopA from inactivation by such non-enzymatic acetylation. The specific activity of TopA expressed from His-tagged fusion construct in the chromosome is inversely proportional to the degree of in vivo lysine acetylation during growth transition and growth arrest. These findings demonstrate that E. coli TopA catalytic activity can be modulated by lysine acetylation–deacetylation, and prevention of TopA inactivation from excess lysine acetylation and consequent increase in negative DNA supercoiling is an important physiological function of the CobB protein deacetylase. PMID:28398568

  12. Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells.

    Science.gov (United States)

    Kumar, Ashutosh; Ehrenshaft, Marilyn; Tokar, Erik J; Mason, Ronald P; Sinha, Birandra K

    2016-07-01

    Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic. Published by Elsevier B.V.

  13. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ze-xin; Li, Jian; Li, Yan; You, Kun; Xu, Hongwei; Wang, Jianguo, E-mail: wangjianguoxx@163.com

    2015-08-21

    The inhibitory effect of DNA topoisomerase (Top I) by isoliquiritigenin(ISO) were investigated and their interaction mechanism was evaluated using methods including UV–vis absorption, fluorescence, coupled with molecular simulation, and using the MTT method of inhibition rate of HCC tumor cell SNU475 proliferation assay, finally, the interaction of ISO with calf thymus DNA was investigated by melting measurements and molecular docking studies. It was found that isoliquiritigenin reversibly inhibited DNA Top I in a competitive manner with the concentrations of ISO resulting in 50% activity lost (IC{sub 50}) were estimated to be 0.178 ± 0.12 mM. Isoliquiritigenin exhibited a strong ability to quench the intrinsic fluorescence of Top I through a static quenching procedure. The positive values of enthalpy change and entropy change suggested that the binding of isoliquiritigenin to Top I was driven mainly by hydrophobic interactions. The molecular docking results revealed isoliquiritigenin actually interacted with the primary amino acid residues on the active site of Top I, and the detection results of fluorescence staining and the inhibitory effect on the growth of HCC SUN475 showed that isoliquiritigenin induced the apoptosis cells increased gradually. The interaction of ISO with DNA can cause the denaturation temperature to be increased, which indicated that the stabilization of the DNA helix was increased in the presence of ISO, which indicated that the results provide strong evidence for intercalative binding of ISO with DNA. - Highlights: • ISO reversibly inhibits TOP I activity in an A dose dependent manner. • Hydrophobic interactions play a major role in ISO–TOP I interaction. • ISO has a high affinity close to the active site pocket of TOP I. • The binding of ISO to DNA induces the stability of the structure of DNA.

  14. Identification of proximal sites for unwound DNA substrate in E. coli topoisomerase I with oxidative crosslinking

    Science.gov (United States)

    Cheng, Bokun; Zhou, Qingxuan; Weng, Liwei; Leszyk, John D.; Greenberg, Marc M.; Tse-Dinh, Yuk-Ching

    2016-01-01

    Topoisomerases catalyze changes in DNA topology by directing the movement of DNA strands through consecutive cleavage-rejoining reactions of the DNA backbone. We describe the use of a phenylselenyl-modified thymidine incorporated into a specific position of a partially unwound DNA substrate in crosslinking studies of Escherichia coli topoisomerase I to gain new insights into its catalytic mechanism. Crosslinking of the phenylselenyl-modified thymidine to the topoisomerase protein was achieved by the addition of a mild oxidant. Following nuclease and trypsin digestion, lysine residues on topoisomerase I crosslinked to the modified thymidine were identified by mass spectrometry. The crosslinked sites may correspond to proximal sites for the unwound DNA strand as it interacts with enzyme in the different stages of the catalytic cycle. PMID:27926785

  15. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    Science.gov (United States)

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung

    2016-07-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).

  16. A mouse model for studying the interaction of bisdioxopiperazines with topoisomerase IIα in vivo

    DEFF Research Database (Denmark)

    Grauslund, Morten; Vinding, Annemette; Füchtbauer, Annette C.

    2007-01-01

    The bisdioxopiperazines such as (+)-(S)-4,4′-propylenedi-2,6-piperazinedione (dexrazoxane; ICRF-187), 1,2-bis(3,5-dioxopiperazin-1-yl)ethane (ICRF-154), and 4,4′-(1,2-dimethyl-1,2-ethanediyl)bis-2,6-piperazinedione (ICRF-193) are agents that inhibit eukaryotic topoisomerase II, whereas their ring......-opened hydrolysis products are strong iron chelator. The clinically approved analog ICRF-187 is a pharmacological modulator of topoisomerase II poisons such as etoposide in preclinical animal models. ICRF-187 is also used to protect against anthracycline-induced cardiomyopathy and has recently been approved...... their intracellular iron chelating activity. In an attempt to distinguish between these possibilities, we here present a transgenic mouse model aimed at identifying the contribution of topoisomerase IIα to the effects of bisdioxopiperazines. A tyrosine 165 to serine mutation (Y165S) in topoisomerase IIα, demonstrated...

  17. Distinct Mechanism Evolved for Mycobacterial RNA Polymerase and Topoisomerase I Protein-Protein Interaction.

    Science.gov (United States)

    Banda, Srikanth; Cao, Nan; Tse-Dinh, Yuk-Ching

    2017-09-15

    We report here a distinct mechanism of interaction between topoisomerase I and RNA polymerase in Mycobacterium tuberculosis and Mycobacterium smegmatis that has evolved independently from the previously characterized interaction between bacterial topoisomerase I and RNA polymerase. Bacterial DNA topoisomerase I is responsible for preventing the hyper-negative supercoiling of genomic DNA. The association of topoisomerase I with RNA polymerase during transcription elongation could efficiently relieve transcription-driven negative supercoiling. Our results demonstrate a direct physical interaction between the C-terminal domains of topoisomerase I (TopoI-CTDs) and the β' subunit of RNA polymerase of M. smegmatis in the absence of DNA. The TopoI-CTDs in mycobacteria are evolutionarily unrelated in amino acid sequence and three-dimensional structure to the TopoI-CTD found in the majority of bacterial species outside Actinobacteria, including Escherichia coli. The functional interaction between topoisomerase I and RNA polymerase has evolved independently in mycobacteria and E. coli, with distinctively different structural elements of TopoI-CTD utilized for this protein-protein interaction. Zinc ribbon motifs in E. coli TopoI-CTD are involved in the interaction with RNA polymerase. For M. smegmatis TopoI-CTD, a 27-amino-acid tail that is rich in basic residues at the C-terminal end is responsible for the interaction with RNA polymerase. Overexpression of recombinant TopoI-CTD in M. smegmatis competed with the endogenous topoisomerase I for protein-protein interactions with RNA polymerase. The TopoI-CTD overexpression resulted in decreased survival following treatment with antibiotics and hydrogen peroxide, supporting the importance of the protein-protein interaction between topoisomerase I and RNA polymerase during stress response of mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Metal ions and inter-domains interactions as functional networks in E. coli Topoisomerase I

    OpenAIRE

    Sissi, Claudia; Cheng, Bokun; Lombardo, Valentina; Tse-Dinh, Yuk-Ching; Palumbo, Manlio

    2013-01-01

    Escherichia coli Topoisomerase I (EcTopoI) is a type IA bacterial topoisomerase which is receiving large attention due to its potential application as novel target for antibacterial therapeutics. Nevertheless, a detailed knowledge of its mechanism of action at molecular level is to some extent lacking. This is partly due to the requirement of several factors (metal ions, nucleic acid) to the proper progress of the enzyme catalytic cycle. Additionally, each of them can differently affect the p...

  19. Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein Fold.

    Science.gov (United States)

    Tan, Kemin; Cao, Nan; Cheng, Bokun; Joachimiak, Andrzej; Tse-Dinh, Yuk-Ching

    2016-01-16

    The DNA topoisomerase I enzyme of Mycobacterium tuberculosis (MtTOP1) is essential for the viability of the organism and survival in a murine model. This topoisomerase is being pursued as a novel target for the discovery of new therapeutic agents for the treatment of drug-resistant tuberculosis. In this study, we succeeded in obtaining a structure of MtTOP1 by first predicting that the C-terminal region of MtTOP1 contains four repeated domains that do not involve the Zn-binding tetracysteine motifs seen in the C-terminal domains of Escherichia coli topoisomerase I. A construct (amino acids A2-T704), MtTOP1-704t, that includes the N-terminal domains (D1-D4) and the first predicted C-terminal domain (D5) of MtTOP1 was expressed and found to retain DNA cleavage-religation activity and catalyze single-stranded DNA catenation. MtTOP1-704t was crystallized, and a structure of 2.52Å resolution limit was obtained. The structure of the MtTOP1 N-terminal domains has features that have not been observed in other previously available bacterial topoisomerase I crystal structures. The first C-terminal domain D5 forms a novel protein fold of a four-stranded antiparallel β-sheet stabilized by a crossing-over α-helix. Since there is only one type IA topoisomerase present in Mycobacteriaceae and related Actinobacteria, this subfamily of type IA topoisomerase may be required for multiple functions in DNA replication, transcription, recombination, and repair. The unique structural features observed for MtTOP1 may allow these topoisomerase I enzymes to carry out physiological functions associated with topoisomerase III enzyme in other bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Anucleate Cell Blue Assay: a Useful Tool for Identifying Novel Type II Topoisomerase Inhibitors

    OpenAIRE

    Oyamada, Yoshihiro; Ito, Hideaki; Fujimoto-Nakamura, Mika; Tanitame, Akihiko; Iwai, Noritaka; Nagai, Kazuo; Yamagishi, Jun-ichi; Wachi, Masaaki

    2006-01-01

    About 95,000 compounds were screened by the anucleate cell blue assay. Fifty-one of the hit compounds had various structures and showed inhibitory activity against DNA gyrase and/or topoisomerase IV. Moreover, the compounds exhibited antibacterial activity against a fluoroquinolone- and novobiocin-resistant strain of Staphylococcus aureus. The anucleate cell blue assay is therefore a useful tool for finding novel type II topoisomerase inhibitors.

  1. Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases.

    Science.gov (United States)

    Laponogov, Ivan; Sohi, Maninder K; Veselkov, Dennis A; Pan, Xiao-Su; Sawhney, Ritica; Thompson, Andrew W; McAuley, Katherine E; Fisher, L Mark; Sanderson, Mark R

    2009-06-01

    Type II topoisomerases alter DNA topology by forming a covalent DNA-cleavage complex that allows DNA transport through a double-stranded DNA break. We present the structures of cleavage complexes formed by the Streptococcus pneumoniae ParC breakage-reunion and ParE TOPRIM domains of topoisomerase IV stabilized by moxifloxacin and clinafloxacin, two antipneumococcal fluoroquinolones. These structures reveal two drug molecules intercalated at the highly bent DNA gate and help explain antibacterial quinolone action and resistance.

  2. Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein

    OpenAIRE

    Vos, Seychelle M.; Lyubimov, Artem Y.; Hershey, David M.; Schoeffler, Allyn J.; Sengupta, Sugopa; Nagaraja, Valakunja; Berger, James M.

    2014-01-01

    Topoisomerases are central regulators of DNA supercoiling; how these enzymes are regulated to suit specific cellular needs is poorly understood. Vos et al. now report the structure of E. coli gyrase, a type IIA topoisomerase bound to an inhibitor, YacG. YacG represses gyrase through steric occlusion of its DNA-binding site. Further studies show that YacG engages two spatially segregated regions associated with small-molecule inhibitor interactions—fluoroquinolone antibiotics and a gyrase agon...

  3. [Isolation and partial characterization of DNA topoisomerase I from the nucleoids of white mustard chloroplasts].

    Science.gov (United States)

    Belkina, G G; Pogul'skaia, E V; Iurina, N P

    2004-01-01

    DNA topoisomerase was isolated for the first time from nucleoids of white mustard (Sinapis alba L.) chloroplasts. The enzyme had a molecular weight of 70 kDa; it was ATP-independent, required the presence of mono- (K+) and bivalent (Mg2+) cations, and was capable of relaxing both negatively and positively supercoiled DNA. These results suggest that the enzyme isolated belongs to type IB DNA topoisomerases.

  4. Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein Fold

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kemin; Cao, Nan; Cheng, Bokun; Joachimiak, Andrzej; Tse-Dinh, Yuk-Ching

    2016-01-16

    The DNA topoisomerase I enzyme of Mycobacterium tuberculosis (MtTOP1) is essential for the viability of the organism and survival in a murine model. This topoisomerase is being pursued as a novel target for the discovery of new therapeutic agents for the treatment of drug-resistant tuberculosis. In this study, we succeeded in obtaining a structure of MtTOP1 by first predicting that the C-terminal region of MtTOP1 contains four repeated domains that do not involve the Zn-binding tetracysteine motifs seen in the C-terminal domains of Escherichia coli topoisomerase I. A construct (amino acids A2-T704), MtTOP1-704t, that includes the N-terminal domains (D1-D4) and the first predicted C-terminal domain (D5) of MtTOP1 was expressed and found to retain DNA cleavage-religation activity and catalyze single-stranded DNA catenation. MtTOP1-704t was crystallized, and a structure of 2.52 angstrom resolution limit was obtained. The structure of the MtTOP1 N-terminal domains has features that have not been observed in other previously available bacterial topoisomerase I crystal structures. The first C-terminal domain D5 forms a novel protein fold of a four-stranded antiparallel beta-sheet stabilized by a crossing-over alpha-helix. Since there is only one type IA topoisomerase present in Mycobacteriaceae and related Actinobacteria, this subfamily of type IA topoisomerase may be required for multiple functions in DNA replication, transcription, recombination, and repair. The unique structural features observed for MtTOP1 may allow these topoisomerase I enzymes to carry out physiological functions associated with topoisomerase III enzyme in other bacteria.

  5. Interaction between natural compounds and human topoisomerase I.

    Science.gov (United States)

    Castelli, Silvia; Coletta, Andrea; D'Annessa, Ilda; Fiorani, Paola; Tesauro, Cinzia; Desideri, Alessandro

    2012-11-01

    Eukaryotic topoisomerase I (Top1) is a monomeric enzyme that catalyzes the relaxation of supercoiled DNA during important processes including DNA replication, transcription, recombination and chromosome condensation. Human Top1 I is of significant medical interest since it is the unique cellular target of camptothecin (CPT), a plant alkaloid that rapidly blocks both DNA and RNA synthesis. In this review, together with CPT, we point out the interaction between human Top1 and some natural compounds, such us terpenoids, flavonoids, stilbenes and fatty acids. The drugs can interact with the enzyme at different levels perturbing the binding, cleavage, rotation or religation processes. Here we focus on different assays that can be used to identify the catalytic step of the enzyme inhibited by different natural compounds.

  6. Synthesis and Topoisomerase I inhibitory properties of klavuzon derivatives.

    Science.gov (United States)

    Akçok, İsmail; Mete, Derya; Şen, Ayhan; Kasaplar, Pınar; Korkmaz, Kemal S; Çağır, Ali

    2017-04-01

    Klavuzon is a naphthalen-1-yl substituted α,β-unsaturated δ-lactone derivative, and is one of the anti-proliferative members of this class of compounds. Asymmetric and racemic syntheses of novel α,β-unsaturated δ-lactone derivatives are important to investigate their potential for the treatment of cancer. In this study, asymmetric and racemic syntheses of heteroatom-substituted klavuzon derivatives are reported. The syntheses were completed by a well-known three-step procedure. Anti-proliferative activity of seven novel racemic klavuzon derivatives were reported against MCF-7, PC3, HCT116 p53+/+ and HCT116 p53-/- cancer cell lines. Topoisomerase I inhibitory properties of 5,6-dihydro-2H-pyran-2-one derivatives were also studied. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Activities of Fluoroquinolones against Streptococcus pneumoniae Type II Topoisomerases Purified as Recombinant Proteins

    Science.gov (United States)

    Morrissey, Ian; George, John

    1999-01-01

    Streptococcus pneumoniae topoisomerase IV and DNA gyrase have been purified from a fluoroquinolone-susceptible Streptococcus pneumoniae strain, from first-step mutants showing low-level resistance to ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin, and from two clinical isolates showing intermediate- and high-level fluoroquinolone resistance by a gene cloning method that produces recombinant proteins from Escherichia coli. The concentrations of ciprofloxacin, sparfloxacin, levofloxacin, or ofloxacin required to inhibit wild-type topoisomerase IV were 8 to 16 times lower than those required to inhibit wild-type DNA gyrase. Furthermore, low-level resistance to these fluoroquinolones was entirely due to the reduced inhibitory activity of fluoroquinolones against topoisomerase IV. For all the laboratory strains, the 50% inhibitory concentration for topoisomerase IV directly correlated with the MIC. We therefore propose that with S. pneumoniae, ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin target topoisomerase IV in preference to DNA gyrase. Sitafloxacin, on the other hand, was found to be equipotent against either enzyme. This characteristic is unique for a fluoroquinolone. A reduction in the sensitivities of both topoisomerase IV and DNA gyrase are required, however, to achieve intermediate- or high-level fluoroquinolone resistance in S. pneumoniae. PMID:10543732

  8. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance.

    Science.gov (United States)

    Hooper, David C; Jacoby, George A

    2016-09-01

    Quinolone antimicrobials are widely used in clinical medicine and are the only current class of agents that directly inhibit bacterial DNA synthesis. Quinolones dually target DNA gyrase and topoisomerase IV binding to specific domains and conformations so as to block DNA strand passage catalysis and stabilize DNA-enzyme complexes that block the DNA replication apparatus and generate double breaks in DNA that underlie their bactericidal activity. Resistance has emerged with clinical use of these agents and is common in some bacterial pathogens. Mechanisms of resistance include mutational alterations in drug target affinity and efflux pump expression and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes are commonly in a localized domain of the GyrA and ParC subunits of gyrase and topoisomerase IV, respectively, and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include other antimicrobials as well as quinolones. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is because of Qnr proteins that protect the target enzymes from quinolone action, a mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. DNA Topoisomerases Maintain Promoters in a State Competent for Transcriptional Activation in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pedersen, Jakob Madsen; Fredsøe, Jacob Christian; Rødgaard, Morten Terpager

    2012-01-01

    -depth analysis of the inducible PHO5 gene reveals that topoisomerases are essential for binding of the Pho4p transcription factor to the PHO5 promoter, which is required for promoter nucleosome removal during activation. In contrast, topoisomerases are dispensable for constitutive transcription initiation...... and elongation of PHO5, as well as the nuclear entrance of Pho4p. Finally, we provide evidence that topoisomerases are required to maintain the PHO5 promoter in a superhelical state, which is competent for proper activation. In conclusion, our results reveal a hitherto unknown function of topoisomerases during...

  10. Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy

    DEFF Research Database (Denmark)

    Martin, E.; Thougaard, A.V.; Grauslund, M.

    2009-01-01

    of topoisomerase II, resulting in the risk of additional myelosuppression in patients receiving ICRF-187 as a cardioprotectant in combination with doxorubicin. The development of a topoisomerase II-inactive iron chelating compound thus appeared attractive. In the present paper we evaluate the topoisomerase II......-inactive 3 carbon linker bisdioxopiperazine analog ICRF-161 as a cardioprotectant. We demonstrate that this compound does chelate iron and protects against doxorubicin-induced LDH release from primary rat cardiomyocytes in vitro, similarly to ICRF-187. The compound does not target topoisomerase II in vitro...... chelation alone does not appear to be sufficient for protection against anthracycline-induced cardiomyopathy Udgivelsesdato: 2009/1/8...

  11. The association between the p53/topoisomerase I and p53/ topoisomerase IIalpha immunophenotypes and the progression of ovarian carcinomas.

    Science.gov (United States)

    Bar, Julia K; Grelewski, Piotr; Noga, Leszek; Rabczyński, Jerzy; Gryboś, Marian; Jeleń, Michał

    2012-01-01

    In in vitro studies it has been revealed that p53 protein expression might regulate topoisomerase I (topo I) and topoisomerase IIalpha (topo IIalpha) levels in tumor cells. So far, the association between the p53 protein and topo I and topo IIalpha expression and its impact on ovarian carcinoma progression has not been analyzed. The aim of the study was to examine the association between topo I and topo IIalpha expression and p53 protein overexpression with respect to the morphological features and progressive growth of ovarian tumors. The expression of the studied biomarkers was estimated by immunohistochemical staining in tumor sections from 136 malignant and 30 benign ovarian neoplasms. Significant differences for topo I, topo IIalpha and p53 expression between malignant and benign tumors were observed (p p53 protein was associated with advanced stages of ovarian carcinomas (p ovarian carcinomas, positive correlations between topo I and topo IIalpha, topo I and p53 and topo Ilalpha and p53 protein expression were revealed (p = 0.001). No relationship between the studied biomarkers was found in benign ovarian tumors (p > 0.05). p53/topo I and p53/topo IIalpha immunophenotypes were associated with advanced stages of ovarian carcinoma (p = 0.045 and p = 0.009, respectively), p53/topo IIalpha positive ovarian carcinomas were more frequently observed in high than in low tumor grades and the differences were only of borderline significance (p = 0.07). Current findings suggest that on the one hand, cooperation between topo I, topo IIalpha and p53 protein participates in the progressive growth of ovarian tumors. On the other hand, simultaneous expression of the studied proteins identifies the subgroup of ovarian cancers with aggressive biological features which might be considered in therapy.

  12. Asp to Asn substitution at the first position of the DxD TOPRIM motif of recombinant bacterial topoisomerase I is extremely lethal to E. coli

    Science.gov (United States)

    Cheng, Bokun; Annamalai, Thirunavakkarasu; Sorokin, Elena; Abrenica, Maria; Aedo, Sandra; Tse-Dinh, Yuk-Ching

    2010-01-01

    SUMMARY The TOPRIM domain found in many nucleotidyl transferases contains a DxD motif involved in magnesium ion coordination for catalysis. Medium to high copy number plasmid clones of Yersinia pestis topoisomerase I (YpTOP) with Asp to Asn substitution at the first aspartate residue (D117N) of this motif could not be generated in Escherichia coli without second site mutation even when expression was under the control of the tightly regulated BAD promoter and suppressed by 2% glucose in the medium. Arabinose induction of a single copy YpTOP-D117N mutant gene integrated into the chromosome resulted in ~105 fold of cell killing in 2.5 h. Attempt to induce expression of the corresponding E. coli topoisomerase I mutant (EcTOP-D111N) encoded on a high copy number plasmid resulted in either loss of viability or reversion of the clone to wild-type. High copy plasmid clones of YpTOP-D119N and EcTOP-D113N with the Asn substitution at the second Asp of the TOPRIM motif could be stably maintained, but overexpression also decreased cell viability significantly. The Asp to Asn substitutions at these TOPRIM residues can selectively decrease Mg2+ binding affinity with minimal disruption of the active site geometry, leading to trapping of the covalent complex with cleaved DNA and causing bacterial cell death. The extreme sensitivity of the first TOPRIM position suggested that this might be a useful site for binding of small molecules that could act as topoisomerase poisons. PMID:19013470

  13. Speculations on the origin of life and thermophily: Review of available information on reverse gyrase suggests that hyperthermophilic procaryotes are not so primitive

    Science.gov (United States)

    Forterre, Patrick; Confalonier, Fabrice; Charbonnier, Franck; Duguet, Michel

    1995-06-01

    All present-day hyperthermophiles studied so far (eitherBacteria orArchaea) contain a unique DNA topoisomerase, reverse gyrase, which probably helps to stabilize genomic DNA at high temperature. Herein the data relating this enzyme is reviewed and discussed from the perspective of the nature of the last detectable common ancestor and the origin of life. The sequence of the gene encoding reverse gyrase from an archaeon,Sulfolobus acidocaldarius, suggests that this enzyme contains both a helicase and a topoisomerase domains (Confalonieriet al.,Proc. Natl. Acad. Sci., 1993, 90, 4735). Accordingly, it has been proposed that reverse gyrase originated by the fusion of DNA helicase and DNA topoisomerase genes. If reverse gyrase is essential for life at high temperature, its composite structure suggests that DNA helicases and topoisomerases appeared independently and first evolved in a mesophilic world. Such scenario contradicts the hypothesis that a direct link connects present day hyperthermophiles to a hot origin of life. We discuss different patterns for the early cellular evolution in which reverse gyrase appeared either before the emergence of the last common ancestor ofArchaea, Bacteria andEucarya, or in a lineage common to the two procaryotic domains. The latter scenario could explain why all today hyperthermophiles are procaryotes.

  14. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue.

    Science.gov (United States)

    Chène, Patrick; Rudloff, Joëlle; Schoepfer, Joseph; Furet, Pascal; Meier, Peter; Qian, Zhiyan; Schlaeppi, Jean-Marc; Schmitz, Rita; Radimerski, Thomas

    2009-01-07

    Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis. Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1. The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.

  15. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue

    Directory of Open Access Journals (Sweden)

    Schlaeppi Jean-Marc

    2009-01-01

    Full Text Available Abstract Background Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis. Results Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1 inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1. Conclusion The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.

  16. Topoisomerase I function during Escherichia coli response to antibiotics and stress enhances cell killing from stabilization of its cleavage complex

    Science.gov (United States)

    Liu, I-Fen; Sutherland, Jeanette H.; Cheng, Bokun; Tse-Dinh, Yuk-Ching

    2011-01-01

    Objectives To explore the role of topoisomerase I in gene activation and increased RecA levels during the bacterial SOS response, as well as the effect of antibiotic treatment and stress challenge on cell killing initiated by trapped topoisomerase I cleavage complex. Methods A mutant Escherichia coli strain with a ΔtopA mutation was used to investigate the role of topoisomerase I function in the SOS response to trimethoprim and mitomycin C. Induction of the recA and dinD1 promoters was measured using luciferase reporters of these promoters fused to luxCDABE. An increase in the RecA level following trimethoprim treatment was quantified directly by western blotting. The effect of stress challenge from trimethoprim and acidified nitrite treatments on cell killing by topoisomerase I cleavage complex accumulation was measured by the decrease in viability following induction of recombinant mutant topoisomerase I that forms a stabilized cleavage complex. Results Topoisomerase I function was found to be required for efficient transcriptional activation of the recA and dinD1 promoters during the E. coli SOS response to trimethoprim and mitomycin C. The role of topoisomerase I in the SOS response was confirmed with quantitative western blot analysis of RecA following trimethoprim treatment. The bactericidal effect from topoisomerase I cleavage complex accumulation was shown to be enhanced by stress challenge from trimethoprim and acidified nitrite. Conclusions Bacterial topoisomerase I function is actively involved in the SOS response to antibiotics and stress challenge. Cell killing initiated by the topoisomerase I cleavage complex would be enhanced by antibiotics and the host response. These findings provide further support for bacterial topoisomerase I as a therapeutic target. PMID:21486853

  17. Investigating direct interaction between Escherichia coli topoisomerase I and RecA

    Science.gov (United States)

    Darici, Yesim; Tse-Dinh, Yuk-Ching

    2016-01-01

    Protein-protein interactions are of special importance in cellular processes, including replication, transcription, recombination, and repair. Escherichia coli topoisomerase I (EcTOP1) is primarily involved in the relaxation of negative DNA supercoiling. E. coli RecA, the key protein for homologous recombination and SOS DNA-damage response, has been shown to stimulate the relaxation activity of EcTOP1. The evidence for their direct protein-protein interaction has not been previously established. We report here the direct physical interaction between E. coli RecA and topoisomerase I. We demonstrated the RecA-topoisomerase I interaction via pull-down assays, and surface plasmon resonance measurements. Molecular docking supports the observation that the interaction involves the topoisomerase I N-terminal domains that form the active site. Our results from pull-down assays showed that ATP, although not required, enhances the RecA-EcTOP1 interaction. We propose that E. coli RecA physically interacts with topoisomerase I to modulate the chromosomal DNA supercoiling. PMID:27001450

  18. Electrostatics of DNA-DNA juxtapositions: consequences for type II topoisomerase function

    International Nuclear Information System (INIS)

    Randall, Graham L; Pettitt, B Montgomery; Buck, Gregory R; Zechiedrich, E Lynn

    2006-01-01

    Type II topoisomerases resolve problematic DNA topologies such as knots, catenanes, and supercoils that arise as a consequence of DNA replication and recombination. Failure to remove problematic DNA topologies prohibits cell division and can result in cell death or genetic mutation. Such catastrophic consequences make topoisomerases an effective target for antibiotics and anticancer agents. Despite their biological and clinical importance, little is understood about how a topoisomerase differentiates DNA topologies in a molecule that is significantly larger than the topoisomerase itself. It has been proposed that type II topoisomerases recognize angle and curvature between two DNA helices characteristic of knotted and catenated DNA to account for the enzyme's preference to unlink instead of link DNA. Here we consider the electrostatic potential of DNA juxtapositions to determine the possibility of juxtapositions occurring through Brownian diffusion. We found that despite the large negative electrostatic potential formed between two juxtaposed DNA helices, a bulk counterion concentration as small as 50 mM provides sufficient electrostatic screening to prohibit significant interaction beyond an interhelical separation of 3 nm in both hooked and free juxtapositions. This suggests that instead of electrostatics, mechanical forces such as those occurring in anaphase, knots, catenanes, or the writhe of supercoiled DNA may be responsible for the formation of DNA juxtapositions

  19. Contribution of Topoisomerase IV and DNA Gyrase Mutations in Streptococcus pneumoniae to Resistance to Novel Fluoroquinolones

    Science.gov (United States)

    Pestova, Ekaterina; Beyer, Rebecca; Cianciotto, Nicholas P.; Noskin, Gary A.; Peterson, Lance R.

    1999-01-01

    In this study, we assessed the activity of ciprofloxacin, levofloxacin, sparfloxacin, and trovafloxacin against clinical isolates of Streptococcus pneumoniae that were resistant to the less-recently developed fluoroquinolones by using defined amino acid substitutions in DNA gyrase and topoisomerase IV. The molecular basis for resistance was assessed by using mutants selected with trovafloxacin, ciprofloxacin, and levofloxacin in vitro. This demonstrated that the primary target of trovafloxacin in S. pneumoniae is the ParC subunit of DNA topoisomerase IV, similar to most other fluoroquinolones. However, first-step mutants bearing the Ser79→Phe/Tyr substitution in topoisomerase IV subunit ParC were susceptible to trovafloxacin with a minimum inhibitory concentration of 0.25 μg/ml, and mutations in the structural genes for both topoisomerase IV subunit ParC (parC) and the DNA gyrase subunit (gyrA) were required to achieve levels of resistance above the breakpoint. The data also suggest that enhanced activity of trovafloxacin against pneumococci is due to a combination of factors that may include reduced efflux of this agent and an enhanced activity against both DNA gyrase and topoisomerase IV. PMID:10428926

  20. Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein.

    Science.gov (United States)

    Vos, Seychelle M; Lyubimov, Artem Y; Hershey, David M; Schoeffler, Allyn J; Sengupta, Sugopa; Nagaraja, Valakunja; Berger, James M

    2014-07-01

    Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coli gyrase, a type IIA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holoenzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state. © 2014 Vos et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Natural variation in a single amino acid substitution underlies physiological responses to topoisomerase II poisons.

    Science.gov (United States)

    Zdraljevic, Stefan; Strand, Christine; Seidel, Hannah S; Cook, Daniel E; Doench, John G; Andersen, Erik C

    2017-07-01

    Many chemotherapeutic drugs are differentially effective from one patient to the next. Understanding the causes of this variability is a critical step towards the development of personalized treatments and improvements to existing medications. Here, we investigate sensitivity to a group of anti-neoplastic drugs that target topoisomerase II using the model organism Caenorhabditis elegans. We show that wild strains of C. elegans vary in their sensitivity to these drugs, and we use an unbiased genetic approach to demonstrate that this natural variation is explained by a methionine-to-glutamine substitution in topoisomerase II (TOP-2). The presence of a non-polar methionine at this residue increases hydrophobic interactions between TOP-2 and its poison etoposide, as compared to a polar glutamine. We hypothesize that this stabilizing interaction results in increased genomic instability in strains that contain a methionine residue. The residue affected by this substitution is conserved from yeast to humans and is one of the few differences between the two human topoisomerase II isoforms (methionine in hTOPIIα and glutamine in hTOPIIβ). We go on to show that this amino acid difference between the two human topoisomerase isoforms influences cytotoxicity of topoisomerase II poisons in human cell lines. These results explain why hTOPIIα and hTOPIIβ are differentially affected by various poisons and demonstrate the utility of C. elegans in understanding the genetics of drug responses.

  2. Characterization of topoisomerase I and II activities in nuclear extracts during callogenesis in immature embryos of Zea mays.

    Science.gov (United States)

    Carballo, M; Giné, R; Santos, M; Puigdomènech, P

    1991-01-01

    We have characterized the topoisomerase I and II activities in nuclear extracts from immature embryos of Zea mays and the effect of the treatment with 2,4-dichlorophenoxyacetic acid (2,4-D) and abscisic acid (ABA). These extracts were shown to be essentially devoid of protease and nuclease activities and they were tested for their ability to relax supercoiled DNA, unknotting P4 DNA and catenate circular duplex DNA under catalytic conditions. Unknotting and catenation reactions are strictly magnesium- and ATP-dependent, but not the relaxation of circular supercoiled DNA allowing the detection of both topoisomerase I and II activities. Two cytotoxic drugs, camptothecin, a plant alkaloid that inhibits eukaryotic topoisomerase I, and epipodophyllotoxin VM-26 (teniposide) that inhibits topoisomerase II, have been assayed in our extracts showing similar inhibitory effects on topoisomerase enzymes. Alkaline phosphatase treatment of nuclear extracts abolishes both topoisomerase activities. Nuclear extracts from embryos treated with 2,4-D showed 200% increase on topoisomerase II activity as compared with untreated ones, but only residual activity was detected in ABA-treated embryos. Nuclear extracts from hormone-treated and untreated embryos showed similar topoisomerase I activity with deviations of less than 25%. These differences are discussed in terms of possible post-translational modifications of the enzymes associated with the increase in proliferation activity of calli.

  3. Resveratrol: A novel type of topoisomerase II inhibitor.

    Science.gov (United States)

    Lee, Joyce H; Wendorff, Timothy J; Berger, James M

    2017-12-22

    Resveratrol, a polyphenol found in various plant sources, has gained attention as a possible agent responsible for the purported health benefits of certain foods, such as red wine. Despite annual multi-million dollar market sales as a nutriceutical, there is little consensus about the physiological roles of resveratrol. One suggested molecular target of resveratrol is eukaryotic topoisomerase II (topo II), an enzyme essential for chromosome segregation and DNA supercoiling homeostasis. Interestingly, resveratrol is chemically similar to ICRF-187, a clinically approved chemotherapeutic that stabilizes an ATP-dependent dimerization interface in topo II to block enzyme activity. Based on this similarity, we hypothesized that resveratrol may antagonize topo II by a similar mechanism. Using a variety of biochemical assays, we find that resveratrol indeed acts through the ICRF-187 binding locus, but that it inhibits topo II by preventing ATPase domain dimerization rather than stabilizing it. This work presents the first comprehensive analysis of the biochemical effects of both ICRF-187 and resveratrol on the human isoforms of topo II, and reveals a new mode for the allosteric regulation of topo II through modulation of ATPase status. Natural polyphenols related to resveratrol that have been shown to impact topo II function may operate in a similar manner. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Autoregulation of topoisomerase I expression by supercoiling sensitive transcription.

    Science.gov (United States)

    Ahmed, Wareed; Menon, Shruti; Karthik, Pullela V D N B; Nagaraja, Valakunja

    2016-02-29

    The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Escherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyrase, the molecular mechanism of supercoiling mediated control of TopoI expression is not yet understood. Here, we describe the regulation of TopoI expression from Mycobacterium tuberculosis and Mycobacterium smegmatis by a mechanism termed Supercoiling Sensitive Transcription (SST). In both the organisms, topoI promoter(s) exhibited reduced activity in response to chromosome relaxation suggesting that SST is intrinsic to topoI promoter(s). We elucidate the role of promoter architecture and high transcriptional activity of upstream genes in topoI regulation. Analysis of the promoter(s) revealed the presence of sub-optimal spacing between the -35 and -10 elements, rendering them supercoiling sensitive. Accordingly, upon chromosome relaxation, RNA polymerase occupancy was decreased on the topoI promoter region implicating the role of DNA topology in SST of topoI. We propose that negative supercoiling induced DNA twisting/writhing align the -35 and -10 elements to facilitate the optimal transcription of topoI. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The phosphoCTD-interacting domain of Topoisomerase I

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianhong; Phatnani, Hemali P.; Hsieh, Tao-Shih [Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (United States); Greenleaf, Arno L., E-mail: arno.greenleaf@duke.edu [Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-06-18

    The N-terminal domain (NTD) of Drosophila melanogaster (Dm) Topoisomerase I has been shown to bind to RNA polymerase II, but the domain of RNAPII with which it interacts is not known. Using bacterially-expressed fusion proteins carrying all or half of the NTDs of Dm and human (Homo sapiens, Hs) Topo I, we demonstrate that the N-terminal half of each NTD binds directly to the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of the largest RNAPII subunit, Rpb1. Thus, the amino terminal segment of metazoan Topo I (1-157 for Dm and 1-114 for Hs) contains a novel phosphoCTD-interacting domain that we designate the Topo I-Rpb1 interacting (TRI) domain. The long-known in vivo association of Topo I with active genes presumably can be attributed, wholly or in part, to the TRI domain-mediated binding of Topo I to the phosphoCTD of transcribing RNAPII.

  6. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene.

    Science.gov (United States)

    Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan

    2015-11-24

    Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.

  7. The Effects of Arolycoricidine and Narciprimine on Tumor Cell Killing and Topoisomerase Activity

    Directory of Open Access Journals (Sweden)

    Buket Bozkurt Sarikaya

    2012-07-01

    Full Text Available In this study, narciprimine and arolycoricidine were isolated from G. rizehensis Stern (Amaryllidaceae. The structures of the alkaloids were elucidated by spectroscopic methods (1D NMR, EI-MS. Due to the previous reports on anti-cancer activity of this group of alkaloids, we investigated their effects on DNA topoisomerase reactions, which are known as the cellular targets of a number of chemotherapeutical drugs. The results revealed that arolycoricidine and narciprimine were effective in both type I and type II DNA topoisomerase reactions in a dose-dependent manner. Topoisomerase-interfering ability of these alkaloids partially correlated with cytostaticity assays, using HeLa (cervix adenocarcinoma, MCF7 (breast adenocarcinoma and A431 (skin epidermoid carcinoma cells. Our results are discussed in relation to the potential significance of these alkaloids in the course of drug-development studies.

  8. Identification and localization of a gene that specifies production of Escherichia coli DNA topoisomerase I

    International Nuclear Information System (INIS)

    Trucksis, M.; Depew, R.E.

    1981-01-01

    A gene that specifies production of Escherichia coli DNA topoisomerase I (ω protein) was identified with the aid of a radioimmunoassay for this protein. E. coli DNA topoisomerase I was produced by Salmonella typhimurium merodiploids that harbored E. coli plasmid F' 123, but not by strains that lost this plasmid. Analysis of strains with spontaneous deletions of F' 123 showed that the gene, topA, required for production of the E. coli ω protein was between the trp operon and the cysB gene. Deletions that eliminated topA also eliminated the supX gene. We suggest that topA is the structural gene of E. coli DNA topoisomerase I and that topA is identical to supX

  9. Analysis of an immunodominant epitope of topoisomerase I in patients with systemic sclerosis.

    Science.gov (United States)

    Meesters, T M; Hoet, M; van den Hoogen, F H; Verheijen, R; Habets, W J; van Venrooij, W J

    1992-05-01

    In this paper an immunodominant epitope of Topoisomerase I is described. An epitope expression sublibrary was constructed from Topoisomerase I cDNA. The subclones were screened with an antiserum from a patient with systemic sclerosis (SSc). The positive clones defined one immunodominant B cell epitope (epitope III), which was located at the carboxyterminal part of the protein. The epitope, 52 amino acids in length, neither contains the p30gag sequence nor the suggested active site Tyr-723, both presumed antibody recognition sites. More than 70% of our anti-TopoI sera recognize this epitope III, indicating that it is a major recognition site of the anti-TopoI autoantibodies in SSc sera. DNA relaxation experiments show that all sera that recognize epitope III and most sera with antibodies to other epitopes inhibit Topoisomerase I activity.

  10. Increased topoisomerase IIalpha expression in colorectal cancer is associated with advanced disease and chemotherapeutic resistance via inhibition of apoptosis.

    LENUS (Irish Health Repository)

    Coss, Alan

    2012-02-01

    Topoisomerase IIalpha is a nuclear enzyme that regulates the tertiary structure of DNA. The influence of topoisomerase IIalpha gene (TOP2A) or protein alterations on disease progression and treatment response in colorectal cancer (CRC) is unknown. The study investigated the clinical relevance of topoisomerase IIalpha in CRC using in vivo and in vitro models. Differentially expressed genes in early and late-stage CRC were identified by array comparative genomic hybridization (CGH). Cellular location of gene amplifications was determined by fluorescence in situ hybridization (FISH). Topoisomerase IIalpha levels, proliferation index, and HER2 expression were examined in 228 colorectal tumors by immunohistochemistry. Overexpression of topoisomerase IIalpha in vitro was achieved by liposome-based transfection. Cell growth inhibition and apoptosis were quantified using the crystal violet assay and flow cytometry, respectively, in response to drug treatment. Amplification of TOP2A was identified in 3 (7.7%) tumors using array CGH and confirmed using FISH. At the protein level, topoisomerase IIalpha staining was observed in 157 (69%) tumors, and both staining and intensity levels were associated with an aggressive tumor phenotype (p values 0.04 and 0.005, respectively). Using logistic regression analysis, topoisomerase IIalpha remained significantly associated with advanced tumor stage when corrected for tumor proliferation (p=0.007) and differentiation (p=0.001). No association was identified between topoisomerase IIalpha and HER2. In vitro, overexpression of topoisomerase IIalpha was associated with resistance to irinotecan (p=0.001) and etoposide chemotherapy (p=0.03), an effect mediated by inhibition of apoptosis. Topoisomerase IIalpha overexpression is significantly associated with alterations in tumor behavior and response to drug treatment in CRC. Our results suggest that gene amplification may represent an important mechanism underlying these changes.

  11. Bioassays and in silico methods in the identification of human DNA topoisomerase IIa inhibitors.

    Science.gov (United States)

    Bergant, Kaja; Janezic, Matej; Perdih, Andrej

    2018-03-06

    The family of DNA topoisomerases comprises a group of enzymes that catalyse the induction of topological changes to DNA. These enzymes play a role in the cell replication machinery and are, therefore, important targets for anticancer drugs - with human DNA topoisomerase IIα being one of the most prominent. Active compounds targeting this enzyme are classified into two groups with diverse mechanisms of action: DNA poisons act by stabilizing a covalent cleavage complex between DNA and the topoisomerase enzyme, transforming it into a cellular toxin, while the second diverse group of catalytic inhibitors, provides novel inhibition avenues for tackling this enzyme due to frequent occurrence of side effects observed during the DNA poison therapy. Based on a comprehensive literature search we present an overview of available bioassays and in silico methods in the identification of human DNA topoisomerase IIα inhibitors. A comprehensive outline of the available methods and approaches that explore in detail the in vitro mechanistic and functional aspects of the topoisomerase IIα inhibition of both topo IIα inhibitor groups is presented. The utilized in vitro cell-based assays and in vivo studies to further explore the validated topo IIα inhibitors in subsequent preclinical stages of the drug discovery are discussed. The potential of in silico methods in topoisomerase IIα inhibitor discovery is outlined. A list of practical guidelines was compiled to aid new as well experienced researchers in how to optimally approach the design of targeted inhibitors and validation in the preclinical drug development stages. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Streptococcus pneumoniae DNA Gyrase and Topoisomerase IV: Overexpression, Purification, and Differential Inhibition by Fluoroquinolones

    Science.gov (United States)

    Pan, Xiao-Su; Fisher, L. Mark

    1999-01-01

    Streptococcus pneumoniae gyrA and gyrB genes specifying the DNA gyrase subunits have been cloned into pET plasmid vectors under the control of an inducible T7 promoter and have been separately expressed in Escherichia coli. Soluble 97-kDa GyrA and 72-kDa GyrB proteins bearing polyhistidine tags at their respective C-terminal and N-terminal ends were purified to apparent homogeneity by one-step nickel chelate column chromatography and were free of host E. coli topoisomerase activity. Equimolar amounts of the gyrase subunits reconstituted ATP-dependent DNA supercoiling with comparable activity to gyrase of E. coli and Staphylococcus aureus. In parallel, S. pneumoniae topoisomerase IV ParC and ParE subunits were similarly expressed in E. coli, purified to near homogeneity as 93- and 73-kDa proteins, and shown to generate efficient ATP-dependent DNA relaxation and DNA decatenation activities. Using the purified enzymes, we examined the inhibitory effects of three paradigm fluoroquinolones—ciprofloxacin, sparfloxacin, and clinafloxacin—which previous genetic studies with S. pneumoniae suggested act preferentially through topoisomerase IV, through gyrase, and through both enzymes, respectively. Surprisingly, all three quinolones were more active in inhibiting purified topoisomerase IV than gyrase, with clinafloxacin showing the greatest inhibitory potency. Moreover, the tested agents were at least 25-fold more effective in stabilizing a cleavable complex (the relevant cytotoxic lesion) with topoisomerase IV than with gyrase, with clinafloxacin some 10- to 32-fold more potent against either enzyme, in line with its superior activity against S. pneumoniae. The uniform target preference of the three fluoroquinolones for topoisomerase IV in vitro is in apparent contrast to the genetic data. We interpret these results in terms of a model for bacterial killing by quinolones in which cellular factors can modulate the effects of target affinity to determine the cytotoxic

  13. Targeting the gyrase of Plasmodium falciparum with topoisomerase poisons.

    Science.gov (United States)

    Tang Girdwood, Sonya C; Nenortas, Elizabeth; Shapiro, Theresa A

    2015-06-15

    Drug-resistant malaria poses a major public health problem throughout the world and the need for new antimalarial drugs is growing. The apicoplast, a chloroplast-like organelle essential for malaria parasite survival and with no counterpart in humans, offers an attractive target for selectively toxic new therapies. The apicoplast genome (plDNA) is a 35 kb circular DNA that is served by gyrase, a prokaryotic type II topoisomerase. Gyrase is poisoned by fluoroquinolone antibacterials that stabilize a catalytically inert ternary complex of enzyme, its plDNA substrate, and inhibitor. We used fluoroquinolones to study the gyrase and plDNA of Plasmodium falciparum. New methods for isolating and separating plDNA reveal four topologically different forms and permit a quantitative exam of perturbations that result from gyrase poisoning. In keeping with its role in DNA replication, gyrase is most abundant in late stages of the parasite lifecycle, but several lines of evidence indicate that even in these cells the enzyme is present in relatively low abundance: about 1 enzyme for every two plDNAs or a ratio of 1 gyrase: 70 kb DNA. For a spectrum of quinolones, correlation was generally good between antimalarial activity and gyrase poisoning, the putative molecular mechanism of drug action. However, in P. falciparum there is evidence for off-target toxicity, particularly for ciprofloxacin. These studies highlight the utility of the new methods and of fluoroquinolones as a tool for studying the in situ workings of gyrase and its plDNA substrate. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. DNA topoisomerase IIα inhibitory and anti-HIV-1 flavones from leaves and twigs of Gardenia carinata.

    Science.gov (United States)

    Kongkum, Naowarat; Tuchinda, Patoomratana; Pohmakotr, Manat; Reutrakul, Vichai; Piyachaturawat, Pawinee; Jariyawat, Surawat; Suksen, Kanoknetr; Yoosook, Chalobon; Kasisit, Jitra; Napaswad, Chanita

    2012-03-01

    Four new flavones, 5,2'-dihydroxy-7,3',4',5'-tetramethoxyflavone (1), 5,2',5'-trihydroxy-7,3',4'-trimethoxyflavone (2), 5,7,2',5'-tetrahydroxy-6,3',4'-trimethoxyflavone (3) and 5,2',5'-trihydroxy-6,7,3',4'-tetramethoxyflavone (4), along with the known 5,3'-dihydroxy-6,7,4',5'-tetramethoxyflavone (5), 5,7,3',5'-tetrahydroxy-6,4'-dimethoxyflavone (6), syringaldehyde, vanillic acid and scopoletin were isolated from the leaves and twigs of Gardenia carinata (Rubiaceae). Their structures were determined by spectroscopic methods. Flavone 2 exhibited cytotoxic activity against P-388 and MCF-7 cell lines, while 3, 5 and 6 were active only in P-388 cell line. All active compounds were found to inhibit DNA topoisomerase IIα activity, which may be responsible for the observed cytotoxicity. Flavones 1-3, 5 and 6 also exhibited anti-HIV-1 activity in the anti-syncytium assay using (∆Tat/rev)MC99 virus and 1A2 cell line system; 2 was most potent. Only flavones 1 and 6 showed considerably activity against HIV-1 reverse transcriptase. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Structural and mechanistic insight into Holliday-junction dissolution by topoisomerase IIIα and RMI1

    DEFF Research Database (Denmark)

    Bocquet, Nicolas; Bizard, Anna H; Abdulrahman, Wassim

    2014-01-01

    to TopIIIα influences it to behave as a hemicatenane dissolvase, rather than as an enzyme that relaxes DNA topology, is unknown. Here, we present the crystal structure of human TopIIIα complexed to the first oligonucleotide-binding domain (OB fold) of RMI1. TopIII assumes a toroidal type 1A topoisomerase...

  16. A systematic review on topoisomerase 1 inhibition in the treatment of metastatic breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Brünner, Nils; Stenvang, Jan

    2013-01-01

    as standard treatment for the disease. We performed a systematic review on topoisomerase 1 inhibitors in MBC and found 22 prospective trials and three retrospective ones. No phase III trials were identified. Only one study was randomized, and generally studies were small. Response rates (RR) for irinotecan...

  17. Topoisomerase II minimizes DNA entanglements by proofreading DNA topology after DNA strand passage.

    Science.gov (United States)

    Martínez-García, Belén; Fernández, Xavier; Díaz-Ingelmo, Ofelia; Rodríguez-Campos, Antonio; Manichanh, Chaysavanh; Roca, Joaquim

    2014-02-01

    By transporting one DNA double helix (T-segment) through a double-strand break in another (G-segment), topoisomerase II reduces fractions of DNA catenanes, knots and supercoils to below equilibrium values. How DNA segments are selected to simplify the equilibrium DNA topology is enigmatic, and the biological relevance of this activity is unclear. Here we examined the transit of the T-segment across the three gates of topoisomerase II (entry N-gate, DNA-gate and exit C-gate). Our experimental results uncovered that DNA transport probability is determined not only during the capture of a T-segment at the N-gate. When a captured T-segment has crossed the DNA-gate, it can backtrack to the N-gate instead of exiting by the C-gate. When such backtracking is precluded by locking the N-gate or by removing the C-gate, topoisomerase II no longer simplifies equilibrium DNA topology. Therefore, we conclude that the C-gate enables a post-DNA passage proofreading mechanism, which challenges the release of passed T-segments to either complete or cancel DNA transport. This proofreading activity not only clarifies how type-IIA topoisomerases simplify the equilibrium topology of DNA in free solution, but it may explain also why these enzymes are able to solve the topological constraints of intracellular DNA without randomly entangling adjacent chromosomal regions.

  18. Direct regulation of topoisomerase activity by a nucleoid-associated protein.

    Science.gov (United States)

    Ghosh, Soumitra; Mallick, Bratati; Nagaraja, Valakunja

    2014-01-01

    The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Pharmacophore Hybridization To Discover Novel Topoisomerase II Poisons with Promising Antiproliferative Activity.

    Science.gov (United States)

    Ortega, Jose Antonio; Riccardi, Laura; Minniti, Elirosa; Borgogno, Marco; Arencibia, Jose M; Greco, Maria L; Minarini, Anna; Sissi, Claudia; De Vivo, Marco

    2018-02-08

    We used a pharmacophore hybridization strategy to combine key structural elements of merbarone and etoposide and generated new type II topoisomerase (topoII) poisons. This first set of hybrid topoII poisons shows promising antiproliferative activity on human cancer cells, endorsing their further exploration for anticancer drug discovery.

  20. An Archaebacterial Topoisomerase Homolog Not Present in Other Eukaryotes Is Indispensable for Cell Proliferation of Plants

    Czech Academy of Sciences Publication Activity Database

    Hartung, F.; Angelis, Karel; Meister, A.

    2002-01-01

    Roč. 12, - (2002), s. 1787-1791 ISSN 0960-9822 R&D Projects: GA AV ČR IAA6038201; GA ČR GA521/01/1418 Institutional research plan: CEZ:AV0Z5038910 Keywords : Archaebacterial Topoisomerase * Cell Proliferation Subject RIV: GE - Plant Breeding Impact factor: 7.007, year: 2002

  1. Consistent rationalization of type-2 topoisomerases' unknotting, decatenating, supercoil-relaxing actions and their scaling relation.

    Science.gov (United States)

    Liu, Zhirong; Chan, Hue Sun

    2015-09-09

    How type-2 topoisomerases discern global topology from local properties of DNA is not known precisely but the hypothesis that the enzymes selectively pass double-helix strands at hook-like juxtapositions is promising. Building upon an investigation of unknotting and decatenating using an improved wormlike DNA model, here we focus primarily on the enzymes' action in narrowing the distribution of linking number (Lk) in supercoiled DNA. Consistent with experiments, with selective passage at a hooked juxtaposition, the simulated narrowing factor RLk diminishes with decreasing DNA circle size but approaches an asymptotic RLk ≈ 1.7-1.8 for circle size ≳3.5 kb. For the larger DNA circles, we found that (RLk - 1) ≈ 0.42log10RK ≈ 0.68log10RL and thus RK ≈ (RL)(1.6) holds for the computed RLk and knot and catenane reduction factors RK and RL attained by selective passage at different juxtaposition geometries. Remarkably, this general scaling relation is essentially identical to that observed experimentally for several type-2 topoisomerases from a variety of organisms, indicating that the different disentangling powers of the topoisomerases likely arise from variations in the hooked geometries they select. Taken together, our results suggest strongly that type-2 topoisomerases recognize not only the curvature of the G-segment but also that of the T-segment.

  2. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    International Nuclear Information System (INIS)

    Grierson, Patrick M.; Acharya, Samir; Groden, Joanna

    2013-01-01

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription

  3. Contribution of Type II Topoisomerase Mutations to Fluoroquinolone Resistance in Enterococcus faecium from Japanese Clinical Setting.

    Science.gov (United States)

    Urushibara, Noriko; Suzaki, Keisuke; Kawaguchiya, Mitsuyo; Aung, Meiji Soe; Shinagawa, Masaaki; Takahashi, Satoshi; Kobayashi, Nobumichi

    High-level fluoroquinolone resistance is conferred by the mutation of conserved serine and acidic amino acids in the quinolone resistance-determining region (QRDR) of the A subunits of the type II topoisomerases, DNA gyrase (GyrA) and topoisomerase IV (ParC). In Japan, fluoroquinolone-resistant Enterococcus faecium continues to emerge in clinical settings. We analyzed 131 Japanese E. faecium clinical isolates for susceptibility to levofloxacin (LVFX), and QRDR mutational status. The bacterial collection had a high percentage of resistance (79%) and showed elevated drug minimal inhibitory concentrations (MICs). Eighty-three isolates had single or combined mutations in gyrA and/or parC; all were resistant to LVFX. A strong correlation was evident between log-transformed MICs and the total number of QRDR mutations (r = 0.7899), confirming the involvement of QRDR mutations in drug resistance, as previously described. Three-dimensional modeling indicated that the amino acid change(s) in QRDR could disrupt the interaction between the enzymes and drugs: the most common cause of quinolone resistance. Interestingly, eight isolates had a single mutation on gyrA and exhibited significantly reduced susceptibility. These data imply that either DNA gyrase or topoisomerase IV can be the primary target of fluoroquinolones, although topoisomerase IV is commonly thought to be the primary target in gram-positive bacteria.

  4. Methanosarcina acetivorans C2A topoisomerase IIIα, an archaeal enzyme with promiscuity in divalent cation dependence.

    Directory of Open Access Journals (Sweden)

    Raymond Morales

    Full Text Available Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30-35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg(2+, Ca(2+, Sr(2+, Ba(2+, Mn(2+, Fe(2+, Co(2+, Ni(2+, Cu(2+, Zn(2+ and Cd(2+. Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin and type II (etoposide, novobiocin and nalidixic acid inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1-586 and a C-terminal (587-752 fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn(2+ binding of the enzyme is also provided.

  5. Methanosarcina acetivorans C2A topoisomerase IIIα, an archaeal enzyme with promiscuity in divalent cation dependence.

    Science.gov (United States)

    Morales, Raymond; Sriratana, Palita; Zhang, Jing; Cann, Isaac K O

    2011-01-01

    Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα) as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30-35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and Cd(2+)). Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin) and type II (etoposide, novobiocin and nalidixic acid) inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain) is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1-586) and a C-terminal (587-752) fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn(2+) binding of the enzyme is also provided.

  6. Fitness of Streptococcus pneumoniae fluoroquinolone-resistant strains with topoisomerase IV recombinant genes.

    Science.gov (United States)

    Balsalobre, Luz; de la Campa, Adela G

    2008-03-01

    The low prevalence of ciprofloxacin-resistant (Cp r) Streptococcus pneumoniae isolates carrying recombinant topoisomerase IV genes could be attributed to a fitness cost imposed by the horizontal transfer, which often implies the acquisition of larger-than-normal parE-parC intergenic regions. A study of the transcription of these genes and of the fitness cost for 24 isogenic Cp r strains was performed. Six first-level transformants were obtained either with PCR products containing the parC quinolone resistance-determining regions (QRDRs) of S. pneumoniae Cp r mutants with point mutations or with a PCR product that includes parE-QRDR-ant-parC-QRDR from a Cp r Streptococcus mitis isolate. The latter yielded two strains, T6 and T11, carrying parC-QRDR and parE-QRDR-ant-parC-QRDR, respectively. These first-level transformants were used as recipients in further transformations with the gyrA-QRDR PCR products to obtain 18 second-level transformants. In addition, strain Tr7 (which contains the GyrA E85K change) was used. Reverse transcription-PCR experiments showed that parE and parC were cotranscribed in R6, T6, and T11; and a single promoter located upstream of parE was identified in R6 by primer extension. The fitness of the transformants was estimated by pairwise competition with R6 in both one-cycle and two-cycle experiments. In the one-cycle experiments, most strains carrying the GyrA E85K change showed a fitness cost; the exception was recombinant T14. In the two-cycle experiments, a fitness cost was observed in most first-level transformants carrying the ParC changes S79F, S79Y, and D83Y and the GyrA E85K change; the exceptions were recombinants T6 and T11. The results suggest that there is no impediment due to a fitness cost for the spread of recombinant Cp r S. pneumoniae isolates, since some recombinants (T6, T11, and T14) exhibited an ability to compensate for the cost.

  7. Induction of apoptosis in colon cancer cells by a novel topoisomerase I inhibitor TopIn

    International Nuclear Information System (INIS)

    Bae, Soo Kyung; Gwak, Jungsug; Song, Im-Sook; Park, Hyung-Soon; Oh, Sangtaek

    2011-01-01

    Highlights: → TopIn activates p53-dependent transcription in colon cancer cells. → TopIn induces apoptosis in colon cancer cells. → TopIn selectively inhibits topoisomerase I activity. → TopIn does not affect the activity of BCRP and MDR-1. -- Abstract: The tumor suppressor p53 plays an important role in cellular emergency mechanisms through regulating the genes involved in cell cycle arrest and apoptosis. To identify small molecules that can activate p53-responsive transcription, we performed chemical screening using genetically engineered HCT116 reporter cells. We found that TopIn (7-phenyl-6H-[1,2,5]oxadiazolo[3,4-e]indole 3-oxide) efficiently activated p53-mediated transcriptional activity and induced phosphorylation of p53 at Ser15, thereby stabilizing the p53 protein. Furthermore, TopIn upregulated the expression of p21 WAF1/CIP1 , a downstream target of p53, and suppressed cellular proliferation in various colon cancer cells. Additionally, TopIn induced DNA fragmentation, caspase-3/7 activation and poly ADP ribose polymerase cleavage, typical biochemical markers of apoptosis, in p53 wild-type and mutated colon cancer cells. Finally, we found that TopIn inhibited topoisomerase I activity, but not topoisomerase II, in vitro and induced the formation of the topoisomerase I-DNA complex in HCT116 colon cancer cells. Unlike camptothecin (CPT) and its derivative SN38, TopIn did not affect the activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP) or multidrug-resistant protein-1 (MDR-1). These results suggest that TopIn may present a promising new topoisomerase I-targeting anti-tumor therapeutics.

  8. Context-dependent antagonism between Akt inhibitors and topoisomerase poisons.

    Science.gov (United States)

    Gálvez-Peralta, Marina; Flatten, Karen S; Loegering, David A; Peterson, Kevin L; Schneider, Paula A; Erlichman, Charles; Kaufmann, Scott H

    2014-05-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  9. Inhibition of DNA topoisomerase I and growth inhibition of human cancer cell lines by an oleanane from Junellia aspera (Verbenaceae).

    Science.gov (United States)

    Pungitore, C R; Padron, J M; Leon, L G; Garcia, C; Ciuffo, G M; Martin, V S; Tonn, C E

    2007-05-15

    DNA topoisomerases and DNA polymerases are enzymes that play a crucial role in DNA metabolism events such as replication, transcription, recombination, and chromosome segregation during mitosis. Thus, DNA topoisomerases and DNA polymerases inhibitors could be expected to have antitumor effects. Naturally occurring triterpenoids isolated from Junellia aspera (Gillies & Hook; Moldenke) (Verbenaceae) were assayed for human DNA topoisomerase I and Taq DNA polymerase inhibitory activities. Maslinic acid (2) and its diacetyl derivative (7) showed human DNA topoisomerase I inhibitory activity with IC50 values in the range of 76-80 microM and growth inhibition against various human solid tumour cell lines with GI50 values in the range of 5-18 microM. The triterpene frames could be used for screening new inhibitors of the enzyme, and computer-simulated drug design using the frame and pocket structure of enzyme may in theory be a possible approach to develop new inhibitors.

  10. Evaluation of the topoisomerase II-inactive bisdioxopiperazine ICRF-161 as a protectant against doxorubicin-induced cardiomyopathy

    DEFF Research Database (Denmark)

    Martin, E.; Thougaard, A.V.; Grauslund, M.

    2009-01-01

    Anthracycline-induced cardiomyopathy is a major problem in anti-cancer therapy. The only approved agent for alleviating this serious dose limiting side effect is ICRF-187 (dexrazoxane). The current thinking is that the ring-opened hydrolysis product of this agent, ADR-925, which is formed inside...... of topoisomerase II, resulting in the risk of additional myelosuppression in patients receiving ICRF-187 as a cardioprotectant in combination with doxorubicin. The development of a topoisomerase II-inactive iron chelating compound thus appeared attractive. In the present paper we evaluate the topoisomerase II......-inactive 3 carbon linker bisdioxopiperazine analog ICRF-161 as a cardioprotectant. We demonstrate that this compound does chelate iron and protects against doxorubicin-induced LDH release from primary rat cardiomyocytes in vitro, similarly to ICRF-187. The compound does not target topoisomerase II in vitro...

  11. Reverse Osmosis

    Indian Academy of Sciences (India)

    ment of Civil Engineering and is presently the. Chairman of Center for. Sustainable Technologies,. Indian Institute of Science,. Bangalore. His research areas include, unsaturated soil behaviour, hazardous waste management, water quality and remediation of contaminated water. Keywords. Osmosis, reverse osmosis,.

  12. Reversible Sterilization

    Science.gov (United States)

    Largey, Gale

    1977-01-01

    Notes that difficult questions arise concerning the use of sterilization for alleged eugenic and euthenic purposes. Thus, how reversible sterilization will be used with relation to the poor, mentally ill, mentally retarded, criminals, and minors, is questioned. (Author/AM)

  13. Decreased nuclear matrix DNA topoisomerase II in human leukemia cells resistant to VM-26 and m-AMSA

    International Nuclear Information System (INIS)

    Fernandes, D.J.; Danks, M.K.; Beck, W.T.

    1990-01-01

    CEM leukemia cells selected for resistance to VM-26 (CEM/VM-1) are cross-resistant to various other DNA topoisomerase II inhibitors but not to Vinca alkaloids. Since DNA topoisomerase II is a major protein of the nuclear matrix, the authors asked if alterations in nuclear matrix topoisomerase II might be important in this form of multidrug resistance. Pretreatment of drug-sensitive CEM cells for 2 h with either 5 μM VM-26 or 3 μM m-AMSA reduced the specific activity of newly replicated DNA on the nuclear matrix by 75 and 50%, respectively, relative to that of the bulk DNA. The decatenating and unknotting activities of DNA topoisomerase II were 6- and 7-fold lower, respectively, in the nuclear matrix preparations from the CEM/VM-1 cells compared to parental CEM cells. Western blot analysis revealed that the amount of immunoreactive topoisomerase II in the nuclear matrices of the CEM/VM-1 cells decreased 3.2-fold relative to that in CEM cells. Increasing the NaCl concentration used in the matrix isolation procedure from 0.2 to 1.8 M resulted in a progressive decrease in the specific activity of topoisomerase II in matrices of CEM/VM-1 but not CEM cells, which suggested that the association of the enzyme with the matrix is altered in the resistant cells. These data support the hypothesis that resistance to VM-26 and m-AMSA is directly related to the decreased activity of nuclear matrix topoisomerase II. In CEM/VM-1 cells the interaction of either VM-26 or m-AMSA with nuclear matrix topoisomerase II is specifically diminished

  14. Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I

    Science.gov (United States)

    Zhang, Zhongtao; Cheng, Bokun; Tse-Dinh, Yuk-Ching

    2011-01-01

    DNA topoisomerases control DNA topology by breaking and rejoining DNA strands via covalent complexes with cleaved DNA substrate as catalytic intermediates. Here we report the structure of Escherichia coli topoisomerase I catalytic domain (residues 2–695) in covalent complex with a cleaved single-stranded oligonucleotide substrate, refined to 2.3-Å resolution. The enzyme-substrate intermediate formed after strand cleavage was captured due to the presence of the D111N mutation. This structure of the covalent topoisomerase-DNA intermediate, previously elusive for type IA topoisomerases, shows distinct conformational changes from the structure of the enzyme without bound DNA and provides detailed understanding of the covalent catalysis required for strand cleavage to take place. The portion of cleaved DNA 5′ to the site of cleavage is anchored tightly with extensive noncovalent protein–DNA interactions as predicted by the “enzyme-bridged” model. Distortion of the scissile strand at the -4 position 5′ to the cleavage site allows specific selectivity of a cytosine base in the binding pocket. Many antibacterial and anticancer drugs initiate cell killing by trapping the covalent complexes formed by topoisomerases. We have demonstrated in previous mutagenesis studies that accumulation of the covalent complex of bacterial topoisomerase I is bactericidal. This structure of the covalent intermediate provides the basis for the design of novel antibiotics that can trap the enzyme after formation of the covalent complex. PMID:21482796

  15. Characterization of Abcc4 gene amplification in stepwise-selected mouse J774 macrophages resistant to the topoisomerase II inhibitor ciprofloxacin.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquez

    Full Text Available Exposure of J774 mouse macrophages to stepwise increasing concentrations of ciprofloxacin, an antibiotic inhibiting bacterial topoisomerases, selects for resistant cells that overexpress the efflux transporter Abcc4 (Marquez et al. [2009] Antimicrob. Agents Chemother. 53: 2410-2416, encoded by the Abcc4 gene located on Chromosome 14qE4. In this study, we report the genomic alterations occurring along the selection process. Abcc4 expression progressively increased upon selection rounds, with exponential changes observed between cells exposed to 150 and 200 µM of ciprofloxacin, accompanied by a commensurate decrease in ciprofloxacin accumulation. Molecular cytogenetics experiments showed that this overexpression is linked to Abcc4 gene overrepresentation, grading from a partial trisomy of Chr 14 at the first step of selection (cells exposed to 100 µM ciprofloxacin, to low-level amplifications (around three copies of Abcc4 locus on 1 or 2 Chr 14 (cells exposed to 150 µM ciprofloxacin, followed by high-level amplification of Abcc4 as homogeneous staining region (hsr, inserted on 3 different derivative Chromosomes (cells exposed to 200 µM ciprofloxacin. In revertant cells obtained after more than 60 passages of culture without drug, the Abcc4 hsr amplification was lost in approx. 70% of the population. These data suggest that exposing cells to sufficient concentrations of an antibiotic with low affinity for eukaryotic topoisomerases can cause major genomic alterations that may lead to the overexpression of the transporter responsible for its efflux. Gene amplification appears therefore as a mechanism of resistance that can be triggered by non-anticancer agents but contribute to cross-resistance, and is partially and slowly reversible.

  16. Characterization of molecular interactions between E. coli RNA polymerase and topoisomerase I by molecular simulations

    Science.gov (United States)

    Tiwari, Purushottam Babu; Chapagain, Prem P.; Banda, Srikanth; Darici, Yesim; Üren, Aykut; Tse-Dinh, Yuk-Ching

    2016-01-01

    Escherichia coli topoisomerase I (EctopoI), a type IA DNA topoisomerase, relaxes the negative DNA supercoiling generated by RNA polymerase (RNAP) during transcription elongation. Due to the lack of structural information on the complex, the exact nature of the RNAP-EctopoI interactions remains unresolved. Herein, we report for the first time, the structure-based modeling of the RNAP-EctopoI interactions using computational methods. Our results predict that the salt-bridge as well as hydrogen bond interactions are responsible for the formation and stabilization of the RNAP-EctopoI complex. Our investigations provide molecular insights for understanding how EctopoI interacts with RNAP, a critical step for preventing hypernegative DNA supercoiling during transcription. PMID:27448274

  17. Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea.

    Science.gov (United States)

    Visone, Valeria; Vettone, Antonella; Serpe, Mario; Valenti, Anna; Perugino, Giuseppe; Rossi, Mosè; Ciaramella, Maria

    2014-09-25

    In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.

  18. Chromatin Structure and Dynamics in Hot Environments: Architectural Proteins and DNA Topoisomerases of Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Valeria Visone

    2014-09-01

    Full Text Available In all organisms of the three living domains (Bacteria, Archaea, Eucarya chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair. Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C, chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.

  19. Replacement of the human topoisomerase linker domain with the plasmodial counterpart renders the enzyme camptothecin resistant.

    Directory of Open Access Journals (Sweden)

    Barbara Arnò

    Full Text Available A human/plasmodial hybrid enzyme, generated by swapping the human topoisomerase IB linker domain with the corresponding domain of the Plasmodium falciparum enzyme, has been produced and characterized. The hybrid enzyme displays a relaxation activity comparable to the human enzyme, but it is characterized by a much faster religation rate. The hybrid enzyme is also camptothecin resistant. A 3D structure of the hybrid enzyme has been built and its structural-dynamical properties have been analyzed by molecular dynamics simulation. The analysis indicates that the swapped plasmodial linker samples a conformational space much larger than the corresponding domain in the human enzyme. The large linker conformational variability is then linked to important functional properties such as an increased religation rate and a low drug reactivity, demonstrating that the linker domain has a crucial role in the modulation of the topoisomerase IB activity.

  20. Replacement of the human topoisomerase linker domain with the plasmodial counterpart renders the enzyme camptothecin resistant.

    Science.gov (United States)

    Arnò, Barbara; D'Annessa, Ilda; Tesauro, Cinzia; Zuccaro, Laura; Ottaviani, Alessio; Knudsen, Birgitta; Fiorani, Paola; Desideri, Alessandro

    2013-01-01

    A human/plasmodial hybrid enzyme, generated by swapping the human topoisomerase IB linker domain with the corresponding domain of the Plasmodium falciparum enzyme, has been produced and characterized. The hybrid enzyme displays a relaxation activity comparable to the human enzyme, but it is characterized by a much faster religation rate. The hybrid enzyme is also camptothecin resistant. A 3D structure of the hybrid enzyme has been built and its structural-dynamical properties have been analyzed by molecular dynamics simulation. The analysis indicates that the swapped plasmodial linker samples a conformational space much larger than the corresponding domain in the human enzyme. The large linker conformational variability is then linked to important functional properties such as an increased religation rate and a low drug reactivity, demonstrating that the linker domain has a crucial role in the modulation of the topoisomerase IB activity.

  1. Rolling circle amplification-based detection of human topoisomerase I activity on magnetic beads.

    Science.gov (United States)

    Zuccaro, Laura; Tesauro, Cinzia; Cerroni, Barbara; Ottaviani, Alessio; Knudsen, Birgitta Ruth; Balasubramanian, Kannan; Desideri, Alessandro

    2014-04-15

    A high-sensitivity assay has been developed for the detection of human topoisomerase I with single molecule resolution. The method uses magnetic sepharose beads to concentrate rolling circle products, produced by the amplification of DNA molecules circularized by topoisomerase I and detectable with a confocal microscope as single and discrete dots, once reacted with fluorescent probes. Each dot, corresponding to a single cleavage-religation event mediated by the enzyme, can be counted due to its high signal/noise ratio, allowing detection of 0.3pM enzyme and representing a valid method to detect the enzyme activity in highly diluted samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Human topoisomerase IB is a target of a thiosemicarbazone copper(II) complex.

    Science.gov (United States)

    Vutey, Venn; Castelli, Silvia; D'Annessa, Ilda; Sâmia, Luciana B P; Souza-Fagundes, Elaine M; Beraldo, Heloisa; Desideri, Alessandro

    2016-09-15

    The human topoisomerase IB inhibition and the antiproliferative activity of 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone HPyCT4BrPh alone and its copper(II) complex [Cu(PyCT4BrPh)Cl] was investigated. [Cu(PyCT4BrPh)Cl] inhibits both the DNA cleavage and religation step of the enzyme, whilst the ligand alone does not display any effect. In addition we show that coordination to copper(II) improves the cytotoxicity of HPyCT4BrPh against THP-1 leukemia and MCF-7 breast cancer cells. The data indicate that the copper(II) thiosemicarbazone complex may hit human topoisomerase IB and that metal coordination can be useful to improve cytotoxicity of this versatile class of compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Design, synthesis and biological evaluation of lapachol derivatives possessing indole scaffolds as topoisomerase I inhibitors.

    Science.gov (United States)

    Zhang, Chong; Qu, Yan; Niu, Bingxuan

    2016-11-15

    A series of novel lapachol derivatives possessing indole scaffolds was designed and synthesized. The in vitro anti-proliferative activity of these novel compounds was evaluated in Eca109 and Hela cell lines. Almost all the tested compounds showed manifested potent inhibitory activity against the two tested cancer cell lines. Topo I-mediated DNA relaxation activity indicated that these novel compounds have potent Topoisomerase I inhibition activity. The most potent compounds 4n and 4k demonstrated more cytotoxicity than camptothecin and was comparable to camptothecin in inhibitory activities on Topoisomerase I in our biological assay. In addition, the Hoechst 33342 staining method also showed that the complex can induce Hela cell apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Inhibition of Topoisomerase IIα and Induction of Apoptosis in Gastric Cancer Cells by 19-Triisopropyl Andrographolide

    OpenAIRE

    Monger, Adeep; Boonmuen, Nittaya; Suksen, Kanoknetr; Saeeng, Rungnapha; Kasemsuk, Teerapich; Piyachaturawat, Pawinee; Saengsawang, Witchuda; Chairoungdua, Arthit

    2017-01-01

    Gastric cancer is the most common cancer in Eastern Asia. Increasing chemoresistance and general systemic toxicities have complicated the current chemotherapy leading to an urgent need of more effective agents. The present study reported a potent DNA topoisomerase IIα inhibitory activity of an andrographolide analogue (19-triisopropyl andrographolide, analogue-6) in gastric cancer cells; MKN-45, and AGS cells. The analogue was potently cytotoxic to both gastric cancer cell lines with the half...

  5. HMGB1 interacts with human topoisomerase IIalpha and stimulates its catalytic activity

    Czech Academy of Sciences Publication Activity Database

    Štros, Michal; Bačíková, Alena; Muselíková Polanská, Eva; Štokrová, Jitka; Strauss, F.

    2007-01-01

    Roč. 35, č. 15 (2007), s. 5001-5013 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GA204/05/2031; GA AV ČR(CZ) IAA400040702 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : HMGB1 * DNA topoisomerase IIalpha * DNA repair Subject RIV: BO - Biophysics Impact factor: 6.954, year: 2007

  6. HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase IIalpha

    Czech Academy of Sciences Publication Activity Database

    Štros, Michal; Muselíková Polanská, Eva; Štruncová, S.; Pospíšilová, Š.

    2009-01-01

    Roč. 37, č. 7 (2009), s. 2070-2086 ISSN 0305-1048 R&D Projects: GA AV ČR(CZ) IAA400040702 Grant - others:GA MZd(CZ) NR9293 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : HMGB * topoisomerase IIalpha * cellular expression Subject RIV: BO - Biophysics Impact factor: 7.479, year: 2009

  7. Activities of Fluoroquinolones against Streptococcus pneumoniae Type II Topoisomerases Purified as Recombinant Proteins

    OpenAIRE

    Morrissey, Ian; George, John

    1999-01-01

    Streptococcus pneumoniae topoisomerase IV and DNA gyrase have been purified from a fluoroquinolone-susceptible Streptococcus pneumoniae strain, from first-step mutants showing low-level resistance to ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin, and from two clinical isolates showing intermediate- and high-level fluoroquinolone resistance by a gene cloning method that produces recombinant proteins from Escherichia coli. The concentrations of ciprofloxacin, sparfloxacin, levofloxac...

  8. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae

    OpenAIRE

    Tombline, Gregory; Millen, Jonathan I.; Polevoda, Bogdan; Rapaport, Matan; Baxter, Bonnie; Van Meter, Michael; Gilbertson, Matthew; Madrey, Joe; Piazza, Gary A.; Rasmussen, Lynn; Wennerberg, Krister; White, E. Lucile; Nitiss, John L.; Goldfarb, David S.

    2017-01-01

    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates...

  9. Probing Conformational Changes in Human DNA Topoisomerase IIα by Pulsed Alkylation Mass Spectrometry*

    Science.gov (United States)

    Chen, Yu-tsung; Collins, Tammy R. L.; Guan, Ziqiang; Chen, Vincent B.; Hsieh, Tao-Shih

    2012-01-01

    Type II topoisomerases are essential enzymes for solving DNA topological problems by passing one segment of DNA duplex through a transient double-strand break in a second segment. The reaction requires the enzyme to precisely control DNA cleavage and gate opening coupled with ATP hydrolysis. Using pulsed alkylation mass spectrometry, we were able to monitor the solvent accessibilities around 13 cysteines distributed throughout human topoisomerase IIα by measuring the thiol reactivities with monobromobimane. Most of the measured reactivities are in accordance with the predicted ones based on a homology structural model generated from available crystal structures. However, these results reveal new information for both the residues not covered in the structural model and potential differences between the modeled and solution holoenzyme structures. Furthermore, on the basis of the reactivity changes of several cysteines located at the N-gate and DNA gate, we could monitor the movement of topoisomerase II in the presence of cofactors and detect differences in the DNA gate between two closed clamp enzyme conformations locked by either 5′-adenylyl β,γ-imidodiphosphate or the anticancer drug ICRF-193. PMID:22679013

  10. Cloning and biochemical characterization of Staphylococcus aureus type IA DNA topoisomerase comprised of distinct five domains.

    Science.gov (United States)

    Park, Jung Eun; Kim, Hyun Ik; Park, Jong Woo; Park, Jong Kun; Lee, Jung Sup

    2011-04-01

    DNA topoisomerases play critical roles in regulating DNA topology and are essential enzymes for cell survival. In this study, a gene encoding type IA DNA topoisomerase was cloned from Staphylococcus aureus (S. aureus) sp. strain C-66, and the biochemical properties of recombinant enzyme was characterized. The nucleotide sequence analysis showed that the cloned gene contained an open reading frame (2070 bp) that could encode a polypeptide of 689 amino acids. The cloned gene actually produced 79.1 kDa functional enzyme (named Sau-TopoI) in Escherichia coli (E. coli). Sau-TopoI enzyme purified from E. coli showed ATP-independent and Mg(2+)-dependent manners for relaxing negatively supercoiled DNA. The relaxation activity of Sau-TopoI was inhibited by camptothecin, but not by nalidixic acid and etoposide. Cleavage site mapping showed that the enzyme could preferentially bind to and cleave the sequence GGNN↓CAT (N and ↓ represent any nucleotide and cleavage site, respectively). All these results suggest that the purified enzyme is type IA DNA topoisomerase. In addition, domain mapping analysis showed that the enzyme was composed of conserved four domains (I through IV), together with a variable C-terminal region containing a unique domain V. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Conditional silencing of topoisomerase I gene of Mycobacterium tuberculosis validates its essentiality for cell survival.

    Science.gov (United States)

    Ahmed, Wareed; Menon, Shruti; Godbole, Adwait Anand; Karthik, Pullela V D N B; Nagaraja, Valakunja

    2014-04-01

    Topoisomerases are an important class of enzymes for regulating the DNA transaction processes. Mycobacterium tuberculosis (Mtb) is one of the most formidable pathogens also posing serious challenges for therapeutic interventions. The organism contains only one type IA topoisomerase (Rv3646c), offering an opportunity to test its potential as a candidate drug target. To validate the essentiality of M. tuberculosis topoisomerase I (TopoI(Mt) ) for bacterial growth and survival, we have generated a conditionally regulated strain of topoI in Mtb. The conditional knockdown mutant exhibited delayed growth on agar plate. In liquid culture, the growth was drastically impaired when TopoI expression was suppressed. Additionally, novobiocin and isoniazid showed enhanced inhibitory potential against the conditional mutant. Analysis of the nucleoid revealed its altered architecture upon TopoI depletion. These studies establish the essentiality of TopoI for the M. tuberculosis growth and open up new avenues for targeting the enzyme. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV

    Science.gov (United States)

    Pitts, Steven L.; Liou, Grace F.; Mitchenall, Lesley A.; Burgin, Alex B.; Maxwell, Anthony; Neuman, Keir C.; Osheroff, Neil

    2011-01-01

    It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme. PMID:21300644

  13. Molecular modeling of cationic porphyrin-anthraquinone hybrids as DNA topoisomerase IIβ inhibitors.

    Science.gov (United States)

    Arba, Muhammad; Ruslin; Ihsan, Sunandar; Tri Wahyudi, Setyanto; Tjahjono, Daryono H

    2017-12-01

    Human DNA Topoisomerase II has been regarded as a promising target in anticancer drug discovery. In the present study, we designed six porphyrin-anthraquinone hybrids bearing pyrazole or pyridine group as meso substituents and evaluated their potentials as DNA Topoisomerase IIβ inhibitor. First, we investigated the binding orientation of porphyrin hybrids into DNA topoisomerase IIβ employing AutoDock 4.2 and then performed 20-ns molecular dynamics simulations to see the dynamic stability of each porphyrin-Topo IIβ complex using Amber 14. We found that the binding of porphyrin hybrids occured through intercalation and groove binding mode in addition interaction with the amino acid residues constituting the active cavity of Topo IIβ. Each porphyrin-Topo IIβ complex was stabilized during 20-ns dynamics simulations. The MM-PBSA free energy calculation shows that the binding affinities of porphyrin hybrids were modified with the number of meso substituent. Interestingly, the affinity of all porphyrin hybrids to Topo IIβ was stronger than that of native ligand (EVP), indicating the potential of the designed porphyrin to be considered in experimental research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DNA gyrase and topoisomerase IV mutations in an in vitro fluoroquinolone-resistant Coxiella burnetii strain.

    Science.gov (United States)

    Vranakis, Iosif; Sandalakis, Vassilios; Chochlakis, Dimosthenis; Tselentis, Yannis; Psaroulaki, Anna

    2010-06-01

    The etiological agent of Q fever, Coxiella burnetii, is an obligate intracellular bacterium that multiplies within a vacuole with lysosomal characteristics. Quinolones have been used as an alternative therapy for Q fever. In this study, quinolone-resistance-determining regions of the genes coding for DNA gyrase and topoisomerase IV were analyzed by DNA sequencing from an in vitro fluoroquinolone-resistant C. burnetii strain (Q212). Sequencing and aligning of DNA gyrase encoding genes (gyrA and gyrB) and topoisomerase IV genes (parC and parE) revealed one gyrA mutation leading to the amino acid substitution Asp87Gly (Escherichia coli numbering), two gyrB mutations leading to the amino acid substitutions Ser431Pro and Met518Ile, and three parC mutations leading to the amino acid substitutions Asp69Asn, Thr80Ile, and Gly104Ser. The corresponding alignment of the C. burnetii Q212 reference strain, the in vitro developed fluoroquinolone-resistant C. burnetii Q212 strain, and E. coli resulted in the identification of several other naturally occurring mutations within and outside the quinolone-resistance-determining regions of C. burnetii providing indications of possible natural resistance to fluoroquinolones. The present study adds additional potential mutations in the DNA topoisomerases that may be involved in fluoroquinolone resistance in C. burnetii due to their previous characterization in other bacterial species.

  15. Novel Bacterial Topoisomerase Inhibitors with Potent Broad-Spectrum Activity against Drug-Resistant Bacteria.

    Science.gov (United States)

    Charrier, Cédric; Salisbury, Anne-Marie; Savage, Victoria J; Duffy, Thomas; Moyo, Emmanuel; Chaffer-Malam, Nathan; Ooi, Nicola; Newman, Rebecca; Cheung, Jonathan; Metzger, Richard; McGarry, David; Pichowicz, Mark; Sigerson, Ralph; Cooper, Ian R; Nelson, Gary; Butler, Hayley S; Craighead, Mark; Ratcliffe, Andrew J; Best, Stuart A; Stokes, Neil R

    2017-05-01

    The novel bacterial topoisomerase inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that does not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms and Mycobacterium tuberculosis No cross-resistance with fluoroquinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC 90 values were 4 and 8 μg/ml against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli , respectively. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies of resistance typically 100 μM). In summary, the compounds' distinct mechanism of action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development, and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents. Copyright © 2017 American Society for Microbiology.

  16. Type IIA topoisomerase inhibition by a new class of antibacterial agents.

    Science.gov (United States)

    Bax, Benjamin D; Chan, Pan F; Eggleston, Drake S; Fosberry, Andrew; Gentry, Daniel R; Gorrec, Fabrice; Giordano, Ilaria; Hann, Michael M; Hennessy, Alan; Hibbs, Martin; Huang, Jianzhong; Jones, Emma; Jones, Jo; Brown, Kristin Koretke; Lewis, Ceri J; May, Earl W; Saunders, Martin R; Singh, Onkar; Spitzfaden, Claus E; Shen, Carol; Shillings, Anthony; Theobald, Andrew J; Wohlkonig, Alexandre; Pearson, Neil D; Gwynn, Michael N

    2010-08-19

    Despite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.1 A crystal structure of a potent, new class, broad-spectrum antibacterial agent in complex with Staphylococcus aureus DNA gyrase and DNA, showing a new mode of inhibition that circumvents fluoroquinolone resistance in this clinically important drug target. The inhibitor 'bridges' the DNA and a transient non-catalytic pocket on the two-fold axis at the GyrA dimer interface, and is close to the active sites and fluoroquinolone binding sites. In the inhibitor complex the active site seems poised to cleave the DNA, with a single metal ion observed between the TOPRIM (topoisomerase/primase) domain and the scissile phosphate. This work provides new insights into the mechanism of topoisomerase action and a platform for structure-based drug design of a new class of antibacterial agents against a clinically proven, but conformationally flexible, enzyme class.

  17. Reverse Osmosis

    Indian Academy of Sciences (India)

    or the water reaches the tip of every leaf of a plant is due to osmotic pressure. ... concentration and temperature of the solution by a law that is similar to the gas law. ... waste management, water quality and remediation of contaminated water. Keywords. Osmosis, reverse osmosis, desalinatiion, seawater, water purification.

  18. Role of the Water–Metal Ion Bridge in Mediating Interactions between Quinolones and Escherichia coli Topoisomerase IV

    Science.gov (United States)

    2015-01-01

    Although quinolones have been in clinical use for decades, the mechanism underlying drug activity and resistance has remained elusive. However, recent studies indicate that clinically relevant quinolones interact with Bacillus anthracis (Gram-positive) topoisomerase IV through a critical water–metal ion bridge and that the most common quinolone resistance mutations decrease drug activity by disrupting this bridge. As a first step toward determining whether the water–metal ion bridge is a general mechanism of quinolone–topoisomerase interaction, we characterized drug interactions with wild-type Escherichia coli (Gram-negative) topoisomerase IV and a series of ParC enzymes with mutations (S80L, S80I, S80F, and E84K) in the predicted bridge-anchoring residues. Results strongly suggest that the water–metal ion bridge is essential for quinolone activity against E. coli topoisomerase IV. Although the bridge represents a common and critical mechanism that underlies broad-spectrum quinolone function, it appears to play different roles in B. anthracis and E. coli topoisomerase IV. The water–metal ion bridge is the most important binding contact of clinically relevant quinolones with the Gram-positive enzyme. However, it primarily acts to properly align clinically relevant quinolones with E. coli topoisomerase IV. Finally, even though ciprofloxacin is unable to increase levels of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit the overall catalytic activity of these topoisomerase IV proteins. Inhibition parallels drug binding, suggesting that the presence of the drug in the active site is sufficient to diminish DNA relaxation rates. PMID:25115926

  19. Dynamics of tobacco DNA topoisomerases II in cell cycle regulation: to manage topological constrains during replication, transcription and mitotic chromosome condensation and segregation.

    Science.gov (United States)

    Singh, Badri Nath; Achary, V Mohan Murali; Panditi, Varakumar; Sopory, Sudhir K; Reddy, Malireddy K

    2017-08-01

    The topoisomerase II expression varies as a function of cell proliferation. Maximal topoisomerase II expression was tightly coupled to S phase and G2/M phase via both transcriptional and post-transcriptional regulation. Investigation in meiosis using pollen mother cells also revealed that it is not the major component of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed. Synchronized tobacco BY-2 cell cultures were used to study the role of topoisomerase II in various stages of the cell cycle. Topoisomerase II transcript accumulation was observed during the S- and G2/M- phase of cell cycle. This biphasic expression pattern indicates the active requirement of topoisomerase II during these stages of the cell cycle. Through immuno-localization of topoisomerase II was observed diffusely throughout the nucleoplasm in interphase nuclei, whereas, the nucleolus region exhibited a more prominent immuno-positive staining that correlated with rRNA transcription, as shown by propidium iodide staining and BrUTP incorporation. The immuno-staining analysis also showed that topoisomerase II is the major component of mitotic chromosomes and remain attached to the chromosomes during cell division. The inhibition of topoisomerase II activity using specific inhibitors revealed quite dramatic effect on condensation of chromatin and chromosome individualization from prophase to metaphase transition. Partially condensed chromosomes were not arranged on metaphase plate and chromosomal perturbations were observed when advance to anaphase, suggesting the importance of topoisomerase II activity for proper chromosome condensation and segregation during mitosis. Contrary, topoisomerase II is not the major component of meiotic chromosomes, even though mitosis and meiosis share many processes, including the DNA replication, chromosome condensation and precisely regulated partitioning of chromosomes into daughter cells. Even if topoisomerase II is

  20. Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry.

    Science.gov (United States)

    Wang, Ying-Ren; Chen, Shin-Fu; Wu, Chyuan-Chuan; Liao, Yi-Wen; Lin, Te-Sheng; Liu, Ko-Ting; Chen, Yi-Song; Li, Tsai-Kun; Chien, Tun-Cheng; Chan, Nei-Li

    2017-10-13

    Human type II topoisomerase (Top2) isoforms, hTop2α and hTop2β, are targeted by some of the most successful anticancer drugs. These drugs induce Top2-mediated DNA cleavage to trigger cell-death pathways. The potency of these drugs correlates positively with their efficacy in stabilizing the enzyme-mediated DNA breaks. Structural analysis of hTop2α and hTop2β revealed the presence of methionine residues in the drug-binding pocket, we therefore tested whether a tighter Top2-drug association may be accomplished by introducing a methionine-reactive Pt2+ into a drug to further stabilize the DNA break. Herein, we synthesized an organoplatinum compound, etoplatin-N2β, by replacing the methionine-juxtaposing group of the drug etoposide with a cis-dichlorodiammineplatinum(II) moiety. Compared to etoposide, etoplatin-N2β more potently inhibits both human Top2s. While the DNA breaks arrested by etoposide can be rejoined, those captured by etoplatin-N2β are practically irreversible. Crystallographic analyses of hTop2β complexed with DNA and etoplatin-N2β demonstrate coordinate bond formation between Pt2+ and a flanking methionine. Notably, this stable coordinate tether can be loosened by disrupting the structural integrity of drug-binding pocket, suggesting that Pt2+ coordination chemistry may allow for the development of potent inhibitors with protein conformation-dependent reversibility. This approach may be exploited to achieve isoform-specific targeting of human Top2s. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... by accounting for the significance of the materials and the equipment that enters into the production of statistics. Key words: Reversible statistics, diverse materials, constructivism, economics, science, and technology....

  2. topIb, a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB.

    Science.gov (United States)

    Dahmane, Narimane; Gadelle, Danièle; Delmas, Stéphane; Criscuolo, Alexis; Eberhard, Stephan; Desnoues, Nicole; Collin, Sylvie; Zhang, Hongliang; Pommier, Yves; Forterre, Patrick; Sezonov, Guennadi

    2016-04-07

    Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Isolation and partial characterisation of a mammalian cell mutant hypersensitive to topoisomerase II inhibitors and X-rays

    International Nuclear Information System (INIS)

    Davies, S.M.; Davies, S.L.; Hickson, I.D.; Hall, A.G.

    1990-01-01

    The authors have isolated, following one-step mutagenesis, a Chinese hamster ovary cell mutant hypersensitive to the intercalating agent, adriamycin. This agent exerts at least part of its cytotoxic action via inhibition of the nuclear enzyme, topoisomerase II. The mutant, designated ADR-3, showed hypersensitivity to all classes of topoisomerase II inhibitors, inlcuding actinomycin D, amsacrine (m-AMSA), etoposide (VP16) and mitoxantrone. ADR-3 cells also showed cross-sensitivity to ionizing radiation, but not no UV light. Topoisomerase II activity was elevated to a small but significant degree in ADR-3 cells, and this was reflected in a 1.5-fold higher level of topoisomerase II protein in ADR-3 than in CHO-K1 cells, as judged by Western blotting. ADR-3 cells were hypersensitive to cumene hydroperoxide but cross-resistant to hydrogen peroxide, suggesting possible abnormality in the detoxification of peroxides by glutathione peroxidase or catalase. Glutathione peroxidase activity against hydroperoxide was elevated to a small but significant extent in mutant cells. Catalase levels were not significantly different in ADR-3 and CHO-K1 cells. ADR-3 cells were recessive in hybrids with parental CHO-K1 cells with respect to sensitivity to topoisomerase II inhibitors and X-rays, and represent a different genetic complementation group from the previously reported adriamycin-sensitive mutant, ADR-1. (author). 34 refs.; 5 figs.; 3 tabs

  4. Deletion of the topoisomerase III gene in the hyperthermophilic archaeon Sulfolobus islandicus results in slow growth and defects in cell cycle control

    DEFF Research Database (Denmark)

    Li, Xiyang; Guo, Li; Deng, Ling

    2011-01-01

    Topoisomerase III (topo III), a type IA topoisomerase, is widespread in hyperthermophilic archaea. In order to interrogate the in vivo role of archaeal topo III, we constructed and characterized a topo III gene deletion mutant of Sulfolobus islandicus. The mutant was viable but grew more slowly t...

  5. Differential cytotoxic pathways of topoisomerase I and II anticancer agents after overexpression of the E2F-1/DP-1 transcription factor complex

    DEFF Research Database (Denmark)

    Hofland, K; Petersen, B O; Falck, J

    2000-01-01

    and drug sensitivity in detail, we established human osteosarcoma U-20S-TA cells expressing full-length E2F-1/ DP-1 under the control of a tetracycline-responsive promoter, designated UE1DP-1 cells. Topoisomerase I levels and activity as well as the number of camptothecin-induced DNA single- and double...... of an E2F-1/ DP-1-induced post-DNA damage pathway rather than an increase in the number of replication forks caused by the S-phase initiation. In contrast, topoisomerase IIalpha levels (but not topoisomerase IIbeta levels), together with topoisomerase IIalpha promoter activity, increased 2--3-fold in UE1......-targeted anticancer drugs. However, the mechanism by which this occurs appears to be qualitatively different. The UE1DP-1 cell model may be used to elucidate post-DNA damage mechanisms of cell death induced by topoisomerase I-directed anticancer agents....

  6. A small organic compound enhances the religation reaction of human topoisomerase I and identifies crucial elements for the religation mechanism.

    Science.gov (United States)

    Arnò, Barbara; Coletta, Andrea; Tesauro, Cinzia; Zuccaro, Laura; Fiorani, Paola; Lentini, Sara; Galloni, Pierluca; Conte, Valeria; Floris, Barbara; Desideri, Alessandro

    2013-03-07

    The different steps of the human Top1 (topoisomerase I) catalytic cycle have been analysed in the presence of a pentacyclic-diquinoid synthetic compound. The experiments indicate that it efficiently inhibits the cleavage step of the enzyme reaction, fitting well into the catalytic site. Surprisingly the compound, when incubated with the binary topoisomerase-DNA cleaved complex, helps the enzyme to remove itself from the cleaved DNA and close the DNA gap, increasing the religation rate. The compound also induces the religation of the stalled enzyme-CPT (camptothecin)-DNA ternary complex. Analysis of the molecule docked over the binary complex, together with its chemical properties, suggests that the religation enhancement is due to the presence on the compound of two oxygen atoms that act as hydrogen acceptors. This property facilitates the deprotonation of the 5' DNA end, suggesting that this is the limiting step in the topoisomerase religation mechanism.

  7. Insights into the mechanism of inhibition of novel bacterial topoisomerase inhibitors from characterization of resistant mutants of Staphylococcus aureus.

    Science.gov (United States)

    Lahiri, Sushmita D; Kutschke, Amy; McCormack, Kathy; Alm, Richard A

    2015-09-01

    The type II topoisomerases DNA gyrase and topoisomerase IV are clinically validated bacterial targets that catalyze the modulation of DNA topology that is vital to DNA replication, repair, and decatenation. Increasing resistance to fluoroquinolones, which trap the topoisomerase-DNA complex, has led to significant efforts in the discovery of novel inhibitors of these targets. AZ6142 is a member of the class of novel bacterial topoisomerase inhibitors (NBTIs) that utilizes a distinct mechanism to trap the protein-DNA complex. AZ6142 has very potent activity against Gram-positive organisms, including Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes. In this study, we determined the frequencies of resistance to AZ6142 and other representative NBTI compounds in S. aureus and S. pneumoniae. The frequencies of selection of resistant mutants at 4× the MIC were 1.7 × 10(-8) for S. aureus and topoisomerase subunits were identified. Many of these substitutions were located outside the NBTI binding pocket and impact the susceptibility of AZ6142, resulting in a 4- to 32-fold elevation in the MIC over the wild-type parent strain. Data on cross-resistance with other NBTIs and fluoroquinolones enabled the differentiation of scaffold-specific changes from compound-specific variations. Our results suggest that AZ6142 inhibits both type II topoisomerases in S. aureus but that DNA gyrase is the primary target. Further, the genotype of the resistant mutants suggests that domain conformations and DNA interactions may uniquely impact NBTIs compared to fluoroquinolones. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase I and topoisomerase II.

    Science.gov (United States)

    Xu, Huanli; Chen, Qunying; Wang, Hong; Xu, Pingxiang; Yuan, Ru; Li, Xiaorong; Bai, Lu; Xue, Ming

    2016-11-16

    Lapachol is a natural naphthoquinone compound that possesses extensive biological activities. The aim of this study is to investigate the inhibitory effects of lapachol on rat C6 glioma both in vitro and in vivo, as well as the potential mechanisms. The antitumor effect of lapachol was firstly evaluated in the C6 glioma model in Wistar rats. The effects of lapachol on C6 cell proliferation, apoptosis and DNA damage were detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)/ phenazinemethosulfate (PMS) assay, hoechst 33358 staining, annexin V-FITC/PI staining, and comet assay. Effects of lapachol on topoisomerase I (TOP I) and topoisomerase II (TOP II) activities were detected by TOP I and TOP II mediated supercoiled pBR322 DNA relaxation assays and molecular docking. TOP I and TOP II expression levels in C6 cells were also determined. High dose lapachol showed significant inhibitory effect on the C6 glioma in Wistar rats (P lapachol could inhibit proliferation, induce apoptosis and DNA damage of C6 cells in dose dependent manners. Lapachol could inhibit the activities of both TOP I and II. Lapachol-TOP I showed relatively stronger interaction than that of lapachol-TOP II in molecular docking study. Also, lapachol could inhibit TOP II expression levels, but not TOP I expression levels. These results showed that lapachol could significantly inhibit C6 glioma both in vivo and in vitro, which might be related with inhibiting TOP I and TOP II activities, as well as TOP II expression.

  9. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase I and topoisomerase II

    Directory of Open Access Journals (Sweden)

    Huanli Xu

    2016-11-01

    Full Text Available Abstract Background Lapachol is a natural naphthoquinone compound that possesses extensive biological activities. The aim of this study is to investigate the inhibitory effects of lapachol on rat C6 glioma both in vitro and in vivo, as well as the potential mechanisms. Methods The antitumor effect of lapachol was firstly evaluated in the C6 glioma model in Wistar rats. The effects of lapachol on C6 cell proliferation, apoptosis and DNA damage were detected by 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS/ phenazinemethosulfate (PMS assay, hoechst 33358 staining, annexin V-FITC/PI staining, and comet assay. Effects of lapachol on topoisomerase I (TOP I and topoisomerase II (TOP II activities were detected by TOP I and TOP II mediated supercoiled pBR322 DNA relaxation assays and molecular docking. TOP I and TOP II expression levels in C6 cells were also determined. Results High dose lapachol showed significant inhibitory effect on the C6 glioma in Wistar rats (P < 0.05. It was showed that lapachol could inhibit proliferation, induce apoptosis and DNA damage of C6 cells in dose dependent manners. Lapachol could inhibit the activities of both TOP I and II. Lapachol-TOP I showed relatively stronger interaction than that of lapachol-TOP II in molecular docking study. Also, lapachol could inhibit TOP II expression levels, but not TOP I expression levels. Conclusion These results showed that lapachol could significantly inhibit C6 glioma both in vivo and in vitro, which might be related with inhibiting TOP I and TOP II activities, as well as TOP II expression.

  10. Synthesis and biological activity of ferrocenyl indeno[1,2-c]isoquinolines as topoisomerase II inhibitors.

    Science.gov (United States)

    Wambang, Nathalie; Schifano-Faux, Nadège; Aillerie, Alexandre; Baldeyrou, Brigitte; Jacquet, Camille; Bal-Mahieu, Christine; Bousquet, Till; Pellegrini, Sylvain; Ndifon, Peter T; Meignan, Samuel; Goossens, Jean-François; Lansiaux, Amélie; Pélinski, Lydie

    2016-02-15

    Three series of indeno[1,2-c]isoquinolines bearing a ferrocenyl entity were synthesized and evaluated for DNA interaction, topoisomerase I and II inhibition, and cytotoxicity against breast human cancer cell lines. In the first and second series, the ferrocenyl scaffold was inserted as a linker between the two nitrogen atoms. In the last series, it was introduced at the end of the carbon chain. The present study showed that the ferrocenyl entity enhanced the topoisomerase II inhibition. Most compounds showed a potent growth inhibitory effect on MDA-MB-231 cell line with the IC50 in μM range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Inhibition of Topoisomerase IIα and Induction of Apoptosis in Gastric Cancer Cells by 19-Triisopropyl Andrographolide

    Science.gov (United States)

    Monger, Adeep; Boonmuen, Nittaya; Suksen, Kanoknetr; Saeeng, Rungnapha; Kasemsuk, Teerapich; Piyachaturawat, Pawinee; Saengsawang, Witchuda; Chairoungdua, Arthit

    2017-10-26

    Gastric cancer is the most common cancer in Eastern Asia. Increasing chemoresistance and general systemic toxicities have complicated the current chemotherapy leading to an urgent need of more effective agents. The present study reported a potent DNA topoisomerase IIα inhibitory activity of an andrographolide analogue (19-triisopropyl andrographolide, analogue-6) in gastric cancer cells; MKN-45, and AGS cells. The analogue was potently cytotoxic to both gastric cancer cell lines with the half maximal inhibitory concentration (IC50 values) of 6.3±0.7 μM, and 1.7±0.05 μM at 48 h for MKN-45, and AGS cells, respectively. It was more potent than the parent andrographolide and the clinically used, etoposide with the IC50 values of >50 μM in MKN-45 and 11.3±2.9 μM in AGS cells for andrographolide and 28.5±4.4 μM in MKN-45 and 4.08±0.5 μM in AGS cells for etoposide. Analogue-6 at 2 μM significantly inhibited DNA topoisomerase IIα enzyme in AGS cells, induced DNA damage, activated cleaved PARP-1, and Caspase3 leading to late cellular apoptosis. Interestingly, the expression of tumor suppressor p53 was not activated. These results show the importance of 19-triisopropyl-andrographolide in its emerging selectivity to primary target on topoisomerase IIα enzyme, inducing DNA damage and apoptosis by p53- independent mechanism. Thereby, the results provide insights of the potential of 19-triisopropyl andrographolide as an anticancer agent for gastric cancer. The chemical transformation of andrographolide is a promising strategy in drug discovery of a novel class of anticancer drugs from bioactive natural products. Creative Commons Attribution License

  12. Inhibition of DNA topoisomerases I and II and cytotoxicity of compounds from Ulmus davidiana var. japonica.

    Science.gov (United States)

    Zheng, Ming Shan; Lee, Yeun-Kyung; Li, Ying; Hwangbo, Kyoung; Lee, Chong-Soon; Kim, Jae-Ryong; Lee, Sunny Kyung-Seon; Chang, Hyun-Wook; Son, Jong-Keun

    2010-09-01

    Twenty five compounds including ten triterpenes (1-3, 5-11), six flavonoids (12-15, 24, 25), five lignans (17, 18, 21-23), two butenyl clohexnone glycosides (19-20), one fructofuranoside (16) and one fatty acid (4) were isolated from the roots of Ulmus davidiana var. japonica. The structures of those compounds were identified by comparing their physicochemical and spectral data with those of published in literatures. All the compounds were evaluated for DNA topoisomerase inhibitory activities and cytotoxicities. Among the purified compounds, 4 and 19 showed more potent inhibitory acitivities (IC(50): 39 and 19 μM, respectively) than camptothecin, as the positive control (IC(50): 46 μM) against topoisomerase I. Compounds, 4, 10, 12, 19, 24 and 25 showed strong inhibitory activities toward DNA topoisomerase II (IC(50): 0.1, 0.52, 0.47, 0.42, 0.17 μM and 17 nM, respectively), which were more potent than that of etoposide as positive control (IC(50): 20 μM). In A549 cell line, 5 and 6 showed cytotoxicities (IC(50): 4 μM and 3 μM, respectively, with IC(50) of camptothecin as positive control: 10.3 μM). In the HepG2 cell line, 3, 5 and 7 showed cytotoxicity (IC(50): 4, 3 and 4 μM, respectively, with IC(50) of camptothecin: 0.3 μM). Compounds 6, 12 and 23 showed cytotoxicities in the HT-29 cell line (IC(50): 19, 19 and 15 μM, respectively, with IC(50) of camptothecin: 2 μM).

  13. Topoisomerase II-mediated DNA cleavage by adocia- and xestoquinones from the Philippine sponge Xestospongia sp.

    Science.gov (United States)

    Concepción, G P; Foderaro, T A; Eldredge, G S; Lobkovsky, E; Clardy, J; Barrows, L R; Ireland, C M

    1995-10-27

    Investigation of an orange Xestospongia sp. sponge collected at Cape Bolinao in northern Luzon, Philippines, yielded the known compounds adociaquinones A and B (1, 2) and six new metabolites, secoadociaquinones A and B (3, 4), 14-methoxyxestoquinone (5), 15-methoxyxestoquinone (6), 15-chloro-14-hydroxyxestoquinone (7), and 14-chloro-15-hydroxyxestoquinone (8). All compounds showed inhibition of topoisomerase II in catalytic DNA unwinding and/or decatenation assays. Furthermore, adociaquinone B showed activity in a KSDS assay, suggesting it inhibits the enzyme by freezing the enzyme-DNA cleavable complex. Interestingly, adociaquinone B did not displace ethidium bromide from DNA or unwind supercoiled DNA, implying it does not intercalate DNA.

  14. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  15. Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol

    Directory of Open Access Journals (Sweden)

    Annamalai Thirunavukkarasu

    2009-06-01

    Full Text Available Abstract Background Mycobacterium tuberculosis DNA topoisomerase I is an attractive target for discovery of novel TB drugs that act by enhancing the accumulation of the topoisomerase-DNA cleavage product. It shares a common transesterification domain with other type IA DNA topoisomerases. There is, however, no homology between the C-terminal DNA binding domains of Escherichia coli and M. tuberculosis DNA topoisomerase I proteins. Results A new protocol for expression and purification of recombinant M. tuberculosis DNA topoisomerase I (MtTOP has been developed to produce enzyme of much higher specific activity than previously characterized recombinant enzyme. MtTOP was found to be less efficient than E. coli DNA topoisomerase I (EcTOP in removal of remaining negative supercoils from partially relaxed DNA. DNA cleavage by MtTOP was characterized for the first time. Comparison of DNA cleavage site selectivity with EcTOP showed differences in cleavage site preferences, but the preferred sites of both enzymes have a C nucleotide in the -4 position. Conclusion Recombinant M. tuberculosis DNA topoisomerase I can be expressed as a soluble protein and purified in high yield from E. coli host with a new protocol. Analysis of DNA cleavage with M. tuberculosis DNA substrate showed that the preferred DNA cleavage sites have a C nucleotide in the -4 position.

  16. NPRL-Z-1, as a new topoisomerase II poison, induces cell apoptosis and ROS generation in human renal carcinoma cells.

    Science.gov (United States)

    Wu, Szu-Ying; Pan, Shiow-Lin; Xiao, Zhi-Yan; Hsu, Jui-Ling; Chen, Mei-Chuan; Lee, Kuo-Hsiung; Teng, Che-Ming

    2014-01-01

    NPRL-Z-1 is a 4β-[(4"-benzamido)-amino]-4'-O-demethyl-epipodophyllotoxin derivative. Previous reports have shown that NPRL-Z-1 possesses anticancer activity. Here NPRL-Z-1 displayed cytotoxic effects against four human cancer cell lines (HCT 116, A549, ACHN, and A498) and exhibited potent activity in A498 human renal carcinoma cells, with an IC50 value of 2.38 µM via the MTT assay. We also found that NPRL-Z-1 induced cell cycle arrest in G1-phase and detected DNA double-strand breaks in A498 cells. NPRL-Z-1 induced ataxia telangiectasia-mutated (ATM) protein kinase phosphorylation at serine 1981, leading to the activation of DNA damage signaling pathways, including Chk2, histone H2AX, and p53/p21. By ICE assay, the data suggested that NPRL-Z-1 acted on and stabilized the topoisomerase II (TOP2)-DNA complex, leading to TOP2cc formation. NPRL-Z-1-induced DNA damage signaling and apoptotic death was also reversed by TOP2α or TOP2β knockdown. In addition, NPRL-Z-1 inhibited the Akt signaling pathway and induced reactive oxygen species (ROS) generation. These results demonstrated that NPRL-Z-1 appeared to be a novel TOP2 poison and ROS generator. Thus, NPRL-Z-1 may present a significant potential anticancer candidate against renal carcinoma.

  17. Oxabicyclooctane-Linked Novel Bacterial Topoisomerase Inhibitors as Broad Spectrum Antibacterial Agents

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sheo B.; Kaelin, David E.; Wu, Jin; Miesel, Lynn; Tan, Christopher M.; Meinke, Peter T.; Olsen, David; Lagrutta, Armando; Bradley, Prudence; Lu, Jun; Patel, Sangita; Rickert, Keith W.; Smith, Robert F.; Soisson, Stephen; Wei, Changqing; Fukuda, Hideyuki; Kishii, Ryuta; Takei, Masaya; Fukuda, Yasumichi (Merck); (WuXi App Tec); (Kyorin)

    2014-05-08

    Bacterial resistance is eroding the clinical utility of existing antibiotics necessitating the discovery of new agents. Bacterial type II topoisomerase is a clinically validated, highly effective, and proven drug target. This target is amenable to inhibition by diverse classes of inhibitors with alternative and distinct binding sites to quinolone antibiotics, thus enabling the development of agents that lack cross-resistance to quinolones. Described here are novel bacterial topoisomerase inhibitors (NBTIs), which are a new class of gyrase and topo IV inhibitors and consist of three distinct structural moieties. The substitution of the linker moiety led to discovery of potent broad-spectrum NBTIs with reduced off-target activity (hERG IC50 > 18 μM) and improved physical properties. AM8191 is bactericidal and selectively inhibits DNA synthesis and Staphylococcus aureus gyrase (IC50 = 1.02 μM) and topo IV (IC50 = 10.4 μM). AM8191 showed parenteral and oral efficacy (ED50) at less than 2.5 mg/kg doses in a S. aureus murine infection model. A cocrystal structure of AM8191 bound to S. aureus DNA-gyrase showed binding interactions similar to that reported for GSK299423, displaying a key contact of Asp83 with the basic amine at position-7 of the linker.

  18. Carboxyl terminal domain basic amino acids of mycobacterial topoisomerase I bind DNA to promote strand passage.

    Science.gov (United States)

    Ahmed, Wareed; Bhat, Anuradha Gopal; Leelaram, Majety Naga; Menon, Shruti; Nagaraja, Valakunja

    2013-08-01

    Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn(2+) finger motifs in the CTD. The Zn(2+) finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn(2+) fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn(2+) fingers from the mycobacterial topoI could be associated with Zn(2+) export and homeostasis.

  19. Human topoisomerase IIα uses a two-metal-ion mechanism for DNA cleavage

    Science.gov (United States)

    Deweese, Joseph E.; Burgin, Alex B.; Osheroff, Neil

    2008-01-01

    The DNA cleavage reaction of human topoisomerase IIα is critical to all of the physiological and pharmacological functions of the protein. While it has long been known that the type II enzyme requires a divalent metal ion in order to cleave DNA, the role of the cation in this process is not known. To resolve this fundamental issue, the present study utilized a series of divalent metal ions with varying thiophilicities in conjunction with DNA cleavage substrates that replaced the 3′-bridging oxygen of the scissile bond with a sulfur atom (i.e. 3′-bridging phosphorothiolates). Rates and levels of DNA scission were greatly enhanced when thiophilic metal ions were included in reactions that utilized sulfur-containing substrates. Based on these results and those of reactions that employed divalent cation mixtures, we propose that topoisomerase IIα mediates DNA cleavage via a two-metal-ion mechanism. In this model, one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate. This interaction greatly accelerates rates of enzyme-mediated DNA cleavage, and most likely is needed to stabilize the leaving 3′-oxygen. PMID:18653531

  20. Type II topoisomerase mutations in Bacillus anthracis associated with high-level fluoroquinolone resistance.

    Science.gov (United States)

    Bast, Darrin J; Athamna, Abed; Duncan, Carla L; de Azavedo, Joyce C S; Low, Donald E; Rahav, Galia; Farrell, David; Rubinstein, Ethan

    2004-07-01

    To identify and characterize the mechanisms of high-level fluoroquinolone resistance in two strains of Bacillus anthracis following serial passage in increasing concentrations of fluoroquinolones. Fluoroquinolone-resistant isolates of the Sterne and Russian Anthrax Vaccine STi strains were obtained following serial passage in the presence of increasing concentrations of four different fluoroquinolones. The quinolone-resistance-determining regions of the type II topoisomerase genes from the resistant strains were amplified by PCR and characterized by DNA sequence analysis. The MICs in the presence and absence of reserpine were determined using broth microdilution as a means of detecting active efflux. Single and double amino acid substitutions in the GyrA (Ser-85-Leu; Glu-89-Arg/Gly/Lys) and GrlA (Ser-81-Tyr; Val-96-Ala; Asn-70-Lys) were most common. A single amino acid substitution in GyrB (Asp-430-Asn) was also identified. Efflux only applied to isolates selected for by either levofloxacin or ofloxacin. Specific amino acid substitutions in the type II topoisomerase enzymes significantly contributed to the development of high-level fluoroquinolone resistance in B. anthracis. However, notable differences between the strains and the drugs tested were identified including the role of efflux and the numbers and types of mutations identified.

  1. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers

    DEFF Research Database (Denmark)

    Sønderstrup, Ida Marie Heeholm; Nygård, Sune Boris; Poulsen, Tim Svenstrup

    2015-01-01

    INTRODUCTION: Topoisomerase 1 (TOP1) and 2A (TOP2A) are potential predictive biomarkers for irinotecan and anthracycline treatment, respectively, in colorectal cancer (CRC), and we have recently reported a high frequency of gene gain of the TOP1 and TOP2A genes in CRC. Furthermore, Mismatch Repair...

  2. The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific 'dissolvasome'?

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2007-01-01

    RecQ helicases, together with topoisomerase III and Rmi1 family proteins, form an evolutionarily conserved complex that is essential for the maintenance of genome integrity. This complex, which we term RTR, is capable of, or has been implicated in, the processing of a diverse array of DNA...

  3. Resistance to topoisomerase cleavage complex induced lethality in Escherichia coli via titration of transcription regulators PurR and FNR

    Directory of Open Access Journals (Sweden)

    Liu I-Fen

    2011-12-01

    Full Text Available Abstract Background Accumulation of gyrase cleavage complex in Escherichia coli from the action of quinolone antibiotics induces an oxidative damage cell death pathway. The oxidative cell death pathway has also been shown to be involved in the lethality following accumulation of cleavage complex formed by bacterial topoisomerase I with mutations that result in defective DNA religation. Methods A high copy number plasmid clone spanning the upp-purMN region was isolated from screening of an E. coli genomic library and analyzed for conferring increased survival rates following accumulation of mutant topoisomerase I proteins as well as treatment with the gyrase inhibitor norfloxacin. Results Analysis of the intergenic region upstream of purM demonstrated a novel mechanism of resistance to the covalent protein-DNA cleavage complex through titration of the cellular transcription regulators FNR and PurR responsible for oxygen sensing and repression of purine nucleotide synthesis respectively. Addition of adenine to defined growth medium had similar protective effect for survival following accumulation of topoisomerase cleavage complex, suggesting that increase in purine level can protect against cell death. Conclusions Perturbation of the global regulator FNR and PurR functions as well as increase in purine nucleotide availability could affect the oxidative damage cell death pathway initiated by topoisomerase cleavage complex.

  4. Advantages of an optical nanosensor system for the mechanistic analysis of a novel topoisomerase I targeting drug: a case study.

    Science.gov (United States)

    Andersen, Marie B; Tesauro, Cinzia; Gonzalez, María; Kristoffersen, Emil L; Alonso, Concepción; Rubiales, Gloria; Coletta, Andrea; Frøhlich, Rikke; Stougaard, Magnus; Ho, Yi-Ping; Palacios, Francisco; Knudsen, Birgitta R

    2017-02-02

    The continuous need for the development of new small molecule anti-cancer drugs calls for easily accessible sensor systems for measuring the effect of vast numbers of new drugs on their potential cellular targets. Here we demonstrate the use of an optical DNA biosensor to unravel the inhibitory mechanism of a member of a new family of small molecule human topoisomerase I inhibitors, the so-called indeno-1,5-naphthyridines. By analysing human topoisomerase I catalysis on the biosensor in the absence or presence of added drug complemented with a few traditional assays, we demonstrate that the investigated member of the indeno-1,5-naphthyridine family inhibited human topoisomerase I activity by blocking enzyme-DNA dissociation. To our knowledge, this represents the first characterized example of a small molecule drug that inhibits a post-ligation step of catalysis. The elucidation of a completely new and rather surprising drug mechanism-of-action using an optical real time sensor highlights the value of this assay system in the search for new topoisomerase I targeting small molecule drugs.

  5. Characterization of New Staphylococcal Cassette Chromosome mec (SCCmec) and Topoisomerase Genes in Fluoroquinolone- and Methicillin-Resistant Staphylococcus pseudintermedius▿

    OpenAIRE

    Descloux, Sybill; Rossano, Alexandra; Perreten, Vincent

    2008-01-01

    Fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius isolates harbor two new staphylococcal cassette chromosome mec (SCCmec) elements that belong to class A, allotype 3 (SCCmec II-III), and to the new allotype 5 (SCCmec VII). Analysis of the complete nucleotide sequences of the topoisomerase loci gyrB/gyrA and grlB/grlA revealed mutations involved in fluoroquinolone resistance.

  6. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius.

    Science.gov (United States)

    Descloux, Sybill; Rossano, Alexandra; Perreten, Vincent

    2008-05-01

    Fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius isolates harbor two new staphylococcal cassette chromosome mec (SCCmec) elements that belong to class A, allotype 3 (SCCmec II-III), and to the new allotype 5 (SCCmec VII). Analysis of the complete nucleotide sequences of the topoisomerase loci gyrB/gyrA and grlB/grlA revealed mutations involved in fluoroquinolone resistance.

  7. Cell cycle stage dependent variations in drug-induced topoisomerase II mediated DNA cleavage and cytotoxicity

    International Nuclear Information System (INIS)

    Estey, E.; Adlakha, R.C.; Hittelman, W.N.; Zwelling, L.A.

    1987-01-01

    The DNA cleavage produced by 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) in mammalian cells is putatively mediated by topoisomerase II. The authors found that in synchronized HeLa cells the frequency of such cleavage was 4-15-fold greater in mitosis than in S while the DNA of G 1 and G 2 cells exhibited an intermediate susceptibility to cleavage. The hypersensitivity of mitotic DNA to m-AMSA-induced cleavage was acquired relatively abruptly in late G 2 and was lost similarly abruptly in early G 1 . The susceptibility of mitotic cells to m-AMSA-induced DNA cleavage was not clearly paralleled by an increase in topoisomerase II activity in 350 mM NaCl extracts from mitotic cells compared to similar extracts from cells in G 1 , S, or G 2 . Furthermore, equal amounts of decatenating activity from cells in mitosis and S produced equal amounts of m-AMSA-induced cleavage of simian virus 40 (SV40) DNA; i.e., the interaction between m-AMSA and extractable enzyme was similar in mitosis and S. The DNA of mitotic cells was also hypersensitive to cleavage by 4'-demethylepipodophyllotoxin 4-(4,6-O-ethylidene-β-D-glucopyranoside) (etoposide), a drug that produces topoisomerase II mediated DNA cleavage without binding to DNA. Cell cycle stage dependent fluctuations in m-AMSA-induced DNA cleavage may result from fluctuations in the structure of chromatin per se that occur during the cell cycle. Surprisingly, cell cycle stage dependent differences in m-AMSA-induced DNA cleavage did not correlate with differences in the susceptibility to the cytotoxic effects of the drug. In fact, cells in S were most sensitive to these effects. These results are an exception to the previously observed parallel between the susceptibility of mammalian cells to drug-induced DNA cleavage and the susceptibility of the cells to drug-induced cytotoxicity and indicate the complexity of any relationship between the two phenomena

  8. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases

    OpenAIRE

    Basarab, Gregory S.; Kern, Gunther H.; McNulty, John; Mueller, John P.; Lawrence, Kenneth; Vishwanathan, Karthick; Alm, Richard A.; Barvian, Kevin; Doig, Peter; Galullo, Vincent; Gardner, Humphrey; Gowravaram, Madhusudhan; Huband, Michael; Kimzey, Amy; Morningstar, Marshall

    2015-01-01

    With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resis...

  9. DNA Topoisomerase Inhibitory Activity of Constituents from the Fruits of Illicium verum.

    Science.gov (United States)

    Kim, Tae In; Shin, Bora; Kim, Geum Jin; Choi, Hyukjae; Lee, Chong Soon; Woo, Mi Hee; Oh, Dong-Chan; Son, Jong Keun

    2017-12-01

    Three new compounds, a sesquilignan (1) and two glucosylated phenylpropanoids (2, 3), and seven known compounds (4-10), were isolated from the fruits of Illicium verum HOOK. FIL. (Illiciaceae). The structures of 1-3 were determined based on one and two dimensional (1D- and 2D-) NMR data and electronic circular dichroism (ECD) spectra analyses. Compounds 3, 5, 6, and 8-10 exhibited potent inhibitory activities against topoisomerase II with IC 50 values of 54.6, 25.5, 17.9, 12.1, 0.3 and 1.0 µM, respectively, compared to etoposide, the positive control, with an IC 50 of 43.8 µM.

  10. Topoisomerase I copy number alterations as biomarker for irinotecan efficacy in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Palshof, Jesper Andreas; Hogdall, Estrid Vilma Solyom; Poulsen, Tim Svenstrup

    2017-01-01

    Background No biomarker exists to guide the optimal choice of chemotherapy for patients with metastatic colorectal cancer. We examined the copy numbers (CN) of topoisomerase I (TOP1) as well as the ratios of TOP1/CEN-20 and TOP1/CEN-2 as biomarkers for irinotecan efficacy in patients...... with metastatic colorectal cancer. Methods From a national cohort, we identified 163 patients treated every third week with irinotecan 350 mg/m2 as second-line therapy. Among these 108 were eligible for analyses and thus entered the study. Primary tumors samples were collected and tissue microarray (TMA) blocks...... of the markers TOP1 CN, TOP1/CEN-20-ratio or TOP1/CEN-2-ratio were associated with progression free survival, overall survival or baseline characteristics. Yet, we observed a borderline association for a stepwise increase of the TOP1 CN in relation to objective response as hazard ratio were 1.35 (95% CI 0...

  11. Topoisomerase-1 gene copy aberrations are frequent in patients with breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Balslev, Eva; Poulsen, Tim S.

    2015-01-01

    Topoisomerase-1 (Top1) targeting drugs have shown promising efficacy in patients with metastatic breast cancer (BC). However, these drugs are rather toxic calling for development and validation of predictive biomarkers to increase the therapeutic index. As these drugs are targeting the Top1 protein......, and since no validated anti-Top1 antibodies for immunohistochemistry have been reported, we raised the hypothesis that TOP1 gene amplifications may serve as a proxy for the Top1 protein and thereby a biomarker of response to treatment with Top1 inhibitors in BC. The aim was to determine the prevalence...... of TOP1 gene copy gain in BC. The prevalence of TOP1 gene copy gain was investigated by fluorescence in situ hybridization with a TOP1/CEN-20 probemix in normal breast tissue (N=100) and in tissue from patients with metastatic BC in a discovery (N=100) and a validation cohort (N=205). As amplification...

  12. Phaeophytins from Thyrsacanthus ramosissimus Moric. with inhibitory activity on human DNA topoisomerase II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Analucia Guedes Silveira; Tenorio-Souza, Fabio Henrique; Moura, Marcelo Dantas; Mota, Sabrina Gondim Ribeiro; Silva Lins, Antonio Claudio da; Dias, Celidarque da Silva; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Ciencias Frmaceuticas; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas; Silva, Tania Maria Sarmento da [Universidade Federal Rural de Pernambuco, Recife, PE (Brazil). Dept. de Ciencias Moleculares; Santos, Creusioni Figueredo dos, E-mail: jbarbosa@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Biologia Molecular

    2012-07-01

    Our study reports the extraction and isolation of a new phaeophytin derivative 15{sup 1}-hydroxy-(15{sup 1}-S)-porphyrinolactone, designated anamariaine (1) herein, isolated from the chloroform fraction of aerial parts of Thyrsacanthus ramosissimus Moric. along with the known 15{sup 1}-ethoxy-(15{sup 1}-S)-porphyrinolactone (2). These compounds were identified by usual spectroscopic methods. Both compounds were subjected to in vitro (inhibitory activity) tests by means of supercoiled DNA relaxation techniques and were shown to display inhibitory activity against human DNA topoisomerase II-{alpha} at 50 {mu}M. Interconversion of these two pigments under the mild conditions of the isolation techniques should be highly unlikely but cannot be entirely ruled out. (author)

  13. The gene encoding topoisomerase I from the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Tosh, K; Kilbey, B

    1995-09-22

    Part of the topoisomerase I (TopoI)-encoding gene from Plasmodium falciparum (Pf) was isolated by PCR from cDNA using oligodeoxyribonucleotides modelled on the highly conserved regions of sequence from other species. The entire TopoI gene was obtained by screening a Pf K1 HindIII-EcoRI genomic library in lambda NM1149 with a random-labeled heterologous probe from the Saccharomyces cerevisiae TopoI gene. DNA sequence analysis revealed an open reading frame of 2520 nt encoding a deduced protein of 839 amino acids (aa) with no detectable introns. The Pf TopoI aa sequence has about 40% identity with most eukaryotic TopoI homologues. The gene is located as a single copy on chromosome 5 and Northern analysis identified a transcript of 3.8 kb.

  14. Topoisomerase I as a Biomarker: Detection of Activity at the Single Molecule Level

    DEFF Research Database (Denmark)

    Proszek, Joanna; Roy, Amit; Jakobsen, Ann-Katrine

    2014-01-01

    of hTopI cleavage-religation activity at the single molecule level, may be used to detect posttranslational enzymatic differences influencing CPT response. These differences cannot be detected by analysis of hTopI gene copy number, mRNA amount, or protein amount, and only become apparent upon measuring......Human topoisomerase I (hTopI) is an essential cellular enzyme. The enzyme is often upregulated in cancer cells, and it is a target for chemotherapeutic drugs of the camptothecin (CPT) family. Response to CPT-based treatment is dependent on hTopI activity, and reduction in activity, and mutations...... in hTopI have been reported to result in CPT resistance. Therefore, hTOPI gene copy number, mRNA level, protein amount, and enzyme activity have been studied to explain differences in cellular response to CPT. We show that Rolling Circle Enhanced Enzyme Activity Detection (REEAD), allowing measurement...

  15. Quantitative analysis of topoisomerase IIα to rapidly evaluate cell proliferation in brain tumors

    International Nuclear Information System (INIS)

    Oda, Masashi; Arakawa, Yoshiki; Kano, Hideyuki; Kawabata, Yasuhiro; Katsuki, Takahisa; Shirahata, Mitsuaki; Ono, Makoto; Yamana, Norikazu; Hashimoto, Nobuo; Takahashi, Jun A.

    2005-01-01

    Immunohistochemical cell proliferation analyses have come into wide use for evaluation of tumor malignancy. Topoisomerase IIα (topo IIα), an essential nuclear enzyme, has been known to have cell cycle coupled expression. We here show the usefulness of quantitative analysis of topo IIα mRNA to rapidly evaluate cell proliferation in brain tumors. A protocol to quantify topo IIα mRNA was developed with a real-time RT-PCR. It took only 3 h to quantify from a specimen. A total of 28 brain tumors were analyzed, and the level of topo IIα mRNA was significantly correlated with its immuno-staining index (p < 0.0001, r = 0.9077). Furthermore, it sharply detected that topo IIα mRNA decreased in growth-inhibited glioma cell. These results support that topo IIα mRNA may be a good and rapid indicator to evaluate cell proliferate potential in brain tumors

  16. Woodfruticosin (woodfordin C), a new inhibitor of DNA topoisomerase II. Experimental antitumor activity.

    Science.gov (United States)

    Kuramochi-Motegi, A; Kuramochi, H; Kobayashi, F; Ekimoto, H; Takahashi, K; Kadota, S; Takamori, Y; Kikuchi, T

    1992-11-17

    Woodfruticosin (woodfordin C) (WFC), a new inhibitor of DNA topoisomerase II (topo-II), was isolated from methanol extract of Woodfordia fruticosa Kurz (Lythraceae) and studied for in vitro and in vivo antitumor activities in comparison with Adriamycin (ADR) and etoposide (ETP), well known inhibitors of topo-II. The inhibitory activity against DNA topo-II shown by WFC was much stronger than that shown by ETP or ADR. WFC inhibited strongly intracellular DNA synthesis but not RNA and protein synthesis. On the other hand, WFC had a weaker growth inhibitory activity against various human tumor cells than ETP or ADR, but it showed remarkable activity against PC-1 cells and moderate activity against MKN45 and KB cells. Furthermore, WFC had in vivo growth inhibitory activity against s.c. inoculated colon38. These results indicate that the mechanism by which WFC exhibits antitumor activity may be through inhibition of topo-II.

  17. [Mutations of DNA gyrase and topoisomerase IV in clinical isolates of fluoroquinolone-resistant Proteus mirabilis].

    Science.gov (United States)

    Saito, Ryoichi; Sato, Kenya; Kumita, Wakako; Inami, Natsuko; Nishiyama, Hiroyuki; Okamura, Noboru; Moriya, Kyoji; Koike, Kazuhiko

    2006-02-01

    The presence of fluoroquinolone resistance-associated mutations within the quinolone resistance-determining region of DNA gyrase and topoisomerase IV was investigated genetically in clinical isolates of Proteus mirabilis recovered from patients with urinay tract infections. Two isolates of fluoroquinolone-resistant P. mirabilis possessed the mutations in GyrA (Ser-83 --> Arg or Ile), GyrB (Ser-464 --> Tyr or Phe) and ParC (Ser-80 --> Ile). A novel mutation with Glu-87 --> Lys in GyrA, where suggested to be responsible for fluoroquinolone resistance, was identified. These results demonstrate that the presence of an additional mutation at Glu-87 in GyrA may contribute to high-level fluoroquinolone resistance, too.

  18. Analysis of topoisomerase mutations in fluoroquinolone-resistant and -susceptible Campylobacter jejuni strains isolated in Senegal.

    Science.gov (United States)

    Kinana, Alfred Dieudonné; Cardinale, Eric; Bahsoun, Ibrahim; Tall, Fatou; Sire, Jean-Marie; Garin, Benoit; Boye, Cheikh Saad-Bouh; Dromigny, Jacques-Albert; Perrier-Gros-Claude, Jean-David

    2007-04-01

    In this study, topoisomerase mutations in ciprofloxacin-resistant and -susceptible Campylobacter jejuni were analysed by DNA sequencing. In certain ciprofloxacin-resistant C. jejuni, the mechanism of resistance was complex. The Thr86-Ala substitution in the GyrA protein appears to play a role in increasing the minimum inhibitory concentration of nalidixic acid only. In addition, isolates with this amino acid change and those resistant to quinolones but lacking a mutation in the GyrA quinolone resistance-determining region could be derived from two different clones. Based on gyrA and gyrB polymorphisms, C. jejuni isolates from the Dakar region of Senegal appeared to be less diverse than those from other countries. Moreover, C. jejuni isolates in Senegal appeared to differ from European isolates by lack of a silent mutation at codon 120 of the gyrA gene.

  19. Mutations of human DNA topoisomerase I at poly(ADP-ribose) binding sites: modulation of camptothecin activity by ADP-ribose polymers.

    Science.gov (United States)

    Tesauro, Cinzia; Graziani, Grazia; Arnò, Barbara; Zuccaro, Laura; Muzi, Alessia; D'Annessa, Ilda; Santori, Elettra; Tentori, Lucio; Leonetti, Carlo; Fiorani, Paola; Desideri, Alessandro

    2014-09-17

    DNA topoisomerases are key enzymes that modulate the topological state of DNA through the breaking and rejoining of DNA strands. Human topoisomerase I belongs to the family of poly(ADP-ribose)-binding proteins and is the target of camptothecin derived anticancer drugs. Poly(ADP-ribosyl)ation occurs at specific sites of the enzyme inhibiting the cleavage and enhancing the religation steps during the catalytic cycle. Thus, ADP-ribose polymers antagonize the activity of topoisomerase I poisons, whereas PARP inhibitors increase their antitumor effects. Using site-directed mutagenesis we have analyzed the interaction of human topoisomerase I and poly(ADP-ribose) through enzymatic activity and binding procedures. Mutations of the human topoisomerase I hydrophobic or charged residues, located on the putative polymer binding sites, are not sufficient to abolish or reduce the binding of the poly(ADP-ribose) to the protein. These results suggest either the presence of additional binding sites or that the mutations are not enough perturbative to destroy the poly(ADP-ribose) interaction, although in one mutant they fully abolish the enzyme activity. It can be concluded that mutations at the hydrophobic or charged residues of the putative polymer binding sites do not interfere with the ability of poly(ADP-ribose) to antagonize the antitumor activity of topoisomerase I poisons.

  20. Decreased camptothecin sensitivity of the stem-cell-like fraction of Caco2 cells correlates with an altered phosphorylation pattern of topoisomerase I.

    Science.gov (United States)

    Roy, Amit; Tesauro, Cinzia; Frøhlich, Rikke; Hede, Marianne S; Nielsen, Maria J; Kjeldsen, Eigil; Bonven, Bjarne; Stougaard, Magnus; Gromova, Irina; Knudsen, Birgitta R

    2014-01-01

    The CD44+ and CD44- subpopulations of the colorectal cancer cell line Caco2 were analyzed separately for their sensitivities to the antitumor drug camptothecin. CD44+ cells were less sensitive to camptothecin than CD44- cells. The relative resistance of CD44+ cells was correlated with (i) reduced activity of the nuclear enzyme topoisomerase I and (ii) insensitivity of this enzyme to camptothecin when analyzed in extracts. In contrast, topoisomerase I activity was higher in extracts from CD44- cells and the enzyme was camptothecin sensitive. Topoisomerase I from the two subpopulations were differentially phosphorylated in a manner that appeared to determine the drug sensitivity and activity of the enzyme. This finding was further supported by the fact that phosphorylation of topoisomerase I in CD44+ cell extract by protein kinase CK2 converted the enzyme to a camptothecin sensitive, more active form mimicking topoisomerase I in extracts from CD44- cells. Conversely, dephosphorylation of topoisomerase I in extracts from CD44- cells rendered the enzyme less active and camptothecin resistant. These findings add to our understanding of chemotherapy resistance in the Caco2 CD44+ cancer stem cell model.

  1. Decreased camptothecin sensitivity of the stem-cell-like fraction of Caco2 cells correlates with an altered phosphorylation pattern of topoisomerase I.

    Directory of Open Access Journals (Sweden)

    Amit Roy

    Full Text Available The CD44+ and CD44- subpopulations of the colorectal cancer cell line Caco2 were analyzed separately for their sensitivities to the antitumor drug camptothecin. CD44+ cells were less sensitive to camptothecin than CD44- cells. The relative resistance of CD44+ cells was correlated with (i reduced activity of the nuclear enzyme topoisomerase I and (ii insensitivity of this enzyme to camptothecin when analyzed in extracts. In contrast, topoisomerase I activity was higher in extracts from CD44- cells and the enzyme was camptothecin sensitive. Topoisomerase I from the two subpopulations were differentially phosphorylated in a manner that appeared to determine the drug sensitivity and activity of the enzyme. This finding was further supported by the fact that phosphorylation of topoisomerase I in CD44+ cell extract by protein kinase CK2 converted the enzyme to a camptothecin sensitive, more active form mimicking topoisomerase I in extracts from CD44- cells. Conversely, dephosphorylation of topoisomerase I in extracts from CD44- cells rendered the enzyme less active and camptothecin resistant. These findings add to our understanding of chemotherapy resistance in the Caco2 CD44+ cancer stem cell model.

  2. cDNA cloning of human DNA topoisomerase I. Catalytic activity of a 67.7-kDa carboxyl-terminal fragment

    International Nuclear Information System (INIS)

    D'Arpa, P.; Machlin, P.S.; Ratrie, H. III; Rothfield, N.F.; Cleveland, D.W.; Earnshaw, W.C.

    1988-01-01

    cDNA clones encoding human topoisomerase I were isolated from an expression vector library (λgt11) screened with autoimmune anti-topoisomerase I serum. One of these clones has been expressed as a fusion protein comprised of a 32-kDa fragment of the bacterial TrpE protein linked to 67.7 kDa of protein encoded by the cDNA. Three lines of evidence indicate that the cloned cDNA encodes topoisomerase I. (i) Proteolysis maps of the fusion protein and human nuclear topoisomerase I are essentially identical. (ii) The fusion protein relaxes supercoiled DNA, an activity that can be immunoprecipitated by anti-topoisomerase I serum. (iii) Sequence analysis has revealed that the longest cDNA clone (3645 base pairs) encodes a protein of 765 amino acids that shares 42% identity with Saccharomyces cerevisiae topoisomerase I. The sequence data also show that the catalytically active 67.7-kDa fragment is comprised of the carboxyl terminus

  3. Novel trifluoromethylated 9-amino-3,4-dihydroacridin-1(2H)-ones act as covalent poisons of human topoisomerase IIα.

    Science.gov (United States)

    Infante Lara, Lorena; Sledge, Alexis; Laradji, Amine; Okoro, Cosmas O; Osheroff, Neil

    2017-02-01

    A number of topoisomerase II-targeted anticancer drugs, including amsacrine, utilize an acridine or related aromatic core as a scaffold. Therefore, to further explore the potential of acridine-related compounds to act as topoisomerase II poisons, we synthesized a series of novel trifluoromethylated 9-amino-3,4-dihydroacridin-1(2H)-one derivatives and examined their ability to enhance DNA cleavage mediated by human topoisomerase IIα. Derivatives containing a H, Cl, F, and Br at C7 enhanced enzyme-mediated double-stranded DNA cleavage ∼5.5- to 8.5-fold over baseline, but were less potent than amsacrine. The inclusion of an amino group at C9 was critical for activity. The compounds lost their activity against topoisomerase IIα in the presence of a reducing agent, displayed no activity against the catalytic core of topoisomerase IIα, and inhibited DNA cleavage when incubated with the enzyme prior to the addition of DNA. These findings strongly suggest that the compounds act as covalent, rather than interfacial, topoisomerase II poisons. Published by Elsevier Ltd.

  4. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K; van Wijk, Albert C; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C; van Gulik, Thomas M; Storm, Gert; Heger, Michal

    2016-01-19

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas.

  5. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    International Nuclear Information System (INIS)

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.; Chiou, Robin Y.; Kan, L.-S.; Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y.; Lin, S.-B.

    2008-01-01

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo IIα activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC 50 of 0.9 μM, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC 50 of 9.6 μM, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 μM. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC 50 about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design

  6. Reduction in DNA topoisomerase I level affects growth, phenotype and nucleoid architecture of Mycobacterium smegmatis.

    Science.gov (United States)

    Ahmed, Wareed; Menon, Shruti; Karthik, Pullela V; Nagaraja, Valakunja

    2015-02-01

    The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (TopoI) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. TopoI is essential for Mtb survival. However, the necessity of TopoI or other relaxases in Msm has not been investigated. To recognize the importance of TopoI for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of TopoI in Msm. The TopoI-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in TopoI level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the TopoI-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of TopoI in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in TopoI level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects. © 2015 The Authors.

  7. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα

    Directory of Open Access Journals (Sweden)

    Alam S

    2014-01-01

    Full Text Available Sarfaraz Alam, Feroz KhanMetabolic and Structural Biology Department, Central Institute of Medicinal and Aromatic Plants, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, IndiaAbstract: Due to the high mortality rate in India, the identification of novel molecules is important in the development of novel and potent anticancer drugs. Xanthones are natural constituents of plants in the families Bonnetiaceae and Clusiaceae, and comprise oxygenated heterocycles with a variety of biological activities along with an anticancer effect. To explore the anticancer compounds from xanthone derivatives, a quantitative structure activity relationship (QSAR model was developed by the multiple linear regression method. The structure–activity relationship represented by the QSAR model yielded a high activity–descriptors relationship accuracy (84% referred by regression coefficient (r2=0.84 and a high activity prediction accuracy (82%. Five molecular descriptors – dielectric energy, group count (hydroxyl, LogP (the logarithm of the partition coefficient between n-octanol and water, shape index basic (order 3, and the solvent-accessible surface area – were significantly correlated with anticancer activity. Using this QSAR model, a set of virtually designed xanthone derivatives was screened out. A molecular docking study was also carried out to predict the molecular interaction between proposed compounds and deoxyribonucleic acid (DNA topoisomerase IIα. The pharmacokinetics parameters, such as absorption, distribution, metabolism, excretion, and toxicity, were also calculated, and later an appraisal of synthetic accessibility of organic compounds was carried out. The strategy used in this study may provide understanding in designing novel DNA topoisomerase IIα inhibitors, as well as for other cancer targets.Keywords: drug likeness, ADMET, regression model, HeLa cell line

  8. Dual inhibition of topoisomerases I and IIα by ruthenium(II) complexes containing asymmetric tridentate ligands.

    Science.gov (United States)

    Du, Kejie; Liang, Jiewen; Wang, Yi; Kou, Junfeng; Qian, Chen; Ji, Liangnian; Chao, Hui

    2014-12-14

    Five novel ruthenium(II) complexes, [Ru(dtzp)(dppt)](2+) (1), [Ru(dtzp)(pti)](2+) (2), [Ru(dtzp)(ptn)](2+) (3), [Ru(dtzp)(pta)](2+) (4) and [Ru(dtzp)(ptp)](2+) (5) (where dtzp = 2,6-di(thiazol-2-yl)pyridine, dppt = 3-(1,10-phenanthroline-2-yl)-5,6-diphenyl-as-triazine), pti = 3-(1,10-phenanthroline-2-yl)-as-triazino-[5,6-f]isatin, ptn = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]naphthalene, pta = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]acenaphthylene, and ptp = 3-(1,10-phenanthroline-2-yl)-as-triazino[5,6-f]-phenanthrene), were synthesised and characterised. The structures of complexes 3-5 were determined by X-ray diffraction. The DNA binding behaviours of the complexes were studied by spectroscopic and viscosity measurements. The results suggested that the Ru(II) complexes, except for complex 1, bind to DNA in an intercalative mode. Topoisomerase inhibition and DNA strand passage assay confirmed that Ru(II) complexes 3, 4, and 5 acted as efficient dual inhibitors of topoisomerases I and IIα. In vitro cytotoxicity assays indicated that these complexes exhibited anticancer activity against various cancer cell lines. Ruthenium(ii) complexes were confirmed to preferentially accumulate in the nucleus of cancer cells and induced DNA damage. Flow cytometric analysis and AO/EB staining assays indicated that these complexes induced cell apoptosis. With the loss of the mitochondrial membrane potential, the Ru(ii) complexes induce apoptosis via the mitochondrial pathway.

  9. Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons.

    Science.gov (United States)

    Huelsenbeck, Stefanie C; Schorr, Anne; Roos, Wynand P; Huelsenbeck, Johannes; Henninger, Christian; Kaina, Bernd; Fritz, Gerhard

    2012-11-09

    To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons.

  10. Rac1 Protein Signaling Is Required for DNA Damage Response Stimulated by Topoisomerase II Poisons*

    Science.gov (United States)

    Huelsenbeck, Stefanie C.; Schorr, Anne; Roos, Wynand P.; Huelsenbeck, Johannes; Henninger, Christian; Kaina, Bernd; Fritz, Gerhard

    2012-01-01

    To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons. PMID:23012366

  11. Activity of Topotecan toward the DNA/Topoisomerase I Complex: A Theoretical Rationalization.

    Science.gov (United States)

    Bali, Semiha Kevser; Marion, Antoine; Ugur, Ilke; Dikmenli, Ayse Kumru; Catak, Saron; Aviyente, Viktorya

    2018-03-06

    Topotecan (TPT) is a nontoxic anticancer drug characterized by a pH-dependent lactone/carboxyl equilibrium. TPT acts on the covalently bonded DNA/topoisomerase I (DNA/TopoI) complex by intercalating between two DNA bases at the active site. This turns TopoI into a DNA-damaging agent and inhibits supercoil relaxation. Although only the lactone form of the drug is active and effectively inhibits TopoI, both forms have been co-crystallized at the same location within the DNA/TopoI complex. To gain further insights into the pH-dependent activity of TPT, the differences between two TPT:DNA/TopoI complexes presenting either the lactone (acidic pH) or the carboxyl (basic pH) form of TPT were studied by means of molecular dynamic simulations, quantum mechanical/molecular mechanical calculations, and topological analysis. We identified two specific amino acids that have a direct relationship with the activity of the drug, i.e., lysine 532 (K532) and asparagine 722 (N722). K532 forms a stable hydrogen bond bridge between TPT and DNA only when the drug is in its active lactone form. The presence of the active drug triggers the formation of an additional stable interaction between DNA and protein residues, where N722 acts as a bridge between the two fragments, thus increasing the binding affinity of DNA for TopoI and further slowing the release of DNA. Overall, our results provide a clear understanding of the activity of the TPT-like class of molecules and can help in the future design of new anticancer drugs targeting topoisomerase enzymes.

  12. Target-based resistance in Pseudomonas aeruginosa and Escherichia coli to NBTI 5463, a novel bacterial type II topoisomerase inhibitor.

    Science.gov (United States)

    Nayar, Asha S; Dougherty, Thomas J; Reck, Folkert; Thresher, Jason; Gao, Ning; Shapiro, Adam B; Ehmann, David E

    2015-01-01

    In a previous report (T. J. Dougherty, A. Nayar, J. V. Newman, S. Hopkins, G. G. Stone, M. Johnstone, A. B. Shapiro, M. Cronin, F. Reck, and D. E. Ehmann, Antimicrob Agents Chemother 58:2657-2664, 2014), a novel bacterial type II topoisomerase inhibitor, NBTI 5463, with activity against Gram-negative pathogens was described. First-step resistance mutations in Pseudomonas aeruginosa arose exclusively in the nfxB gene, a regulator of the MexCD-OprJ efflux pump system. The present report describes further resistance studies with NBTI 5463 in both Pseudomonas aeruginosa and Escherichia coli. Second-step mutations in P. aeruginosa arose at aspartate 82 of the gyrase A subunit and led to 4- to 8-fold increases in the MIC over those seen in the parental strain with a first-step nfxB efflux mutation. A third-step mutant showed additional GyrA changes, with no changes in topoisomerase IV. Despite repeated efforts, resistance mutations could not be selected in E. coli. Genetic introduction of the Asp82 mutations observed in P. aeruginosa did not significantly increase the NBTI MIC in E. coli. However, with the aspartate 82 mutation present, it was possible to select second-step mutations in topoisomerase IV that did lead to MIC increases of 16- and 128-fold. As with the gyrase aspartate 82 mutation, the mutations in topoisomerase IV did not by themselves raise the NBTI MIC in E. coli. Only the presence of mutations in both targets of E. coli led to an increase in NBTI MIC values. This represents a demonstration of the value of balanced dual-target activity in mitigating resistance development. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Topoisomerase Mutations in Fluoroquinolone-Resistant and Methicillin-Susceptible and -Resistant Clinical Isolates of Staphylococcus aureus

    OpenAIRE

    Kaatz, Glenn W.; Seo, Susan M.

    1998-01-01

    The incidence of the various mutations in the genes encoding topoisomerase IV and DNA gyrase in fluoroquinolone-resistant clinical isolates of Staphylococcus aureus is not known. Using restriction fragment length polymorphism analysis and DNA sequencing, we found that in fluoroquinolone- and methicillin-resistant strains, mutations in grlA and gyrA are quite likely to be present together. For fluoroquinolone-resistant but methicillin-susceptible strains, mutations in grlA alone are more common.

  14. Characterization of New Staphylococcal Cassette Chromosome mec (SCCmec) and Topoisomerase Genes in Fluoroquinolone- and Methicillin-Resistant Staphylococcus pseudintermedius▿

    Science.gov (United States)

    Descloux, Sybill; Rossano, Alexandra; Perreten, Vincent

    2008-01-01

    Fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius isolates harbor two new staphylococcal cassette chromosome mec (SCCmec) elements that belong to class A, allotype 3 (SCCmec II-III), and to the new allotype 5 (SCCmec VII). Analysis of the complete nucleotide sequences of the topoisomerase loci gyrB/gyrA and grlB/grlA revealed mutations involved in fluoroquinolone resistance. PMID:18305127

  15. Exploring Left-Hand-Side substitutions in the benzoxazinone series of 4-amino-piperidine bacterial type IIa topoisomerase inhibitors.

    Science.gov (United States)

    Geng, Bolin; Comita-Prevoir, Janelle; Eyermann, Charles J; Reck, Folkert; Fisher, Stewart

    2011-09-15

    An SAR survey at the C-6 benzoxazinone position of a novel scaffold which inhibits bacterial type IIa topoisomerase demonstrates that a range of small electron donating groups (EDG) and electron withdrawing groups (EWG) are tolerated for antibacterial activity. Cyano was identified as a preferred substituent that affords good antibacterial potency while minimizing hERG cardiac channel activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants.

    Science.gov (United States)

    Hartung, F; Puchta, H

    2001-06-13

    The Spo11 protein is an eukaryotic homologue of the topoisomerase 6 subunit A from archaebacteria. In yeast Spo11p has been found to bind covalently to double-strand breaks (DSBs) during meiosis. Single homologues of the SPO11 gene exist in various eukaryotes, except plants. Previously, we found in the Arabidopsis thaliana genome two ancient paralogs, AtSPO11-1 and 2. Here we report on the molecular characterization of a third one, AtSPO11-3. This puzzling finding might be explained by the fact that we detected additionally--for the first time outside of the archaebacterial kingdom--a homologue of the subunit B of topoisomerase 6, AtTOP6B. Both AtSPO11-3 and AtTOP6B are abundantly expressed in Arabidopsis and EST comparisons indicate the presence of both genes in various plant species. Via two hybrid studies we could demonstrate that full length AtTop6B is able to interact with AtSpo11-2 and 3 but not with AtSpo11-1. Our data suggest that plants possess in contrast to other eukaryotes an additional archaebacterial kind of topoisomerase.

  17. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: Relationship with DNA binding affinity and cytotoxicity

    International Nuclear Information System (INIS)

    Capranico, G.; Kohn, K.W.; Pommier, Y.; Zunino, F.

    1990-01-01

    Topoisomerase II mediated double-strand breaks produced by anthracycline analogues were studied in SV40 DNA. The compounds included doxorubicin, daunorubicin, two doxorubicin stereoisomers (4'-epimer and β-anomer), and five chromophore-modified derivatives, with a wide range of cytotoxic activity and DNA binding affinity. Cleavage of 32 P-end-labeled DNA fragments was visualized by autoradiography of agarose and polyacrylamide gels. Structure-activity relationships indicated that alterations in the chromophore structure greatly affected drug action on topoisomerase II. In particular, removal of substituents on position 4 of the D ring resulted in more active inducers of cleavage with lower DNA binding affinity. The stereochemistry between the sugar and the chromophore was also essential for activity. All the active anthracyclines induced a single region of prominent cleavage in the entire SV40 DNA, which resulted from a cluster of sites between nucleotides 4237 and 4294. DNA cleavage intensity patterns exhibited differences among analogues and were also dependent upon drug concentration. Intensity at a given site dependent on both stimulatory and suppressive effects depending upon drug concentration and DNA sequence. A good correlation was found between cytotoxicity and intensity of topoisomerase II mediated DNA breakage

  18. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance

    Science.gov (United States)

    Aldred, Katie J.; McPherson, Sylvia A.; Turnbough, Charles L.; Kerns, Robert J.; Osheroff, Neil

    2013-01-01

    Although quinolones are the most commonly prescribed antibacterials, their use is threatened by an increasing prevalence of resistance. The most common causes of quinolone resistance are mutations of a specific serine or acidic residue in the A subunit of gyrase or topoisomerase IV. These amino acids are proposed to serve as a critical enzyme-quinolone interaction site by anchoring a water-metal ion bridge that coordinates drug binding. To probe the role of the proposed water-metal ion bridge, we characterized wild-type, GrlAE85K, GrlAS81F/E85K, GrlAE85A, GrlAS81F/E85A and GrlAS81F Bacillus anthracis topoisomerase IV, their sensitivity to quinolones and related drugs and their use of metal ions. Mutations increased the Mg2+ concentration required to produce maximal quinolone-induced DNA cleavage and restricted the divalent metal ions that could support quinolone activity. Individual mutation of Ser81 or Glu85 partially disrupted bridge function, whereas simultaneous mutation of both residues abrogated protein–quinolone interactions. Results provide functional evidence for the existence of the water-metal ion bridge, confirm that the serine and glutamic acid residues anchor the bridge, demonstrate that the bridge is the primary conduit for interactions between clinically relevant quinolones and topoisomerase IV and provide a likely mechanism for the most common causes of quinolone resistance. PMID:23460203

  19. QSAR Modeling on Benzo[c]phenanthridine Analogues as Topoisomerase I Inhibitors and Anti-cancer Agents

    Directory of Open Access Journals (Sweden)

    Thi-Ngoc-Phuong Huynh

    2012-05-01

    Full Text Available Benzo[c]phenanthridine (BCP derivatives were identified as topoisomerase I (TOP-I targeting agents with pronounced antitumor activity. In this study, hologram-QSAR, 2D-QSAR and 3D-QSAR models were developed for BCPs on topoisomerase I inbibitory activity and cytotoxicity against seven tumor cell lines including RPMI8402, CPT-K5, P388, CPT45, KB3-1, KBV-1and KBH5.0. The hologram, 2D, and 3D-QSAR models were obtained with the square of correlation coefficient R2 = 0.58 − 0.77, the square of the crossvalidation coefficient q2 = 0.41 − 0.60 as well as the external set’s square of predictive correlation coefficient r2 = 0.51 − 0.80. Moreover, the assessment method based on reliability test with confidence level of 95% was used to validate the predictive power of QSAR models and to prevent over-fitting phenomenon of classical QSAR models. Our QSAR model could be applied to design new analogues of BCPs with higher antitumor and topoisomerase I inhibitory activity.

  20. Bacillus anthracis GrlAV96A topoisomerase IV, a quinolone resistance mutation that does not affect the water-metal ion bridge.

    Science.gov (United States)

    Aldred, Katie J; Breland, Erin J; McPherson, Sylvia A; Turnbough, Charles L; Kerns, Robert J; Osheroff, Neil

    2014-12-01

    The rise in quinolone resistance is threatening the clinical use of this important class of broad-spectrum antibacterials. Quinolones kill bacteria by increasing the level of DNA strand breaks generated by the type II topoisomerases gyrase and topoisomerase IV. Most commonly, resistance is caused by mutations in the serine and acidic amino acid residues that anchor a water-metal ion bridge that facilitates quinolone-enzyme interactions. Although other mutations in gyrase and topoisomerase IV have been reported in quinolone-resistant strains, little is known regarding their contributions to cellular quinolone resistance. To address this issue, we characterized the effects of the V96A mutation in the A subunit of Bacillus anthracis topoisomerase IV on quinolone activity. The results indicate that this mutation causes an ∼ 3-fold decrease in quinolone potency and reduces the stability of covalent topoisomerase IV-cleaved DNA complexes. However, based on metal ion usage, the V96A mutation does not disrupt the function of the water-metal ion bridge. A similar level of resistance to quinazolinediones (which do not use the bridge) was seen. V96A is the first topoisomerase IV mutation distal to the water-metal ion bridge demonstrated to decrease quinolone activity. It also represents the first A subunit mutation reported to cause resistance to quinazolinediones. This cross-resistance suggests that the V96A change has a global effect on the structure of the drug-binding pocket of topoisomerase IV. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Effect of cellular ATP depletion on topoisomerase II poisons. Abrogation Of cleavable-complex formation by etoposide but not by amsacrine.

    Science.gov (United States)

    Sorensen, M; Sehested, M; Jensen, P B

    1999-03-01

    Topoisomerase (topo) II poisons have been categorized into ATP-independent and -dependent drugs based on in vitro studies. We investigated drug-induced topoII-DNA complexes in intact cells almost completely depleted of ATP. Virtually no DNA single-strand breaks (SSBs), as measured by alkaline elution, were detected in energy-depleted cells treated with the topoII poisons etoposide, teniposide, daunorubicin, doxorubicin, mitoxantrone, or clerocidin. This inhibition was reversible; subsequent incubation with glucose restored the level of DNA SSBs. The effect of ATP depletion was specific for topoII, because topoI-mediated cleavable complexes induced by camptothecin were unaffected by ATP depletion. Furthermore, etoposide-induced DNA-protein complexes and DNA double-strand breaks, as measured by filter elution techniques, and topoIIalpha and -beta trapping, as measured by a band depletion assay, were completely inhibited by energy depletion. Differences in drug transport could not explain the effect of ATP depletion. The topoII poison amsacrine (m-AMSA) was unique with respect to ATP dependence. In ATP-depleted cells, m-AMSA-induced DNA SSBs, DNA double-strand breaks, DNA-protein complexes, topoIIalpha and -beta trapping were only modestly reduced. The accumulation of m-AMSA was reduced in ATP-depleted cells, which indicates that drug transport could contribute to the modest decrease in m-AMSA-induced cleavable complexes. In conclusion, drug-induced topoII-DNA complexes were completely antagonized in ATP-depleted cells, except in the case of m-AMSA. One possible interpretation is that m-AMSA mainly produces prestrand passage DNA lesions, whereas the other topoII poisons tested exclusively stabilize poststrand passage DNA lesions in intact cells.

  2. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  3. HIV-1 reverse transcription.

    Science.gov (United States)

    Hu, Wei-Shau; Hughes, Stephen H

    2012-10-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.

  4. Chromosome damage induced by DNA topoisomerase II inhibitors combined with g-radiation in vitro

    Directory of Open Access Journals (Sweden)

    Maria Cristina P. Araújo

    1998-09-01

    Full Text Available Combined radiation and antineoplastic drug treatment have important applications in cancer therapy. In the present work, an evaluation was made of two known topoisomerase II inhibitors, doxorubicin (DXR and mitoxantrone (MXN, with g-radiation. The effects of DXR or MXN on g-radiation-induced chromosome aberrations in Chinese hamster ovary (CHO cells were analyzed. Two concentrations of each drug, 0.5 and 1.0 µg/ml DXR, and 0.02 and 0.04 µg/ml MXN, were applied in combination with two doses of g-radiation (20 and 40 cGy. A significant potentiating effect on chromosomal aberrations was observed in CHO cells exposed to 1.0 µg/ml DXR plus 40 cGy. In the other tests, the combination of g-radiation with DXR or MXN gave approximately additive effects. Reduced mitotic indices reflected higher toxicity of the drugs when combined with radiation.A associação de radiação ionizante com drogas antineoplásicas tem importante aplicação na terapia do câncer. No presente trabalho, foram avaliados os efeitos de dois inibidores de topoisomerase II, doxorubicina (DXR e mitoxantrona (MXN, sobre as aberrações cromossômicas induzidas pelas radiações-g em células do ovário de hamster chinês (CHO. Foram usadas as concentrações 0,5 e 1,0 mg/ml de DXR e 0,02 e 0,04 mg/ml de MXN, combinadas com duas doses de radiações gama (20 e 40 cGy. Um significativo efeito potenciador das aberrações cromossômicas foi observado em células CHO tratadas com 1,0 mg/ml de DXR e expostas a 40 cGy de radiação. Nos outros testes, a combinação da radiação-g com a DXR ou MXN apresentou um efeito próximo ao aditivo. A redução dos índices mitóticos refletiu a alta citotoxicidade das drogas quando combinadas às radiações-g.

  5. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.

    Science.gov (United States)

    Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando

    2016-10-01

    African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF

  6. Frequent topoisomerase IV mutations associated with fluoroquinolone resistance in Ureaplasma species.

    Science.gov (United States)

    Song, Jingjuan; Qiao, Yingli; Kong, Yingying; Ruan, Zhi; Huang, Jun; Song, Tiejun; Zhang, Jun; Xie, Xinyou

    2015-11-01

    This study aimed to investigate the role of quinolone resistance-determining regions (QRDRs) of DNA gyrase (encoded by gyrA and gyrB) and topoisomerase IV (encoded by parC and parE) associated with fluoroquinolone resistance. A total of 114 Ureaplasma spp. strains, isolated from clinical female patients with symptomatic infection, were tested for species distribution and susceptibility to four fluoroquinolones. Moreover, we analysed the QRDRs and compared these with 14 ATCC reference strains of Ureaplasma spp. serovars to identify mutations that caused antimicrobial resistance. Our study indicated that moxifloxacin was the most effective fluoroquinolone against Ureaplasma spp. (MIC range: 0.125-32 μg ml⁻¹). However, extremely high MICs were estimated for ciprofloxacin (MIC range: 1-256 μg ml⁻¹) and ofloxacin (MIC range: 0.5-128 μg ml⁻¹), followed by levofloxacin (MIC range: 0.5-64 μg ml⁻¹). Seven amino acid substitutions were discovered in GyrB, ParC and ParE, but not in GyrA. Ser-83 → Leu/Trp (C248T/G) in ParC and Arg-448 → Lys (G1343A) in ParE, which were potentially responsible for fluoroquinolone resistance, were observed in 89 (77.2 %) and three (2.6 %) strains, respectively. Pro-462 → Ser (C1384T), Asn-481 → Ser (A1442G) and Ala-493 → Val (C1478T) in GyrB and Met-105 → Ile (G315T) in ParC seemed to be neutral polymorphisms, and were observed and occurred along with the amino acid change of Ser-83 → Leu (C248T) in ParC. Interestingly, two novel mutations of ParC and ParE were independently found in four strains. These observations suggest that amino acid mutation in topoisomerase IV appears to be the leading cause of fluoroquinolone resistance, especially the mutation of Ser-83 → Leu (C248T) in ParC. Moxifloxacin had the best activity against strains with Ser-83 → Leu mutation.

  7. A surface plasmon resonance study of the intermolecular interaction between Escherichia coli topoisomerase I and pBAD/Thio supercoiled plasmid DNA

    Science.gov (United States)

    Tiwari, Purushottam Babu; Annamalai, Thirunavukkarasu; Cheng, Bokun; Narula, Gagandeep; Wang, Xuewen; Tse-Dinh, Yuk-Ching; He, Jin; Darici, Yesim

    2014-01-01

    To date, the bacterial DNA topoisomerases are one of the major target biomolecules for the discovery of new antibacterial drugs. DNA topoisomerase regulates the topological state of DNA, which is very important for replication, transcription and recombination. The relaxation of negatively supercoiled DNA is catalyzed by bacterial DNA topoisomerase I (topoI) and this reaction requires Mg2+. In this report, we first quantitatively studied the intermolecular interactions between Escherichia coli topoisomerase I (EctopoI) and pBAD/Thio supercoiled plasmid DNA using surface plasmon resonance (SPR) technique. The equilibrium dissociation constant (Kd) for EctopoI-pBAD/Thio interactions is determined to be about 8 nM. We then studied the effect of Mg2+ on the catalysis of EctopoI-pBAD/Thio reaction. A slightly higher equilibrium dissociation constant (~15 nM) was obtained for Mg2+ coordinated EctopoI (Mg2+EctopoI)-pBAD/Thio interactions. In addition, we observed a larger dissociation rate constant (kd) for Mg2+EctopoI-pBAD/Thio interactions (~0.043 s−1), compared to EctopoI-pBAD/Thio interactions (~0.017 s−1). These results suggest that enzyme turnover during plasmid DNA relaxation is enhanced due to the presence of Mg2+ and furthers the understanding of importance of the Mg2+ ion for bacterial topoisomerase I catalytic activity. PMID:24530905

  8. The Strictly Conserved Arg-321 Residue in the Active Site of Escherichia coli Topoisomerase I Plays a Critical Role in DNA Rejoining*

    Science.gov (United States)

    Narula, Gagandeep; Annamalai, Thirunavukkarasu; Aedo, Sandra; Cheng, Bokun; Sorokin, Elena; Wong, Agnes; Tse-Dinh, Yuk-Ching

    2011-01-01

    The strictly conserved arginine residue proximal to the active site tyrosine of type IA topoisomerases is required for the relaxation of supercoiled DNA and was hypothesized to be required for positioning of the scissile phosphate for DNA cleavage to take place. Mutants of recombinant Yersinia pestis topoisomerase I with hydrophobic substitutions at this position were found in genetic screening to exhibit a dominant lethal phenotype, resulting in drastic loss in Escherichia coli viability when overexpressed. In depth biochemical analysis of E. coli topoisomerase I with the corresponding Arg-321 mutation showed that DNA cleavage can still take place in the absence of this arginine function if Mg2+ is present to enhance the interaction of the enzyme with the scissile phosphate. However, DNA rejoining is inhibited in the absence of this conserved arginine, resulting in accumulation of the cleaved covalent intermediate and loss of relaxation activity. These new experimental results demonstrate that catalysis of DNA rejoining by type IA topoisomerases has a more stringent requirement than DNA cleavage. In addition to the divalent metal ions, the side chain of this arginine residue is required for the precise positioning of the phosphotyrosine linkage for nucleophilic attack by the 3′-OH end to result in DNA rejoining. Small molecules that can interfere or distort the enzyme-DNA interactions required for DNA rejoining by bacterial type IA topoisomerases could be developed into novel antibacterial drugs. PMID:21478161

  9. A surface plasmon resonance study of the intermolecular interaction between Escherichia coli topoisomerase I and pBAD/Thio supercoiled plasmid DNA.

    Science.gov (United States)

    Tiwari, Purushottam Babu; Annamalai, Thirunavukkarasu; Cheng, Bokun; Narula, Gagandeep; Wang, Xuewen; Tse-Dinh, Yuk-Ching; He, Jin; Darici, Yesim

    2014-03-07

    To date, the bacterial DNA topoisomerases are one of the major target biomolecules for the discovery of new antibacterial drugs. DNA topoisomerase regulates the topological state of DNA, which is very important for replication, transcription and recombination. The relaxation of negatively supercoiled DNA is catalyzed by bacterial DNA topoisomerase I (topoI) and this reaction requires Mg(2+). In this report, we first quantitatively studied the intermolecular interactions between Escherichia coli topoisomerase I (EctopoI) and pBAD/Thio supercoiled plasmid DNA using surface plasmon resonance (SPR) technique. The equilibrium dissociation constant (Kd) for EctopoI-pBAD/Thio interactions was determined to be about 8 nM. We then studied the effect of Mg(2+) on the catalysis of EctopoI-pBAD/Thio reaction. A slightly higher equilibrium dissociation constant (~15 nM) was obtained for Mg(2+) coordinated EctopoI (Mg(2+)EctopoI)-pBAD/Thio interactions. In addition, we observed a larger dissociation rate constant (kd) for Mg(2+)EctopoI-pBAD/Thio interactions (~0.043 s(-1)), compared to EctopoI-pBAD/Thio interactions (~0.017 s(-1)). These results suggest that enzyme turnover during plasmid DNA relaxation is enhanced due to the presence of Mg(2+) and furthers the understanding of importance of the Mg(2+) ion for bacterial topoisomerase I catalytic activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress

    Science.gov (United States)

    Doshi, Kshama A.; Trotta, Rossana; Natarajan, Karthika; Rassool, Feyruz V.; Tron, Adriana E.; Huszar, Dennis; Perrotti, Danilo; Baer, Maria R.

    2016-01-01

    Internal tandem duplication of fms-like tyrosine kinase-3 (FLT3-ITD) is frequent (30 percent) in acute myeloid leukemia (AML), and is associated with short disease-free survival following chemotherapy. The serine threonine kinase Pim-1 is a pro-survival oncogene transcriptionally upregulated by FLT3-ITD that also promotes its signaling in a positive feedback loop. Thus inhibiting Pim-1 represents an attractive approach in targeting FLT3-ITD cells. Indeed, co-treatment with the pan-Pim kinase inhibitor AZD1208 or expression of a kinase-dead Pim-1 mutant sensitized FLT3-ITD cell lines to apoptosis triggered by chemotherapy drugs including the topoisomerase 2 inhibitors daunorubicin, etoposide and mitoxantrone, but not the nucleoside analog cytarabine. AZD1208 sensitized primary AML cells with FLT3-ITD to topoisomerase 2 inhibitors, but did not sensitize AML cells with wild-type FLT3 or remission bone marrow cells, supporting a favorable therapeutic index. Mechanistically, the enhanced apoptosis observed with AZD1208 and topoisomerase 2 inhibitor combination treatment was associated with increased DNA double-strand breaks and increased levels of reactive oxygen species (ROS), and co-treatment with the ROS scavenger N-acetyl cysteine rescued FLT3-ITD cells from AZD1208 sensitization to topoisomerase 2 inhibitors. Our data support testing of Pim kinase inhibitors with topoisomerase 2 inhibitors, but not with cytarabine, to improve treatment outcomes in AML with FLT3-ITD. PMID:27374090

  11. QUANTITATION OF DNA TOPOISOMERASE-II-ALPHA MESSENGER-RIBONUCLEIC-ACID LEVELS IN A SMALL-CELL LUNG-CANCER CELL-LINE AND 2 DRUG-RESISTANT SUBLINES USING A POLYMERASE CHAIN REACTION-AIDED TRANSCRIPT TITRATION ASSAY

    NARCIS (Netherlands)

    WITHOFF, S; SMIT, EF; MEERSMA, GJ; van den Berg, Anke; TIMMERBOSSCHA, H; KOK, K; POSTMUS, PE; MULDER, NH; DEVRIES, EGE; BUYS, CHCM

    BACKGROUND: We have modified a polymerase chain reaction (PCR)-aided transcript titration assay (1) in order to allow quantitation of low amounts of DNA topoisomerase II alpha mRNA in small RNA samples. EXPERIMENTAL DESIGN: The titration assay was used to quantitate the amount of DNA topoisomerase

  12. Reverse logistics - a framework

    OpenAIRE

    de Brito, M.P.; Dekker, R.

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of products, processes and actors. In addition we provide a decision framework for Reverse Logistics and we present it according to long, medium and short term decisions, i.e. strategic-tactic-operational decis...

  13. HIV-1 Reverse Transcription

    OpenAIRE

    Hu, Wei-Shau; Hughes, Stephen H.

    2012-01-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name “retrovirus” derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral fact...

  14. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  15. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    Science.gov (United States)

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  16. Resveratrol Modulates the Topoisomerase Inhibitory Potential of Doxorubicin in Human Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Anika Schroeter

    2014-12-01

    Full Text Available Resveratrol (RSV is currently being widely discussed as potentially useful for anticancer therapy in combination with classical chemotherapeutics, e.g., the topoisomerase II (TOP II poison doxorubicin (DOX. However, there is still a lack of knowledge of possible interference at the target enzyme, especially since RSV itself has recently been described to act as a TOP poison. We therefore sought to address the question whether RSV affects DOX-induced genotoxic and cytotoxic effects with special emphasis on TOP II in HT-29 colon carcinoma cells. RSV was found to counteract DOX-induced formation of DNA-TOP-intermediates at ≥100 µM for TOP IIα and at 250 µM for TOP IIβ. As a consequence, RSV modulated the DNA-strand breaking potential of DOX by mediating protective effects with an apparent maximum at 100 µM. At higher concentration ranges (≥200 µM RSV diminished the intracellular concentrations of DOX. Nevertheless, the presence of RSV slightly enhanced the cytotoxic effects of DOX after 1.5 h and 24 h of incubation. Taken together, at least in cell culture RSV was found to affect the TOP-poisoning potential of DOX and to modulate its cytotoxic effectiveness. Thus, further studies are needed to clarify the impact of RSV on the therapeutic effectiveness of DOX under in vivo conditions.

  17. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion

    Directory of Open Access Journals (Sweden)

    Priya Luthra

    2017-04-01

    Full Text Available Ebola virus (EBOV protein VP35 inhibits production of interferon alpha/beta (IFN by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication.

  18. Antioxidant, cyclooxygenase and topoisomerase inhibitory compounds from Apium graveolens Linn. seeds.

    Science.gov (United States)

    Momin, R A; Nair, M G

    2002-05-01

    Cyclooxygenase inhibitory and antioxidant bioassay-directed extraction and purification of celery seeds yielded sedanolide (1), senkyunolide-N (2), senkyunolide-J (3), 3-hydroxymethyl-6-methoxy-2,3-dihydro-1H-indol-2-ol (4), L-tryptophan (6), and 7-[3-(3,4-dihydroxy-4-hydroxymethyl-tetrahydro-furan-2-yloxy)-4,5-dihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy]-5-hydroxy-2-(4-hydroxy-3-methoxy-phenyl)-chromen-4-one (7). The structures of compounds 1-7 were determined using spectroscopic methods. Compound 4 is reported here for the first time. At 250 pg ml(-1), compounds 1-4, 6 and 7 displayed prostaglandin H endoperoxide synthase-I (COX-I) and prostaglandin H endoperoxide synthase-II (COX-II) inhibitory activities at pH 7. The acetylated product (5) of compound 4 also inhibited COX-I and COX-II enzymes when tested at 250 microg ml(-1). Compounds 6 and 7 exhibited good antioxidant activity at concentrations of 125 and 250 microg ml(-1). Only compounds 1-3 exhibited topoisomerase-I and -II enzyme inhibitory activity at concentrations of 100, 200 and 200 microg ml(-1), respectively.

  19. Topoisomerase-1 gene copy aberrations are frequent in patients with breast cancer

    DEFF Research Database (Denmark)

    Kümler, Iben; Balslev, Eva; Poulsen, Tim Svenstrup

    2015-01-01

    Topoisomerase-1 (Top1) targeting drugs have shown promising efficacy in patients with metastatic breast cancer (BC). However, these drugs are rather toxic calling for development and validation of predictive biomarkers to increase the therapeutic index. As these drugs are targeting the Top1 protein...... of 20q including CEN-20 is common in BC a TOP1/CEN-2 probemix was applied to the validation cohort. More than 30% of the patients had gene copy numbers of ≥ 4 and approximately 20% of the patients had TOP1/CEN-20 ratios ≥ 1.5. The CEN-2 probe did not add any information. Gain of the TOP1 gene appears...... of TOP1 gene copy gain in BC. The prevalence of TOP1 gene copy gain was investigated by fluorescence in situ hybridization with a TOP1/CEN-20 probemix in normal breast tissue (N=100) and in tissue from patients with metastatic BC in a discovery (N=100) and a validation cohort (N=205). As amplification...

  20. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links.

    Science.gov (United States)

    Schellenberg, Matthew J; Lieberman, Jenna Ariel; Herrero-Ruiz, Andrés; Butler, Logan R; Williams, Jason G; Muñoz-Cabello, Ana M; Mueller, Geoffrey A; London, Robert E; Cortés-Ledesma, Felipe; Williams, R Scott

    2017-09-29

    Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Synthesis, DNA Binding and Topoisomerase I Inhibition Activity of Thiazacridine and Imidazacridine Derivatives

    Directory of Open Access Journals (Sweden)

    Elizabeth Almeida Lafayette

    2013-12-01

    Full Text Available Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.

  2. Topoisomerase IIbeta is required for proper retinal development and survival of postmitotic cells

    Directory of Open Access Journals (Sweden)

    Ying Li

    2014-01-01

    Topoisomerase IIbeta (Top2b is an enzyme that modulates DNA supercoiling by catalyzing the passage of DNA duplexes through one another. It is ubiquitously expressed in postmitotic cells and known to function during the development of neuromuscular junctions in the diaphragm and the proper formation of laminar structure in the cerebral cortex. However, due to the perinatal death phenotype of the traditional constitutive and brain-specific Top2b knockout mice, the precise in vivo function of Top2b, especially during postnatal neural development, remains to be determined. Using both the constitutive and retina-specific knockout mouse models, we showed that Top2b deficiency resulted in delayed neuronal differentiation, degeneration of the plexiform layers and outer segment of photoreceptors, as well as dramatic reduction in cell number in the retina. Genome-wide transcriptome analysis by RNA sequencing revealed that genes involved in neuronal survival and neural system development were preferentially affected in Top2b-deficient retinas. Collectively, our findings have indicated an important function of Top2b in proper development and the maintenance/survival of postmitotic neurons in the retina.

  3. Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase II alpha inhibition.

    Science.gov (United States)

    Nateewattana, Jintapat; Dutta, Suman; Reabroi, Somrudee; Saeeng, Rungnapha; Kasemsook, Sakkasem; Chairoungdua, Arthit; Weerachayaphorn, Jittima; Wongkham, Sopit; Piyachaturawat, Pawinee

    2014-01-15

    Cholangiocarcinoma (CCA), the common primary malignant tumor of bile duct epithelial cells, is unresponsive to most chemotherapeutic drugs. Diagnosis with CCA has a poor prognosis, and therefore urgently requires effective therapeutic agents. In the present study we investigated anti-cancer effects of andrographolide analogue 3A.1 (19-tert-butyldiphenylsilyl-8, 17-epoxy andrographolide) and its mechanism in human CCA cell line KKU-M213 derived from a Thai CCA patient. By 24h after exposure, the analogue 3A.1 exhibited a potent cytotoxic effect on KKU-M213 cells with an inhibition concentration 50 (IC50) of approximately 8.0µM. Analogue 3A.1 suppressed DNA topoisomerase II α (Topo II α) protein expression, arrested the cell cycle at sub G0/G1 phase, induced cleavage of DNA repair protein poly (ADP-ribose) polymerases-1 (PARP-1), and enhanced expression of tumor suppressor protein p53 and pro-apoptotic protein Bax. In addition, analogue 3A.1 induced caspase 3 activity and inhibited cyclin D1, CDK6, and COX-2 protein expression. These results suggest that andrographolide analogue 3A.1, a novel topo II inhibitor, has significant potential to be developed as a new anticancer agent for the treatment of CCA. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Value of urinary topoisomerase-IIA cell-free DNA for diagnosis of bladder cancer.

    Science.gov (United States)

    Kim, Ye-Hwan; Yan, Chunri; Lee, Il-Seok; Piao, Xuan-Mei; Byun, Young Joon; Jeong, Pildu; Kim, Won Tae; Yun, Seok-Joong; Kim, Wun-Jae

    2016-03-01

    Topoisomerase-II alpha (TopoIIA ), a DNA gyrase isoform that plays an important role in the cell cycle, is present in normal tissues and various human cancers, and can show altered expression in both. The aim of the current study was to examine the value of urinary TopoIIA cell-free DNA as a noninvasive diagnosis of bladder cancer (BC). Two patient cohorts were examined. Cohort 1 (73 BC patients and seven controls) provided bladder tissue samples, whereas cohort 2 (83 BC patients, 54 nonmalignant hematuric patients, and 61 normal controls) provided urine samples. Real-time quantitative polymerase chain reaction was used to measure expression of TopoIIA mRNA in tissues and TopoIIA cell-free DNA in urine samples. The results showed that expression of TopoIIA mRNA in BC tissues was significantly higher than that in noncancer control tissues (pbladder cancer (MIBC) when compared with nonmuscle invasive bladder cancer (NMIBC) (p=0.002). Receiver operating characteristics (ROC) curve analysis was performed to examine the sensitivity/specificity of urinary TopoIIA cell-free DNA for diagnosing BC, NMIBC, and MIBC. The areas under the ROC curve for BC, NMIBC, and MIBC were 0.741, 0.701, and 0.838, respectively. In summary, the results of this study provide evidence that cell-free TopoIIA DNA may be a potential biomarker for BC.

  5. DNA binding induces conformational transition within human DNA topoisomerase I in solution.

    Science.gov (United States)

    Oleinikov, Vladimir; Sukhanova, Alyona; Mochalov, Konstantin; Ustinova, Olga; Kudelina, Irina; Bronstein, Igor; Nabiev, Igor

    2002-01-01

    We employed Raman and circular dichroism (CD) spectroscopy to probe the molecular structure of 68-kDa recombinant human DNA topoisomerase I (TopoI) in solution, in a complex with a 16-bp DNA fragment containing a camptothecin-enhanced TopoI cleavage site, and in a ternary complex with this oligonucleotide and topotecan. Raman spectroscopy reveals a TopoI secondary structure transition and significant changes in the hydrogen bonding of the tyrosine residues induced by the DNA binding. CD spectroscopy confirms the Raman data and identifies a DNA-induced (>7%) decrease of the TopoI alpha helix accompanied by at least a 6% increase of the beta structure. The Raman DNA molecular signatures demonstrated a bandshift that is expected for a net change in the environment of guanine C6 [double bond] O groups from pairing to solvent exposure. The formation of a ternary cleavage complex with TopoI, DNA, and topotecan as probed by CD spectroscopy reveals neither additional modifications of the TopoI secondary structure nor of the oligonucleotide structure, compared to the TopoI-oligonucleotide complex. Copyright 2002 Wiley Periodicals, Inc.

  6. Expression of stable and active human DNA topoisomerase I in Pichia pastoris.

    Science.gov (United States)

    Chan, Mooi Kwai; Lim, Shern Kwok; Miswan, Noorizan; Chew, Ai Lan; Noordin, Rahmah; Khoo, Boon Yin

    2018-01-01

    This study described the isolation of the coding region of human topoisomerase I (TopoI) from MDA-MB-231 and the expression of multiple copy recombinant genes in four Pichia pastoris strains. First, polymerase chain reaction (PCR)-amplification of the enzyme coding region was performed. The PCR fragment was cloned into pPICZ-α-A vector and sequenced. It was then transformed into X33, GS115, SMD1168H and KM71H strains of Pichia. PCR-screening for positive clones was performed, and estimation of multiple copy integrants in each Pichia strain was carried out using agar plates containing increasing concentrations of Zeocin ® . The selected clones of multiple copy recombinant genes were then induced for TopoI expression in shaker flasks. GS115 and SMD1168 were found to be better Pichia strains to accommodate the recombinant gene for the expression of TopoI extracellularly. However, the DNA relaxation activity revealed that only the target enzyme in the culture supernatants of GS115-pPICZ-α-A-TopoI exhibited consistent enzyme activity over the cultivation time-points. Active enzyme activity was inhibited by Camptothecin. The enzyme produced can be used for in-house gel-based DNA relaxation assay development in performing high throughput screening for target-specific growth inhibitors that display similar effect as the TopoI inhibitors. These inhibitors may contribute to the improvement of the treatment of cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A recombinant topoisomerase I used for autoantibody detection in sera from patients with systemic sclerosis.

    Science.gov (United States)

    Verheijen, R; Van den Hoogen, F; Beijer, R; Richter, A; Penner, E; Habets, W J; van Venrooij, W J

    1990-04-01

    We report the expression of a cDNA clone encoding 695 carboxyl-terminal amino acids of human DNA topoisomerase I (topoI) in Escherichia coli. More than 96% of the anti-HeLa topoI-positive sera from patients with a connective tissue disease displayed also an immunoreactivity with this recombinant protein (the HTopoA protein). Sera from patients with a definite diagnosis systemic sclerosis and reacting with HeLa topoI, all reacted with the HTopoA protein as well. Sera from patients with systemic sclerosis that did not contain anti-topoI antibodies (about 30% of the systemic sclerosis sera), as concluded from HeLa immunoblot, displayed also no immunoreactivity with our recombinant antigen. By expressing different fragments of HTopoA, we were able to assign at least three different autoimmune epitope regions on the HTopoA protein and we show that over a period of 5 years the amount of anti-topoI antibodies against these regions may fluctuate.

  8. [Clinical significant of semiquantificating DNA topoisomerase- I mRNA in colorectal cancer].

    Science.gov (United States)

    Ishida, Hideyuki; Shirakawa, Kazuo; Ohsawa, Tomonori; Hayashi, Yoichi; Okada, Norimichi; Nakada, Hiroshi; Yokoyama, Masaru

    2005-09-01

    To examine the clinical significance of determining the expression levels of DNA topoisomerase- I (topo-I) mRNA of colorectal cancer. The relative expression levels of topo-I mRNA in primary colorectal cancer and adjacent normal mucosa were semiquantificated by the RT-PCR method. The relative expression of thymidylate synthase (TS) mRNA of the primary lesions was also examined. The topo- I mRNA expression was higher in the tumorous tissue than in the normal mucosa (n=22, ptopoI mRNA expression did not differ nor correlate with the response to CPT-11 (PR, n=14; SD, n=11; PR; n=24) (p=0.91). In these patients, there was no relationship between the topo I mRNA expression and the TS mRNA expression (p=0.22, r=0.18). In addition, the efficacy of CPT-11 did not correlate with combinations subdivided according to the expression levels of topo- I mRNA and TS mRNA. Determination of topo- I mRNA levels of primary colorectal cancer may not be useful for predicting the efficacy of CPT-11 treatment alone or in combination with TS mRNA levels.

  9. Design and synthesis of 2-phenylnaphthalenoids and 2-phenylbenzofuranoids as DNA topoisomerase inhibitors and antitumor agents.

    Science.gov (United States)

    Hao, Huilin; Chen, Wang; Zhu, Jing; Lu, Chunhua; Shen, Yuemao

    2015-09-18

    Eight 2-phenylnaphthalenoids (2PNs) (3a-h) and twenty four 2-phenylbenzofuranoids (2PBFs) (4a--4j, 5a-5j, 6a, 6f-6h) were successfully designed, synthesized and their antiproliferative and in vitro DNA topoisomerase inhibitory activities were evaluated. Nine compounds (four 2PNs and five 2PBFs) showed either TopoI or TopoIIα inhibitory activities. Six compounds (four 2PNs and two 2PBFs) exhibited potent cytotoxicity with IC50 values for 72 h exposure ranging from 0.3 to above 20 μM against MDA-MB-231, MDA-MB-435, HepG2 and PC3 cell lines. The two 2PBFs displayed comparable and even better antiproliferative as well as TopoIIα inhibitory activities than 2PNs. Interestingly, the active 2PBFs displayed different mechanisms of TopoIIα inhibition from that of 2PNs, suggesting that the chromophore scaffold replacement may result in a change of the binding site of inhibitors to TopoIIα. Furthermore, the mechanisms of antiproliferation on MDA-MB-231 cells indicate that compounds 5a and 5f are promising for further development of anticancer agents. The results of this study reveal that the evolutionary strategy of medicinal chemistry through scaffold hopping is a promising strategy for structure optimization of TopoIIα inhibitors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Camptothecin resistance is determined by the regulation of topoisomerase I degradation mediated by ubiquitin proteasome pathway.

    Science.gov (United States)

    Ando, Koji; Shah, Ankur K; Sachdev, Vibhu; Kleinstiver, Benjamin P; Taylor-Parker, Julian; Welch, Moira M; Hu, Yiheng; Salgia, Ravi; White, Forest M; Parvin, Jeffrey D; Ozonoff, Al; Rameh, Lucia E; Joung, J Keith; Bharti, Ajit K

    2017-07-04

    Proteasomal degradation of topoisomerase I (topoI) is one of the most remarkable cellular phenomena observed in response to camptothecin (CPT). Importantly, the rate of topoI degradation is linked to CPT resistance. Formation of the topoI-DNA-CPT cleavable complex inhibits DNA re-ligation resulting in DNA-double strand break (DSB). The degradation of topoI marks the first step in the ubiquitin proteasome pathway (UPP) dependent DNA damage response (DDR). Here, we show that the Ku70/Ku80 heterodimer binds with topoI, and that the DNA-dependent protein kinase (DNA-PKcs) phosphorylates topoI on serine 10 (topoI-pS10), which is subsequently ubiquitinated by BRCA1. A higher basal level of topoI-pS10 ensures rapid topoI degradation leading to CPT resistance. Importantly, PTEN regulates DNA-PKcs kinase activity in this pathway and PTEN deletion ensures DNA-PKcs dependent higher topoI-pS10, rapid topoI degradation and CPT resistance.

  11. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line.

    Science.gov (United States)

    Carpenter, Adam J; Porter, Andrew C G

    2004-12-01

    DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.

  12. Activities of different fluoroquinolones against Bacillus anthracis mutants selected in vitro and harboring topoisomerase mutations.

    Science.gov (United States)

    Grohs, Patrick; Podglajen, Isabelle; Gutmann, Laurent

    2004-08-01

    Three sets of mutants of Bacillus anthracis resistant to fluoroquinolones were selected on ciprofloxacin and moxifloxacin in a stepwise manner from a nalidixic acid-resistant but fluoroquinolone-susceptible plasmidless strain harboring a Ser85Leu GyrA mutation. A high level of resistance to fluoroquinolones could be obtained in four or five selection steps. In each case, ParC was the secondary target. However, in addition to the GyrA mutation, expression of high-level resistance required (i) in the first set of mutants, active drug efflux associated with a mutation in the QRDR of ParC; (ii) in the second set, two mutations in the QRDR of ParC associated with a mutation in GyrB; and (iii) in the third set, two QRDR mutations, one in ParC and one in GyrA. Interestingly, several selection steps occurred without obvious mutations in the QRDR of any topoisomerase, thereby implying the existence of other resistance mechanisms. Among the fluoroquinolones tested, garenoxacin showed the best activity.

  13. Structural Insights into the Fluoroquinolone Resistance Mechanism of Shigella flexneri DNA Gyrase and Topoisomerase IV.

    Science.gov (United States)

    Tamanna; Ramana, Jayashree

    2016-07-01

    Traveler's diarrhea (TD) is an important public health concern that can result from a variety of intestinal pathogens, including bacteria, parasites, and virus. A number of antibiotics are being used to cure TD, but due to widespread use of these antibiotics, the pathogens are becoming resistant to them. In this work, we performed docking studies of DNA gyraseA (GyrA) and topoisomerase IV (ParC) of Shigella flexneri and their mutants with two different fluoroquinolones, ciprofloxacin and norfloxacin, to understand their resistance mechanism at the structural level. S. flexneri strains with mutations at serine 83 to leucine and aspartic acid 87 to glutamate or asparagine of GyrA and that of serine 80 to isoleucine in ParC have decreased susceptibility to fluoroquinolones. This analysis revealed that interaction of ciprofloxacin/norfloxacin with all the mutants was weaker than the interaction of ciprofloxacin/norfloxacin with the wild type. This study highlights the importance of aspartic acid and serine in GyrA and that of serine in ParC, forming bonds with ciprofloxacin/norfloxacin, which may play a crucial role in antibiotic resistance. This work corelates very well with the experimental outcomes and gives a good explanation for fluoroquinolone resistance in S. flexneri.

  14. Topoisomerase mutations and efflux are associated with fluoroquinolone resistance in Enterococcus faecalis.

    Science.gov (United States)

    Oyamada, Yoshihiro; Ito, Hideaki; Inoue, Matsuhisa; Yamagishi, Jun-ichi

    2006-10-01

    To understand better the mechanisms of fluoroquinolone resistance in Enterococcus faecalis, fluoroquinolone-resistant mutants isolated from Ent. faecalis ATCC 29212 by stepwise selection with sparfloxacin (SPX) and norfloxacin (NOR) were analysed. The results showed the following. (i) In general, fluoroquinolone-resistance mechanisms in Ent. faecalis are similar to those in other Gram-positive bacteria, such as Staphylococcus aureus and Streptococcus pneumoniae, namely, mutants with amino acid changes in both GyrA and ParC exhibited high fluoroquinolone resistance, and single GyrA mutants and a single ParC mutant were more resistant to SPX and NOR, respectively, than the parent strain, indicating that the primary targets of SPX and NOR in Ent. faecalis are DNA gyrase and topoisomerase IV, respectively. (ii) Alterations in GyrB (DeltaKGA, residues 395-397) and ParE (Glu-459 to Lys) were associated with fluoroquinolone resistance in some mutants. Moreover, the facts that the NOR MIC, but not the SPX MIC, decreased in the presence of multidrug efflux pump inhibitors, that NOR accumulation decreased in the cells, and that the EmeA mRNA expression level did not change, strongly suggested that a NorA-like efflux pump, rather than EmeA, was involved in resistance to NOR.

  15. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tombline, Gregory; Millen, Jonathan I; Polevoda, Bogdan; Rapaport, Matan; Baxter, Bonnie; Van Meter, Michael; Gilbertson, Matthew; Madrey, Joe; Piazza, Gary A; Rasmussen, Lynn; Wennerberg, Krister; White, E Lucile; Nitiss, John L; Goldfarb, David S

    2017-01-05

    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as potentially manageable cause of aging.

  16. Structure and Chromosomal Organization of Yeast Genes Regulated by Topoisomerase II.

    Science.gov (United States)

    Joshi, Ricky S; Nikolaou, Christoforos; Roca, Joaquim

    2018-01-03

    Cellular DNA topoisomerases (topo I and topo II) are highly conserved enzymes that regulate the topology of DNA during normal genome transactions, such as DNA transcription and replication. In budding yeast, topo I is dispensable whereas topo II is essential, suggesting fundamental and exclusive roles for topo II, which might include the functions of the topo IIa and topo IIb isoforms found in mammalian cells. In this review, we discuss major findings of the structure and chromosomal organization of genes regulated by topo II in budding yeast. Experimental data was derived from short (10 min) and long term (120 min) responses to topo II inactivation in top-2 ts mutants. First, we discuss how short term responses reveal a subset of yeast genes that are regulated by topo II depending on their promoter architecture. These short term responses also uncovered topo II regulation of transcription across multi-gene clusters, plausibly by common DNA topology management. Finally, we examine the effects of deactivated topo II on the elongation of RNA transcripts. Each study provides an insight into the particular chromatin structure that interacts with the activity of topo II. These findings are of notable clinical interest as numerous anti-cancer therapies interfere with topo II activity.

  17. Topoisomerase II Inhibitors and Poisons, and the Influence of Cell Cycle Checkpoints.

    Science.gov (United States)

    D Arcy, Nicholas; Gabrielli, Brian

    2017-01-01

    Interactions between the decatenation checkpoint and Topoisomerase II (TopoII) are vital for maintaining integrity of the genome. Agents that target this enzyme have been in clinical use in cancer therapy for over 30 years with great success. The types of compounds that have been developed to target TopoII are broadly divided into poisons and catalytic inhibitors. The TopoII poisons are in clinical use as anti-cancer therapies, although in common to most chemotherapeutic agents, they display considerable normal tissue toxicity. Inhibition of the TopoIIb isoform has been implicated in this cytotoxicity. Response to TopoII active agents is determined by several factors, but cell cycle checkpoints play a large role in sensitivity and resistance. The G2/M phase checkpoints are of particular importance in considering the effectiveness of these drugs and are reviewed in this article. Functionality of the ATM dependent decatenation checkpoint may represent a new avenue for selective cancer therapy. Here we review the function of TopoII, the anti-cancer mechanisms and limitations of current catalytic inhibitors and poisons, and their influence on cell cycle checkpoints. We will also assess potential new mechanisms for targeting this enzyme to limit normal tissue toxicity, and how the cell cycle checkpoint triggered by these drugs may provide an alternative and possibly better target for novel therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Mechanistic studies on E. coli DNA topoisomerase I: Divalent ion effects

    International Nuclear Information System (INIS)

    Domanico, P.L.; Tse-Dinh, Y.C.

    1991-01-01

    E. coli DNA topoisomerase I catalyzes the hydrolysis of short, single stranded oligodeoxynucleotides. It also forms a covalent protein-DNA complex with negatively supercoiled DNA in the absence of Mg2+ but requires Mg2+ for the relaxation of negatively supercoiled DNA. In this paper we investigate the effects of various divalent metals on catalysis. For the relaxation reaction, maximum enzyme activity plateaus after 2.5 mM Mg2+. However, the rate of cleavage of short oligodeoxynucleotide increased linearly between 0 and 15 mM Mg2+. In the oligodeoxynucleotide cleavage reaction, Ca2+, Mn2+, Co2+, and Zn2+ inhibit enzymatic activity. When these metals are coincubated with Mg2+ at equimolar concentrations, the normal effect of Mg2+ is not detectable. Of these metals, only Ca2+ can be substituted for Mg2+ as a metal cofactor in the relaxation reaction. And when Mg2+ is coincubated with Mn2+, Co2+, or Zn2+ at equimolar concentrations, the normal effect of Mg2+ on relaxation is not detectable. The authors propose that Mg2+ allows the protein-DNA complex to assume a conformation necessary for strand passage and enhance the rate of enzyme turnover

  19. Design and docking of novel series of hybrid xanthones as anti-cancer agent to target human DNA topoisomerase 2-alpha

    Directory of Open Access Journals (Sweden)

    Lalit Mohan Nainwal

    2014-06-01

    Full Text Available Topoisomerase (topo IIα is a homodimeric protein catalyzes topological vicissitudes by adding or by soothing super coiling transpiration, occurs in human DNA during DNA replication as an outcome chromosome segregation and condensation occurs during meiosis I and recombination. To prevent the cleavage and religation activity we administered novel hybrid substituted Xanthone series of drugs. The toxicity prediction showed outstanding results which impetus to study its anticancer activities by targeting topoisomerase (topo IIα. We developed the homology model of the topoisomerase (topo IIα due to the unavailability of 3D structure in the Protein Data Bank. Structural assessment of the modeled protein and confirmed the quality of the model. The ligands were docked using Autodock4.2 software and binding energy was reported. The compound XM9, XN2, XM7, XLNU and XNS scored lowest binding energy and highest binding affinity. The interaction sites and the hydrogen bond were observed.

  20. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg(2+) to the second metal binding site.

    Science.gov (United States)

    Oppegard, Lisa M; Schwanz, Heidi A; Towle, Tyrell R; Kerns, Robert J; Hiasa, Hiroshi

    2016-03-01

    Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg(2+)-, Mn(2+)-, or Ca(2+)-supported DNA cleavage activity of Escherichia coli Topo IV. In the absence of any drug, 20-30 mM Mg(2+) was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1mM of either Mn(2+) or Ca(2+) was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg(2+) concentrations where Topo IV alone could not efficiently cleave DNA. At low Mg(2+) concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg(2+) binding to metal binding site B through the structural distortion in DNA. As Mg(2+) concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg(2+) at site B or inhibition the binding of Mg(2+) to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg(2+) binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fluoroquinolones stimulate the DNA cleavage activity of topoisomerase IV by promoting the binding of Mg2+ to the second metal binding site

    Science.gov (United States)

    Oppegard, Lisa M.; Schwanz, Heidi A.; Towle, Tyrell R.; Kerns, Robert J.; Hiasa, Hiroshi

    2016-01-01

    Background Fluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase-DNA covalent complex as a topoisomerase-fluoroquinolone-DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction. Methods We conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg2+-, Mn2+-, or Ca2+-supported DNA cleavage activity of Esherichia coli Topo IV. Results In the absence of any drug, 20–30 mM Mg2+ was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1 mM of either Mn2+ or Ca2+ was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg2+ concentrations where Topo IV alone could not efficiently cleave DNA. Conclusions and General Significance At low Mg2+ concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg2+ binding to metal binding site B through the structural distortion in DNA. As Mg2+ concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg2+ at site B or inhibition the binding of Mg2+ to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg2+ binding. PMID:26723176

  2. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  3. A murine experimental anthracycline extravasation model: pathology and study of the involvement of topoisomerase II alpha and iron in the mechanism of tissue damage

    DEFF Research Database (Denmark)

    Thougaard, Annemette V; Langer, Seppo W; Hainau, Bo

    2010-01-01

    damage. In contrast to dexrazoxane, the iron-chelating bisdioxopiperazine ICRF-161 do not inhibit the catalytic cycle of topoisomerase II alpha. This compound was used to isolate and test the importance of iron in the wound pathogenesis. ICRF-161 was found ineffective in the treatment of anthracycline...... of topoisomerase II alpha and thereby prevents access of anthracycline to the enzyme and thus cytotoxicity, and also acts as a strong iron chelator following opening of its two bisdioxopiperazine rings. Using the model of extravasation in a dexrazoxane-resistant transgenic mouse with a heterozygous mutation...

  4. Loss of topoisomerase I function affects the RpoS-dependent and GAD systems of acid resistance in Escherichia coli

    Science.gov (United States)

    Stewart, Natalee; Feng, Jingyang; Liu, Xiaoping; Chaudhuri, Devyani; Foster, John W.; Drolet, Marc; Tse-Dinh, Yuk-Ching

    2006-01-01

    SUMMARY Acid resistance (AR) for Escherichia coli is important for its survival in the human gastrointestinal tract and involves three systems. The first AR system is dependent on the sigma factor RpoS. The second system (GAD system) requires glutamate decarboxylase isoforms encoded by the gadA and gadB genes. The third system (ARG system) requires arginine decarboxylase encoded by adiA. Loss of topoisomerase I function from topA deletion or Tn10 insertion mutations lowered the resistance to killing by pH 2 or 2.5 treatment by 10 to >100 fold. The RpoS and GAD systems were both affected by the topA mutation but the ARG system of acid resistance was not affected. Northern blot analysis showed that induction of gadA and gadB transcription in stationary phase and at pH 5.5 was decreased in the topA mutant. Western blot analysis showed that the topA mutation did not affect accumulation of RpoS, GadX or GadW proteins. Topoisomerase I could have a direct influence on transcription of acid resistance genes. This influence did not involve R-loop formation as the overexpression of RNase H did not alleviate the decrease of acid resistance from the topA mutation. The effect of the topA mutation could be suppressed by the hns mutation so topoisomerase I might be required to counteract the effect of H-NS protein on gene expression in addition to its influence on RpoS-dependent transcription. PMID:16079354

  5. DNA damage response (DDR) induced by topoisomerase II poisons requires nuclear function of the small GTPase Rac.

    Science.gov (United States)

    Wartlick, Friedrich; Bopp, Anita; Henninger, Christian; Fritz, Gerhard

    2013-12-01

    Here, we investigated the influence of Rac family small GTPases on mechanisms of the DNA damage response (DDR) stimulated by topoisomerase II poisons. To this end, we examined the influence of the Rac-specific small molecule inhibitor EHT1864 on Ser139 phosphorylation of histone H2AX, a widely used marker of the DDR triggered by DNA double-strand breaks. EHT1864 attenuated the doxorubicin-stimulated DDR in a subset of cell lines tested, including HepG2 hepatoma cells. EHT1864 reduced the level of DNA strand breaks and increased viability following treatment of HepG2 cells with topo II poisons. Protection by EHT1864 was observed in both p53 wildtype (HepG2) and p53 deficient (Hep3B) human hepatoma cells and, furthermore, remained unaffected upon pharmacological inhibition of p53 in HepG2. Apparently, the impact of Rac on the DDR is independent of p53. Protection from doxorubicin-induced DNA damage by EHT1864 comprises both S and G2 phase cells. The inhibitory effect of EHT1864 on doxorubicin-stimulated DDR was mimicked by pharmacological inhibition of various protein kinases, including JNK, ERK, PI3K, PAK and CK1. EHT1864 and protein kinase inhibitors also attenuated the formation of the topo II-DNA cleavable complex. Moreover, EHT1864 mitigated the constitutive phosphorylation of topoisomerase IIα at positions S1106, S1213 and S1247. Doxorubicin transport, nuclear import/export of topoisomerase II and Hsp90-related mechanisms are likely not of relevance for doxorubicin-stimulated DDR impaired by EHT1864. We suggest that multiple kinase-dependent but p53- and heat shock protein-independent Rac-regulated nuclear mechanisms are required for activation of the DDR following treatment with topo II poisons. © 2013.

  6. Cloning of the mouse cDNA encoding DNA topoisomerase I and chromosomal location of the gene.

    Science.gov (United States)

    Koiwai, O; Yasui, Y; Sakai, Y; Watanabe, T; Ishii, K; Yanagihara, S; Andoh, T

    1993-03-30

    The mouse cDNA encoding DNA topoisomerase I (TopoI) was cloned and the nucleotide sequence of 3512 bp was determined. The cDNA clone contained an open reading frame encoding a protein of 767 amino acids (aa), which is 2 aa longer than its human counterpart. Overall aa sequence homology between the mouse and human, and between the mouse and yeast (Saccharomyces cerevisiae) sequences was 96% and 42%, respectively. The mouse TopI gene was mapped at position 54.5 on chromosome 2 from linkage analyses of a three-point cross test with Geg, Ada, and a as marker genes.

  7. Novel topoisomerase I inhibitors. Syntheses and biological evaluation of phosphorus substituted quinoline derivates with antiproliferative activity.

    Science.gov (United States)

    Alonso, Concepción; Fuertes, María; Martín-Encinas, Endika; Selas, Asier; Rubiales, Gloria; Tesauro, Cinzia; Knudssen, Birgitta K; Palacios, Francisco

    2018-02-22

    This work describes the synthesis of 1,2,3,4-tetrahydroquinolinylphosphine oxides, phosphanes and phosphine sulfides as well as that of quinolinylphosphine oxides and phosphine sulfides, which were synthesized in good to high overall yield. The synthetic route involves a multicomponent reaction of (2-phosphine-oxide)-, 2-phosphine- or (2-phosphine-sulfide)-aniline, aldehydes and olefins and allows the selective generation of two stereogenic centres in a short, efficient and reliable synthesis. The selective dehydrogenation of 1,2,3,4-tetrahydroquinolinylphosphine oxides and phosphine sulfides leads to the formation of corresponding phosphorus substituted quinolines. Some of the products which were prepared showed excellent activity as topoisomerase I (Top1) inhibitors. In addition, prolonged effect of the most potent compounds is maintained with the same intensity even after 3 min of the beginning of the enzymatic reaction. The cytotoxic effect on cell lines derived from human lung adenocarcinoma (A549), human ovarian carcinoma (SKOV03) and human embryonic kidney (HEK293) was also screened. 1,2,3,4-Tetrahydroquinolinylphosphine oxide 6g with an IC 50 value of 0.25 ± 0.03 μM showed excellent activity against the A549 cell line in vitro, while 1,2,3,4-tetrahydroquinolinylphosphane 9c with an IC 50 value of 0.08 ± 0.01 μM and 1,2,3,4-tetrahydroquinolinylphosphine sulfide derivative 10f with an IC 50 value of 0.03 ± 0.04 μM are more active against the A549 cell line. Moreover, selectivity towards cancer cell (A549) over non-malignant cells (MRC5) has been observed. According to their structure, they may be excellent antiproliferative candidates. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. The Role of the MAPK Signaling, Topoisomerase and Dietary Bioactives in Controlling Cancer Incidence

    Directory of Open Access Journals (Sweden)

    Khaled A. Selim

    2017-04-01

    Full Text Available Reactive oxygen species (ROS are common products of mitochondrial oxidative phosphorylation, xenobiotics metabolism and are generated in response to several environmental stress conditions. Some of them play important biochemical roles in cellular signal transduction and gene transcription. On the other hand, ROS are known to be involved in a wide range of human diseases, including cancer. The excessive production of such ROS together with disruption of homeostasis detoxifying mechanisms can mediate a series of cellular oxidative stresses. The oxidative stress of redundant free radicals production can lead to oxidative denaturation of cellular macromolecules including proteins, lipids and DNA. Moreover, oxidative damage is one of the major causes of DNA mutations, replication errors and genomic abnormalities which result in either inhibition or induction of transcription, and end with the disturbance of signal transduction pathways. Among affected signaling pathways are redox-sensitive kinases. The stimulation of these kinases induces several transcription factors through the phosphorylation of their module proteins. The activation of such pathways induces proliferation and cellular transformation. A diet rich in antioxidant compounds has potential health benefits, and there is a growing interest in the role of natural antioxidants in nutrition for prevention and cure of cancer diseases. A controversy has risen regarding the relation between antioxidants and the significant decrease in the risk of cancer incidence. In this review, we will focus on redox-sensitive kinases signaling pathways, highlighting the effects of dietary antioxidant on the prevention, incidence, prognosis or even treatment of human cancers. In addition, we will place emphasis on the chemical classes of pterocarpans as natural anti-oxidants/cancers as well as their underlying mechanisms of action, including their effects on MAPKs and topoisomerase activities.

  9. Cytotoxic and DNA-topoisomerase effects of lapachol amine derivatives and interactions with DNA

    Directory of Open Access Journals (Sweden)

    A. Esteves-Souza

    2007-10-01

    Full Text Available The cytotoxic activity of amino (3a-e, aza-1-antraquinone (4a-e lapachol derivatives against Ehrlich carcinoma and human K562 leukemia cells was investigated. Cell viability was determined using MTT assay, after 48 (Ehrlich or 96 h (K562 of culture, and vincristine (for K562 leukemia and quercetin (for Ehrlich carcinoma were used as positive controls. The results showed dose-dependent growth-inhibiting activities and that the amino derivatives were active against the assayed cells, whereas the 4a-e derivatives were not. The allylamine derivative 3a was the most active against Ehrlich carcinoma, with IC50 = 16.94 ± 1.25 µM, and against K562 leukemia, with IC50 = 14.11 ± 1.39 µM. The analogous lawsone derivative, 5a, was also active against Ehrlich carcinoma (IC50 = 23.89 ± 2.3 µM, although the 5d and 5e derivatives showed lower activity. The interaction between 3a-d and calf thymus DNA was investigated by fluorimetric titration and the results showed a hyperchromic effect indicating binding to DNA as presented of ethidium bromide, used as positive control. The inhibitory action on DNA-topoisomerase II-a was also evaluated by a relaxation assay of supercoiled DNA plasmid, and the etoposide (200 µM was used as positive control. Significant inhibitory activities were observed for 3a-d at 200 µM and a partial inhibitory action was observed for lapachol and methoxylapachol.

  10. Cytotoxic and DNA-topoisomerase effects of lapachol amine derivatives and interactions with DNA.

    Science.gov (United States)

    Esteves-Souza, A; Figueiredo, D V; Esteves, A; Câmara, C A; Vargas, M D; Pinto, A C; Echevarria, A

    2007-10-01

    The cytotoxic activity of amino (3a-e), aza-1-antraquinone (4a-e) lapachol derivatives against Ehrlich carcinoma and human K562 leukemia cells was investigated. Cell viability was determined using MTT assay, after 48 (Ehrlich) or 96 h (K562) of culture, and vincristine (for K562 leukemia) and quercetin (for Ehrlich carcinoma) were used as positive controls. The results showed dose-dependent growth-inhibiting activities and that the amino derivatives were active against the assayed cells, whereas the 4a-e derivatives were not. The allylamine derivative 3a was the most active against Ehrlich carcinoma, with IC50 = 16.94 +/- 1.25 microM, and against K562 leukemia, with IC50 = 14.11 +/- 1.39 microM. The analogous lawsone derivative, 5a, was also active against Ehrlich carcinoma (IC50 = 23.89 +/- 2.3 microM), although the 5d and 5e derivatives showed lower activity. The interaction between 3a-d and calf thymus DNA was investigated by fluorimetric titration and the results showed a hyperchromic effect indicating binding to DNA as presented of ethidium bromide, used as positive control. The inhibitory action on DNA-topoisomerase II-a was also evaluated by a relaxation assay of supercoiled DNA plasmid, and the etoposide (200 microM) was used as positive control. Significant inhibitory activities were observed for 3a-d at 200 microM and a partial inhibitory action was observed for lapachol and methoxylapachol.

  11. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters.

    Directory of Open Access Journals (Sweden)

    Jessica Marinello

    Full Text Available Topoisomerase I-DNA-cleavage complexes (Top1cc stabilized by camptothecin (CPT have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5'-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.

  12. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion.

    Science.gov (United States)

    Luthra, Priya; Aguirre, Sebastian; Yen, Benjamin C; Pietzsch, Colette A; Sanchez-Aparicio, Maria T; Tigabu, Bersabeh; Morlock, Lorraine K; García-Sastre, Adolfo; Leung, Daisy W; Williams, Noelle S; Fernandez-Sesma, Ana; Bukreyev, Alexander; Basler, Christopher F

    2017-04-04

    Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication. IMPORTANCE Ebola virus and other emerging RNA viruses are significant but unpredictable public health threats. Therapeutic approaches with broad-spectrum activity could provide an attractive response to such infections. We describe a novel assay that can identify small molecules that overcome Ebola virus-encoded innate immune evasion mechanisms. This assay identified as hits cancer chemotherapeutic drugs, including doxorubicin. Follow-up studies provide new insight into how doxorubicin induces interferon (IFN) responses, revealing activation of both the DNA damage response kinase ATM and the DNA sensor cGAS and its partner signaling protein STING. The studies further demonstrate that the ATM and cGAS-STING pathways of IFN induction are a point of vulnerability not only for Ebola virus but for other RNA viruses as well, because viral innate immune antagonists consistently fail to

  13. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  14. Residues of E. coli topoisomerase I conserved for interaction with a specific cytosine base to facilitate DNA cleavage

    Science.gov (United States)

    Narula, Gagandeep; Tse-Dinh, Yuk-Ching

    2012-01-01

    Bacterial and archaeal topoisomerase I display selectivity for a cytosine base 4 nt upstream from the DNA cleavage site. Recently, the solved crystal structure of Escherichia coli topoisomerase I covalently linked to a single-stranded oligonucleotide revealed that R169 and R173 interact with the cytosine base at the −4 position via hydrogen bonds while the phenol ring of Y177 wedges between the bases at the −4 and the −5 position. Substituting R169 to alanine changed the selectivity of the enzyme for the base at the −4 position from a cytosine to an adenine. The R173A mutant displayed similar sequence selectivity as the wild-type enzyme, but weaker cleavage and relaxation activity. Mutation of Y177 to serine or alanine rendered the enzyme inactive. Although mutation of each of these residues led to different outcomes, R169, R173 and Y177 work together to interact with a cytosine base at the −4 position to facilitate DNA cleavage. These strictly conserved residues might act after initial substrate binding as a Molecular Ruler to form a protein–DNA complex with the scissile phosphate positioned at the active site for optimal DNA cleavage by the tyrosine hydroxyl nucleophile to facilitate DNA cleavage in the reaction pathway. PMID:22833607

  15. Protection of halogenated DNA from strand breakage and sister-chromatid exchange induced by the topoisomerase I inhibitor camptothecin

    International Nuclear Information System (INIS)

    Orta, Manuel Luis; Mateos, Santiago; Cantero, Gloria; Wolff, Lisa J.; Cortes, Felipe

    2008-01-01

    The fundamental nuclear enzyme DNA topoisomerase I (topo I), cleaves the double-stranded DNA molecule at preferred sequences within its recognition/binding sites. We have recently reported that when cells incorporate halogenated nucleosides analogues of thymidine into DNA, it interferes with normal chromosome segregation, as shown by an extraordinarily high yield of endoreduplication, and results in a protection against DNA breakage induced by the topo II poison m-AMSA [F. Cortes, N. Pastor, S. Mateos, I. Dominguez, The nature of DNA plays a role in chromosome segregation: endoreduplication in halogen-substituted chromosomes, DNA Repair 2 (2003) 719-726; G. Cantero, S. Mateos, N. Pastor; F. Cortes, Halogen substitution of DNA protects from poisoning of topoisomerase II that results in DNA double-strand breaks (DSBs), DNA Repair 5 (2006) 667-674]. In the present investigation, we have assessed whether the presence of halogenated nucleosides in DNA diminishes the frequency of interaction of topo I with DNA and thus the frequency with which the stabilisation of cleavage complexes by the topo I poison camptothecin (CPT) takes place, in such a way that it protects from chromosome breakage and sister-chromatid exchange. This protective effect is shown to parallel a loss in halogen-substituted cells of the otherwise CPT-increased catalytic activity bound to DNA

  16. Flavonoids from Annona dioica leaves and their effects in Ehrlich carcinoma cells, DNA-topoisomerase I and II

    International Nuclear Information System (INIS)

    Vega, Maria R.G.; Esteves-Souza, Andressa; Echevarria, Aurea; Vieira, Ivo J.C.; Mathias, Leda; Braz-Filho, Raimundo

    2007-01-01

    Chemical investigation of methanol extract leaves from Annona dioica (Annonaceae) resulted in the identification of flavonoids kaempferol (1), 3-O-[3'',6''-di-O-p-hydroxycinnamoyl]-β- galactopyranosyl-kaempferol (2), 6''-O-p-hydroxycinnamoyl-β-galactopyranosyl-kaempferol (3) and 3-O-β-galactopyranosyl-kaempferol (4). The structures were unequivocally characterized by 1 H and 13 C NMR spectroscopic analyses using 1D and 2D experiments. The cytotoxic effects of the flavonoids and flavonoid fraction (FF) were evaluated by MTT (3-(4,5-dimethylthiazole-2- yl)-2,5-diphenyltetrazolium bromide) assay against Ehrlich carcinoma cells. The results indicated that 1, 2, 3 and FF exhibit significant antiproliferative action when compared to quercetin. The inhibitory action on DNA-topoisomerase I and II of all the flavonoids was evaluated by relaxation assays on pBR322 plasmid DNA. The results indicated the inhibitory and non-selective effects of the flavonoids on DNA-topoisomerase I and II. (author)

  17. Flavonoids from Annona dioica leaves and their effects in Ehrlich carcinoma cells, DNA-topoisomerase I and II

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Maria R.G.; Esteves-Souza, Andressa; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. de Quimica]. E-mail: echevarr@ufrrj.br; Vieira, Ivo J.C.; Mathias, Leda; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Lab. de Ciencias Quimicas

    2007-07-01

    Chemical investigation of methanol extract leaves from Annona dioica (Annonaceae) resulted in the identification of flavonoids kaempferol (1), 3-O-[3'',6''-di-O-p-hydroxycinnamoyl]-{beta}- galactopyranosyl-kaempferol (2), 6''-O-p-hydroxycinnamoyl-{beta}-galactopyranosyl-kaempferol (3) and 3-O-{beta}-galactopyranosyl-kaempferol (4). The structures were unequivocally characterized by {sup 1}H and {sup 13}C NMR spectroscopic analyses using 1D and 2D experiments. The cytotoxic effects of the flavonoids and flavonoid fraction (FF) were evaluated by MTT (3-(4,5-dimethylthiazole-2- yl)-2,5-diphenyltetrazolium bromide) assay against Ehrlich carcinoma cells. The results indicated that 1, 2, 3 and FF exhibit significant antiproliferative action when compared to quercetin. The inhibitory action on DNA-topoisomerase I and II of all the flavonoids was evaluated by relaxation assays on pBR322 plasmid DNA. The results indicated the inhibitory and non-selective effects of the flavonoids on DNA-topoisomerase I and II. (author)

  18. C-terminal lysine repeats in Streptomyces topoisomerase I stabilize the enzyme–DNA complex and confer high enzyme processivity

    Science.gov (United States)

    Strzałka, Agnieszka; Szafran, Marcin J.; Strick, Terence

    2017-01-01

    Abstract Streptomyces topoisomerase I (TopA) exhibits exceptionally high processivity. The enzyme, as other actinobacterial topoisomerases I, differs from its bacterial homologs in its C-terminal domain (CTD). Here, bioinformatics analyses established that the presence of lysine repeats is a characteristic feature of actinobacterial TopA CTDs. Streptomyces TopA contains the longest stretch of lysine repeats, which terminate with acidic amino acids. DNA-binding studies revealed that the lysine repeats stabilized the TopA–DNA complex, while single-molecule experiments showed that their elimination impaired enzyme processivity. Streptomyces coelicolor TopA processivity could not be restored by fusion of its N-terminal domain (NTD) with the Escherichia coli TopA CTD. The hybrid protein could not re-establish the distribution of multiple chromosomal copies in Streptomyces hyphae impaired by TopA depletion. We expected that the highest TopA processivity would be required during the growth of multigenomic sporogenic hyphae, and indeed, the elimination of lysine repeats from TopA disturbed sporulation. We speculate that the interaction of the lysine repeats with DNA allows the stabilization of the enzyme–DNA complex, which is additionally enhanced by acidic C-terminal amino acids. The complex stabilization, which may be particularly important for GC-rich chromosomes, enables high enzyme processivity. The high processivity of TopA allows rapid topological changes in multiple chromosomal copies during Streptomyces sporulation. PMID:28981718

  19. The Cytotoxicity of Benzaldehyde Nitrogen Mustard-2-Pyridine Carboxylic Acid Hydrazone Being Involved in Topoisomerase IIα Inhibition

    Directory of Open Access Journals (Sweden)

    Yun Fu

    2014-01-01

    Full Text Available The antitumor property of iron chelators and aromatic nitrogen mustard derivatives has been well documented. Combination of the two pharmacophores in one molecule in drug designation is worth to be explored. We reported previously the syntheses and preliminary cytotoxicity evaluation of benzaldehyde nitrogen mustard pyridine carboxyl acid hydrazones (BNMPH as extended study, more tumor cell lines (IC50 for HepG2: 26.1 ± 3.5 μM , HCT-116: 57.5 ± 5.3 μM, K562: 48.2 ± 4.0 μM, and PC-12: 19.4 ± 2.2 μM were used to investigate its cytotoxicity and potential mechanism. In vitro experimental data showed that the BNMPH chelating Fe2+ caused a large number of ROS formations which led to DNA cleavage, and this was further supported by comet assay, implying that ROS might be involved in the cytotoxicity of BNMPH. The ROS induced changes of apoptosis related genes, but the TFR1 and NDRG1 metastatic genes were not obviously regulated, prompting that BNMPH might not be able to deprive Fe2+ of ribonucleotide reductase. The BNMPH induced S phase arrest was different from that of iron chelators (G1 and alkylating agents (G2. BNMPH also exhibited its inhibition of human topoisomerase IIα. Those revealed that the cytotoxic mechanism of the BNMPH could stem from both the topoisomerase II inhibition, ROS generation and DNA alkylation.

  20. Inhibition of topoisomerase II α activity and induction of apoptosis in mammalian cells by semi-synthetic andrographolide analogues.

    Science.gov (United States)

    Nateewattana, Jintapat; Saeeng, Rungnapha; Kasemsook, Sakkasem; Suksen, Kanoknetr; Dutta, Suman; Jariyawat, Surawat; Chairoungdua, Arthit; Suksamrarn, Apichart; Piyachaturawat, Pawinee

    2013-04-01

    Topoisomerase II α enzyme plays a critical role in DNA replication process. It controls the topologic states of DNA during transcription and is essential for cell proliferation. Human DNA topoisomerase II α (hTopo II α) is a promising chemotherapeutic target for anticancer agents against a variety of cancer types. In the present study, andrographolide and its structurally modified analogues were investigated for their inhibitory activities on hTopo II α enzyme. Five out of nine andrographolide analogues potently reduced hTopo II α activity and inhibited cell proliferation in four mammalian cell lines (Hela, CHO, BCA-1 and HepG2 cells). IC50 values for cytotoxicity of analogues 3A.1, 3A.2, 3A.3, 1B and 2C were 4 to 7 μM. Structure-activity relationship studies revealed that both core structure of andrographolide and silicon based molecule of functional group were important for the inhibition of hTopo II α activity whereas position C-19 of analogues was required for anti-proliferation. In addition, the analogue 2C at 10 μM concentration inhibited hTopo II α, and induced apoptosis with nuclear fragmentation and formation of apoptotic bodies in HepG2 cells. The analogue 2C may, therefore, have a therapeutic potential as effective anticancer agent targeting the hTopo II α functions.

  1. Chiral ruthenium(II) complexes with phenolic hydroxyl groups as dual poisons of topoisomerases I and IIα.

    Science.gov (United States)

    Zhang, Pingyu; Wang, Jinquan; Huang, Huaiyi; Qiao, Liping; Ji, Liangnian; Chao, Hui

    2013-06-28

    A series of novel chiral ruthenium(II) complexes with phenolic hydroxyl groups were synthesized and characterized. These ruthenium(II) complexes exhibited strong dual inhibition of topoisomerases I and IIα, with approximate IC50 values of 3-15 mM, which were more efficient than the widely clinically used single TopoI poison camptothecin (CPT) or TopoIIα poison etoposide (VP-16). Δ-1 and Λ-1 with more hydroxyls were observed to be more potent inhibitors. To further evaluate the mechanism of the complexes at a cellular level, these complexes were investigated for their effect on cell proliferation, cell cycle progression and induction of apoptosis. The results indicated that ruthenium(II) complexes permeated the nuclei in cancer cells and inhibited the activities of nuclear enzymes topoisomerases I and IIα, then triggered DNA damage and induced apoptosis in the cancer cells. The simultaneous inhibition of TopoI and TopoIIα induced the death of cancer cells, which may be a promising and effective strategy for cancer therapy.

  2. Alterations in DNA gyrase and topoisomerase IV in resistant mutants of Clostridium perfringens found after in vitro treatment with fluoroquinolones.

    Science.gov (United States)

    Rafii, Fatemeh; Park, Miseon; Novak, John S

    2005-02-01

    To compare mutations in the DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) genes of Clostridium perfringens, which are associated with in vitro exposure to fluoroquinolones, resistant mutants were selected from eight strains by serial passage in the presence of increasing concentrations of norfloxacin, ciprofloxacin, gatifloxacin, or trovafloxacin. The nucleotide sequences of the entire gyrA, gyrB, parC, and parE genes of 42 mutants were determined. DNA gyrase was the primary target for each fluoroquinolone, and topoisomerase IV was the secondary target. Most mutations appeared in the quinolone resistance-determining regions of gyrA (resulting in changes of Asp-87 to Tyr or Gly-81 to Cys) and parC (resulting in changes of Asp-93 or Asp-88 to Tyr or Ser-89 to Ile); only two mutations were found in gyrB, and only two mutations were found in parE. More mutants with multiple gyrA and parC mutations were produced with gatifloxacin than with the other fluoroquinolones tested. Allelic diversity was observed among the resistant mutants, for which the drug MICs increased 2- to 256-fold. Both the structures of the drugs and their concentrations influenced the selection of mutants.

  3. Development of derivatives of 3, 3'-diindolylmethane as potent Leishmania donovani bi-subunit topoisomerase IB poisons.

    Directory of Open Access Journals (Sweden)

    Amit Roy

    Full Text Available BACKGROUND: The development of 3, 3'-diindolyl methane (DIM resistant parasite Leishmania donovani (LdDR50 by adaptation with increasing concentrations of the drug generates random mutations in the large and small subunits of heterodimeric DNA topoisomerase I of Leishmania (LdTOP1LS. Mutation of large subunit of LdTOP1LS at F270L is responsible for resistance to DIM up to 50 µM concentration. METHODOLOGY/PRINCIPAL FINDINGS: In search of compounds that inhibit the growth of the DIM resistant parasite and inhibit the catalytic activity of mutated topoisomerase I (F270L, we have prepared three derivatives of DIM namely DPDIM (2,2'-diphenyl 3,3'-diindolyl methane, DMDIM (2,2'-dimethyl 3,3'-diindolyl methane and DMODIM (5,5'-dimethoxy 3,3'-diindolyl methane from parent compound DIM. All the compounds inhibit the growth of DIM resistant parasites, induce DNA fragmentation and stabilize topo1-DNA cleavable complex with the wild type and mutant enzyme. CONCLUSION: The results suggest that the three derivatives of DIM can act as promising lead molecules for the generation of new anti-leishmanial agents.

  4. Refined Method for Droplet Microfluidics-Enabled Detection of Plasmodium falciparum Encoded Topoisomerase I in Blood from Malaria Patients

    Directory of Open Access Journals (Sweden)

    Marianne Smedegaard Hede

    2015-10-01

    Full Text Available Rapid and reliable diagnosis is essential in the fight against malaria, which remains one of the most deadly infectious diseases in the world. In the present study we take advantage of a droplet microfluidics platform combined with a novel and user-friendly biosensor for revealing the main malaria-causing agent, the Plasmodium falciparum (P. falciparum parasite. Detection of the parasite is achieved through detection of the activity of a parasite-produced DNA-modifying enzyme, topoisomerase I (pfTopoI, in the blood from malaria patients. The assay presented has three steps: (1 droplet microfluidics-enabled extraction of active pfTopoI from a patient blood sample; (2 pfTopoI-mediated modification of a specialized DNA biosensor; (3 readout. The setup is quantitative and specific for the detection of Plasmodium topoisomerase I. The procedure is a considerable improvement of the previously published Rolling Circle Enhanced Enzyme Activity Detection (REEAD due to the advantages of involving no signal amplification steps combined with a user-friendly readout. In combination these alterations represent an important step towards exploiting enzyme activity detection in point-of-care diagnostics of malaria.

  5. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases.

    Science.gov (United States)

    Basarab, Gregory S; Kern, Gunther H; McNulty, John; Mueller, John P; Lawrence, Kenneth; Vishwanathan, Karthick; Alm, Richard A; Barvian, Kevin; Doig, Peter; Galullo, Vincent; Gardner, Humphrey; Gowravaram, Madhusudhan; Huband, Michael; Kimzey, Amy; Morningstar, Marshall; Kutschke, Amy; Lahiri, Sushmita D; Perros, Manos; Singh, Renu; Schuck, Virna J A; Tommasi, Ruben; Walkup, Grant; Newman, Joseph V

    2015-07-14

    With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.

  6. Structure-based design, synthesis and biological testing of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds designed to covalently bind to topoisomerase II and DNA.

    Science.gov (United States)

    Yadav, Arun A; Wu, Xing; Patel, Daywin; Yalowich, Jack C; Hasinoff, Brian B

    2014-11-01

    Drugs that target DNA topoisomerase II isoforms and alkylate DNA represent two mechanistically distinct and clinically important classes of anticancer drugs. Guided by molecular modeling and docking a series of etoposide analog epipodophyllotoxin-N-mustard hybrid compounds were designed, synthesized and biologically characterized. These hybrids were designed to alkylate nucleophilic protein residues on topoisomerase II and thus produce inactive covalent adducts and to also alkylate DNA. The most potent hybrid had a mean GI(50) in the NCI-60 cell screen 17-fold lower than etoposide. Using a variety of in vitro and cell-based assays all of the hybrids tested were shown to target topoisomerase II. A COMPARE analysis indicated that the hybrids had NCI 60-cell growth inhibition profiles matching both etoposide and the N-mustard compounds from which they were derived. These results supported the conclusion that the hybrids displayed characteristics that were consistent with having targeted both topoisomerase II and DNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Lack of cross-resistance to fostriecin in a human small-cell lung carcinoma cell line showing topoisomerase II-related drug resistance

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; Mulder, Nanno; de Vries, Liesbeth

    1991-01-01

    Cells exhibiting decreased topoisomerase II (Topo II) activity are resistant to several drugs that require Topo II as an intermediate. These drugs are cytotoxic due to the formation of a cleavable complex between the drug, Topo II and DNA. Fostriecin belongs to a new class of drugs that inhibit Topo

  8. Mutation of Gly717Phe in human topoisomerase 1B has an effect on enzymatic function, reactivity to the camptothecin anticancer drug and on the linker domain orientation

    DEFF Research Database (Denmark)

    Wang, Zhenxing; D'Annessa, Ilda; Tesauro, Cinzia

    2015-01-01

    Human topoisomerase 1B controls the topological state of supercoiled DNA allowing the progression of fundamental cellular processes. The enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by cleaving one DNA strand and forming a transient protein–DN...

  9. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases

    Science.gov (United States)

    Basarab, Gregory S.; Kern, Gunther H.; McNulty, John; Mueller, John P.; Lawrence, Kenneth; Vishwanathan, Karthick; Alm, Richard A.; Barvian, Kevin; Doig, Peter; Galullo, Vincent; Gardner, Humphrey; Gowravaram, Madhusudhan; Huband, Michael; Kimzey, Amy; Morningstar, Marshall; Kutschke, Amy; Lahiri, Sushmita D.; Perros, Manos; Singh, Renu; Schuck, Virna J. A.; Tommasi, Ruben; Walkup, Grant; Newman, Joseph V.

    2015-01-01

    With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy. PMID:26168713

  10. Mechanisms of topoisomerase I (TOP1) gene copy number increase in a stage III colorectal cancer patient cohort

    DEFF Research Database (Denmark)

    Smith, David Hersi; Christensen, Ib Jarle; Jensen, Niels Frank

    2013-01-01

    Topoisomerase I (Top1) is the target of Top1 inhibitor chemotherapy. The TOP1 gene, located at 20q12-q13.1, is frequently detected at elevated copy numbers in colorectal cancer (CRC). The present study explores the mechanism, frequency and prognostic impact of TOP1 gene aberrations in stage III C...

  11. Differential cytotoxic pathways of topoisomerase I and II anticancer agents after overexpression of the E2F-1/DP-1 transcription factor complex

    DEFF Research Database (Denmark)

    Hofland, K; Petersen, B O; Falck, J

    2000-01-01

    -1/tc--cells was shown to be due to S-phase initiation per se because it was blocked by ectopic expression of dominant negative cyclin-dependent kinase 2. In conclusion, overexpression of E2F-1/DP-1 in U-20S-TA cells is sufficient to increase clonogenic sensitivity to both topoisomerase I- and II...

  12. Topoisomerase 1(TOP1) gene copy number in stage III colorectal cancer patients and its relation to prognosis

    DEFF Research Database (Denmark)

    Rømer, Maria Unni Koefoed; Nygård, Sune Boris; Christensen, Ib Jarle

    2013-01-01

    A Topoisomerase 1 (Top1) poison is frequently included in the treatment regimens for metastatic colorectal cancer (mCRC). However, no predictive biomarkers for Top1 poisons are available. We here report a study on the TOP1 gene copy number in CRC patients and its association with patient prognosis...

  13. Rapid Screening of Topoisomerase Gene Mutations by a Novel Melting Curve Analysis Method for Early Warning of Fluoroquinolone-Resistant Streptococcus pneumoniae Emergence▿

    OpenAIRE

    Fukushima, Kazuko Y.; Hirakata, Yoichi; Sugahara, Kazuyuki; Yanagihara, Katsunori; Kondo, Akira; Kohno, Shigeru; Kamihira, Shimeru

    2006-01-01

    We developed a real-time PCR assay combined with melting curve analysis for rapidly genotyping quinolone resistance-determining regions (QRDR) of topoisomerase genes in Streptococcus pneumoniae. This assay was not only accurate for the screening of fluoroquinolone (FQ) resistance but also relevant as an early warning system for detecting preexisting single QRDR mutations.

  14. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquinolones.

    Science.gov (United States)

    Laponogov, Ivan; Pan, Xiao-Su; Veselkov, Dennis A; Cirz, Ryan T; Wagman, Allan; Moser, Heinz E; Fisher, L Mark; Sanderson, Mark R

    2016-09-01

    As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site-the E-site-found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem. 280, 14 252-14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site. © 2016 The Authors.

  15. Interspecies Recombination in Type II Topoisomerase Genes Is Not a Major Cause of Fluoroquinolone Resistance in Invasive Streptococcus pneumoniae Isolates in the United States

    OpenAIRE

    Pletz, Mathias W. R.; McGee, Lesley; Beall, Bernard; Whitney, Cynthia G.; Klugman, Keith P.

    2005-01-01

    Mutations in the topoisomerase type II enzymes account for fluoroquinolone resistance in Streptococcus pneumoniae. These mutations can arise spontaneously or be transferred by intraspecies or interspecies recombination, primarily with viridans streptococci. We analyzed the nucleotide sequences of the quinolone resistance-determining regions of 49 invasive levofloxacin-resistant pneumococcal isolates and did not find any evidence for interspecies recombination.

  16. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV–DNA cleavage complex with novel 7,8-bridged fluoroquinolones

    Science.gov (United States)

    Laponogov, Ivan; Pan, Xiao-Su; Veselkov, Dennis A.; Cirz, Ryan T.; Wagman, Allan; Moser, Heinz E.

    2016-01-01

    As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site—the E-site—found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem. 280, 14 252–14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site. PMID:27655731

  17. Alterations in the GyrA Subunit of DNA Gyrase and the ParC Subunit of DNA Topoisomerase IV Associated with Quinolone Resistance in Enterococcus faecalis

    OpenAIRE

    Kanematsu, Emiko; Deguchi, Takashi; Yasuda, Mitsuru; Kawamura, Takeshi; Nishino, Yoshinori; Kawada, Yukimichi

    1998-01-01

    The gyrA and parC genes of 31 clinical isolates of Enterococcus faecalis, including fluoroquinolone-resistant isolates, were partially sequenced and analyzed for target alterations. Topoisomerase IV may be a primary target in E. faecalis, but high-level fluoroquinolone resistance was associated with simultaneous alterations in both GyrA and ParC.

  18. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  19. Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin.

    Science.gov (United States)

    Strahilevitz, Jacob; Hooper, David C

    2005-05-01

    Quinolones that act equally against DNA gyrase and topoisomerase IV are a desirable modality to decrease the selection of resistant strains. We first determined by genetic and biochemical studies in Staphylococcus aureus that the primary target enzyme of WCK-1734, a new quinolone, was DNA gyrase. A single mutation in gyrase, but not topoisomerase IV, caused a two- to fourfold increase in the MIC. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that gyrase was more sensitive than topoisomerase IV to WCK-1734 (50% inhibitory concentration, 1.25 and 2.5 to 5.0 microg/ml, respectively; 50% stimulation of cleavage complex formation, 0.62 and 2.5 to 5.0 microg/ml, respectively). To test the effect of balanced activity of quinolones against the two target enzymes, we measured the frequency of selection of mutants with ciprofloxacin (which targets topoisomerase IV) and WCK-1734 alone and in combination. With the combination of ciprofloxacin and WCK-1734, each at its MIC, the ratio of frequency of mutants selected was significantly lower than that with each drug alone at two times their respective MICs. We further characterized resistant strains selected with the combination of ciprofloxacin and WCK-1734 and found evidence to suggest the existence of novel mutational mechanisms for low-level quinolone resistance. By use of a combination of differentially targeting quinolones, this study provides novel data in direct support of the paradigm for dual targeting of quinolone action and reduced development of resistance.

  20. Clinical differences between Thai systemic sclerosis patients with positive versus negative anti-topoisomerase I.

    Science.gov (United States)

    Foocharoen, Chingching; Suwannachat, Prangsuporn; Netwijitpan, Sittichai; Mahakkanukrauh, Ajanee; Suwannaroj, Siraphop; Nanagara, Ratanavadee

    2016-03-01

    Anti-topoisomerase I antibody (ATA) carries an increased risk of systemic sclerosis (SSc) internal organ involvement. There have been no published comparisons of the clinical characteristics of patients positive and negative for ATA in Thailand, where the positive rate for ATA is higher than among Caucasians. To define the clinical differences between SSc, positive versus negative, for ATA. A retrospective cohort study was performed among SSc patients over 18 at Srinagarind Hospital, Khon Kaen University, Thailand, during January 2006-December 2013. SSc-overlap syndrome was excluded. Two hundred and ninety-four SSc patients were included (female : male 2.5 : 1). The majority (68.6%) were the diffuse cutaneous SSc subset (dcSSc). ATA was positive in 252 patients (85.7%), among whom 71.7% had dcSSc and 28.2% limited cutaneous SSc (lcSSc). Using a multivariate analysis, hand deformity had a significantly positive association with ATA (odds ratio [OR] 7.01; 95% CI 1.02-48.69), whereas being anti-centromere (ACA) positive had a negative association (OR 0.17; 95% CI 0.03-0.92). After doing a subgroup analysis of the SSc subset, the median duration of disease at time of pulmonary fibrosis detection among ATA positive dcSSc was significantly shorter than the ATA negative group (1.05 vs. 6.77 years, P = 0.01). Raynaud's phenomenon (RP) at onset was significantly more frequent in lcSSc sufferers who were ATA negative than those who were ATA positive (90.5% vs. 56.9%, P = 0.005). A high prevalence of ATA positivity was found among Thai SSc patients and this was associated with a high frequency of hand deformity, ACA negativity, a short duration of pulmonary fibrosis in dcSSc and a lower frequency of RP in lcSSc. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  1. Dual effectiveness of Alternaria but not Fusarium mycotoxins against human topoisomerase II and bacterial gyrase.

    Science.gov (United States)

    Jarolim, Katharina; Del Favero, Giorgia; Ellmer, Doris; Stark, Timo D; Hofmann, Thomas; Sulyok, Michael; Humpf, Hans-Ulrich; Marko, Doris

    2017-04-01

    Type II DNA-topoisomerases (topo II) play a crucial role in the maintenance of DNA topology. Previously, fungi of the Alternaria genus were found to produce mycotoxins that target human topo II. These results implied the question why a fungus should produce secondary metabolites that target a human enzyme. In the current work, the homology between human topo II and its bacterial equivalent, gyrase, served as basis to study a potential dual inhibition of both enzymes by mycotoxins. A total of 15 secondary metabolites produced by fungi of the genera Alternaria and Fusarium were assessed for their impact on topo II of human and bacterial origin in the decatenation and the supercoiling assay, respectively. In line with the theory of dual topo II inhibition, six of the tested Alternaria mycotoxins were active against both enzymes, the dibenzo-α-pyrones alternariol (AOH) and alternariol monomethyl ether (AME), as well as the perylene-quinones altertoxin I (ATX I) and II (ATX II), alterperylenol (ALP) and stemphyltoxin III (STTX III). The Alternaria metabolites altersetin (ALN), macrosporin (MAC), altenusine (ALS) and pyrenophorol (PYR) impaired the function of human topo II, but did not show any effect on gyrase. The potency to inhibit topo II activity declined in the row STTX III (initial inhibitory concentration 10 µM) > AOH (25 µM) = AME (25 µM) = ALS (25 µM) = ATX II (25 µM) > ALN (50 µM) = ATX I (50 µM) > ALP (75 µM) = PYR (75 µM) > MAC (150 µM). Inhibition of gyrase activity was most pronounced for AOH and AME (initial inhibitory concentration 10 µM) followed by ATX II (25 µM) > ATX I = ALP = STTX III (50 µM). In contrast, none of the investigated Fusarium mycotoxins deoxynivalenol (DON), fumonisin B1, fusarin C and moniliformin, as well as the Alternaria metabolite tentoxin, had any impact on the activity of neither human nor bacterial topo II.

  2. An algebra of reversible computation.

    Science.gov (United States)

    Wang, Yong

    2016-01-01

    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  3. Tubal Ligation Reversal

    Science.gov (United States)

    ... and other factors. Success rates may be as high as 80 percent or as low as near 40 percent depending on your circumstances. Tubal ligation reversal is abdominal surgery, which carries a risk of infection, bleeding and ...

  4. Sex reversal in vertebrates

    OpenAIRE

    2016-01-01

    This special topic issue of Sexual Development gives an overview of sex reversal in vertebrates, from fishes naturally changing their sex, to rodents escaping the mammalian SRY-determining system. It offers eight up-to-date reviews on specific subjects in sex reversal, considering fishes, amphibians, reptiles, birds, marsupials, and placental mammals, including humans. The broad scope of represented animals makes this ideal for students and researchers, especially those interested in the...

  5. What do reversible programs compute?

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert

    2011-01-01

    transformation, program transformations such as inversion, and general static prediction of program properties. Historically, work on reversible computing has focussed on reversible simulations of irreversible computations. Here, we take the viewpoint that the property of reversibility itself should...

  6. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  7. Specific detection of topoisomerase I from the malaria causing P. falciparum parasite using isothermal rolling circle amplification.

    Science.gov (United States)

    Tesauro, Cinzia; Juul, Sissel; Arnò, Barbara; Nielsen, Christine J F; Fiorani, Paola; Frøhlich, Rikke F; Andersen, Felicie F; Desideri, Alessandro; Stougaard, Magnus; Petersen, Eskild; Knudsen, Birgitta R

    2012-01-01

    We present a Rolling-Circle-Enhance-Enzyme-Activity-Detection (REEAD) system with potential use for future point-of-care diagnosis of malaria. In the developed setup, specific detection of malaria parasites in crude blood samples is facilitated by the conversion of single Plasmodium falciparum topoisomerase I (pfTopI) mediated cleavage-ligation events, happening within nanometer dimensions, to micrometer-sized products readily detectable at the single molecule level in a fluorescence microscope. In principle, REEAD requires no special equipment and the readout is adaptable to simple colorimetric detection systems. Moreover, with regard to detection limit the presented setup is likely to outcompete standard gold immuno-based diagnostics. Hence, we believe the presented assay forms the basis for a new generation of easy-to-use diagnostic tools suitable for the malaria epidemic areas in developing countries.

  8. Synthesis and biological evaluation of indeno[1,5]naphthyridines as topoisomerase I (TopI) inhibitors with antiproliferative activity.

    Science.gov (United States)

    Alonso, Concepción; Fuertes, María; González, María; Rubiales, Gloria; Tesauro, Cinzia; Knudsen, Birgitta R; Palacios, Francisco

    2016-06-10

    In an effort to establish new candidates with improved anticancer activity, we report here the synthesis of various series of 7H-indeno[2,1-c][1,5]-naphthyridines and novel 7H-indeno[2,1-c][1,5]-naphthyridine-7-ones and 7H-indeno[2,1-c][1,5]-naphthyridine-7-ols. Most of the products which were synthesized were able to inhibit Topoisomerase I activity. Moreover, in vitro testing demonstrated that a subset of the products exhibited a cytotoxic effect on cell lines derived from human breast cancer (BT 20), human lung adenocarcinoma (A 549), or human ovarian carcinoma (SKOV3). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Lack of topoisomerase copy number changes in patients with de novo and relapsed diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Pedersen, Mette Ø; Poulsen, Tim S; Gang, Anne O

    2015-01-01

    Topoisomerase (TOP) gene copy number changes may predict response to treatment with TOP-targeting drugs in cancer treatment. This was first described in patients with breast cancer and is currently being investigated in other malignant diseases. TOP-targeting drugs may induce TOP gene copy number...... changes at relapse, with possible implications for relapse therapy efficacy. TOP gene alterations in lymphoma are poorly investigated. In this study, TOP1 and TOP2A gene alterations were investigated in patients with de novo diffuse large B-cell lymphoma (DLBCL) (n = 33) and relapsed DLBCL treated...... with chemotherapy regimens including TOP2-targeting drugs (n = 16). No TOP1 or TOP2A copy number changes were found. Polysomy of chromosomes 20 and 17 was seen in 3 of 25 patients (12%) and 2 of 32 patients (6%) with de novo DLBCL. Among relapsed patients, chromosome polysomy was more frequently observed in 5 of 13...

  10. A Support Vector Machine Classification Model for Benzo[c]phenathridine Analogues with Topoisomerase-I Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Thanh-Dao Tran

    2012-04-01

    Full Text Available Benzo[c]phenanthridine (BCP derivatives were identified as topoisomerase I (TOP-I targeting agents with pronounced antitumor activity. In this study, a support vector machine model was performed on a series of 73 analogues to classify BCP derivatives according to TOP-I inhibitory activity. The best SVM model with total accuracy of 93% for training set was achieved using a set of 7 descriptors identified from a large set via a random forest algorithm. Overall accuracy of up to 87% and a Matthews coefficient correlation (MCC of 0.71 were obtained after this SVM classifier was validated internally by a test set of 15 compounds. For two external test sets, 89% and 80% BCP compounds, respectively, were correctly predicted. The results indicated that our SVM model could be used as the filter for designing new BCP compounds with higher TOP-I inhibitory activity.

  11. Synthesis, insecticidal activity and inhibition on topoisomerase I of 20(S)-t-Boc-amino acid derivatives of camptothecin.

    Science.gov (United States)

    Wang, Liping; Li, Zhe; Zhang, Lan; Zhang, Yanning; Mao, Liangang; Jiang, Hongyun

    2017-06-01

    Camptothecin (CPT), a quinolone alkaloid extracted from Camptotheca acuminata Decne, exhibits potential insecticidal activities against various insect species. Our previous studies have showed that CPT induced apoptosis in Spodoptera exigua Hübner cell line and inhibited the relaxation activity of topoisomerase I (Topo I). In this study, total seven 20(S)-t-butoxy carbonyl-amino acid derivatives of CPT were synthesized and evaluated for insecticidal activities, cytotoxicity and Topo I inhibitory activities. Results showed that introduction of t-Boc amino acids to 20-position on CPT improves contact assay and cytotoxicity of most derivatives toward S. exigua but reduces inhibitory effect on relaxation activity of S. exigua Topo I. Furthermore, compounds 1d and 1g demonstrated higher level of contact activities and cytotoxicity than CPT and hydroxyl-camptothecin (HCPT), which are potential to be developed as potential insecticides targeted at more than Topo I. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents.

    Science.gov (United States)

    Zhang, Ling; Addla, Dinesh; Ponmani, Jeyakkumar; Wang, Ao; Xie, Dan; Wang, Ya-Nan; Zhang, Shao-Lin; Geng, Rong-Xia; Cai, Gui-Xin; Li, Shuo; Zhou, Cheng-He

    2016-03-23

    A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 μM concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Protein expression of DNA damage repair proteins dictates response to topoisomerase and PARP inhibitors in triple-negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie L Boerner

    Full Text Available Patients with metastatic triple-negative breast cancer (TNBC have a poor prognosis. New approaches for the treatment of TNBC are needed to improve patient survival. The concept of synthetic lethality, brought about by inactivating complementary DNA repair pathways, has been proposed as a promising therapeutic option for these tumors. The TNBC tumor type has been associated with BRCA mutations, and inhibitors of Poly (ADP-ribose polymerase (PARP, a family of proteins that facilitates DNA repair, have been shown to effectively kill BRCA defective tumors by preventing cells from repairing DNA damage, leading to a loss of cell viability and clonogenic survival. Here we present preclinical efficacy results of combining the PARP inhibitor, ABT-888, with CPT-11, a topoisomerase I inhibitor. CPT-11 binds to topoisomerase I at the replication fork, creating a bulky adduct that is recognized as damaged DNA. When DNA damage was stimulated with CPT-11, protein expression of the nucleotide excision repair enzyme ERCC1 inversely correlated with cell viability, but not clonogenic survival. However, 4 out of the 6 TNBC cells were synergistically responsive by cell viability and 5 out of the 6 TNBC cells were synergistically responsive by clonogenic survival to the combination of ABT-888 and CPT-11. In vivo, the BRCA mutant cell line MX-1 treated with CPT-11 alone demonstrated significant decreased tumor growth; this decrease was enhanced further with the addition of ABT-888. Decrease in tumor growth correlated with an increase in double strand DNA breaks as measured by γ-H2AX phosphorylation. In summary, inhibiting two arms of the DNA repair pathway simultaneously in TNBC cell lines, independent of BRCA mutation status, resulted in un-repairable DNA damage and subsequent cell death.

  14. Inhibition of topoisomerase IIα activity in CHO K1 cells by 2-[(aminopropyl)amino]ethanethiol (WR-1065)

    International Nuclear Information System (INIS)

    Grdina, D.J.

    1993-06-01

    The aminothiol 2-[(aminopropyl)amino]ethanethiol (WR-1065) is the active thiol of the clinically studied radioprotective agent S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721). WR-1065 is an effective radiation protector and antimutagenic agent when it is administered 30 min prior to radiation exposure to Chinese hamster ovary Kl cells at a concentration of 4 mM. Under these exposure conditions, topoisomerase (topo) I and II activities and associated protein contents were measured in the K1 cell line using the DNA relaxation assay, the P4 unknotting assay, and immunoblotting, respectively. WR-1065 was ineffective in modifying topo I activity, but it did reduce topo IIa activity by an average of 50 percent. The magnitude of topo IIa protein content, however, was not affected by these exposure conditions. Cell cycle effects were monitored by the method of flow cytometry. Exposure of cells to 4 mM WR-1065 for a period of up to 6 h resulted in a buildup of cells in the G2 compartment. However, in contrast to topo II inhibitors used in chemotherapy, WR-1065 is an effective radioprotector agent capable of protecting against both radiation-induced cell lethality and mutagenesis. One of several mechanisms of radiation protection attributed to aminothiol compounds such as WR-1065 has been their ability to affect endogenous enzymatic reactions involved in DNA synthesis, repair, and cell cycle progression. These results are consistent with such a proposed mechanism and demonstrate in particular a modifying effect by 2-[(aminopropyl)amino]ethanethiol on type II topoisomerase, which is involved in DNA synthesis

  15. Role of DNA gyrase and topoisomerase IV mutations in fluoroquinolone resistance of Capnocytophaga spp. clinical isolates and laboratory mutants.

    Science.gov (United States)

    Ehrmann, Elodie; Jolivet-Gougeon, Anne; Bonnaure-Mallet, Martine; Fosse, Thierry

    2017-08-01

    Capnocytophaga spp. are often reported to cause bacteraemia and extra-oral infections and are characterized by their significant contribution to resistance to β-lactam and macrolide-lincosamide-streptogramin antibiotics in the human oral microbiota. The implication of mutations in the quinolone resistance-determining region (QRDR) of DNA gyrase A and B ( gyrA and gyrB ) and topoisomerase IV ( parC and parE ) of fluoroquinolone (FQ)-resistant Capnocytophaga spp., hitherto unknown, was explored in this study. Two reference strains ( Capnocytophaga gingivalis ATCC 33624 and Capnocytophaga sputigena ATCC 33612) and four Capnocytophaga spp. isolated from clinical samples were studied. Nine in vitro FQ-resistant mutants, derived from two reference strains and one FQ-susceptible clinical isolate, were selected by successive inoculations onto medium containing levofloxacin. MICs of ofloxacin, norfloxacin, ciprofloxacin, levofloxacin and moxifloxacin were determined. The presumed QRDRs of GyrA, GyrB, ParC and ParE from Capnocytophaga spp. were determined by sequence homology to Bacteroides fragilis and Escherichia coli . PCR primers were designed to amplify the presumed QRDR genetic region of Capnocytophaga spp. and sequence analyses were performed using the BLAST program at the National Center for Biotechnology Information. gyrA mutations leading to a substitution from amino acid position 80 to 86 were systematically detected in Capnocytophaga spp. with ciprofloxacin MIC >1 mg/L and considered as the primary target of FQs. No mutational alteration in the QRDR of gyrB was detected. Other mutations in parC and parE led to spontaneous amino acid substitutions of DNA topoisomerase IV subunit B with no alteration in FQ susceptibility. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Nitric oxide inhibits ATPase activity and induces resistance to topoisomerase II-poisons in human MCF-7 breast tumor cells.

    Science.gov (United States)

    Sinha, Birandra K; Kumar, Ashutosh; Mason, Ronald P

    2017-07-01

    Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide ( • NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. Here, we have evaluated the roles of • NO/ • NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of • NO on the ATPase activity of topo II. Treatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. • NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. As tumors express nitric oxide synthase and generate • NO, inhibition of topo II functions by • NO/ • NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.

  17. Reversible Communicating Processes

    Directory of Open Access Journals (Sweden)

    Geoffrey Brown

    2016-02-01

    Full Text Available Reversible distributed programs have the ability to abort unproductive computation paths and backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols, an interesting alternative is to separate backtracking from local state recovery. For example, such a model could be used to create complex transactions out of nested compensable transactions where a programmer-supplied compensation defines the work required to "unwind" a transaction. Reversible distributed computing has received considerable theoretical attention, but little reduction to practice; the few published implementations of languages supporting reversibility depend upon a high degree of central control. The objective of this paper is to demonstrate that a practical reversible distributed language can be efficiently implemented in a fully distributed manner. We discuss such a language, supporting CSP-style synchronous communication, embedded in Scala. While this language provided the motivation for the work described in this paper, our focus is upon the distributed implementation. In particular, we demonstrate that a "high-level" semantic model can be implemented using a simple point-to-point protocol.

  18. Reversed extension flow

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.

    2008-01-01

    Afilament stretching rheometer (FSR) was used for measuring the start-up of uni-axial elongational flow followed by reversed bi-axial flow, both with a constant elongational rate. A narrow molecular mass distribution linear polystyrene with a molecular weight of 145 kg / mole wis subjected...... to the start-up of elongation for three Hencky strain units and subsequently the reversed flow. The integral molecular stress function formulation within the 'interchain pressure' concept agrees with the experiments. In the experiments the Hencky strain at which the str~ss becomes zero (the recovery strain......) in the reversed flow has been identified. The recovery strain is found to increase with elongational rate, and has a maximum value of approximately 1.45. The Doi Edwards model using any stretch evolution equation is not able to predict the correct level of the recovery strain....

  19. Time reversal communication system

    Science.gov (United States)

    Candy, James V.; Meyer, Alan W.

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  20. Engineering Encounters: Reverse Engineering

    Science.gov (United States)

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  1. Sex Reversal in Birds.

    Science.gov (United States)

    Major, Andrew T; Smith, Craig A

    2016-01-01

    Sexual differentiation in birds is controlled genetically as in mammals, although the sex chromosomes are different. Males have a ZZ sex chromosome constitution, while females are ZW. Gene(s) on the sex chromosomes must initiate gonadal sex differentiation during embryonic life, inducing paired testes in ZZ individuals and unilateral ovaries in ZW individuals. The traditional view of avian sexual differentiation aligns with that expounded for other vertebrates; upon sexual differentiation, the gonads secrete sex steroid hormones that masculinise or feminise the rest of the body. However, recent studies on naturally occurring or experimentally induced avian sex reversal suggest a significant role for direct genetic factors, in addition to sex hormones, in regulating sexual differentiation of the soma in birds. This review will provide an overview of sex determination in birds and both naturally and experimentally induced sex reversal, with emphasis on the key role of oestrogen. We then consider how recent studies on sex reversal and gynandromorphic birds (half male:half female) are shaping our understanding of sexual differentiation in avians and in vertebrates more broadly. Current evidence shows that sexual differentiation in birds is a mix of direct genetic and hormonal mechanisms. Perturbation of either of these components may lead to sex reversal. © 2016 S. Karger AG, Basel.

  2. Cinnamomum verum component 2-methoxycinnamaldehyde: a novel antiproliferative drug inducing cell death through targeting both topoisomerase I and II in human colorectal adenocarcinoma COLO 205 cells

    Directory of Open Access Journals (Sweden)

    Kuen-daw Tsai

    2016-06-01

    Full Text Available Background: Cinnamomum verum is used to manufacture the spice cinnamon. In addition, the plant has been used as a Chinese herbal medication. Methods: We investigated the antiproliferative effect of 2-methoxycinnamaldehyde (2-MCA, a constituent of the cortex of the plant, and the molecular biomarkers associated with tumorigenesis in human colorectal adenocarcinoma COLO 205 cells. Specifically, cell viability was evaluated by colorimetric assay; apoptosis was determined by flow cytometry and morphological analysis with bright field, acridine orange, and neutral red stainings, as well as comet assay; topoisomerase I activity was determined by assay based upon DNA relaxation and topoisomerase II by DNA relaxation plus decatentation of kinetoplast DNA; lysosomal vacuolation and volume of acidic compartments (VACs were determined by neutral red staining. Results: The results demonstrate that 2-MCA inhibited proliferation and induced apoptosis as implicated by mitochondrial membrane potential (ΔΨm loss, activation of both caspase-3 and -9, increase of annexin V+PI+ cells, as well as morphological characteristics of apoptosis. Furthermore, 2-MCA also induced lysosomal vacuolation with elevated VAC, cytotoxicity, and inhibitions of topoisomerase I as well as II activities. Additional study demonstrated the antiproliferative effect of 2-MCA found in a nude mice model. Conclusions: Our data implicate that the antiproliferative activity of 2-MCA in vitro involved downregulation of cell growth markers, both topoisomerase I and II, and upregulation of pro-apoptotic molecules, associated with increased lysosomal vacuolation. In vivo 2-MCA reduced the tumor burden that could have significant clinical impact. Indeed, similar effects were found in other tested cell lines, including human hepatocellular carcinoma SK-Hep-1 and Hep 3B, lung adenocarcinoma A549 and squamous cell carcinoma NCI-H520, and T-lymphoblastic MOLT-3 (results not shown. Our data implicate

  3. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Ma, Yong-Chao; Wang, Zhi-Xin; Jin, Shao-Ju; Zhang, Yan-Xin; Hu, Guo-Qiang; Cui, Dong-Tao; Wang, Jiang-Shuan; Wang, Min; Wang, Fu-Qing; Zhao, Zhi-Jun

    2016-01-01

    Both tyrosine kinase and topoisomerase II (TopII) are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK) detection kit using a horseradish peroxidase (HRP)-conjugated phosphotyrosine (pY20) antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (Ptopoisomerase IIβ activity was noted following treatment with HMNE3 for 24 h. Our data suggest that HMNE3 induced apoptosis in Capan-1 and Panc-1 cells by inhibiting the activity of both tyrosine kinases and topoisomerase II.

  4. Role of Topoisomerases in Pediatric High Grade Osteosarcomas: TOP2A Gene Is One of the Unique Molecular Biomarkers of Chemoresponse

    Directory of Open Access Journals (Sweden)

    Natacha Entz-Werle

    2013-06-01

    Full Text Available Currently, the treatment of pediatric high-grade osteosarcomas systematically includes one topoisomerase IIα inhibitor. This chemotherapy is usually adapted to the response to the neo-adjuvant therapy after surgery. The current and unique marker of chemoresponsiveness is the percentage of viable residual cells in the surgical resection. This late patient management marker has to be evaluated earlier in the therapeutic history of the patients on initial biopsy. Therefore, new biomarkers, especially those involved in the topoisomerase IIα inhibitor response might be good candidates. Therefore, our study was designed to target TOP1, TOP2A and TOP2B genes in 105 fresh-frozen diagnostic biopsies by allelotyping and real-time quantitative PCR. Our analyses in those pediatric osteosarcomas, homogeneously treated, highlighted the frequent involvement of topo-isomerase genes. The main and most important observation was the statistical link between the presence of TOP2A amplification and the good response to neo-adjuvant chemotherapy. Compared to adult cancers, the 17q21 amplicon, including TOP2A and ERBB2 genes, seems to be differentially implicated in the osteosarcoma chemoresponsiveness. Surprisingly, there is no ERBB2 gene co-amplification and the patients harboring TOP2A amplification tend to show a worse survival, so TOP2A analyses remain a preliminary, but a good molecular approach for the evaluation at diagnosis of pediatric osteosarcoma chemoresponsiveness.

  5. The Identification of a Novel Mutant Allele of topoisomerase II in Caenorhabditis elegans Reveals a Unique Role in Chromosome Segregation During Spermatogenesis.

    Science.gov (United States)

    Jaramillo-Lambert, Aimee; Fabritius, Amy S; Hansen, Tyler J; Smith, Harold E; Golden, Andy

    2016-12-01

    Topoisomerase II alleviates DNA entanglements that are generated during mitotic DNA replication, transcription, and sister chromatid separation. In contrast to mitosis, meiosis has two rounds of chromosome segregation following one round of DNA replication. In meiosis II, sister chromatids segregate from each other, similar to mitosis. Meiosis I, on the other hand, segregates homologs, which requires pairing, synapsis, and recombination. The exact role that topoisomerase II plays during meiosis is unknown. In a screen reexamining Caenorhabditis elegans legacy mutants isolated 30 years ago, we identified a novel allele of the gene encoding topoisomerase II, top-2(it7). In this study, we demonstrate that top-2(it7) males produce dead embryos, even when fertilizing wild-type oocytes. Characterization of early embryonic events indicates that fertilization is successful and sperm components are transmitted to the embryo. However, sperm chromatin is not detected in these fertilized embryos. Examination of top-2(it7) spermatogenic germ lines reveals that the sperm DNA fails to segregate properly during anaphase I of meiosis, resulting in anucleate sperm. top-2(it7) chromosome-segregation defects observed during anaphase I are not due to residual entanglements incurred during meiotic DNA replication and are not dependent on SPO-11-induced double-strand DNA breaks. Finally, we show that TOP-2 associates with chromosomes in meiotic prophase and that chromosome association is disrupted in the germ lines of top-2(it7) mutants. Copyright © 2016 by the Genetics Society of America.

  6. Experimental and computational investigations of Ser10 and Lys13 in the binding and cleavage of DNA substrates by Escherichia coli DNA topoisomerase I

    Science.gov (United States)

    Strahs, Daniel; Zhu, Chang-Xi; Cheng, Bokun; Chen, Jason; Tse-Dinh, Yuk-Ching

    2006-01-01

    Ser10 and Lys13 found near the active site tyrosine of Escherichia coli DNA topoisomerase I are conserved among the type IA topoisomerases. Site-directed mutagenesis of these two residues to Ala reduced the relaxation and DNA cleavage activity, with a more severe effect from the Lys13 mutation. Changing Ser10 to Thr or Lys13 to Arg also resulted in loss of DNA cleavage and relaxation activity of the enzyme. In simulations of the open form of the topoisomerase–DNA complex, Lys13 interacts directly with Glu9 (proposed to be important in the catalytic mechanism). This interaction is removed in the K13A mutant, suggesting the importance of lysine as either a proton donor or a stabilizing cation during strand cleavage, while the Lys to Arg mutation significantly distorts catalytic residues. Ser10 forms a direct hydrogen bond with a phosphate group near the active site and is involved in direct binding of the DNA substrate; this interaction is disturbed in the S10A and S10T mutants. This combination of a lysine and a serine residue conserved in the active site of type IA topoisomerases may be required for correct positioning of the scissile phosphate and coordination of catalytic residues relative to each other so that DNA cleavage and subsequent strand passage can take place. PMID:16582104

  7. Ruthenium(II) polypyridyl complexes with 1,8-naphthalimide group as DNA binder, photonuclease, and dual inhibitors of topoisomerases I and IIα.

    Science.gov (United States)

    Sun, Yanmei; Li, Jia; Zhao, Hong; Tan, Lifeng

    2016-10-01

    Two ruthenium(II) polypyridyl complexes containing 1,8-naphthalimide group as DNA binders, photonucleases, and inhibitors of topoisomerases I and IIα are evaluated. The binding properties of [Ru(phen) 2 (pnip)] 2+ {1; phen=1,10-phenanthroline; pnip=12-[N-(p-phenyl)-1,8-napthalimide]- imidazo[4',5'-f] [1,10]phenanthroline} and [Ru(bpy) 2 (pnip)] 2+ (2; bpy=2,2'-bipyridine) with calf thymus DNA increases with increasing the bulkiness and hydrophobic character of ancillary ligands, although the two complexes possess high affinities for DNA via intercalation. Moreover, photoirradiation (λ=365nm) of the two complexes are found to induce strand cleavage of closed circular pBR322 plasmid DNA via singlet oxygen mechanism, while complex 1 displays more effective photocleavage activity than complex 2 under the same conditions. Topoisomerase inhibition and DNA strand passage assay reflect that complexes 1 and 2 are efficient dual poisons of topoisomerases I and IIα. Copyright © 2016. Published by Elsevier Inc.

  8. 49 CFR 230.89 - Reverse gear.

    Science.gov (United States)

    2010-10-01

    ... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants shall be maintained in a safe and suitable condition for service. Reverse lever latch shall be so...

  9. Posterior Reversible Encephalopathy (PRES)

    International Nuclear Information System (INIS)

    Moron E, Fanny E; Diaz Marchan, Pedro

    2005-01-01

    The Posterior Reversible Encephalopathy Syndrome (PRES) is a clinical Syndrome composed of cephalea, alteration in vision and convulsions, usually observed in patients with sudden elevation of arterial pressure. The imagenologic evidence shows reversible vasogenic brain edema without stroke. Its location is predominantly posterior; it affects the cortex and the subcortical white matter of the occipital, parietal and temporal lobes. The treatment with antihypertensive drugs and the removing of immunosupressor medication are generally associated with complete neurological recovery; this is reflected also in the images which return to their basal condition. The untreated hypertension, on the other side, can result in a progressive defect of the autoregulation system of the central nervous system with cerebral hemorrhage, irreversible brain stroke, coma and death

  10. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Yong-Chao Ma

    Full Text Available Both tyrosine kinase and topoisomerase II (TopII are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT dUTP nick-end labeling (TUNEL assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK detection kit using a horseradish peroxidase (HRP-conjugated phosphotyrosine (pY20 antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05, and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity in vitro with an IC50 value of 0.64±0.34 μmol/L in Capan-1 cells and 3.1±0.86 μmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose

  11. Time-reversal acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Mathias [Laboratoire Ondes et Acoustique, Ecole Superieure de Physique et de Chimie Industrielle de la Ville de Paris, Universite Denis Diderot, UMR CNRS 7587, 10 Rue Vauquelin, 75005 Paris (France)], E-mail: mathias.fink@espci.fr

    2008-10-15

    Time-reversal mirrors (TRMs) refocus an incident acoustic field to the position of the original source regardless of the complexity of the propagation medium. TRM's have now been implemented in a variety of physical scenarios from MHz ultrasonics with order centimeter aperture size to hundreds/thousands of Hz in ocean acoustics with order hundred meter aperture size. Common to this broad range of scales is a remarkable robustness exemplified by observations at all scales that the more complex the medium between the probe source and the TRM, the sharper the focus. The relation between the medium complexity and the size of the focal spot is studied in this paper. It is certainly the most exciting property of TRM compared to standard focusing devices. A TRM acts as an antenna that uses complex environments to appears wider than it is, resulting for a broadband pulse in a refocusing quality that does not depend of the TRM aperture. In this paper, we investigate the time-reversal approach in various media of increasing complexity and we discuss the link existing between time-reversal approach and local helioseismology where Green's functions can be extracted from diffusive noise.

  12. Status of time reversal invariance

    International Nuclear Information System (INIS)

    Henley, E.M.

    1989-01-01

    Time Reversal Invariance is introduced, and theories for its violation are reviewed. The present experimental and theoretical status of Time Reversal Invariance and tests thereof will be presented. Possible future tests will be discussed

  13. A Study on Reverse Logistics

    OpenAIRE

    Reddy, Dhananjaya

    2011-01-01

    In the competitive world of manufacturing, companies are often searching for new ways to improve their process, customer satisfaction and stay ahead in the game with their competitors. Reverse logistics has been considered a strategy to bring these things to life for the past decade or so. This thesis work tries to shed some light on the basics of reverse logistics and how reverse logistics can be used as a management strategy. This paper points out the fundamentals of reverse logistics and l...

  14. Importance of a stable topoisomerase IB clamping for an efficient DNA processing: Effect of the Lys(369)Glu mutation.

    Science.gov (United States)

    Vieira, Sara; Castelli, Silvia; Desideri, Alessandro

    2015-11-01

    The role of lysine 369 of human topoisomerase IB in recognizing, clamping and processing its DNA substrate was experimentally investigated. Lys(369) is located in one of the two lips that interact to each other allowing the protein to embrace and firmly bind the DNA substrate. The lysine was mutated to a glutamate residue and the catalytic activity of the mutant enzyme was assayed. The mutant shows a distributive behavior, has a reduced binding to the substrate and a lower cleavage extent when compared to the wild type enzyme. The mutant displays reduced sensitivity to CPT both "in vitro" and in an "in vivo" yeast model, likely because of the low amount of cleaved DNA, however it displays cleavage and religation rates comparable to the wild type. These results demonstrate that the mutation causes a destabilization of the lips clamping around the DNA, impairing the protein-DNA interaction, emphasizing the importance of the ionic pair in tuning the stability of the protein-DNA complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The role of the Zn(II binding domain in the mechanism of E. coli DNA topoisomerase I

    Directory of Open Access Journals (Sweden)

    Tse-Dinh Yuk-Ching

    2002-05-01

    Full Text Available Abstract Background Escherichia coli DNA topoisomerase I binds three Zn(II with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain. The 67 kDa N-terminal domain (Top67 has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism. Results Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain. Conclusions We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.

  16. Detection of the Malaria causing Plasmodium Parasite in Saliva from Infected Patients using Topoisomerase I Activity as a Biomarker.

    Science.gov (United States)

    Hede, Marianne Smedegaard; Fjelstrup, Søren; Lötsch, Felix; Zoleko, Rella Manego; Klicpera, Anna; Groger, Mirjam; Mischlinger, Johannes; Endame, Lilian; Veletzky, Luzia; Neher, Ronja; Simonsen, Anne Katrine Wrist; Petersen, Eskild; Mombo-Ngoma, Ghyslain; Stougaard, Magnus; Ho, Yi-Ping; Labouriau, Rodrigo; Ramharter, Michael; Knudsen, Birgitta Ruth

    2018-03-07

    Malaria is among the major threats to global health with the main burden of disease being in rural areas of developing countries where accurate diagnosis based on non-invasive samples is in high demand. We here present a novel molecular assay for detection of malaria parasites based on technology that may be adapted for low-resource settings. Moreover, we demonstrate the exploitation of this assay for detection of malaria in saliva. The setup relies on pump-free microfluidics enabled extraction combined with a DNA sensor substrate that is converted to a single-stranded DNA circle specifically by topoisomerase I expressed by the malaria causing Plasmodium parasite. Subsequent rolling circle amplification of the generated DNA circle in the presence of biotin conjugated deoxynucleotides resulted in long tandem repeat products that was visualized colorimetrically upon binding of horse radish peroxidase (HRP) and addition of 3,3',5,5'-Tetramethylbenzidine that was converted to a blue colored product by HRP. The assay was directly quantitative, specific for Plasmodium parasites, and allowed detection of Plasmodium infection in a single drop of saliva from 35 out of 35 infected individuals tested. The results could be determined directly by the naked eye and documented by quantifying the color intensity using a standard paper scanner.

  17. Hypoxia-Targeted Drug Q6 Induces G2-M Arrest and Apoptosis via Poisoning Topoisomerase II under Hypoxia.

    Directory of Open Access Journals (Sweden)

    Linlin Chang

    Full Text Available In spite of the tremendous efforts dedicated to developing hypoxia-activated prodrugs, no agents yet have been approved for clinical therapy. In the present study, the hypoxic selective anti-cancer activity as well as the cellular target of a novel tirapazamine (TPZ analogue, 7-methyl-3-(3-chlorophenyl-quinoxaline-2-carbonitrile 1,4-dioxide (Q6 were investigated. Q6 implemented anti-cancer effects via poisoning topoisomerase II (topo II under hypoxia. Modified trapped in agarose DNA immunostaining (TARDIS assay showed more topo II-DNA cleavage complexes trapped by Q6 than TPZ at even lower concentration. In addition, by introducing ataxia-telangiectasia-mutated (ATM kinase inhibitors caffeine and KU-60019, we displayed that Q6-triggered apoptosis was attributed, at least partially, to DNA double-strand breaks generated by the topo II-targeting effect. Collectively, Q6 stood out for its better hypoxia-selectivity and topo II-poisoning than the parental compound TPZ. All these data shed light on the research of Q6 as a promising hypoxia-activated prodrug candidate for human hepatocellular carcinoma therapy.

  18. DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Thanh Theresa Dinh

    2014-07-01

    Full Text Available RNA-directed DNA methylation (RdDM and histone H3 lysine 9 dimethylation (H3K9me2 are related transcriptional silencing mechanisms that target transposable elements (TEs and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.

  19. The molecular mechanism regulating the autonomous circadian expression of Topoisomerase I in NIH3T3 cells.

    Science.gov (United States)

    Yang, Fang; Nakajima, Yoshihiro; Kumagai, Megumi; Ohmiya, Yoshihiro; Ikeda, Masaaki

    2009-02-27

    To identify whether Topoisomerase I (TopoI) has autonomous circadian rhythms regulated by clock genes, we tested mouse TopoI (mTopoI) promoter oscillation in NIH3T3 cells using a real-time monitoring assay and TopoI mRNA oscillations using real-time RT-PCR. Analysis of the mTopoI promoter region with Matlnspector software revealed two putative E-box (E1 and E2) and one DBP/E4BP4-binding element (D-box). Luciferase assays indicated that mTopoI gene expression was directly regulated by clock genes. The real-time monitoring assay showed that E-box and D-box response elements participate in the regulation of the circadian expression of mTopoI. Furthermore, a gel-shift assay showed that E2 is a direct target of the BMAL1/CLOCK heterodimer and DBP binds to the putative D-site. These results indicate that TopoI is expressed in an autonomous circadian rhythm in NIH3T3 cells.

  20. Overexpression of carboxylesterase-2 results in enhanced efficacy of topoisomerase I inhibitor, irinotecan (CPT-11), for multiple myeloma.

    Science.gov (United States)

    Yano, Hiroki; Kayukawa, Satoshi; Iida, Shinsuke; Nakagawa, Chiharu; Oguri, Tetsuya; Sanda, Takaomi; Ding, Jianming; Mori, Fumiko; Ito, Asahi; Ri, Masaki; Inagaki, Atsushi; Kusumoto, Shigeru; Ishida, Takashi; Komatsu, Hirokazu; Inagaki, Hiroshi; Suzuki, Atsushi; Ueda, Ryuzo

    2008-11-01

    Multiple myeloma (MM) remains an incurable disease and further development of novel agents is needed. Because constitutive expression of topoisomerase I (TopoI) in MM cells and the efficacy of SN-38, an active metabolite of irinotecan (CPT-11), have been reported, we investigated the therapeutic potential of CPT-11. Of the eight MM cell lines analyzed, four showed 50% inhibitory concentration values of less than 2 microg/mL for CPT-11 and less than 2 ng/mL for SN-38. This efficacy was partly explained by the high expression level of human carboxylesterase-2 (hCE-2) in MM cells. Interestingly, high expression of hCE-2 represented the nature of normal plasma cells, suggesting that hCE-2 could efficiently generate SN-38 within the plasma cells. As expected, higher sensitivity to CPT-11 was observed in hCE-2-overexpressing U266 cells than mock U266 cells. On the other hand, the expression levels of hCE-1, TopoI, UGT1A and ABCG2 did not seem to be associated with the sensitivity of MM cells to CPT-11. In a murine xenograft model inoculated s.c. with RPMI8226 cells, administration of CPT-11 alone significantly reduced the tumor volume. When a combination of CPT-11 and bortezomib was administered, the subcutaneous tumors completely disappeared. Thus, clinical trials on CPT-11 in patients with relapsed or refractory MM are warranted.

  1. Synthesis of pharmacologically important naphthoquinones and anticancer activity of 2-benzyllawsone through DNA topoisomerase-II inhibition.

    Science.gov (United States)

    Kumar, Balagani Sathish; Ravi, Kusumoori; Verma, Amit Kumar; Fatima, Kaneez; Hasanain, Mohammad; Singh, Arjun; Sarkar, Jayanta; Luqman, Suaib; Chanda, Debabrata; Negi, Arvind S

    2017-02-15

    Naphthoquinones are naturally occurring biologically active entities. Practical de novo syntheses of three naphthoquinones i.e. lawsone (1), lapachol (2), and β-lapachone (3b) have been achieved from commercially available starting materials. The conversion of lapachol (2) to β-lapachone (3b) was achieved through p-TSA/Iodine/BF 3 -etherate mediated regioselective cyclisation. Further, 2-alkyl and 2-benzyllawsone derivatives have been prepared as possible anticancer agents. Four derivatives exhibited significant anticancer activity and the best analogue i.e. compound 21a exhibited potential anticancer activity (IC 50 =5.2μM) against FaDu cell line. Compound 21a induced apoptosis through activation of caspase pathway and exerted cell cycle arrest at S phase in FaDU cells. It also exhibited significant topoisomerase-II inhibition activity. Compound 21a was found to be safe in Swiss albino mice up to 1000mg/kg oral dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Synthesis of novel naphthoquinone-spermidine conjugates and their effects on DNA-topoisomerases I and II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Andrea S.; Lima, Edson L.S.; Pinto, Angelo C.; Esteves-Souza, Andressa; Torrese, Jose C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Quimica; Camara, Celso A. [Paraiba Univ., Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica; Vargas, Maria D. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica]. E-mail: mdvargas@vm.uff.br

    2006-05-15

    Novel derivatives of lapachol 2, nor-lapachol 3 and lawsone 4 have been synthesized by nucleophilic displacement of the methoxynaphthoquinones 2a, 3a and 4a with the polyamine (PA) N{sup 1}-Boc-N{sup 5}-Bn-spermidine 1a. The respective products 2b-4b were obtained in good yields and characterized by spectroscopic and analytical methods. The inhibitory action of these naphthoquinone-PA conjugates on DNA-topoisomerases (topo) I and II-{alpha} was evaluated by relaxation assay of supercoiled DNA plasmid. All compounds (1a 2b, 3b and 4b) presented significant inhibition of topo II-{alpha} catalytic activity at the 2 {mu}M dose. Considering that only PA 1a did not inhibit the enzyme catalytic activity at the 0.2 {mu}M dose, the appended naphthoquinone moiety acts as a 'value added' fragment. Compounds 1a 2b, 3b and 4b did not inhibit the enzyme DNA-topo I at the 200 {mu}M dose. (author)

  3. Synthesis of novel naphthoquinone-spermidine conjugates and their effects on DNA-topoisomerases I and II-alpha

    Directory of Open Access Journals (Sweden)

    Cunha Andréa S.

    2006-01-01

    Full Text Available Novel derivatives of lapachol 2, nor-lapachol 3 and lawsone 4 have been synthesized by nucleophilic displacement of the methoxynaphthoquinones 2a, 3a and 4a with the polyamine (PA N¹-Boc-N5-Bn-spermidine 1a. The respective products 2b-4b were obtained in good yields and characterized by spectroscopic and analytical methods. The inhibitory action of these naphthoquinone-PA conjugates on DNA-topoisomerases (topo I and II-alpha was evaluated by relaxation assay of supercoiled DNA plasmid. All compounds (1a 2b, 3b and 4b presented significant inhibition of topo II-alpha catalytic activity at the 2 µM dose. Considering that only PA 1a did not inhibit the enzyme catalytic activity at the 0.2 µM dose, the appended naphthoquinone moiety acts as a "value added" fragment. Compounds 1a 2b, 3b and 4b did not inhibit the enzyme DNA-topo I at the 200 µM dose.

  4. Reversible brazing process

    Science.gov (United States)

    Pierce, Jim D.; Stephens, John J.; Walker, Charles A.

    1999-01-01

    A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  5. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  6. Human small cell lung cancer NYH cells selected for resistance to the bisdioxopiperazine topoisomerase II catalytic inhibitor ICRF-187 demonstrate a functional R162Q mutation in the Walker A consensus ATP binding domain of the alpha isoform

    DEFF Research Database (Denmark)

    Wessel, I; Jensen, L H; Jensen, P B

    1999-01-01

    Bisdioxopiperazine drugs such as ICRF-187 are catalytic inhibitors of DNA topoisomerase II, with at least two effects on the enzyme: namely, locking it in a closed-clamp form and inhibiting its ATPase activity. This is in contrast to topoisomerase II poisons as etoposide and amsacrine (m...... inactive at enzyme at 1 mM ATP was not resistant to ICRF-187 compared to wt, whereas it was clearly less sensitive than wt to ICRF-187 at low ATP concentrations. This suggests that it is a shift in the equilibrium to an open......-AMSA), which act by stabilizing enzyme-DNA-drug complexes at a stage in which the DNA gate strand is cleaved and the protein is covalently attached to DNA. Human small cell lung cancer NYH cells selected for resistance to ICRF-187 (NYH/187) showed a 25% increase in topoisomerase IIalpha level and no change...

  7. Reversible posterior leukoencephalopathy syndrome

    International Nuclear Information System (INIS)

    Lee, Eun Ja; Yu, Won Jong; Ahn, Kook Jin; Jung, So Lyung; Lee, Yeon Soo; Kim, Ji Chang; Kang, Si Won; Song, Chang Joon; Song, Soon-Young; Koo, Ja Hong; Kim, Man Deuk

    2001-01-01

    To review reversible posterior leukoencephalopathy syndrome. We reviewed 22 patients (M:F=3:19; age, 17-46 years) with the characteristic clinical and imaging features of reversible posterior leukoencephalopathy syndrome. All underwent brain MRI, and in three cases both CT and MRI were performed. In one, MRA was obtained, and in eleven, follow-up MR images were obtained. We evaluated the causes of this syndrome, its clinical manifestations, and MR findings including the locations of lesions, the presence or absence of contrast enhancement, and the changes seen at follow-up MRI. Of the 22 patients, 13 had eclampsia (six during pregnancy and seven during puerperium). Four were receiving immunosuppressive therapy (three, cyclosporine ; one, FK 506). Four suffered renal failure and one had complicated migraine. The clinical manifestations included headache (n=12), visual disturbance (n=13), seizure (n=15), focal neurologic sign (n=3), and altered mental status (n=2). Fifteen patients had hypertension and the others normotension. MRI revealed that lesions were bilateral (n=20) or unilateral (n=2). In all patients the lesion was found in the cortical and subcortical areas of the parieto-occipital lobes ; other locations were the basal ganglia (n=9), posterior temporal lobe (n=8), frontal lobe (n=5), cerebellum (n=5), pons (n=2), and thalamus (n=1). All lesions were of high signal intensity on T2-weighted images, and of iso to low intensity on T1-weighted images. One was combined with acute hematoma in the left basal ganglia. In eight of 11 patients who underwent postcontrast T1-weighted MRI, there was no definite enhancement ; in one, enhancement was mild, and in tow, patchy. CT studies showed low attenuation, and MRA revealed mild vasospasm. The symptoms of all patients improved. Follow-up MRI in nine of 11 patients depicted complete resolution of the lesions ; in two, small infarctions remained but the extent of the lesions had decreased. Reversible posterior

  8. Reversible posterior leukoencephalopathy syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ja; Yu, Won Jong; Ahn, Kook Jin; Jung, So Lyung; Lee, Yeon Soo; Kim, Ji Chang; Kang, Si Won [The Catholic Univ. of Korea, Taejon (Korea, Republic of); Song, Chang Joon [Chungnam National Univ. School of Medicine, Cheonju (Korea, Republic of); Song, Soon-Young; Koo, Ja Hong [Kwandong Univ. College of Medicine, Myungji Hospital, Seoul (Korea, Republic of); Kim, Man Deuk [College of Medicine Pochon CHA Univ., Seoul (Korea, Republic of)

    2001-10-01

    To review reversible posterior leukoencephalopathy syndrome. We reviewed 22 patients (M:F=3:19; age, 17-46 years) with the characteristic clinical and imaging features of reversible posterior leukoencephalopathy syndrome. All underwent brain MRI, and in three cases both CT and MRI were performed. In one, MRA was obtained, and in eleven, follow-up MR images were obtained. We evaluated the causes of this syndrome, its clinical manifestations, and MR findings including the locations of lesions, the presence or absence of contrast enhancement, and the changes seen at follow-up MRI. Of the 22 patients, 13 had eclampsia (six during pregnancy and seven during puerperium). Four were receiving immunosuppressive therapy (three, cyclosporine ; one, FK 506). Four suffered renal failure and one had complicated migraine. The clinical manifestations included headache (n=12), visual disturbance (n=13), seizure (n=15), focal neurologic sign (n=3), and altered mental status (n=2). Fifteen patients had hypertension and the others normotension. MRI revealed that lesions were bilateral (n=20) or unilateral (n=2). In all patients the lesion was found in the cortical and subcortical areas of the parieto-occipital lobes ; other locations were the basal ganglia (n=9), posterior temporal lobe (n=8), frontal lobe (n=5), cerebellum (n=5), pons (n=2), and thalamus (n=1). All lesions were of high signal intensity on T2-weighted images, and of iso to low intensity on T1-weighted images. One was combined with acute hematoma in the left basal ganglia. In eight of 11 patients who underwent postcontrast T1-weighted MRI, there was no definite enhancement ; in one, enhancement was mild, and in tow, patchy. CT studies showed low attenuation, and MRA revealed mild vasospasm. The symptoms of all patients improved. Follow-up MRI in nine of 11 patients depicted complete resolution of the lesions ; in two, small infarctions remained but the extent of the lesions had decreased. Reversible posterior

  9. Real-time investigation of human topoisomerase I reaction kinetics using an optical sensor: a fast method for drug screening and determination of active enzyme concentrations

    Science.gov (United States)

    Kristoffersen, Emil L.; Jørgensen, Line A.; Franch, Oskar; Etzerodt, Michael; Frøhlich, Rikke; Bjergbæk, Lotte; Stougaard, Magnus; Ho, Yi-Ping; Knudsen, Birgitta R.

    2015-05-01

    Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives. These drugs convert the hTopI activity into a cellular poison, and hence the cytotoxic effects of camptothecin derivatives correlate with the hTopI activity. Therefore, fast and reliable techniques for high throughput measurements of hTopI activity are of high clinical interest. Here we demonstrate potential applications of a fluorophore-quencher based DNA sensor designed for measurement of hTopI cleavage-ligation activities, which are the catalytic steps affected by camptothecin. The kinetic analysis of the hTopI reaction with the DNA sensor exhibits a characteristic burst profile. This is the result of a two-step ping-pong reaction mechanism, where a fast first reaction, the one creating the signal, is followed by a slower second reaction necessary for completion of the catalytic cycle. Hence, the burst profile holds information about two reactions in the enzymatic mechanism. Moreover, it allows the amount of active enzyme in the reaction to be determined. The presented results pave the way for future high throughput drug screening and the potential of measuring active hTopI concentrations in clinical samples for individualized treatment.Human DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using

  10. Reverse photoacoustic standoff spectroscopy

    Science.gov (United States)

    Van Neste, Charles W [Kingston, TN; Senesac, Lawrence R [Knoxville, TN; Thundat, Thomas G [Knoxville, TN

    2011-04-12

    A system and method are disclosed for generating a reversed photoacoustic spectrum at a greater distance. A source may emit a beam to a target and a detector measures signals generated as a result of the beam being emitted on the target. By emitting a chopped/pulsed light beam to the target, it may be possible to determine the target's optical absorbance by monitoring the intensity of light collected at the detector at different wavelengths. As the wavelength of light is changed, the target may absorb or reject each optical frequency. Rejection may increase the intensity at the sensing element and absorption may decrease the intensity. Accordingly, an identifying spectrum of the target may be made with the intensity variation of the detector as a function of illuminating wavelength.

  11. Reverse Osmosis Optimization

    Energy Technology Data Exchange (ETDEWEB)

    McMordie Stoughton, Kate; Duan, Xiaoli; Wendel, Emily M.

    2013-08-26

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). ¬The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.¬

  12. Reverse Osmosis Optimization

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energy’s Federal Energy Management Program (FEMP). The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.

  13. Reverse osmosis application studies

    International Nuclear Information System (INIS)

    Golomb, A.

    1982-02-01

    To assess the feasibility of applying reverse osmosis (RO) and ultrafiltration (UF) for effective treatment of process and waste streams from operations at Ontario Hydro's thermal and nuclear stations, an extensive literature survey has been carried out. It is concluded that RO is not at present economic for pretreatment of Great Lakes water prior to ion exchange demineralization for boiler makeup. Using both conventional and novel commercial membrane modules, RO pilot studies are recommended for treatment of boiler cleaning wastes, fly ash leachates, and flue gas desulphurization scrubber discharges for removal of heavy metals. Volume reduction and decontamination of nuclear station low-level active liquid waste streams by RO/UF also appear promising. Research programmes are proposed

  14. Sex Reversal in Amphibians.

    Science.gov (United States)

    Flament, Stéphane

    2016-01-01

    Amphibians have been widely used to study developmental biology due to the fact that embryo development takes place independently of the maternal organism and that observations and experimental approaches are easy. Some amphibians like Xenopus became model organisms in this field. In the first part of this article, the differentiation of the gonads in amphibians and the mechanisms governing this process are reviewed. In the second part, the state of the art about sex reversal, which can be induced by steroid hormones in general and by temperature in some species, is presented. Also information about pollutants found in the environment that could interfere with the development of the amphibian reproductive apparatus or with their reproductive physiology is given. Such compounds could play a part in the amphibian decline, since in the wild, many amphibians are endangered species. © 2016 S. Karger AG, Basel.

  15. Toxicological evaluation of the topoisomerase inhibitor, etoposide, in the model animal Caenorhabditis elegans and 3T3-L1 normal murine cells.

    Science.gov (United States)

    Lee, So Young; Kim, Joo Yeon; Jung, Yu-Jin; Kang, Kyungsu

    2017-06-01

    Etoposide, a topoisomerase II inhibitor, has been widely used as a clinical anticancer drug to treat diverse cancer patients. Since not only rapidly dividing cancer cells but also the cells of normal human tissues and every living organism in environmental ecosystems have topoisomerases, it is crucial to study the toxicity of etoposide in other organisms in addition to cancer cells. In this study, we evaluated the toxicity of etoposide in both a soil nematode, Caenorhabditis elegans, and 3T3-L1 normal murine cells. Etoposide significantly retarded the growth, egg laying, and hatching in C. elegans. Etoposide also affected the reproductive gonad tissue, decreased the number of germ cells and induced abnormally enlarged nuclei in C. elegans. In addition, etoposide inhibited 3T3-L1 cell proliferation, with IC 50 values of 37.8 ± 7.3 and 9.8 ± 1.8 μM after 24 and 48 hours of treatment, respectively, via the induction of cell cycle arrest at the G2/M phase and apoptotic cell death. Etoposide also induced nuclear enlargement in 3T3-L1 normal murine cells. The reproductive toxicity and abnormal nuclear morphological changes seemed to correlate with the adverse effects of etoposide. We suggest that these experimental platforms, i.e., the toxicological evaluation of both nematodes and 3T3-L1 cells, may be useful to study the mechanisms underlying the side effects of chemicals, including topoisomerase inhibitors. © 2017 Wiley Periodicals, Inc.

  16. Emergence of a new mutation and its accumulation in the topoisomerase IV gene confers high levels of resistance to fluoroquinolones in Escherichia coli isolates.

    Science.gov (United States)

    Moon, Dong Chan; Seol, Sung Yong; Gurung, Mamata; Jin, Jong Sook; Choi, Chul Hee; Kim, Jungmin; Lee, Yoo Chul; Cho, Dong Taek; Lee, Je Chul

    2010-01-01

    Mutations in DNA gyrase and topoisomerase IV genes are the main mechanisms of resistance to quinolones. In this study, we determined mutations in gyrA, gyrB, parC and parE among 57 ciprofloxacin-resistant Escherichia coli isolates from a South Korean hospital and analysed the relationship between the minimal inhibitory concentrations (MICs) of fluoroquinolones and mutations in the topoisomerase IV gene. All ciprofloxacin-resistant E. coli isolates carried double mutations in gyrA and at least a single mutation in parC; some isolates also carried a single mutation in parE. The most common mutations were S83L and D87N in gyrA, S80I in parC and S458A in parE, which accounted for 25% of isolates. Single mutations in parE at L445I, S458P and S458W were identified for the first time. Double mutations in parC and a combination of single mutations in parC and parE significantly increased the MIC values of fluoroquinolones. In vitro induction of resistance to ciprofloxacin showed that double mutations in gyrA were a prerequisite to conferring a resistant phenotype to fluoroquinolones, and an additional mutation in the topoisomerase IV gene increased the MIC values of ciprofloxacin. In conclusion, emergence of a new mutation in parC and parE and its accumulation induces high levels of resistance to fluoroquinolones in E. coli.

  17. Type II Topoisomerase Mutations in Fluoroquinolone-Resistant Clinical Strains of Pseudomonas aeruginosa Isolated in 1998 and 1999: Role of Target Enzyme in Mechanism of Fluoroquinolone Resistance

    Science.gov (United States)

    Akasaka, Takaaki; Tanaka, Mayumi; Yamaguchi, Akihito; Sato, Kenichi

    2001-01-01

    The major mechanism of resistance to fluoroquinolones for Pseudomonas aeruginosa is the modification of type II topoisomerases (DNA gyrase and topoisomerase IV). We examined the mutations in quinolone-resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE genes of recent clinical isolates. There were 150 isolates with reduced susceptibilities to levofloxacin and 127 with reduced susceptibilities to ciprofloxacin among 513 isolates collected during 1998 and 1999 in Japan. Sequencing results predicted replacement of an amino acid in the QRDR of DNA gyrase (GyrA or GyrB) for 124 of the 150 strains (82.7%); among these, 89 isolates possessed mutations in parC or parE which lead to amino acid changes. Substitutions of both Ile for Thr-83 in GyrA and Leu for Ser-87 in ParC were the principal changes, being detected in 48 strains. These replacements were obviously associated with reduced susceptibilities to levofloxacin, ciprofloxacin, and sparfloxacin; however, sitafloxacin showed high activity against isolates with these replacements. We purified GyrA (The-83 to Ile) and ParC (Ser-87 to Leu) by site-directed mutagenesis and compared the inhibitory activities of the fluoroquinolones. Sitafloxacin showed the most potent inhibitory activities against both altered topoisomerases among the fluoroquinolones tested. These results indicated that, compared with other available quinolones, sitafloxacin maintained higher activity against recent clinical isolates with multiple mutations in gyrA and parC, which can be explained by the high inhibitory activities of sitafloxacin against both mutated enzymes. PMID:11451683

  18. Novel symmetric and asymmetric DNA scission determinants for Streptococcus pneumoniae topoisomerase IV and gyrase are clustered at the DNA breakage site.

    Science.gov (United States)

    Leo, Elisabetta; Gould, Katherine A; Pan, Xiao-Su; Capranico, Giovanni; Sanderson, Mark R; Palumbo, Manlio; Fisher, L Mark

    2005-04-08

    Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.

  19. Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frank Hartung

    2008-12-01

    Full Text Available Topoisomerases are enzymes with crucial functions in DNA metabolism. They are ubiquitously present in prokaryotes and eukaryotes and modify the steady-state level of DNA supercoiling. Biochemical analyses indicate that Topoisomerase 3alpha (TOP3alpha functions together with a RecQ DNA helicase and a third partner, RMI1/BLAP75, in the resolution step of homologous recombination in a process called Holliday Junction dissolution in eukaryotes. Apart from that, little is known about the role of TOP3alpha in higher eukaryotes, as knockout mutants show early lethality or strong developmental defects. Using a hypomorphic insertion mutant of Arabidopsis thaliana (top3alpha-2, which is viable but completely sterile, we were able to define three different functions of the protein in mitosis and meiosis. The top3alpha-2 line exhibits fragmented chromosomes during mitosis and sensitivity to camptothecin, suggesting an important role in chromosome segregation partly overlapping with that of type IB topoisomerases. Furthermore, AtTOP3alpha, together with AtRECQ4A and AtRMI1, is involved in the suppression of crossover recombination in somatic cells as well as DNA repair in both mammals and A. thaliana. Surprisingly, AtTOP3alpha is also essential for meiosis. The phenotype of chromosome fragmentation, bridges, and telophase I arrest can be suppressed by AtSPO11 and AtRAD51 mutations, indicating that the protein is required for the resolution of recombination intermediates. As Atrmi1 mutants have a similar meiotic phenotype to Attop3alpha mutants, both proteins seem to be involved in a mechanism safeguarding the entangling of homologous chromosomes during meiosis. The requirement of AtTOP3alpha and AtRMI1 in a late step of meiotic recombination strongly hints at the possibility that the dissolution of double Holliday Junctions via a hemicatenane intermediate is indeed an indispensable step of meiotic recombination.

  20. Activities of Trovafloxacin Compared with Those of Other Fluoroquinolones against Purified Topoisomerases and gyrA and grlA Mutants of Staphylococcus aureus

    Science.gov (United States)

    Gootz, Thomas D.; Zaniewski, Richard P.; Haskell, Suzanne L.; Kaczmarek, Frank S.; Maurice, Alison E.

    1999-01-01

    Frequencies of mutation to resistance with trovafloxacin and four other quinolones were determined with quinolone-susceptible Staphylococcus aureus RN4220 by a direct plating method. First-step mutants were selected less frequently with trovafloxacin (1.1 × 10−10 at 2 to 4× the MIC) than with levofloxacin or ciprofloxacin (3.0 × 10−7 to 3.0 × 10−8 at 2 to 4× the MIC). Mutants with a change in GrlA (Ser80→Phe or Tyr) were most commonly selected with trovafloxacin, ciprofloxacin, levofloxacin, or pefloxacin. First-step mutants were difficult to select with sparfloxacin; however, second-step mutants with mutations in gyrA were easily selected when a preexisting mutation in grlA was present. Against 29 S. aureus clinical isolates with known mutations in gyrA and/or grlA, trovafloxacin was the most active quinolone tested (MIC at which 50% of isolates are inhibited [MIC50] and MIC90, 1 and 4 μg/ml, respectively); in comparison, MIC50s and MIC90s were 32 and 128, 16 and 32, 8 and 32, and 128 and 256 μg/ml for ciprofloxacin, sparfloxacin, levofloxacin, and pefloxacin, respectively. Strains with a mutation in grlA only were generally susceptible to all of the quinolones tested. For mutants with changes in both grlA and gyrA MICs were higher and were generally above the susceptibility breakpoint for ciprofloxacin, sparfloxacin, levofloxacin, and pefloxacin. Addition of reserpine (20 μg/ml) lowered the MICs only of ciprofloxacin fourfold or more for 18 of 29 clinical strains. Topoisomerase IV and DNA gyrase genes were cloned from S. aureus RN4220 and from two mutants with changes in GrlA (Ser80→Phe and Glu84→Lys). The enzymes were overexpressed in Escherichia coli GI724, purified, and used in DNA catalytic and cleavage assays that measured the relative potency of each quinolone. Trovafloxacin was at least five times more potent than ciprofloxacin, sparfloxacin, levofloxacin, or pefloxacin in stimulating topoisomerase IV-mediated DNA cleavage. While all of

  1. Mechanistic studies of the modulation of cleavage activity of topoisomerase I by DNA adducts of mono- and bi-functional Pt-II complexes

    Czech Academy of Sciences Publication Activity Database

    Malina, Jaroslav; Vrána, Oldřich; Brabec, Viktor

    2009-01-01

    Roč. 37, č. 16 (2009), s. 5432-5442 ISSN 0305-1048 R&D Projects: GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651; GA AV ČR(CZ) IAA400040803 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cisplatin * camptothecin * topoisomerase I Subject RIV: BO - Biophysics Impact factor: 7.479, year: 2009

  2. Heraclitus, Seaford and Reversible Exchange

    OpenAIRE

    Kassam, C; Duschinsky, Robert Nathan

    2017-01-01

    In this essay we identify a characteristic pattern of Heraclitus’ thought and language, the “figure of reversible exchange”. We suggest that this figure allows Heraclitus to propose an ontological structure consisting of two intersecting circuits of relations: a pre-temporal reversible exchange between Being and Becoming and between One and Many, and a temporal reversible exchange within the Many as the very process of Becoming. Against Richard Seaford’s interpretation of Heraclitus’ thought ...

  3. MODELS OF PROJECT REVERSE ENGINEERING

    OpenAIRE

    Віктор Володимирович ІВАНОВ

    2017-01-01

    Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The mo...

  4. Salicylate, a catalytic inhibitor of topoisomerase II, inhibits DNA cleavage and is selective for the α isoform.

    Science.gov (United States)

    Bau, Jason T; Kang, Zhili; Austin, Caroline A; Kurz, Ebba U

    2014-02-01

    Topoisomerase II (topo II) is a ubiquitous enzyme that is essential for cell survival through its role in regulating DNA topology and chromatid separation. Topo II can be poisoned by common chemotherapeutics (such as doxorubicin and etoposide), leading to the accumulation of cytotoxic enzyme-linked DNA double-stranded breaks. In contrast, nonbreak-inducing topo II catalytic inhibitors have also been described and have more limited use in clinical chemotherapy. These agents, however, may alter the efficacy of regimens incorporating topo II poisons. We previously identified salicylate, the primary metabolite of aspirin, as a novel catalytic inhibitor of topo II. We have now determined the mechanism by which salicylate inhibits topo II. As catalytic inhibitors can act at a number of steps in the topo II catalytic cycle, we used multiple independent, biochemical approaches to interrogate the catalytic cycle. Furthermore, as mammalian cells express two isoforms of topo II (α and β), we examined whether salicylate was isoform selective. Our results demonstrate that salicylate is unable to intercalate DNA, and does not prevent enzyme-DNA interaction, nor does it promote stabilization of topo IIα in closed clamps on DNA. Although salicylate decreased topo IIα ATPase activity in a dose-dependent noncompetitive manner, this was secondary to salicylate-mediated inhibition of DNA cleavage. Surprisingly, comparison of salicylate's effects using purified human topo IIα and topo IIβ revealed that salicylate selectively inhibits the α isoform. These findings provide a definitive mechanism for salicylate-mediated inhibition of topo IIα and provide support for further studies determining the basis for its isoform selectivity.

  5. Structural determinants of the catalytic inhibition of human topoisomerase IIα by salicylate analogs and salicylate-based drugs.

    Science.gov (United States)

    Bau, Jason T; Kurz, Ebba U

    2014-06-15

    We previously identified salicylate as a novel catalytic inhibitor of human DNA topoisomerase II (topo II; EC 5.99.1.3) that preferentially targets the alpha isoform by interfering with topo II-mediated DNA cleavage. Many pharmaceuticals and compounds found in foods are salicylate-based. We have now investigated whether these are also catalytic inhibitors of topo II and the structural determinants modulating these effects. We have determined that a number of hydroxylated benzoic acids attenuate doxorubicin-induced DNA damage signaling mediated by the ATM protein kinase and inhibit topo II decatenation activity in vitro with varying potencies. Based on the chemical structures of these and other derivatives, we identified unique properties influencing topo II inhibition, including the importance of substitutions at the 2'- and 5'-positions. We extended our findings to a number of salicylate-based pharmaceuticals including sulfasalazine and diflunisal and found that both were effective at attenuating doxorubicin-induced DNA damage signaling, topo II DNA decatenation and they blocked stabilization of doxorubicin-induced topo II cleavable complexes in cells. In a manner similar to salicylate, we determined that these agents inhibit topo II-mediated DNA cleavage. This was accompanied by a concomitant decrease in topo II-mediated ATP-hydrolysis. Taken together, these findings reveal a novel function for the broader class of salicylate-related compounds and highlight the need for additional studies into whether they may impact the efficacy of chemotherapy regimens that include topo II poisons. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Clinicopathological Significance of the Proliferation Markers Ki67, RacGAP1, and Topoisomerase 2 Alpha in Breast Cancer.

    Science.gov (United States)

    Şahin, Sevinç; Işık Gönül, İpek; Çakır, Aslı; Seçkin, Selda; Uluoğlu, Ömer

    2016-10-01

    Objectives The aims of this study are to evaluate expressions of Ki67, RacGAP1 (MgcRacGAP) and topoisomerase 2 alpha (TOP2a), the markers related with cell proliferation that have been proposed to affect the prognosis in the literature and correlate the results with clinicopathological parameters of breast cancer patients. Methods Ki67, RacGAP1, and TOP2a antibodies were applied immunohistochemically to the tissue micrarray blocks of 457 female breast cancer patients. The results were correlated with clinical, prognostic, histopathological features, and other immunohistochemical findings (estrogen receptor [ER], progesterone receptor [PR], HER2, cytokeratin [CK]5/6, CK14, epidermal growth factor receptor [EGFR] and vimentin), statistically. Results Ki67 expression demonstrated direct correlation with TOP2a expression, mitotic count, tumor grade, geographic necrosis, basal-like phenotype. RacGAP1 expression was directly correlated with TOP2a expression, nipple invasion, and number of metastatic lymph nodes, and it was inversely correlated with PR expression. TOP2a expression was directly correlated with vimentin and Ki67 expressions, mitotic count, tumor grade, and geographic necrosis, and nipple invasion, and negatively correlated with ER and PR expressions. Higher TOP2a and Ki67 expressions were correlated with shorter overall survival. Higher TOP2a expression and RacGAP1 positivity were directly correlated with shorter disease-free survival. Conclusion This study showed that the overexpressions of Ki67, RacGAP1, and TOP2a affect the prognosis adversely, thus to develop target therapies against RacGAP1 and TOP2a as well as using Ki67 as a part of routine pathology practice might be beneficial in breast cancer therapy and prediction of prognosis. © The Author(s) 2016.

  7. Novel Bacterial Topoisomerase Inhibitors Exploit Asp83 and the Intrinsic Flexibility of the DNA Gyrase Binding Site

    Directory of Open Access Journals (Sweden)

    Sebastian Franco-Ulloa

    2018-02-01

    Full Text Available DNA gyrases are enzymes that control the topology of DNA in bacteria cells. This is a vital function for bacteria. For this reason, DNA gyrases are targeted by widely used antibiotics such as quinolones. Recently, structural and biochemical investigations identified a new class of DNA gyrase inhibitors called NBTIs (i.e., novel bacterial topoisomerase inhibitors. NBTIs are particularly promising because they are active against multi-drug resistant bacteria, an alarming clinical issue. Structural data recently demonstrated that these NBTIs bind tightly to a newly identified pocket at the dimer interface of the DNA–protein complex. In the present study, we used molecular dynamics (MD simulations and docking calculations to shed new light on the binding of NBTIs to this site. Interestingly, our MD simulations demonstrate the intrinsic flexibility of this binding site, which allows the pocket to adapt its conformation and form optimal interactions with the ligand. In particular, we examined two ligands, AM8085 and AM8191, which induced a repositioning of a key aspartate (Asp83B, whose side chain can rotate within the binding site. The conformational rearrangement of Asp83B allows the formation of a newly identified H-bond interaction with an NH on the bound NBTI, which seems important for the binding of NBTIs having such functionality. We validated these findings through docking calculations using an extended set of cognate oxabicyclooctane-linked NBTIs derivatives (~150, in total, screened against multiple target conformations. The newly identified H-bond interaction significantly improves the docking enrichment. These insights could be helpful for future virtual screening campaigns against DNA gyrase.

  8. P53, MAPK, topoisomerase II alpha and Ki67 immunohistochemical expression and KRAS/BRAF mutation in ovarian serous carcinomas.

    Science.gov (United States)

    Sundov, Dinka; Caric, Ana; Mrklic, Ivana; Gugic, Dijana; Capkun, Vesna; Hofman, Irena Drmic; Mise, Branka Petric; Tomic, Snjezana

    2013-02-06

    We investigated the immunohistochemical expression of p53, MAPK, topoisomerase II alpha (topoII alpha) and Ki67 in ovarian serous carcinomas (OSCs) along with mutational analysis for KRAS and BRAF. Eighty one cases of OSCs were reviewed and examined immunohistochemically using antibodies against p53, MAPK, topoII alpha and Ki67. Staining was evaluated as a percentage of immunopositive cells with cut-off levels at 10% for p53 and topoII alpha, and 5% for MAPK. The Ki67 immunoexpression was assessed by means of Olympus Image Analysis System as a percentage of immunopositive cells in 1000 tumor cells. KRAS and BRAF mutational analysis was performed on 73 available microdissected samples. Of 81 cases of OSCs 13.6% were of low-grade and 86.4% were of high-grade morphology. In the high-grade group there was a significantly higher immunoexpression of p53 (P p53 immunopositivity. Although this study is limited by its humble number of low-grade samples, our data fit the proposed dualistic pathway of ovarian carcinogenesis. Mutational analysis for KRAS and BRAF discloses some possible interactions between different tumorigenic pathways of low- and high-grade carcinomas. Immunohistochemical staining for MAPK was not sufficiently sensitive, nor specific, to precisely predict the KRAS mutation. However, it appears to be quite reliable in ruling out a KRAS mutation if the staining is negative. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9283563368804632.

  9. Characterization of DNA topoisomerase-1 in Spodoptera exigua for toxicity evaluation of camptothecin and hydoxy-camptothecin.

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    Full Text Available Camptothecin (CPT, a plant alkaloid originally isolated from the native Chinese tree, Camptotheca acuminate, exerts the toxic effect by targeting eukaryotic DNA topoisomerase 1 (DNA Topo1. Besides as potent anti-cancer agents, CPT and its derivatives are now being explored as potential pesticides for insect control. In this study, we assessed their toxicity to an insect homolog, the Topo1 protein from beet armyworms (Spodoptera exigua Hübner, a worldwide pest of many important crops. The S. exigua Topo1 gene contains an ORF of 2790 base pairs that is predicted to encode a polypeptide of 930 amino acids. The deduced polypeptide exhibits polymorphism at residue sites V420, L530, A653 and T729 (numbered according to human Topo1 among insect species, which are predicted to confer sensitivity to CPT. The DNA relaxation activity of this protein was subsequently examined using a truncated form that contained the residues 337-930 and was expressed in bacteria BL21 cells. The purified protein retained the ability to relax double-stranded DNA and was susceptible to CPT and its derivative hydroxy-camptothecin (HCPT in a dose-dependent manner. The same inhibitory effect was also found on the native Topo1 extracted from IOZCAS-Spex-II cells, a cell line established from beet armyworms. Additionally, CPT and HCPT treatment reduced the steady accumulation of Topo1 protein despite the increased mRNA expression in response to the treatment. Our studies provide information of the S. exigua Topo1 gene and its amino acid polymorphism in insects and uncover some clues about potential mechanisms of CPT toxicity against insect pests. These results also are useful for development of more effective Topo1-targeted CPT insecticides in the future.

  10. Topoisomerase II-mediated DNA cleavage and mutagenesis activated by nitric oxide underlie the inflammation-associated tumorigenesis.

    Science.gov (United States)

    Yang, Yu-Chen; Chou, Han-Yi E; Shen, Tang-Long; Chang, Wei-Jer; Tai, Pei-Han; Li, Tsai-Kun

    2013-04-01

    Both cancer-suppressing and cancer-promoting properties of reactive nitrogen and oxygen species (RNOS) have been suggested to play a role in tumor pathology, particularly those activities associated with chronic inflammation. Here, we address the impact of nitric oxide (NO) on the induction of DNA damage and genome instability with a specific focus on the involvement of topoisomerase II (TOP2). We also investigate the contribution of NO to the formation of skin melanoma in mice. Similar to the TOP2-targeting drug, etoposide (VP-16), the NO-donor, S-nitrosoglutathione (GSNO), induces skin melanomas formation in 7,12-dimethyl- benz[a]anthracene (DMBA)-initiated mice. To explore the mechanism(s) underlying this NO-induced tumorigenesis, we use a co-culture model system to demonstrate that inflamed macrophages with inducible NO synthase (iNOS) expression cause γ-H2AX activation, p53 phosphorylation, and chromosome DNA breaks in the target cells. Inhibitor experiments revealed that NO and TOP2 isozymes are responsible for the above described cellular phenotypes. Notably, NO, unlike VP-16, preferentially induces the formation of TOP2β cleavable complexes (TOP2βcc) in cells. Moreover, GSNO induced TOP2-dependent DNA sequence rearrangements and cytotoxicity. Furthermore, the incidences of GSNO- and VP-16-induced skin melanomas were also observed to be lower in the skin-specific top2β-knockout mice. Our results suggest that TOP2 isozymes contribute to NO-induced mutagenesis and subsequent cancer development during chronic inflammation. We provide the first experimental evidence for the functional role of TOP2 in NO-caused DNA damage, mutagenesis, and carcinogenesis. Notably, these studies contribute to our molecular understanding of the cancer-promoting actions of RNOS during chronic inflammation.

  11. Identification and characterization of the regions involved in the nuclear translocation of the heterodimeric leishmanial DNA topoisomerase IB.

    Directory of Open Access Journals (Sweden)

    Christopher F Prada

    Full Text Available Leishmania donovani, the causative organism for visceral leishmaniasis, contains a unique heterodimeric DNA-topoisomerase IB (LdTopIB. LdTopIB is a heterodimer made up of a large subunit and a small subunit that must interact with each other to build an active enzyme able to solve the topological tensions on the DNA. As LdTopIB is located within the nucleus, one or more nuclear localization signals (NLS should exist to ensure its nuclear translocation. In this report three novel NLS have been identified through a sequential deletion study of the genes encoding of both subunits fused to that encoding the green fluorescent protein (GFP. NLS1 is a highly basic sequence of 43 amino acids in the C-terminal extension of the large protomer. We found two well-defined sequences in the small protomer: NLS2 is a 10-amino acid motif located in the N-terminal extension of the protein; NLS3 consists of a complex region of 28 amino acids placed in the vicinity of the catalytic Tyr-222 included at the conserved SKINY signature within the C-terminal. Furthermore, by means of yeast cell viability assays, conducted with several LdTopIB chimeras lacking any of the NLS motives, we have revealed that both subunits are transported independently to the nucleus. There was no evidence of LdTopIB accumulation in mitochondria or association to the kinetoplast DNA network. The results rule out the former hypothesis, which attributes nucleocytoplasmic transport of LdTopIB entirely to the large subunit. The LdTopIB is localized to the nucleus only.

  12. Kaposi's sarcoma-associated herpesvirus-encoded LANA recruits topoisomerase IIβ for latent DNA replication of the terminal repeats.

    Science.gov (United States)

    Purushothaman, Pravinkumar; McDowell, Maria E; McGuinness, James; Salas, Ruth; Rumjahn, Sharif M; Verma, Subhash C

    2012-09-01

    The latency-associated nuclear antigen (LANA) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) plays a major role in maintaining latency and is critical for the perpetual segregation of viral episomes to the progeny nuclei of newly divided cells. LANA binds to KSHV terminal repeat (TR) DNA and tethers the viral episomes to host chromosomes through the association of chromatin-bound cellular proteins. TR elements serve as potential origin sites of KSHV replication and have been shown to play important roles in latent DNA replication and transcription of adjacent genes. Affinity chromatography and proteomics analysis using KSHV TR DNA and the LANA binding site as the affinity column identified topoisomerase IIβ (TopoIIβ) as a LANA-interacting protein. Here, we show that TopoIIβ forms complexes with LANA that colocalize as punctuate bodies in the nucleus of KSHV-infected cells. The specific TopoIIβ binding region of LANA has been identified to its N terminus and the first 32 amino acid residues containing the nucleosome-binding region crucial for binding. Moreover, this region could also act as a dominant negative to disrupt association of TopoIIβ with LANA. TopoIIβ plays an important role in LANA-dependent latent DNA replication, as addition of ellipticine, a selective inhibitor of TopoII, negatively regulated replication mediated by the TR. DNA break labeling and chromatin immunoprecipitation assay using biotin-16-dUTP and terminal deoxynucleotide transferase showed that TopoIIβ mediates a transient DNA break on viral DNA. These studies confirm that LANA recruits TopoIIβ at the origins of latent replication to unwind the DNA for replication.

  13. Topoisomerase I peptide-loaded dendritic cells induce autoantibody response as well as skin and lung fibrosis.

    Science.gov (United States)

    Mehta, Heena; Goulet, Philippe-Olivier; Nguyen, Vinh; Pérez, Gemma; Koenig, Martial; Senécal, Jean-Luc; Sarfati, Marika

    2016-12-01

    DNA Topoisomerase I (TopoI) is a candidate autoantigen for diffuse cutaneous systemic sclerosis (dcSSc) associated with fatal lung disease. Dendritic cells (DCs) contribute to bleomycin-induced lung fibrosis. However, the possibility that TopoI-loaded DCs are involved in the initiation and/or perpetuation of dcSSc has not been explored. Here, we show that immunization with TopoI peptide-loaded DCs induces anti-TopoI autoantibody response and long-term fibrosis. Mice were repeatedly immunized with unpulsed DCs or DCs loaded with either TOPOIA or TOPOIB peptides, selected from different regions of TopoI. At week 12 after initial DC immunization, TOPOIA DCs but not TOPOIB DCs immunization induced mixed inflammation and fibrosis in lungs and skin. At a late time point (week 18), both TOPOIA DCs and TOPOIB DCs groups displayed increased alpha-smooth muscle actin expression in lungs and dermis along with skin fibrosis distal from the site of injection when compared with unpulsed DCs. Both TopoI peptide-DC-immunized groups developed IgG2a anti-TopoI autoantibody response. At week 10, signs of perivascular, peribronchial, and parenchymal pulmonary inflammation were already observed in the TOPOIA DCs group, together with transient elevation in bronchoalveolar lavage cell counts, IL-17A expression, and CXCL4 production, a biomarker of early human dcSSc. Collectively, TopoI peptide DCs induce progressive autoantibody response as well as development of protracted skin and lung dcSSc-like disease. Pronounced lung inflammation, transient IL-17A, and CXCL4 expression precede fibrosis development. Our immunization strategy, that uses self immune system and autoantigen, will help to further investigate the pathogenesis of this complex autoimmune disorder with unmet medical needs.

  14. ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation.

    Science.gov (United States)

    Kolb, Ryan H; Greer, Patrick M; Cao, Phu T; Cowan, Kenneth H; Yan, Ying

    2012-01-01

    Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.

  15. Emergence of fluoroquinolone-resistant Propionibacterium acnes caused by amino acid substitutions of DNA gyrase but not DNA topoisomerase IV.

    Science.gov (United States)

    Nakase, Keisuke; Sakuma, Yui; Nakaminami, Hidemasa; Noguchi, Norihisa

    2016-12-01

    With the aim of elucidating the mechanisms of fluoroquinolones resistance in Propionibacterium acnes, we determined the susceptibility of fluoroquinolones in 211 isolates from patients with acne vulgaris. We identified five isolates (2.4%) with reduced susceptibility to nadifloxacin (minimum inhibitory concentration ≥ 4 μg/ml). Determination of the sequences of the DNA gyrase (gyrA and gyrB) and DNA topoisomerase (parC and parE) genes showed the amino acid substitutions Ser101Leu and Asp105Gly of GyrA in four and one of the isolates, respectively. In vitro mutation experiments showed that low-level fluoroquinolone-resistant mutants with the Ser101Leu or Asp105Gly substitution in GyrA could be obtained from selection with ciprofloxacin and levofloxacin. The pattern of substitution (Ser101Trp in GyrA) caused by nadifloxacin selection was different from that induced by the other fluoroquinolones. In the isolation of further high-level resistant mutants, acquisition of another amino acid substitution of GyrB in addition to those of GyrA was detected, but there were no substitutions of ParC and ParE. In addition, the mutant prevention concentration and mutation frequency of nadifloxacin were lowest among the tested fluoroquinolones. The growth of the Ser101Trp mutant was lower than that of the other mutants. Our findings suggest that the Ser101Trp mutant of P. acnes emerges rarely and disappears immediately, and the risk for the prevalence of fluoroquinolones-resistant P. acnes differs according to the GyrA mutation type. To our knowledge, this study is the first to demonstrate the mechanisms of resistance to fluoroquinolones in P. acnes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Relationship of cellular topoisomerase IIα inhibition to cytotoxicity and published genotoxicity of fluoroquinolone antibiotics in V79 cells.

    Science.gov (United States)

    Williams, Gary M; Brunnemann, Klaus D; Smart, Daniel J; Molina, David; Jeffrey, Alan M; Duan, Jian-Dong; Krebsfaenger, Niels; Kampkoetter, Andreas; Schmuck, Gabriele

    2013-04-25

    Fluoroquinolone (FQ) antibiotics are bacteriocidal through inhibition of the bacterial gyrase and at sufficient concentrations in vitro, they can inhibit the homologous eukaryotic topoisomerase (TOPO) II enzyme. FQ exert a variety of genotoxic effects in mammalian systems through mechanisms not yet established, but which are postulated to involve inhibition of TOPO II enzymes. To assess the relationship of inhibition of cell nuclear TOPO II to cytotoxicity and reported genotoxicity, two FQ, clinafloxacin (CLFX) and lomefloxacin (LOFX), having available genotoxicity data showing substantial differences with CLFX being more potent than LOFX, were selected for study. The relative inhibitory activities of these FQ on nuclear TOPO IIα in cultured Chinese hamster lung fibroblasts (V79 cells) over dose ranges and at equimolar concentrations were assessed by measuring nuclear stabilized cleavage complexes of TOPO IIα-DNA. Cytotoxicity was measured by relative cell counts. Both FQ inhibited V79 cell nuclear TOPO IIα. The lowest-observed-adverse-effect levels for TOPO IIα inhibition were 55 μM for CLFX, and 516 μM for LOFX. The no-observed-adverse-effect-levels were 41 μM for CLFX, and 258 μM for LOFX. At equimolar concentrations (175 μM), CLFX was more potent than LOFX. Likewise, CLFX was more cytotoxic than LOFX. Thus, the two FQ, inhibited TOPO IIα in intact V79 cells, differed in their potencies and exhibited no-observed-adverse-effect levels. These findings are in concordance with published genotoxicity data and observed cytotoxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Emergence of quinolone-resistant, topoisomerase-mutant Brucella after treatment with fluoroquinolones in a macrophage experimental infection model.

    Science.gov (United States)

    Rodríguez Tarazona, Elisa; García Rodríguez, José Ángel; Muñoz Bellido, Juan Luis

    2015-04-01

    To determine the activity of fluoroquinolones (FQ) and the selection of FQ-resistant mutants in a macrophage experimental infection model (MEIM). Canine macrophages were inoculated with Brucella melitensis ATCC 23457 (WT), achieving intracellular counts of around 105 CFU/mL. Cell cultures were incubated in the presence of ciprofloxacin (CIP), levofloxacin (LEV), moxifloxacin (MOX), and doxycycline (DOX). After cell lysis, surviving microorganisms were plated for count purposes, and plated onto antibiotics-containing media for mutant selection. Topoisomerases mutations were detected by PCR and sequencing. Bacterial counts after cell lysis were 14.3% (CIP), 65.3% (LEV), and 75% (MOX) lower compared to the control. Quinolone-resistant mutants emerged in cell cultures containing CIP and LEV with a frequency of around 0.5×10(-3). All mutants showed an Ala87Val change in GyrA. Mutants had FQs MICs around 10×WT. The ability of these mutants for infecting new macrophages and the intracellular lysis after antibiotic exposure did not change significantly. No 2nd step FQ-resistant mutants were selected from 1st step mutants. Intracellular activity of FQs is low against WT and gyrA-mutant Brucella. FQs easily select gyrA mutants in MEIM. The ability of mutants for infecting new macrophages remains unchanged. In this MEIM, 2nd step mutants do not emerge. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  18. Cytotoxicity and cell death mechanisms induced by the polyamine-vectorized anti-cancer drug F14512 targeting topoisomerase II.

    Science.gov (United States)

    Brel, Viviane; Annereau, Jean-Philippe; Vispé, Stéphane; Kruczynski, Anna; Bailly, Christian; Guilbaud, Nicolas

    2011-12-15

    The polyamines transport system (PTS) is usually enhanced in cancer cells and can be exploited to deliver anticancer drugs. The spermine-conjugated epipodophyllotoxin derivative F14512 is a topoisomerase II poison that exploits the PTS to target preferentially tumor cells. F14512 has been characterized as a potent anticancer drug candidate and is currently in phase 1 clinical trials. Here we have analyzed the mechanisms of cell death induced by F14512, compared to the parent drug etoposide lacking the polyamine tail. F14512 proved to be >30-fold more cytotoxic than etoposide against A549 non-small cell lung cancer cells and triggers less but unrecoverable DNA damages. The cytotoxic action of F14512 is extremely rapid (within 3 h) and does not lead to a marked accumulation in the S-phase of the cell cycle, unlike etoposide. Interestingly, A549 cells treated with F14512 were less prone to undergo apoptosis (neither caspases-dependent nor caspases-independent pathways) or autophagy but preferentially entered into senescence. Drug-induced senescence was characterized qualitatively and quantitatively by an increased β-galactosidase activity, both by cytochemical staining and by flow cytometry. A morphological analysis by electron microscopy revealed the presence of numerous multi-lamellar and vesicular bodies and large electron-lucent (methuosis-like) vacuoles in F14512-treated cell samples. The mechanism of drug-induced cell death is thus distinct for F14512 compared to etoposide, and this difference may account for their distinct pharmacological profiles and the markedly superior activity of F14512 in vivo. This study suggests that senescence markers should be considered as potential pharmacodynamic biomarkers of F14512 antitumor activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting Topoisomerase II alpha

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Wei [Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Sa, Ke-Di; Zhang, Xiang; Jia, Lin-Tao; Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Yang, An-Gang [State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Rui, E-mail: ruizhang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Fan, Jing, E-mail: jingfan@fmmu.edu.cn [Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Bian, Ka, E-mail: kakamax85@hotmail.com [State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Department of Otolaryngology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-08-07

    The classification of molecular subtypes of breast cancer improves the prognostic accuracy and therapeutic benefits in clinic. However, because of the complexity of breast cancer, more biomarkers and functional molecules need to be explored. Here, analyzing the data in a huge cohort of breast cancer patients, we found that Topoisomerase II alpha (TOP2a), an important target of chemotherapy is a biomarker for prognosis in luminal type breast cancer patients, but not in basal like or HER2 positive breast cancer patients. We identified that miR-139, a previous reported anti-metastatic microRNA targets 3’-untranslated region (3′UTR) of TOP2a mRNA. Further more, we revealed that the forced expression of miR-139 reduces the TOP2a expression at both mRNA and protein levels. And our functional experiments showed that the ectopic expression of miR-139 remarkably inhibits proliferation in luminal type breast cancer cells, while exogenous TOP2a expression could rescue inhibition of cell proliferation mediated by miR-139. Collectively, our present study demonstrates the miR-139-TOP2a regulatory axis is important for proliferation in luminal type breast cancer cells. This functional link may help us to further understand the specificity of subtypes of breast cancer and optimize the strategy of cancer treatment. - Highlights: • High levels of TOP2a expression are closely associated with poor prognosis in luminal type breast cancer patients. • TOP2a is a novel target of miR-139. • Overexpression of miR-139 inhibits proliferation in luminal type breast cancer cells. • TOP2a is essential for miR-139-induced growth arrest in luminal type breast cancer cells.

  20. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting Topoisomerase II alpha

    International Nuclear Information System (INIS)

    Hua, Wei; Sa, Ke-Di; Zhang, Xiang; Jia, Lin-Tao; Zhao, Jing; Yang, An-Gang; Zhang, Rui; Fan, Jing; Bian, Ka

    2015-01-01

    The classification of molecular subtypes of breast cancer improves the prognostic accuracy and therapeutic benefits in clinic. However, because of the complexity of breast cancer, more biomarkers and functional molecules need to be explored. Here, analyzing the data in a huge cohort of breast cancer patients, we found that Topoisomerase II alpha (TOP2a), an important target of chemotherapy is a biomarker for prognosis in luminal type breast cancer patients, but not in basal like or HER2 positive breast cancer patients. We identified that miR-139, a previous reported anti-metastatic microRNA targets 3’-untranslated region (3′UTR) of TOP2a mRNA. Further more, we revealed that the forced expression of miR-139 reduces the TOP2a expression at both mRNA and protein levels. And our functional experiments showed that the ectopic expression of miR-139 remarkably inhibits proliferation in luminal type breast cancer cells, while exogenous TOP2a expression could rescue inhibition of cell proliferation mediated by miR-139. Collectively, our present study demonstrates the miR-139-TOP2a regulatory axis is important for proliferation in luminal type breast cancer cells. This functional link may help us to further understand the specificity of subtypes of breast cancer and optimize the strategy of cancer treatment. - Highlights: • High levels of TOP2a expression are closely associated with poor prognosis in luminal type breast cancer patients. • TOP2a is a novel target of miR-139. • Overexpression of miR-139 inhibits proliferation in luminal type breast cancer cells. • TOP2a is essential for miR-139-induced growth arrest in luminal type breast cancer cells

  1. Initiation of HIV Reverse Transcription

    Directory of Open Access Journals (Sweden)

    Roland Marquet

    2010-01-01

    Full Text Available Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

  2. Physics of field reversed mirrors

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    Since the earliest days of fusion research it has been hoped that diamagnetic currents flowing in a plasma could be used to help confine the plasma. Recently this hope has been strengthened both by theoretical advances and by experimental results made possible by technological developments. On the theoretical front analytical treatments and computer simulation studies have demonstrated equilibrium solutions existing both in the fluid limit and in the large-orbit limit. Progress has also been made in determining the conditions required for the stability of field-reversed entities. It appears that configurations of the general form of fat doughnuts, possibly elongated to napkin-ring form, represent stable states. Building on previous experimental work, several investigators have been able to create field-reversed states. One method, based on the ASTRON idea of Christofilos, traps an intense relativistic electron beams (REB) to create a field-reversing current ring. Other approaches use either the reversed field theta pinch technique or REB pulses to create field-reversing diamagnetic currents in a long cylindrical plasma. In the former method, millisecond-long field-reversing electron rings have been achieved; in the latter method field-reversed plasma states lasting 30 to 50 microseconds have been achieved. Another approach under investigation is the Field Reversed Mirror (FRM) created by the tangential injection of high current neutral beams. Plasma states that approach field reversal have been achieved by this technique

  3. A reversible processor architecture and its reversible logic design

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Axelsen, Holger Bock; Glück, Robert

    2012-01-01

    We describe the design of a purely reversible computing architecture, Bob, and its instruction set, BobISA. The special features of the design include a simple, yet expressive, locally-invertible instruction set, and fully reversible control logic and address calculation. We have designed an arch...

  4. Enzymatic reactions in reversed micelles

    NARCIS (Netherlands)

    Hilhorst, M.H.

    1984-01-01

    It has been recognised that enzymes in reversed micelles have potential for application in chemical synthesis. Before these expectations will be realised many problems must be overcome. This thesis deals with some of them.
    In Chapter 1 the present knowledge about reversed micelles and

  5. REVERSE LOGISTICS IN GLOBALIZATION ASPECTS

    OpenAIRE

    Janusz Grabara; Iwona Grabara

    2008-01-01

    This paper presents issues connected with adaptation of modern solutions of reverse logisticsmanagement in enterprise to the concept of sustainable development promoted by the European Union.Nowadays more and more businesses are looking to grow their reverse logistics capabilities in global market.

  6. Enzyme recovery using reversed micelles

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.

    Reversed micelles are aggregates of surfactant

  7. Reverse genetics of avian metapneumoviruses

    Science.gov (United States)

    An overview of avian metapneumovirus (aMPV) infection in turkeys and development of a reverse genetics system for aMPV subgroup C (aMPV-C) virus will be presented. By using reverse genetics technology, we generated recombinant aMPV-C viruses containing a different length of glycoprotein (G) gene or...

  8. Real-time analysis of cleavage and religation activity of human topoisomerase 1 based on ternary fluorescence resonance energy transfer DNA substrate.

    Science.gov (United States)

    Wang, Zhenxing; Ouyang, Hui; Tesauro, Cinzia; Ottaviani, Alessio; He, Yong; Fiorani, Paola; Xie, Hui; Desideri, Alessandro; Fu, Zhifeng

    2018-02-16

    Human topoisomerase 1B is a ubiquitous and essential enzyme involved in relaxing the topological state of supercoiled DNA to allow the progression of fundamental DNA metabolism. Its enzymatic catalytic cycle consists of cleavage and religation reaction. A ternary fluorescence resonance energy transfer biosensor based on a suicide DNA substrate conjugated with three fluorophores has been developed to monitor both cleavage and religation Topoisomerase I catalytic function. The presence of fluorophores does not alter the specificity of the enzyme catalysis on the DNA substrate. The enzyme-mediated reaction can be tracked in real-time by simple fluorescence measurement, avoiding the use of risky radioactive substrate labeling and time-consuming denaturing gel electrophoresis. The method is applied to monitor the perturbation brought by single mutation on the cleavage or religation reaction and to screen the effect of the camptothecin anticancer drug monitoring the energy transfer decrease during religation reaction. Pathological mutations usually affect only the cleavage or the religation reaction and the proposed approach represent a fast protocol for assessing chemotherapeutic drug efficacy and analyzing mutant's properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Erybraedin C, a natural compound from the plant Bituminaria bituminosa, inhibits both the cleavage and religation activities of human topoisomerase I.

    Science.gov (United States)

    Tesauro, Cinzia; Fiorani, Paola; D'Annessa, Ilda; Chillemi, Giovanni; Turchi, Gino; Desideri, Alessandro

    2010-01-15

    The interaction of human topoisomerase I and erybraedin C, a pterocarpan purified from the plant Bituminaria bituminosa, that was shown to have an antitumour activity, was investigated through enzymatic activity assays and molecular docking procedures. Erybraedin C is able to inhibit both the cleavage and the religation steps of the enzyme reaction. In both cases, pre-incubation of the drug with the enzyme is required to produce a complete inhibition. Molecular docking simulations indicate that, when interacting with the enzyme alone, the preferential drug-binding site is localized in proximity to the active Tyr723 residue, with one of the two prenilic groups close to the active-site residues Arg488 and His632, essential for the catalytic reaction. When interacting with the cleavable complex, erybraedin C interacts with both the enzyme and DNA in a way similar to that found for topotecan. This is the first example of a natural compound able to act on both the cleavage and religation reaction of human topoisomerase I.

  10. Topoisomerase mutations that are associated with high-level resistance to earlier fluoroquinolones in Staphylococcus aureus have less effect on the antibacterial activity of besifloxacin.

    Science.gov (United States)

    Sanfilippo, Christine M; Hesje, Christine K; Haas, Wolfgang; Morris, Timothy W

    2011-01-01

    The impact of mutations in DNA gyrase and topoisomerase IV on minimum inhibitory concentrations (MICs) was investigated to better understand why besifloxacin has a higher potency against Staphylococcus aureus when compared to other fluoroquinolones, which was especially pronounced against ciprofloxacin-resistant isolates. MICs were determined for 52 clinical isolates against besifloxacin, moxifloxacin, gatifloxacin, ciprofloxacin, and levofloxacin. The genes encoding GyrA, GyrB, ParC, and ParE were sequenced and the potential impact of mutations assessed in light of recent structural data. For all fluoroquinolones tested, the MICs increased with the number of mutations in the quinolone resistance-determining regions. However, this increase was the smallest for besifloxacin and the largest for ciprofloxacin and levofloxacin. In addition to the commonly observed mutations in ParC and GyrA, more unusual mutations in ParE, such as Asp-432→His or Pro-585→Ser, were also detected. Compared to earlier fluoroquinolones, the higher potency of besifloxacin suggests that the drug's unique combination of a 7-azepinyl ring and an 8-chloro-substituent results in unique interactions with DNA gyrase and topoisomerase IV. Copyright © 2011 S. Karger AG, Basel.

  11. Alpha, beta-unsaturated lactones 2-furanone and 2-pyrone induce cellular DNA damage, formation of topoisomerase I- and II-DNA complexes and cancer cell death.

    Science.gov (United States)

    Calderón-Montaño, José Manuel; Burgos-Morón, Estefanía; Orta, Manuel Luis; Pastor, Nuria; Austin, Caroline A; Mateos, Santiago; López-Lázaro, Miguel

    2013-09-12

    The alpha, beta-unsaturated lactones 2-furanone and 2-pyrone are part of the chemical structure of a variety of naturally occurring compounds (e.g., cardenolides, bufadienolides, acetogenins, coumarins, and food-flavoring furanones), some of which have shown anticancer activity and/or DNA damaging effects. Here we report that 2-furanone and 2-pyrone induce cellular DNA damage (assessed by the comet assay and the gamma-H2AX focus assay) and the formation of topoisomerase I- and topoisomerase II-DNA complexes in cells (visualized and quantified in situ by the TARDIS assay). Cells mutated in BRCA2 (deficient in homologous recombination repair) were significantly hypersensitive to the cytotoxic activity of 2-pyrone, therefore suggesting that BRCA2 plays an important role in the repair of DNA damage induced by this lactone. Both lactones were cytotoxic in A549 lung cancer cells at lower concentrations than in MRC5 non-malignant lung fibroblasts. The possible involvement of 2-furanone and 2-pyrone in the anticancer and DNA-damaging activities of compounds containing these lactones is discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Reference counting for reversible languages

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2014-01-01

    Modern programming languages and operating systems use heap memory that allows allocation and deallocation of memory to be decoupled, so they don't follow a stack discipline. Axelsen and Glück have presented a reversible heap manager where allocation and deallocation are each other's logical...... inverses: Freeing a block of memory is done by running the allocation procedure backwards. Axelsen and Glück use this heap manager to sketch implementation of a simple reversible functional language where pattern matching a constructor is the inverse of construction, so pattern-matching implies...... a pointer decreases the reference count. We show reversible implementations of operations on nodes with reference counts. We then show these operations can be used when implementing a reversible functional language RCFUN to the reversible imperative language Janus....

  13. Reversible gates and circuits descriptions

    Science.gov (United States)

    Gracki, Krzystof

    2017-08-01

    This paper presents basic methods of reversible circuit description. To design reversible circuit a set of gates has to be chosen. Most popular libraries are composed of three types of gates so called CNT gates (Control, NOT and Toffoli). The gate indexing method presented in this paper is based on the CNT gates set. It introduces a uniform indexing of the gates used during synthesis process of reversible circuits. The paper is organized as follows. Section 1 recalls basic concepts of reversible logic. In Section 2 and 3 a graphical representation of the reversible gates and circuits is described. Section 4 describes proposed uniform NCT gates indexing. The presented gate indexing method provides gate numbering scheme independent of lines number of the designed circuit. The solution for a circuit consisting of smaller number of lines is a subset of solution for a larger circuit.

  14. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  15. Fundamentals of reversible flowchart languages

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2016-01-01

    Abstract This paper presents the fundamentals of reversible flowcharts. They are intended to naturally represent the structure and control flow of reversible (imperative) programming languages in a simple computation model, in the same way classical flowcharts do for conventional languages......, structured reversible flowcharts are as expressive as unstructured ones, as shown by a reversible version of the classic Structured Program Theorem. We illustrate how reversible flowcharts can be concretized with two example programming languages, complete with syntax and semantics: a low-level unstructured...... language and a high-level structured language. We introduce concrete tools such as program inverters and translators for both languages, which follow the structure suggested by the flowchart model. To further illustrate the different concepts and tools brought together in this paper, we present two major...

  16. Phase I and pharmacokinetic study of XR11576, an oral topoisomerase I and II inhibitor, administered on days 1-5 of a 3-weekly cycle in patients with advanced solid tumours

    NARCIS (Netherlands)

    M.J.A. de Jonge (Maja); S.B. Kaye (Stan); J. Verweij (Jaap); C. Brock (C.); S. Reade (Sarah); M. Scurr (M.); L. van Doorn (Leni); C. Verheij (Coleta); W.J. Loos (Walter); C. Brindley (C.); H.D. Mistry; M. Cooper (Meghan); I.R. Judson (Ian)

    2004-01-01

    textabstractXR11576 is an oral topoisomerase I and II inhibitor. The objectives of this phase I study were to assess the dose-limiting toxicities (DLTs), to determine the maximum tolerated dose (MTD) and to describe the pharmacokinetics (PKs) of XR11576 when administered orally on days 1-5 every 3

  17. DNA-binding, topoisomerases I and II inhibition and in vitro cytotoxicity of ruthenium(II) polypyridyl complexes: [Ru(dppz)2L](2+) (L=dppz-11-CO2Me and dppz).

    Science.gov (United States)

    He, Xiaojun; Jin, Lianhe; Tan, Lifeng

    2015-01-25

    Two ruthenium(II) polypyridyl complexes, [Ru(dppz)2dppz-11-CO2Me](ClO4)2 (Ru1) and [Ru(dppz)3](ClO4)2 (Ru2), have been synthesized and characterized. The spectral characteristics of Ru1 and Ru2 were investigated by fluorescence spectroscopy and revealed that both complexes were sensitive to solvent polarity. The binding properties of the two complexes towards calf-thymus DNA (CT-DNA) have been investigated by different spectrophotometric methods and viscosity measurements, indicating that both complexes bind to CT-DNA by means of intercalation, but with different binding affinities. Topoisomerase inhibition and DNA strand passage assay demonstrates that the two complexes are dual inhibitors of topoisomerases I and IIa. On the other hand, the cytotoxicity of both complexes has been evaluated by MTT assays and Giemsa staining experiments. The main results reveal that the ester functional group has a significant effect on the DNA-binding affinities and topoisomerases inhibition effects of Ru1 and Ru2, and further advance our knowledge on the DNA-binding and topoisomerase inhibition by Ru(II) complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Posterior Reversible Encephalopathy Syndrome as Presenting Form of Very Early Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    María Isabel Pedraza

    2015-01-01

    Full Text Available Introduction. Posterior Reversible Encephalopathy Syndrome (PRES is an increasingly recognized clinical and radiological entity with a wide spectrum of symptoms. Its mechanism depends on failure of the blood-brain barrier due to high systemic blood pressure (BP and loss of integrity of vascular endothelium related with different triggers. Methods. We aim to report a case of PRES induced by arterial hypertension and very early systemic sclerosis (SSc not previously known. Results. A 64-year-old female was admitted due to 1-week pulsating headache more prominent on frontal scalp, accompanied by phonophobia, photophobia, and facial flushing. Neurological exam revealed brisk deep tendon reflex. Brain magnetic resonance imaging (MRI showed subcortical lesions mainly located in posterior regions. BP was monitored and episodic arterial hypertension was detected. In laboratory tests positive anti-topoisomerase I antibodies were detected. BP was controlled with angiotensin-converting-enzyme inhibitors and headache improved. In a new MRI a month later improvement of white matter lesions was observed. Capillaroscopy showed “active pattern,” considered typical of SSc. Conclusion. In SSc anti-endothelial cell antibodies impair vascular endothelium and liberation of vasoconstrictors leads to BP increasing and disruption of blood-brain barrier autoregulation mechanisms. PRES can be the first manifestation of very early SSc and this entity should be considered even in absence of skin lesions or Raynaud phenomenon.

  19. Potent Antipneumococcal Activity of Gemifloxacin Is Associated with Dual Targeting of Gyrase and Topoisomerase IV, an In Vivo Target Preference for Gyrase, and Enhanced Stabilization of Cleavable Complexes In Vitro

    Science.gov (United States)

    Heaton, Victoria J.; Ambler, Jane E.; Fisher, L. Mark

    2000-01-01

    We investigated the roles of DNA gyrase and topoisomerase IV in determining the susceptibility of Streptococcus pneumoniae to gemifloxacin, a novel fluoroquinolone which is under development as an antipneumococcal drug. Gemifloxacin displayed potent activity against S. pneumoniae 7785 (MIC, 0.06 μg/ml) compared with ciprofloxacin (MIC, 1 to 2 μg/ml). Complementary genetic and biochemical approaches revealed the following. (i) The gemifloxacin MICs for isogenic 7785 mutants bearing either parC or gyrA quinolone resistance mutations were marginally higher than wild type at 0.12 to 0.25 μg/ml, whereas the presence of both mutations increased the MIC to 0.5 to 1 μg/ml. These data suggest that both gyrase and topoisomerase IV contribute significantly as gemifloxacin targets in vivo. (ii) Gemifloxacin selected first-step gyrA mutants of S. pneumoniae 7785 (gemifloxacin MICs, 0.25 μg/ml) encoding Ser-81 to Phe or Tyr, or Glu-85 to Lys mutations. These mutants were cross resistant to sparfloxacin (which targets gyrase) but not to ciprofloxacin (which targets topoisomerase IV). Second-step mutants (gemifloxacin MICs, 1 μg/ml) exhibited an alteration in parC resulting in changes of ParC hot spot Ser-79 to Phe or Tyr. Thus, gyrase appears to be the preferential in vivo target. (iii) Gemifloxacin was at least 10- to 20-fold more effective than ciprofloxacin in stabilizing a cleavable complex (the cytotoxic lesion) with either S. pneumoniae gyrase or topoisomerase IV enzyme in vitro. These data suggest that gemifloxacin is an enhanced affinity fluoroquinolone that acts against gyrase and topoisomerase IV in S. pneumoniae, with gyrase the preferred in vivo target. The marked potency of gemifloxacin against wild type and quinolone-resistant mutants may accrue from greater stabilization of cleavable complexes with the target enzymes. PMID:11036032

  20. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  1. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  2. Human topoisomerase II-alpha is highly expressed in sinonasal-inverted papilloma, but not in inflammatory polyp.

    Science.gov (United States)

    Hadar, Tuvia; Shvero, Jacob; Yaniv, Eitan; Shvili, Itzhac; Leabu, Mircea; Koren, Rumelia

    2008-01-01

    Sinonasal-inverted papilloma is a benign tumour with a high rate of recurrence, but possible malignant transformation. Therefore, investigation of predisposition to malignant transformation of sinonasal-inverted papilloma gives clinicians the opportunity for adequate treatment. Topoisomerase II-alpha (topoII-alpha) and Ki67 are markers of cell proliferation in both normal and neoplastic tissues and its level o expression could be used as a predictive parameter. Our goal was to investigate by immunochemistry the expression level of topoII-in inverted papilloma, inflammatory nasal polyp and normal sinonasal epithelium and to compare it with expression level of Ki67. TopoI alpha nuclear immunostaining showed a differential positivity in the investigated cases. The topoII-alpha index was 30.6 +/- 12.8 in inverte papilloma, 10.7 +/- 6.6 in the adjacent epithelium of inverted papilloma, but only 2.3 +/- 2.0 in the normal sinonasal epithelium. The differences in topoII-alpha expression between inverted papilloma and normal sinonasal epithelia were statistically significant. In inflammatory nasal polyp group, topoII-alpha index was 2.4 +/- 2.1, and the difference in the topoII-alpha index between inverted papilloma and inflammatory polyp group was also statistically significant. Nuclear immunostaining for Ki67 followed a similar variation. The Ki67 index was 50.0 +/- 20. in inverted papilloma, 9.0 +/- 6.6 in the adjacent epithelium of inverted papilloma and 2.4 +/- 0.9 in normal sinonasal epithelium. The differences in Ki67 expression between inverted papilloma and either adjacent or normal sinonasal epithelia were statistically significant. Significant correlation coefficients were found between topoII-alpha and epithelial thickness (r = 0.70, P > 0.0001), and between Ki67 index and epithelial thickness (r = 0.71, P> 0.0001). In the inflammatory nasal polyp group Ki67 index was 5.9 +/- 3.4. The difference in th Ki67 index between inverted papilloma and inflammatory nasal

  3. Accumulation of mutations in DNA gyrase and topoisomerase IV genes contributes to fluoroquinolone resistance in Vibrio cholerae O139 strains.

    Science.gov (United States)

    Zhou, Yanyan; Yu, Li; Li, Jie; Zhang, Lijuan; Tong, Ying; Kan, Biao

    2013-07-01

    High resistance rates to nalidixic acid (NAL) in Vibrio cholerae serogroup O139 strains have been found, and ciprofloxacin (CIP) resistance is also observed. In this study, mutations within the quinolone-resistance determining regions (QRDRs) of DNA gyrase and topoisomerase IV from NAL-resistant O139 strains were analysed. The predominant mutation profile was S83I in GyrA in combination with S85L in ParC. In addition, the combination substitutions of D87N in GyrA and D420N in ParE in combination with S83I in GyrA and S85L in ParC as well as D87N in GyrA and P439S in ParE in combination with S83I in GyrA and S85L in ParC were found in the CIP-resistant strains. A series of site-directed mutants comprising D87 in GyrA, D420 in ParE and P439 in ParE were constructed from a wild-type V. cholerae O139 strain carrying the common mutations S83I in GyrA and S85L in ParC. Introduction of the mutation D87N in GyrA increased the CIP minimum inhibitory concentration (MIC) of the mutant strain by nearly 4-fold compared with the initial strain. The second introduction of D420N in ParE further significantly increased the CIP MIC to ca. 23-fold compared with the initial strain. A second introduction of P439S in ParE also increased the CIP MIC by 17-fold. Therefore, it is concluded that the emergence of D87N in GyrA and D420N or P439S in ParE dramatically induces resistance to fluoroquinolones in V. cholerae O139, and the accumulation of multiple mutations in the QRDRs confers significant resistance to fluoroquinolones in V. cholerae. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  4. A Typology of Reverse Innovation

    DEFF Research Database (Denmark)

    von Zedtwitz, Max; Corsi, Simone; Søberg, Peder Veng

    2015-01-01

    Reverse innovation commonly refers to an innovation initially launched in a developing country and later introduced to an advanced country. Adopting a linear innovation model with the four sequential phases of concept ideation, product development, primary target market introduction, and subsequent...... secondary market introduction, this study expands the espoused definition of reverse innovation beyond its market-introduction focus with reversals in the flow of innovation in the ideation and product development phases. Recognizing that each phase can take place in different geographical locations...

  5. Reverse engineering for quality systems

    International Nuclear Information System (INIS)

    Nolan, A.J.

    1995-01-01

    When the age of software engineering began, many companies were faced with a problem of how to support the older, pre-software-engineering, programs. The techniques of reverse engineering and re-engineering were developed to bridge the gap between the past and the present. Although reverse engineering can be used for generating missing documentation, it can also be used as a means to demonstrate quality in these older programs. This paper presents, in the form of a case study, how Rolls-Royce and Associates Limited addressed the quality issues of reverse engineering and re-engineering. (author)

  6. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  7. Designing the Reverse Supply Chain

    DEFF Research Database (Denmark)

    Gobbi, Chiara

    2011-01-01

    for the reverse supply chain. Design/methodology/approach – In order to identify the relevance of the Fisher model, the model needs to be recast in terms of PRV, which, in this context, is considered the independent variable in the reverse logistics arena. Products defined as innovative in Fisher's taxonomy....... Research limitations/implications – The focus is restricted to the industry of electrical and electronic products. Practical implications – Based on the outcome of the study, managers are able to determine the basic prerequisites for the design of their reverse supply chains. Originality/value – Previous......Purpose – The purpose of this paper is to explore the impact of the product residual value (PRV) and the loss of value over time of returned products in the reverse supply chain configuration. It also examines whether or not the distinction of Fisher's functional and innovative products holds...

  8. Towards a reversible functional language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2012-01-01

    first-match policy for case expressions, we can write overlapping patterns in case branches, as is customary in ordinary functional languages, and also in leaf expressions, unlike existing inverse interpreter methods, which enables concise programs. In patterns, the use of a duplication....../equality operator also simplifies inverse computation and program inversion. We discuss the advantages of a reversible functional language using example programs, including run-length encoding. Program inversion is seen to be as lightweight as for imperative reversible languages and realized by recursive descent......We identify concepts of reversibility for a functional language by means of a set of semantic rules with specific properties. These properties include injectivity along with local backward determinism, an important operational property for an efficient reversible language. We define a concise...

  9. P53, MAPK, topoisomerase II alpha and Ki67 immunohistochemical expression and KRAS/BRAF mutation in ovarian serous carcinomas

    Directory of Open Access Journals (Sweden)

    Sundov Dinka

    2013-02-01

    Full Text Available Abstract Background We investigated the immunohistochemical expression of p53, MAPK, topoisomerase II alpha (topoII alpha and Ki67 in ovarian serous carcinomas (OSCs along with mutational analysis for KRAS and BRAF. Methods Eighty one cases of OSCs were reviewed and examined immunohistochemically using antibodies against p53, MAPK, topoII alpha and Ki67. Staining was evaluated as a percentage of immunopositive cells with cut-off levels at 10% for p53 and topoII alpha, and 5% for MAPK. The Ki67 immunoexpression was assessed by means of Olympus Image Analysis System as a percentage of immunopositive cells in 1000 tumor cells. KRAS and BRAF mutational analysis was performed on 73 available microdissected samples. Results Of 81 cases of OSCs 13.6% were of low-grade and 86.4% were of high-grade morphology. In the high-grade group there was a significantly higher immunoexpression of p53 (P P = 0.001, with Ki67 median 56.5 vs. 19 in low-grade group (P P = 0.003. MAPK positive immunostaining was detected in 63.6% of low-grade vs. 17.1% of high-grade OSCs. The frequency of KRAS mutation was significantly higher in low-grade as compared to high-grade group (P = 0.006. None of the samples had BRAF mutation. In addition, we detected positive MAPK immunoexpression in 13/59 samples with wild-type KRAS, suggesting that activation of MAPK pathway is not ultimately related either to KRAS or BRAF mutation. Seven morphologically high-grade samples (11.7% showed both KRAS mutation and p53 immunopositivity. Conclusions Although this study is limited by its humble number of low-grade samples, our data fit the proposed dualistic pathway of ovarian carcinogenesis. Mutational analysis for KRAS and BRAF discloses some possible interactions between different tumorigenic pathways of low- and high-grade carcinomas. Immunohistochemical staining for MAPK was not sufficiently sensitive, nor specific, to precisely predict the KRAS mutation. However, it appears

  10. Spontaneous direct and reverse osmosis

    International Nuclear Information System (INIS)

    Valitov, N.Kh.

    1996-01-01

    It has been ascertained experimentally that in the course of separation of CsCl, KCl, NaCl aqueous solutions by semi-permeable membrane from distilled water the direct and then reverse osmosis are observed. The same sequence is observed in case of separation of CsCl aqueous solutions from NaCl of different concentrations. The reason for the direct and reverse osmosis has been explained. 5 refs.; 3 figs. 1 tab

  11. Initiation of HIV Reverse Transcription

    OpenAIRE

    Isel, Catherine; Ehresmann, Chantal; Marquet, Roland

    2010-01-01

    Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of...

  12. Assessment of topoisomerase II-alpha gene status by dual color chromogenic in situ hybridization in a set of Iraqi patients with invasive breast carcinoma

    Directory of Open Access Journals (Sweden)

    Rasha Abd Alraouf Neama

    2017-01-01

    Full Text Available Background: The human epidermal growth factor receptor 2(HER2 proto-oncogene is overexpressed or amplified in approximately 15%–25% of invasive breast cancers. Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A gene encoding an enzyme that is a major target of anthracyclines. Hence, the determination of genetic alteration (amplification or deletion of both genes is considered as an important predictive factor that determines the response of breast cancer patients to treatment. The aims of this study are to determinate TOP2A status gene amplification in a set of Iraqi patients with breast cancer that have had an equivocal (2+ and positive HER2/neu by immunohistochemistry (IHC and to compare the results with estrogen receptor (ER and progesterone receptor (PR and HER2/neu status. Patients and Methods: A cross-sectional prospective study done on 53 patients with invasive breast carcinoma. Twenty-six out of total 53 cases were positive HER2/neu (3+, the remaining 27 equivocal HER2-IHC (2+ cases reanalyzed using dual-color chromogenic in situ hybridization (ZytoVision probe kit for further identification of HER2/neu gene amplification. Using chromogenic in situ hybridization (CISH, TOP2A gene status determination was done for all cases. Results: There is a direct significant correlation between TOP2A gene amplification and HER2/neu positivity, P < 0.05 in that 15 (39.4% out of 38 positive HER2/neu cases were associated with topoisomerase gene amplification. Regarding relation of topoisomerase gene to hormone receptor status (ER and PR, there was a significant negative relationship between the gene and ER receptor status. The higher level of gene amplification was noticed in ER and PR negative cases in about 13 (43.3% and 14 (48.2% for ER and PR, respectively. Conclusion: TOP2A gene status has a significantly positive correlation with HER2/neu status while it has a significantly negative

  13. Reversal of idiopathic hypogonadotropic hypogonadism.

    Science.gov (United States)

    Raivio, Taneli; Falardeau, John; Dwyer, Andrew; Quinton, Richard; Hayes, Frances J; Hughes, Virginia A; Cole, Lindsay W; Pearce, Simon H; Lee, Hang; Boepple, Paul; Crowley, William F; Pitteloud, Nelly

    2007-08-30

    Idiopathic hypogonadotropic hypogonadism, which may be associated with anosmia (the Kallmann syndrome) or with a normal sense of smell, is a treatable form of male infertility caused by a congenital defect in the secretion or action of gonadotropin-releasing hormone (GnRH). Patients have absent or incomplete sexual maturation by the age of 18. Idiopathic hypogonadotropic hypogonadism was previously thought to require lifelong therapy. We describe 15 men in whom reversal of idiopathic hypogonadotropic hypogonadism was sustained after discontinuation of hormonal therapy. We defined the sustained reversal of idiopathic hypogonadotropic hypogonadism as the presence of normal adult testosterone levels after hormonal therapy was discontinued. Ten sustained reversals were identified retrospectively. Five sustained reversals were identified prospectively among 50 men with idiopathic hypogonadotropic hypogonadism after a mean (+/-SD) duration of treatment interruption of 6+/-3 weeks. Of the 15 men who had a sustained reversal, 4 had anosmia. At initial evaluation, 6 men had absent puberty, 9 had partial puberty, and all had abnormal secretion of GnRH-induced luteinizing hormone. All 15 men had received previous hormonal therapy to induce virilization, fertility, or both. Among those whose hypogonadism was reversed, the mean serum level of endogenous testosterone increased from 55+/-29 ng per deciliter (1.9+/-1.0 nmol per liter) to 386+/-91 ng per deciliter (13.4+/-3.2 nmol per liter, Phypogonadotropic hypogonadism and the Kallmann syndrome was noted after discontinuation of treatment in about 10% of patients with either absent or partial puberty. Therefore, brief discontinuation of hormonal therapy to assess reversibility of hypogonadotropic hypogonadism is reasonable. (ClinicalTrials.gov number, NCT00392756 [ClinicalTrials.gov].). Copyright 2007 Massachusetts Medical Society.

  14. Biomolecular structure manipulation using tailored electromagnetic radiation: a proof of concept on a simplified model of the active site of bacterial DNA topoisomerase.

    Science.gov (United States)

    Jarukanont, Daungruthai; Coimbra, João T S; Bauerhenne, Bernd; Fernandes, Pedro A; Patel, Shekhar; Ramos, Maria J; Garcia, Martin E

    2014-10-21

    We report on the viability of breaking selected bonds in biological systems using tailored electromagnetic radiation. We first demonstrate, by performing large-scale simulations, that pulsed electric fields cannot produce selective bond breaking. Then, we present a theoretical framework for describing selective energy concentration on particular bonds of biomolecules upon application of tailored electromagnetic radiation. The theory is based on the mapping of biomolecules to a set of coupled harmonic oscillators and on optimal control schemes to describe optimization of temporal shape, the phase and polarization of the external radiation. We have applied this theory to demonstrate the possibility of selective bond breaking in the active site of bacterial DNA topoisomerase. For this purpose, we have focused on a model that was built based on a case study. Results are given as a proof of concept.

  15. Intercalating polycyclic aromatic hydrocarbon-DNA adducts poison DNA religation by Vaccinia topoisomerase and act as roadblocks to digestion by exonuclease III.

    Science.gov (United States)

    Yakovleva, Lyudmila; Handy, Christopher J; Yagi, Haruhiko; Sayer, Jane M; Jerina, Donald M; Shuman, Stewart

    2006-06-20

    Polycyclic aromatic hydrocarbon (PAH)-DNA adducts pervert the execution or fidelity of enzymatic DNA transactions and cause mutations and cancer. Here, we examine the effects of intercalating PAH-DNA adducts on the religation reaction of vaccinia DNA topoisomerase, a prototypal type IB topoisomerase (TopIB), and the 3' end-resection reaction of Escherichia coli exonuclease III (ExoIII), a DNA repair enzyme. Vaccinia TopIB forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p / N(-1) in duplex DNA. The rate of the forward cleavage reaction is suppressed to varying degrees by benzo[a]pyrene (BP) or benzo[c]phenanthrene (BPh) adducts at purine bases within the 3'-G(+5)G(+4)G(+3)A(+2)A(+1)T(-1)A(-2) sequence of the nonscissile strand. We report that BP adducts at the +1 and -2 N6-deoxyadenosine (dA) positions flanking the scissile phosphodiester slow the rate of DNA religation to a greater degree than they do the cleavage rate. By increasing the cleavage equilibrium constant > or = 10-fold, the BPdA adducts, which are intercalated via the major groove, act as TopIB poisons. With respect to ExoIII, we find that (i) single BPdA adducts act as durable roadblocks to ExoIII digestion, which is halted at sites 1 and 2 nucleotides prior to the modified base; (ii) single BPhdA adducts, which also intercalate via the major groove, elicit a transient pause prior to the lesion, which is eventually resected; and (iii) BPh adducts at N2-deoxyguanosine, which intercalate via the minor groove, are durable impediments to ExoIII digestion. These results highlight the sensitivity of repair outcomes to the structure of the PAH ring system and whether intercalation occurs via the major or minor groove.

  16. Yeast cytotoxic sensitivity to the antitumour agent β-lapachone depends mainly on oxidative stress and is largely independent of microtubule- or topoisomerase-mediated DNA damage.

    Science.gov (United States)

    Ramos-Pérez, Cristina; Lorenzo-Castrillejo, Isabel; Quevedo, Oliver; García-Luis, Jonay; Matos-Perdomo, Emiliano; Medina-Coello, Chaxiraxi; Estévez-Braun, Ana; Machín, Félix

    2014-11-15

    β-Lapachone (β-lap) is a promising antitumour drug currently undergoing clinical trials. Although it is known that β-lap generates reactive oxygen species (ROS), its actual mechanism of action is still controversial. Especially important is to determine whether concomitant DNA or microtubule damage is the key target of its antitumour properties and whether DNA damage is mediated by topoisomerases as previously suggested. Here, we have searched for determinants of β-lap cytotoxicity in the model organism Saccharomyces cerevisiae through a mechanism-driven approach whereby several pathways of the DNA and microtubule integrity responses, as well as the anti-oxidant response, were downregulated and the outcome of β-lap treatment examined. We also included in the analysis several β-lap derivatives expected to modify drug bioavailability and activity. We found that neither topoisomerase II nor microtubules contributed to yeast sensitivity to β-lap and its equitoxic derivative 3-bromo-β-lapachone. Instead, we found that oxidative and related environmental stresses were primarily responsible for toxicity. Accordingly, Yap1, the central transcription factor in the antioxidant response in yeast, together with several components involved in stress tolerance (i.e., Snf1 and Hog1) and chromatin remodelling (i.e., the SWR1 and RSC complexes), played major roles in protection against β-lapachone. Critically, we show that dioxygen enhanced toxicity and that ROS scavengers protected cells from it. Furthermore, we show that both quinones resulted in cell death in a manner which cytologically resembled apoptosis/necrosis. We thus conclude that β-lap is toxic to yeast through massive ROS production that either directly kills the cells or else triggers programmed cell death. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Inhibition of topoisomerase II activity in repair-proficient CHO K1 cells by 2-[(aminopropyl)amino]ethanethiol (WR-1065)

    International Nuclear Information System (INIS)

    Grdina, D.J.; Constantinou, A.; Shigematsu, N.

    1992-09-01

    The aminothiol 2-[(aminopropyl)amino]ethanethiol (WR-1065) is the active thiol of the clinically studied radioprotective agent S-2-(3-aminopropylamino) ethylphosphorothioic acid (WR-2721). WR-1065 is an effective radiation protector under in vitro conditions when it is administered 30 min prior to radiation exposure at a concentration of 4 mM to repair-proficient Chinese hamster ovary Kl cells (i.e., a dose modification factor of 1.4). In contrast, the DNA double-strand break, repair-deficient Chinese hamster ovary xrs-5 cell line is not protected under these conditions (i.e., a dose modification factor of 1.0). Topoisomerase (topo) I and II activities and protein contents were measured in both Kl and xrs-5 cell lines and were found to be similar in magnitude. Neither exposure to radiation, to WR-1065, or to both affected these variables in xrs-5 cells. WR 1065 was effective, however, in reducing topo 11 activity by a factor of 2 in the repair-proficient Kl cell line. Topo II protein content, however, was not affected by these exposure conditions. One of several mechanisms of radiation protection attributed to aminothiol compounds has been their ability to affect enzymatic reactions involved in DNA synthesis, repair, and cell cycle progression. These results demonstrate a modifying effect by 2-[(aminopropyl)amino]ethanethiol on a specific nuclear enzyme (i.e., type H topoisomerase), which is involved in DNA synthesis. These results also suggest that differences do exist between the topo 11 enzymes isolated from the parent repair-proficient Kl and the DNA double-strand break, repair-deficient xrs-5 mutant cell lines

  18. Presence of plasmid-mediated quinolone resistance determinants and mutations in gyrase and topoisomerase in Salmonella enterica isolates with resistance and reduced susceptibility to ciprofloxacin.

    Science.gov (United States)

    Casas, Monique Ribeiro Tiba; Camargo, Carlos Henrique; Soares, Flávia Barrosa; da Silveira, Wanderley Dias; Fernandes, Sueli Aparecida

    2016-05-01

    In recent decades, the emergence and spread of resistance to nalidixic acid are usually associated with reduced susceptibility to ciprofloxacin among Salmonella serotypes. The aims of this study were to investigate the mechanisms associated with resistance to fluoroquinolone and the clonal relatedness of Salmonella strains isolated from human and nonhuman origins, in a 5-year period in São Paulo, Brazil. Antimicrobial susceptibility testing for Salmonella isolates was performed. PCR and DNA sequencing were accomplished to identify mutations in the quinolone resistance-determining regions of the topoisomerase genes and to determine the fluoroquinolone determinants. The strains presented MIC to ciprofloxacin ranging from 0.125 to 8.0 mg/L (all nonsusceptible). From these, 16 strains (17.5%) were resistant to ciprofloxacin (MIC ≥1 mg/L) and belonging to serotypes Typhimurium, I. 4,5,12:i:-, Enteritidis, and Heidelberg. Amplification and DNA sequencing of topoisomerases genes identified multiple amino acid substitutions in GyrA and ParC. No mutations were identified in GyrB, and 1 amino acid substitution was identified in ParE. Among the 16 Salmonella strains resistant to ciprofloxacin, 8 S. I. 4,5,12:i:- presenting mutations in gyrA and parE genes were grouped into the same pulsotype. Plasmid-mediated quinolone resistance (PMQR) determinants: qnrB, aac(6')-lb-cr, and oqxA/B were detected among 13 strains. To the best of our knowledge, this is the first work to report Salmonella isolates resistant to ciprofloxacin in Brazil. Indeed, this is the first detection of PMQR determinants in Salmonella strains from Sao Paulo State. These findings alert for the potential spread of quinolone resistance of Salmonella strains, particularly in S. I. 4,5,12:i:-, a prevalent serotype implicated in human disease and foodborne outbreaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Engineering the Specificity of Antibacterial Fluoroquinolones: Benzenesulfonamide Modifications at C-7 of Ciprofloxacin Change Its Primary Target in Streptococcus pneumoniae from Topoisomerase IV to Gyrase

    Science.gov (United States)

    Alovero, Fabiana L.; Pan, Xiao-Su; Morris, Julia E.; Manzo, Ruben H.; Fisher, L. Mark

    2000-01-01

    We have examined the antipneumococcal mechanisms of a series of novel fluoroquinolones that are identical to ciprofloxacin except for the addition of a benzenesulfonylamido group to the C-7 piperazinyl ring. A number of these derivatives displayed enhanced activity against Streptococcus pneumoniae strain 7785, including compound NSFQ-105, bearing a 4-(4-aminophenylsulfonyl)-1-piperazinyl group at C-7, which exhibited an MIC of 0.06 to 0.125 μg/ml compared with a ciprofloxacin MIC of 1 μg/ml. Several complementary approaches established that unlike the case for ciprofloxacin (which targets topoisomerase IV), the increased potency of NSFQ-105 was associated with a target preference for gyrase: (i) parC mutants of strain 7785 that were resistant to ciprofloxacin remained susceptible to NSFQ-105, whereas by contrast, mutants bearing a quinolone resistance mutation in gyrA were four- to eightfold more resistant to NSFQ-105 (MIC of 0.5 μg/ml) but susceptible to ciprofloxacin; (ii) NSFQ-105 selected first-step gyrA mutants (MICs of 0.5 μg/ml) encoding Ser-81-to-Phe or -Tyr mutations, whereas ciprofloxacin selects parC mutants; and (iii) NSFQ-105 was at least eightfold more effective than ciprofloxacin at inhibiting DNA supercoiling by S. pneumoniae gyrase in vitro but was fourfold less active against topoisomerase IV. These data show unequivocally that the C-7 substituent determines not only the potency but also the target preference of fluoroquinolones. The importance of the C-7 substituent in drug-enzyme contacts demonstrated here supports one key postulate of the Shen model of quinolone action. PMID:10639357

  20. Reverse hybrid total hip arthroplasty

    Science.gov (United States)

    Wangen, Helge; Havelin, Leif I; Fenstad, Anne M; Hallan, Geir; Furnes, Ove; Pedersen, Alma B; Overgaard, Søren; Kärrholm, Johan; Garellick, Göran; Mäkelä, Keijo; Eskelinen, Antti; Nordsletten, Lars

    2017-01-01

    Background and purpose The use of a cemented cup together with an uncemented stem in total hip arthroplasty (THA) has become popular in Norway and Sweden during the last decade. The results of this prosthetic concept, reverse hybrid THA, have been sparsely described. The Nordic Arthroplasty Register Association (NARA) has already published 2 papers describing results of reverse hybrid THAs in different age groups. Based on data collected over 2 additional years, we wanted to perform in depth analyses of not only the reverse hybrid concept but also of the different cup/stem combinations used. Patients and methods From the NARA, we extracted data on reverse hybrid THAs from January 1, 2000 until December 31, 2013. 38,415 such hips were studied and compared with cemented THAs. The Kaplan-Meier method and Cox regression analyses were used to estimate the prosthesis survival and the relative risk of revision. The main endpoint was revision for any reason. We also performed specific analyses regarding the different reasons for revision and analyses regarding the cup/stem combinations used in more than 500 cases. Results We found a higher rate of revision for reverse hybrids than for cemented THAs, with an adjusted relative risk of revision (RR) of 1.4 (95% CI: 1.3–1.5). At 10 years, the survival rate was 94% (CI: 94–95) for cemented THAs and 92% (95% CI: 92–93) for reverse hybrids. The results for the reverse hybrid THAs were inferior to those for cemented THAs in patients aged 55 years or more (RR =1.1, CI: 1.0–1.3; p revision due to periprosthetic femoral fracture for reverse hybrids than for cemented THAs in patients aged 55 years or more (RR =3.1, CI: 2.2–4.5; p revision than cemented THAs in patients aged 55 or more. The difference in survival was mainly caused by a higher incidence of early revision due to periprosthetic femoral fracture in the reversed hybrid THAs. PMID:28095724

  1. Vasectomy reversal: a clinical update

    Directory of Open Access Journals (Sweden)

    Abhishek P Patel

    2016-01-01

    Full Text Available Vasectomy is a safe and effective method of contraception used by 42-60 million men worldwide. Approximately 3%-6% of men opt for a vasectomy reversal due to the death of a child or divorce and remarriage, change in financial situation, desire for more children within the same marriage, or to alleviate the dreaded postvasectomy pain syndrome. Unlike vasectomy, vasectomy reversal is a much more technically challenging procedure that is performed only by a minority of urologists and places a larger financial strain on the patient since it is usually not covered by insurance. Interest in this procedure has increased since the operating microscope became available in the 1970s, which consequently led to improved patency and pregnancy rates following the procedure. In this clinical update, we discuss patient evaluation, variables that may influence reversal success rates, factors to consider in choosing to perform vasovasostomy versus vasoepididymostomy, and the usefulness of vasectomy reversal to alleviate postvasectomy pain syndrome. We also review the use of robotics for vasectomy reversal and other novel techniques and instrumentation that have emerged in recent years to aid in the success of this surgery.

  2. Reverse Knowledge Transfer in MNEs

    DEFF Research Database (Denmark)

    Mudambi, Ram; Piscitello, Lucia; Rabbiosi, Larissa

    2014-01-01

    It is now well recognized that multinational enterprises (MNEs) are differentiated networks wherein subsidiaries vary in terms of their ability to create new knowledge and competencies for their parent groups. In much of this theory, it is taken for granted that subsidiary innovativeness has...... a positive correlation with the extent of reverse knowledge transfers to the parent MNE. Relying on the headquarters-subsidiary view of the MNE, we argue that, beyond a point, increasing subsidiary innovativeness will be associated with lower reverse knowledge transfers. Further, we argue...... that this relationship is sensitive to the subsidiary entry mode. Using data from a sample of 293 Italian subsidiaries, we find strong support for our hypotheses. In particular, our results confirm that the effect of subsidiary innovativeness on reverse knowledge transfers displays an inverted-U shape...

  3. Reverse innovation in maternal health.

    Science.gov (United States)

    Firoz, Tabassum; Makanga, Prestige Tatenda; Nathan, Hannah L; Payne, Beth; Magee, Laura A

    2017-09-01

    Reverse innovation, defined as the flow of ideas from low- to high-income settings, is gaining traction in healthcare. With an increasing focus on value, investing in low-cost but effective and innovative solutions can be of mutual benefit to both high- and low-income countries. Reverse innovation has a role in addressing maternal health challenges in high-income countries by harnessing these innovative solutions for vulnerable populations especially in rural and remote regions. In this paper, we present three examples of 'reverse innovation' for maternal health: a low-cost, easy-to-use blood pressure device (CRADLE), a diagnostic algorithm (mini PIERS) and accompanying mobile app (PIERS on the Move), and a novel method for mapping maternal outcomes (MOM).

  4. Reverse genetics with animal viruses. NSV reverse genetics

    International Nuclear Information System (INIS)

    Mebatsion, T.

    2005-01-01

    New strategies to genetically manipulate the genomes of several important animal pathogens have been established in recent years. This article focuses on the reverse genetics techniques, which enables genetic manipulation of the genomes of non-segmented negative-sense RNA viruses. Recovery of a negative-sense RNA virus entirely from cDNA was first achieved for rabies virus in 1994. Since then, reverse genetic systems have been established for several pathogens of medical and veterinary importance. Based on the reverse genetics technique, it is now possible to design safe and more effective live attenuated vaccines against important viral agents. In addition, genetically tagged recombinant viruses can be designed to facilitate serological differentiation of vaccinated animals from infected animals. The approach of delivering protective immunogens of different pathogens using a single vector was made possible with the introduction of the reverse genetics system, and these novel broad-spectrum vaccine vectors have potential applications in improving animal health in developing countries. (author)

  5. Reverse Zymography: Overview and Pitfalls.

    Science.gov (United States)

    Sharma, Kanika; Bhattacharyya, Debasish

    2017-01-01

    Reverse zymography is a technique by which protease inhibitor(s) in a sample could be electrophoretically separated in a substrate-impregnated acrylamide gel and their relative abundance could be semi-quantified. The gel after electrophoresis is incubated with a protease when the impregnated substrate and all other proteins of the sample are degraded into small peptides except the inhibitor(s) that show clear bands against a white background. Since reverse zymography cannot distinguish between a protease inhibitor and a protein that is resistant against proteolysis, the results should be confirmed from inhibition of protease activity by solution state assay.

  6. Marburg Virus Reverse Genetics Systems

    Directory of Open Access Journals (Sweden)

    Kristina Maria Schmidt

    2016-06-01

    Full Text Available The highly pathogenic Marburg virus (MARV is a member of the Filoviridae family and belongs to the group of nonsegmented negative-strand RNA viruses. Reverse genetics systems established for MARV have been used to study various aspects of the viral replication cycle, analyze host responses, image viral infection, and screen for antivirals. This article provides an overview of the currently established MARV reverse genetic systems based on minigenomes, infectious virus-like particles and full-length clones, and the research that has been conducted using these systems.

  7. Reverse hybrid total hip arthroplasty

    DEFF Research Database (Denmark)

    Wangen, Helge; Havelin, Leif I.; Fenstad, Anne M

    2017-01-01

    . Patients and methods - From the NARA, we extracted data on reverse hybrid THAs from January 1, 2000 until December 31, 2013. 38,415 such hips were studied and compared with cemented THAs. The Kaplan-Meier method and Cox regression analyses were used to estimate the prosthesis survival and the relative risk...

  8. Reversibility of chronic airflow obstruction

    NARCIS (Netherlands)

    Postma, Dirkje Sjoukje

    1984-01-01

    This thesis deals with variations in airway diameter in patients with chronic, partly reversible airflow obstruction. The patients studied in this thesis have been addressed in the literature with terms as CAO, COPD, CNSLD. The confusion caused by combining patients in one descriptive term, e.g.

  9. CAPSULE REPORT: REVERSE OSMOSIS PROCESS

    Science.gov (United States)

    A failure analysis has been completed for the reverse osmosis (RO) process. The focus was on process failures that result in releases of liquids and vapors to the environment. The report includes the following: 1) A description of RO and coverage of the principles behind the proc...

  10. Reversible colour change in Arthropoda.

    Science.gov (United States)

    Umbers, Kate D L; Fabricant, Scott A; Gawryszewski, Felipe M; Seago, Ainsley E; Herberstein, Marie E

    2014-11-01

    The mechanisms and functions of reversible colour change in arthropods are highly diverse despite, or perhaps due to, the presence of an exoskeleton. Physiological colour changes, which have been recorded in 90 arthropod species, are rapid and are the result of changes in the positioning of microstructures or pigments, or in the refractive index of layers in the integument. By contrast, morphological colour changes, documented in 31 species, involve the anabolism or catabolism of components (e.g. pigments) directly related to the observable colour. In this review we highlight the diversity of mechanisms by which reversible colour change occurs and the evolutionary context and diversity of arthropod taxa in which it has been observed. Further, we discuss the functions of reversible colour change so far proposed, review the limited behavioural and ecological data, and argue that the field requires phylogenetically controlled approaches to understanding the evolution of reversible colour change. Finally, we encourage biologists to explore new model systems for colour change and to engage scientists from other disciplines; continued cross-disciplinary collaboration is the most promising approach to this nexus of biology, physics, and chemistry. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  11. Reversion phenomena of Cu-Cr alloys

    Science.gov (United States)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  12. Synthesis and enantiopreferential DNA-binding profile of late 3d transition metal R- and S-enantiomeric complexes derived from N,N-bis-(1-benzyl-2-ethoxyethane): Validation of R-enantiomer of copper(II) complex as a human topoisomerase II inhibitor.

    Science.gov (United States)

    Arjmand, Farukh; Sharma, Girish Chandra; Muddassir, Mohd; Tabassum, Sartaj

    2011-08-01

    To evaluate the biological preference of chiral drug candidates for molecular target DNA, new potential metal-based chemotherapeutic agents 1-3 (a and b) of late 3d transition metals Ni(II), Cu(II), and Zn(II), respectively, derived from (R)- and (S)-2-amino-2-phenylethanol with CH(2) CH(2)  linker were synthesized and thoroughly characterized. Interaction studies of 1-3 (a and b) with calf thymus DNA in Tris buffer were studied by electronic absorption titrations, luminescence titrations, cyclic voltammetry, and circular dichroism. The results reveal that the extent of DNA binding of R-enantiomer of copper 1a was highest in comparison to rest of the complexes via electrostatic interaction mode. The nuclease activity of 1(a and b) with supercoiled pBR322 DNA was further examined by gel electrophoresis, which reveals that complex 1a exhibits a remarkable DNA cleavage activity (concentration dependent) with pBR322DNA, and the cleavage activity of both enantiomers of complex 1 was significantly enhanced in the presence of activators. The activating efficiency follows the order Asc > H(2) O(2) > MPA for 1a, and reverse order was observed for 1b, because of the differences in enantioselectivity and conformation. Further, it was observed that cleavage reaction involves singlet oxygen species and superoxide radicals via oxidative cleavage mechanism. In addition, complex 1a exhibits significant inhibitory effects on the topoisomerase II (topo II) activity at a very low concentration ∼24 μM, which suggest that complex 1a is indeed catalytic inhibitor or (poison) of human topo II. Copyright © 2011 Wiley-Liss, Inc.

  13. Reversal agents in anaesthesia and critical care

    Directory of Open Access Journals (Sweden)

    Nibedita Pani

    2015-01-01

    Full Text Available Despite the advent of short and ultra-short acting drugs, an in-depth knowledge of the reversal agents used is a necessity for any anaesthesiologist. Reversal agents are defined as any drug used to reverse the effects of anaesthetics, narcotics or potentially toxic agents. The controversy on the routine reversal of neuromuscular blockade still exists. The advent of newer reversal agents like sugammadex have made the use of steroidal neuromuscular blockers like rocuronium feasible in rapid sequence induction situations. We made a review of the older reversal agents and those still under investigation for drugs that are regularly used in our anaesthesia practice.

  14. Laparoscopic reversal of Hartmann's procedure

    DEFF Research Database (Denmark)

    Svenningsen, Peter Olsen; Bulut, Orhan; Jess, Per

    2010-01-01

    %). There was no difference in postoperative complications between the two groups (10 versus 14%), and no anastomotic leaks. The total mortality was 2% as one patient died postoperatively after an open operation. CONCLUSION: It is possible for trained laparoscopic colorectal surgeons to perform laparoscopic reversal...... of all patients who underwent reversal of a colostomy after a primary Hartmann's procedure during the period May 2005 to December 2008 were reviewed retrospectively in a case-control study. RESULTS: A total of 43 patients were included. Twenty-one had a laparoscopic and 22 an open procedure. The two...... groups matched with regard to age, sex, American Society of Anestheologists (ASA) score, body mass index and indication for Hartmann's operation. A significantly longer operation time was found for laparoscopic than for open surgery (median 285 versus 158 minutes, p

  15. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  16. Laparoscopic reversal of Hartmann's procedure

    DEFF Research Database (Denmark)

    Svenningsen, Peter Olsen; Bulut, Orhan; Jess, Per

    2010-01-01

    INTRODUCTION: A change in procedure from open to laparoscopic reversal of Hartmann's colostomy was implemented at our department between May 2005 and December 2008. The aim of the study was to investigate if this change was beneficial for the patients. MATERIAL AND METHODS: The medical records...... of all patients who underwent reversal of a colostomy after a primary Hartmann's procedure during the period May 2005 to December 2008 were reviewed retrospectively in a case-control study. RESULTS: A total of 43 patients were included. Twenty-one had a laparoscopic and 22 an open procedure. The two...... groups matched with regard to age, sex, American Society of Anestheologists (ASA) score, body mass index and indication for Hartmann's operation. A significantly longer operation time was found for laparoscopic than for open surgery (median 285 versus 158 minutes, p

  17. Trend towards reverse leach process

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The South African gold mining industry is making notable strides in improving recovery methods for both gold and uranium with significant additions to profits because of higher efficiencies and reductions in costs in the recovery processes. The most notable step on the gold side recently is the adoption of the reverse leach process at Buffelsfontein and Western Deep Levels. This process was pioneered at Hartebeesfontein as far back as 1975 and when introduced there resulted in a two and a half per cent improvement in recovery efficiencies. The essence of reverse leaching under which the uranium is recovered before the gold is the fact that the gold partly coated with iron oxide or locked in uranite, is exposed to be recovered later by cyanidation

  18. A Generalized Reverse Jacket Transform

    OpenAIRE

    Lee, Moon Ho; Rajan, Sundar B; Park, JY

    2001-01-01

    Generalization of the well-known Walsh-Hadamard transform (WHT), namely center-weighted Hadamard transform (CWHT) and complex reverse-jacket transform (CRJT) have been proposed and their fast implementation and simple index generation algorithms have recently been reported. These transforms are of size 2(r) x 2(r) for integral values or r, and defined in terms of binary radix representation of integers. In this paper, using appropriate mixed-radix representation of integers, we present a gene...

  19. Interval orders and reverse mathematics

    OpenAIRE

    Marcone, Alberto

    2006-01-01

    We study the reverse mathematics of interval orders. We establish the logical strength of the implications between various definitions of the notion of interval order. We also consider the strength of different versions of the characterization theorem for interval orders: a partial order is an interval order if and only if it does not contain $2 \\oplus 2$. We also study proper interval orders and their characterization theorem: a partial order is a proper interval order if and only if it cont...

  20. Theory of field reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs

  1. Malware analysis and reverse engineering

    OpenAIRE

    Šváb, Martin

    2014-01-01

    Focus of this thesis is reverse engineering in information technology closely linked with the malware analysis. It explains fundamentals of IA-32 processors architecture and basics of operating system Microsoft Windows. Main part of this thesis is dedicated to the malware analysis, including description of creating a tool for simplification of static part of the analysis. In Conclusion various approaches to the malware analysis, which were described in previous part of the thesis, are practic...

  2. Risperidone-induced reversible neutropenia.

    Science.gov (United States)

    Kattalai Kailasam, Vasanth; Chima, Victoria; Nnamdi, Uchechukwu; Sharma, Kavita; Shah, Kairav

    2017-01-01

    This case report presents a 44-year-old man with a history of schizophrenia who developed neutropenia on risperidone therapy. The patient's laboratory reports showed a gradual decline of leukocytes and neutrophils after resolution and rechallenging. This was reversed with the discontinuation of risperidone and by switching to olanzapine. In this case report, we also discuss the updated evidence base for management of risperidone-induced neutropenia.

  3. Reverse ventilation--perfusion mismatch

    Energy Technology Data Exchange (ETDEWEB)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients.

  4. CONCEPTUAL ISSUES REGARDING REVERSE LOGISTICS

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2013-12-01

    Full Text Available As the power of consumers is growing, the product return for customer service and customer retention has become a common practice in the competitive market, which propels the recent practice of reverse logistics in companies. Many firms attracted by the value available in the flow, have proactively participated in handling returned products at the end of their usefulness or from other parts of the product life cycle. Reverse logistics is the flow and management of products, packaging, components and information from the point of consumption to the point of origin. It is a collection of practices similar to those of supply chain management, but in the opposite direction, from downstream to upstream. It involves activities such as reuse, repair, remanufacture, refurbish, reclaim and recycle. For the conventional forward logistics systems, the flow starts upstream as raw materials, later as manufactured parts and components to be assembled and continues downstream to reach customers as final products to be disposed once they reach their economic or useful lives. In reverse logistics, the disposed products are pushed upstream to be repaired, remanufactured, refurbished, and disassembled into components to be reused or as raw material to be recycled for later use.

  5. Molecular analysis of multidrug resistance in clinical isolates of Shigella spp. from 2001–2010 in Kolkata, India: role of integrons, plasmids, and topoisomerase mutations

    Directory of Open Access Journals (Sweden)

    Rajpara N

    2018-01-01

    during conjugation, establishing the role of plasmids in horizontal transfer of resistance genes. Multiple mutations such as S80→I, S83→L, and D87→G/N/Y in quinolone resistance determining regions of topoisomerases from the representative quinolone-resistant isolates could explain the spectrum of minimal inhibitory concentration values for various quinolones. To the best of our knowledge, this is the first comprehensive report that describes the contribution of mobile (plasmids, integrons, and quinolone resistance genes named qnr and innate genetic elements (mutations in topoisomerases in determining the resistance phenotype of all the four species of Shigella over a span of ten years. Keywords: mobile genetic element, conjugation, atypical class 1 integron, quinolone resistance, efflux pumps

  6. Posterior reversible encephalopathy syndrome in the emergency ...

    African Journals Online (AJOL)

    Posterior reversible encephalopathy syndrome in the emergency service. ... The most common etiologies of PRES are hypertension and renal failure, and the most frequent pathophysiology is hyperperfusion. PRES is ... Keywords: Emergency service, hyperperfusion, posterior reversible encephalopathy, vasogenic edema ...

  7. A functional language for describing reversible logic

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal

    2012-01-01

    . Reversibility of descriptions is guaranteed with a type system based on linear types. The language is applied to three examples of reversible computations (ALU, linear cosine transformation, and binary adder). The paper also outlines a design flow that ensures garbage- free translation to reversible logic...

  8. Reversal of sterilization by microsurgical technique.

    Science.gov (United States)

    Gaspari, A L; Ortensi, A; Parlangeli, V; Pellizzari, G; Setti, C; Lania, M

    1988-01-01

    Tubal sterilization techniques that spare the fimbriae and cause the least amount of tubal destruction offer the best chance for reversal of sterilization. Patients seeking reversal of sterilization should be carefully selected. Surgical technique and equipment are important factors in reversal procedures; microsurgical techniques are shown to be more effective than macroscopic techniques.

  9. Cleaning Our World through Reverse Graffiti

    Science.gov (United States)

    Randazzo, Gabe; LaJevic, Lisa

    2013-01-01

    Over the last decade artists have begun to experiment with "reverse pollution" techniques, such as reverse graffiti, which focuses on cleaning environmental surfaces. Having recently been introduced to the works of Moose, the artist known for inventing the reverse graffiti technique, the authors decided to design a curriculum to increase…

  10. Remote Whispering Applying Time Reversal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-16

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wires and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.

  11. Presbycusis: reversible with anesthesia drugs?

    Science.gov (United States)

    Kocher, Carl A

    2009-02-01

    Age-related hearing impairment, or presbycusis, is a degenerative condition not currently treatable by medication. It is therefore significant that the author, as a patient, experienced a reversal of high-frequency hearing loss during a 2-day period following abdominal surgery with general anesthesia. This report documents the surgery and the subsequent restoration of hearing, which was bilateral and is estimated to have exceeded 50dB at 4kHz. A possible role is noted for anesthetic agents such as lidocaine, propofol, or fentanyl. This experience may hold a clue for research toward the development of medical treatments for presbycusis.

  12. Single-molecule supercoil-relaxation assay as a screening tool to determine the mechanism and efficacy of human topoisomerase IB inhibitors

    Science.gov (United States)

    Seol, Yeonee; Zhang, Hongliang; Agama, Keli; Lorence, Nicholas; Pommier, Yves; Neuman, Keir C.

    2015-01-01

    Human nuclear type IB topoisomerase (Top1) inhibitors are widely used and powerful anti-cancer agents. In this study, we introduce and validate a single-molecule supercoil relaxation assay as a molecular pharmacology tool for characterizing therapeutically relevant Top1 inhibitors. Using this assay, we determined the effects on Top1 supercoil relaxation activity of four Top1 inhibitors; three clinically relevant: camptothecin, LMP-400, LMP-776 (both indenoisoquinoline derivatives), and one natural product in preclinical development, lamellarin-D. Our results demonstrate that Top1 inhibitors have two distinct effects on Top1 activity: a decrease in supercoil relaxation rate and an increase in religation inhibition. The type and magnitude of the inhibition mode depend both on the specific inhibitor and on the topology of the DNA substrate. In general, the efficacy of inhibition is significantly higher with supercoiled than with relaxed DNA substrates. Comparing single-molecule inhibition with cell growth inhibition (IC50) measurements showed a correlation between the binding time of the Top1 inhibitors and their cytotoxic efficacy, independent of the mode of inhibition. This study demonstrates that the single-molecule supercoil relaxation assay is a sensitive method to elucidate the detailed mechanisms of Top1 inhibitors and is relevant for the cellular efficacy of Top1 inhibitors. PMID:26351326

  13. A flow cytometry-based method for a high-throughput analysis of drug-stabilized topoisomerase II cleavage complexes in human cells.

    Science.gov (United States)

    de Campos-Nebel, Marcelo; Palmitelli, Micaela; González-Cid, Marcela

    2016-09-01

    Topoisomerase II (Top2) is an important target for anticancer therapy. A variety of drugs that poison Top2, including several epipodophyllotoxins, anthracyclines, and anthracenediones, are widely used in the clinic for both hematologic and solid tumors. The poisoning of Top2 involves the formation of a reaction intermediate Top2-DNA, termed Top2 cleavage complex (Top2cc), which is persistent in the presence of the drug and involves a 5' end of DNA covalently bound to a tyrosine from the enzyme through a phosphodiester group. Drug-induced Top2cc leads to Top2 linked-DNA breaks which are the major responsible for their cytotoxicity. While biochemical detection is very laborious, quantification of drug-induced Top2cc by immunofluorescence-based microscopy techniques is time consuming and requires extensive image segmentation for the analysis of a small population of cells. Here, we developed a flow cytometry-based method for the analysis of drug-induced Top2cc. This method allows a rapid analysis of a high number of cells in their cell cycle phase context. Moreover, it can be applied to almost any human cell type, including clinical samples. The methodology is useful for a high-throughput analysis of drugs that poison Top2, allowing not just the discrimination of the Top2 isoform that is targeted but also to track its removal. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  14. Mutation of Gly717Phe in human topoisomerase 1B has an effect on enzymatic function, reactivity to the camptothecin anticancer drug and on the linker domain orientation.

    Science.gov (United States)

    Wang, Zhenxing; D'Annessa, Ilda; Tesauro, Cinzia; Croce, Stefano; Ottaviani, Alessio; Fiorani, Paola; Desideri, Alessandro

    2015-08-01

    Human topoisomerase 1B controls the topological state of supercoiled DNA allowing the progression of fundamental cellular processes. The enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by cleaving one DNA strand and forming a transient protein-DNA covalent adduct. In this work the role of the Gly717 residue, located in a α-helix structure bridging the active site and the linker domain, has been investigated mutating it in Phe. The mutation gives rise to drug resistance in vivo as observed through a viability assay of yeast cells. In vitro activity assays show that the mutant is characterized by a fast religation rate, only partially reduced by the presence of the drug. Comparative molecular dynamics simulations of the native and mutant proteins indicate that the mutation of Gly717 affects the motion orientation of the linker domain, changing its interaction with the DNA substrate, likely affecting the strand rotation and religation rate. The mutation also causes a slight rearrangement of the active site and of the drug binding site, providing an additional explanation for the lowered effect of camptothecin toward the mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Evidence of the crucial role of the linker domain on the catalytic activity of human topoisomerase I by experimental and simulative characterization of the Lys681Ala mutant

    Science.gov (United States)

    Fiorani, Paola; Tesauro, Cinzia; Mancini, Giordano; Chillemi, Giovanni; D'A;nnessa, Ilda; Graziani, Grazia; Tentori, Lucio; Muzi, Alessia; Desideri, Alessandro

    2009-01-01

    The functional and structural-dynamical properties of the Lys681Ala mutation in the human topoisomerase IB linker domain have been investigated by catalytic assays and molecular dynamics simulation. The mutant is characterized by a comparable cleavage and a strongly reduced religation rate when compared to the wild type protein. The mutant also displays perturbed linker dynamics, as shown by analysis of the principal components of the motion, and a reduced electrostatic interaction with DNA. Inspection of the inter atomic distances in proximity of the active site shows that in the mutant the distance between the amino group of Lys532 side chain and the 5′ OH of the scissile phosphate is longer than the wild type enzyme, providing an atomic explanation for the reduced religation rate of the mutant. Taken together these results indicate the existence of a long range communication between the linker domain and the active site region and points out the crucial role of the linker in the modulation of the catalytic activity. PMID:19767617

  16. The human topoisomerase 1B Arg634Ala mutation results in camptothecin resistance and loss of inter-domain motion correlation.

    Science.gov (United States)

    D'Annessa, Ilda; Tesauro, Cinzia; Wang, Zhenxing; Arnò, Barbara; Zuccaro, Laura; Fiorani, Paola; Desideri, Alessandro

    2013-12-01

    Human topoisomerase 1B, the unique target of the natural anticancer compound camptothecin, catalyzes the unwinding of supercoiled DNA by introducing transient single strand nicks and providing covalent protein-DNA adducts. The functional properties and the drug reactivity of the single Arg634Ala mutant have been investigated in comparison to the wild type enzyme. The mutant is characterized by an identical relaxation and cleavage rate but it displays resistance to camptothecin as indicated by a viability assay of the yeast cells transformed with the mutated protein. The mutant also displays a very fast religation rate that is only partially reduced by the presence of the drug, suggesting that this is the main reason for its resistance. A comparative analysis of the structural-dynamical properties of the native and mutant proteins by molecular dynamics simulation indicates that mutation of Arg634 brings to a loss of motion correlation between the different domains and in particular between the linker and the C-terminal domain, containing the catalytic tyrosine residue. These results indicate that the loss of motion correlation and the drug resistance are two strongly correlated events. © 2013.

  17. Quinolino[3,4-b]quinoxalines and pyridazino[4,3-c]quinoline derivatives: Synthesis, inhibition of topoisomerase IIα, G-quadruplex binding and cytotoxic properties.

    Science.gov (United States)

    Palluotto, Fausta; Sosic, Alice; Pinato, Odra; Zoidis, Grigoris; Catto, Marco; Sissi, Claudia; Gatto, Barbara; Carotti, Angelo

    2016-11-10

    The quinoline motif fused with other heterocyclic systems plays an important role in the field of anticancer drug development. An extensive series of tetracyclic quinolino[3,4-b]quinoxalines N-5 or C-6 substituted with basic side chain and a limited number of tricyclic pyridazino[4,3-c]quinolines N-6 substituted were designed, synthesized and evaluated for topoisomerase IIα (Topo IIα) inhibitory activity, ability to bind and stabilize G-quadruplex structures and cytotoxic properties against two human cancer cell lines (HeLa and MCF-7). Almost all of the tested agents showed a high activity as Topo IIα inhibitors and G-quadruplex stabilizers. Among all the derivatives studied, the quinolino[3,4-b]quinoxalines 11 and 23, N-5 and C-6 substituted respectively, stand out as the most promising compounds. Derivative 11 resulted a selective binder to selected G-quadruplex sequences, while derivative 23 displayed the most interesting Topo IIα inhibitory activity (IC50 = 5.14 μM); both showed high cytotoxic activity (IC50 HeLa = 2.04 μM and 2.32 μM, respectively). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Selective and effective targeting of chronic myeloid leukemia stem cells by topoisomerase II inhibitor etoposide in combination with imatinib mesylate in vitro.

    Science.gov (United States)

    Liu, Man-Yu; Wang, Wei-Zhang; Liao, Fen-Fang; Wu, Qing-Qing; Lin, Xiang-Hua; Chen, Yong-Hen; Cheng, Lin; Jin, Xiao-Bao; Zhu, Jia-Yong

    2017-01-01

    Imatinib mesylate (IM) and other BCR-ABL tyrosine kinase inhibitors (TKIs) have improved chronic myeloid leukemia (CML) patient survival markedly but fail to eradicate quiescent CML leukemia stem cells (LSCs). Thus, strategies targeting LSCs are required to induce long-term remission and achieve cure. Here, we investigated the ability of topoisomerase II (Top II) inhibitor etoposide (Eto) to target CML LSCs. Treatment with Eto combined with IM markedly induced apoptosis in primitive CML CD34 + CD38 - stem cells resistant to eradication by IM alone, but not in normal hematopoietic stem cells, CML and normal mature CD34 - cells, and other leukemia and lymphoma cell lines. The interaction of IM and Eto significantly inhibited phosphorylation of PDK1, AKT, GSK3, S6, and ERK proteins; increased the expression of pro-apoptotic gene Bax; and decreased the expression of anti-apoptotic gene c-Myc in CML CD34 + cells. Top II inhibitors treatment represents an attractive approach for targeting LSCs in CML patients undergoing TKIs monotherapy. © 2016 International Federation for Cell Biology.

  19. A computational docking study for prediction of binding mode of diospyrin and derivatives: Inhibitors of human and leishmanial DNA topoisomerase-I.

    Science.gov (United States)

    Chhabra, Sandeep; Sharma, Pooja; Ghoshal, Nanda

    2007-08-15

    A computational approach was utilized to study the relative binding modes of diospyrin (bisnaphthoquinonoid) with the crystal structure of human DNA-TopoI and the recently reported Leishmania donavani DNA-TopoI. Additionally, the binding site interactions of amino derivatives of diospyrin with human TopoI were studied extensively. Based on the docking results, binding modes of diospyrin with the human and leishmanial TopoI catalytic core were predicted. The parallel use of two efficient and predictive docking programs, GOLD and Ligandfit, allowed mutual validation of the predicted binding poses. A reasonably good correlation coefficient between the calculated docking scores and the experimentally determined cytotoxicity helped in validating the docking method. Furthermore, a structure-based pharmacophore model was developed for L. donavani DNA-TopoI inhibition which helped in elucidating the topological and spatial requirements of the ligand-receptor interactions. This study provides an understanding of the structural basis of ligand binding to the topoisomerase receptor, which may be used for the structure-based design of potent and novel ligands for anticancer and antileishmanial therapy. To our knowledge, this is the first report of a binding mode exploration study for diospyrin and its derivatives as inhibitors of the leishmanial and human TopoI enzymes.

  20. Selection of evodiamine as a novel topoisomerase I inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as antitumor agents.

    Science.gov (United States)

    Dong, Guoqiang; Sheng, Chunquan; Wang, Shengzheng; Miao, Zhenyuan; Yao, Jianzhong; Zhang, Wannian

    2010-11-11

    Human topoisomerase I (TopoI) is recognized as a valuable target for the development of effective antitumor agents. Structure-based virtual screening was applied to the discovery of structurally diverse TopoI inhibitors. From 23 compounds selected by virtual screening, a total of 14 compounds were found to be TopoI inhibitors. Five hits (compounds 1, 14, 20, 21, and 23) also showed moderate to good in vitro antitumor activity. These novel structures can be considered as good starting points for the development of new antitumor lead compounds. Hit 20 (evodiamine) was chosen for preliminary structure-activity relationship studies. Various groups, including alkyl, benzoyl, benzyl and ester, were introduced to the indole nitrogen atom of evodiamine. The substituted benzoyl groups were found to be favorable for the antitumor activity and spectrum. The 4-Cl benzoyl derivative, compound 29u, was the most active one with IC(50) values in the range 0.049-2.6 μM.

  1. Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type II topoisomerase.

    Science.gov (United States)

    Singh, Sheo B

    2016-12-15

    Kibdelomycin is a complex novel antibiotic, discovered by applying a highly sophisticated chemical-genetic Staphylococcus aureus Fitness Test (SaFT) approach, that inhibits the clinically established bacterial targets, gyrase and topoisomerase IV. It exhibits broad-spectrum antibacterial activity against aerobic bacteria including MRSA and Acinetobacter baumannii. It is slowly bactericidal and has a low frequency of resistance. In an anaerobic environment, it exhibits narrow-spectrum activity and inhibits the growth of gut bacteria Clostridium difficile (MIC 0.125μg/mL) without affecting the growth of commensal Gram-negative organisms particularly, Bacteroides sp. It is highly efficacious in the hamster model of C. difficile infection providing 100% protection at >6mg/kg and 80% protection at 1.56mg/kg by oral dosing without systemic exposure. X-ray co-crystal structures of kibdelomycin bound to GyrB and ParE showed a unique dual arm 'U shaped' multisite binding never encountered with any other gyrase inhibitors. Kibdelomycin is poised for preclinical development for C. difficile treatment, and most importantly, the co-crystal structures of kibdelomycin provide unique insight for structure-guided structure modification, which could lead to better broader-spectrum systemic antibiotic potentially covering many ESKAPE pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A genetic screen for mutants defective in IAA1-LUC degradation in Arabidopsis thaliana reveals an important requirement for TOPOISOMERASE6B in auxin physiology.

    Science.gov (United States)

    Gilkerson, Jonathan; Callis, Judy

    2014-01-01

    Many plant growth and developmental processes are modulated by the hormone auxin. Auxin-modulated proteolysis of Aux/IAAs, a family of transcriptional repressors, represents a major mode of auxin action. Auxin facilitates the interaction of Aux/IAAs with TIR1/AFB F-box proteins, promoting their ubiquitination by the SCF(TIR1/AFB) ubiquitin E3 ligase leading to subsequent degradation by the 26S proteasome. To identify new genes regulating Aux/IAA proteolysis in Arabidopsis thaliana, we took a genetic approach, identifying individuals with altered degradation of an IAA1-luciferase fusion protein (IAA1-LUC). A mutant with 2-fold slower IAA1-LUC degradation rate compared with wild-type was isolated. Positional cloning identified the mutant as an allele of TOPOISOMERASE6B, named top6b-7. TOP6B encodes a subunit of a plant and archea-specific enzyme regulating endoreduplication, DNA damage repair and transcription in plants. T-DNA insertion alleles (top6b-8 and top6b-9) were also analyzed. top6b-7 seedlings are less sensitive to exogenous auxin than wild-type siblings in primary root growth assays, and experiments with DR5:GUS. Additionally, top6b-7 seedlings have a 40% reduction in the amount of endogenous IAA. These data suggest that increased IAA1-LUC half-life in top6b-7 probably results from a combination of both lower endogenous IAA levels and reduced sensitivity to auxin.

  3. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit...... in reversible logic design by drastically reducing the number of garbage bits. Specialized designs benefit from support by reversible logic synthesis. All circuit components required for optimizing the original design could also be synthesized successfully by an implementation of an existing synthesis algorithm...

  4. Exercise prescription to reverse frailty.

    Science.gov (United States)

    Bray, Nick W; Smart, Rowan R; Jakobi, Jennifer M; Jones, Gareth R

    2016-10-01

    Frailty is a clinical geriatric syndrome caused by physiological deficits across multiple systems. These deficits make it challenging to sustain homeostasis required for the demands of everyday life. Exercise is likely the best therapy to reverse frailty status. Literature to date suggests that pre-frail older adults, those with 1-2 deficits on the Cardiovascular Health Study-Frailty Phenotype (CHS-frailty phenotype), should exercise 2-3 times a week, for 45-60 min. Aerobic, resistance, flexibility, and balance training components should be incorporated but resistance and balance activities should be emphasized. On the other hand, frail (CHS-frailty phenotype ≥ 3 physical deficits) older adults should exercise 3 times per week, for 30-45 min for each session with an emphasis on aerobic training. During aerobic, balance, and flexibility training, both frail and pre-frail older adults should work at an intensity equivalent to a rating of perceived exertion of 3-4 ("somewhat hard") on the Borg CR10 scale. Resistance-training intensity should be based on a percentage of 1-repetition estimated maximum (1RM). Program onset should occur at 55% of 1RM (endurance) and progress to higher intensities of 80% of 1RM (strength) to maximize functional gains. Exercise is the medicine to reverse or mitigate frailty, preserve quality of life, and restore independent functioning in older adults at risk of frailty.

  5. Reversal of diaschisis by zolpidem

    International Nuclear Information System (INIS)

    Claus, R.P.; Nel, H.W.; Sathekge, M.

    2004-01-01

    Full text: Introduction: Recent literature has reported on clinical improvement after zolpidem, a GABAergic anti insomnia drug, in brain injury and stroke patients. In this study, the effect of zolpidem on crossed cerebellar diaschisis was investigated in such patients. Method: Four patients with crossed cerebellar diaschisis after brain injury or stroke were investigated before and after application of 10 mg zolpidem by 99mTc HMPAO brain SPECT. Result: Apart from clinical improvements, 99mTc HMPAO brain SPECT studies showed reversal of the crossed cerebellar diaschisis and improvement of perfusion defects after zolpidem. Conclusion: 99mTc HMPAO brain SPECT may have a role to pre-select brain injury and stroke patients who will benefit clinically from zolpidem therapy. (author)

  6. How to play Reverse Hex

    DEFF Research Database (Denmark)

    Toft, Bjarne; Hayward, Ryan B.; Henderson, Philip

    2012-01-01

    We present new results on how to play Reverse Hex, also known as Rex, or Misère Hex, on n × n boards. We give new proofs – and strengthened versions – of Lagarias and Sleator’s theorem (for n × n boards, each player can prolong the game until the board is full, so the first/second player can always...... win if n is even/odd) and Evans’s theorem (for even n, the acute corner is a winning opening move for the first player). Also, for even n ≥ 4, we find another first-player winning opening (adjacent to the acute corner, on the first player’s side), and for odd n ≥ 3, and for each first-player opening......, we find second-player winning replies. Finally, in response to comments by Martin Gardner, for each n ≤ 5, we give a simple winning strategy for the n × n board....

  7. Model of reverse steam generator

    International Nuclear Information System (INIS)

    Malasek, V.; Manek, O.; Masek, V.; Riman, J.

    1987-01-01

    The claim of Czechoslovak discovery no. 239272 is a model designed for the verification of the properties of a reverse steam generator during the penetration of water, steam-water mixture or steam into liquid metal flowing inside the heat exchange tubes. The design may primarily be used for steam generators with a built-in inter-tube structure. The model is provided with several injection devices configured in different heat exchange tubes, spaced at different distances along the model axis. The design consists in that between the pressure and the circumferential casings there are transverse partitions and that in one chamber consisting of the circumferential casings, pressure casing and two adjoining partitions there is only one passage of the injection device through the inter-tube space. (Z.M.). 1 fig

  8. The DNA relaxation activity and covalent complex accumulation of Mycobacterium tuberculosis topoisomerase I can be assayed in Escherichia coli: application for identification of potential FRET-dye labeling sites

    Directory of Open Access Journals (Sweden)

    Abrenica Maria V

    2010-09-01

    Full Text Available Abstract Background Mycobacterium tuberculosis topoisomerase I (MtTOP1 and Escherichia coli topoisomerase I have highly homologous transesterification domains, but the two enzymes have distinctly different C-terminal domains. To investigate the structure-function of MtTOP1 and to target its activity for development of new TB therapy, it is desirable to have a rapid genetic assay for its catalytic activity, and potential bactericidal consequence from accumulation of its covalent complex. Results We show that plasmid-encoded recombinant MtTOP1 can complement the temperature sensitive topA function of E. coli strain AS17. Moreover, expression of MtTOP1-G116 S enzyme with the TOPRIM mutation that inhibits DNA religation results in SOS induction and loss of viability in E. coli. The absence of cysteine residues in the MtTOP1 enzyme makes it an attractive system for introduction of potentially informative chemical or spectroscopic probes at specific positions via cysteine mutagenesis. Such probes could be useful for development of high throughput screening (HTS assays. We employed the AS17 complementation system to screen for sites in MtTOP1 that can tolerate cysteine substitution without loss of complementation function. These cysteine substitution mutants were confirmed to have retained the relaxation activity. One such mutant of MtTOP1 was utilized for fluorescence probe incorporation and fluorescence resonance energy transfer measurement with fluorophore-labeled oligonucleotide substrate. Conclusions The DNA relaxation and cleavage complex accumulation of M. tuberculosis topoisomerase I can be measured with genetic assays in E. coli, facilitating rapid analysis of its activities, and discovery of new TB therapy targeting this essential enzyme.

  9. Tackling the Cytotoxic Effect of a Marine Polycyclic Quinone-Type Metabolite: Halenaquinone Induces Molt 4 Cells Apoptosis via Oxidative Stress Combined with the Inhibition of HDAC and Topoisomerase Activities

    Directory of Open Access Journals (Sweden)

    Shou-Ping Shih

    2015-05-01

    Full Text Available A marine polycyclic quinone-type metabolite, halenaquinone (HQ, was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 μg/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%–70.27% and caused disruption of mitochondrial membrane potential (MMP by 17.15%–53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC, a reactive oxygen species (ROS scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase IIα expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFκB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities.

  10. Constituents of the leaves of Woodfordia fruticosa Kurz. I. Isolation, structure, and proton and carbon-13 nuclear magnetic resonance signal assignments of woodfruticosin (woodfordin C), an inhibitor of deoxyribonucleic acid topoisomerase II.

    Science.gov (United States)

    Kadota, S; Takamori, Y; Nyein, K N; Kikuchi, T; Tanaka, K; Ekimoto, H

    1990-10-01

    Woodfruticosin (woodfordin C), a new cyclic dimeric hydrolyzable tannin having an inhibitory activity toward deoxyribonucleic acid (DNA) topoisomerase II, has been isolated from the leaves of Woodfordia fruticosa Kurz (Lythraceae) along with three known flavonol glycosides and three known flavonol glycoside gallates. The structure of wood fruticosin (woodfordin C) was determined by the use of two-dimensional nuclear magnetic resonance (2-D NMR) spectroscopy including heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond connectivity (HMBC) techniques. Detailed analyses of the proton and carbon-13 NMR (1H- and 13C-NMR) spectra of six known flavonoids were performed.

  11. A phase II study of weekly irinotecan in patients with locally advanced or metastatic HER2- negative breast cancer and increased copy numbers of the topoisomerase 1 (TOP1) gene

    DEFF Research Database (Denmark)

    Kümler, Iben; Balslev, Eva; Stenvang, Jan

    2015-01-01

    BACKGROUND: About 20% of patients with primary breast cancer develop metastatic disease during the course of the disease. At this point the disease is considered incurable and thus treatment is aimed at palliation and life prolongation. As many patients will have received both an anthracycline...... breast cancer and increased expression of the topoisomerase 1 gene have a high likelihood of obtaining a clinical benefit from treatment with irinotecan. Trial recruitment is two-staged as 19 patients are planned to participate in the first part. If less than 7 patients have clinical benefit the trial...

  12. Principles of a reversible programming language

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    The principles of reversible programming languages are explicated and illustrated with reference to the design of a high-level imperative language, Janus. The fundamental properties for such languages include backward as well as forward determinism and reversible updates of data. The unique design...... features of the language include explicit post-condition assertions, direct access to an inverse semantics and the possibility of clean (i.e., garbage-free) computation of injective functions. We suggest the clean simulation of reversible Turing machines as a criterion for computing strength of reversible...... languages, and demonstrate this for Janus. We show the practicality of the language by implementation of a reversible fast Fourier transform. Our results indicate that the reversible programming paradigm has fundamental properties that are relevant to many different areas of computer science....

  13. Integrated Pumped Hydro Reverse Osmosis systems

    OpenAIRE

    Trimble, A Zachary; Ferrara, Marco; Slocum, Alexander H; Haji, Maha Niametullah; Ghaemsaidi, Sasan John

    2016-01-01

    Ideal head height for pumped hydro energy storage/generation systems and reverse osmosis desalination plants coincide (500–700 m). Many drought stricken coastal regions have nearby mountains of sufficient elevation to support upper reservoirs at this ideal head height. A good symbiotic match might thus be realized by co-locating a pumped hydro plant with a reverse osmosis desalination plant, which we call an Integrated Pumped Hydro Reverse Osmosis (IPHRO) system. Combining systems reduces cap...

  14. Gravity controlled anti-reverse rotation device

    Science.gov (United States)

    Dickinson, Robert J.; Wetherill, Todd M.

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  15. An integrated Drosophila model system reveals unique properties for F14512, a novel polyamine-containing anticancer drug that targets topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Sonia Chelouah

    Full Text Available F14512 is a novel anti-tumor molecule based on an epipodophyllotoxin core coupled to a cancer-cell vectoring spermine moiety. This polyamine linkage is assumed to ensure the preferential uptake of F14512 by cancer cells, strong interaction with DNA and potent inhibition of topoisomerase II (Topo II. The antitumor activity of F14512 in human tumor models is significantly higher than that of other epipodophyllotoxins in spite of a lower induction of DNA breakage. Hence, the demonstrated superiority of F14512 over other Topo II poisons might not result solely from its preferential uptake by cancer cells, but could also be due to unique effects on Topo II interactions with DNA. To further dissect the mechanism of action of F14512, we used Drosophila melanogaster mutants whose genetic background leads to an easily scored phenotype that is sensitive to changes in Topo II activity and/or localization. F14512 has antiproliferative properties in Drosophila cells and stabilizes ternary Topo II/DNA cleavable complexes at unique sites located in moderately repeated sequences, suggesting that the drug specifically targets a select and limited subset of genomic sequences. Feeding F14512 to developing mutant Drosophila larvae led to the recovery of flies expressing a striking phenotype, "Eye wide shut," where one eye is replaced by a first thoracic segment. Other recovered F14512-induced gain- and loss-of-function phenotypes similarly correspond to precise genetic dysfunctions. These complex in vivo results obtained in a whole developing organism can be reconciled with known genetic anomalies and constitute a remarkable instance of specific alterations of gene expression by ingestion of a drug. "Drosophila-based anticancer pharmacology" hence reveals unique properties for F14512, demonstrating the usefulness of an assay system that provides a low-cost, rapid and effective complement to mammalian models and permits the elucidation of fundamental mechanisms of

  16. Ru/Fe bimetallic complexes: Synthesis, characterization, cytotoxicity and study of their interactions with DNA/HSA and human topoisomerase IB.

    Science.gov (United States)

    Takarada, Jessica E; Guedes, Adriana P M; Correa, Rodrigo S; Silveira-Lacerda, Elisângela de P; Castelli, Silvia; Iacovelli, Federico; Deflon, Victor Marcelo; Batista, Alzir Azevedo; Desideri, Alessandro

    2017-12-15

    Three ruthenium/iron-based compounds, 1: [Ru(MIm)(bipy)(dppf)]PF 6 (MIm = 2-mercapto-1-methylimidazole anion), 2: [RuCl(Im)(bipy)(dppf)]PF 6 (Im = imidazole), and 3: [Ru(tzdt)(bipy)(dppf)]PF 6 (tzdt = 1,3-thiazolidine-2-thione anion) (dppf = 1,1'-bis(diphenylphosphine)ferrocene and bipy = 2,2'-bipyridine), were synthesized, and characterized by elemental analyses, conductivity, UV/Vis, IR, 1 H, 13 C and 31 P{1H} NMR spectroscopies, and by electrochemical technique. The complex 3 was also characterized by single-crystal X-ray. The three ruthenium(II) complexes show cytotoxicity against DU-145 (prostate carcinoma cells) and A549 (lung carcinoma cells) tumor cells. The free ligands do not exhibit any cytotoxic activity, such as evident by the IC 50 values higher than 200 μM. UV/Vis and viscosity experiments showed that the complexes interact weakly with the DNA molecule, via electrostatic forces. The interaction of the complexes 1-3 with the HSA is moderate, with K b values in range of 10 5 -10 7  M -1 , presenting a static mechanism of interaction stabilized by hydrophobic. Complexes 2 and 3 showed high affinity for the FA7 HSA site as evidenced by fluorescence spectroscopy and molecular docking. Complexes 1-3 were tested as potential human Topoisomerase IB inhibitors by analysing the different steps of the enzyme catalytic cycle. The results indicate that all compounds efficiently inhibit the DNA relaxation and the cleavage reaction, in which the effect increases upon pre-incubation. Complexes 1 and 2 are also able to slow down the religation reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Multi-tyrosine kinase inhibitors in preclinical studies for pediatric CNS AT/RT: Evidence for synergy with Topoisomerase-I inhibition

    Directory of Open Access Journals (Sweden)

    Jayanthan Aarthi

    2011-12-01

    Full Text Available Abstract Background Currently, Atypical Teratoid Rhabdoid Tumor (AT/RT constitutes one of the most difficult to treat malignancies in pediatrics. Hence, new knowledge of potential targets for therapeutics and the development of novel treatment approaches are urgently needed. We have evaluated the presence of cytokine pathways and the effects of two clinically available multi-tyrosine kinase inhibitors for cytotoxicity, target modulation and drug combinability against AT/RT cell lines. Results AT/RT cell lines expressed measurable quantities of VEGF, FGF, PDGF and SDF-1, although the absolute amounts varied between the cell lines. The targeted receptor tyrosine kinase inhibitor sorafenib inhibited the key signaling molecule Erk, which was activated following the addition of own conditioned media, suggesting the existence of autocrine/paracrine growth stimulatory pathways. The multi-tyrosine kinase inhibitors sorafenib and sunitinib also showed significant growth inhibition of AT/RT cells and their activity was enhanced by combination with the topoisomerase inhibitor, irinotecan. The loss of cytoplasmic NF-kappa-B in response to irinotecan was diminished by sorafenib, providing evidence for a possible benefit for this drug combination. Conclusions In addition to previously described involvement of insulin like growth factor (IGF family of cytokines, a multitude of other growth factors may contribute to the growth and survival of AT/RT cells. However, consistent with the heterogeneous nature of this tumor, quantitative and qualitative differences may exist among different tumor samples. Multi-tyrosine kinase inhibitors appear to have effective antitumor activity against all cell lines studied. In addition, the target modulation studies and drug combinability data provide the groundwork for additional studies and support the evaluation of these agents in future treatment protocols.

  18. Bone marrow and tumor cell colony-forming units and human tumor xenograft efficacy of noncamptothecin and camptothecin topoisomerase I inhibitors.

    Science.gov (United States)

    Kurtzberg, Leslie S; Battle, Traci; Rouleau, Cecile; Bagley, Rebecca G; Agata, Naoki; Yao, Min; Schmid, Steven; Roth, Stephanie; Crawford, Jennifer; Krumbholz, Roy; Ewesuedo, Reginald; Yu, Xian-Jie; Wang, Fei; Lavoie, Edmond J; Teicher, Beverly A

    2008-10-01

    Topoisomerase I (TopoI), an established anticancer target, is an enzyme producing a single-strand DNA break during transcription. Several noncamptothecin TopoI inhibitors have been identified. One of these, ARC-111, was compared with two clinically used camptothecins, topotecan and irinotecan/SN-38. In mouse and human bone marrow colony formation [colony-forming units granulocyte-macrophage (CFU-GM)] assays, the IC(90) values were 519 and 331 nmol/L for topotecan and SN-38 mouse CFU-GM and were 19 and 26 nmol/L for human CFU-GM, giving mouse to human differentials of 28- and 13-fold. ARC-111 produced IC(90) values of 28 nmol/L in mouse and 6.2 nmol/L in human CFU-GM, thus only a 4.5-fold differential between species. Human bone marrow CFU-GM was more sensitive to topotecan than were several human cancer cell lines, but ARC-111 cytotoxicity was similar for human bone marrow CFU-GM and the seven human tumor cell lines tested. In HCT-116 xenografts, tumor growth delays (TGD) were 17 days for irinotecan and 20 days for ARC-111. In HT-29 xenografts, the TGD was 9 days for both irinotecan and ARC-111. Both ARC-111 and docetaxel had a TGD of 21 days in NCI-H460 xenografts, and both ARC-111 and gemcitabine had a TGD of 7 days in MiaPaCa2 xenograft. Current TopoI inhibitors have broad antitumor activity in human tumor xenografts that is not achieved in the clinic. This may be due to greater sensitivity of human bone marrow than mouse to the cytotoxicity of these agents. It may be possible to achieve similar levels of ARC-111 in patients as in mice allowing improved antitumor activity.

  19. Antimicrobial susceptibility pattern and sequence analysis of DNA gyrase and DNA topoisomerase IV in Salmonella enterica serovars Typhi and Paratyphi A isolates with decreased susceptibility to ciprofloxacin.

    Science.gov (United States)

    Misra, Richa; Thakare, Ritesh; Amrin, N; Prasad, Kashi Nath; Chopra, Sidharth; Dhole, Tapan Nirodhechand

    2016-08-01

    We describe the antimicrobial susceptibility pattern of 100 typhoidal Salmonella isolates recovered from blood cultures and also investigate the association of decreased ciprofloxacin susceptibility with mutations in the genes coding for DNA gyrase and topoisomerase IV in 55 isolates. The study was conducted between January 2013 and December 2015 at a tertiary care centre in north India. Antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion and E-test. Genotypic characterization included the screening of mutations in the quinolone resistance-determining region of gyrA, gyrB, parC, and parE by PCR. DNA sequence analysis was done for 55 isolates. Out of 100 isolates recovered 80 were S. Typhi, 18 were Paratyphi A and two were Paratyphi B. Eighty two percent (66/80) of S. Typhi and 15/18 S. Paratyphi A showed decreased ciprofloxacin susceptibility. The most common mutation in gyrA led to a change at codon 83 of serine to phenylalanine (n=37) or tyrosine (n=12). Five S. Typhi isolates that were resistant to ciprofloxacin (MICs of 12, 16, 24 and 32 μg/ml) had a second mutation at codon 87 in the gyrA gene changing aspartate to asparagine. There is a need to urgently review the use of fluoroquinolones for the management of enteric fever in endemic areas. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis.

    Science.gov (United States)

    Saito, Ryoichi; Sato, Kenya; Kumita, Wakako; Inami, Natsuko; Nishiyama, Hiroyuki; Okamura, Noboru; Moriya, Kyoji; Koike, Kazuhiko

    2006-09-01

    We conducted a study to determine the role played by amino acid mutations in DNA gyrase and topoisomerase IV, and the AcrAB efflux pump in resistance to fluoroquinolones in clinical isolates of Proteus mirabilis. Nine clinical isolates of P. mirabilis containing eight fluoroquinolone-resistant isolates and one fluoroquinolone-susceptible isolate as the causative pathogen were collected from different patients with urinary tract infections. Fluoroquinolone resistance was characterized by PCR and DNA sequencing. The role of the AcrAB efflux pump was investigated by semi-quantifying the transcriptional expression of the acrB gene. Double mutations were found in GyrA, at S83I and E87K, and single mutations in GyrB (S464F) and ParC (S80I) in four isolates with ciprofloxacin MICs of 16 to >128 mg/L. In three isolates (ciprofloxacin MICs of >128 mg/L), the level of acrB expression was 2.1- to 3.2-fold higher than that in the wild-type control strain (ciprofloxacin MIC of 64 versus 8-16 mg/L) and chloramphenicol (>256 versus 4-8 mg/L) compared with the five other fluoroquinolone-resistant isolates. Our findings demonstrate that two mechanisms--mutations in GyrA (at S83I and E87K), GyrB and ParC, and overproduction of the AcrAB efflux pump--might synergistically contribute to a highest level of resistance to fluoroquinolones in clinical isolates of P. mirabilis.

  1. Reverse Engineering Adverse Outcome Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  2. Reverse genetics in ecological research.

    Directory of Open Access Journals (Sweden)

    Jens Schwachtje

    2008-02-01

    Full Text Available By precisely manipulating the expression of individual genetic elements thought to be important for ecological performance, reverse genetics has the potential to revolutionize plant ecology. However, untested concerns about possible side-effects of the transformation technique, caused by Agrobacterium infection and tissue culture, on plant performance have stymied research by requiring onerous sample sizes. We compare 5 independently transformed Nicotiana attenuata lines harboring empty vector control (EVC T-DNA lacking silencing information with isogenic wild types (WT, and measured a battery of ecologically relevant traits, known to be important in plant-herbivore interactions: phytohormones, secondary metabolites, growth and fitness parameters under stringent competitive conditions, and transcriptional regulation with microarrays. As a positive control, we included a line silenced in trypsin proteinase inhibitor gene (TPI expression, a potent anti-herbivore defense known to exact fitness costs in its expression, in the analysis. The experiment was conducted twice, with 10 and 20 biological replicates per genotype. For all parameters, we detected no difference between any EVC and WT lines, but could readily detect a fitness benefit of silencing TPI production. A statistical power analyses revealed that the minimum sample sizes required for detecting significant fitness differences between EVC and WT was 2-3 orders of magnitude larger than the 10 replicates required to detect a fitness effect of TPI silencing. We conclude that possible side-effects of transformation are far too low to obfuscate the study of ecologically relevant phenotypes.

  3. Reversible hypothyroidism and Whipple's disease

    Directory of Open Access Journals (Sweden)

    Tran Huy A

    2006-05-01

    Full Text Available Abstract Background The major cause of primary hypothyroidism is autoimmune mediated with progressive and permanent destruction of the thyroid gland resulting in life-long replacement therapy. Treatable and reversible hypothyroidism is unusual and here forth is such a case due to infection of the thyroid gland with Tropheryma whippleii, Whipple disease. Case presentation A 45 year-old female presented with symptoms and signs consistent with primary hypothyroidism, which was also confirmed biochemically. Her response to thyroxine replacement therapy was poor however, requiring a significantly elevated amount. Further investigation revealed the presence of Whipple's disease involving the gastrointestinal trace and possibly the thyroid gland. Her thyroxine requirement decreased drastically following appropriate antimicrobial therapy for Whipple's disease to the extent that it was ceased. Thyrotropin releasing hormone testing in the steady state suggested there was diminished thyroid reserve due to Whipple's disease. Conclusion This is the first ante-mortem case report studying the possible involvement of the thyroid gland by Whipple's disease. Despite the normalization of her thyroid function test biochemically after antibiotic therapy, there is diminished thyroid reserve thus requiring close and regular monitoring.

  4. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription

    OpenAIRE

    Warren, Kylie; Warrilow, David; Meredith, Luke; Harrich, David

    2009-01-01

    There is ample evidence that synthesis of HIV-1 proviral DNA from the viral RNA genome during reverse transcription requires host factors. However, only a few cellular proteins have been described in detail that affect reverse transcription and interact with reverse transcriptase (RT). HIV-1 integrase is an RT binding protein and a number of IN-binding proteins including INI1, components of the Sin3a complex, and Gemin2 affect reverse transcription. In addition, recent studies implicate the c...

  5. 14 CFR 25.507 - Reversed braking.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reversed braking. 25.507 Section 25.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.507 Reversed braking. (a) The airplane...

  6. Evaluation of reversible contraceptive activities of Annona ...

    African Journals Online (AJOL)

    Evaluation of reversible contraceptive activities of Annona squamosa (Linn.) ... Plant Products Research Journal ... Therefore the present study was undertaken to evaluate the contraceptive activities of methanol extract of the stem bark of Annoa squamosa L. (Annonaceae) with their respective reversibility in male rats.

  7. Kronisk ileus efter iatrogen reversering af tyndtarmen

    DEFF Research Database (Denmark)

    Pedersen, Mark Ellebaek; Rahr, Hans B; Mahdi, Bassam

    2010-01-01

    We report a case of inadvertent reversal of the entire small intestine leading to severe complications and long-standing ileus. The clinical diagnosis was confirmed by magnetic resonance imaging and laparotomy. The patient was cured by surgical re-reversal of the bowel. Care should be taken to ma...... the bowel ends when multiple simultaneous bowel resections are performed....

  8. Reverse engineering of the robot base platform

    International Nuclear Information System (INIS)

    Anwar A Rahman; Azizul Rahman A Aziz; Mohd Arif Hamzah; Muhd Nor Atan; Fadil Ismail; Rosli Darmawan

    2009-01-01

    The robot base platform used to place the robotic arm version 2 was imported through a local company. The robot base platform is used as a reference for reverse egineering development for a smaller size robot. The paper will discuss the reverse engineering design process and parameters involved in the development of the robot base platform. (Author)

  9. Reversing Africa's Decline. Worldwatch Paper 65.

    Science.gov (United States)

    Brown, Lester R.; Wolf, Edward C.

    This paper highlights some of the themes that any successful strategy to reverse the decline of Africa must embrace. Africa is a continent experiencing a breakdown in the relationship between people and their natural support systems. Famine and the threat of famine are among the manifestations of this breakdown. This decline can be reversed. To do…

  10. Reverse Methanogenesis and Respiration in Methanotrophic Archaea

    NARCIS (Netherlands)

    Timmers, Peer H.A.; Welte, Cornelia U.; Koehorst, Jasper J.; Plugge, Caroline M.; Jetten, Mike S.M.; Stams, Alfons J.M.

    2017-01-01

    Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., "trace methane oxidation"). In

  11. Vibrational dynamics of ice in reverse micelles

    NARCIS (Netherlands)

    Dokter, A.M.; Petersen, C.; Woutersen, S.; Bakker, H.J.

    2008-01-01

    he ultrafast vibrational dynamics of HDO:D2O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is

  12. Online Reverse Auctions for Procurement of Services

    NARCIS (Netherlands)

    U.L. Radkevitch (Uladzimir)

    2008-01-01

    textabstractOnline reverse auctions, in which a buyer seeks to select a supplier and suppliers compete for contracts by bidding online, revolutionized corporate procurement early this century. Shortly after they had been pioneered by General Electric, many companies rushed to adopt reverse auctions

  13. Reversible logic gates on Physarum Polycephalum

    International Nuclear Information System (INIS)

    Schumann, Andrew

    2015-01-01

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum

  14. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...

  15. Reversal of laryngotracheal separation in paediatric patients.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    OBJECTIVE: Laryngotracheal separation (LTS) is an effective and reliable definitive treatment for intractable aspiration. A major advantage of this treatment for intractable aspiration is its\\' potential reversibility. Should the underlying disorder improve, a reversal of the procedure may be attempted. This has been successfully achieved in the adult population. To our knowledge, no previous cases have been reported of successful reversal of LTS in children. METHODS: A retrospective review from 2003 to 2010 identified four cases of intractable aspiration treated with LTS in our department. Two of these patients displayed objective evidence of sufficient recovery of their underlying aspiration to consider reversal. Patient selection for reversal was dependent upon successful oral intake for 9 months along with videofluoroscopic evidence of normal or minimally impaired swallow. RESULTS: Two children who were successfully treated for intractable aspiration with LTS demonstrated objective evidence of recovery sufficient to attempt reversal. Both children underwent successful surgical reversal of LTS using a cricotracheal resection with end-to-end anastamosis, similar to that used in treatment of subglottic stenosis. Both children can now tolerate oral diet and their speech and language development is in line with their overall developmental level. CONCLUSIONS: Laryngotracheal separation is an effective and reliable definitive treatment for intractable aspiration facilitating protection of the airway and allowing safe swallowing with unimpeded respiration, but with the major drawback of loss of phonation. To our knowledge, we document the first two cases of successful LTS reversal in children.

  16. Reverse engineering a visual age application

    NARCIS (Netherlands)

    Sneed, Harry M.; Verhoef, Chris

    2015-01-01

    This paper is an industrial case study of how a VisualAge application system on an IBM mainframe was reverse engineered into a system reference repository. The starting point was the code fragments generated by the VisualAge interactive development tool. The results of the reverse engineering

  17. Multiple reversal olfactory learning in honeybees

    Directory of Open Access Journals (Sweden)

    Theo Mota

    2010-07-01

    Full Text Available In multiple reversal learning, animals trained to discriminate a reinforced from a non-reinforced stimulus are subjected to various, successive reversals of stimulus contingencies (e.g. A+ vs. B-, A- vs. B+, A+ vs. B-. This protocol is useful to determine whether or not animals learn to learn and solve successive discriminations faster (or with fewer errors with increasing reversal experience. Here we used the olfactory conditioning of proboscis extension reflex to study how honeybees Apis mellifera perform in a multiple reversal task. Our experiment contemplated four consecutive differential conditioning phases involving the same odors (A+ vs. B- to A- vs. B+ to A+ vs. B- to A- vs. B+. We show that bees in which the weight of reinforced or non-reinforced stimuli was similar mastered the multiple olfactory reversals. Bees which failed the task exhibited asymmetric responses to reinforced and non-reinforced stimuli, thus being unable to rapidly reverse stimulus contingencies. Efficient reversers did not improve their successive discriminations but rather tended to generalize their choice to both odors at the end of conditioning. As a consequence, both discrimination and reversal efficiency decreasedalong experimental phases. This result invalidates a learning-to-learn effect and indicates that bees do not only respond to the actual stimulus contingencies but rather combine these with an average of past experiences with the same stimuli.  

  18. The Rate Laws for Reversible Reactions.

    Science.gov (United States)

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  19. Estimation and uncertainty of reversible Markov models.

    Science.gov (United States)

    Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank

    2015-11-07

    Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0.

  20. Magnetic reversals from planetary dynamo waves

    DEFF Research Database (Denmark)

    Sheyko, Andrey; Finlay, Chris; Jackson, Andrew

    2016-01-01

    A striking feature of many natural dynamos is their ability to undergo polarity reversals. The best documented example is Earth's magnetic field, which has reversed hundreds of times during its history. The origin of geomagnetic polarity reversals lies in a magnetohydrodynamic process that takes...... place in Earth's core, but the precise mechanism is debated. The majority of numerical geodynamo simulations that exhibit reversals operate in a regime in which the viscosity of the fluid remains important, and in which the dynamo mechanism primarily involves stretching and twisting of field lines...... (the ratio of advection to Coriolis force). Instead, stretching of the magnetic field by a strong shear in the east-west flow near the imaginary cylinder just touching the inner core and parallel to the axis of rotation is crucial to the reversal mechanism in our models, which involves a process akin...