WorldWideScience

Sample records for acinar cell vacuole

  1. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    Science.gov (United States)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  2. Growth Factor Independence-1 (Gfi1) Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell Differentiation

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Nyeng, Pia; Xiao, Fan

    2015-01-01

    of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1/Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. METHODS: Gfi1 knockout mice were analyzed at histological and molecular...... levels, including qRT-PCR, in situ hybridization, immunohistochemistry, and electron microscopy. RESULTS: Loss of Gfi1 impacted formation and structure of the pancreatic acinar/centroacinar unit. Histologic and ultrastructural analysis of Gfi1-null pancreas revealed specific defects at the level...... was correlated with an exocrine organ defect. Postnatally, Gfi1 deficiency resulted in severe pancreatic acinar dysplasia, including loss of granulation, autolytic vacuolation, and a proliferative and apoptotic response. CONCLUSIONS: Gfi1 plays an important role in regulating the development of pancreatic CACs...

  3. Acinar Cell Cystadenocarcinoma of the Pancreas

    Directory of Open Access Journals (Sweden)

    Keita Aoto

    2017-09-01

    Full Text Available Acinar cell cystadenocarcinoma is a rare malignant epithelial neoplasm of the pancreas with a diffusely cystic, gross architecture in which the cysts are lined with neoplastic epithelial cells that demonstrate evidence of pancreatic exocrine enzyme production. This is the 10th case that has been reported in the literature. A 77-year-old male complaining of left hypochondrial pain was referred to our hospital for treatment of a pancreatic tumor. A huge, honeycomb-structured tumor was detected in the pancreatic tail. Distal pancreatectomy with total resection of the residual stomach and partial resection of the transverse colon were performed. Microscopically, there were variably sized cystic lesions in the tumor. Immunohistochemical examinations revealed that tumor cells were positive for alpha 1-antichymotrypsin and alpha 1-trypsin, showing that tumor cells had features of pancreatic acinar cells. Thus, the tumor was diagnosed as acinar cell cystadenocarcinoma. Herein, we report a rare case with acinar cell cystadenocarcinoma, which is the 10th case reported in the literature based on a PubMed search. We managed to resect the tumor completely by distal pancreatectomy with total resection of the residual stomach and partial resection of the transverse colon. The patient is still alive 26 months after surgery without any recurrence after 1 year of adjuvant chemotherapy with S-1.

  4. SOX2 regulates acinar cell development in the salivary gland

    Science.gov (United States)

    Emmerson, Elaine; May, Alison J; Nathan, Sara; Cruz-Pacheco, Noel; Lizama, Carlos O; Maliskova, Lenka; Zovein, Ann C; Shen, Yin; Muench, Marcus O; Knox, Sarah M

    2017-01-01

    Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis. Despite SOX2 being expressed by progenitors that give rise to both acinar and duct cells, genetic ablation of SOX2 results in a failure to establish acini but not ducts. Furthermore, we show that SOX2 targets acinar-specific genes and is essential for the survival of acinar but not ductal cells. Finally, we illustrate an unexpected and novel role for peripheral nerves in the creation of acini throughout development via regulation of SOX2. Thus, SOX2 is a master regulator of the acinar cell lineage essential to the establishment of a functional organ. DOI: http://dx.doi.org/10.7554/eLife.26620.001 PMID:28623666

  5. Marked differences in immunocytological localization of [3H]estradiol-binding protein in rat pancreatic acinar tumor cells compared to normal acinar cells

    International Nuclear Information System (INIS)

    Beaudoin, A.R.; Grondin, G.; St Jean, P.; Pettengill, O.; Longnecker, D.S.; Grossman, A.

    1991-01-01

    [ 3 H]Estradiol can bind to a specific protein in normal rat pancreatic acinar cells. Electron microscopic immunocytochemical analysis has shown this protein to be localized primarily in the rough endoplasmic reticulum and mitochondria. Rat exocrine pancreatic tumor cell lines, whether grown in tissue culture (AR42J) or as a tumor mass after sc injection into rats (DSL-2), lacked detectable amounts of this [ 3 H]estradiol-binding protein (EBP), as determined by the dextran-coated charcoal assay. Furthermore, primary exocrine pancreatic neoplasms induced with the carcinogen azaserine contained little or no detectable [ 3 H]estradiol-binding activity. However, electron immunocytochemical studies of transformed cells indicated the presence of material that cross-reacted with antibodies prepared against the [ 3 H]EBP. The immunopositive reaction in transformed cells was localized almost exclusively in lipid granules. Such lipid organelles in normal acinar cells, although present less frequently than in transformed cells, have never been observed to contain EBP-like immunopositive material. Presumably, the aberrant localization of EBP in these acinar tumor cells results in loss of function of this protein, which in normal pancreatic acinar cells appears to exert a modulating influence on zymogen granule formation and the process of secretion

  6. Using CRISPR/Cas9 to Knock out Amylase in Acinar Cells Decreases Pancreatitis-Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Kohei Yasunaga

    2018-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm that originates from acinar cells. Acinar cells get reprogrammed to become duct cells, resulting in pancreatic cancer. Pancreatitis is an acinar cell inflammation, leading to “impaired autophagy flux”. Pancreatitis promotes acinar-to-ductal transdifferentiation. Expression of amylase gets eliminated during the progression of pancreatic cancer. Amylase is considered as an acinar cell marker; however, its function in cells is not known. Thus, we investigated whether amylase affects the acinar cell autophagy and whether it plays any role in development of pancreatitis. Here, we knocked out ATG12 in a pancreatic cancer cells and acinar cells using CRISPR/Cas9. Autophagy inhibition led to an increase in the expression of duct cell markers and a simultaneous decrease in that of acinar cell markers. It also caused an increase in cell viability and changes in mitochondrial morphology. Next, we knocked out amylase in acinar cells. Amylase deficiency decreased autophagy induced by pancreatitis. Our results suggest that amylase controls pancreatitis-induced autophagy. We found that eliminating amylase expression contributes to pancreatic cancer etiology by decreasing autophagy. Furthermore, our results indicate that amylase plays a role in selective pancreatitis-induced autophagy of pancreatic enzyme vesicles.

  7. Lysosome-Associated Membrane Proteins (LAMP Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Olga A. Mareninova

    2015-11-01

    Full Text Available Background & Aims: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs in pancreatitis. Methods: We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP deglycosylation and degradation. LAMP cleavage by cathepsin B (CatB was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Results: Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger the LAMPs’ bulk deglycosylation but induces their degradation via CatB-mediated cleavage of the LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, and stimulates the basal and inhibits cholecystokinin-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. Conclusions: The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction. Keywords: Amylase Secretion, Autophagy

  8. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun [Ataturk Training and Research Hospital, Ankara (Turkmenistan); Ugras, Serdar [Selcuk University, Selcuklu Medical Faculty, Konya (Turkmenistan)

    2011-02-15

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  9. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    International Nuclear Information System (INIS)

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun; Ugras, Serdar

    2011-01-01

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  10. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    O.H. Petersen

    2009-01-01

    Full Text Available The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

  11. Expression of human cationic trypsinogen (PRSS1) in murine acinar cells promotes pancreatitis and apoptotic cell death

    Science.gov (United States)

    Athwal, T; Huang, W; Mukherjee, R; Latawiec, D; Chvanov, M; Clarke, R; Smith, K; Campbell, F; Merriman, C; Criddle, D; Sutton, R; Neoptolemos, J; Vlatković, N

    2014-01-01

    Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore

  12. Cell Vacuolation Caused by Vibrio cholerae Hemolysin

    Science.gov (United States)

    Figueroa-Arredondo, Paula; Heuser, John E.; Akopyants, Natalia S.; Morisaki, J. Hiroshi; Giono-Cerezo, Silvia; Enríquez-Rincón, Fernando; Berg, Douglas E.

    2001-01-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (∼1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (∼16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses. PMID:11179335

  13. Cell vacuolation caused by Vibrio cholerae hemolysin.

    Science.gov (United States)

    Figueroa-Arredondo, P; Heuser, J E; Akopyants, N S; Morisaki, J H; Giono-Cerezo, S; Enríquez-Rincón, F; Berg, D E

    2001-03-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (approximately 1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (approximately 16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses.

  14. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  15. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina

    2000-01-01

    We investigated the cellular regulation of nitric oxide synthase (NOS) activity in isolated acinar cells from rat parotid and human labial salivary glands, using the newly developed fluorescent nitric oxide (NO) indicator, DAF-2. We found that sympathetic stimulation with norepinephrine (NE) caused...... a strong increase in NO synthesis that was not seen after parasympathetic stimulation with acetylcholine. In rat parotid acinar cells, we furthermore investigated to which extent the NOS activity was dependent on the intracellular free Ca2+ concentration ([Ca2+]i) by simultaneously measuring NO synthesis...

  16. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis.

    Science.gov (United States)

    Bhatia, Vandanajay; Rastellini, Cristiana; Han, Song; Aronson, Judith F; Greeley, George H; Falzon, Miriam

    2014-09-01

    Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs. Copyright © 2014 the American Physiological Society.

  17. Internalization and cellular processing of cholecystokinin in rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Izzo, R.S.; Pellecchia, C.; Praissman, M.

    1988-01-01

    To evaluate the internalization of cholecystokinin, monoiodinated imidoester of cholecystokinin octapeptide [ 125 I-(IE)-CCK-8] was bound to dispersed pancreatic acinar cells, and surface-bound and internalized radioligand were differentiated by treating with an acidified glycine buffer. The amount of internalized radioligand was four- and sevenfold greater at 24 and 37 degree C than at 4 degree C between 5 and 60 min of association. Specific binding of radioligand to cell surface receptors was not significantly different at these temperatures. Chloroquine, a lysosomotropic agent that blocks intracellular proteolysis, significantly increased the amount of CCK-8 internalized by 18 and 16% at 30 and 60 min of binding, respectively, compared with control. Dithiothreitol (DTT), a sulfhydryl reducing agent, also augmented the amount of CCK-8 radioligand internalized by 25 and 29% at 30 and 60 min, respectively. The effect of chloroquine and DTT on the processing of internalized radioligand was also considered after an initial 60 min of binding of radioligand to acinar cells. After 180 min of processing, the amount of radioligand internalized was significantly greater in the presence of chloroquine compared with controls, whereas the amount of radioligand declined in acinar cells treated with DTT. Internalized and released radioactivity from acinar cells was rebound to pancreatic membrane homogenates to determine the amount of intact radioligand during intracellular processing. Chloroquine significantly increased the amount of intact 125 I-(IE)-CCK-8 radioligand in released and internalized radioactivity while DTT increased the amount of intact radioligand only in internalized samples. This study shows that pancreatic acinar cells rapidly internalize large amounts of CCK-8 and that chloroquine and DTT inhibit intracellular degradation

  18. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    International Nuclear Information System (INIS)

    Yu, Ge; Wan, Rong; Hu, Yanling; Ni, Jianbo; Yin, Guojian; Xing, Miao; Shen, Jie; Tang, Maochun; Chen, Congying; Fan, Yuting; Xiao, Wenqin; Zhao, Yan; Wang, Xingpeng

    2014-01-01

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway

  19. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ge [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wan, Rong [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Hu, Yanling [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Ni, Jianbo [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Yin, Guojian; Xing, Miao [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Shen, Jie [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Tang, Maochun [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Chen, Congying [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Fan, Yuting; Xiao, Wenqin; Zhao, Yan [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wang, Xingpeng, E-mail: wangxingpeng@hotmail.com [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  20. Ultrastructural morphometry of parotid acinar cells following fractionated irradiation

    International Nuclear Information System (INIS)

    Grehn, A.-L.; Gustafsson, H.; Franzen, L.; Thornell, L.-E.; Henriksson, R.

    1997-01-01

    The aim of this study was to evaluate the long term effects on the ultrastructure of parotid glands after fractionated irradiation. The method implemented involved 5 x 6 Gy and 5 x 8 Gy, Monday to Friday 6 MV photons. By unilateral irradiation, the contralateral parotid gland served as a control. Although irradiation diminished the acinar cell density in light microscopic sections from 75 to 32% after 5 x 8 Gy of irradiation, ultrastructural morphometry could not detect any statistically significant differences in acinar cell size, nuclear size, nuclear density, granule area, mean granule size, or granule density. In general, greater differences were seen between rats receiving 30 or 40 Gy, on both the irradiated and the control side, than between the irradiated side and the control side. This was interpreted as due to differences in the nutritional state of the animals. This analysis concluded that individual acinar cells that survive irradiation seem not to be damaged in the long term when evaluated at the ultrastructural level. The study further stresses the importance of adequate sampling sizes and the use of adequate controls. (author)

  1. Transplantable pancreatic acinar carcinoma

    International Nuclear Information System (INIS)

    Warren, J.R.; Reddy, J.K.

    1981-01-01

    Fragments of the nafenopin-induced pancreatic acinar cell carcinoma of rat have been examined in vitro for patterns of intracellular protein transport and carbamylcholine-induced protein discharge. Continuous incubation of the fragments with [3H]-leucine for 60 minutes resulted in labeling of rough endoplasmic reticulum, Golgi cisternae, and mature zymogen granules, revealed by electron microscope autoradiography. This result indicates transport of newly synthesized protein from the rough endoplasmic reticulum to mature zymogen granules in approximately 60 minutes. The secretagogue carbamylcholine induced the discharge of radioactive protein by carcinoma fragments pulse-chase labeled with [3H]-leucine. A maximal effective carbamylcholine concentration of 10(-5) M was determined. The acinar carcinoma resembles normal exocrine pancreas in the observed rate of intracellular protein transport and effective secretagogue concentration. However, the acinar carcinoma fragments demonstrated an apparent low rate of carbamylcholine-induced radioactive protein discharge as compared with normal pancreatic lobules or acinar cells. It is suggested that the apparent low rate of radioactive protein discharge reflects functional immaturity of the acinar carcinoma. Possible relationships of functional differentiation to the heterogeneous cytodifferentiation of the pancreatic acinar carcinoma are discussed

  2. Adipose Stem Cell Therapy Mitigates Chronic Pancreatitis via Differentiation into Acinar-like Cells in Mice.

    Science.gov (United States)

    Sun, Zhen; Gou, Wenyu; Kim, Do-Sung; Dong, Xiao; Strange, Charlie; Tan, Yu; Adams, David B; Wang, Hongjun

    2017-11-01

    The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 10 5 or 1 × 10 6 GFP + ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP + ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP + ASCs migrated to pancreas and differentiated into amylase + cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase + cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  3. ANF and exocrine pancreas: ultrastructural autoradiographic localization in acinar cells

    International Nuclear Information System (INIS)

    Chabot, J.G.; Morel, G.; Belles-Isles, M.; Jeandel, L.; Heisler, S.

    1988-01-01

    Atrial natriuretic factor (ANF) binding sites have been recently demonstrated to be present in exocrine pancreas by an in vitro autoradiographic approach. An autoradiographic study was carried out to identify the exocrine cells containing ANF binding sites and to monitor the fate of 125 I-labeled ANF in acinar cells after removal of pancreas at specific time intervals (1-30 min) after intravenous administration. At the light microscopic level, silver grains were found over acinar and centroacinar cells. Concomitant injection of an excess of unlabeled ANF inhibited the binding of labeled peptide by approximately 60%. At the electron microscopic level, the time-course study in acinar cells has revealed that of the cell compartments examined, plasma membrane, Golgi apparatus, mitochondria, and zymogen granules, the nucleus had distinct labeling patterns. Plasma membrane was maximally labeled 1 and 2 min after injection with 125 I-ANF. Golgi apparatus was significantly labeled from 2 to 30 min after injection, mitochondria from 1 to 30 min after injection, zymogen granules at 1 and 15 min, and the nucleus only at 30 min. The lysosomal compartment was not labeled during the 30-min observation period. These results suggest that after binding to the plasma membrane, ANF is rapidly internalized and distributed to the intracellular organelles as a function of time. Labeling of the zymogen granules suggests that they may bind ANF and that the atrial peptide may be secreted by acinar cells. The significance of association of radioactivity with mitochondria and nuclei remains to be elucidated but may represent intracellular sites of action of ANF complementary to those on plasma membranes

  4. Acinar cell ultrastructure after taurine treatment in rat acute necrotizing pancreatitis

    International Nuclear Information System (INIS)

    Ates, Y.; Mas, M. R.; Taski, I.; Comert, B.; Isik, A. T.; Mas, N. M.; Yener, N.

    2006-01-01

    To evaluate the organelle-based changes in acinar cells in experimental acute necrotizing pancreatitis (ANP) after taurine treatment and the association of electron microscopic findings with histopathalogical changes and oxidative stress markers. The study was performed in February 2005at Gulhane School of Medicine and Hacettepe University, Turkey. Forty-five rats were divided into 3 groups. Acute necrotizing pancreatitis was induced in groups II and III. Groups I and II were treated with saline and Group III with taurine 1000mg/kg/day, i.p, for 48 hours. Histopathological and ultrastructural examinations were determined using one-way analysis of variance and Kruskal-Wallis tests. Histopathologic findings improved significantly after taurine treatment. Degree of injury in rough and smooth endoplasmic reticulums, Golgi apparatus, mitochondria and nucleus of acinar cells also decreased with taurine in correlation with biochemical and histological results. Taurine improves acinar cell organelle structure, and ultrastructural recovery in ANP reflects histological improvement. (author)

  5. Hydrolytic enzymes in the central vacuole of plant cells.

    Science.gov (United States)

    Boller, T; Kende, H

    1979-06-01

    The hydrolase content of vacuoles isolated from protoplasts of suspension-cultured tobacco cells, of tulip petals, and of pineapple leaves, and the sedimentation behavior of tobacco tonoplasts were studied. Three precautions were found to be important for the analysis of vacuolar hydrolases and of the tonoplast. (a) Purification of protoplasts in a Ficoll gradient was necessary to remove cell debris which contained contaminating hydrolases adsorbed from the fungal cell-wall-degrading enzyme preparation. (b) Hydrolase activities in the homogenates of the intact cells or the tissue used and of the purified protoplasts had to be compared to verify the absence of contaminating hydrolases in the protoplast preparation. (c) Vacuoles obtained from the protoplasts by an osmotic shock had to be purified from the lysate in a Ficoll gradient. Since the density of the central vacuole approximates that of the protoplasts, about a 10% contamination of the vacuolar preparation by surviving protoplasts could not be eliminated and had to be taken into account when the distribution of enzymes and of radioactivity was calculated.THE INTRACELLULAR ACTIVITIES OF THE FOLLOWING ACID HYDROLASES WERE PRIMARILY LOCALIZED IN THE VACUOLE OF TOBACCO CELLS: alpha-mannosidase, beta-N-acetylglucosaminidase, beta-fructosidase, nuclease, phosphatase, phosphodiesterase. A similar composition of acid hydrolases was found in vacuoles obtained from protoplasts of tulip petals. Proteinase, a hydrolase with low activity in tobacco cells and tulip petals and therefore difficult to localize unequivocally, was found to be vacuolar in pineapple leaves, a tissue containing high levels of this enzyme. Our data support the hypothesis that the central vacuole of higher plant cells has an enzyme composition analogous to that of the animal lysosome.None of the vacuolar enzymes investigated was found to be bound to the tonoplast. When vacuoles were isolated from cells labeled with radioactive choline, the vacuolar

  6. Hydrolytic enzymes in the central vacuole of plant cells

    International Nuclear Information System (INIS)

    Boller, T.; Kende, H.

    1979-01-01

    The hydrolase content of vacuoles isolated from protoplasts of suspension-cultured tobacco cells, of tulip petals, and pineapple leaves, and the sedimentation behavior of tobacco tonoplasts were studied. Three precautions were found to be important for the analysis of vacuolar hydrolases and of the tonoplast: (a) purification of protoplasts in a Ficoll gradient was necessary to remove cell debris which contained contaminating hydrolases adsorbed from the fungal cell-wall-degrading enzyme preparation; (b) hydrolase activities in the homogenates of the intact cells or the tissue used and of the purified protoplasts had to be compared to verify the absence of contaminating hydrolases in the protoplast preparation; and (c) vacuoles obtained from the protoplasts by an osmotic shock had to be purified from the lysate in a Ficoll gradient. Since the density of the central vacuole approximates that of the protoplasts, about a 10% contamination of the vacuolar preparation by surviving protoplasts could not be eliminated. The intracellular activities of the following acid hydrolases were primarily localized in the vacuole of tobacco cells: α-mannosidase, β-N-acetylglucosaminidase, β-fructosidase, nuclease, phosphatase, phosphodiesterase. A similar composition of acid hydrolases was found in vacuoles obtained from protoplasts of tulip petals. Proteinase, a hydrolase with low activity in tobacco cells and tulip petals was found to be vacuolar in pineapple leaves, a tissue containing high levels of this enzyme. None of the vacuolar enzymes investigated ws found to be bound to the tonoplast. When vacuoles were isolated from cells labeled with radioactive choline, the vacuolar membrane was found to contain radioactivity. On sucrose gradients, the label incorporated into tonoplasts banded around a density of 1.10 grams per cubic centimeter

  7. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    Science.gov (United States)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  8. The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells

    Science.gov (United States)

    Zheng, Yan; Zhang, Heting; Deng, Xiaojiang; Liu, Jing; Chen, Huiping

    2017-01-01

    Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.

  9. Intracellular mediators of Na+-K+ pump activity in guinea pig pancreatic acinar cells

    International Nuclear Information System (INIS)

    Hootman, S.R.; Ochs, D.L.; Williams, J.A.

    1985-01-01

    The involvement of Ca 2+ and cyclic nucleotides in neurohormonal regulation of Na + -K + -ATPase (Na + -K + pump) activity in guinea pig pancreatic acinar cells was investigated. Changes in Na+-K+ pump activity elicited by secretagogues were assessed by [3H]ouabain binding and by ouabain-sensitive 86 Rb + uptake. Carbachol (CCh) and cholecystokinin octapeptide (CCK-8) each stimulated both ouabain-sensitive 86Rb+ uptake and equilibrium binding of [ 3 H]ouabain by approximately 60%. Secretin increased both indicators of Na+-K+ pump activity by approximately 40% as did forskolin, 8-bromo- and dibutyryl cAMP, theophylline, and isobutylmethylxanthine. Incubation of acinar cells in Ca 2+ -free HEPES-buffered Ringer (HR) with 0.5 mM EGTA reduced the stimulatory effects of CCh and CCK-8 by up to 90% but caused only a small reduction in the effects of secretin, forskolin, and cAMP analogues. In addition, CCh, CCK-8, secretin, and forskolin each stimulated ouabain-insensitive 86Rb+ uptake by acinar cells. The increase elicited by CCh and CCK-8 was greatly reduced in the absence of extracellular Ca 2+ , while that caused by the latter two agents was not substantially altered. The effects of secretagogues on free Ca 2+ levels in pancreatic acinar cells also were investigated with quin-2, a fluorescent Ca 2+ chelator. Basal intracellular Ca 2+ concentration ([Ca 2+ ]i) was 161 nM in resting cells and increased to 713 and 803 nM within 15 s after addition of 100 microM CCh or 10 nM CCK-8, respectively

  10. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  11. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells*

    Science.gov (United States)

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S.

    2016-01-01

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca2+] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca2+-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca2+ entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca2+-dependent up-regulation of AQP5. These important findings reveal that the Ca2+-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. PMID:26903518

  12. A computer-based automated algorithm for assessing acinar cell loss after experimental pancreatitis.

    Directory of Open Access Journals (Sweden)

    John F Eisses

    Full Text Available The change in exocrine mass is an important parameter to follow in experimental models of pancreatic injury and regeneration. However, at present, the quantitative assessment of exocrine content by histology is tedious and operator-dependent, requiring manual assessment of acinar area on serial pancreatic sections. In this study, we utilized a novel computer-generated learning algorithm to construct an accurate and rapid method of quantifying acinar content. The algorithm works by learning differences in pixel characteristics from input examples provided by human experts. HE-stained pancreatic sections were obtained in mice recovering from a 2-day, hourly caerulein hyperstimulation model of experimental pancreatitis. For training data, a pathologist carefully outlined discrete regions of acinar and non-acinar tissue in 21 sections at various stages of pancreatic injury and recovery (termed the "ground truth". After the expert defined the ground truth, the computer was able to develop a prediction rule that was then applied to a unique set of high-resolution images in order to validate the process. For baseline, non-injured pancreatic sections, the software demonstrated close agreement with the ground truth in identifying baseline acinar tissue area with only a difference of 1% ± 0.05% (p = 0.21. Within regions of injured tissue, the software reported a difference of 2.5% ± 0.04% in acinar area compared with the pathologist (p = 0.47. Surprisingly, on detailed morphological examination, the discrepancy was primarily because the software outlined acini and excluded inter-acinar and luminal white space with greater precision. The findings suggest that the software will be of great potential benefit to both clinicians and researchers in quantifying pancreatic acinar cell flux in the injured and recovering pancreas.

  13. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    Science.gov (United States)

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging.

    Science.gov (United States)

    Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-06-01

    Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.

  15. An electron microscopic study on the effects of irradiation on the acinar cells of rat parotid gland

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Jun; Lee, Sang Rae [Dept. of Oral Radiology, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1988-11-15

    The author studies the histopathologic changes according to a single or a split does and the time after irradiation on the acinar cells of rat parotid gland. 99 Sprague Dawley rats, weighing about 120 gm, were divided into control and 3 experimental groups. In experimental groups, Group I and II were delivered a single does of 15 Gy, 18 Gy and Group III and IV were delivered two equal split doses of 9 Gy, 10.5 Gy for a 4 hours interval, respectively. The experimental groups were delivered by a cobalt-60 teletherapy unit with a dose rate of 222 cGy/min, source-skin di stance of 50 cm, depth of 1 cm and a field size of 12 X 5 cm. The animals were sacrificed at 1, 2, 3, 6, 12 hours, 1, 3, 7 days after irradiation and examined by light and electro n microscopy. The results were as follows: 1. As the radiation dose increased and acinar cells delivered a single dose exposure were more damaged, and the change of acinar cells appeared faster than those of a split does exposure. 2. The histopathologic change of acinar cells appeared at 1 hour after irradiation. The recovery from damaged acinar cells appeared at 1 day after irradiation and there was a tendency that the recovery from damage of a split dose exposure was somewhat later than of a single dose exposure. 3. Light microscope showed atrophic change of acinar cells and nucleus, degeneration and vesicle formation of cytoplasm, widening of intercellular space and interlobular space. 4. Electron microscope showed loss of nuclear membrane, degeneration of nucleus and nucleoli, clumping of cytoplasm, widening and degeneration of rough endoplasmic reticulum, loss of cristae of mitochondria, lysosome, autophagosome and lipid droplet. 5. Electron microscopically, the change of rough endoplasmic reticulum was most prominent and this appeared at 1 hour after irradiation as early changes of acinar cells. The nuclear change appeared at 2 hours after irradiation and the loss of cristae of mitochondria was observed at 2 hours after

  16. An electron microscopic study on the effects of irradiation on the acinar cells of rat parotid gland

    International Nuclear Information System (INIS)

    Ko, Kwang Jun; Lee, Sang Rae

    1988-01-01

    The author studies the histopathologic changes according to a single or a split does and the time after irradiation on the acinar cells of rat parotid gland. 99 Sprague Dawley rats, weighing about 120 gm, were divided into control and 3 experimental groups. In experimental groups, Group I and II were delivered a single does of 15 Gy, 18 Gy and Group III and IV were delivered two equal split doses of 9 Gy, 10.5 Gy for a 4 hours interval, respectively. The experimental groups were delivered by a cobalt-60 teletherapy unit with a dose rate of 222 cGy/min, source-skin di stance of 50 cm, depth of 1 cm and a field size of 12 X 5 cm. The animals were sacrificed at 1, 2, 3, 6, 12 hours, 1, 3, 7 days after irradiation and examined by light and electro n microscopy. The results were as follows: 1. As the radiation dose increased and acinar cells delivered a single dose exposure were more damaged, and the change of acinar cells appeared faster than those of a split does exposure. 2. The histopathologic change of acinar cells appeared at 1 hour after irradiation. The recovery from damaged acinar cells appeared at 1 day after irradiation and there was a tendency that the recovery from damage of a split dose exposure was somewhat later than of a single dose exposure. 3. Light microscope showed atrophic change of acinar cells and nucleus, degeneration and vesicle formation of cytoplasm, widening of intercellular space and interlobular space. 4. Electron microscope showed loss of nuclear membrane, degeneration of nucleus and nucleoli, clumping of cytoplasm, widening and degeneration of rough endoplasmic reticulum, loss of cristae of mitochondria, lysosome, autophagosome and lipid droplet. 5. Electron microscopically, the change of rough endoplasmic reticulum was most prominent and this appeared at 1 hour after irradiation as early changes of acinar cells. The nuclear change appeared at 2 hours after irradiation and the loss of cristae of mitochondria was observed at 2 hours after

  17. The vacuole within

    Science.gov (United States)

    Ellis, Kathryn; Hoffman, Brenton D.; Bagnat, Michel

    2013-01-01

    The notochord is an evolutionarily conserved structure that has long been known to play an important role in patterning during embryogenesis. Structurally, the notochord is composed of two cell layers: an outer epithelial-like sheath, and an inner core of cells that contain large fluid-filled vacuoles. We have recently shown these notochord vacuoles are lysosome-related organelles that form through Rab32a and vacuolar-type proton-ATPase-dependent acidification. Disruption of notochord vacuoles results in a shortened embryo along the anterior-posterior axis. Interestingly, we discovered that notochord vacuoles are also essential for proper spine morphogenesis and that vacuole defects lead to scoliosis of the spine. Here we discuss the cellular organization of the notochord and how key features of its architecture allow the notochord to function in embryonic axis elongation and spine formation. PMID:23887209

  18. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice

    Directory of Open Access Journals (Sweden)

    Matthew D. Keefe

    2012-07-01

    The size of the pancreas is determined by intrinsic factors, such as the number of progenitor cells, and by extrinsic signals that control the fate and proliferation of those progenitors. Both the exocrine and endocrine compartments of the pancreas undergo dramatic expansion after birth and are capable of at least partial regeneration following injury. Whether the expansion of these lineages relies on similar mechanisms is unknown. Although we have shown that the Wnt signaling component β-catenin is selectively required in mouse embryos for the generation of exocrine acinar cells, this protein has been ascribed various functions in the postnatal pancreas, including proliferation and regeneration of islet as well as acinar cells. To address whether β-catenin remains important for the maintenance and expansion of mature acinar cells, we have established a system to follow the behavior and fate of β-catenin-deficient cells during postnatal growth and regeneration in mice. We find that β-catenin is continuously required for the establishment and maintenance of acinar cell mass, extending from embryonic specification through juvenile and adult self-renewal and regeneration. This requirement is not shared with islet cells, which proliferate and function normally in the absence of β-catenin. These results make distinct predictions for the relative role of Wnt–β-catenin signaling in the etiology of human endocrine and exocrine disease. We suggest that loss of Wnt–β-catenin activity is unlikely to drive islet dysfunction, as occurs in type 2 diabetes, but that β-catenin is likely to promote human acinar cell proliferation following injury, and might therefore contribute to the resolution of acute or chronic pancreatitis.

  19. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology.

    Science.gov (United States)

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H

    2018-02-09

    Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol

  20. Activating transcription factor 3 promotes loss of the acinar cell phenotype in response to cerulein-induced pancreatitis in mice.

    Science.gov (United States)

    Fazio, Elena N; Young, Claire C; Toma, Jelena; Levy, Michael; Berger, Kurt R; Johnson, Charis L; Mehmood, Rashid; Swan, Patrick; Chu, Alphonse; Cregan, Sean P; Dilworth, F Jeffrey; Howlett, Christopher J; Pin, Christopher L

    2017-09-01

    Pancreatitis is a debilitating disease of the exocrine pancreas that, under chronic conditions, is a major susceptibility factor for pancreatic ductal adenocarcinoma (PDAC). Although down-regulation of genes that promote the mature acinar cell fate is required to reduce injury associated with pancreatitis, the factors that promote this repression are unknown. Activating transcription factor 3 (ATF3) is a key mediator of the unfolded protein response, a pathway rapidly activated during pancreatic insult. Using chromatin immunoprecipitation followed by next-generation sequencing, we show that ATF3 is bound to the transcriptional regulatory regions of >30% of differentially expressed genes during the initiation of pancreatitis. Of importance, ATF3-dependent regulation of these genes was observed only upon induction of pancreatitis, with pathways involved in inflammation, acinar cell differentiation, and cell junctions being specifically targeted. Characterizing expression of transcription factors that affect acinar cell differentiation suggested that acinar cells lacking ATF3 maintain a mature cell phenotype during pancreatitis, a finding supported by maintenance of junctional proteins and polarity markers. As a result, Atf3 -/- pancreatic tissue displayed increased tissue damage and inflammatory cell infiltration at early time points during injury but, at later time points, showed reduced acinar-to-duct cell metaplasia. Thus our results reveal a critical role for ATF3 as a key regulator of the acinar cell transcriptional response during injury and may provide a link between chronic pancreatitis and PDAC. © 2017 Fazio et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Cytopathology and exocrine dysfunction induced in ex vivo rabbit lacrimal gland acinar cell models by chronic exposure to histamine or serotonin.

    Science.gov (United States)

    McDonald, Michelle L; Wang, Yanru; Selvam, Shivaram; Nakamura, Tamako; Chow, Robert H; Schechter, Joel E; Yiu, Samuel C; Mircheff, Austin K

    2009-07-01

    Lacrimal immunohistopathology has diverse clinical presentations, suggesting that inflammatory mediators exert diverse influences. Chronic exposure to agonistic acetylcholine receptor autoantibodies has been studied previously; the present work addressed mediators that signal through other G protein-coupled receptors. Acinus-like structures and reconstituted acinar epithelial monolayers from rabbit lacrimal glands were exposed to varying concentrations of histamine or 5-hydroxytryptamine (5-HT) for 20 hours. Net and vectorial beta-hexosaminidase secretion, cytosolic Ca(2+) (Ca(i)) elevation, apical recruitment of p150(Glued), actin microfilament meshwork organization, and ultrastructure were assessed. Histamine and 5-HT acutely stimulated beta-hexosaminidase secretion at lower, but not higher, concentrations. Neither of them acutely elevated Ca(i) levels. Both recruited p150(Glued) at concentrations that failed to induce secretion. Chronic exposure to 10 mM histamine inhibited carbachol (CCh)-induced beta-hexosaminidase secretion and prevented the formation of continuous monolayers; 1 mM 5-HT partially inhibited secretion at the apical medium. Neither altered secretion to the basal medium. Chronic exposure to histamine or 5-HT partially decreased CCh induced Ca(i) elevations and p150(Glued) recruitment, even at concentrations that did not inhibit secretion. Both expanded acinar lumina and thickened microfilament meshworks, and both caused homotypic fusion of secretory vesicles and formation of aqueous vacuoles in the apical and basal cytoplasm. Chronic exposure to forskolin, which activates adenylyl cyclase, induced similar cytopathologic changes but impaired secretion modestly and only at the highest concentration tested. Inflammatory mediators that signal through G protein-coupled receptors cause acinar cell cytopathology and dose-dependent reductions of CCh-induced beta-hexosaminidase secretion. Although agonistic acetylcholine receptor autoantibodies may cause

  2. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis.

    Science.gov (United States)

    Hale, Michael A; Swift, Galvin H; Hoang, Chinh Q; Deering, Tye G; Masui, Toshi; Lee, Youn-Kyoung; Xue, Jumin; MacDonald, Raymond J

    2014-08-01

    The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype. © 2014. Published by The Company of Biologists Ltd.

  3. ptf1a+, ela3l− cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae

    Science.gov (United States)

    Schmitner, Nicole; Kohno, Kenji

    2017-01-01

    ABSTRACT The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b. In

  4. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae.

    Science.gov (United States)

    Schmitner, Nicole; Kohno, Kenji; Meyer, Dirk

    2017-03-01

    The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l- negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l -positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we

  5. Effect of irradiation on the acinar cells of submandibular gland in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To observe the histologic changes and clusterin expression in the acinar cells of the submandibular gland in streptozotocin-induced diabetic rat following irradiation. Mature Sprague-Dawley rats were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the Sprague-Dawley rats by injecting streptozotocin, while the control rats were injected with citrate buffer only. After 5 days, rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy to the head and neck region. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histologic and immunohistochemical methods. Morphologic change of acinar cells was remarkable in the diabetic group, but was not observed in the diabetic-irradiated group. Necrotic tissues were observed in the diabetic-irradiated group. Coloring of toluidine blue stain was most increased at 14 days in the diabetic group, however there were no significant change throughout the period of the experiment in the diabetic-irradiated group. Expression of clusterin was most significant at 14 days in the diabetic group, but gradually decreased with time after 7 days in the diabetic-irradiated group. Degeneration of clusterin was observed in the diabetic-irradiated group. This experiment suggests that the acinar cells of submandibular gland in rats are physiologically apoptosis by the induction of diabetes, but that the apoptosis is inhibited and the acinar cells necrotized after irradiation.

  6. Establishment of functional acinar-like cultures from human salivary glands.

    Science.gov (United States)

    Jang, S I; Ong, H L; Gallo, A; Liu, X; Illei, G; Alevizos, I

    2015-02-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. © International & American Associations for Dental Research 2014.

  7. Macroautophagy and microautophagy in relation to vacuole formation in mesophyll cells of Dendrobium tepals.

    Science.gov (United States)

    van Doorn, Wouter G; Kirasak, Kanjana; Ketsa, Saichol

    2015-04-01

    Prior to flower opening, mesophyll cells at the vascular bundles of Dendrobium tepals showed a large increase in vacuolar volume, partially at the expense of the cytoplasm. Electron micrographs indicated that this increase in vacuolar volume was mainly due to vacuole fusion. Macroautophagous structures typical of plant cells were observed. Only a small part of the decrease in cytoplasmic volume seemed due to macroautophagy. The vacuoles contained vesicles of various types, including multilamellar bodies. It was not clear if these vacuolar inclusions were due to macroautophagy or microautophagy. Only a single structure was observed of a protruding vacuole, indicating microautophagy. It is concluded that macroautophagy occurs in these cells but its role in vacuole formation seems small, while a possible role of microautophagy in vacuole formation might be hypothesized. Careful labeling of organelle membranes seems required to advance our insight in plant macro- and microautophagy and their roles in vacuole formation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Acinar Cell Carcinoma of the Pancreas with Colon Involvement

    Directory of Open Access Journals (Sweden)

    Naoki Asayama

    2014-01-01

    Full Text Available We report a case of acinar cell carcinoma of the pancreas with colon involvement that was difficult to distinguish from primary colon cancer. A 60-year-old man was admitted with a 1-month history of diarrhea. Contrast-enhanced computed tomography (CT revealed a large tumor (10.6×11.6 cm at the splenic flexure of the colon. Colonoscopy showed completely round ulcerative lesions, and biopsy revealed poorly differentiated adenocarcinoma. Left hemicolectomy, resection of the jejunum and pancreas body and tail, and splenectomy were performed based on a diagnosis of descending colon cancer (cT4N0M0, stage IIB, and surgery was considered to be curative. Diagnosis was subsequently confirmed as moderately differentiated acinar cell carcinoma of the pancreas by immunohistochemical staining (pT3N0M0, stage IIA. Multiple liver metastases with portal thrombosis were found 8 weeks postoperatively. Despite combination chemotherapy with oral S-1 and gemcitabine, the patient died of hepatic failure with no effect of chemotherapy 14 weeks postoperatively. Correct diagnosis was difficult to determine preoperatively from the clinical, CT, and colonoscopy findings. Moreover, the disease was extremely aggressive even after curative resection. Physicians should consider pancreatic cancer in the differential diagnosis of similar cases.

  9. Evidence of a generalized defect of acinar cell function in Shwachman-Diamond syndrome.

    Science.gov (United States)

    Stormon, Michael O; Ip, Wan F; Ellis, Lynda; Schibli, Susanne; Rommens, Johanna M; Durie, Peter R

    2010-07-01

    : Because the acinar cells of the exocrine pancreas in patients with Shwachman-Diamond syndrome (SDS) are severely depleted, we hypothesized that a similar deficiency may be present in acinar cells of the parotid gland. : We determined serum pancreatic isoamylase and parotid amylase activities in 16 patients with SDS, 13 healthy controls, and 13 disease controls (cystic fibrosis or fibrosing pancreatitis). Parotid amylase and electrolyte concentrations were measured in stimulated parotid gland secretions. Starch digestion was assessed by breath hydrogen testing in patients with SDS (with and without enzyme supplements) and healthy controls. : Serum pancreatic and parotid isoamylase values were lower in the patients with SDS than in the healthy controls (P gland amylase concentration (units per milligram of protein) in patients with SDS was lower than that in the healthy controls (P = 0.04), whereas the disease controls were comparable to the healthy subjects (P = 0.09). Secreted parotid chloride concentration was inversely correlated with amylase concentration in the patients with SDS (P = 0.01), but no correlation was seen in the healthy controls or disease controls. When patients with SDS ingested starch without enzyme supplementation, their breath hydrogen excretion was significantly higher than that in the healthy controls (P = 0.009). Following starch ingestion with enzymes, breath hydrogen in the patients with SDS was lower (P functional abnormality of exocrine acinar cells.

  10. Pancreatic ductal bicarbonate secretion: challenge of the acinar acid load

    Directory of Open Access Journals (Sweden)

    Peter eHegyi

    2011-07-01

    Full Text Available Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel, however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.

  11. CT and MRI features of acinar cell carcinoma of the pancreas with pathological correlations

    International Nuclear Information System (INIS)

    Hsu, M.-Y.; Pan, K.-T.; Chu, S.-Y.; Hung, C.-F.; Wu, R.-C.; Tseng, J.-H.

    2010-01-01

    Aim: To document the computed tomography (CT) and magnetic resonance imaging (MRI) features of acinar cell carcinoma of the pancreas and to correlate them with pathological findings to determine the unique imaging manifestations of this rare subtype tumour of the pancreas. Materials and methods: From January 1986 to August 2008, six patients (five men and one woman, mean age 61.3 years) with histologically proven acinar cell carcinoma of the pancreas underwent CT (n = 6) and MRI (n = 4) examinations. The imaging features of each tumour were documented and compared with pathological findings. Results: The tumours were distributed in the head (n = 4), body (n = 1), and tail (n = 1) of the pancreas. Four masses (67%) were uniformly or partially well-defined with thin, enhancing capsules. Central cystic components were found in five tumours (83%). Two tumours (33%) exhibited intratumoural haemorrhage, and one tumour (17%) had amorphous intratumoural calcification. In both CT and MRI, the tumours enhanced less than the adjacent normal pancreatic parenchyma. The signal intensity on MRI was predominantly T1 hypointense and T2 iso- to hyperintense. Conclusion: Acinar cell carcinoma of the pancreas has distinct imaging features, and both CT and MRI are useful and complementary imaging methods.

  12. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    Full Text Available Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown.In duct ligation-induced acute pancreatitis in mice and rats, we found that (a IL-33 concentration was increased in the pancreas; (b mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c plasma histamine and pancreatic substance P concentrations were increased; and (d pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α. Also, IL-33 activated ERK in human pancreatic tissue.As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation

  13. Label retaining cells (LRCs with myoepithelial characteristic from the proximal acinar region define stem cells in the sweat gland.

    Directory of Open Access Journals (Sweden)

    Yvonne Leung

    Full Text Available Slow cycling is a common feature shared among several stem cells (SCs identified in adult tissues including hair follicle and cornea. Recently, existence of unipotent SCs in basal and lumenal layers of sweat gland (SG has been described and label retaining cells (LRCs have also been localized in SGs; however, whether these LRCs possess SCs characteristic has not been investigated further. Here, we used a H2BGFP LRCs system for in vivo detection of infrequently dividing cells. This system allowed us to specifically localize and isolate SCs with label-retention and myoepithelial characteristics restricted to the SG proximal acinar region. Using an alternative genetic approach, we demonstrated that SG LRCs expressed keratin 15 (K15 in the acinar region and lineage tracing determined that K15 labeled cells contributed long term to the SG structure but not to epidermal homeostasis. Surprisingly, wound healing experiments did not activate proximal acinar SG cells to participate in epidermal healing. Instead, predominantly non-LRCs in the SG duct actively divided, whereas the majority of SG LRCs remained quiescent. However, when we further challenged the system under more favorable isolated wound healing conditions, we were able to trigger normally quiescent acinar LRCs to trans-differentiate into the epidermis and adopt its long term fate. In addition, dissociated SG cells were able to regenerate SGs and, surprisingly, hair follicles demonstrating their in vivo plasticity. By determining the gene expression profile of isolated SG LRCs and non-LRCs in vivo, we identified several Bone Morphogenetic Protein (BMP pathway genes to be up-regulated and confirmed a functional requirement for BMP receptor 1A (BMPR1A-mediated signaling in SG formation. Our data highlight the existence of SG stem cells (SGSCs and their primary importance in SG homeostasis. It also emphasizes SGSCs as an alternative source of cells in wound healing and their plasticity for

  14. Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation.

    Science.gov (United States)

    Boas, Sonja E M; Merks, Roeland M H

    2014-03-06

    A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell-cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types.

  15. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  16. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation

    Directory of Open Access Journals (Sweden)

    Elisabeth Hessmann

    2016-01-01

    Full Text Available Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

  17. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    Science.gov (United States)

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  18. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models

    Science.gov (United States)

    Wen, Li; Voronina, Svetlana; Javed, Muhammad A.; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V.; Criddle, David N.; Sutton, Robert

    2015-01-01

    Background & Aims Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Methods Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. Results GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Conclusions Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed

  19. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  20. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    -adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...... not by itself causing fast transient increases in [Ca2+]i. In addition, we suggest that endogenously produced NO activated by ß-adrenergic receptor stimulation, plays an important role in signalling to the surrounding tissue....

  1. A Tonoplast P3B-ATPase Mediates Fusion of Two Types of Vacuoles in Petal Cells

    Directory of Open Access Journals (Sweden)

    Marianna Faraco

    2017-06-01

    Full Text Available It is known that plant cells can contain multiple distinct vacuoles; however, the abundance of multivacuolar cells and the mechanisms underlying vacuolar differentiation and communication among different types of vacuoles remain unknown. PH1 and PH5 are tonoplast P-ATPases that form a heteromeric pump that hyper-acidifies the central vacuole (CV of epidermal cells in petunia petals. Here, we show that the sorting of this pump and other vacuolar proteins to the CV involves transit through small vacuoles: vacuolinos. Vacuolino formation is controlled by transcription factors regulating pigment synthesis and transcription of PH1 and PH5. Trafficking of proteins from vacuolinos to the central vacuole is impaired by misexpression of vacuolar SNAREs as well as mutants for the PH1 component of the PH1-PH5 pump. The finding that PH1-PH5 and these SNAREs interact strongly suggests that structural tonoplast proteins can act as tethering factors in the recognition of different vacuolar types.

  2. Targeted Inhibition of Pancreatic Acinar Cell Calcineurin Is a Novel Strategy to Prevent Post-ERCP PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Abrahim I. Orabi

    2017-01-01

    Full Text Available Background & Aims: There is a pressing need to develop effective preventative therapies for post–endoscopic retrograde cholangiopancreatography pancreatitis (PEP. We showed that early PEP events are induced through the calcium-activated phosphatase calcineurin and that global calcineurin deletion abolishes PEP in mice. A crucial question is whether acinar cell calcineurin controls the initiation of PEP in vivo. Methods: We used a mouse model of PEP and examined the effects of in vivo acinar cell-specific calcineurin deletion by either generating a conditional knockout line or infusing a novel adeno-associated virus–pancreatic elastase improved Cre (I–iCre into the pancreatic duct of a calcineurin floxed line. Results: We found that PEP is dependent on acinar cell calcineurin in vivo, and this led us to determine that calcineurin inhibitors, infused within the radiocontrast, largely can prevent PEP. Conclusions: These results provide the impetus for launching clinical trials to test the efficacy of intraductal calcineurin inhibitors to prevent PEP. Keywords: Adeno-Associated Virus, Calcineurin B1, FK506, Cyclosporine A, Intraductal Delivery

  3. An alpha-adrenergic receptor mechanism controlling potassium permeability in the rat lacrimal gland acinar cell

    International Nuclear Information System (INIS)

    Parod, R.J.; Putney, J.W. Jr.

    1978-01-01

    Rat lacrimal gland slices, incubated in a balanced, buffered salt solution, were found to be physiologically stable for up to 2 hr with respect to 0 2 consumption, extracellular space, and water and ion content. The release of 86 Rb serves as a good substitute for 42 K in monitoring the movement of K through the cell membrane. Adrenaline appears to increase membrane permeability to K as evidenced by an increase in the rate of 86 Rb efflux. This response to adrenaline was blocked by phentolamine but not by propranolol and was mimicked by phenylephrine but not by isoprenaline. The magnitude of the 86 Rb release indicates that it is being released, at least in part, from the lacrimal gland acinar cell. It is concluded that the lacrimal gland acinar cell has an α-adrenergic receptor, activation of which leads to an increase in membrane permeability to K. (author)

  4. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    Science.gov (United States)

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  5. New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

    Science.gov (United States)

    Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P

    2018-04-01

    The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.

  6. Rapid degradation of abnormal proteins in vacuoles from Acer pseudoplatanus L. cells

    International Nuclear Information System (INIS)

    Canut, H.; Alibert, G.; Carrasco, A.; Boudet, A.M.

    1986-01-01

    In Acer pseudoplatanus cells, the proteins synthesized in the presence of an amino acid analog ([ 14 C]p-fluorophenylalanine), were degraded more rapidly than normal ones ([ 14 C]phenylalanine as precursor). The degradation of an important part of these abnormal proteins occurred inside the vacuoles. The degradation process was not apparently associated to a specific proteolytic system but was related to a preferential transfer of these aberrant proteins from the cytoplasm to the vacuole

  7. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.

    Science.gov (United States)

    Wauters, Elke; Sanchez-Arévalo Lobo, Victor J; Pinho, Andreia V; Mawson, Amanda; Herranz, Daniel; Wu, Jianmin; Cowley, Mark J; Colvin, Emily K; Njicop, Erna Ngwayi; Sutherland, Rob L; Liu, Tao; Serrano, Manuel; Bouwens, Luc; Real, Francisco X; Biankin, Andrew V; Rooman, Ilse

    2013-04-01

    The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis. ©2012 AACR.

  8. Effects of Ghrelin miRNA on Inflammation and Calcium Pathway in Pancreatic Acinar Cells of Acute Pancreatitis.

    Science.gov (United States)

    Tang, Xiping; Tang, Guodu; Liang, Zhihai; Qin, Mengbin; Fang, Chunyun; Zhang, Luyi

    The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.

  9. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    Science.gov (United States)

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  10. Synergy of cell–cell repulsion and vacuolation in a computational model of lumen formation

    Science.gov (United States)

    Boas, Sonja E. M.; Merks, Roeland M. H.

    2014-01-01

    A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell–cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types. PMID:24430123

  11. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development.

    Science.gov (United States)

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2012-01-15

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abasolo, Ibane [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Pujal, Judit; Navarro, Pilar [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Rabanal, Rosa M.; Serafin, Anna [Universitat Autonoma de Barcelona, Departament de Medicina i Cirurgia Animals, Barcelona (Spain); Millan, Olga [Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Real, Francisco X. [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Programa de Patologia Molecular, Centro Nacional de Investigaciones Oncologicas, Madrid (Spain)

    2009-07-15

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  13. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    International Nuclear Information System (INIS)

    Abasolo, Ibane; Pujal, Judit; Navarro, Pilar; Rabanal, Rosa M.; Serafin, Anna; Millan, Olga; Real, Francisco X.

    2009-01-01

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  14. Immunocytochemical localization of the [3H]estradiol-binding protein in rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Grossman, A.; Oppenheim, J.; Grondin, G.; St Jean, P.; Beaudoin, A.R.

    1989-01-01

    Significant amounts of an estradiol-binding protein (EBP) are present in pancreatic acinar cells. This protein differs from the one found in female reproductive tissues and secondary sex organs (which is commonly referred to as estrogen receptor). EBP has now been purified from rat pancreas and was used as an antigen to induce polyclonal antibodies in rabbits. The antiserum obtained was purified initially by ammonium sulfate fractionation and then still further by interaction with a protein fraction from pancreas that was devoid of estradiol-binding activity. The latter procedure was used to precipitate nonspecific immunoglobulin Gs. Western blot analysis demonstrated that the anti-EBP antibody reacted specifically with a doublet of protein bands having mol wt of 64K and 66K. When this purified antibody was used as an immunocytochemical probe in conjunction with protein-A-gold, acinar cells were labeled on the surface of the endoplasmic reticulum, on the plasma membrane, and in mitochondria. This specific labeling pattern was not observed when preimmune serum was used. No labeling was observed over the nucleus, Golgi apparatus, or zymogen granules with purified anti-EBP antibodies. The unexpected distribution of EBP in both the endoplasmic reticulum and mitochondria is discussed

  15. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology

    OpenAIRE

    Gryshchenko, Oleksiy; Gerasimenko, Julia V.; Peng, Shuang; Gerasimenko, Oleg V.; Petersen, Ole Holger

    2018-01-01

    Physiological Ca2+ signals in pancreatic acinar cells control fluid and\\ud enzyme secretion, whereas excessive Ca2+ signals induced by pathological agents\\ud induce destructive processes leading to acute pancreatitis. Ca2+ signals in the periacinar\\ud stellate cells may also play a role in the development of acute pancreatitis. In\\ud this study, we have explored Ca2+ signalling in the different cell types to be found in\\ud the acinar environment of the pancreatic tissue. We have, for the firs...

  16. The vacuole within: How cellular organization dictates notochord function

    OpenAIRE

    Ellis, Kathryn; Hoffman, Brenton D.; Bagnat, Michel

    2013-01-01

    The notochord is an evolutionarily conserved structure that has long been known to play an important role in patterning during embryogenesis. Structurally, the notochord is composed of two cell layers: an outer epithelial-like sheath, and an inner core of cells that contain large fluid-filled vacuoles. We have recently shown these notochord vacuoles are lysosome-related organelles that form through Rab32a and vacuolar-type proton-ATPase-dependent acidification. Disruption of notochord vacuole...

  17. Restoration of CFTR Activity in Ducts Rescues Acinar Cell Function and Reduces Inflammation in Pancreatic and Salivary Glands of Mice.

    Science.gov (United States)

    Zeng, Mei; Szymczak, Mitchell; Ahuja, Malini; Zheng, Changyu; Yin, Hongen; Swaim, William; Chiorini, John A; Bridges, Robert J; Muallem, Shmuel

    2017-10-01

    Sjögren's syndrome and autoimmune pancreatitis are disorders with decreased function of salivary, lacrimal glands, and the exocrine pancreas. Nonobese diabetic/ShiLTJ mice and mice transduced with the cytokine BMP6 develop Sjögren's syndrome and chronic pancreatitis and MRL/Mp mice are models of autoimmune pancreatitis. Cystic fibrosis transmembrane conductance regulator (CFTR) is a ductal Cl -  channel essential for ductal fluid and HCO 3 - secretion. We used these models to ask the following questions: is CFTR expression altered in these diseases, does correction of CFTR correct gland function, and most notably, does correcting ductal function correct acinar function? We treated the mice models with the CFTR corrector C18 and the potentiator VX770. Glandular, ductal, and acinar cells damage, infiltration, immune cells and function were measured in vivo and in isolated duct/acini. In the disease models, CFTR expression is markedly reduced. The salivary glands and pancreas are inflamed with increased fibrosis and tissue damage. Treatment with VX770 and, in particular, C18 restored salivation, rescued CFTR expression and localization, and nearly eliminated the inflammation and tissue damage. Transgenic overexpression of CFTR exclusively in the duct had similar effects. Most notably, the markedly reduced acinar cell Ca 2+ signaling, Orai1, inositol triphosphate receptors, Aquaporin 5 expression, and fluid secretion were restored by rescuing ductal CFTR. Our findings reveal that correcting ductal function is sufficient to rescue acinar cell function and suggests that CFTR correctors are strong candidates for the treatment of Sjögren's syndrome and pancreatitis. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation

    Science.gov (United States)

    Sinkemani, Arjun; Xie, Zhi-Yang; Shi, Rui; Wei, Ji-Nan; Wu, Xiao-Tao

    2017-01-01

    Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc. For full vacuolation, a vacuolating specification from dorsal organizer cells, synchronized convergent extension, well-structured notochord sheath, and sufficient post-Golgi trafficking in notochord cells are required. Postnatally, age-related and species-specific exhaustion of vacuolated nucleus pulposus cells could be potentiated by Fas- and Fas ligand-induced apoptosis, intolerance to mechanical stress and nutrient deficiency, vacuole-mediated proliferation check, and gradual de-vacuolation within the avascular and compression-loaded intervertebral disc. These results suggest that the notochord vacuoles are active and versatile organelles for both embryonic notochord and postnatal nucleus pulposus, and may provide novel information on intervertebral disc degeneration to guide cell-based regeneration. PMID:28915712

  19. Culture supernatants from V. cholerae O1 El Tor strains isolated from different geographic areas induce cell vacuolation and cytotoxicity.

    Science.gov (United States)

    Vidal, Jorge E; Enríquez-Rincón, Fernando; Giono-Cerezo, Silvia; Ribas-Aparicio, Rosa María; Figueroa-Arredondo, Paula

    2009-01-01

    To investigate whether the HlyA-induced vacuolating effect is produced by V. cholerae O1 ElTor strains isolated from different geographic origins, including Mexico. Supernatant-induced haemolysis, vacuolating activity and cytotoxicity in Vero cells were recorded. PCR, RFLP analysis and molecular cloning were performed. All ElTor strains analyzed induced cellular vacuolation. Ribotype 2 strains isolates from the U.S. gulf coast yielded the highest titer of vacuolating activity. Eight of nine strains were haemolytic, while all strains were PCR positive for the hlyA gene. We cloned the hlyA gene from two ElTor strains, a toxigenic (2514-88, ctxAB+) and a non-toxigenic Mexican strain (CM 91-3, ctxAB-). Supernatant from those recombinant E. coli strains induced haemolysis, cell vacuolation and cytotoxicity. RFLP-PCR analysis revealed similarities in the hlyA gene from all strains tested. The HlyA-induced vacuolating effect is a widespread phenotype of epidemic V. cholerae O1 ElTor strains.

  20. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology.

    Science.gov (United States)

    Hegyi, Peter; Petersen, Ole H

    2013-01-01

    There are many reviews of pancreatic acinar cell function and also of pancreatic duct function, but there is an almost total absence of synthetic reviews bringing the integrated functions of these two vitally and mutually interdependent cells together. This is what we have attempted to do in this chapter. In the first part, we review the normal integrated function of the acinar-ductal system, with particular emphasis on how regulation of one type of cell also influences the other cell type. In the second part, we review a range of pathological processes, particularly those involved in acute pancreatitis (AP), an often-fatal human disease in which the pancreas digests itself, in order to explore how malfunction of one of the cell types adversely affects the function of the other.

  1. Homer2 protein regulates plasma membrane Ca²⁺-ATPase-mediated Ca²⁺ signaling in mouse parotid gland acinar cells.

    Science.gov (United States)

    Yang, Yu-Mi; Lee, Jiae; Jo, Hae; Park, Soonhong; Chang, Inik; Muallem, Shmuel; Shin, Dong Min

    2014-09-05

    Homer proteins are scaffold molecules with a domain structure consisting of an N-terminal Ena/VASP homology 1 protein-binding domain and a C-terminal leucine zipper/coiled-coil domain. The Ena/VASP homology 1 domain recognizes proline-rich motifs and binds multiple Ca(2+)-signaling proteins, including G protein-coupled receptors, inositol 1,4,5-triphosphate receptors, ryanodine receptors, and transient receptor potential channels. However, their role in Ca(2+) signaling in nonexcitable cells is not well understood. In this study, we investigated the role of Homer2 on Ca(2+) signaling in parotid gland acinar cells using Homer2-deficient (Homer2(-/-)) mice. Homer2 is localized at the apical pole in acinar cells. Deletion of Homer2 did not affect inositol 1,4,5-triphosphate receptor localization or channel activity and did not affect the expression and activity of sarco/endoplasmic reticulum Ca(2+)-ATPase pumps. In contrast, Homer2 deletion markedly increased expression of plasma membrane Ca(2+)-ATPase (PMCA) pumps, in particular PMCA4, at the apical pole. Accordingly, Homer2 deficiency increased Ca(2+) extrusion by acinar cells. These findings were supported by co-immunoprecipitation of Homer2 and PMCA in wild-type parotid cells and transfected human embryonic kidney 293 (HEK293) cells. We identified a Homer-binding PPXXF-like motif in the N terminus of PMCA that is required for interaction with Homer2. Mutation of the PPXXF-like motif did not affect the interaction of PMCA with Homer1 but inhibited its interaction with Homer2 and increased Ca(2+) clearance by PMCA. These findings reveal an important regulation of PMCA by Homer2 that has a central role on PMCA-mediated Ca(2+) signaling in parotid acinar cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago

    NARCIS (Netherlands)

    Gavrin, A.Y.; Kaiser, B.N.; Geiger, D.; Tyerman, S.D.; Wen, Z.; Bisseling, T.; Fedorova, E.E.

    2014-01-01

    In legume–rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected

  3. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2014-06-01

    Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is displacement of the cytoplasm by large fluid-filled vacuoles derived from macropinosomes. The demise of the cell resembles many forms of necrosis, insofar as there is a loss of metabolic capacity and plasma membrane integrity, without the cell shrinkage and nuclear fragmentation associated with apoptosis. Methuosis was initially defined in glioblastoma cells after ectopic expression of activated Ras, but recent reports have described small molecules that can induce the features of methuosis in a broad spectrum of cancer cells, including those that are resistant to conventional apoptosis-inducing drugs. This review summarizes the available information about the distinguishing morphological characteristics and underlying mechanisms of methuosis. We compare and contrast methuosis with other cytopathological conditions in which accumulation of clear cytoplasmic vacuoles is a prominent feature. Finally, we highlight key questions that need to be answered to determine whether methuosis truly represents a unique form of regulated cell death. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    International Nuclear Information System (INIS)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-01-01

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy

  5. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  6. Organization of the cytoplasmic reticulum in the central vacuole of parenchyma cells in Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Tomasz J. Wodzicki

    2015-01-01

    Full Text Available An elaborate and complex cytoplasmic reticulum composed of fine filaments and lamellae ranging from 0.1 to 4 microns in size is revealed by viewing the central vacuole of onion bulb parenchyma cells with the scanning election microscope. The larger cytoplasmic strands, visible with the light microscope, are composed of numerous smaller filaments (some tubular which might explain the observed bidirectional movement of particles in these larger strands. The finely divided cytoplasmic network of filaments is continuous with the parietal cytoplasm inclosing the vacuolar sap. In these highly vacuolated cells the mass of the protoplast is in the form of an intravacuolar reticulum immersed in the cell sap. The probable significance of the vacuolar sap in relation to physiological processes of the cell is discussed.

  7. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells.

    Science.gov (United States)

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-10-30

    A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 microM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.

  8. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    Directory of Open Access Journals (Sweden)

    Salido Ginés M

    2009-10-01

    Full Text Available Abstract Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.

  9. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    Directory of Open Access Journals (Sweden)

    Luciana Reis AZEVEDO-ALANIS

    2015-10-01

    Full Text Available Although some morphological investigations on aged human sublingual glands (HSG found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated.Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death.Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years; II (31–60, and III (61–90. Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM. Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05.Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001. However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis.Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death.

  10. Prostate specific antigen and acinar density: a new dimension, the "Prostatocrit".

    Science.gov (United States)

    Robinson, Simon; Laniado, Marc; Montgomery, Bruce

    2017-01-01

    Prostate-specific antigen densities have limited success in diagnosing prostate cancer. We emphasise the importance of the peripheral zone when considered with its cellular constituents, the "prostatocrit". Using zonal volumes and asymmetry of glandular acini, we generate a peripheral zone acinar volume and density. With the ratio to the whole gland, we can better predict high grade and all grade cancer. We can model the gland into its acinar and stromal elements. This new "prostatocrit" model could offer more accurate nomograms for biopsy. 674 patients underwent TRUS and biopsy. Whole gland and zonal volumes were recorded. We compared ratio and acinar volumes when added to a "clinic" model using traditional PSA density. Univariate logistic regression was used to find significant predictors for all and high grade cancer. Backwards multiple logistic regression was used to generate ROC curves comparing the new model to conventional density and PSA alone. Prediction of all grades of prostate cancer: significant variables revealed four significant "prostatocrit" parameters: log peripheral zone acinar density; peripheral zone acinar volume/whole gland acinar volume; peripheral zone acinar density/whole gland volume; peripheral zone acinar density. Acinar model (AUC 0.774), clinic model (AUC 0.745) (P=0.0105). Prediction of high grade prostate cancer: peripheral zone acinar density ("prostatocrit") was the only significant density predictor. Acinar model (AUC 0.811), clinic model (AUC 0.769) (P=0.0005). There is renewed use for ratio and "prostatocrit" density of the peripheral zone in predicting cancer. This outperforms all traditional density measurements. Copyright® by the International Brazilian Journal of Urology.

  11. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  12. Calcium controls the formation of vacuoles from mitochondria to regulate microspore development in wheat.

    Science.gov (United States)

    Li, Dong Xiao; Hu, Hai Yan; Li, Gan; Ru, Zhen Gang; Tian, Hui Qiao

    2017-09-01

    Potassium antimonite was used to investigate the localisation of calcium in developing wheat anthers to examine the relationship between Ca 2+ and pollen development. During anther development, calcium precipitate formation increased in anther wall cells prior to microspore mother cell meiosis and appeared in microspores, suggesting the presence of a calcium influx from anther wall cells into the locule. Initially, the precipitates in microspore cytoplasm primarily accumulated in the mitochondria and destroyed their inner membranes (cisterns) to become small vacuoles, which expanded and fused, ultimately becoming a large vacuole during microspore vacuolisation. After microspore division and large vacuole decomposition, many calcium precipitates again accumulated in the small vacuoles, indicating that calcium from the large vacuole moved back into the cytoplasm of bicellular pollen.

  13. Regulation of CCK-induced ERK1/2 activation by PKC epsilon in rat pancreatic acinar cells

    Directory of Open Access Journals (Sweden)

    Chenwei Li

    2017-11-01

    Full Text Available The extracellular signal-regulated kinase ERK1/2 is activated in pancreatic acinar cells by cholecystokinin (CCK and other secretagogues with this activation mediated primarily by protein kinase C (PKC. To identify the responsible PKC isoform, we utilized chemical inhibitors, cell permeant inhibitory peptides and overexpression of individual PKC dominant negative variants by means of adenoviral vectors. While the broad-spectrum PKC inhibitor GF109203X strongly inhibited ERK1/2 activation induced by 100 pM CCK, Go6976 which inhibits the classical PKC isoforms (alpha, beta and gamma, as well as Rottlerin, a specific PKC delta inhibitor, had no inhibitory effect. To test the role of PKC epsilon, we used specific cell permeant peptide inhibitors which block PKC interaction with their intracellular receptors or RACKs. Only PP93 (PKC epsilon peptide inhibitor inhibited CCK-induced ERK1/2 activation, while PP95, PP101 and PP98, which are PKC alpha, delta and zeta peptide inhibitors respectively, had no effect. We also utilized adenovirus to express dominant negative PKC isoforms in pancreatic acini. Only PKC epsilon dominant negative inhibited CCK-induced ERK1/2 activation. Dominant negative PKC epsilon expression similarly blocked the effect of carbachol and bombesin to activate ERK1/2. Immunoprecipitation results demonstrated that CCK can induce an interaction of c-Raf-1 and PKC epsilon, but not that of other isoforms of Raf or PKC. We conclude that PKC epsilon is the isoform of PKC primarily involved with CCK-induced ERK1/2 activation in pancreatic acinar cells.

  14. Role of alveolar topology on acinar flows and convective mixing.

    Science.gov (United States)

    Hofemeier, Philipp; Sznitman, Josué

    2014-06-01

    Due to experimental challenges, computational simulations are often sought to quantify inhaled aerosol transport in the pulmonary acinus. Commonly, these are performed using generic alveolar topologies, including spheres, toroids, and polyhedra, to mimic the complex acinar morphology. Yet, local acinar flows and ensuing particle transport are anticipated to be influenced by the specific morphological structures. We have assessed a range of acinar models under self-similar breathing conditions with respect to alveolar flow patterns, convective flow mixing, and deposition of fine particles (1.3 μm diameter). By tracking passive tracers over cumulative breathing cycles, we find that irreversible flow mixing correlates with the location and strength of the recirculating vortex inside the cavity. Such effects are strongest in proximal acinar generations where the ratio of alveolar to ductal flow rates is low and interalveolar disparities are most apparent. Our results for multi-alveolated acinar ducts highlight that fine 1 μm inhaled particles subject to alveolar flows are sensitive to the alveolar topology, underlining interalveolar disparities in particle deposition patterns. Despite the simplicity of the acinar models investigated, our findings suggest that alveolar topologies influence more significantly local flow patterns and deposition sites of fine particles for upper generations emphasizing the importance of the selected acinar model. In distal acinar generations, however, the alveolar geometry primarily needs to mimic the space-filling alveolar arrangement dictated by lung morphology.

  15. Postmortem acinar autolysis in rat sublingual gland: a morphometric study.

    Science.gov (United States)

    Nery, Leticia Rodrigues; Moreira, Carla Ruffeil; Cestari, Tania Mary; Taga, Rumio; Damante, José Humberto

    2010-01-01

    To analyze and to quantify morphological acinar postmortem changes in rat sublingual glands (SLG). MATERIAL AND METHODSs: Fifty rats were divided into two groups of 25 animals each. Group I was used for morphological and morphometric evaluations and group II for the determination of gland density and processed gland volume. Acinar autolytic changes were studied at 0 (control group), 3, 6, 12 and 24 h postmortem periods. The morphometric analysis of the volume density (Vv) and total volume (Vt) of intact (ia) and autolyzed (aa) acini was performed under light microscopy using a Zeiss II integration grid with 100 symmetrically distributed points. Morphologically, temporal progressive nuclear alterations and gradual loss of the structural architecture of acinar cells were found. Regarding quantitative results, both the Vvaa and the Vvia showed statistically significant differences among all postmortem periods (p0.05), respectively. Vtaa increased from 0.18 mm³ at 0 h to 38.17 mm³ at 12 h, while Vtia showed a decrease from 33.47 mm³ to 0 mm³ between 3-24 h postmortem. Data concerning Vtaa were adjusted by two-variable linear regression, obtaining the equation: y=-3.54+3.38x (r²=0.90). The Vtaa growth rate calculated by this equation was 3.38 mm³/h between 0-12 h. Acinar autolysis on rat SLG demonstrated the most significant signs during the first 6 h postmortem and was widely spread through the gland at 12 h.

  16. Pleiotropic Actions of Helicobacter pylori Vacuolating Cytotoxin, VacA

    OpenAIRE

    Isomoto, Hajime; Moss, Joel; Hirayama, Toshiya

    2010-01-01

    Helicobacter pylori produces a vacuolating cytotoxin, VacA, and most virulent H. pylori strains secrete VacA. VacA binds to two types of receptor-like protein tyrosine phosphatase (RPTP), RPTPα and RPTPβ, on the surface of host cells. VacA bound to RPTPβ, relocates and concentrates in lipid rafts in the plasma membrane. VacA causes vacuolization, membrane anion-selective channel and pore formation, and disruption of endosomal and lysosomal activity in host cells. Secreted VacA is processed in...

  17. Determination of Glutathione and Its Redox Status in Isolated Vacuoles of Red Beetroot Cells

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2016-02-01

    Full Text Available The glutathione of the red beetroot vacuoles (Beta vulgaris L. was measured using three well-known methods: the spectrofluorimetric method with orthophthalic aldehyde (OPT; the spectrophotometric method with 5.5'-dithiobis-2-nitrobenzoic acid (DTNB; the high-performance liquid chromatography (HPLC. The content of reduced (GSH and oxidized glutathione (GSSG differed depending on the research method. With OPT the concentration of glutathione was: GSH – 0.059 µmol /mg protein; GSSG – 0.019 µmol/mg protein and total glutathione (GSHtotal – 0.097 µmol/mg protein. In the case of determining with DTNB the concentration of glutathione was: GSH – 0.091 µmol/mg protein; GSSG – 0.031 µmol/mg protein; GSHtotal – 0.153 µmol/mg protein. HPLC-defined concentration of glutathione was lower: GSH – 0.039 µmol/mg protein; GSSG – 0.007 µmol/mg protein; GSHtotal – 0.053 µmol/mg protein. Redox ratio of GSH/GSSG was also dependent on the method of determination: with OPT – 3.11; with DTNB – 2.96 and HPLC – 5.57. Redox ratio of glutathione in vacuoles was much lower than the tissue extracts of red beetroot, which, depending on the method of determination, was: 7.23, 7.16 and 9.22. The results showed the vacuoles of red beetroot parenchyma cells contain glutathione. Despite the low value of the redox ratio GSH/GSSG, in vacuoles the pool of reduced glutathione prevailed over the pool of oxidized glutathione.

  18. Vacuolization of mucolipidosis type II mouse exocrine gland cells represents accumulation of autolysosomes.

    Science.gov (United States)

    Boonen, Marielle; van Meel, Eline; Oorschot, Viola; Klumperman, Judith; Kornfeld, Stuart

    2011-04-15

    We previously reported that mice deficient in UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase (mucolipidosis type II or Gnptab -/- mice), the enzyme that initiates the addition of the mannose 6-phosphate lysosomal sorting signal on acid hydrolases, exhibited extensive vacuolization of their exocrine gland cells, while the liver, brain, and muscle appeared grossly unaffected. Similar pathological findings were observed in several exocrine glands of patients with mucolipidosis II. To understand the basis for this cell type-specific abnormality, we analyzed these tissues in Gnptab -/- mice using a combined immunoelectron microscopy and biochemical approach. We demonstrate that the vacuoles in the exocrine glands are enlarged autolysosomes containing undigested cytoplasmic material that accumulate secondary to deficient lysosomal function. Surprisingly, the acid hydrolase levels in these tissues ranged from normal to modestly decreased, in contrast to skin fibroblasts, which accumulate enlarged lysosomes and/or autolysosomes also but exhibit very low levels of acid hydrolases. We propose that the lysosomal defect in the exocrine cells is caused by the combination of increased secretion of the acid hydrolases via the constitutive pathway along with their entrapment in secretory granules. Taken together, our results provide new insights into the mechanisms of the tissue-specific abnormalities seen in mucolipidosis type II.

  19. Megamitochondria in the serous acinar cells of the submandibular gland of the neotropical fruit bat, Artibeus obscurus.

    Science.gov (United States)

    Tandler, B; Nagato, T; Phillips, C J

    1997-05-01

    As part of a continuing investigation of the comparative ultrastructure of chiropteran salivary glands, we examined the submandibular glands of eight species of neotropical fruit bats in the genus Artibeus. We previously described secretory granules of unusual substructure in the seromucous demilunar cells of this organ in some species in this genus. In the present study, we turned our attention to the serous acinar cells in the same glands. Specimens of eight species of Artibeus were collected in neotropical localities. Salivary glands were extirpated in the field and thin slices were fixed by immersion in triple aldehyde-DMSO or in modified half-strength Karnovsky's fixative. Tissues were further processed for electron microscopy by conventional means. In contrast to seromucous cells, which exhibit species-specific diversification in bats of this genus, the secretory apparatus and secretory granules in the serous acinar cells are highly conserved across all seven species. The single exception involves the mitochondria in one species. In this instance, some of the serous cell mitochondria in Artibeus obscurus are modified into megamitochondria. Such organelles usually have short, peripheral cristae; a laminar inclusion is present in the matrix compartment of every outsized organelle. Inclusions of this nature never are present in normal-size mitochondria in the serous cells. None of the megamitochondria were observed in the process of degeneration. The giant mitochondria in A. obscurus have a matrical structure that is radically different from that of the only other megamitochondria reported to occur in bat salivary glands. The factors that lead to variation in megamitochondrial substructure in different species, as well as the functional capacities of such giant organelles, are unknown.

  20. Intense pseudotransport of a cationic drug mediated by vacuolar ATPase: Procainamide-induced autophagic cell vacuolization

    International Nuclear Information System (INIS)

    Morissette, Guillaume; Lodge, Robert; Marceau, Francois

    2008-01-01

    Cationic drugs frequently exhibit large apparent volumes of distribution, consistent with various forms of cellular sequestration. The contributions of organelles and metabolic processes that may mimic drug transport were defined in human vascular smooth muscle cells. We hypothesized that procainamide-induced vacuolar cytopathology is driven by intense pseudotransport mediated by the vacuolar (V)-ATPase and pursued the characterization of vesicular trafficking alterations in this model. Large amounts of procainamide were taken up by intact cells (maximal in 2 h, reversible upon washout, apparent K M 4.69 mM; fluorometric determination of cell-associated drug). Procainamide uptake was extensively prevented or reversed by pharmacological inhibition of the V-ATPase with bafilomycin A1 or FR 167356, decreased at low extracellular pH and preceded vacuolar cell morphology. However, the uptake of procainamide was unaffected by mitochondrial poisons that reduced the uptake of rhodamine 6G. Large vacuoles induced by millimolar procainamide were labeled with the late endosome/lysosome markers Rab7 and CD63 and the autophagy effector LC3; their osmotic formation (but not procainamide uptake) was reduced by extracellular mannitol and parallel to LC3 II formation. Procainamide-induced vacuolization is associated with defective endocytosis of fluorophore-labeled bovine serum albumin, but not with induction of the unfolded protein response. The contents of a vacuole subset slowly (≥ 24 h) become positive for Nile red staining (phospholipidosis-like response). V-ATPase-driven ion trapping is a form of intense cation pseudotransport that concerns the uncharged form of the drugs, and is associated with a vacuolar, autophagic and evolutive cytopathology and profound effects on vesicular trafficking

  1. Multimodal approach and long-term survival in a patient with recurrent metastatic acinar cell carcinoma of the pancreas: A case report.

    Science.gov (United States)

    Jauch, Sarah F; Morris, Van K; Jensen, Corey T; Kaseb, Ahmed O

    2016-01-01

    Pancreatic acinar cell carcinoma is an uncommon neoplasm of the exocrine pancreas associated with a poor prognosis, especially when found to be metastatic. Since there are a lack of large studies and prospective, randomized data, no consensus treatment guidelines are available. Here, we report a case of a patient with recurrent metastatic acinar cell carcinoma involving the liver who had presented initially with pancreatic panniculitis. She received chemotherapy with capecitabine and oxaliplatin prior to resection of her primary tumor and liver metastases, after which she experienced a 30 months recurrence-free survival. Upon relapse, she was treated with a combination of capecitabine and oxaliplatin followed by maintenance capecitabine. Now, more than seven years after initial diagnosis, the patient remains stable without evidence of active disease. This case highlights the possibility of therapeutic success even for a patient initially deemed unresectable due to a poor performance status who responded to fluoropyrimidine-based therapy. Copyright © 2015 IAP and EPC. Published by Elsevier India Pvt Ltd. All rights reserved.

  2. Pumping up the volume - vacuole biogenesis in Arabidopsis thaliana.

    Science.gov (United States)

    Krüger, Falco; Schumacher, Karin

    2017-07-08

    Plant architecture follows the need to collect CO 2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Early events of secretory granule formation in the rat parotid acinar cell under the influence of isoproterenol. An ultrastructural and lectin cytochemical study

    Directory of Open Access Journals (Sweden)

    F D’Amico

    2009-12-01

    Full Text Available The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, Glycine max agglutinin (SBA, Arachys hypogaea agglutinin (PNA]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory gran- ules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.

  4. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study.

    Science.gov (United States)

    Azevedo-Alanis, Luciana Reis; Tolentino, Elen de Souza; de Assis, Gerson Francisco; Cestari, Tânia Mary; Lara, Vanessa Soares; Damante, José Humberto

    2015-10-01

    Although some morphological investigations on aged human sublingual glands (HSG) found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated. The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death. 186 cadavers' glands were allocated to age groups: I (0-30 years); II (31-60), and III (61-90). Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM). Data were compared using Mann-Whitney U, Spearman's correlation coefficient, Kruskal-Wallis, and Dunn tests (pautolysis (r=0.38; p=0.0001). However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis. Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death.

  5. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development

    OpenAIRE

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2011-01-01

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends o...

  6. Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments.

    Directory of Open Access Journals (Sweden)

    Coreen Johnson

    Full Text Available Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.

  7. Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.

    Science.gov (United States)

    Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping

    2010-09-07

    Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.

  8. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Science.gov (United States)

    Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2016-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082

  9. The rapid isolation of vacuoles from leaves of crassulacean Acid metabolism plants.

    Science.gov (United States)

    Kringstad, R; Kenyon, W H; Black, C C

    1980-09-01

    A technique is presented for the isolation of vacuoles from Sedum telephium L. leaves. Leaf material is digested enzymically to produce protoplasts rapidly which are partially lysed by gentle osmotic shock and the inclusion of 5 millimolar ethyleneglycol-bis (beta-aminoethyl ether)N,N'-tetraacetic acid in the wash medium. Vacuoles are isolated from the partially lysed protoplasts by brief centrifugation on a three-step Ficoll-400 gradient consisting of 5, 10, and 15% (w/v) Ficoll-400. A majority of the vacuoles accumulate at the 5 to 10% Ficoll interface, whereas a smaller proportion sediments at the 10 to 15% Ficoll-400 interface. The total time required for vacuole isolation is 2 to 2.5 hours, beginning from leaf harvest.The yield of vacuoles is approximately 44%. The major vacuole layer is 15 hours when left in Ficoll; however, dispersion into media of various osmotic concentrations resulted in decreased stability. Addition of mercaptobenzothiazole, CaCl(2), MgCl(2), bovine serum albumin, ethylenediaminetetraacetic acid, polyethylene glycol 600, and KH(2)PO(4) to the vacuole isolation media did not increase the stability of the isolated vacuoles.THIS TECHNIQUE WITH ONLY SLIGHT MODIFICATIONS HAS BEEN USED TO ISOLATE LEAF CELL VACUOLES FROM THE FOLLOWING CRASSULACEAN ACID METABOLISM PLANTS: pineapple, Kalanchoë fedtschenkoi, and Echeveria elegans. Spinach leaves also were used successfully.

  10. The Metalloprotease Mpl Supports Listeria monocytogenes Dissemination through Resolution of Membrane Protrusions into Vacuoles.

    Science.gov (United States)

    Alvarez, Diego E; Agaisse, Hervé

    2016-06-01

    Listeria monocytogenes is an intracellular pathogen that disseminates within the intestinal epithelium through acquisition of actin-based motility and formation of plasma membrane protrusions that project into adjacent cells. The resolution of membrane protrusions into vacuoles from which the pathogen escapes results in bacterial spread from cell to cell. This dissemination process relies on the mlp-actA-plcB operon, which encodes ActA, a bacterial nucleation-promoting factor that mediates actin-based motility, and PlcB, a phospholipase that mediates vacuole escape. Here we investigated the role of the metalloprotease Mpl in the dissemination process. In agreement with previous findings showing that Mpl is required for PlcB activation, infection of epithelial cells with the ΔplcB or Δmpl strains resulted in the formation of small infection foci. As expected, the ΔplcB strain displayed a strong defect in vacuole escape. However, the Δmpl strain showed an unexpected defect in the resolution of protrusions into vacuoles, in addition to the expected but mild defect in vacuole escape. The Δmpl strain displayed increased levels of ActA on the bacterial surface in protrusions. We mapped an Mpl-dependent processing site in ActA between amino acid residues 207 to 238. Similar to the Δmpl strain, the ΔactA207-238 strain displayed increased levels of ActA on the bacterial surface in protrusions. Although the ΔactA207-238 strain displayed wild-type actin-based motility, it formed small infection foci and failed to resolve protrusions into vacuoles. We propose that, in addition to its role in PlcB processing and vacuole escape, the metalloprotease Mpl is required for ActA processing and protrusion resolution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient

    Directory of Open Access Journals (Sweden)

    Sarah Pfrommer

    2013-09-01

    Full Text Available Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life.

  12. Raman Microspectroscopy of the Yeast Vacuoles

    Czech Academy of Sciences Publication Activity Database

    Bednárová, Lucie; Palacký, J.; Bauerová, Václava; Hrušková-Heidingsfeldová, Olga; Pichová, Iva; Mojzeš, P.

    2012-01-01

    Roč. 27, 5-6 (2012), s. 503-507 ISSN 0712-4813 R&D Projects: GA ČR GAP208/10/0376; GA ČR GA310/09/1945 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman microspectroscopy * living cell * yeast * vacuole * chemical composition * polyphospate * Candida albicans Subject RIV: CE - Biochemistry Impact factor: 0.530, year: 2012

  13. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  14. Differential Induction of Cytoplasmic Vacuolization and Methuosis by Novel 2-Indolyl-Substituted Pyridinylpropenones.

    Science.gov (United States)

    Trabbic, Christopher J; Dietsch, Heather M; Alexander, Evan M; Nagy, Peter I; Robinson, Michael W; Overmeyer, Jean H; Maltese, William A; Erhardt, Paul W

    2014-01-09

    Because many cancers harbor mutations that confer resistance to apoptosis, there is a need for therapeutic agents that can trigger alternative forms of cell death. Methuosis is a novel form of non-apoptotic cell death characterized by accumulation of vacuoles derived from macropinosomes and endosomes. Previous studies identified an indole-based chalcone, 3-(5-methoxy-2-methylindol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), that induces methuosis in human cancer cells. Herein, we describe the synthesis of related 2-indolyl substituted pyridinylpropenones and their effects on U251 glioblastoma cells. Increasing the size of the 2-indolyl substituent substantially reduces growth inhibitory activity and cytotoxicity, but does not prevent cell vacuolization. Computational models suggest that the results are not due to steric-driven conformational effects. The unexpected uncoupling of vacuolization and cell death implies that the relationship between endosomal perturbations and methuotic cell death is more complex than previously realized. The new series of compounds will be useful in further defining the molecular and cellular mechanisms underlying methuosis.

  15. Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression

    Directory of Open Access Journals (Sweden)

    Rute M.M. Ferreira

    2017-10-01

    Full Text Available The cell of origin of pancreatic ductal adenocarcinoma (PDAC has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs, duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development.

  16. Mixed acinar-endocrine carcinoma of the pancreas: new clinical and pathological features in a contemporary series.

    Science.gov (United States)

    Yu, Run; Jih, Lily; Zhai, Jing; Nissen, Nicholas N; Colquhoun, Steven; Wolin, Edward; Dhall, Deepti

    2013-04-01

    The objective of this study was to characterize the novel clinical and pathological features of mixed acinar-endocrine carcinoma of the pancreas. This was a retrospective review of medical records and surgical pathology specimens of patients with a diagnosis of mixed acinar-endocrine carcinoma of the pancreas at Cedars-Sinai Medical Center between 2005 and 2011. Additional immunohistochemistry was performed on the specimens of some patients. Five patients were identified. The median age at presentation was 74 years (range, 59-89 years), and all patients were male. The presenting symptoms were all related to tumor mass effects. The median size of the tumor was 10 cm (range, 3.9-16 cm). Preoperative clinical diagnosis aided by fine-needle aspiration biopsy was incorrect in all 5 cases. Most tumors (3/5) exhibited predominantly endocrine differentiation without hormonal production. Only 10% to 30% of cells were truly amphicrine, whereas most were differentiated into either endocrine or acinar phenotype. The clinical behavior ranged from moderate to aggressive with postoperative survival from 2.5 months to more than 3 years. Four patients received neoadjuvant or adjuvant chemotherapy with variable responses. Mixed acinar-endocrine carcinoma of the pancreas appears to be not uncommon in men, may harbor predominantly endocrine component, is often misdiagnosed by cytology, and exhibits variable clinical behavior. Mixed acinar-endocrine carcinoma of the pancreas should be considered in older patients with sizable pancreatic mass and may warrant aggressive surgical resection and chemotherapy.

  17. Shigella subverts the host recycling compartment to rupture its vacuole.

    Science.gov (United States)

    Mellouk, Nora; Weiner, Allon; Aulner, Nathalie; Schmitt, Christine; Elbaum, Michael; Shorte, Spencer L; Danckaert, Anne; Enninga, Jost

    2014-10-08

    Shigella enters epithlial cells via internalization into a vacuole. Subsequent vacuolar membrane rupture allows bacterial escape into the cytosol for replication and cell-to-cell spread. Bacterial effectors such as IpgD, a PI(4,5)P2 phosphatase that generates PI(5)P and alters host actin, facilitate this internalization. Here, we identify host proteins involved in Shigella uptake and vacuolar membrane rupture by high-content siRNA screening and subsequently focus on Rab11, a constituent of the recycling compartment. Rab11-positive vesicles are recruited to the invasion site before vacuolar rupture, and Rab11 knockdown dramatically decreases vacuolar membrane rupture. Additionally, Rab11 recruitment is absent and vacuolar rupture is delayed in the ipgD mutant that does not dephosphorylate PI(4,5)P₂ into PI(5)P. Ultrastructural analyses of Rab11-positive vesicles further reveal that ipgD mutant-containing vacuoles become confined in actin structures that likely contribute to delayed vacular rupture. These findings provide insight into the underlying molecular mechanism of vacuole progression and rupture during Shigella invasion. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    Isobe, Ichiro; Maeno, Yoshitaka; Nagao, Masataka; Iwasa, Mineo; Koyama, Hiroyoshi; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun

    2003-01-01

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  19. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices

    Directory of Open Access Journals (Sweden)

    Goldenberg Anna

    2006-06-01

    Full Text Available Abstract Background Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV which serves to match lung perfusion to ventilation. The underlying mechanisms are not fully resolved yet. The major vascular segment contributing to HPV, the intra-acinar artery, is mostly located in that part of the lung that cannot be selectively reached by the presently available techniques, e.g. hemodynamic studies of isolated perfused lungs, recordings from dissected proximal arterial segments or analysis of subpleural vessels. The aim of the present study was to establish a model which allows the investigation of HPV and its underlying mechanisms in small intra-acinar arteries. Methods Intra-acinar arteries of the mouse lung were studied in 200 μm thick precision-cut lung slices (PCLS. The organisation of the muscle coat of these vessels was characterized by α-smooth muscle actin immunohistochemistry. Basic features of intra-acinar HPV were characterized, and then the impact of reactive oxygen species (ROS scavengers, inhibitors of the respiratory chain and Krebs cycle metabolites was analysed. Results Intra-acinar arteries are equipped with a discontinuous spiral of α-smooth muscle actin-immunoreactive cells. They exhibit a monophasic HPV (medium gassed with 1% O2 that started to fade after 40 min and was lost after 80 min. This HPV, but not vasoconstriction induced by the thromboxane analogue U46619, was effectively blocked by nitro blue tetrazolium and diphenyleniodonium, indicating the involvement of ROS and flavoproteins. Inhibition of mitochondrial complexes II (3-nitropropionic acid, thenoyltrifluoroacetone and III (antimycin A specifically interfered with HPV, whereas blockade of complex IV (sodium azide unspecifically inhibited both HPV and U46619-induced constriction. Succinate blocked HPV whereas fumarate had minor effects on vasoconstriction. Conclusion This study establishes the first model for investigation of basic characteristics of HPV

  20. Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis.

    Science.gov (United States)

    Puchkov, Evgeny O

    2010-06-01

    In the vacuoles of Saccharomyces cerevisiae yeast cells, vividly moving insoluble polyphosphate complexes (IPCs) movement of the IPCs and to evaluate the viscosity in the vacuoles using the obtained data. Studies were conducted on S. cerevisiae cells stained by DAPI and fluorescein isothyocyanate-labelled latex microspheres, using fluorescence microscopy combined with computer image analysis (ImageJ software, NIH, USA). IPC movement was photorecorded and shown to be Brownian motion. On latex microspheres, a methodology was developed for measuring a fluorescing particle's two-dimensional (2D) displacements and its size. In four yeast cells, the 2D displacements and sizes of the IPCs were evaluated. Apparent viscosity values in the vacuoles of the cells, computed by the Einstein-Smoluchowski equation using the obtained data, were found to be 2.16 +/- 0.60, 2.52 +/- 0.63, 3.32 +/- 0.9 and 11.3 +/- 1.7 cP. The first three viscosity values correspond to 30-40% glycerol solutions. The viscosity value of 11.3 +/- 1.7 cP was supposed to be an overestimation, caused by the peculiarities of the vacuole structure and/or volume in this particular cell. This conclusion was supported by the particular quality of the Brownian motion trajectories set in this cell as compared to the other three cells.

  1. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation

    International Nuclear Information System (INIS)

    Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • The effect of maternal exposure to HCP on rat hippocampal neurogenesis was examined. • HCP induces myelin vacuolation of nerve tracts in the septal–hippocampal pathway. • Myelin changes suppress Chrnb2-mediated cholinergic inputs to the dentate gyrus. • SGZ apoptosis occurs via the mitochondrial pathway and targets type-2b cells. • Dysfunction of cholinergic inputs is related to type-2b SGZ cell apoptosis. - Abstract: Hexachlorophene (HCP) is known to induce myelin vacuolation corresponding to intramyelinic edema of nerve fibers in the central and peripheral nervous system in animals. This study investigated the effect of maternal exposure to HCP on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 100, or 300 ppm HCP in the diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, the numbers of T box brain 2 + progenitor cells and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling + apoptotic cells in the hippocampal subgranular zone (SGZ) decreased in female offspring at 300 ppm, which was accompanied by myelin vacuolation and punctate tubulin beta-3 chain staining of nerve fibers in the hippocampal fimbria. In addition, transcript levels of the cholinergic receptor, nicotinic beta 2 (Chrnb2) and B-cell CLL/lymphoma 2 (Bcl2) decreased in the dentate gyrus. HCP-exposure did not alter the numbers of SGZ proliferating cells and reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)-ergic interneuron subpopulations in the dentate hilus on PND 21 and PND 77. Although some myelin vacuolation remained, all other changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77. These results suggest that maternal HCP exposure reversibly decreases type-2b intermediate-stage progenitor cells via the mitochondrial apoptotic pathway in offspring hippocampal neurogenesis at 300 ppm HCP. Neurogenesis may be affected by dysfunction

  2. Solo, a RhoA-targeting guanine nucleotide exchange factor, is critical for hemidesmosome formation and acinar development in epithelial cells.

    Science.gov (United States)

    Fujiwara, Sachiko; Matsui, Tsubasa S; Ohashi, Kazumasa; Deguchi, Shinji; Mizuno, Kensaku

    2018-01-01

    Cell-substrate adhesions are essential for various physiological processes, including embryonic development and maintenance of organ functions. Hemidesmosomes (HDs) are multiprotein complexes that attach epithelial cells to the basement membrane. Formation and remodeling of HDs are dependent on the surrounding mechanical environment; however, the upstream signaling mechanisms are not well understood. We recently reported that Solo (also known as ARHGEF40), a guanine nucleotide exchange factor targeting RhoA, binds to keratin8/18 (K8/K18) intermediate filaments, and that their interaction is important for force-induced actin and keratin cytoskeletal reorganization. In this study, we show that Solo co-precipitates with an HD protein, β4-integrin. Co-precipitation assays revealed that the central region (amino acids 330-1057) of Solo binds to the C-terminal region (1451-1752) of β4-integrin. Knockdown of Solo significantly suppressed HD formation in MCF10A mammary epithelial cells. Similarly, knockdown of K18 or treatment with Y-27632, a specific inhibitor of Rho-associated kinase (ROCK), suppressed HD formation. As Solo knockdown or Y-27632 treatment is known to disorganize K8/K18 filaments, these results suggest that Solo is involved in HD formation by regulating K8/K18 filament organization via the RhoA-ROCK signaling pathway. We also showed that knockdown of Solo impairs acinar formation in MCF10A cells cultured in 3D Matrigel. In addition, Solo accumulated at the site of traction force generation in 2D-cultured MCF10A cells. Taken together, these results suggest that Solo plays a crucial role in HD formation and acinar development in epithelial cells by regulating mechanical force-induced RhoA activation and keratin filament organization.

  3. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar CellsSummary

    Directory of Open Access Journals (Sweden)

    Scott W. Messenger

    2015-11-01

    Full Text Available Background & Aims: Pancreatic acinar cells have an expanded apical endosomal system, the physiologic and pathophysiologic significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate [PI(3,5P2] is an essential phospholipid generated by phosphatidylinositol 3-phosphate 5-kinase (PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI3P. PI(3,5P2 is necessary for maturation of early endosomes (EE to late endosomes (LE. Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Methods: Inhibition of EE to LE trafficking was achieved using pharmacologic inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1, and trypsinogen activation in response to supramaximal cholecystokinin (CCK-8, bile acids, and cigarette toxin was determined. Results: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to supramaximal CCK-8, tobacco toxin, and bile salts in both rodent and human acini. Conclusions: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular

  4. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    International Nuclear Information System (INIS)

    Polatnick, J.; Wool, S.H.

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated [ 3 H] uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity. (Author)

  5. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    Energy Technology Data Exchange (ETDEWEB)

    Polatnick, J.; Wool, S.H. (United States Department of Agriculture, Science and Education, Greenport, New York (USA). Agricultural Research, Plum Island Animal Disease Center)

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated (/sup 3/H) uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity.

  6. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Jr., Billy W. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  7. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.

    Science.gov (United States)

    Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad

    2014-11-01

    Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Phosphorylated intermediate of (Ca2+ + K+)-stimulated Mg2+-dependent transport ATPase in endoplasmic reticulum from rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Imamura, K.; Schulz, I.

    1985-01-01

    Formation and decomposition of the phosphorylated intermediate of endoplasmic reticulum (Ca 2+ + Mg 2+ )-ATPase from pancreatic acinar cells have been studied using lithium dodecyl sulfate- and tetradecyltrimethylammonium bromide-polyacrylamide gel electrophoresis. Incorporation of 32 P from [gamma- 32 P]ATP is Ca 2+ -dependent (approximate Km for free [Ca 2+ ] = 2-3 x 10(-8) mol/liter). Formation of the 100-kDa phosphoprotein is rapid, reaching maximal 32 P incorporation within 1 s at room temperature. At 4 degrees C, phosphorylation is slower and dephosphorylation is drastically decreased. For dephosphorylation, Mg 2+ and monovalent cations such as K + or Na + are necessary. Vanadate inhibits both 32 P incorporation and 32 P liberation dose dependently (Km = 3 x 10(-6) mol/liter), whereas mitochondrial inhibitors and ouabain have no effect. The phosphoprotein is stable at pH 2 and destabilizes with increasing pH being completely decomposed at pH 9. Reduction of 32 P incorporation in the presence of high concentrations of cold ATP and hydroxylamine suggests formation of acylphosphate present in the ATPase intermediate. The characteristics of Ca 2+ , cation, and pH dependencies of the ATPase activity are similar to those previously described for MgATP-dependent Ca 2+ transport into rough endoplasmic reticulum from pancreatic acinar cells. The data suggest that the 100-kDa phosphoprotein as described in this study is the intermediate of this Ca2+ transport ATPase

  9. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers.

    Science.gov (United States)

    La Rosa, Stefano; Bernasconi, Barbara; Vanoli, Alessandro; Sciarra, Amedeo; Notohara, Kenji; Albarello, Luca; Casnedi, Selenia; Billo, Paola; Zhang, Lizhi; Tibiletti, Maria Grazia; Sessa, Fausto

    2018-05-02

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.

  10. THE TONOPLAST TRANSPORT SYSTEMS OF PLANT VACUOLES AND THEIR POTENTIAL APPLICATION IN BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    S. V. Isayenkov

    2013-06-01

    Full Text Available The pivotal role of plant vacuoles in plant survival was discussed in the review. Particularly, the providing of cellular turgor, accumulation of inorganic osmolytes and nutrients are the primary tasks of these cellular organelles. The main mechanisms of tonoplast transport systems were described. The known transport pathways of minerals, heavy metals, vitamins and other organic compounds were classified and outlined. The main systems of membrane vacuolar transport were reviewed. The outline of the physiological functions and features of vacuolar membrane transport proteins were performed. The physiological role of transport of minerals, nutrients and other compounds into vacuoles were discussed. This article reviews the main types of plant vacuoles and their functional role in plant cell. Current state and progress in vacuolar transport research was outlined. The examples of application for rinciples and mechanisms of vacuolar membrane transport in plant biotechnology were iven. The perspectives and approaches in plant and food biotechnology concerning transport and physiology of vacuoles are discussed.

  11. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  12. COMPUTER-AIDED DETECTION OF ACINAR SHADOWS IN CHEST RADIOGRAPHS

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2013-05-01

    Full Text Available Despite the technological advances in medical diagnosis, accurate detection of infectious tuberculosis (TB still poses challenges due to complex image features and thus infectious TB continues to be a public health problem of global proportions. Currently, the detection of TB is mainly conducted visually by radiologists examining chest radiographs (CXRs. To reduce the backlog of CXR examination and provide more precise quantitative assessment, computer-aided detection (CAD systems for potential lung lesions have been increasingly adopted and commercialized for clinical practice. CADs work as supporting tools to alert radiologists on suspected features that could have easily been neglected. In this paper, an effective CAD system aimed for acinar shadow regions detection in CXRs is proposed. This system exploits textural and photometric features analysis techniques which include local binary pattern (LBP, grey level co-occurrence matrix (GLCM and histogram of oriented gradients (HOG to analyze target regions in CXRs. Classification of acinar shadows using Adaboost is then deployed to verify the performance of a combination of these techniques. Comparative study in different image databases shows that the proposed CAD system delivers consistent high accuracy in detecting acinar shadows.

  13. Canine mammary minute oncocytomas with neuroendocrine differentiation associated with multifocal acinar cell oncocytic metaplasia.

    Science.gov (United States)

    Nagahara, Rei; Kimura, Masayuki; Itahashi, Megu; Sugahara, Go; Kawashima, Masashi; Murayama, Hirotada; Yoshida, Toshinori; Shibutani, Makoto

    2016-11-01

    Two solitary and minute tumors of 1 and 1.5 mm diameter were identified by microscopy in the left fourth mammary gland of a 13-year-old female Labrador Retriever dog, in addition to multiple mammary gland tumors. The former tumors were well circumscribed and were composed of small-to-large polyhedral neoplastic oncocytes with finely granular eosinophilic cytoplasm, and were arranged in solid nests separated by fine fibrovascular septa. Scattered lumina of variable sizes containing eosinophilic secretory material were evident. Cellular atypia was minimal, and no mitotic figures were visible. One tumor had several oncocytic cellular foci revealing cellular transition, with perivascular pseudorosettes consisting of columnar epithelial cells surrounding the fine vasculature. Scattered foci of mammary acinar cell hyperplasia showing oncocytic metaplasia were also observed. Immunohistochemically, the cytoplasm of neoplastic cells of the 2 microtumors showed diffuse immunoreactivity to anti-cytokeratin antibody AE1/AE3, and finely granular immunoreactivity for 60-kDa heat shock protein, mitochondrial membrane ATP synthase complex V beta subunit, and chromogranin A. One tumor also had oncocytic cellular foci forming perivascular pseudorosettes showing cellular membrane immunoreactivity for neural cell adhesion molecule. The tumors were negative for smooth muscle actin, neuron-specific enolase, vimentin, desmin, S100, and synaptophysin. Ultrastructural observation confirmed the abundant mitochondria in the cytoplasm of both neoplastic and hyperplastic cells, the former cells also having neuroendocrine granule-like electron-dense bodies. From these results, our case was diagnosed with mammary oncocytomas accompanied by neuroendocrine differentiation. Scattered foci of mammary oncocytosis might be related to the multicentric occurrence of these oncocytomas. © 2016 The Author(s).

  14. Effects of Baicalin on inflammatory mediators and pancreatic acinar cell apoptosis in rats with sever acute pancreatitis

    Directory of Open Access Journals (Sweden)

    zhang xiping

    2009-02-01

    Full Text Available

    • BACKGROUND: To investigate the effects of Baicalin and Octreotide on inflammatory mediators and pancreatic acinar cells apoptosis of rats with severe acute pancreatitis (SAP.
    • METHODS: SD rats were randomly divided into sham operated group (I group, model control group (II group, Baicalin treated group (III group and Octreotide treated group (IV group. Each group was also divided into subgroup of 3, 6 and 12 h (n = 15. The mortality rate, ascites/body weight ratio as well as the level of endotoxin, NO and ET-1 in blood were measured. The pathological severity score of pancreas, apoptotic indexes, and expression levels of Bax and Bcl-2 proteins in each group were investigated.
    • RESULTS: The survival rate of III and IV group has a significant difference compared with II group (P12 h < 0.05. The ascites volume, contents of inflammatory mediators in blood and pathological severity score of pancreas of III and IV group declined at different degrees compared to II group (P < 0.05, P < 0.01 or P < 0.001. Apoptotic index in III group was significantly higher than that in II group at 3 and 6 h (P3, 6 h < 0.05. Apoptotic index in IV group was significantly higher than that in II group at pancreatic tail at 6 h (P6 h < 0.05. Expression level of Bax in III group was significantly higher than that in II group (pancreatic head P3 h,6 h < 0.01, pancreatic tail P3 h < 0.001.
    • CONCLUSIONS: Compared with Octreotide in the treatment of SAP, the protective mechanisms of Baicalin include reducing the excessive inflammatory mediators’ release, inducing the pancreatic acinar cells apoptosis.
    • KEY WORDS: Severe acute pancreatitis, baicalin, octreotide, inflammatory mediators, apoptosis, tissue microarrays.

  15. Isolation of Protein Storage Vacuoles and Their Membranes.

    Science.gov (United States)

    Shimada, Tomoo; Hara-Nishimura, Ikuko

    2017-01-01

    Protein-storage vacuoles (PSVs) are specialized vacuoles that sequester large amounts of storage proteins. During seed development, PSVs are formed de novo and/or from preexisting lytic vacuoles. Seed PSVs can be subdivided into four distinct compartments: membrane, globoid, matrix, and crystalloid. In this chapter, we introduce easy methods for isolation of PSVs and their membranes from pumpkin seeds. These methods facilitate the identification and characterization of PSV components.

  16. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-01-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C 60 OH x ), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.

  17. Water permeability of acinar cell membranes in the isolated perfused rabbit mandibular salivary gland.

    Science.gov (United States)

    Steward, M C; Seo, Y; Rawlings, J M; Case, R M

    1990-01-01

    1. The diffusive water permeability of epithelial cell membranes in the perfused rabbit mandibular salivary gland was measured at 37 degrees C by a 1H nuclear magnetic resonance relaxation method using an extracellular relaxation reagent, gadolinium diethylenetriaminepentaacetic acid (Gd(DTPA)). 2. In glands perfused with a HEPES-buffered solution containing 10 mmol l-1 Gd(DTPA), the spin-lattice (T1) relaxation of the water protons showed two exponential components. The water compartment responsible for the slower component corresponded in magnitude to 71 +/- 5% of the wet weight of the gland, and was attributed to the exchangeable intracellular water of the acinar cells. 3. The rate constant for water efflux from the cells was estimated to be 4.1 +/- 0.1 s-1 which would be consistent with a diffusive membrane permeability (Pd) of approximately 3 x 10(-3) cm s-1. Stimulation with acetylcholine (10(-6) mol l-1) did not cause any detectable change in membrane water permeability. 4. Since the basolateral membrane probably provides the main pathway for water efflux, the osmotic water permeability of this barrier (expressed per gland) was estimated to be less than 6.2 cm3 s-1. This would be insufficient to account for the generation of a near-isosmotic fluid at the flow rates observed during secretion, and suggests that a substantial fraction of the flow of water occurs via a paracellular route. PMID:1966053

  18. Expression of alveolar type II cell markers in acinar adenocarcinomas and adenoid cystic carcinomas arising from segmental bronchi. A study in a heterotopic bronchogenic carcinoma model in dogs.

    Science.gov (United States)

    TenHave-Opbroek, A. A.; Hammond, W. G.; Benfield, J. R.; Teplitz, R. L.; Dijkman, J. H.

    1993-01-01

    The type II alveolar epithelial cell is one of two pluripotential stem cell phenotypes in normal mammalian lung morphogenesis; cells manifesting this phenotype have been found to constitute bronchioloalveolar regions of canine adenocarcinomas. We now studied type II cell expression in canine acinar adenocarcinomas and adenoid cystic (bronchial gland) carcinomas, using the same bronchogenic carcinoma model (subcutaneous bronchial autografts treated with 3-methylcholanthrene). Distinctive features of type II cells are the approximately cuboid cell shape, large and roundish nucleus, immunofluorescent staining of the cytoplasm for the surfactant protein SP-A, and presence of multilamellar bodies or their precursory forms. Cells with these type II cell characteristics were found in the basal epithelial layer of all tumor lesions and in upper layers as far as the lumen, singly or in clusters; they were also found in early invasive carcinomatous lesions but not in bronchial glands or bronchial epithelium before carcinogen exposure. Immunoblots of tumor homogenates showed reactive proteins within size classes of SP-A (28 to 36 kd) or its dimeric form (56 to 72 kd). These findings and those previously reported are consistent with the concept that chemical carcinogenesis in the adult bronchial epithelium may lead to type II cell carcinomas of varying glandular (acinar, adenoidcystic or bronchioloalveolar) growth patterns. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 PMID:8386445

  19. Initiation and elimination of vacuoles in microencapsulated shells

    International Nuclear Information System (INIS)

    Du Kai; You Dan

    2000-01-01

    Two mechanisms of vacuole formation in microencapsulated micro-shells wall are introduced. It is verified that phase separation of trace amount of water in the organic solvent is the most possible course of vacuole formation

  20. Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRASG12D-driven Pancreatic TumorigenesisSummary

    Directory of Open Access Journals (Sweden)

    Nicolas Chuvin

    2017-09-01

    Full Text Available Background & Aims: Transforming growth factor beta (TGFβ acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFβ activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFβ-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression, and its effects on acinar cells have so far remained elusive. Methods: We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFβ receptor (TβRICA in the pancreatic acinar compartment. Results: We observed that TβRICA expression induced acinar-to-ductal metaplasia (ADM reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous pancreatic intraepithelial neoplasia. This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, whereas at the molecular level, we evidenced a modulation in the expression of transcription factors such as Hnf1β, Sox9, and Hes1. Conclusions: We demonstrate that TGFβ pathway activation plays a crucial role in pancreatic tumor initiation through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients. Keywords: Pancreas, Cancer, TGFβ, Acinar-to-Ductal Metaplasia, KRASG12D

  1. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Science.gov (United States)

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  2. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Directory of Open Access Journals (Sweden)

    Kazunari Momma

    Full Text Available Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  3. LMW-E/CDK2 Deregulates Acinar Morphogenesis, Induces Tumorigenesis, and Associates with the Activated b-Raf-ERK1/2-mTOR Pathway in Breast Cancer Patients

    Science.gov (United States)

    Duong, MyLinh T.; Akli, Said; Wei, Caimiao; Wingate, Hannah F.; Liu, Wenbin; Lu, Yiling; Yi, Min; Mills, Gordon B.; Hunt, Kelly K.; Keyomarsi, Khandan

    2012-01-01

    Elastase-mediated cleavage of cyclin E generates low molecular weight cyclin E (LMW-E) isoforms exhibiting enhanced CDK2–associated kinase activity and resistance to inhibition by CDK inhibitors p21 and p27. Approximately 27% of breast cancers express high LMW-E protein levels, which significantly correlates with poor survival. The objective of this study was to identify the signaling pathway(s) deregulated by LMW-E expression in breast cancer patients and to identify pharmaceutical agents to effectively target this pathway. Ectopic LMW-E expression in nontumorigenic human mammary epithelial cells (hMECs) was sufficient to generate xenografts with greater tumorigenic potential than full-length cyclin E, and the tumorigenicity was augmented by in vivo passaging. However, cyclin E mutants unable to interact with CDK2 protected hMECs from tumor development. When hMECs were cultured on Matrigel, LMW-E mediated aberrant acinar morphogenesis, including enlargement of acinar structures and formation of multi-acinar complexes, as denoted by reduced BIM and elevated Ki67 expression. Similarly, inducible expression of LMW-E in transgenic mice generated hyper-proliferative terminal end buds resulting in enhanced mammary tumor development. Reverse-phase protein array assay of 276 breast tumor patient samples and cells cultured on monolayer and in three-dimensional Matrigel demonstrated that, in terms of protein expression profile, hMECs cultured in Matrigel more closely resembled patient tissues than did cells cultured on monolayer. Additionally, the b-Raf-ERK1/2-mTOR pathway was activated in LMW-E–expressing patient samples, and activation of this pathway was associated with poor disease-specific survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (a pan kinase inhibitor targeting b-Raf) effectively prevented aberrant acinar formation in LMW-E–expressing cells by inducing G1/S cell cycle arrest. LMW

  4. Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia.

    Science.gov (United States)

    Ding, Li; Liou, Geou-Yarh; Schmitt, Daniel M; Storz, Peter; Zhang, Jin-San; Billadeau, Daniel D

    2017-09-01

    Acinar-to-ductal metaplasia (ADM) is a reversible epithelial transdifferentiation process that occurs in the pancreas in response to acute inflammation. ADM can rapidly progress towards pre-malignant pancreatic intraepithelial neoplasia (PanIN) lesions in the presence of mutant KRas and ultimately pancreatic adenocarcinoma (PDAC). In the present work, we elucidate the role and related mechanism of glycogen synthase kinase-3beta (GSK-3β) in ADM development using in vitro 3D cultures and genetically engineered mouse models. We show that GSK-3β promotes TGF-α-induced ADM in 3D cultured primary acinar cells, whereas deletion of GSK-3β attenuates caerulein-induced ADM formation and PanIN progression in Kras G12D transgenic mice. Furthermore, we demonstrate that GSK-3β ablation influences ADM formation and PanIN progression by suppressing oncogenic KRas-driven cell proliferation. Mechanistically, we show that GSK-3β regulates proliferation by increasing the activation of S6 kinase. Taken together, these results indicate that GSK-3β participates in early pancreatitis-induced ADM and thus could be a target for the treatment of chronic pancreatitis and the prevention of PDAC progression. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.

    Science.gov (United States)

    Fishler, Rami; Mulligan, Molly K; Sznitman, Josué

    2013-11-15

    Convective respiratory flows in the pulmonary acinus and their influence on the fate of inhaled particles are typically studied using computational fluid dynamics (CFD) or scaled-up experimental models. However, experiments that replicate several generations of the acinar tree while featuring cyclic wall motion have not yet been realized. Moreover, current experiments generally capture only flow dynamics, without inhaled particle dynamics, due to difficulties in simultaneously matching flow and particle dynamics. In an effort to overcome these limitations, we introduce a novel microfluidic device mimicking acinar flow characteristics directly at the alveolar scale. The model features an anatomically-inspired geometry that expands and contracts periodically with five dichotomously branching airway generations lined with alveolar-like cavities. We use micro-particle image velocimetry with a glycerol solution as the carrying fluid to quantitatively characterize detailed flow patterns within the device and reveal experimentally for the first time a gradual transition of alveolar flow patterns along the acinar tree from recirculating to radial streamlines, in support of hypothesized predictions from past CFD simulations. The current measurements show that our microfluidic system captures the underlying characteristics of the acinar flow environment, including Reynolds and Womersley numbers as well as cyclic wall displacements and alveolar flow patterns at a realistic length scale. With the use of air as the carrying fluid, our miniaturized platform is anticipated to capture both particle and flow dynamics and serve in the near future as a promising in vitro tool for investigating the mechanisms of particle deposition deep in the lung. © 2013 Elsevier Ltd. All rights reserved.

  6. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion

    OpenAIRE

    Sundrud, Mark S.; Torres, Victor J.; Unutmaz, Derya; Cover, Timothy L.

    2004-01-01

    Recent evidence indicates that the secreted Helicobacter pylori vacuolating toxin (VacA) inhibits the activation of T cells. VacA blocks IL-2 secretion in transformed T cell lines by suppressing the activation of nuclear factor of activated T cells (NFAT). In this study, we investigated the effects of VacA on primary human CD4+ T cells. VacA inhibited the proliferation of primary human T cells activated through the T cell receptor (TCR) and CD28. VacA-treated Jurkat T cells secreted markedly ...

  7. Effects of Erdosteine on Experimental Acute Pancreatitis Model.

    Science.gov (United States)

    Karapolat, Banu; Karapolat, Sami; Gurleyik, Emin; Yasar, Mehmet

    2017-10-01

    To create acute pancreatitis condition experimentally in rats using cerulein, and to reveal histopathological effects in pancreatic tissue with erdosteine. An experimental study. Department of General Surgery, Duzce University, Turkey, from June to October 2014. Thirty male Wistar albino rats were divided into three groups. No procedures were applied to Group 1. The rats in Group 2 and Group 3 were injected cerulein, to establish an experimental pancreatitis model and the blood amylase and lipase values were examined. The rats in Group 3 were given 10 mg/kg erdosteine. This treatment was continued for another 2 days and the rats were sacrificed. The pancreatic tissues were examined histopathologically for edema, inflammation, acinar necrosis, fat necrosis, and vacuolization. The lipase and amylase values and the histopathological examination of pancreatic tissues evidenced that the experimental acute pancreatitis model was established and edema, inflammation, acinar necrosis, fat necrosis, and vacuolization were observed in the pancreatic tissues. The statistical results suggest that erdosteine can decrease the edema, inflammation, acinar necrosis, fat necrosis and vacuolization scores in the tissues. The severity of acute pancreatitis, induced by cerulein in rats, is reduced with the use of erdosteine.

  8. Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole

    Directory of Open Access Journals (Sweden)

    Lara J. Kohler

    2016-07-01

    Full Text Available Coxiella burnetii replicates in an acidified lysosome-derived vacuole. Biogenesis of the Coxiella-containing vacuole (CCV requires bacterial effector proteins delivered into host cells by the Dot/Icm secretion system. Genetic and cell biological analysis revealed that an effector protein called Cig2 promotes constitutive fusion of autophagosomes with the CCV to maintain this compartment in an autolysosomal stage of maturation. This distinguishes the CCV from other pathogen-containing vacuoles that are targeted by the host autophagy pathway, which typically confers host resistance to infection by delivering the pathogen to a toxic lysosomal environment. By maintaining the CCV in an autolysosomal stage of maturation, Cig2 enabled CCV homotypic fusion and enhanced bacterial virulence in the Galleria mellonella (wax moth model of infection by a mechanism that decreases host tolerance. Thus, C. burnetii residence in an autolysosomal organelle alters host tolerance of infection, which indicates that Cig2-dependent manipulation of a lysosome-derived vacuole influences the host response to infection.

  9. Phenylpropanoid Scent Compounds in Petunia x hybrida Are Glycosylated and Accumulate in Vacuoles

    Science.gov (United States)

    Cna'ani, Alon; Shavit, Reut; Ravid, Jasmin; Aravena-Calvo, Javiera; Skaliter, Oded; Masci, Tania; Vainstein, Alexander

    2017-01-01

    Floral scent has been studied extensively in the model plant Petunia. However, little is known about the intracellular fate of scent compounds. Here, we characterize the glycosylation of phenylpropanoid scent compounds in Petunia x hybrida. This modification reduces scent compounds' volatility, reactivity, and autotoxicity while increasing their water-solubility. Gas chromatography–mass spectrometry (GC–MS) analyses revealed that flowers of petunia cultivars accumulate substantial amounts of glycosylated scent compounds and that their increasing level parallels flower development. In contrast to the pool of accumulated aglycones, which drops considerably at the beginning of the light period, the collective pool of glycosides starts to increase at that time and does not decrease thereafter. The glycoside pool is dynamic and is generated or catabolized during peak scent emission, as inferred from phenylalanine isotope-feeding experiments. Using several approaches, we show that phenylpropanoid scent compounds are stored as glycosides in the vacuoles of petal cells: ectopic expression of Aspergillus niger β-glucosidase-1 targeted to the vacuole resulted in decreased glycoside accumulation; GC–MS analysis of intact vacuoles isolated from petal protoplasts revealed the presence of glycosylated scent compounds. Accumulation of glycosides in the vacuoles seems to be a common mechanism for phenylpropanoid metabolites. PMID:29163617

  10. Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia 1

    OpenAIRE

    Pitarresi, Jason R.; Liu, Xin; Sharma, Sudarshana M.; Cuiti?o, Maria C.; Kladney, Raleigh D.; Mace, Thomas A.; Donohue, Sydney; Nayak, Sunayana G.; Qu, Chunjing; Lee, James; Woelke, Sarah A.; Trela, Stefan; LaPak, Kyle; Yu, Lianbo; McElroy, Joseph

    2016-01-01

    Preclinical studies have suggested that the pancreatic tumor microenvironment both inhibits and promotes tumor development and growth. Here we establish the role of stromal fibroblasts during acinar-to-ductal metaplasia (ADM), an initiating event in pancreatic cancer formation. The transcription factor V-Ets avian erythroblastosis virus E26 oncogene homolog 2 (ETS2) was elevated in smooth muscle actin?positive fibroblasts in the stroma of pancreatic ductal adenocarcinoma (PDAC) patient tissue...

  11. Purification and proteomics of pathogen-modified vacuoles and membranes

    Directory of Open Access Journals (Sweden)

    Jo-Ana eHerweg

    2015-06-01

    Full Text Available Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e. the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.

  12. Examining the impact of grazing on iron remineralization: effect of prey type on digestive vacuole pH

    Science.gov (United States)

    Pritchard, K. R.; Nuester, J.; Twining, B.

    2012-12-01

    Most of the iron available to phytoplankton in high-nutrient, low-chlorophyll areas is regenerated by zooplankton grazers. The extent to which the bioavailability of this regenerated iron is a function of prey-type and the chemical conditions within digestive systems of zooplankton is unknown. The chemical composition of the prey, including silica frustules of diatoms and calcium carbonate coccoliths of cocolithophores, might buffer the acidity within a digestive vacuole and thereby influencing the resulting speciation and bioavailability of regenerated iron. In order to test the effect of prey-type on the chemical condition in the digestive vacuole of the heterotrophic dinoflagellate Oxyrrhis marina, we used the ratiometric fluorescent dye Lysosensor Yellow/Blue DND-160 in conjunction with confocal microscopy to measure and compare digestive vacuole acidity after feeding O. marina with either the diatom Thalassiosira pseudonana, the coccolithophore Emiliana huxleyi, or the chlorophyte Dunaliella tertiolecta. After feeding and loading O. marina with the Lysosensor dye, we recorded the total fluorescence (f) of the wavelength regions λ1=500-555 nm and λ2=410-490 nm using an excitation wavelength of 405 nm, and calculated the Lysosensor fluorescence ratio r=f(λ1)/f(λ2). External calibration curves show that this ratio (r) is inversely related to pH. In addition, we also measured the emission of chlorophyll fluorescence above 640 nm in order to identify prey within the grazers and study the timing chlorophyll degradation in conjunction with vacuole pH. After the initial addition of either prey, O. marina consumed 10 times and 2 times more D. tertiolecta cells than E. huxleyi and T. pseudonana cells, respectively. The clearance of the digestive vacuole measured as the disappearance of chlorophyll fluorescence is ca. twice as long for O. marina feeding on D. tertiolecta than on E. huxleyi or T. pseudonana. Initial r was inversely proportional to prey preference

  13. Vacuolating Cytotoxin of Helicobacter pylori Plays a Role during Colonization in a Mouse Model of Infection

    OpenAIRE

    Salama, Nina R.; Otto, Glen; Tompkins, Lucy; Falkow, Stanley

    2001-01-01

    Helicobacter pylori, the causative agent of gastritis and ulcer disease in humans, secretes a toxin called VacA (vacuolating cytotoxin) into culture supernatants. VacA was initially characterized and purified on the basis of its ability to induce the formation of intracellular vacuoles in tissue culture cells. H. pylori strains possessing different alleles of vacA differ in their ability to express active toxin. Those strains expressing higher toxin levels are correlated with more severe gast...

  14. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lydie Michaillat

    Full Text Available The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.

  15. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    Directory of Open Access Journals (Sweden)

    Verena Ibl

    2014-09-01

    Full Text Available The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  16. Cell survival under nutrient stress is dependent on metabolic conditions regulated by Akt and not by autophagic vacuoles.

    Science.gov (United States)

    Bruno, P; Calastretti, A; Priulla, M; Asnaghi, L; Scarlatti, F; Nicolin, A; Canti, G

    2007-10-01

    Akt activation assists tumor cell survival and promotes resistance to chemotherapy. Here we show that constitutively active Akt (CA-Akt) cells are highly sensitized to cell death induced by nutrient and growth factor deprivation, whereas dominant-negative Akt (DN-Akt) cells have a high rate of survival. The content of autophagosomes in starved CA-Akt cells was high, while DN-Akt cells expressed autophagic vacuoles constitutively, independently of nutrition conditions. Thus Akt down-regulation and downstream events can induce autophagosomes which were not directly determinants of cell death. Biochemical analysis in Akt-mutated cells show that (i) Akt and mTOR proteins were degraded more rapidly than the housekeeping proteins, (ii) mTOR phosphorylation at position Thr(2446) was relatively high in DN-Akt and low in CA-Akt cells, induced by starvation in mock cells only, which suggests reduced autoregulation of these pathways in Akt-mutated cells, (iii) both protein synthesis and protein degradation were significantly higher in starved CA-Akt cells than in starved DN-Akt cells or mock cells. In conclusion, constitutively active Akt, unable to control synthesis and wasting of proteins, accelerates the death of starved cells.

  17. Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells.

    Science.gov (United States)

    Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D

    1993-03-10

    Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.

  18. A Rab-centric perspective of bacterial pathogen-occupied vacuoles.

    Science.gov (United States)

    Sherwood, Racquel Kim; Roy, Craig R

    2013-09-11

    The ability to create and maintain a specialized organelle that supports bacterial replication is an important virulence property for many intracellular pathogens. Living in a membrane-bound vacuole presents inherent challenges, including the need to remodel a plasma membrane-derived organelle into a novel structure that will expand and provide essential nutrients to support replication, while also having the vacuole avoid membrane transport pathways that target bacteria for destruction in lysosomes. It is clear that pathogenic bacteria use different strategies to accomplish these tasks. The dynamics by which host Rab GTPases associate with pathogen-occupied vacuoles provide insight into the mechanisms used by different bacteria to manipulate host membrane transport. In this review we highlight some of the strategies bacteria use to maintain a pathogen-occupied vacuole by focusing on the Rab proteins involved in biogenesis and maintenance of these novel organelles. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    Science.gov (United States)

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  20. New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists.

    Science.gov (United States)

    Docampo, Roberto; Jimenez, Veronica; Lander, Noelia; Li, Zhu-Hong; Niyogi, Sayantanee

    2013-01-01

    While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking. © 2013, Elsevier Inc. All Rights Reserved.

  1. Acinar cell carcinoma of the pancreas presenting as diffuse pancreatic enlargement: Two case reports and literature review.

    Science.gov (United States)

    Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang

    2017-09-01

    Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.

  2. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  3. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    International Nuclear Information System (INIS)

    Tateishi, Yoshihisa; Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-01-01

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by γ-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment

  4. Neuronal vacuolation and spinocerebellar degeneration associated with altered neurotransmission

    Directory of Open Access Journals (Sweden)

    Aggeliki Giannakopoulou

    2017-06-01

    Full Text Available Inherited neurodegenerative disorders are debilitating diseases that occur across different species, such as the domestic dog (Canis lupus familiaris, and many are caused by mutations in the same genes as corresponding human conditions. In the present study, we report an inherited neurodegenerative condition, termed ‘neuronal vacuolation and spinocerebellar degeneration’ (NVSD which affects neonatal or young dogs, mainly Rottweilers, which recently has been linked with the homozygosity for the RAB3GAP1:c.743delC allele. Mutations in human RAB3GAP1 cause Warburg micro syndrome (WARBM, a severe developmental disorder characterized predominantly by abnormalities of the nervous system including axonal peripheral neuropathy. RAB3GAP1 encodes the catalytic subunit of a GTPase activator protein and guanine exchange factor for Rab3 and Rab18 proteins, respectively. Rab proteins are involved in membrane trafficking in the endoplasmic reticulum, autophagy, axonal transport and synaptic transmission. The present study attempts to carry out a detailed histopathological examination of NVSD disease, extending from peripheral nerves to lower brain structures focusing on the neurotransmitter alterations noted in the cerebellum, the major structure affected. NVSD dogs presented with progressive cerebellar ataxia and some clinical manifestations that recapitulate the WARBM phenotype. Neuropathological examination revealed dystrophic axons, neurodegeneration and intracellular vacuolization in specific nuclei. In the cerebellum, severe vacuolation of cerebellar nuclei neurons, atrophy of Purkinje cells, and diminishing of GABAergic and glutamatergic fibres constitute the most striking lesions. The balance of evidence suggests that the neuropathological lesions are a reaction to the altered neurotransmission. The canine phenotype could serve as a model to delineate the disease-causing pathological mechanisms in RAB3GAP1 mutation.

  5. Calcium Signals from the Vacuole

    Directory of Open Access Journals (Sweden)

    Gerald Schönknecht

    2013-10-01

    Full Text Available The vacuole is by far the largest intracellular Ca2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca2+ release and Ca2+ uptake is summarized, and how different vacuolar Ca2+ channels and Ca2+ pumps may contribute to Ca2+ signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca2+ transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca2+ channels that could elicit cytosolic [Ca2+] transients. Typical second messengers, such as InsP3 and cADPR, seem to trigger vacuolar Ca2+ release, but the molecular mechanism of this Ca2+ release still awaits elucidation. Some vacuolar Ca2+ channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca2+ signaling still has to be demonstrated. Ca2+ pumps in addition to establishing long-term Ca2+ homeostasis can shape cytosolic [Ca2+] transients by limiting their amplitude and duration, and may thus affect Ca2+ signaling.

  6. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows

    Science.gov (United States)

    Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803

  7. Semiautomated Segmentation and Measurement of Cytoplasmic Vacuoles in a Neutrophil With General-Purpose Image Analysis Software.

    Science.gov (United States)

    Mizukami, Maki; Yamada, Misaki; Fukui, Sayaka; Fujimoto, Nao; Yoshida, Shigeru; Kaga, Sanae; Obata, Keiko; Jin, Shigeki; Miwa, Keiko; Masauzi, Nobuo

    2016-11-01

    Morphological observation of blood or marrow film is still described nonquantitatively. We developed a semiautomatic method for segmenting vacuoles from the cytoplasm using Photoshop (PS) and Image-J (IJ), called PS-IJ, and measured the relative entire cell area (rECA) and relative areas of vacuoles (rAV) in the cytoplasm of neutrophil with PS-IJ. Whole-blood samples were stored at 4°C with ethylenediaminetetraacetate and in two different preserving manners (P1 and P2). Color-tone intensity levels of neutrophil images were semiautomatically compensated using PS, and then vacuole portions were automatically segmented by IJ. The rAV and rECA were measured by counting pixels by IJ. For evaluating the accuracy in segmentations of vacuoles with PS-IJ, the rAV/rECA ratios calculated with results from PS-IJ were compared with those calculated with human eye and IJ (HE-IJ). The rECA and rAV/ in P1 significantly (P < 0.05, P < 0.05) were enlarged and increased, but did not significantly (P = 0.46, P = 0.21) change in P2. The rAV/rECA ratios by PS-IJ were significantly correlated (r = 0.90, P < 0.01) with those by HE-IJ. PS-IJ method can successfully segment vacuoles and measure the rAV and rECA, becoming a useful tool for quantitative description of morphological observation of blood and marrow film. © 2016 Wiley Periodicals, Inc.

  8. Juliprosopine and juliprosine from prosopis juliflora leaves induce mitochondrial damage and cytoplasmic vacuolation on cocultured glial cells and neurons.

    Science.gov (United States)

    Silva, Victor Diogenes A; Pitanga, Bruno P S; Nascimento, Ravena P; Souza, Cleide S; Coelho, Paulo Lucas C; Menezes-Filho, Noélio; Silva, André Mário M; Costa, Maria de Fátima D; El-Bachá, Ramon S; Velozo, Eudes S; Costa, Silvia L

    2013-12-16

    Prosopis juliflora is a shrub largely used for animal and human consumption. However, ingestion has been shown to induce intoxication in animals, which is characterized by neuromuscular alterations induced by mechanisms that are not yet well understood. In this study, we investigated the cytotoxicity of a total alkaloid extract (TAE) and one alkaloid fraction (F32) obtained from P. juliflora leaves to rat cortical neurons and glial cells. Nuclear magnetic resonance characterization of F32 showed that this fraction is composed of a mixture of two piperidine alkaloids, juliprosopine (majority constituent) and juliprosine. TAE and F32 at concentrations between 0.3 and 45 μg/mL were tested for 24 h on neuron/glial cell primary cocultures. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test revealed that TAE and F32 were cytotoxic to cocultures, and their IC50 values were 31.07 and 7.362 μg/mL, respectively. Exposure to a subtoxic concentration of TAE or F32 (0.3-3 μg/mL) induced vacuolation and disruption of the astrocyte monolayer and neurite network, ultrastructural changes, characterized by formation of double-membrane vacuoles, and mitochondrial damage, associated with changes in β-tubulin III and glial fibrillary acidic protein expression. Microglial proliferation was also observed in cultures exposed to TAE or F32, with increasing levels of OX-42-positive cells. Considering that F32 was more cytotoxic than TAE and that F32 reproduced in vitro the main morphologic and ultrastructural changes of "cara torta" disease, we can also suggest that piperidine alkaloids juliprosopine and juliprosine are primarily responsible for the neurotoxic damage observed in animals after they have consumed the plant.

  9. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

  10. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  11. New Insights into the Roles of Acidocalcisomes and the Contractile Vacuole Complex in Osmoregulation in Protists

    Science.gov (United States)

    Docampo, Roberto; Jimenez, Veronica; Lander, Noelia; Li, Zhu-Hong; Niyogi, Sayantanee

    2013-01-01

    While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking. PMID:23890380

  12. Serratia marcescens Is Able to Survive and Proliferate in Autophagic-Like Vacuoles inside Non-Phagocytic Cells

    Science.gov (United States)

    Colombo, María Isabel; García Véscovi, Eleonora

    2011-01-01

    Serratia marcescens is an opportunistic human pathogen that represents a growing problem for public health, particularly in hospitalized or immunocompromised patients. However, little is known about factors and mechanisms that contribute to S. marcescens pathogenesis within its host. In this work, we explore the invasion process of this opportunistic pathogen to epithelial cells. We demonstrate that once internalized, Serratia is able not only to persist but also to multiply inside a large membrane-bound compartment. This structure displays autophagic-like features, acquiring LC3 and Rab7, markers described to be recruited throughout the progression of antibacterial autophagy. The majority of the autophagic-like vacuoles in which Serratia resides and proliferates are non-acidic and have no degradative properties, indicating that the bacteria are capable to either delay or prevent fusion with lysosomal compartments, altering the expected progression of autophagosome maturation. In addition, our results demonstrate that Serratia triggers a non-canonical autophagic process before internalization. These findings reveal that S. marcescens is able to manipulate the autophagic traffic, generating a suitable niche for survival and proliferation inside the host cell. PMID:21901159

  13. A High-Content Phenotypic Screen Reveals the Disruptive Potency of Quinacrine and 3′,4′-Dichlorobenzamil on the Digestive Vacuole of Plasmodium falciparum

    OpenAIRE

    Lee, Yan Quan; Goh, Amanda S. P.; Ch'ng, Jun Hong; Nosten, François H.; Preiser, Peter Rainer; Pervaiz, Shazib; Yadav, Sanjiv Kumar; Tan, Kevin S. W.

    2014-01-01

    Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of in...

  14. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    International Nuclear Information System (INIS)

    Sakamoto, C.; Matozaki, T.; Nagao, M.; Baba, S.

    1987-01-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced 125 I-[Tyr 1 ]somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate [Gpp(NH)p]>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg 2+ . When pancreatic acini were treated with 1 μg/ml pertussis toxin for 4 h, subsequent 125 I-[Tyr 1 ]somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor

  15. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.

    Science.gov (United States)

    Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia

    2017-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development. © 2016 John Wiley & Sons Ltd.

  16. 'Candidatus Liberibacter asiaticus' Accumulates inside Endoplasmic Reticulum Associated Vacuoles in the Gut Cells of Diaphorina citri.

    Science.gov (United States)

    Ghanim, Murad; Achor, Diann; Ghosh, Saptarshi; Kontsedalov, Svetlana; Lebedev, Galina; Levy, Amit

    2017-12-05

    Citrus greening disease known also as Huanglongbing (HLB) caused by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) has resulted in tremendous losses and the death of millions of trees worldwide. CLas is transmitted by the Asian citrus psyllid Diaphorina citri. The closely-related bacteria 'Candidatus Liberibacter solanacearum' (CLso), associated with vegetative disorders in carrots, is transmitted by the carrot psyllid Bactericera trigonica. A promising approach to prevent the transmission of these pathogens is to interfere with the vector-pathogen interactions, but our understanding of these processes is limited. It was recently reported that CLas induced changes in the nuclear architecture, and activated programmed cell death, in D. citri midgut cells. Here, we used electron and fluorescent microscopy and show that CLas induces the formation of endoplasmic reticulum (ER)-associated bodies. The bacterium recruits those ER structures into Liberibacter containing vacuoles (LCVs), in which bacterial cells seem to propagate. ER- associated LCV formation was unique to CLas, as we could not detect these bodies in B. trigonica infected with CLso. ER recruitment is hypothesized to generate a safe replicative body to escape cellular immune responses in the insect gut. Understanding the molecular interactions that undelay these responses will open new opportunities for controlling CLas.

  17. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology.

    Directory of Open Access Journals (Sweden)

    Florante Ricarte

    Full Text Available Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY. Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.

  18. Autophagy-Related Direct Membrane Import from ER/Cytoplasm into the Vacuole or Apoplast: A Hidden Gateway also for Secondary Metabolites and Phytohormones?

    Directory of Open Access Journals (Sweden)

    Ivan Kulich

    2014-04-01

    Full Text Available Transportation of low molecular weight cargoes into the plant vacuole represents an essential plant cell function. Several lines of evidence indicate that autophagy-related direct endoplasmic reticulum (ER to vacuole (and also, apoplast transport plays here a more general role than expected. This route is regulated by autophagy proteins, including recently discovered involvement of the exocyst subcomplex. Traffic from ER into the vacuole bypassing Golgi apparatus (GA acts not only in stress-related cytoplasm recycling or detoxification, but also in developmentally-regulated biopolymer and secondary metabolite import into the vacuole (or apoplast, exemplified by storage proteins and anthocyanins. We propose that this pathway is relevant also for some phytohormones’ (e.g., auxin, abscisic acid (ABA and salicylic acid (SA degradation. We hypothesize that SA is not only an autophagy inducer, but also a cargo for autophagy-related ER to vacuole membrane container delivery and catabolism. ER membrane localized enzymes will potentially enhance the area of biosynthetic reactive surfaces, and also, abundant ER localized membrane importers (e.g., ABC transporters will internalize specific molecular species into the autophagosome biogenesis domain of ER. Such active ER domains may create tubular invaginations of tonoplast into the vacuoles as import intermediates. Packaging of cargos into the ER-derived autophagosome-like containers might be an important mechanism of vacuole and exosome biogenesis and cytoplasm protection against toxic metabolites. A new perspective on metabolic transformations intimately linked to membrane trafficking in plants is emerging.

  19. The Fab1/PIKfyve Phosphoinositide Phosphate Kinase Is Not Necessary to Maintain the pH of Lysosomes and of the Yeast Vacuole*

    Science.gov (United States)

    Ho, Cheuk Y.; Choy, Christopher H.; Wattson, Christina A.; Johnson, Danielle E.; Botelho, Roberto J.

    2015-01-01

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH lysosomes. PMID:25713145

  20. Characterization of the anion sensitive ATPase in intact vacuoles of Kalanchoe diagremontiana

    Energy Technology Data Exchange (ETDEWEB)

    Kobza, J.; Uribe, E.G.

    1986-04-01

    A method for the isolation of intact vacuoles from K. daigremontiana was developed which produced high yields of relatively pure vacuoles as determined by marker enzyme contamination. Upon isolation, the vacuoles were stabilized by the inclusion of 5% (w/v) ficoll. Enzyme activity was insensitive to vanadate and azide but was strongly inhibited by DCCD. Enzyme activity was strictly dependent on the inclusion of Mg/sup 2 +/ and was stimulated by anions as depicted by the series, NO/sub 3//sup -/ < Br/sup -/ < SO/sub 4//sup -/ < HCO/sub 3//sup -/ < Cl/sup -/. It was found that in intact vacuoles the ATPase activity was stimulated by phosphate to a level equivalent to that found with the chloride. The enzyme exhibited Michaelis-Menten kinetics with a Km for Mg-ATP complex of 0.51 mM.

  1. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM).

    Science.gov (United States)

    de Souza, Wanderley; Attias, Marcia

    2015-07-01

    The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer.

    Directory of Open Access Journals (Sweden)

    Steven T Lott

    2009-05-01

    Full Text Available Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium-associated RING Chromosome 1, a novel gene encoding a member of the TRIM (tripartite motif subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS, an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young

  3. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis.

    Science.gov (United States)

    Ellis, Kathryn; Bagwell, Jennifer; Bagnat, Michel

    2013-03-04

    The notochord plays critical structural and signaling roles during vertebrate development. At the center of the vertebrate notochord is a large fluid-filled organelle, the notochord vacuole. Although these highly conserved intracellular structures have been described for decades, little is known about the molecular mechanisms involved in their biogenesis and maintenance. Here we show that zebrafish notochord vacuoles are specialized lysosome-related organelles whose formation and maintenance requires late endosomal trafficking regulated by the vacuole-specific Rab32a and H(+)-ATPase-dependent acidification. We establish that notochord vacuoles are required for body axis elongation during embryonic development and identify a novel role in spine morphogenesis. Thus, the vertebrate notochord plays important structural roles beyond early development.

  4. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.

    Science.gov (United States)

    Ho, Cheuk Y; Choy, Christopher H; Wattson, Christina A; Johnson, Danielle E; Botelho, Roberto J

    2015-04-10

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH lysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A high-content phenotypic screen reveals the disruptive potency of quinacrine and 3',4'-dichlorobenzamil on the digestive vacuole of Plasmodium falciparum.

    Science.gov (United States)

    Lee, Yan Quan; Goh, Amanda S P; Ch'ng, Jun Hong; Nosten, François H; Preiser, Peter Rainer; Pervaiz, Shazib; Yadav, Sanjiv Kumar; Tan, Kevin S W

    2014-01-01

    Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of intravacuolar Ca(2+). This assay uses the ImageStream 100, an imaging-capable flow cytometer, to assess the distribution of the fluorescent calcium probe Fluo-4. We obtained two hits from a small library of 25 test compounds, quinacrine and 3',4'-dichlorobenzamil. The ability of these compounds to permeabilize the digestive vacuole in laboratory strains and clinical isolates was validated by confocal microscopy. The hits could induce programmed cell death features in both chloroquine-sensitive and -resistant laboratory strains. Quinacrine was effective at inhibiting field isolates in a 48-h reinvasion assay regardless of artemisinin clearance status. We therefore present as proof of concept a phenotypic screening method with the potential to provide mechanistic insights to the activity of antimalarial drugs.

  6. G protein in stimulation of PI hydrolysis by CCK [cholecystokinin] in isolated rat pancreatic acinar cells

    International Nuclear Information System (INIS)

    Matozaki, Takashi; Sakamoto, Choitsu; Nagao, Munehiko; Nishizaki, Hogara; Baba, Shigeaki

    1988-01-01

    To clarify the possible role of a guanine nucleotide-binding protein (G protein) in the signal transducing system activated by cholecystokinin (CCK), actions of CCK on rat pancreatic acini were compared with those of fluoride, a well-known activator of stimulatory (G s ) or inhibitory (G i ) G protein. When acini were incubated with increasing concentrations of either CCK-octapeptide (CCK8) or NaF, a maximal stimulation of amylase release from acini occurred at 100 pM CCK8 or 10 mM NaF, respectively; this secretory rate decreased as CCK8 or NaF concentration was increased. NaF caused an increase in cytoplasmic Ca 2+ concentration from the internal Ca 2+ store and stimulated accumulation of inositol phosphates in acini, as observed with CCK. Guanylimidodiphosphate activated the generation of inositol phosphates in the [ 3 H]inositol-labeled pancreatic acinar cell membrane preparation, with half-maximal and maximal stimulation at 1 and 10 μM, respectively. Furthermore, the effects of submaximal CCK concentrations on inositol phosphate accumulation in membranes were markedly potentiated in the presence of 100 μM GTP, which alone was ineffective. Combined findings of the present study strongly suggest that pancreatic CCK receptors are probably coupled to the activation of polyphosphoinositide (PI) breakdown by a G protein, which appears to be fluoride sensitive but is other than G s - or G i -like protein

  7. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    Science.gov (United States)

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  8. Mucolipin co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning.

    Directory of Open Access Journals (Sweden)

    Natalie N Remis

    2014-12-01

    Full Text Available During the suckling period, intestinal enterocytes are richly endowed with endosomes and lysosomes, which they presumably utilize for the uptake and intracellular digestion of milk proteins. By weaning, mature intestinal enterocytes replace those rich in lysosomes. We found that mouse enterocytes before weaning express high levels of two endolysosomal cation channels, mucolipins 3 and 1 -products of Trpml3 and Trpml1 genes; moreover neonatal enterocytes of mice lacking both mucolipins (Trpml3-/-;Trpml1-/- vacuolated pathologically within hours of birth and remained so until weaning. Ultrastructurally and chemically these fast-forming vacuoles resembled those that systemically appear in epithelial cells of mucolipidosis type IV (MLIV patients, which bear mutations in Trpml1. Hence, lack of both mucolipins 1 and 3 causes an accelerated MLIV-type of vacuolation in enterocytes. The vacuoles were aberrant hybrid organelles with both endosomal and lysosomal components, and were not generated by alterations in endocytosis or exocytosis, but likely by an imbalance between fusion of lysosomes and endosomes and their subsequent scission. However, upon extensive vacuolation enterocytes displayed reduced endocytosis from the intestinal lumen, a defect expected to compromise nutrient uptake. Mice lacking both mucolipins suffered a growth delay that began after birth and continued through the suckling period but recovered after weaning, coinciding with the developmental period of enterocyte vacuolation. Our results demonstrate genetic redundancy between lysosomal mucolipins 3 and 1 in neonatal enterocytes. Furthermore, our Trpml3-/-;Trpml1-/- mice represent a polygenic animal model of the poorly-understood, and often intractable, neonatal failure-to-thrive with intestinal pathology. Our results implicate lysosomes in neonatal intestinal pathologies, a major cause of infant mortality worldwide, and suggest transient intestinal dysfunction might affect newborns

  9. Mucolipin Co-deficiency Causes Accelerated Endolysosomal Vacuolation of Enterocytes and Failure-to-Thrive from Birth to Weaning

    Science.gov (United States)

    Castiglioni, Andrew J.; Flores, Emma N.; Cantú, Jorge A.; García-Añoveros, Jaime

    2014-01-01

    During the suckling period, intestinal enterocytes are richly endowed with endosomes and lysosomes, which they presumably utilize for the uptake and intracellular digestion of milk proteins. By weaning, mature intestinal enterocytes replace those rich in lysosomes. We found that mouse enterocytes before weaning express high levels of two endolysosomal cation channels, mucolipins 3 and 1 -products of Trpml3 and Trpml1 genes; moreover neonatal enterocytes of mice lacking both mucolipins (Trpml3−/−;Trpml1−/−) vacuolated pathologically within hours of birth and remained so until weaning. Ultrastructurally and chemically these fast-forming vacuoles resembled those that systemically appear in epithelial cells of mucolipidosis type IV (MLIV) patients, which bear mutations in Trpml1. Hence, lack of both mucolipins 1 and 3 causes an accelerated MLIV-type of vacuolation in enterocytes. The vacuoles were aberrant hybrid organelles with both endosomal and lysosomal components, and were not generated by alterations in endocytosis or exocytosis, but likely by an imbalance between fusion of lysosomes and endosomes and their subsequent scission. However, upon extensive vacuolation enterocytes displayed reduced endocytosis from the intestinal lumen, a defect expected to compromise nutrient uptake. Mice lacking both mucolipins suffered a growth delay that began after birth and continued through the suckling period but recovered after weaning, coinciding with the developmental period of enterocyte vacuolation. Our results demonstrate genetic redundancy between lysosomal mucolipins 3 and 1 in neonatal enterocytes. Furthermore, our Trpml3−/−;Trpml1−/− mice represent a polygenic animal model of the poorly-understood, and often intractable, neonatal failure-to-thrive with intestinal pathology. Our results implicate lysosomes in neonatal intestinal pathologies, a major cause of infant mortality worldwide, and suggest transient intestinal dysfunction might affect newborns

  10. Ultrastructural study on the effects of retrograde infusion of water-soluble contrast medium the rabbit submandibular gland

    International Nuclear Information System (INIS)

    Kim, Eun Kyung; Park, Tae Won

    1987-01-01

    The author observed the effects of retrograde infusion of water soluble contrast media (Telebrix 30) on the rabbit submandibular glands and compared the effects of different degrees of filling. 26 rabbit were divided into 2 group of 1 2 each as experimental and 1 group of 2 as normal controls. One experimental group was filed with 0.2 ml and the other with 0.4 ml. Right submandibular gland of each rabbit was infused with contrast media and left one with physiologic saline as a ex perimental control, at a constant rate of 0.12 ml/min. Using an infusion pump via the main excretory duct. Immediately after the inclusion of contrast media, oblique lateral radiographs of the glands were made with occlusal film in order to confirm the glandular filling. The rabbit were sacrificed after varying periods (1, 8, 24 hours and 3, 6, 10 days) and the tissues were prepared for light and electron microscopic examination. The results were as follows: 1. In glands filled with 0.2 ml contrast media, the initial changes were a few vacuole formation in the acini and slight dilation of the intralobular duct. The moderately severe changes such as vacuole formation in the acini, the abnormal substructure within the secretory granule, dilation of acinar and intercalated duct lumen, scalloping of striated duct lumen and inflammatory cell infiltrate were observed at 3 days. The general appearance was successively recovered, so the tissue had a normal appearance at 10 days. 2. In glands filled with 0.4 ml contrast media, the most prominent alterations such as severe acinar atrophy, decreased number of secretory granules, proliferation of connective tissue stroma and pronounced inflammatory cell infiltrates appeared at 6 days. Although the general appearance returned to be almost normal at 10 days, acinar cells showed some atrophy and decreased secretory granules. 3. In glands subjected to 0.4 ml infusion, the alterations were more severe and recovery was slower than those seen in the glands

  11. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    Science.gov (United States)

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  12. Acidification of the parasitophorous vacuole containing Toxoplasma gondii in the presence of hydroxyurea

    Directory of Open Access Journals (Sweden)

    Cristiane S. Carvalho

    2006-09-01

    Full Text Available Toxoplasma gondii multiplies within parasitophorous vacuole that is not recognized by the primary no oxidative defense of host cells, mainly represented by the fusion with acidic organelles. Recent studies have already shown that hydroxyurea arrested the intracellular parasites leading to its destruction. In the present work we investigated the cellular mechanism involved in the destruction of intracellular Toxoplasma gondii. Fluorescent vital stains were used in order to observe possible acidification of parasitophorous vacuole-containing Toxoplasma gondii in presence of hydroxyurea. Vero cells infected with tachyzoites were treated with hydroxyurea for 12, 24 or 48 hours. Fluorescence, indicative of acidification, was observed in the parasitophorous vacuole when the cultures were incubated in presence of acridine orange. LysoTracker red was used in order to determine whether lysosomes were involved in the acidification process. An intense fluorescence was observed after 12 and 24 hours of incubation with hydroxyurea, achieving it is highly intensity after 48 hours of treatment. Ultrastructural cytochemistry for localization of the acid phosphatase lysosomal enzyme was realized. Treated infected cultures showed reaction product in vesicles fusing with vacuole or associated with intravacuolar parasites. These results suggest that fusion with lysosomes and acidification of parasitophorous vacuole leads to parasites destruction in the presence pf hydroxyurea.Toxoplasma gondii se multiplica dentro do vacúolo parasitóforo que não é reconhecido pela defesa primária não oxidativa de células hospedeiras: a fusão com organelas ácidas. Estudos anteriores mostraram que hidroxiuréia interrompeu a multiplicação dos parasitos intracelulares causando sua eliminação. No presente trabalho nós investigamos o mecanismo celular envolvido na destruição do Toxoplasma gondii intracelular. Marcadores vitais fluorescentes foram usados para observar a

  13. CT and MR imaging of multilocular acinar cell cystadenoma: comparison with branch duct intraductal papillary mucinous neoplasia (IPMNs)

    Energy Technology Data Exchange (ETDEWEB)

    Delavaud, Christophe; Assignies, Gaspard d' ; Vilgrain, Valerie; Vullierme, Marie-Pierre [Hopital Beaujon, Service de Radiologie, Clichy (France); Cros, Jerome [Hopital Beaujon, Service d' Anatomopathologie, Clichy (France); Ruszniewski, Philippe; Hammel, Pascal; Levy, Philippe [Hopital Beaujon, Service de Pancreato-Gastro-Enterologie, Clichy (France); Couvelard, Anne [Hopital Bichat, Service d' Anatomopathologie, Paris (France); Sauvanet, Alain; Dokmak, Safi [Hopital Beaujon, Service de Chirurgie Hepato-Pancreato-Biliaire, Clichy (France)

    2014-09-15

    To describe CT and MR imaging findings of acinar cell cystadenoma (ACC) of the pancreas and to compare them with those of branch duct intraductal papillary mucinous neoplasia (BD-IPMN) to identify distinctive elements. Five patients with ACC and the 20 consecutive patients with histologically proven BD-IPMN were retrospectively included. Clinical and biological information was collected and histological data reviewed. CT and MR findings were analysed blinded to pathological diagnosis in order to identify imaging diagnostic criteria of ACC. Patients with ACC were symptomatic in all but one case and were younger than those with BD-IPMN (p = 0.006). Four radiological criteria allowed for differentiating ACC from IPMN: five or more cysts, clustered peripheral small cysts, presence of cyst calcifications and absence of communication with the main pancreatic duct (p < 0.05). Presence of at least two or three of these imaging criteria had a strong diagnostic value for ACC with a sensitivity of 100 % and 80 % and a specificity of 85 % and 100 %, respectively. Preoperative differential diagnosis between ACC and BD-IPMN can be achieved using a combination of four CT and/or MR imaging criteria. Recognition of ACC patients could change patient management and lead to more conservative treatment. (orig.)

  14. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons

    International Nuclear Information System (INIS)

    Hara-Nishimura, I.; Nishimura, M.

    1987-01-01

    The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with [ 35 S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg 2+ , and Cu 2+ , but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles

  15. Leucine Affects α-Amylase Synthesis through PI3K/Akt-mTOR Signaling Pathways in Pancreatic Acinar Cells of Dairy Calves.

    Science.gov (United States)

    Guo, Long; Liang, Ziqi; Zheng, Chen; Liu, Baolong; Yin, Qingyan; Cao, Yangchun; Yao, Junhu

    2018-05-23

    Dietary nutrient utilization, particularly starch, is potentially limited by digestion in dairy cow small intestine because of shortage of α-amylase. Leucine acts as an effective signal molecular in the mTOR signaling pathway, which regulates a series of biological processes, especially protein synthesis. It has been reported that leucine could affect α-amylase synthesis and secretion in ruminant pancreas, but mechanisms have not been elaborated. In this study, pancreatic acinar (PA) cells were used as a model to determine the cellular signal of leucine influence on α-amylase synthesis. PA cells were isolated from newborn Holstein dairy bull calves and cultured in Dulbecco's modifed Eagle's medium/nutrient mixture F12 liquid media containing four leucine treatments (0, 0.23, 0.45, and 0.90 mM, respectively), following α-amylase activity, zymogen granule, and signal pathway factor expression detection. Rapamycin, a specific inhibitor of mTOR, was also applied to PA cells. Results showed that leucine increased ( p synthesis of α-amylase as well as phosphorylation of PI3K, Akt, mTOR, and S6K1 while reduced ( p synthesis. In addition, the extracellular leucine dosage significantly influenced intracellular metabolism of isoleucine ( p synthesis through promoting the PI3K/Akt-mTOR pathway and reducing the GCN2 pathway in PA cells of dairy calves. These pathways form the signaling network that controls the protein synthesis and metabolism. It would be of great interest in future studies to explore the function of leucine in ruminant nutrition.

  16. Jaspine B induces nonapoptotic cell death in gastric cancer cells independently of its inhibition of ceramide synthase.

    Science.gov (United States)

    Cingolani, Francesca; Simbari, Fabio; Abad, Jose Luis; Casasampere, Mireia; Fabrias, Gemma; Futerman, Anthony H; Casas, Josefina

    2017-08-01

    Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Formation of the food vacuole in Plasmodium falciparum: a potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19.

    Directory of Open Access Journals (Sweden)

    Anton R Dluzewski

    2008-08-01

    Full Text Available Plasmodium falciparum Merozoite Surface Protein 1 (MSP1 is synthesized during schizogony as a 195-kDa precursor that is processed into four fragments on the parasite surface. Following a second proteolytic cleavage during merozoite invasion of the red blood cell, most of the protein is shed from the surface except for the C-terminal 19-kDa fragment (MSP1(19, which is still attached to the merozoite via its GPI-anchor. We have examined the fate of MSP1(19 during the parasite's subsequent intracellular development using immunochemical analysis of metabolically labeled MSP1(19, fluorescence imaging, and immuno-electronmicroscopy. Our data show that MSP1(19 remains intact and persists to the end of the intracellular cycle. This protein is the first marker for the biogenesis of the food vacuole; it is rapidly endocytosed into small vacuoles in the ring stage, which coalesce to form the single food vacuole containing hemozoin, and persists into the discarded residual body. The food vacuole is marked by the presence of both MSP1(19 and the chloroquine resistance transporter (CRT as components of the vacuolar membrane. Newly synthesized MSP1 is excluded from the vacuole. This behavior indicates that MSP1(19 does not simply follow a classical lysosome-like clearance pathway, instead, it may play a significant role in the biogenesis and function of the food vacuole throughout the intra-erythrocytic phase.

  18. Vacuolating encephalitis in mice infected by human coronavirus OC43

    International Nuclear Information System (INIS)

    Jacomy, Helene; Talbot, Pierre J.

    2003-01-01

    Involvement of viruses in human neurodegenerative diseases and the underlying pathologic mechanisms remain generally unclear. Human respiratory coronaviruses (HCoV) can infect neural cells, persist in human brain, and activate myelin-reactive T cells. As a means of understanding the human infection, we characterized in vivo the neurotropic and neuroinvasive properties of HCoV-OC43 through the development of an experimental animal model. Virus inoculation of 21-day postnatal C57BL/6 and BALB/c mice led to a generalized infection of the whole CNS, demonstrating HCoV-OC43 neuroinvasiveness and neurovirulence. This acute infection targeted neurons, which underwent vacuolation and degeneration while infected regions presented strong microglial reactivity and inflammatory reactions. Damage to the CNS was not immunologically mediated and microglial reactivity was instead a consequence of direct virus-mediated neuronal injury. Although this acute encephalitis appears generally similar to that induced by murine coronaviruses, an important difference rests in the prominent spongiform-like degeneration that could trigger neuropathology in surviving animals

  19. Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Vacuole-Targeted Thermotoga maritima BglB Related to Elevated Levels of Liberated Hormones

    Science.gov (United States)

    Nguyen, Quynh Anh; Lee, Dae-Seok; Jung, Jakyun; Bae, Hyeun-Jong

    2015-01-01

    The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production. PMID:26618153

  20. Molecular markers for granulovacuolar degeneration are present in rimmed vacuoles.

    Directory of Open Access Journals (Sweden)

    Masahiro Nakamori

    Full Text Available BACKGROUND: Rimmed vacuoles (RVs are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM and distal myopathy with RVs (DMRV. Granulovacuolar degeneration (GVD bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers. METHODS: Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1 tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK], (2 lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1, and (3 other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43] in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization. RESULTS: GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs. CONCLUSIONS: These results suggest that RVs of muscle

  1. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    OpenAIRE

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To ove...

  2. Morphometric Measurements to Quantify the Cerulein Induced Hyperstimulatory Pancreatitis of Rats under the Protective Effect of Lectins

    Directory of Open Access Journals (Sweden)

    Ludwig Jonas

    1998-01-01

    Full Text Available In preceding papers we demonstrated an inhibitory effect of wheat germ agglutinin (WGA and Ulex europaeus agglutinin (UEA on the cholecystokinin (CCK binding to the CCK receptor of rat pancreatic cells and also on the CCK induced Ca2+ release and α-amylase secretion in vitro as well as on pancreatic secretion of intact rats in vivo. In the present study we show the same inhibitory effect of both lectins on the cerulein pancreatitis of rats. This acute pancreatitis was induced by supramaximal injections (5 µg/kg/h iv or 10 µg/kg/h ip of the CCK analogue cerulein in rats every hour. To monitor the degree of pancreatitis, we measured the number and diameter of injury vacuoles in the pancreatic acinar cells as one of the most important signs of this type of pancreatitis by light microscopic morphometry with two different systems on paraffin sections. Furthermore, the serum α-amylase activity was measured biochemically. We found a correlation between the diameter of vacuoles inside the acinar cells and the serum enzyme activity up to 24 h. The simultaneous ip administration of cerulein and WGA or UEA in a dosage of 125 µg/kg/h for 8 h led to a reduction of vacuolar diameter from 13.1 ± 2.0 µm (cerulein to 7.5 ± 1.1 µm (cerulein + WGA or 7.2 ± 1.3 µm (cerulein + UEA. The serum amylase activity was reduced from 63.7 ± 15.8 mmol/l \\times min (cerulein to 37.7 ± 11.8 (cerulein + WGA or 39.4; +52.9; -31.1 (cerulein + UEA-I. Both parameters allow the grading this special type of pancreatitis to demonstrate the protective effect of the lectins.

  3. Epidermal growth factor inhibits rat pancreatic cell proliferation, causes acinar cell hypertrophy, and prevents caerulein-induced desensitization of amylase release.

    Science.gov (United States)

    Morisset, J; Larose, L; Korc, M

    1989-06-01

    The in vivo effects of epidermal growth factor (EGF) on pancreatic growth and digestive enzyme concentrations were compared with the actions of the pancreatic secretagogue caerulein in the adult rat. EGF (10 micrograms/kg BW) did not alter pancreatic weight or protein content. However, this concentration of EGF inhibited [3H]thymidine incorporation into DNA by 44%, decreased DNA content by 20%, and increased the concentrations of amylase, chymotrypsinogen, and protein by 106%, 232%, and 42%, respectively. Pancreatic acini prepared from EGF-treated rats exhibited a characteristic secretory response to caerulein that was superimposable to that obtained in acini from saline-treated rats. In both groups of acini half-maximal and maximal stimulation of amylase release occurred at approximately 5 pM and 50 pM caerulein, respectively. In contrast to EGF, caerulein (1 microgram/kg BW) increased pancreatic weight by 29% and protein content by 59%, and enhanced [3H]thymidine incorporation into DNA by 70%. Although caerulein increased the concentrations of pancreatic amylase and chymotrypsinogen by 38% and 297%, respectively, pancreatic acini prepared from caerulein-treated rats were less sensitive to the actions of caerulein in vitro when compared with acini from control rats. Indeed, the EC50 was shift from 4.8 pM to 9.8 pM after 4 days of treatment. EGF potentiated the actions of caerulein on pancreatic weight, protein content, and chymotrypsinogen concentration, and prevented the caerulein-induced alteration in the secretory responsiveness of the acinar cell. Conversely, caerulein reversed the inhibitory effect of EGF on thymidine incorporation. These findings suggest that EGF may modulate the trophic effects of certain gastrointestinal hormones, and may participate in the regulation of pancreatic exocrine function in vivo.

  4. Culture supernatants from V. cholerae O1 ElTor strains isolated from different geographic areas induce cell vacuolation and cytotoxicity Cepas de V. cholerae O1 biotipo ElTor aisladas de diferente origen geográfico inducen vacuolización celular y citotoxicidad

    Directory of Open Access Journals (Sweden)

    Jorge E Vidal

    2009-02-01

    Full Text Available OBJECTIVE: To investigate whether the HlyA-induced vacuolating effect is produced by V. cholerae O1 ElTor strains isolated from different geographic origins, including Mexico. MATERIAL AND METHODS: Supernatant-induced haemolysis, vacuolating activity and cytotoxicity in Vero cells were recorded. PCR, RFLP analysis and molecular cloning were performed. RESULTS: All ElTor strains analyzed induced cellular vacuolation. Ribotype 2 strains isolates from the U.S. gulf coast yielded the highest titer of vacuolating activity. Eight of nine strains were haemolytic, while all strains were PCR positive for the hlyA gene. We cloned the hlyA gene from two ElTor strains, a toxigenic (2514-88, ctxAB+ and a non-toxigenic Mexican strain (CM 91-3, ctxAB-. Supernatant from those recombinant E. coli strains induced haemolysis, cell vacuolation and cytotoxicity. RFLP-PCR analysis revealed similarities in the hlyA gene from all strains tested. CONCLUSION: The HlyA-induced vacuolating effect is a widespread phenotype of epidemic V. cholerae O1 ElTor strains.OBJETIVO: Analizar el efecto vacuolizante de cepas de V. cholerae O1 ElTor aisladas de diferente origen geográfico, incluyendo México. MATERIAL Y MÉTODOS: Se realizaron pruebas de hemolisis, vacuolización y citotoxicidad en células Vero, así como PCR, análisis por RFLP y clonación molecular. RESULTADOS: Todas las cepas indujeron el efecto vacuolizante. Las cepas del ribotipo 2, aisladas de las costas del Golfo en Estados Unidos, presentaron títulos altos de vacuolización. El gen hlyA fue amplificado en las nueve cepas mediante PCR, aunque sólo ocho fueron hemolíticas. Se clonó el gen hlyA de una cepa toxigénica (2514-88, ctxAB+ y de una cepa no toxigénica aislada en México (CM 91-3, ctxAB-. El sobrenadante de las clonas recombinantes indujo hemólisis, efecto vacuolizante y citotoxicidad. El RFLP mostró alta similitud del gen hlyA de las cepas estudiadas. CONCLUSIÓN: El efecto vacuolizante es un

  5. Coomassie Brilliant Blue G is a more potent antagonist of P2 purinergic responses than Reactive Blue 2 (Cibacron Blue 3GA) in rat parotid acinar cells

    International Nuclear Information System (INIS)

    Soltoff, S.P.; McMillian, M.K.; Talamo, B.R.

    1989-01-01

    The ability of Brilliant Blue G (Coomassie Brilliant Blue G) and Reactive Blue 2 (Cibacron Blue 3GA) to block the effects of extracellular ATP on rat parotid acinar cells was examined by evaluating their effects on ATP-stimulated 45Ca 2+ entry and the elevation of [Ca 2+ ]i (Fura 2 fluorescence). ATP (300 microM) increased the rate of Ca 2+ entry to more than 25-times the basal rate and elevated [Ca 2+ ]i to levels more than three times the basal value. Brilliant Blue G and Reactive Blue 2 greatly reduced the entry of 45 Ca 2+ into parotid cells, but the potency of Brilliant Blue G (IC50 approximately 0.4 microM) was about 100-times that of Reactive Blue 2. Fura 2 studies demonstrated that inhibitory concentrations of these compounds did not block the cholinergic response of these cells, thus demonstrating the selectivity of the dye compounds for purinergic receptors. Unlike Reactive Blue 2, effective concentrations of Brilliant Blue G did not substantially quench Fura 2 fluorescence. The greater potency of Brilliant Blue G suggests that it may be very useful in identifying P2-type purinergic receptors, especially in studies which utilize fluorescent probes

  6. Suspected natural lysosomal storage disease from ingestion of pink morning glory (Ipomoea carnea) in goats in northern Argentina.

    Science.gov (United States)

    Ríos, Elvio E; Cholich, Luciana A; Chileski, Gabriela; García, Enrique N; Lértora, Javier; Gimeno, Eduardo J; Guidi, María G; Mussart, Norma; Teibler, Gladys P

    2015-07-01

    This study describes an occurrence of pink morning glory (Ipomoea carnea) intoxication in goats in northern Argentina. The clinical signs displayed by the affected animals were ataxia, lethargy, emaciation, hypertonia of the neck muscles, spastic paresis in the hind legs, abnormal postural reactions and death. The clinico-pathologic examination revealed that the affected animals were anemic and their serum level of aspartate aminotransferase was significantly increased. Cytoplasmic vacuolation in the Purkinje cells and pancreatic acinar cells was observed by histological examination. The neuronal lectin binding pattern showed a strong positive reaction to WGA (Triticum vulgaris), sWGA (succinylated T. vulgaris) and LCA (Lens culinaris). Although I. carnea is common in tropical regions, this is the first report of spontaneous poisoning in goats in Argentina.

  7. Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2012-07-01

    Cells of the ciliate Paramecium bursaria harbor symbiotic Chlorella spp. in their cytoplasm. To establish endosymbiosis with alga-free P. bursaria, symbiotic algae must leave the digestive vacuole (DV) to appear in the cytoplasm by budding of the DV membrane. This budding was induced not only by intact algae but also by boiled or fixed algae. However, this budding was not induced when food bacteria or India ink were ingested into the DVs. These results raise the possibility that P. bursaria can recognize sizes of the contents in the DVs. To elucidate this possibility, microbeads with various diameters were mixed with alga-free P. bursaria and traced their fate. Microbeads with 0.20μm diameter did not induce budding of the DVs. Microbeads with 0.80μm diameter produced DVs of 5-10μm diameter at 3min after mixing; then the DVs fragmented and became vacuoles of 2-5μm diameter until 3h after mixing. Each microbead with a diameter larger than 3.00μm induced budding similarly to symbiotic Chlorella. These observations reveal that induction of DV budding depends on the size of the contents in the DVs. Dynasore, a dynamin inhibitor, greatly inhibited DV budding, suggesting that dynamin might be involved in DV budding. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Mixed acinar-neuroendocrine-ductal carcinoma of the pancreas: a tale of three lineages.

    Science.gov (United States)

    Anderson, Mark J; Kwong, Christina A; Atieh, Mohammed; Pappas, Sam G

    2016-06-02

    Most pancreatic cancers arise from a single cell type, although mixed pancreatic carcinomas represent a rare exception. The rarity of these aggressive malignancies and the limitations of fine-needle aspiration (FNA) pose significant barriers to diagnosis and appropriate management. We report a case of a 54-year-old man presenting with abdominal pain, jaundice and a hypodense lesion within the uncinate process on CT. FNA suggested poorly differentiated adenocarcinoma, which was subsequently resected via pancreaticoduodenectomy. Pathological analysis yielded diagnosis of invasive mixed acinar-neuroendocrine-ductal pancreatic carcinoma. Given the rare and deadly nature of these tumours, clinicians must be aware of their pathophysiology and do practice with a high degree of clinical suspicion, when appropriate. Surgical resection and thorough pathological analysis with immunohistochemical staining and electron microscopy remain the standards of care for mixed pancreatic tumours without gross evidence of metastasis. Diligent characterisation of the presentation and histological findings associated with these neoplasms should continue in order to promote optimal diagnostic and therapeutic strategies. 2016 BMJ Publishing Group Ltd.

  9. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  10. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.

    Directory of Open Access Journals (Sweden)

    Hayley J Newton

    Full Text Available The human pathogen Coxiella burnetii encodes a type IV secretion system called Dot/Icm that is essential for intracellular replication. The Dot/Icm system delivers bacterial effector proteins into the host cytosol during infection. The effector proteins delivered by C. burnetii are predicted to have important functions during infection, but when these proteins are needed during infection has not been clearly defined. Here, we use a reporter system consisting of fusion proteins that have a β-lactamase enzyme (BlaM fused to C. burnetii effector proteins to study protein translocation by the Dot/Icm system. Translocation of BlaM fused to the effector proteins CBU0077, CBU1823 and CBU1524 was not detected until 8-hours after infection of HeLa cells, which are permissive for C. burnetii replication. Translocation of these effector fusion proteins by the Dot/Icm system required acidification of the Coxiella-containing vacuole. Silencing of the host genes encoding the membrane transport regulators Rab5 or Rab7 interfered with effector translocation, which indicates that effectors are not translocated until bacteria traffic to a late endocytic compartment in the host cell. Similar requirements for effector translocation were discerned in bone marrow macrophages derived from C57BL/6 mice, which are primary cells that restrict the intracellular replication of C. burnetii. In addition to requiring endocytic maturation of the vacuole for Dot/Icm-mediated translocation of effectors, bacterial transcription was required for this process. Thus, translocation of effector proteins by the C. burnetii Dot/Icm system occurs after acidification of the CCV and maturation of this specialized organelle to a late endocytic compartment. This indicates that creation of the specialized vacuole in which C. burnetii replicates represents a two-stage process mediated initially by host factors that regulate endocytic maturation and then by bacterial effectors delivered into

  11. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells.

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    Full Text Available The synthetic, cell penetrating hexapeptide PAF26 (RKKWFW is antifungal at low micromolar concentrations and has been proposed as a model for cationic, cell-penetrating antifungal peptides. Its short amino acid sequence facilitates the analysis of its structure-activity relationships using the fungal models Neurospora crassa and Saccharomyces cerevisiae, and human and plant pathogens Aspergillus fumigatus and Penicillium digitatum, respectively. Previously, PAF26 at low fungicidal concentrations was shown to be endocytically internalized, accumulated in vacuoles and then actively transported into the cytoplasm where it exerts its antifungal activity. In the present study, two PAF26 derivatives, PAF95 (AAAWFW and PAF96 (RKKAAA, were designed to characterize the roles of the N-terminal cationic and the C-terminal hydrophobic motifs in PAF26's mode-of-action. PAF95 and PAF96 exhibited substantially reduced antifungal activity against all the fungi analyzed. PAF96 localized to fungal cell envelopes and was not internalized by the fungi. In contrast, PAF95 was taken up into vacuoles of N. crassa, wherein it accumulated and was trapped without toxic effects. Also, the PAF26 resistant Δarg1 strain of S. cerevisiae exhibited increased PAF26 accumulation in vacuoles. Live-cell imaging of GFP-labelled nuclei in A. fumigatus showed that transport of PAF26 from the vacuole to the cytoplasm was followed by nuclear breakdown and dissolution. This work demonstrates that the amphipathic PAF26 possesses two distinct motifs that allow three stages in its antifungal action to be defined: (i its interaction with the cell envelope; (ii its internalization and transport to vacuoles mediated by the aromatic hydrophobic domain; and (iii its transport from vacuoles to the cytoplasm. Significantly, cationic residues in PAF26 are important not only for the electrostatic attraction and interaction with the fungal cell but also for transport from the vacuole to the

  12. Pancreatic growth and cell turnover in the rat fed raw soya flour

    International Nuclear Information System (INIS)

    Oates, P.S.; Morgan, R.G.

    1982-01-01

    Growth and differentiation of the pancreatic acinar cell was studied in rats fed raw soya flour (RSF) for up to a year. A second group of rats were fed a control diet. After 1 week of RSF feeding there was a 200% increase in tissue RNA and weight, indicating initial hypertrophy, which was maintained for the 1-year study period. By the second week and over the remainder of the period studied there was also a marked increase in total DNA, suggesting hyperplasia. Cell turnover, as measured by the rate of incorporation of 3H-thymidine into pancreatic DNA, was significantly higher in RSF-fed animals only from the second to fourth weeks; it then returned to control values. Autoradiography showed an 18-fold increase in duct cell labeling at the end of the first week and an 11-fold increase by the end of the second week. Acinar cell labeling doubled from the second to the twelfth week. These studies confirm previous reports that RSF produces pancreatic hypertrophy and hyperplasia. They furthermore show that there is initially marked stimulation of DNA synthesis in the duct cell compartment. The results suggest that cells with the morphologic characteristics of duct cells may be the precursors of acinar cells in hyperplastic pancreatic tissue

  13. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin Uptake by Pancreatic Acinar Cells.

    Directory of Open Access Journals (Sweden)

    Padmanabhan Srinivasan

    Full Text Available Thiamin (vitamin B1, a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively. The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase, was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s affecting the SLC19A2 and SLC19A3 genes.

  14. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean.

    Science.gov (United States)

    He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean

    2015-11-01

    In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.

    Science.gov (United States)

    He, Ping; Yang, Jong Won; Yang, Vincent W; Bialkowska, Agnieszka B

    2018-04-01

    Activating mutations in KRAS are detected in most pancreatic ductal adenocarcinomas (PDACs). Expression of an activated form of KRAS (KrasG12D) in pancreata of mice is sufficient to induce formation of pancreatic intraepithelial neoplasia (PanINs)-a precursor of PDAC. Pancreatitis increases formation of PanINs in mice that express KrasG12D by promoting acinar-to-ductal metaplasia (ADM). We investigated the role of the transcription factor Krüppel-like factor 5 (KLF5) in ADM and KRAS-mediated formation of PanINs. We performed studies in adult mice with conditional disruption of Klf5 (Klf5 fl/fl ) and/or expression of Kras G12D (LSL-Kras G12D ) via Cre ERTM recombinase regulated by an acinar cell-specific promoter (Ptf1a). Activation of Kras G12D and loss of KLF5 was achieved by administration of tamoxifen. Pancreatitis was induced in mice by administration of cerulein; pancreatic tissues were collected, analyzed by histology and immunohistochemistry, and transcriptomes were compared between mice that did or did not express KLF5. We performed immunohistochemical analyses of human tissue microarrays, comparing levels of KLF5 among 96 human samples of PDAC. UN-KC-6141 cells (pancreatic cancer cells derived from Pdx1-Cre;LSL-Kras G12D mice) were incubated with inhibitors of different kinases and analyzed in proliferation assays and by immunoblots. Expression of KLF5 was knocked down with small hairpin RNAs or CRISPR/Cas9 strategies; cells were analyzed in proliferation and gene expression assays, and compared with cells expressing control vectors. Cells were subcutaneously injected into flanks of syngeneic mice and tumor growth was assessed. Of the 96 PDAC samples analyzed, 73% were positive for KLF5 (defined as nuclear staining in more than 5% of tumor cells). Pancreata from Ptf1a-Cre ERTM ;LSL-Kras G12D mice contained ADM and PanIN lesions, which contained high levels of nuclear KLF5 within these structures. In contrast, Ptf1a-Cre ERTM ;LSL-Kras G12D ;Klf5 fl

  16. Resolving tumor heterogeneity: genes involved in chordoma cell development identified by low-template analysis of morphologically distinct cells.

    Directory of Open Access Journals (Sweden)

    Amin El-Heliebi

    Full Text Available The classical sacrococcygeal chordoma tumor presents with a typical morphology of lobulated myxoid tumor tissue with cords, strands and nests of tumor cells. The population of cells consists of small non-vacuolated cells, intermediate cells with a wide range of vacuolization and large heavily vacuolated (physaliferous cells. To date analysis was only performed on bulk tumor mass because of its rare incidence, lack of suited model systems and technical limitations thereby neglecting its heterogeneous composition. We intended to clarify whether the observed cell types are derived from genetically distinct clones or represent different phenotypes. Furthermore, we aimed at elucidating the differences between small non-vacuolated and large physaliferous cells on the genomic and transcriptomic level. Phenotype-specific analyses of small non-vacuolated and large physaliferous cells in two independent chordoma cell lines yielded four candidate genes involved in chordoma cell development. UCHL3, coding for an ubiquitin hydrolase, was found to be over-expressed in the large physaliferous cell phenotype of MUG-Chor1 (18.7-fold and U-CH1 (3.7-fold cells. The mannosyltransferase ALG11 (695-fold and the phosphatase subunit PPP2CB (18.6-fold were found to be up-regulated in large physaliferous MUG-Chor1 cells showing a similar trend in U-CH1 cells. TMEM144, an orphan 10-transmembrane family receptor, yielded contradictory data as cDNA microarray analysis showed up- but RT-qPCR data down-regulation in large physaliferous MUG-Chor1 cells. Isolation of few but morphologically identical cells allowed us to overcome the limitations of bulk analysis in chordoma research. We identified the different chordoma cell phenotypes to be part of a developmental process and discovered new genes linked to chordoma cell development representing potential targets for further research in chordoma tumor biology.

  17. Transfer of phagocytosed particles to the parasitophorous vacuole of Leishmania mexicana is a transient phenomenon preceding the acquisition of annexin I by the phagosome.

    Science.gov (United States)

    Collins, H L; Schaible, U E; Ernst, J D; Russell, D G

    1997-01-01

    The eukaryotic intracellular pathogen Leishmania mexicana resides inside macrophages contained within a membrane bound parasitophorous vacuole which, as it matures, acquires the characteristics of a late endosomal compartment. This study reports the selectivity of fusion of this compartment with other particle containing vacuoles. Phagosomes containing zymosan or live Listeria monocytogenes rapidly fused with L. mexicana parasitophorous vacuoles, while those containing latex beads or heat killed L. monocytogenes failed to do so. Fusigenicity of phagosomes was not primarily dependent on the receptor utilized for ingestion, as opsonization with defined ligands could not overcome the exclusion of either latex beads or heat killed organisms. However modulation of intracellular pH by pharmacological agents such as chloroquine and ammonium chloride increased delivery of live Listeria and also induced transfer of previously excluded particles. The absence of fusion correlated with the acquisition of annexin I, a putative lysosomal targeting, molecule, on the phagosome membrane. We propose that the acquisition of cellular membrane constituents such as annexin I during phagosome maturation can ultimately direct the fusion pathway of the vesicles formed and have described a model system to further document changes in vesicle fusigenicity within cells.

  18. Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core.

    Science.gov (United States)

    Auman, Ann J; Breezee, Jennifer L; Gosink, John J; Schumann, Peter; Barnes, Carmen R; Kämpfer, Peter; Staley, James T

    2010-01-01

    A gas-vacuolate bacterium, strain 174(T), was isolated from a sea-ice core collected from Point Barrow, Alaska, USA. Comparative analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to Psychromonas ingrahamii 37(T), with a similarity of >99 %. However, strain 174(T) could be clearly distinguished from closely related species by DNA-DNA hybridization; relatedness values determined by two different methods between strain 174(T) and P. ingrahamii 37(T) were 58.4 and 55.7 % and those between strain 174(T) and Psychromonas antarctica DSM 10704(T) were 46.1 and 33.1 %, which are well below the 70 % level used to define a distinct species. Phenotypic analysis, including cell size (strain 174(T) is the largest member of the genus Psychromonas, with rod-shaped cells, 8-18 microm long), further differentiated strain 174(T) from other members of the genus Psychromonas. Strain 174(T) could be distinguished from its closest relative, P. ingrahamii, by its utilization of D-mannose and D-xylose as sole carbon sources, its ability to ferment myo-inositol and its inability to use fumarate and glycerol as sole carbon sources. In addition, strain 174(T) contained gas vacuoles of two distinct morphologies and grew at temperatures ranging from below 0 to 10 degrees C and its optimal NaCl concentration for growth was 3.5 %. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 1omega7c and 16 : 0 comprised 44.9 and 26.4 % of the total fatty acid content, respectively. The name Psychromonas boydii sp. nov. is proposed for this novel species, with strain 174(T) (=DSM 17665(T) =CCM 7498(T)) as the type strain.

  19. Plasmodium berghei Δp52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells.

    Science.gov (United States)

    Ploemen, Ivo H J; Croes, Huib J; van Gemert, Geert-Jan J; Wijers-Rouw, Mietske; Hermsen, Cornelus C; Sauerwein, Robert W

    2012-01-01

    The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM). However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.

  20. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-09-15

    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.

  1. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Science.gov (United States)

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  2. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  3. The vacuolar V1/V0-ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion

    DEFF Research Database (Denmark)

    Takeda, Kozue; Cabrera, Margarita; Rohde, Jan

    2008-01-01

    At yeast vacuoles, phosphorylation of the HOPS subunit Vps41 depends on the Yck3 kinase. In a screen for mutants that mimic the yck3Delta phenotype, in which Vps41 accumulates in vacuolar dots, we observed that mutants in the V0-part of the V0/V1-ATPase, in particular in vma16Delta, also accumulate...

  4. Anionic Sites, Fucose Residues and Class I Human Leukocyte Antigen Fate During Interaction of Toxoplasma gondii with Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Stumbo Ana Carolina

    2002-01-01

    Full Text Available Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.

  5. Bacterial spread from cell to cell: beyond actin-based motility.

    Science.gov (United States)

    Kuehl, Carole J; Dragoi, Ana-Maria; Talman, Arthur; Agaisse, Hervé

    2015-09-01

    Several intracellular pathogens display the ability to propagate within host tissues by displaying actin-based motility in the cytosol of infected cells. As motile bacteria reach cell-cell contacts they form plasma membrane protrusions that project into adjacent cells and resolve into vacuoles from which the pathogen escapes, thereby achieving spread from cell to cell. Seminal studies have defined the bacterial and cellular factors that support actin-based motility. By contrast, the mechanisms supporting the formation of protrusions and their resolution into vacuoles have remained elusive. Here, we review recent advances in the field showing that Listeria monocytogenes and Shigella flexneri have evolved pathogen-specific mechanisms of bacterial spread from cell to cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    International Nuclear Information System (INIS)

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-01

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP 2 and PIP 3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  7. What is the origin of pancreatic adenocarcinoma?

    Directory of Open Access Journals (Sweden)

    Pandey Krishan K

    2003-01-01

    Full Text Available Abstract The concept of pancreatic cancer origin is controversial. Acinar, ductal or islet cells have been hypothesized as the cell of origin. The pros and cons of each of these hypotheses are discussed. Based on the world literature and recent observations, pancreatic cells seem to have potential for phenotypical transdifferentiation, i.e ductal-islet, ductal-acinar, acinar-ductal, acinar-islet, islet-acinar and islet-ductal cells. Although the possibility is discussed that cancer may arise from either islet, ductal or acinar cells, the circumstances favoring the islet cells as the tumor cell origin include their greater transdifferentiation potency into both pancreatic and extrapancreatic cells, the presence of a variety of carcinogen-metabolizing enzymes, some of which are present exclusively in islet cells and the growth factor-rich environment of islets.

  8. Morphology changes in human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens

    International Nuclear Information System (INIS)

    Esposito, V.; Lucariello, A.; Savarese, L.; Cinelli, M.P.; Ferraraccio, F.; Bianco, A.; De Luca, A.; Mazzarella, G.

    2012-01-01

    In the recent literature there has been an increased interest in the effects of particulate matter on the respiratory tract. The objective of this study was to use an in vitro model of type II lung epithelium (A549) to evaluate the cell ability to take up sub-micron PM 1.0 particles (PM 1.0 ), Parietaria officinalis (ALL), and PM 1.0 + ALL together. Morphological analysis performed by Transmission Electron Microscope (TEM) showed that PM and ALL interacted with the cell surface, then penetrating into the cytoplasm. Each single treatment was able to point out a specific change in the morphology. The cells treated appear healthy and not apoptotic. The main effect was the increase of: multilamellar bodies, lysosomal enzymes, microvilli, and presence of vesicle/vacuoles containing particles. These observations demonstrate morphological and functional alterations related to the PM 1.0 and P. officinalis and confirm the induction of the inflammatory response in lung cells exposed to the inhalable particles. - Highlights: ► Cell ability to take up PM 1.0 particles, Parietaria officinalis (ALL), PM 1.0 + ALL. ► The cells treated appear healthy and not apoptotic. ► Each single treatment was able to point out a specific change in the morphology. ► Increase of multilamellar bodies lysosomal enzymes microvilli vesicle with particles. ► Induction of inflammatory response in lung cells exposed to the inhalable particles. - The urban environment with the combination of inhalable air pollution and particulate can damage the acinar lung units and activate cells of the immune system.

  9. Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells

    International Nuclear Information System (INIS)

    Chung, Hyewon; Yoon, Young Hee; Hwang, Jung Jin; Cho, Kyung Sook; Koh, Jae Young; Kim, June-Gone

    2009-01-01

    Ethambutol, an efficacious antituberculosis agent, can cause irreversible visual loss in a small but significant fraction of patients. However, the mechanism of ocular toxicity remains to be established. We previously reported that ethambutol caused severe vacuole formation in cultured retinal cells, and that the addition of zinc along with ethambutol aggravated vacuole formation whereas addition of the cell-permeable zinc chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), reduced vacuole formation. To investigate the origin of vacuoles and to obtain an understanding of drug toxicity, we used cultured primary retinal cells from newborn Sprague-Dawley rats and imaged ethambutol-treated cells stained with FluoZin-3, zinc-specific fluorescent dye, under a confocal microscope. Almost all ethambutol-induced vacuoles contained high levels of labile zinc. Double staining with LysoTracker or MitoTracker revealed that almost all zinc-containing vacuoles were lysosomes and not mitochondria. Intracellular zinc chelation with TPEN markedly blocked both vacuole formation and zinc accumulation in the vacuole. Immunocytochemistry with antibodies to lysosomal-associated membrane protein-2 (LAMP-2) and cathepsin D, an acid lysosomal hydrolase, disclosed lysosomal activation after exposure to ethambutol. Immunoblotting after 12 h exposure to ethambutol showed that cathepsin D was released into the cytosol. In addition, cathepsin inhibitors attenuated retinal cell toxicity induced by ethambutol. This is consistent with characteristics of lysosomal membrane permeabilization (LMP). TPEN also inhibited both lysosomal activation and LMP. Thus, accumulation of zinc in lysosomes, and eventual LMP, may be a key mechanism of ethambutol-induced retinal cell death

  10. Apoptosis of acinar cells in pancreas allograft rejection

    NARCIS (Netherlands)

    Boonstra, J. G.; Wever, P. C.; Laterveer, J. C.; Bruijn, J. A.; van der Woude, F. J.; ten Berge, I. J.; Daha, M. R.

    1997-01-01

    BACKGROUND: Recently it has been recognized that apoptosis of target cells may occur during liver and kidney allograft rejection and is probably induced by infiltrating cells. Pancreas rejection is also characterized by a cellular infiltrate, however, the occurrence of apoptosis has not been

  11. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    International Nuclear Information System (INIS)

    Asare, Nana; Landvik, Nina E.; Lagadic-Gossmann, Dominique; Rissel, Mary; Tekpli, Xavier; Ask, Kjetil; Lag, Marit; Holme, Jorn A.

    2008-01-01

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed that the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent

  12. Using a two-layered sphere model to investigate the impact of gas vacuoles on the inherent optical properties of Microcystis aeruginosa

    CSIR Research Space (South Africa)

    Matthews, MW

    2013-01-01

    Full Text Available A two-layered sphere model is used to investigate the impact of gas vacuoles on the inherent optical properties (IOPs) of the cyanophyte Microcystis aeruginosa. Enclosing a vacuole-like particle within a chromatoplasm shell layer significantly...

  13. Legionella pneumophila infection of Drosophila S2 cells induces only minor changes in mitochondrial dynamics.

    Directory of Open Access Journals (Sweden)

    Elizabeth Wen Sun

    Full Text Available During infection of cells by Legionella pneumophila, the bacterium secretes a large number of effector proteins into the host cell cytoplasm, allowing it to alter many cellular processes and make the vacuole and the host cell into more hospitable environments for bacterial replication. One major change induced by infection is the recruitment of ER-derived vesicles to the surface of the vacuole, where they fuse with the vacuole membrane and prevent it from becoming an acidified, degradative compartment. However, the recruitment of mitochondria to the region of the vacuole has also been suggested by ultrastructural studies. In order to test this idea in a controlled and quantitative experimental system, and to lay the groundwork for a genome-wide screen for factors involved in mitochondrial recruitment, we examined the behavior of mitochondria during the early stages of Legionella pneumophila infection of Drosophila S2 cells. We found that the density of mitochondria near vacuoles formed by infection with wild type Legionella was not different from that found in dotA(- mutant-infected cells during the first 4 hours after infection. We then examined 4 parameters of mitochondrial motility in infected cells: velocity of movement, duty cycle of movement, directional persistence and net direction. In the 4 hours following infection, most of these measures were indistinguishable between wild type and dotA(-.infection. However, wild type Legionella did induce a modest shift in the velocity distribution toward faster movement compared dotA(- infection, and a small downward shift in the duty cycle distribution. In addition, wild type infection produced mitochondrial movement that was biased in the direction of the bacterial vacuole relative to dotA-, although not enough to cause a significant accumulation within 10 um of the vacuole. We conclude that in this host cell, mitochondria are not strongly recruited to the vacuole, nor is their motility

  14. New advances in cell physiology and pathophysiology of the exocrine pancreas.

    Science.gov (United States)

    Mössner, Joachim

    2010-01-01

    This review provides some aspects on the physiology of stimulation and inhibition of pancreatic digestive enzyme secretion and the pathophysiology of pancreatic acinar cell function leading to pancreatitis. Cholecystokinin (CCK) stimulates both directly via CCK-A receptors on acinar cells and indirectly via CCK-B receptors on nerves, followed by acetylcholine release, pancreatic enzyme secretion. It is still not known whether CCK-A receptors exist in human acinar cells, in contrast to acinar cells of rodents where CCK-A receptors have been well described. CCK has numerous actions both in the periphery and in the central nervous systems. CCK inhibits gastric motility and regulates satiety. Another major function of CCK is stimulation of gallbladder contraction. This function enables that bile acids act simultaneously with pancreatic lipolytic enzymes. Secretin is a major stimulator of bicarbonate secretion. Trypsinogen is activated by the gut mucosal enzyme enterokinase. The other pancreatic proenzymes are activated by trypsin. Termination of enzyme secretion may be regulated by negative feedback mechanisms via destruction of CCK-releasing peptides by trypsin. Furthermore, the ileum may act as a brake by release of inhibitory hormones such as PYY and somatostatin. In the pathophysiology of acute pancreatitis, fusion of zymogen granules with lysosomes leading to intracellular activation of trypsinogen is regarded as an initiation step. This activation of trypsinogen may be caused by the lysosomal enzyme cathepsin B. However, autoactivation of trypsinogen itself may be a possibility in pathogenesis. Autoactivation is enhanced in certain mutations of trypsinogen. Furthermore, an imbalance of protease inhibitors and active proteases may be involved. The role of pancreatic lipolytic enzymes, the role of bicarbonate secretion, and toxic Ca(2+) signals by excessive liberation from the endoplasmic reticulum have to be discussed in the pathogenesis of acute pancreatitis

  15. Clustering of Helicobacter pylori VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 Cells

    DEFF Research Database (Denmark)

    Nakayama, Masaaki; Hisatsune, Jyunzo; Yamasaki, Eiki

    2006-01-01

    Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflamm......Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation...

  16. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells.

    Science.gov (United States)

    Overmeyer, Jean H; Young, Ashley M; Bhanot, Haymanti; Maltese, William A

    2011-06-06

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP) that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1), they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6) are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  17. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Bhanot Haymanti

    2011-06-01

    Full Text Available Abstract Background Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Results Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl-1-(4-pyridinyl-2-propen-1-one (MIPP that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1, they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6 are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. Conclusions MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  18. Gold nanoparticles administration induces disarray of heart muscle, hemorrhagic, chronic inflammatory cells infiltrated by small lymphocytes, cytoplasmic vacuolization and congested and dilated blood vessels

    Directory of Open Access Journals (Sweden)

    Abdelhalim Mohamed Anwar K

    2011-12-01

    Full Text Available Abstract Background Despite significant research efforts on cancer therapy, diagnostics and imaging, many challenges remain unsolved. There are many unknown details regarding the interaction of nanoparticles (NPs and biological systems. The structure and properties of gold nanoparticles (GNPs make them useful for a wide array of biological applications. However, for the application of GNPs in therapy and drug delivery, knowledge regarding their bioaccumulation and associated local or systemic toxicity is necessary. Information on the biological fate of NPs, including distribution, accumulation, metabolism, and organ specific toxicity is still minimal. Studies specifically dealing with the toxicity of NPs are rare. The aim of the present study was to investigate the effects of intraperitoneal administration of GNPs on histological alterations of the heart tissue of rats in an attempt to identify and understand the toxicity and the potential role of GNPs as a therapeutic and diagnostic tool. Methods A total of 40 healthy male Wistar-Kyoto rats received 50 μl infusions of 10, 20 and 50 nm GNPs for 3 or 7 days. Animals were randomly divided into groups: 6 GNP-treated rats groups and one control group (NG. Groups 1, 2 and 3 received infusions of 50 μl GNPs of size 10 nm (3 or 7 days, 20 nm (3 or 7 days and 50 nm (3 or 7 days, respectively. Results In comparison with the respective control rats, exposure to GNPs doses produced heart muscle disarray with a few scattered chronic inflammatory cells infiltrated by small lymphocytes, foci of hemorrhage with extravasation of red blood cells, some scattered cytoplasmic vacuolization and congested and dilated blood vessels. None of the above alterations were observed in the heart muscle of any member of the control group. Conclusions The alterations induced by intraperitoneal administration of GNPs were size-dependent, with smaller ones inducing greater affects, and were also related to the time exposure to

  19. A case report of mixed acinar-endocrine carcinoma of the pancreas treated with S-1 chemotherapy: Does it work or induce endocrine differentiation?

    Science.gov (United States)

    Yokode, Masataka; Itai, Ryosuke; Yamashita, Yukimasa; Zen, Yoh

    2017-11-01

    Acinar cell carcinomas (ACCs) and mixed acinar-endocrine carcinomas (MAECs) of the pancreas are rare, accounting for only 1% of pancreatic tumors. Although both typically present at an advanced stage, chemotherapeutic regimes have not yet been standardized. A 65-year-old man presented with a large mass in the pancreatic tail with multiple liver metastases. He was initially treated with gemcitabine for suspected ductal carcinoma of the pancreas, but no response was observed. S-1, administered as second-line chemotherapy, showed an approximately 38% reduction in the size of the primary tumor and metastatic deposits with therapeutic effects being maintained for 12 months. When the tumor progressed again, he underwent a percutaneous liver biopsy, which led to the diagnosis of MAEC. Combination therapy with cisplatin and etoposide targeting the endocrine component was administered, and this was based on the endocrine component potentially being less sensitive to S-1 than the ACC element. However, therapy was stopped due to the development of neutropenia, and the patient is currently receiving best supportive care. Given the previous studies suggested that S-1 is more effective for ACCs than gemcitabine, MAECs may also respond to S-1 chemotherapy, similar to ACCs. Another potential interpretation is that S-1 was effective when the condition was ACC, and eventually showed decreased effectiveness when the condition shifted to MAEC. Future studies are needed to conclude whether S-1 chemotherapy truly works against MAECs or induces endocrine differentiation in ACCs as a part of the drug-resistance process.

  20. Differential compartmentation of sucrose and gentianose in the cytosol and vacuoles of storage root protoplasts from Gentiana Lutea L.

    Science.gov (United States)

    Keller, F; Wiemken, A

    1982-12-01

    The storage roots of perennial Gentiana lutea L.plants contain several sugars. The predominant carbohydrate reserve is gentianose (β-D-glucopyranosyl-(1 → 6)-α-D-glucopyranosyl-(1 ↔ 2)-β-D-fructofuranoside). Vacuoles were isolated from root protoplasts and purified through a betaine density gradient. The yield was about 75%. Gentianose and gentiobiose were localized to 100% in the vacuoles, fructose and glucose to about 80%, and sucrose to only about 50%. Taking the volumes of the vacuolar and extravacuolar (cytosolic) compartments into account it is inferred that gentianose is located exclusively in the vacuoles, whilst sucrose is much more concentrated in the cytosol where it may play a role as a cryoprotectant. The concentration of fructose and glucose appeared to be similar on both sides of the tonoplast.

  1. SAJS SAJS

    African Journals Online (AJOL)

    The acinar cells constitute most of the mass of the pancreas. Acinar cell carcinoma is a rare malignant tumour of the pancreatic exocrine cells; it comprises approximately 1% of malignant pancreatic tumours.1 The majority are pure acinar cell cancers; however, a minor endocrine component may occur. If the endocrine ...

  2. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells

    OpenAIRE

    Overmeyer, Jean H; Young, Ashley M; Bhanot, Haymanti; Maltese, William A

    2011-01-01

    Abstract Background Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Results Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP) that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse mi...

  3. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.

    Directory of Open Access Journals (Sweden)

    Lukas Aeberhard

    2015-06-01

    Full Text Available Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells' antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.

  4. Studies on the development of male cells of third generation of the stratosphere radiative millet

    International Nuclear Information System (INIS)

    Chu Qinggang; Cao Yufang; Xin Hua; Zhang Xiufen

    1998-01-01

    The developmental process of male cells of millet (Setaria italica), the third generation of the stratosphere radiative treatment SP 3 and CK 3 , was studied. The results show that the normal process begins with archesporial cell and undergoes stages of primary and secondary sporogenous cell, microspore mother cell, dyad, tetrad, central nucleus microspore, vacuolated microspore, mature microspore, two-cell pollen and three-cell mature pollen. Among them, the formation of tetrad belongs to successive type. The situation of abnormal development of male cells is as follows: microspore mother cell can't enter into meiosis because of intense vacuolation, shrink and disintegration of its cytoplasm; although vacuolated microspore mother cell can enter into meiosis, it can't form normal dyad and degenerate in the middle process; dyad and tetrad become vacuolated and can't develop normally; cytoplasm of microspore shrinks around the nucleus at the stage of central nucleus microspore, the shape of microspore is twisted into crescent or irregular shape, at last its cytoplasm and nucleus are disintegrated and crescent vacant microspore presents; nutritive substances can't be accumulated at the stage of vacuolated microspore, cytoplasm is disintegrated, and microspore turns into a big vacant pollen. The ratio of abnormal development of male cells of SP 3 is as high as 50%. This maybe relates to the treatment of space radiation, which results in chromosomal aberration, and also to the segregation and recombinatiom of chromosome of SP 1 and SP 2

  5. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles

    Directory of Open Access Journals (Sweden)

    María Milagros López de Armentia

    2016-03-01

    Full Text Available Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila. The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.

  6. Effect of cell density on adipogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lu, Hongxu; Guo, Likun; Wozniak, Michal J.; Kawazoe, Naoki; Tateishi, Tetsuya; Zhang, Xingdong; Chen, Guoping

    2009-01-01

    The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10 3 to 3 x 10 4 cells/cm 2 was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed that adipogenesis marker genes encoding peroxisome proliferator-activated receptor γ2 (PPARγ2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.

  7. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: A study using photonic force microscopy

    International Nuclear Information System (INIS)

    Abu-Hamdah, Rania; Cho, Won Jin; Hoerber, J.K.H.; Jena, Bhanu P.

    2006-01-01

    It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 μm in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles

  8. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: A study using photonic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdah, Rania [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States); Cho, Won Jin [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States); Hoerber, J.K.H. [Department of Physics, University of Bristol, Bristol BS8 1TD (United Kingdom); Jena, Bhanu P. [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States)]. E-mail: bjena@med.wayne.edu

    2006-06-15

    It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 {mu}m in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles.

  9. Active ras triggers death in glioblastoma cells through hyperstimulation of macropinocytosis.

    Science.gov (United States)

    Overmeyer, Jean H; Kaul, Aparna; Johnson, Erin E; Maltese, William A

    2008-06-01

    Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers but do not sequester transferrin or the endosomal protein EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethylketone does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed "methuosis." An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiologic triggers for this unusual form of cell death.

  10. Symplastic Transport of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea Is Diffusive and Includes Loss to the Vacuole.

    Science.gov (United States)

    Tucker, J E; Mauzerall, D; Tucker, E B

    1989-07-01

    The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water.

  11. Expression of Wnt-1, TGF-β and related cell–cell adhesion components following radiotherapy in salivary glands of patients with manifested radiogenic xerostomia

    International Nuclear Information System (INIS)

    Hakim, Samer George; Ribbat, Julika; Berndt, Alexander; Richter, Petra; Kosmehl, Hartwig; Benedek, Geza A.; Jacobsen, Hans Christian; Trenkle, Thomas; Sieg, Peter; Rades, Dirk

    2011-01-01

    Background: Radiation-induced xerostomia still represents a common symptom following radiotherapy of head and neck malignancies, which significantly impairs the patient’s quality of life. In this cross-sectional study, human salivary glands were investigated to assess the role of Wnt/β-catenin and TGF-β pathways in the pathogenic process of radiogenic impairment of salivary function. Methods: Irradiated human salivary glands were investigated in patients with manifested xerostomia. Alteration of Wnt-1 and cell–cell adhesion was evaluated immunohistologically as well as changes in the expression of TGF-β were assessed in salivary gland tissue. Results: We assessed two alteration patterns in which Wnt-1 expression represents one change along with up-regulation of β-catenin and E-cadherin in irradiated but viable acinar cells. Increased expression of tenascin-C was observed in sites of epithelial–mesenchymal interaction and loss of cell–cell adhesion was assessed in translocated epithelial cells in the stroma. Conclusion: Increased transdifferentiation and remodeling of acinar structures was associated with decrease of viable acinar structures. The role of Wnt and TGF signaling may provide a potential therapeutic approach to prevent radiation-induced damage to salivary glands during radiotherapy for head and neck cancer.

  12. Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation

    Czech Academy of Sciences Publication Activity Database

    Liu, Q.; Vain, T.; Viotti, C.; Doyle, S. M.; Tarkowská, Danuše; Novák, Ondřej; Zipfel, C.; Sitbon, F.; Robert, S.; Hofius, D.

    2018-01-01

    Roč. 11, č. 4 (2018), s. 553-567 ISSN 1674-2052 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis * brassinosteroid signaling * DUF300 proteins * tonoplast * vacuole integrity Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 8.827, year: 2016

  13. The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging.

    Directory of Open Access Journals (Sweden)

    Fernando Real

    Full Text Available An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i hosting amastigotes of either L. major or L. amazonensis and ii loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms.

  14. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Directory of Open Access Journals (Sweden)

    Marina E Tourlakis

    2015-06-01

    Full Text Available Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis

  15. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency

    Science.gov (United States)

    Tourlakis, Marina E.; Zhang, Siyi; Ball, Heather L.; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S.; Guidos, Cynthia J.; Durie, Peter R.; Rommens, Johanna M.

    2015-01-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  16. Vacúolos de gás e flutuação em Difflugia mitriformis Wallich (Protista, Rhizopoda, Testaceolobosea Gas vacuoles and flotation in Diffugia mitriformis Wallich (Protista, Rhizopoda, Testaceolobosea

    Directory of Open Access Journals (Sweden)

    Vladimir Stolzenberg Torres

    1996-01-01

    Full Text Available The natural formation of gas vacuoles as a method of locomotion is described for Difflugia mitriformis Wallich, 1984. These vacuoles may contain different compositions of gases, basicly carbodioxyde or oxigen, with a membranous limitation similar or identical to other types of vacuoles. Those vacuoles are utilised by the organism as a mode of dislocation frorn the bottom to the water surface by flotation permiting better conditions for the survival of the individual, with the consequence of the perpetuance of the taxon.

  17. Oculopharyngeal Weakness, Hypophrenia, Deafness, and Impaired Vision: A Novel Autosomal Dominant Myopathy with Rimmed Vacuoles

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Conclusions: We reported a novel autosomal dominant myopathy with rimmed vacuoles characterized by dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision, but the causative gene has not been found and needs further study.

  18. Specific binding of Ulex europaeus agglutinin I lectin to sarcolemma of distal myopathy with rimmed vacuole formation.

    Science.gov (United States)

    Yatabe, K; Kawai, M

    1997-08-01

    Ulex europaeus agglutinin I (UEA I) binding was studied in 83 patients with various neuromuscular disorders. UEA I labelled endomysial capillaries and endothelial cells of perimysial blood vessels in all the examined muscles. There was no UEA I binding to muscle fibres except for all (9) cases of distal myopathy with rimmed vacuole formation (DMRV), 1 of 5 cases of inclusion body myositis and 1 of 36 cases of inflammatory myopathies. The UEA I binding was completely eliminated by preincubation of UEA I solution with L-fucose. Using electron microscopy, the UEA I binding was localized to sarcolemma and intrasarco-plasmic membranous organelles other than mitochondria. Myosatellite cells were not labelled. These findings revealed the existence of fucosylated proteins or lipids in a subset of skeletal muscles suffering from DMRV. Biochemical identification of the fucosylated substance and further detailed study on subcellular localization of UEA I binding may yield important clues to the unknown pathogenesis of DMRV.

  19. Ultrastructural alterations in hypoxic EMT-6/RO cells treated with misonidazole

    International Nuclear Information System (INIS)

    Wilbur, D.C.; Mulcahy, R.T.

    1984-01-01

    Ultrastructural alterations in hypoxic EMT-6 tumor cells were quantitatively analyzed as a function of time in the presence and absence of 1.0mM MISO. Control and MISO-treated monolayer cultures were maintained in hypoxic chambers at 37 0 C. At intervals after initiation of hypoxia, the cells were fixed and prepared for electron microscopy. The major ultrastructural alterations observed in untreated and MISO-treated hypoxic cells included mitochondrial swelling and accumulation of cytoplasmic lipid vacuoles. Mean mitochondrial area and relative cytoplasmic area occupied by lipid vacuoles were determined morphometrically. Mitochondrial damage was also scored qualitatively based on distortions in configuration. In the absence of MISO both parameters of mitochondrial injury increased over a period of two hours, after which little further change was noted. A progressive increase in lipid vacuolization was also seen. In the presence of MISO, mitochondrial swelling and lipid vacuole formation were significantly increased. The proportion of irreversibly damaged mitochondria was markedly enhanced. MISO treatment also accelerated the expression of these changes. The accelerated expression of hypoxic-related injury in MISO treated cells suggests that cytotoxicity is related to accentuation of hypoxic injury, perhaps by inhibition of glycolysis

  20. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    Science.gov (United States)

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  1. Major salivary gland hypertrophy model in immature rats: morphometric and histochemical epithelial cell characteristics

    Directory of Open Access Journals (Sweden)

    Vera V. Ivanova

    2017-01-01

    Full Text Available The purpose of the study is to estimate the functional state of epithelial cells of acini and ducts of major salivary glands with hypertrophy caused by repeated incisor amputations in immature rats.Materials and methods. The experiment was carried out on immature (20 days, white male rats, divided into 3 groups: intact, control and group of rats with repeated incisor amputations. Animals were taken out in 2d, 3d, 4th, 6th, 8th, 10th and 12th weeks after the first incisor amputation. Morphofunctional state of rat major salivary glands was assessed by histological (hematoxylin and eosin, histochemistrical (Alcian blue, PAS-reaction, Brachet method and morphometrical (acini area, intralobular ducts volume methods.Results. Repeated incisor amputations led to the increase of acini area and the decrease of intralobular duct volume in submandibular glands in 2nd–4th weeks of the experiment. Cytoplasm pyroninophilia of submandibular gland acinar cells was less pronounced and intensity of PAS-reaction was more pronounced than in intact animals in 3rd week of the experiment. Morphological and functional changes of parotid and sublingual gland epithelial cells were not observed after repeated amputations of incisors in immature rats.Conclusion. Repeated incisor amputations in immature male rats lead to submandibular gland acinar cell hypertrophy in the early stages of the experiment (2d–4th weeks with accumulation of glycoproteins and protein synthesis weakening in these cells. Hypertrophy of acinar cells are accompanied by retardation in the development of granular convoluted tubule cells which are the source of synthesis and secretion of the endocrine biologically active factors of submandibular glands.

  2. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian

    2017-01-01

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic

  3. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian, E-mail: jinjianlu@umac.mo

    2017-04-15

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic

  4. Targeting Trypsin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model

    Science.gov (United States)

    2016-10-01

    foster mothers , confirming genotype of new pups using standard genotyping techniques, and weaning and delivering of SPF R122H mice to the Principal...present The activities in this part of the project involve the use of freshly isolated pancreatic acini (clusters of acinar cells ) obtained from wild...acinar cells . However, when use experimentally at supra-physiological concentrations, CCK induces acinar cell damage and pancreatitis responses

  5. Essential domain of receptor tyrosine phosphatase beta (RPTPbeta) for interaction with Helicobacter pylori vacuolating cytotoxin

    DEFF Research Database (Denmark)

    Yahiro, Kinnosuke; Wada, Akihiro; Yamasaki, Eiki

    2004-01-01

    Helicobacter pylori produces a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Although VacA was able to interact with two receptor-like protein tyrosine phosphatases, RPTPbeta and RPTPalpha, RPTPbeta was found to be responsible for gastric damage caused...

  6. Pancreatic β-cell regeneration: Facultative or dedicated progenitors?

    Science.gov (United States)

    Afelik, Solomon; Rovira, Meritxell

    2017-04-15

    The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention. Copyright © 2016. Published by Elsevier B.V.

  7. The use of CaCl2 and other salts to improve surface finish and eliminate vacuoles in ICF microencapsulated shells

    International Nuclear Information System (INIS)

    McQuillan, B.W.; Elsner, F.H.; Stephens, R.B.; Brown, L.C.

    1999-01-01

    Polystyrene and poly(α-methylstyrene) (PAMS) shells made by microencapsulation are prone to having vacuoles in the walls and a concomitant surface roughness. These defects can be detrimental to the implosion required for ICF shots. The authors have found that adding sufficient salt (typically CaCl 2 or NH 4 Cl) to the exterior polyvinylalcohol (PVA) solution during the drying phase inhibits the formation of vacuoles and decreases the surface roughness of the shells. The use of such salts does affect other shell specifications, for which other process variables must be adjusted

  8. Regulation of Breast Cancer Stem Cells by Tissue Rigidity

    Science.gov (United States)

    2015-06-01

    of acini having no1mal aspect ratios. as determined in panel (C). ***P<O.OOl. mamma1y acinar structme desensitize mammaty epithelial cells to...mechanics. Nat Commun. 2012;3:792. 4. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19...predicted as a potential phosphorylation site. This provided a very attractive potential mechanism by which increased matrix stiffness activates

  9. Vacuolar processing enzyme: an executor of plant cell death.

    Science.gov (United States)

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  10. An Ursolic Acid Derived Small Molecule Triggers Cancer Cell Death through Hyperstimulation of Macropinocytosis.

    Science.gov (United States)

    Sun, Lin; Li, Bin; Su, Xiaohui; Chen, Ge; Li, Yaqin; Yu, Linqian; Li, Li; Wei, Wanguo

    2017-08-10

    Macropinocytosis is a transient endocytosis that internalizes extracellular fluid and particles into vacuoles. Recent studies suggest that hyperstimulation of macropinocytosis can induce a novel nonapoptotic cell death, methuosis. In this report, we describe the identification of an ursolic acid derived small molecule (compound 17), which induces cancer cell death through hyperstimulation of macropinocytosis. 17 causes the accumulation of vacuoles derived from macropinosomes based on transmission electron microscopy, time-lapse microscopy, and labeling with extracellular fluid phase tracers. The vacuoles induced by 17 separate from other cytoplasmic compartments but acquire some characteristics of late endosomes and lysosomes. Inhibiting hyperstimulation of macropinocytosis with the specific inhibitor amiloride blocks cell death, implicating that 17 leads to cell death via macropinocytosis, which is coincident with methuosis. Our results uncovered a novel cell death pathway involved in the activity of 17, which may provide a basis for further development of natural-product-derived scaffolds for drugs that trigger cancer cell death by methuosis.

  11. Integrin Subunit CD18 Is the T-Lymphocyte Receptor for the Helicobacter pylori Vacuolating Cytotoxin

    Czech Academy of Sciences Publication Activity Database

    Sewald, X.; Gebert-Vogl, B.; Prassl, S.; Barwig, I.; Weiss, E.; Fabbri, M.; Osička, Radim; Schiemann, M.; Busch, D. H.; Semmrich, M.; Holzmann, B.; Šebo, Peter; Haas, R.

    2008-01-01

    Roč. 3, č. 1 (2008), s. 20-29 ISSN 1931-3128 R&D Projects: GA ČR GP204/07/P105 Institutional research plan: CEZ:AV0Z50200510 Keywords : helicobacter pylori * vacuolating cytotoxin * adenocarcinoma Subject RIV: EE - Microbiology, Virology Impact factor: 7.436, year: 2008

  12. Effect of irradiation on the expression of caspase-3 in the submandibular gland of streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Lee, Heung Ki; Hwang, Eui Hwan; Lee, Sang Rae

    2005-01-01

    To observe the histopathological changes and caspace-3 expression in the submandibular gland in streptozotocin-induced diabetic rats after irradiation. The male Sprague-Dawley rats weighing approximately 250gm were divided into four groups; control, diabetes, irradiation, and diabetes-irradiation groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control and irradiation groups were injected with citrate buffer only. After 5 days, rats in irradiation, and diabetes-irradiation groups were irradiated with a single absorbed dose of 10 Gy to the head and neck region. All the rats were sacrificed at 3, 7, 14, 21, and 28 days after irradiation. The specimen including the submandibular gland were sectioned and observed using histopathological and immunohistochemical methods. In the irradiation group, the condensed nucleus, karyolysis, and degeneration of the acinar cells and atrophy of the duct cells were observed in the early experimental phase. However, the acinar cells were found to be normal at 28 days after irradiation. In the diabetes group, the condensed nucleus, karyolysis, atrophy, and degeneration of the acinar cells were observed in the early experimental phase. However, the acinar cells were found to be normal at 21 days, after diabetic state induction. In the diabetes-irradiation group, the ductal epithelial cells were predominant in their glandular tissues at 28 days after irradiation. In all of the experimental groups, the most prominent change of the acinar cells and ductal cells were observed at 14 days after diabetic state induction and irradiation. The expression of caspase-3 in the acinar cells and ductal cells of the submandibular gland was weak after irradiation, but that in the acinar cells, ductal cells, and fibrous cells of the submandibular gland was prominent after diabetic state induction.

  13. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  14. Symplastic Transport of Carboxyfluorescein in Staminal Hairs of Setcreasea purpurea Is Diffusive and Includes Loss to the Vacuole 1

    Science.gov (United States)

    Tucker, Joseph E.; Mauzerall, David; Tucker, Edward B.

    1989-01-01

    The kinetics of symplastic transport in staminal hairs of Setcreasea purpurea was studied. The tip cell of a staminal hair was microinjected with carboxyfluorescein (CF) and the symplastic transport of this CF was videotaped and the digital data analyzed to produce kinetic curves. Using a finite difference equation for diffusion between cells and for loss of dye into the vacuole, kinetic curves were calculated and fitted to the observed data. These curves were matched with data from actual microinjection experiments by adjusting K (the coefficient of intercellular junction diffusion) and L (the coefficient of intracellular loss) until a minimum in the least squares difference between the curves was obtained. (a) Symplastic transport of CF was governed by diffusion through intercellular pores (plasmodesmata) and intracellular loss. Diffusion within the cell cytoplasm was never limiting. (b) Each cell and its plasmodesmata must be considered as its own diffusion system. Therefore, a diffusion coefficient cannot be calculated for an entire chain of cells. (c) The movement through plasmodesmata in either direction was the same since the data are fit by a diffusion equation. (d) Diffusion through the intercellular pores was estimated to be slower than diffusion through similar pores filled with water. PMID:16666864

  15. Hyaluronan synthesis in cultured tobacco cells (BY-2) expressing a chlorovirus enzyme: cytological studies.

    Science.gov (United States)

    Rakkhumkaew, Numfon; Shibatani, Shigeo; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi

    2013-04-01

    Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured-cells (BY-2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY-2 cells harboring a vSPO-cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N-terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA. Copyright © 2012 Wiley Periodicals, Inc.

  16. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  17. Differential responses of cells from human skin keratinocyte and bovine mammary epithelium to attack by pore-forming Staphylococcus aureus alpha-toxin.

    Science.gov (United States)

    Suriyaphol, Gunnaporn; Sarikaputi, Meena; Suriyaphol, Prapat

    2009-11-01

    Human skin keratinocytes HaCat attacked by Staphylococcus aureus alpha-toxin showed a transient drop of cellular ATP levels whereas in toxin-perforated bovine mammary epithelial cells (BMEC), the ATP levels dropped more slowly. Morphologically, during the ATP level depletion, HaCat cell developed a spacious intracellular vacuole together with the transient influx of trypan blue. WST-1 signal, which tested the function of mitochondrial enzyme in viable cells, also decreased concomitantly. On the other hand, BMEC excluded trypan blue and vacuolation was not observed throughout the experiment. We conclude that mammary epithelial cells resist the toxin better than keratinocytes. This is the first report showing that alpha-toxin enhances transient membrane permeability to large molecules, temporary vacuole formation and the transient defect of mitochondrial enzyme in viable cells without cell lysis.

  18. Loss of notochordal cell phenotype in 3D-cell cultures: implications for disc physiology and disc repair.

    Science.gov (United States)

    Omlor, G W; Nerlich, A G; Tirlapur, U K; Urban, J P; Guehring, T

    2014-12-01

    Embryonic notochordal disc nucleus cells (NC) have been identified to protect disc tissue against disc degeneration but in human beings NC phenotype gets lost with aging and the pathophysiological mechanisms are poorly understood. NC may stimulate other cells via soluble factors, and NC-conditioned medium can be used to stimulate matrix production of other disc cells and mesenchymal stem cells and thus may be of special interest for biological disc repair. As this stimulatory effect is associated with the NC phenotype, we investigated how cell morphology and gene-expression of the NC phenotype changes with time in 3D-cell culture. NC and inner annulus chondrocyte-like cells (CLC) from immature pigtails (freshly isolated cells/tissue, 3D-alginate beads, 3D-clusters) were cultured for up to 16 days under normoxia and hypoxia. Protein-expression was analysed by immunohistology and gene-expression analysis was carried out on freshly isolated cells and cultured cells. Cell morphology and proliferation were analysed by two-photon-laser-microscopy. Two-photon-laser-microscopy showed a homogenous and small CLC population in the inner annulus, which differed from the large vacuole-containing NC in the nucleus. Immunohistology found 93 % KRT8 positive cells in the nucleus and intracellular and pericellular Col2, IL6, and IL12 staining while CLC were KRT8 negative. Freshly isolated NC showed significantly higher KRT8 and CAIII but lower Col2 gene-expression than CLC. NC in 3D-cultures demonstrated significant size reduction and loss of vacuoles with culture time, all indicating a loss of the characteristic NC morphology. Hypoxia reduced the rate of decrease in NC size and vacuoles. Gene-expression of KRT8 and CAIII in NC fell significantly early in culture while Col2 did not decrease significantly within the culture period. In CLC, KRT8 and CAIII gene-expression was low and did not change noticeably in culture, whereas Col2 expression fell with time in culture. 3D

  19. Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.

    Science.gov (United States)

    Romano, Julia D; de Beaumont, Catherine; Carrasco, Jose A; Ehrenman, Karen; Bavoil, Patrik M; Coppens, Isabelle

    2013-02-01

    The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.

  20. Methods for assessing autophagy and autophagic cell death.

    Science.gov (United States)

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  1. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth.

    Directory of Open Access Journals (Sweden)

    Heather E Miller

    2018-04-01

    Full Text Available Coxiella burnetii is an intracellular bacterium that replicates within an expansive phagolysosome-like vacuole. Fusion between the Coxiella-containing vacuole (CCV and late endosomes/multivesicular bodies requires Rab7, the HOPS tethering complex, and SNARE proteins, with actin also speculated to play a role. Here, we investigated the importance of actin in CCV fusion. Filamentous actin patches formed around the CCV membrane that were preferred sites of vesicular fusion. Accordingly, the mediators of endolysosomal fusion Rab7, VAMP7, and syntaxin 8 were concentrated in CCV actin patches. Generation of actin patches required C. burnetii type 4B secretion and host retromer function. Patches decorated with VPS29 and VPS35, components of the retromer, FAM21 and WASH, members of the WASH complex that engage the retromer, and Arp3, a component of the Arp2/3 complex that generates branched actin filaments. Depletion by siRNA of VPS35 or VPS29 reduced CCV actin patches and caused Rab7 to uniformly distribute in the CCV membrane. C. burnetii grew normally in VPS35 or VPS29 depleted cells, as well as WASH-knockout mouse embryo fibroblasts, where CCVs are devoid of actin patches. Endosome recycling to the plasma membrane and trans-Golgi of glucose transporter 1 (GLUT1 and cationic-independent mannose-6-phosphate receptor (CI-M6PR, respectively, was normal in infected cells. However, siRNA knockdown of retromer resulted in aberrant trafficking of GLUT1, but not CI-M6PR, suggesting canonical retrograde trafficking is unaffected by retromer disruption. Treatment with the specific Arp2/3 inhibitor CK-666 strongly inhibited CCV formation, an effect associated with altered endosomal trafficking of transferrin receptor. Collectively, our results show that CCV actin patches generated by retromer, WASH, and Arp2/3 are dispensable for CCV biogenesis and stability. However, Arp2/3-mediated production of actin filaments required for cargo transport within the

  2. Acinic cell carcinoma of parotid gland metastasis to left cavernous sinus: a case report and review of literature

    Directory of Open Access Journals (Sweden)

    LIN Xiao-yan

    2013-12-01

    Full Text Available Objective To investigate the clinical manifestations and pathological features of parotid gland papillary acinic cell carcinoma metastasis to left cavernous sinus. Methods The clinical manifestations, pathological features and differential diagnosis were studied in one case of parotid papillary acinic cell carcinoma metastasis to left cavernous sinus. Related literatures were also reviewed. Results The patient was a 50-year-old female who presented paroxysmal dizziness for 5 months and blurred vision in her left eye for 10 months. The MRI examination showed left parasellar space-occupying mass in the cavernous sinus. In operation, the tumor was located in the superior wall of left cavernous sinus, soft and red-grey in color, with abundant blood supply. The histomorphological examination revealed the tumor cells were arranged in solid, acinar or papillary pattern. The tumor cells were large, with eosinophilic cytoplasm, round or oval nuclei and small nucleoli. Immunohistochemical staining found that the tumor cells expressed cytokeratin (CK, epithelial membrane antigen (EMA, vimentin (Vim and S-100 protein (S-100, and showed weak positive expression of glial fibrillary acidic protein (GFAP and focal positive expression of P53 protein. Ki-67 labeling index was about 5%-10% . The tumor cells were negative for neuroendocrine markers and pituitary hormone protein markers. This case was difficult to differentiate from other primary intracalvarium tumors, including papillary meningioma, papillary tumor of choroid plexus, papillary ependymoma, papillary glioneuronal tumors as well as chordoma. According to the medical history and the comparison of histomorphology and immunophenotyping between parotid gland tumor cells and left cavernous sinus tumor cells, the final diagnosis was metastatic papillary parotid acinar cell carcinoma of the left cavernous sinus. The patient was followed for 21 months and no recurrence was seen. Conclusion It is very rare and

  3. The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells.

    Science.gov (United States)

    Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen

    2008-12-01

    Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.

  4. Distribution and developmental changes of ghrelin-immunopositive cells in the pancreas of African ostrich chicks (Struthio camelus).

    Science.gov (United States)

    Wang, J X; Li, P; Zhang, X T; Ye, L X

    2017-09-01

    Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor (GHS-R), is produced by multiple cell types and affects feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells that are immunoreactive to ghrelin vary. However, little was known about its distribution and developmental changes in the pancreas of African ostrich chicks (Struthio camelus). In the present study, the distribution, morphological characteristics, and developmental changes of ghrelin-immunopositive (ghrelin-ip) cells in the pancreas of African ostrich chicks were investigated using immunohistochemistry. Ghrelin-ip cells were found in both the pancreatic islets and acinar cell regions. The greatest number of ghrelin-ip cells were found in the pancreatic islets, and were primarily observed at the periphery of the islets; some ghrelin-ip cells were also located in the central portion of the pancreatic islets. Interestingly, from postnatal d 1 to d 90, there was a steady decrease in the number of ghrelin-ip cells in the pancreatic islets and acinar cell regions. These results clearly demonstrated that ghrelin-ip cells exist and decreased with age in the African ostrich pancreas from postnatal d 1 to d90. Thus, these findings indicated that ghrelin may be involved in the development of the pancreas in the African ostrich. © 2017 Poultry Science Association Inc.

  5. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L., E-mail: rodney.rouse@fda.hhs.gov

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  6. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    International Nuclear Information System (INIS)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-01-01

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  7. Time course and cellular source of pancreatic regeneration following acute pancreatitis in the rat

    International Nuclear Information System (INIS)

    Elsaesser, H.P.A.; Adler, G.; Kern, H.F.

    1986-01-01

    The regenerative capacity of the different cell types in the rat exocrine pancreas has been studied in a model of hormone-induced acute pancreatitis in which pancreatic edema, inflammation, and acinar cell destruction were induced within 12 h of infusion of supramaximal concentrations of cerulein (5 micrograms/kg/h). A sequential biochemical and structural analysis of the pancreas in daily intervals was combined with the autoradiographic quantitation of labeling indices of five cell populations following 3 H-thymidine injection at days 1-7 after induction of pancreatitis. Desquamation of acinar cell apical cytoplasm and release of cytoplasmic segments into the acinar lumen on the first day following induction of pancreatitis led to formation of duct-like tubular complexes. Enzyme content in the pancreas decreased progressively following the formation of the edema to levels 15-20% of controls and remained reduced during the initial 5 days. Thymidine incorporation into total DNA showed a biphasic pattern with a distinct peak at day 1 and a second broader peak between days 4 and 7. Autoradiographic quantitation of labeling indices demonstrated the exclusive incorporation into intercalated duct cells and interstitial cells during the initial 24 h, while the second peak was predominantly due to labeling of acinar cells. Larger interlobular ducts and islets did not show changes in labeling index. In vivo labeling with 3 H-thymidine during the first day and analysis of labeling indices 14 days later showed the persistence of label in intercalated duct cells and interstitial cells and argued against the stem cell hypothesis and against transformation of duct cells into acinar cells

  8. Creating new β cells: cellular transmutation by genomic alchemy.

    Science.gov (United States)

    Moss, Larry G

    2013-03-01

    To address insulin insufficiency, diabetes research has long focused on techniques for replacing insulin-producing β cells. Studies in mice have suggested that, under some conditions, α cells possess the capacity to transdifferentiate into β cells, although the mechanisms that drive this conversion are unclear. In this issue, Bramswig et al. analyzed the methylation states of purified human α, β, and acinar cells and found α cells exhibit intrinsic phenotypic plasticity associated with specific histone methylation profiles. In addition to expanding our understanding of this potential source of β cells, this compendium of carefully generated human gene expression and epigenomic data in islet cell subtypes constitutes a truly valuable resource for the field.

  9. The study of the morphological features of autophagy as a type of programmed death of plant cells under the condition of bacterial infection

    Directory of Open Access Journals (Sweden)

    Сергій Іванович Шевченко

    2016-09-01

    Full Text Available The ultrastructure of the destruction of the plant cells protoplast is studied under the condition of bacterial infection. According to the autophagy processes in animal cells, the morphological ways of plant cells autophagy – vacuolization of cytoplasm, condensation and decondensation of the nuclear mass, multivesicular nucleation, phagophore expansion and macroautophagosome ripening, autophagolysosome formation by the way of tonoplast invagination, mitophagy phenomenon are determined. The places of the final degradation of the ruined cytoplasm in the vacuoles of destroyed cells are shown

  10. Morphometric Characterization of Rat and Human Alveolar Macrophage Cell Models and their Response to Amiodarone using High Content Image Analysis.

    Science.gov (United States)

    Hoffman, Ewelina; Patel, Aateka; Ball, Doug; Klapwijk, Jan; Millar, Val; Kumar, Abhinav; Martin, Abigail; Mahendran, Rhamiya; Dailey, Lea Ann; Forbes, Ben; Hutter, Victoria

    2017-12-01

    Progress to the clinic may be delayed or prevented when vacuolated or "foamy" alveolar macrophages are observed during non-clinical inhalation toxicology assessment. The first step in developing methods to study this response in vitro is to characterize macrophage cell lines and their response to drug exposures. Human (U937) and rat (NR8383) cell lines and primary rat alveolar macrophages obtained by bronchoalveolar lavage were characterized using high content fluorescence imaging analysis quantification of cell viability, morphometry, and phospholipid and neutral lipid accumulation. Cell health, morphology and lipid content were comparable (p content. Responses to amiodarone, a known inducer of phospholipidosis, required analysis of shifts in cell population profiles (the proportion of cells with elevated vacuolation or lipid content) rather than average population data which was insensitive to the changes observed. A high content image analysis assay was developed and used to provide detailed morphological characterization of rat and human alveolar-like macrophages and their response to a phospholipidosis-inducing agent. This provides a basis for development of assays to predict or understand macrophage vacuolation following inhaled drug exposure.

  11. Exocrine pancreas glutamate secretion help to sustain enterocyte nutritional needs under protein restriction.

    Science.gov (United States)

    Araya, S; Kuster, E; Gluch, D; Mariotta, L; Lutz, C; Reding, T V; Graf, R; Verrey, F; Camargo, S M R

    2018-04-01

    Glutamine (Gln) is the most concentrated amino acid in blood and considered conditionally essential. Its requirement is increased during physiological stress, such as malnutrition or illness, despite its production by muscle and other organs. In the malnourished state, Gln has been suggested to have a trophic effect on the exocrine pancreas and small intestine. However, the Gln transport capacity, the functional relationship of these two organs, and the potential role of the Gln-glutamate (Glu) cycle are unknown. We observed that pancreatic acinar cells express lower levels of Glu than Gln transporters. Consistent with this expression pattern, the rate of Glu influx into acinar cells was approximately sixfold lower than that of Gln. During protein restriction, acinar cell glutaminase expression was increased and Gln accumulation was maintained. Moreover, Glu secretion by acinar cells into pancreatic juice and thus into the lumen of the small intestine was maintained. In the intestinal lumen, Glu absorption was preserved and Glu dehydrogenase expression was augmented, potentially providing the substrates for increasing energy production via the TCA cycle. Our findings suggest that one mechanism by which Gln exerts a positive effect on exocrine pancreas and small intestine involves the Gln metabolism in acinar cells and the secretion of Glu into the small intestine lumen. The exocrine pancreas acinar cells not only avidly accumulate Gln but metabolize Gln to generate energy and to synthesize Glu for secretion in the pancreatic juice. Secreted Glu is suggested to play an important role during malnourishment in sustaining small intestinal homeostasis. NEW & NOTEWORTHY Glutamine (Gln) has been suggested to have a trophic effect on exocrine pancreas and small intestine in malnourished states, but the mechanism is unknown. In this study, we suggest that this trophic effect derives from an interorgan relationship between exocrine pancreas and small intestine for Gln

  12. Sperm with large nuclear vacuoles and semen quality in the evaluation of male infertility.

    Science.gov (United States)

    Komiya, Akira; Watanabe, Akihiko; Kawauchi, Yoko; Fuse, Hideki

    2013-02-01

    This study compared the sperm nuclear vacuoles and semen quality in the evaluation of male infertility. One hundred and forty-two semen samples were obtained from patients who visited the Male Infertility Clinic at Toyama University Hospital. Semen samples were evaluated by conventional semen analyses and the Sperm Motility Analysis System (SMAS). In addition, spermatozoa were analyzed at 3,700-6,150x magnification on an inverted microscope equipped with DIC/Nomarski differential interference contrast optics. A large nuclear vacuole (LNV) was defined as one or more vacuoles with the maximum diameter showing > 50% width of the sperm head. The percentage of spermatozoa with LNV (% LNV) was calculated for each sample. Correlations between the % LNV and parameters in SMAS and conventional semen analyses were analyzed. Processed motile spermatozoa from each sample were evaluated. The mean age of patients was 35 years old. Semen volume was 2.9 ± 1.6mL (0.1-11.0; mean ± standard deviation, minimum-maximum), sperm count was 39.3 ± 54.9 (x10(6)/mL, 0.01-262.0), sperm motility was 25.1 ± 17.8% (0-76.0), and normal sperm morphology was 10.3 ± 10.1% (0-49.0). After motile spermatozoa selection, we could evaluate % LNV in 125 ejaculates (88.0%) and at least one spermatozoon with LNV was observed in 118 ejaculates (94.4%). The percentage of spermatozoa with LNV was 28.0 ± 22.4% (0-100) and % LNV increased significantly when semen quality decreased. The correlation between the % LNV and the semen parameters was weak to moderate; correlation coefficients were -0.3577 in sperm count (p sperm motility (p = 0.0084), -0.2769 in motile sperm count (p = 0.019), -0.2419 in total motile sperm count (p = 0.0070), and -0.1676 in normal sperm morphology (p = 0.0639). The % LNV did not show a significant correlation with the SMAS parameters except for weak correlation to beat/cross frequency (r = -0.2414, p = 0.0071). The percentage of

  13. Methuosis: Nonapoptotic Cell Death Associated with Vacuolization of Macropinosome and Endosome Compartments

    OpenAIRE

    Maltese, William A.; Overmeyer, Jean H.

    2014-01-01

    Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is disp...

  14. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Carvalho TMU

    1999-01-01

    Full Text Available Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV. In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

  15. Multinodular and Vacuolating Neuronal Tumor of the Cerebrum: A New "Leave Me Alone" Lesion with a Characteristic Imaging Pattern.

    Science.gov (United States)

    Nunes, R H; Hsu, C C; da Rocha, A J; do Amaral, L L F; Godoy, L F S; Watkins, T W; Marussi, V H; Warmuth-Metz, M; Alves, H C; Goncalves, F G; Kleinschmidt-DeMasters, B K; Osborn, A G

    2017-10-01

    Multinodular and vacuolating neuronal tumor of the cerebrum is a recently reported benign, mixed glial neuronal lesion that is included in the 2016 updated World Health Organization classification of brain neoplasms as a unique cytoarchitectural pattern of gangliocytoma. We report 33 cases of presumed multinodular and vacuolating neuronal tumor of the cerebrum that exhibit a remarkably similar pattern of imaging findings consisting of a subcortical cluster of nodular lesions located on the inner surface of an otherwise normal-appearing cortex, principally within the deep cortical ribbon and superficial subcortical white matter, which is hyperintense on FLAIR. Only 4 of our cases are biopsy-proven because most were asymptomatic and incidentally discovered. The remaining were followed for a minimum of 24 months (mean, 3 years) without interval change. We demonstrate that these are benign, nonaggressive lesions that do not require biopsy in asymptomatic patients and behave more like a malformative process than a true neoplasm. © 2017 by American Journal of Neuroradiology.

  16. Ultrastructure of central cell in female gametophyte of Castilleja wightii Elmer (Scrophulariaceae).

    Science.gov (United States)

    Ekici, Nuran; Dane, Feruzan; Olgun, Göksel

    2013-09-01

    Embryo sac cells are highly differentiated in plants. The central cell is one of the most important cells of the embryo sac. It forms endosperm by fusion with a sperm cell. Ultrastructure of the central cell in the mature embryo sac of Castilleja wightii was investigated in this study. Nucleolus which had a lot of vacuole in a large secondary nucleus and numerous dictyosomes, vesicles, mitochondria, amyloplasts in cytoplasm were seen in this cell. Also free ribosomes in the form of polysomes and large lipid bodies were detected in the cytoplasm. Numerous vacuoles of different size were observed and some of them had autophagic function. Both smooth and rough endoplasmic reticulums were seen. Although invaginations were seen in the plasmalemma of the central cell to the inside of the embryo sac, a thick cuticular layer was observed outer side on the cell wall. The aim of this study was to contribute studies about the ultrastructure of embryo sacs.

  17. Non-apoptotic cell death associated with perturbations of macropinocytosis.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2015-01-01

    Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed "methuosis," from the Greek methuo (to drink to intoxication). It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  18. Non-apoptotic cell death associated with perturbations of macropinocytosis

    Directory of Open Access Journals (Sweden)

    William A. Maltese

    2015-02-01

    Full Text Available Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed ‘methuosis’, from the Greek methuo (to drink to intoxication. It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  19. In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells.

    Science.gov (United States)

    Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki

    2013-01-01

    Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli.

  20. ATP release, generation and hydrolysis in exocrine pancreatic duct cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Yegutkin, G.G.; Novak, Ivana

    2015-01-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, ou...... may be important in pancreas physiology and potentially in pancreas pathophysiology....... aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan...

  1. Fish kidney cells show higher tolerance to hyperosmolality than amphibian

    Directory of Open Access Journals (Sweden)

    Lang Gui

    2018-05-01

    Full Text Available In contrast to fish, amphibians inhabit both aquatic and terrestrial environments. To better understand osmoregulation in fish and amphibian, we have investigated the morphological changes in kidney cells to osmotic stress. To address this, kidney cell line isolated from the freshwater grass carp (CIK and Chinese giant salamander (GSK were challenged to different mediums with distinct osmotic pressures (100, 300 and 700 mOsm. Morphological alterations of the fish and amphibian cells were compared by optical and electron microscopy. Following hyposmotic treatment (100 mOsm, both CIK and GSK cells became unhealthy and show condensed chromatin, swollen mitochondria and cytoplasmic vacuole. Meanwhile, after hyperosmotic treatment (700 mOsm, shrunken CIK cells with multipolar shape, pale or lightly stained cytoplasm, condensed chromatin, vacuoles and swollen mitochondria were detected. GSK cells were seriously damaged and most were completely lysed. The results suggest that fish kidney cells show a higher degree of tolerance to hyperosmoticity by comparing to amphibians and provide novel insights on the osmoregulatory capacity and adaptability of kidney cells between the two animal groups.

  2. Crohn's disease of the colon: ultrastructural changes in submuscular interstitial cells of Cajal

    DEFF Research Database (Denmark)

    Rumessen, Jüri Johs.; Vanderwinden, Jean-Marie; Horn, Thomas

    2011-01-01

    of the submuscular plexus were often empty and dilated. Fibroblast-like cells selectively encased macrophages and mast cells. The cytological changes in ICC-SMP in CD are thus similar to changes seen in ulcerative colitis and may be of pathophysiological significance with regard to the motility and sensory......Interstitial cells of Cajal (ICC) at the submuscular border of the human colon (ICC-SMP) are the proposed pacemaker cells of the musculature. In patients with Crohn's disease (CD) of the colon, ICC-SMP showed characteristic cytological changes from controls. The changes comprised secondary...... lysosomes in connection with lipid droplets and cytoplasmic vacuoles or multiple empty, confluent and often outbulging vacuoles merging with cisterns of granular endoplasmic reticulum and clusters of glycogen granules. These changes were most pronounced in patients with macroscopical mucosal inflammation...

  3. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures

    Science.gov (United States)

    Kaldis, Angelo; Ahmad, Adil; Reid, Alexandra; McGarvey, Brian; Brandle, Jim; Ma, Shengwu; Jevnikar, Anthony; Kohalmi, Susanne E; Menassa, Rima

    2013-01-01

    The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER. PMID:23297698

  4. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H(+)-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8.

    Science.gov (United States)

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H(+)-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H(+)-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.

  5. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H+-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8

    Science.gov (United States)

    Yano, Kanako; Yanagisawa, Takahiro; Mukae, Kyosuke; Niwa, Yasuo; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H+-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H+-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation. PMID:26368310

  6. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    Science.gov (United States)

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  7. The Effect of Herbicides on Hydrogen Peroxide Generation in Isolated Vacuoles of Red Beet Root (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2015-12-01

    Full Text Available Influence of herbicides on the hydrogen peroxide generation in vacuolar extracts of red beet root (Beta vulgaris L. was investigated. Belonging to different chemical classes of herbicide compounds have been used. Herbicides differ from each other in the mechanism of effects on plants. Clopyralid (aromatic acid herbicide, derivative of picolinic acid and 2.4-D (phenoxyacetic herbicide, characterized by hormone-like effects, contributed to the formation of H2O2 in vacuolar extracts. Fluorodifen (nitrophenyl ether herbicide and diuron (urea herbicide also have increased contents H2O2. These compounds inhibit the electron transport, photosynthesis, and photorespiration in sensitive plants. Herbicidal effect of glyphosate (organophosphorus herbicide is due to the inhibition of amino acid synthesis in plant cells. Glyphosate did not affect the content of H2O2 in vacuolar extracts. Herbicide dependent H2O2-generation did not occur with oxidoreductase inhibitors, potassium cyanide and sodium azide. The results suggest that the formation of ROS in the vacuoles due to activity of oxidoreductases, which could interact with herbicides.

  8. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding

    DEFF Research Database (Denmark)

    Rojek, Aleksandra; Füchtbauer, Ernst-Martin; Füchtbauer, Annette C.

    2013-01-01

    -specific Aqp11 KO mice, allowing us to study the role of AQP11 protein in liver of mice with normal kidney function. The unchallenged liver-specific Aqp11 KO mice have normal longevity, their livers appeared normal, and the plasma biochemistries revealed only a minor defect in lipid handling. Fasting......Aquaporin 11 (AQP11) is a protein channel expressed intracellularly in multiple organs, yet its physiological function is unclear. Aqp11 knockout (KO) mice die early due to malfunction of the kidney, a result of hydropic degeneration of proximal tubule cells. Here we report the generation of liver...... protein or larger doses of various amino acids. The fasting/refeeding challenge is associated with increased expression of markers of ER stress Grp78 and GADD153 and decreased glutathione levels, suggesting that ER stress may play role in the development of vacuoles in the AQP11-deficient hepatocytes. NMR...

  9. Light microscopic detection of sugar residues in glycoconjugates of salivary glands and the pancreas with lectin-horseradish peroxidase conjugates. I. Mouse.

    Science.gov (United States)

    Schulte, B A; Spicer, S S

    1983-12-01

    Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal alpha-N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate beta-galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20-50% of these cells in all glands contained terminal N-acetylglucosamine residues. In contrast, terminal alpha-N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.

  10. Cell-specific expression of the glucocorticoid receptor within granular convoluted tubules of the rat submaxillary gland

    International Nuclear Information System (INIS)

    Antakly, T.; Zhang, C.X.; Sarrieau, A.; Raquidan, D.

    1991-01-01

    The submaxillary gland, a heterogeneous tissue composed essentially of two functionally distinct cell types (tubular epithelial and acinar), offers an interesting system in which to study the mechanisms of steroid-dependent growth and differentiation. One cell type, the granular convoluted tubular (GCT) cell, secretes a large number of physiologically important polypeptides, including epidermal and nerve growth factors. Two steroids, androgens and glucocorticoids, greatly influence the growth, differentiation, and secretory activity of GCT cells. Because glucocorticoids can partially mimic or potentiate androgen effects, it has been thought that glucocorticoids act via androgen receptors. Since the presence of glucocorticoid receptors is a prerequisite for glucocorticoid action, we have investigated the presence and cellular distribution of glucocorticoid receptors within the rat submaxillary gland. Binding experiments using [3H]dexamethasone revealed the presence of high affinity binding sites in rat submaxillary tissue homogenates. Most of these sites were specifically competed by dexamethasone, corticosterone, and a pure glucocorticoid agonist RU 28362. Neither testosterone nor dihydrotestosterone competed for glucocorticoid binding. The cellular distribution of glucocorticoid receptors within the submaxillary gland was investigated by immunocytochemistry, using two highly specific glucocorticoid receptor antibodies. The receptor was localized in the GCT cells, but not in the acinar cells of rat and mouse submaxillary tissue sections. In GCT cells, the glucocorticoid receptor colocalized with several secretory polypeptides, including epidermal growth factor, nerve growth factor, alpha 2u-globulin, and atrial natriuretic factor

  11. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35:

  12. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones.

    Science.gov (United States)

    Mbah, Nneka E; Overmeyer, Jean H; Maltese, William A

    2017-06-01

    Methuosis is a form of non-apoptotic cell death involving massive vacuolization of macropinosome-derived endocytic compartments, followed by a decline in metabolic activity and loss of membrane integrity. To explore the induction of methuosis as a potential therapeutic strategy for killing cancer cells, we have developed small molecules (indole-based chalcones) that trigger this form of cell death in glioblastoma and other cancer cell lines. Here, we report that in addition to causing fusion and expansion of macropinosome compartments, the lead compound, 3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MOMIPP), disrupts vesicular trafficking at the lysosomal nexus, manifested by impaired degradation of EGF and LDL receptors, defective processing of procathepsins, and accumulation of autophagosomes. In contrast, secretion of the ectodomain derived from a prototypical type-I membrane glycoprotein, β-amyloid precursor protein, is increased rather than diminished. A closely related MOMIPP analog, which causes substantial vacuolization without reducing cell viability, also impedes cathepsin processing and autophagic flux, but has more modest effects on receptor degradation. A third analog, which causes neither vacuolization nor loss of viability, has no effect on endolysosomal trafficking. The results suggest that differential cytotoxicity of structurally similar indole-based chalcones is related, at least in part, to the severity of their effects on endolysosomal trafficking pathways.

  13. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    Science.gov (United States)

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  14. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2013-09-01

    Paramecium bursaria harbor several hundred symbiotic Chlorella spp. Each alga is enclosed in a perialgal vacuole membrane, which can attach to the host cell cortex. How the perialgal vacuole attaches beneath the host cell cortex remains unknown. High-speed centrifugation (> 1000×g) for 1min induces rapid detachment of the algae from the host cell cortex and concentrates the algae to the posterior half of the host cell. Simultaneously, most of the host acidosomes and lysosomes accumulate in the anterior half of the host cell. Both the detached algae and the dislocated acidic vesicles recover their original positions by host cyclosis within 10min after centrifugation. These recoveries were inhibited if the host cytoplasmic streaming was arrested by nocodazole. Endosymbiotic algae during the early reinfection process also show the capability of desorption after centrifugation. These results demonstrate that adhesion of the perialgal vacuole beneath the host cell cortex is repeatedly inducible, and that host cytoplasmic streaming facilitates recovery of the algal attachment. This study is the first report to illuminate the mechanism of the induction to desorb for symbiotic algae and acidic vesicles, and will contribute to the understanding of the mechanism of algal and organelle arrangements in Paramecium. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Induction of nonapoptotic cell death by activated Ras requires inverse regulation of Rac1 and Arf6.

    Science.gov (United States)

    Bhanot, Haymanti; Young, Ashley M; Overmeyer, Jean H; Maltese, William A

    2010-10-01

    Methuosis is a unique form of nonapoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to which graded expression of active H-Ras(G12V) triggers cytoplasmic vacuolization correlates with the amount of endogenous Rac1 in the active GTP state. Blocking Rac1 activation with the specific Rac inhibitor, EHT 1864, or coexpression of dominant-negative Rac1(T17N), prevents the accumulation of vacuoles induced by H-Ras(G12V). Coincident with Rac1 activation, H-Ras(G12V) causes a decrease in the amount of active Arf6, a GTPase that functions in the recycling of clathrin-independent endosomes. The effect of H-Ras(G12V) on Arf6 is blocked by EHT 1864, indicating that the decrease in Arf6-GTP is directly linked to the activation of Rac1. Constitutively active Rac1(G12V) interacts with GIT1 in immunoprecipitation assays. Ablation of GIT1 by short hairpin RNA prevents the decrease in active Arf6, inhibits vacuolization, and prevents loss of cell viability in cells expressing Rac1(G12V). Together, the results suggest that perturbations of endosome morphology associated with Ras-induced methuosis are due to downstream activation of Rac1 combined with reciprocal inactivation of Arf6. The latter seems to be mediated through Rac1 stimulation of GIT1. Further insights into this pathway could suggest opportunities for the induction of methuosis in cancers that are resistant to apoptotic cell death.

  16. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells

    Science.gov (United States)

    Mitchell, Gabriel

    2017-01-01

    Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called “viable but non-culturable” state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy. PMID:29190284

  17. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L.

    Science.gov (United States)

    Jiang, Wusheng; Liu, Donghua

    2010-03-02

    Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10(-5) to 10(-3) M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10(-3) to 10(-4) M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are

  18. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    Directory of Open Access Journals (Sweden)

    Liu Donghua

    2010-03-01

    Full Text Available Abstract Background Electron microscopy (EM techniques enable identification of the main accumulations of lead (Pb in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification

  19. Chlamydia trachomatis Is Responsible for Lipid Vacuolation in the Amniotic Epithelium of Fetal Gastroschisis.

    Science.gov (United States)

    Feldkamp, Marcia L; Ward, Diane M; Pysher, Theodore J; Chambers, Christina T

    2017-07-17

    Vacuolated amniotic epithelium with lipid droplets in gastroschisis placentas is an unusual finding. Mass spectrometry of lipid droplets identified triglycerides, ester-linked to an unusual pattern of fatty acids. We hypothesize that these findings result from a Chlamydia trachomatis infection during the periconceptional period. The rising incidence of chlamydia infections has paralleled the increasing prevalence of gastroschisis among women less than 25 years of age. Histologically, young women are at greatest risk for a chlamydia infection due to their immature columnar epithelium, the preferential site for attachment of Chlamydia trachomatis infectious particle (elementary body). Chlamydia trachomatis survive in an inclusion, relying on its host to acquire essential nutrients, amino acids, and nucleotides for survival and replication. If essential nutrients are not available, the bacteria cannot replicate and may be trafficked to the lysosome for degradation or remain quiescent, within the inclusion, subverting innate immunologic clearance. Chlamydiae synthesize several lipids (phosphatidylethanolamine, phosphatidylserine, and phosphoatidylglycerol); however, their lipid content reveal eukaryotic lipids (sphingomyelin, cholesterol, phosphatidylcholine, and phosphatidylinositol), evidence that chlamydiae "hijack" host lipids for expansion and replication. The abnormal amniotic epithelial findings are supported by experimental evidence of the trafficking of host lipids into the chlamydiae inclusion. If not lethal, what harm will elementary bodies inflict to the developing embryo? Do these women have a greater pro-inflammatory response to an environmental exposure, whether cigarette smoking, change in partner, or a pathogen? Testing the hypothesis that Chlamydia trachomatis is responsible for amniotic epithelium vacuoles will be a critical first step. Birth Defects Research 109:1003-1010, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Comparison of telomere length and association with progenitor cell markers in lacrimal gland between Sjögren syndrome and non-Sjögren syndrome dry eye patients.

    Science.gov (United States)

    Kawashima, Motoko; Kawakita, Tetsuya; Maida, Yoshiko; Kamoi, Mizuka; Ogawa, Yoko; Shimmura, Shigeto; Masutomi, Kenkichi; Tsubota, Kazuo

    2011-01-01

    Indicators of aging such as disruption of telomeric function due to shortening may be more frequent in dysfunctional lacrimal gland. The aims of this study were to 1) determine the viability of quantitative fluorescence in situ hybridization of telomeres (telo-FISH) for the assessment of telomere length in lacrimal gland in Sjögren and non- Sjögren syndrome patients; and 2) investigate the relationship between progenitor cell markers and telomere length in both groups. Quantitative fluorescence in situ hybridization with a peptide nucleic acid probe complementary to the telomere repeat sequence was performed on frozen sections from human lacrimal gland tissues. The mean fluorescence intensity of telomere spots was automatically quantified by image analysis as relative telomere length in lacrimal gland epithelial cells. Immunostaining for p63, nucleostemin, ATP-binding cassette, sub-family G, member 2 (ABCG2), and nestin was also performed. Telomere intensity in the Sjögren syndrome group (6,785.0±455) was significantly lower than that in the non-Sjögren syndrome group (7,494.7±477; p=0.02). Among the samples from the non-Sjögren syndrome group, immunostaining revealed that p63 was expressed in 1-3 acinar cells in each acinar unit and continuously in the basal layer of duct cells. In contrast, in the Sjögren syndrome group, p63 and nucleostemin showed a lower level of expression. ABCG2 was expressed in acinar cells in both sjogren and non-Sjogren syndrome. The results of this study indicate that 1) telo-FISH is a viable method of assessing telomere length in lacrimal gland, and 2) telomere length in Sjögren syndrome is shorter and associated with lower levels of expression of p63 and nucleostemin than in non-Sjögren syndrome.

  1. Induction of Non-Apoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6

    Science.gov (United States)

    Bhanot, Haymanti; Young, Ashley M.; Overmeyer, Jean H.; Maltese, William A.

    2010-01-01

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating-protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to which graded expression of active H-Ras(G12V) triggers cytoplasmic vacuolization correlates with the amount of endogenous Rac1 in the active GTP state. Blocking Rac1 activation with the specific Rac inhibitor, EHT 1864, or co-expression of dominant-negative Rac1(T17N), prevents the accumulation of vacuoles induced by H-Ras(G12V). Coincident with Rac1 activation, H-Ras(G12V) causes a decrease in the amount of active Arf6, a GTPase that functions in recycling of clathrin-independent endosomes. The effect of H-Ras(G12V) on Arf6 is blocked by EHT 1864, indicating that the decrease in Arf6-GTP is directly linked to activation of Rac1. Constitutively active Rac1(G12V) interacts with GIT1 in immunoprecipitation assays. Ablation of GIT1 by shRNA prevents the decrease in active Arf6, inhibits vacuolization, and prevents loss of cell viability in cells expressing Rac1(G12V). Together the results suggest that perturbations of endosome morphology associated with Ras-induced methuosis are due to downstream activation of Rac1, combined with reciprocal inactivation of Arf6. The latter appears to be mediated through Rac1 stimulation of GIT1. Further insights into this pathway could suggest opportunities for induction of methuosis in cancers that are resistant to apoptotic cell death. PMID:20713492

  2. Cell Secretion: Current Structural and Biochemical Insights

    Directory of Open Access Journals (Sweden)

    Saurabh Trikha

    2010-01-01

    Full Text Available Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150nm in diameter in acinar cells of the exocrine pancreas to 12nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  3. [Histopathological and immunohistochemical studies on mucous cysts].

    Science.gov (United States)

    Kuroda, N

    1989-01-01

    The present study investigated the histopathology, histochemistry of mucopolysaccharides, and immunohistochemistry of oral mucous cysts. The materials were obtained from ninety cases that were histopathologically diagnosed as oral mucous cysts at the Department of Oral Pathology, Meikai University School of Dentistry. Mucopolysaccharide staining was done with PAS, alcian blue (AB, pH 2.5) and high iron diamine (HID). Immunohistochemical studies were focused on secretory component (SC), lactoferrin (Lf), alpha-amylase (Am), IgA, lysozyme (Ly), and keratin (Kr). The following results were obtained: 1. Histopathological findings. (1) Retention and/or retention-like type cysts occurred in was twenty-six cases and the extravasation type in sixty-four cases. (2) Cases showing epithelial lining of the cystic wall were only eight in number, and many cystic walls were contained granulation tissue (fifty cases). (3) As for inflammation of the cystic wall, the degree was slight, and infiltrated cells were mainly macrophages (so-called mucinophages) and lymphocytes. (4) Regarding adjoining salivary glands, acinar cells showed atrophic changes, and hypertrophy of mucous acinar cells was evident. Many ducts showed dilatation, and stromal connective tissue showed fibrosis and hyalinization. 2. Histochemical findings on mucopolysaccharides. (1) Mucous materials in cystic cavity, mucous acinar cells, and secretory materials in ductal lumens were intensely stained by PAS and AB. But stainability with AB was less than that with PAS staining. Serous acinar cells and ductal epithelium were negative to PAS and AB staining. (2) Stainability of the above with HID was less than at with PAS or AB. Cystic walls were not stained by HID. Mucous acinar cells reactive with HID were intensely stained, but the number of the positive cells was limited when compared with the numbers of PAS-and AB-positive cells. 3. Immunohistochemical findings. (1) As for mucous materials in the cystic cavity

  4. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    Science.gov (United States)

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  5. Lesions induced in rodent pancreas by azaserine and other pancreatic carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Longnecker, D.S.

    1984-06-01

    Focal proliferative changes in the acinar cells of the pancreas of rats have been induced by several systemically administered carcinogens including azaserine, N-nitrosobis(2-oxopropyl)amine, N-nitroso(2-hydroxypropyl) (2-oxopropyl)amine, and Ndelta-(N-methyl-N-nitrosocarbamoyl)-L-ornithine (MNCO). Foci, nodules, and adenomas induced by these carcinogens are usually made up of atypical-appearing acinar cells that maintain a high degree of differentiation, but a minority of these lesions exhibit anaplastic cellular changes that suggest the development of malignant potential. Such anaplasia may occupy the whole of smaller lesions or may occur as a secondary focal change within larger nodules or adenomas. Many foci and nodules per pancreas have been induced by single or multiple exposures to these known genotoxic carcinogens, but relatively few of them develop into carcinomas. Azaserine and MNCO have induced acinar cell carcinomas in rats. Those induced by azaserine have exhibited a broad spectrum of histologic variants, including ductlike, cystic and undifferentiated patterns. Higher doses of MNCO have induced a second pattern of change in the pancreatic lobules of rats, which includes cystic and tubular ductlike structures that have been called cystic and tubular ductal complexes. MNCO has also induced focal acinar cell lesions, cystic and tubular ductal complexes, and adenocarcinomas in the pancreas of Syrian golden hamsters. In this species, ductal complexes are much more numerous than are proliferative lesions of acinar cells, and the histologic appearance of the carcinomas is ductlike. Hyperplasia and atypical changes were also seen in the epithelium of the intralobular ducts of hamsters. 20 references, 5 figures, 1 table.

  6. A novel PNPLA2 mutation causes neutral lipid storage disease with myopathy (NLSDM) presenting muscular dystrophic features with lipid storage and rimmed vacuoles.

    Science.gov (United States)

    Chen, J; Hong, D; Wang, Z; Yuan, Y

    2010-01-01

    Neutral lipid storage disease with myopathy (NLSDM) is a type of lipid storage myopathy arising due to a mutation in the PNPLA2 gene encoding an adipose triglyceride lipase responsible for the degradation of intracellular triglycerides. Herein, we report the cases of two siblings manifesting slowly progressive proximal and distal limb weakness in adulthood. One of the patients had dilated cardiomyopathy, hearing loss and short stature. Muscle specimens of the 2 patients revealed muscular dystrophic features with massive lipid droplets and numerous rimmed vacuoles in the fibers. A novel homozygous mutation IVS2+1G > A in the PNPLA2 gene was identified in the 2 cases, but not in the healthy familial individuals. The presence of massive lipid droplets with muscular dystrophic changes and rimmed vacuoles in muscle fibers might be one of the characteristic pathological changes of NLSDM.

  7. Lipid accumulation in human breast cancer cells injured by iron depletors.

    Science.gov (United States)

    De Bortoli, Maida; Taverna, Elena; Maffioli, Elisa; Casalini, Patrizia; Crisafi, Francesco; Kumar, Vikas; Caccia, Claudio; Polli, Dario; Tedeschi, Gabriella; Bongarzone, Italia

    2018-04-03

    Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. We examined the morphological, proteomic, and metabolic effects induced by two iron chelators-deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)-on MDA-MB-231 and MDA-MB-157 breast cancer cells. These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer-inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial

  8. Gold nanoparticles induced cloudy swelling to hydropic degeneration, cytoplasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis in the liver

    Directory of Open Access Journals (Sweden)

    Jarrar Bashir M

    2011-09-01

    Full Text Available Abstract Background Nanoparticles (NPs can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. The aim of the present study was to investigate the particle-size, dose and exposure duration effects of gold nanoparticles (GNPs on the hepatic tissue in an attempt to cover and understand the toxicity and their potential therapeutic and diagnostic use. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 ul of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days to investigate particle-size, dose and exposure duration effects of GNPs on the hepatic tissue. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly vacuolar to hydropic degeneration, cytopasmic hyaline vacuolation, polymorphism, binucleation, karyopyknosis, karyolysis, karyorrhexis and necrosis. Conclusions The hepatocytes swelling might be exhibited as a result of disturbances of membranes function that lead to massive influx of water and Na+ due to GNPs effects accompanied by leakage of lysosomal hydrolytic enzymes that lead to cytoplasmic degeneration and macromolecular crowding. Hydropic degeneration is a result of ion and fluid homestasis that lead to an increase of intracellular water. The vacuolated swelling of the cytoplasm of the hepatocytes of the GNPs treated rats might indicate acute and subacute liver injury induced by the GNPs. Binucleation represents a consequence of cell injury and is a sort of chromosomes hyperplasia which is usually seen in regenerating cells. The induced histological alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal

  9. [Methuosis: a novel type of cell death].

    Science.gov (United States)

    Cai, Hongbing; Liu, Jinkun; Fan, Qin; Li, Xin

    2013-12-01

    Cell death is a major physiological or pathological phenomenon in life activities. The classic forms of cell death include apoptosis, necrosis, and autophagy. Recently, a novel type of cell death has been observed and termed as methuosis, in which excessive stimuli can induce cytoplasmic uptake and accumulation of small bubbles that gradually merge into giant vacuoles, eventually leading to decreased cellular metabolic activity, cell membrane rupture and cell death. In this article, we describe the nomenclature, morphological characteristics and underlying mechanisms of methuosis, compare methuosis with autophagy, oncosis and paraptosis, and review the related researches.

  10. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    Science.gov (United States)

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  11. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin.

    Directory of Open Access Journals (Sweden)

    Imane Song

    Full Text Available One week of treatment with EGF and gastrin (EGF/G was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of

  12. Colza cell autophagy induced of high dose of industrial sewage sludge

    Science.gov (United States)

    Lasoued, Najla; Guenole Bilal, Issam; Rejeb, Saloua; Bilal, Essaid; Rejeb, Nejib

    2013-04-01

    This preliminary study is to evaluate the effects on colza of land application of industrial sludge containing heavy metals especially lead and chromium. We are interested in high doses spreading 100t/ha to better observe the phenomena of induced transformations on colza by the absorption of heavy metals. We used the technique for ultrastructural observation in a transmission electron microscope. The colza cells show a compaction and marginalization of nuclear chromatin, nuclear membrane and cytoplasmic convolution and condensation of cytoplasm. The kernel then fragments, each fragment are surrounded by a jacket. Some cytoplasmic and nuclear elements are released and are phagocytized by neighboring cells. We observed vacuolation of the cytoplasm and the formation of autophagic vesicles. The two main ways to cell death are apoptosis and autophagy. Apoptosis was not seen in plant yet. At the nucleus level cell death main characteristics are the nuclear blebbing and fragmentation. At the molecular level, caspases activity (VPE for plants, or metacaspases I and II), chromatin condensation, degradation of DNA detected by TUNEL assay and DNA laddering detected by comet test are the main events. Autophagy is the major degradation and recycling process in cells. Its aim is to address part of the cytoplasm or organelles to the proteasome. In macro-Autophagy a specific feature is the double membrane structure that we can see in electron microscopy. This membrane is known to fusion with the lysosome/vacuole where this is in process. As a rule, the vacuole grows more and more until no organelles remains. Small lytic vacuoles appear in increasing quantity also. Autophagosomes tend to be pushed against the membrane and wall of the cell. Sometime in the literature it was describe a permeabilization or a tonoplast disruption; this is the last stage called mega-autophagy. The stress generated by heavy metals in industrial sludge spreading, produces in colza cells programmed death

  13. Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Colombo, Federico; Trombetta, Elena; Cetrangolo, Paola; Maggioni, Marco; Razini, Paola; De Santis, Francesca; Torrente, Yvan; Prati, Daniele; Torresani, Erminio; Porretti, Laura

    2014-01-01

    Despite continuous improvements in therapeutic protocols, cancer-related mortality is still one of the main problems facing public health. The main cause of treatment failure is multi-drug resistance (MDR: simultaneous insensitivity to different anti-cancer agents), the underlying molecular and biological mechanisms of which include the activity of ATP binding cassette (ABC) proteins and drug compartmentalisation in cell organelles. We investigated the expression of the main ABC proteins and the role of cytoplasmic vacuoles in the MDR of six hepatocellular carcinoma (HCC) cell lines, and confirmed the accumulation of the yellow anti-cancer drug sunitinib in giant (four lines) and small cytoplasmic vacuoles of lysosomal origin (two lines). ABC expression analyses showed that the main ABC protein harboured by all of the cell lines was PGP, whose expression was not limited to the cell membrane but was also found on lysosomes. MTT assays showed that the cell lines with giant lysosomes were more resistant to sorafenib treatment than those with small lysosomes (plysosomes in drug sequestration and MDR in HCC cell lines. The possibility of modulating this mechanism using PGP inhibitors could lead to the development of new targeted strategies to enhance HCC treatment.

  14. New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles

    Directory of Open Access Journals (Sweden)

    Valentina ePasseri

    2016-02-01

    Full Text Available In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food.In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells.The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  15. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation

    Directory of Open Access Journals (Sweden)

    Yiannis Drosos

    2016-03-01

    Full Text Available The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.

  16. AR42J-B-13 cell: An expandable progenitor to generate an unlimited supply of functional hepatocytes

    International Nuclear Information System (INIS)

    Wallace, Karen; Fairhall, Emma A.; Charlton, Keith A.; Wright, Matthew C.

    2010-01-01

    Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.

  17. Amino acid transport across the tonoplast of vacuoles isolated from barley mesophyll protoplasts: Uptake of alanine, leucine, and glutamine

    International Nuclear Information System (INIS)

    Dietz, K.J.; Jaeger, R.; Kaiser, G.; Martinoia, E.

    1990-01-01

    Mesophyll protoplasts from leaves of well-fertilized barley (Hordeum vulgare L.) plants contained amino acids at concentrations as high as 120 millimoles per liter. With the exception of glutamic acid, which is predominantly localized in the cytoplasm, a major part of all other amino acids was contained inside the large central vacuole. Alanine, leucine, and glutamine are the dominant vacuolar amino acids in barley. Their transport into isolated vacuoles was studied using 14 C-labeled amino acids. Uptake was slow in the absence of ATP. A three- to sixfold stimulation of uptake was observed after addition of ATP or adenylyl imidodiphosphate an ATP analogue not being hydrolyzed by ATPases. Other nucleotides were ineffective in increasing the rate of uptake. ATP-Stimulated amino acid transport was not dependent on the transtonoplast pH or membrane potential. p-Chloromercuriphenylsulfonic acid and n-ethyl maleimide increased transport independently of ATP. Neutral amino acids such as valine or leucine effectively decreased the rate of alanine transport. Glutamine and glycine were less effective or not effective as competitive inhibitors of alanine transport. The results indicate the existence of a uniport translocator specific for neutral or basic amino acids that is under control of metabolic effectors

  18. Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression.

    Science.gov (United States)

    Wang, Lixin; Brugge, Joan S; Janes, Kevin A

    2011-10-04

    Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.

  19. Vacuole formation in mast cells responding to osmotic stress and to F-actin disassembly

    DEFF Research Database (Denmark)

    Koffer, Anna; Williams, Mark; Johansen, Torben

    2002-01-01

    Fluorescent probes were used to visualize the morphology of membranes and of F-actin in rat peritoneal mast cells, exposed to hyperosmotic medium and consequently reversed to isotonicity. Hypertonicity induced cell shrinkage followed by a regulatory volume increase, and cell alkalinization...

  20. Streaming submandibular gland

    International Nuclear Information System (INIS)

    Zajicek, G.; Yagil, C.; Michaeli, Y.

    1985-01-01

    Twenty female young adult rats were injected with tritiated thymidine ( 3 HTdR). The animals were then killed in groups of five, at the following times: 1 hour, and 4, 16, and 23 days. Autoradiograms of sections through the submandibular gland were prepared, and the location of labelled cells in relationship to tubuli and acini was recorded. The different tubular and acinar cross sections could be distinguished by their cell number. Narrow tubuli had fewer nuclei than the wider ones. The nuclear number of a cross section was defined as its class and the location of a labelled epithelial cell was expressed in relationship to the class where it was found. The location of a labelled stromal cell was determined by the class of its neighboring tubular or acinar cross sections. The mean cell numbers of intercalated, granular, and striated duct cross sections were, respectively, 4.7, 10.5, and 10.2, while the average cell content of acini was 4.7 cells. One hour after labelling most labelled tubular epithelial and stromal cells were found in tubular cross sections (or low tubular classes), while in the acini, labelled epithelial and stromal cells were found mainly in wider cross sections (or higher acinar classes). Within the next 23 days labelled tubular cells and stroma proceeded into higher classes, while labelled acinar epithelium and stroma cells were displaced into narrower cross sections (or lower classes). The displaced tubular epithelium and stroma covered daily 0.26 classes. At this velocity the cell will reach the highest tubular class in 62 days and the estimated maximal tubular cell life span is 62 days

  1. Distribution of inorganic elements in single cells of Chara corallina

    International Nuclear Information System (INIS)

    Li Zijie; Zhang Zhiyong; Chai Zhifang; Yu Ming; Zhou Yunlong

    2005-01-01

    There are actually 20 chemical elements necessary or beneficial for plant growth. Carbon, hydrogen, and oxygen are supplied by air and water. The six macronutrients, nitrogen, phosphorus, potassium., calcium, magnesium, and sulfur are required by plants in large amounts. The rest of the elements are required in trace amounts (micronutrients). Essential trace elements include boron, chlorine, copper, iron, manganese, sodium, zinc, molybdenum, and nickel. Beneficial mineral elements include silicon and cobalt. The functions of the inorganic elements closely related to their destinations in plant cells. Plant cells have unique structures, including a central vacuole, plastids, and a thick cell wall that surrounds the cell membrane. Generally, it is very difficult to determine concentrations of inorganic elements in a single plant cell. Chara corallina is a freshwater plant that inhabits temperate zone ponds and lakes. It consists of alternating nodes and internodes. Each internodal segment is a single large cell, up to 10 cm in length, and 1 mm in diameter. With this species it was possible to isolate subcellular fractions with surgical methods with minimal risk of cross contamination. In this study, concentrations of magnesium, calcium, manganese, iron, copper, zinc, and molybdenum in the cell wall, cytoplasm, and vacuole of single cells of Chara corallina were determined by inductively coupled plasma mass spectrometry (ICP-MS). The distribution characteristics of these elements in the cell components were discussed.

  2. Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species.

    NARCIS (Netherlands)

    Silvie, O.; Greco, C.; Franetich, J.F.; Dubart-Kupperschmitt, A.; Hannoun, L.; Gemert, G.J.A. van; Sauerwein, R.W.; Levy, S.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic

  3. When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa).

    Science.gov (United States)

    Shepherd, V A; Beilby, M J; Bisson, M A

    2004-06-01

    Ventricaria ventricosa and its relatives have intrigued cell biologists and electrophysiologists for over a hundred years. Historically, electrophysiologists have regarded V. ventricosa as a large single plant cell with unusual characteristics including a small and positive vacuole-to-outside membrane potential difference. However, V. ventricosa has a coenocytic construction, with an alveolate cytoplasm interpenetrated by a complex vacuole containing sulphated polysaccharides. We present a theory relating the coenocytic structure to the unusual electrophysiology of V. ventricosa. The alveolate cytoplasm of V. ventricosa consists of a collective of uninucleate cytoplasmic domains interconnected by fine cytoplasmic strands containing microtubules. The cytoplasm is capable of disassociating into single cytoplasmic domains or aggregations of domains that can regenerate new coenocytes. The cytoplasmic domains are enclosed by outer (apical) and inner (basolateral) faces of a communal membrane with polarised K(+)-transporting functions, stabilised by microtubules and resembling a tissue such as a polarised epithelium. There is evidence for membrane trafficking through endocytosis and exocytosis and so "plasmalemma" and "tonoplast" do not have fixed identities. Intra- and extracellular polysaccharide mucilage has effects on electrophysiology through reducing the activity of water and through ion exchange. The vacuole-to-outside potential difference, at which the cell membrane conductance is maximal, reverses its sign from positive under hypertonic conditions to negative under hypotonic conditions. The marked mirror symmetry of the characteristics of current as a function of voltage and conductance as a function of voltage is interpreted as a feature of the communal membrane with polarised K(+) transport. The complex inhomogeneous structure of the cytoplasm places in doubt previous measurements of cytoplasm-to-outside potential difference.

  4. Comparison of telomere length and association with progenitor cell markers in lacrimal gland between Sjögren syndrome and non-Sjögren syndrome dry eye patients

    Science.gov (United States)

    Kawashima, Motoko; Maida, Yoshiko; Kamoi, Mizuka; Ogawa, Yoko; Shimmura, Shigeto; Masutomi, Kenkichi; Tsubota, Kazuo

    2011-01-01

    Purpose Indicators of aging such as disruption of telomeric function due to shortening may be more frequent in dysfunctional lacrimal gland. The aims of this study were to 1) determine the viability of quantitative fluorescence in situ hybridization of telomeres (telo-FISH) for the assessment of telomere length in lacrimal gland in Sjögren and non- Sjögren syndrome patients; and 2) investigate the relationship between progenitor cell markers and telomere length in both groups. Methods Quantitative fluorescence in situ hybridization with a peptide nucleic acid probe complementary to the telomere repeat sequence was performed on frozen sections from human lacrimal gland tissues. The mean fluorescence intensity of telomere spots was automatically quantified by image analysis as relative telomere length in lacrimal gland epithelial cells. Immunostaining for p63, nucleostemin, ATP-binding cassette, sub-family G, member 2 (ABCG2), and nestin was also performed. Results Telomere intensity in the Sjögren syndrome group (6,785.0±455) was significantly lower than that in the non-Sjögren syndrome group (7,494.7±477; p=0.02). Among the samples from the non-Sjögren syndrome group, immunostaining revealed that p63 was expressed in 1–3 acinar cells in each acinar unit and continuously in the basal layer of duct cells. In contrast, in the Sjögren syndrome group, p63 and nucleostemin showed a lower level of expression. ABCG2 was expressed in acinar cells in both sjogren and non-Sjogren syndrome. Conclusions The results of this study indicate that 1) telo-FISH is a viable method of assessing telomere length in lacrimal gland, and 2) telomere length in Sjögren syndrome is shorter and associated with lower levels of expression of p63 and nucleostemin than in non-Sjögren syndrome. PMID:21655359

  5. Stem cells and the pancreas: from discovery to clinical approach

    Directory of Open Access Journals (Sweden)

    Angelica Dessì

    2016-02-01

    Full Text Available The existence of stem cells within the adult pancreas is supported by the ability of this organ to regenerate its endocrine component in various conditions such as pregnancy and following partial pancreatectomy. Several studies have shown that progenitor or adult stem cells may reside within the pancreas and particularly in the pancreatic ducts, including acinar cells and islets of Langerhans. The discovery of human pluripotent stem cells in the pancreas, and the possibility of development of strategies for generating these, represented a turning point for the therapeutic interventions of type 1 diabetes.Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  6. Subcellular localization of Cd in the root cells of Allium sativum by ...

    Indian Academy of Sciences (India)

    Unknown

    Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiat- ing and ... The bulbs were germinated, and grown in 3 containers ..... Greger M 1999 Metal availability and bioconcentration in plants ...

  7. Assessing phagotrophy in the mixotrophic ciliate Paramecium bursaria using GFP-expressing yeast cells.

    Science.gov (United States)

    Miura, Takashi; Moriya, Hisao; Iwai, Sosuke

    2017-07-03

    We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Vacuolar Localization of Endoproteinases EP(1) and EP(2) in Barley Mesophyll Cells.

    Science.gov (United States)

    Thayer, S S; Huffaker, R C

    1984-05-01

    The localization of two previously characterized endoproteinases (EP(1) and EP(2)) that comprise more than 95% of the protease activity in primary Hordeum vulgare L. var Numar leaves was determined. Intact vacuoles released from washed mesophyll protoplasts by gentle osmotic shock and increase in pH, were purified by flotation through a four-step Ficoll gradient. These vacuoles contained endoproteinases that rapidly degraded purified barley ribulose-1,5-bisphosphate carboxylase (RuBPCase) substrate. Breakdown products and extent of digestion of RuBPCase were determined using 12% polyacrylamide-sodium dodecyl sulfate gels. Coomassie brilliant blue- or silver-stained gels were scanned, and the peaks were integrated to provide quantitative information. The characteristics of the vacuolar endoproteinases (e.g. sensitivity to various inhibitors and activators, and the molecular weights of the breakdown products, i.e. peptide maps) closely resembled those of purified EP(1) and partially purified EP(2). It is therefore concluded that EP(1) and EP(2) are localized in the vacuoles of mesophyll cells.

  9. T-Cell lymphoproliferative disorder of hand-mirror cell morphology presenting in an eosinophilic loculated peritoneal effusion, with omental "caking"

    Directory of Open Access Journals (Sweden)

    Tufankjian Dearon

    2006-01-01

    Full Text Available Abstract Background Cells with "hand mirror" morphology have not, to the best of our knowledge, been described in a primary effusion sample. This paper describes a case of T-cell lymphoma with eosinophilia in a patient with suspected peritoneal carcinomatosis. Rarely, a T-cell lymphoproliferative process may mimic primary peritoneal carcinomatosis, clinically suggested by a presentation in CT imaging of omental caking with bilateral massive loculated effusions in a patient without lymphadenopathy or splenomegaly. Methods A 60 year old caucasian male presented with vague abdominal discomfort and increasing abdominal girth. Computed tomography showed a two centimeter thick omental cake and a small loculated effusion. The clinical presentation and imaging findings were most consistent with peritoneal carcinomatosis. Cytologic evaluation of the effusion was undertaken for diagnostic study. Results Rapid intraprocedural interpretation of the effusion sample showed a monomorphic population of cells with "hand-mirror" cell morphology exhibiting cytoplasmic extensions (uropodia with 3–5 course dark cytoplasmic granules and a rim of vacuolated cytoplasm capping the opposing "mirror head" side. These cells were seen within a background of mature eosinophils. Flow cytometric evaluation of the ascites fluid demonstrated an atypical T-cell population with the following immunophenotype: CD2-, CD3+, CD4-, CD5-, CD7-, CD8+, CD56+. T-cell receptor (TCR gene rearrangement was positive for clonal TCR-gamma gene rearrangement, supporting the diagnosis of a T-lymphoprolifereative disorder. Conclusion A T-cell lymphoproliferative process may present with "hand mirror" morphology in an effusion sample. These cells may show polar cytoplasmic vacuolization and 3–5 course granules within the "handle" of these unique cells. Cytoplasm shows peripheral constriction around the nucleus.

  10. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    Science.gov (United States)

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. The Immunomodulator VacA Promotes Immune Tolerance and Persistent Helicobacter pylori Infection through Its Activities on T-Cells and Antigen-Presenting Cells

    OpenAIRE

    Djekic, Aleksandra; M?ller, Anne

    2016-01-01

    VacA is a pore-forming toxin that has long been known to induce vacuolization in gastric epithelial cells and to be linked to gastric disorders caused by H. pylori infection. Its role as a major colonization and persistence determinant of H. pylori is less well-understood. The purpose of this review is to discuss the various target cell types of VacA and its mechanism of action; specifically, we focus on the evidence showing that VacA targets myeloid cells and T-cells to directly and indirect...

  12. Role of the Helicobacter pylori virulence factors vacuolating cytotoxin, CagA, and urease in a mouse model of disease.

    Science.gov (United States)

    Ghiara, P; Marchetti, M; Blaser, M J; Tummuru, M K; Cover, T L; Segal, E D; Tompkins, L S; Rappuoli, R

    1995-10-01

    The pathogenic role of Helicobacter pylori virulence factors has been studied with a mouse model of gastric disease. BALB/c mice were treated orally with different amounts of sonic extracts of cytotoxic H. pylori strains (NCTC 11637, 60190, 84-183, and 87A300 [CagA+/Tox+]). The pathological effects on histological sections of gastric mucosae were assessed and were compared with the effects of treatments with extracts from noncytotoxic strains (G21 and G50 [CagA-/Tox-]) and from strains that express either CagA alone (D931 [CagA+/Tox-]) or the cytotoxin alone (G104 [CagA-/Tox+]). The treatment with extracts from cytotoxic strains induced various epithelial lesions (vacuolation, erosions, and ulcerations), recruitment of inflammatory cells in the lamina propria, and a marked reduction of the mucin layer. Extracts of noncytotoxic strains induced mucin depletion but no other significant pathology. Crude extracts of strain D931, expressing CagA alone, caused only mild infiltration of inflammatory cells, whereas extracts of strain G104, expressing cytotoxin alone, induced extensive epithelial damage but little inflammatory reaction. Loss of the mucin layer was not associated with a cytotoxic phenotype, since this loss was observed in mice treated with crude extracts of all strains. The pathogenic roles of CagA, cytotoxin, and urease were further assessed by using extracts of mutant strains of H. pylori defective in the expression of each of these virulence factors. The results obtained suggest that (i) urease activity does not play a significant role in inducing the observed gastric damage, (ii) cytotoxin has an important role in the induction of gastric epithelial cell lesions but not in eliciting inflammation, and (iii) other components present in strains which carry the cagA gene, but distinct from CagA itself, are involved in eliciting the inflammatory response.

  13. MULTIHORMONAL ISLET CELL CARCINOMAS IN THREE KOMODO DRAGONS (VARANUS KOMODOENSIS).

    Science.gov (United States)

    Eustace, Ronan; Garner, Michael M; Cook, Kimberly; Miller, Christine; Kiupel, Matti

    2017-03-01

      Multihormonal pancreatic islet cell carcinomas were found in one female and two male captive geriatric Komodo dragons (Varanus komodoensis). Gross changes in the pancreas were visible in two of the cases. Clinical signs noted in the Komodo dragons were lethargy, weakness, and anorexia. Histologically, the tumors were comprised of nests and cords of well-differentiated neoplastic islet cells with scant amounts of eosinophilic cytoplasm and round, euchromatic nuclei, with rare mitoses. Infiltration by the islet cell tumor into the surrounding acinar tissue was observed in all cases, but no metastatic foci were seen. Multihormone expression was observed in all tumors, which labeled strongly positive for glucagon and somatostatin and focally positive for polypeptide. Pancreatic islet cell neoplasms should be considered in the differential diagnosis for geriatric Komodo dragons presenting with weakness, lethargy, and poor appetite.

  14. Ultrastructural response of cabbage outer leaf mesophyll cells (Brassica oleracea L. to excess of nickel

    Directory of Open Access Journals (Sweden)

    Jolanta Molas

    2014-01-01

    Full Text Available Changes in the structure and in the ultrastructure of cabbage outer leaf mesophyll cells [Brassica oleracea L.] cv. Sława from Enkhouizen were examined by means of light and electron microscopy. The examined plants were grown on the basic Murashige and Skoog medium with addition of excesive concentrations of nickel (added as NiSO4 x 7H2O,i.e. Ni 5, Ni 10 and Ni 20 mg/dm3. In Ni 5 mg samples mainly adaptation changes to the conditions of stress were observed. These changes were manifested by the increase of cytoplasm content and by cytoplasm vacuolization, by the increase of nucleus and nucleous volume, nucleolus vacuolization, the increase of plasmalemma invaginations and of the amount of rough ER, by the central arrangement of smooth ER and of the thylakoids of chloroplasts; it was also shown by the growth of the number of mitochondria and of peroxisomes in the cell. In Ni 10 mg samples, apart from adaptation changes, such as the increase of the nucleus volume, increase of plasmalemma invaginations, cytoplasm and nucleolus vacuolization, degeneration changes were also observed. They concerned mainly the nucleus (the increasing amount of condensed chromatin, ER (swelling and fragmentation of rER and sER, mitochondrium (swelling and reduction of cristae, Golgi apparatus (disintegration and decay and chloroplasts (changes of shape, swelling and reduction of thylakoids, disappearance of starch and presence of big plastoglobuli. In Ni 20 mg samples cell protoplasts were in different stages of degeneration and the cell organelles that were identifiable, were usually damaged.

  15. Protein-accumulating cells and dilated cisternae of the endoplasmic reticulum in three glucosinolate-containing genera: Armoracia, Capparis, Drypetes.

    Science.gov (United States)

    Jørgensen, L B; Behnke, H D; Mabry, T J

    1977-01-01

    Three glucosinolate-containing species, Armoracia rusticana Gaertner, Meyer et Scherbius (Brassicaceae), Capparis cynophallophora L. (Capparaceae) and Drypetes roxburghii (Wall.) Hurusawa (Euphorbiaceae), are shown by both light and electron microscopy to contain protein-accumulating cells (PAC). The PAC of Armoracia and Copparis (former "myrosin cells") occur as idioblasts. The PAC of Drypetes are usual members among axial phloem parenchyma cells rather than idioblasts. In Drypetes the vacuoles of the PAC are shown ultrastructurally to contain finely fibrillar material and to originate from local dilatations of the endoplasmic reticulum. The vacuoles in PAC of Armoracia and Capparis seem to originate in the same way; but ultrastructurally, their content is finely granular. In addition, Armoracia and Capparis are shown by both light and electron microscopy to contain dilated cisternae (DC) of the endoplasmic reticulum in normal parenchyma cells, in accord with previous findings for several species within Brassicaceae. The relationship of PAC and DC to glucosinolates and the enzyme myrosinase is discussed.

  16. Target cell and mode of radiation injury in rhesus salivary glands

    International Nuclear Information System (INIS)

    Stephens, L.C.; Kian Ang, K.; Schultheiss, T.E.; King, G.K.; Brock, W.A.; Peters, L.J.

    1986-01-01

    Morphological alterations of parotid and submandibular salivary glands of rhesus monkeys were studied 1-72 h and 16-40 weeks postirradiation (PI) with single photon doses of 2.5-15.0 Gy, or 10.2 Gy given in 6 fractions. Acute degeneration and necrosis of serous cells in both parotid and submandibular glands were clearly expressed by 24 h PI and occurred in a dose-related fashion. In submandibular glands, doses of 12.5 or 15.0 Gy damaged mucous cells, but to a considerably lesser extent than the serous cells in the same glands. No significant sparing was evident with dose fractionation. These observations demonstrate the unique sensitivity of serous cells which appear to undergo interphase cell death after irradiation. The results also show that late atrophy was the direct result of acute loss of serous acini and reflects a lack of regeneration of acinar cells receiving acute injury. (Auth.)

  17. Inflammatory effects on human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens

    International Nuclear Information System (INIS)

    Mazzarella, G.; Esposito, V.; Bianco, A.; Ferraraccio, F.; Prati, M.V.; Lucariello, A.; Manente, L.; Mezzogiorno, A.; De Luca, A.

    2012-01-01

    Asthma is currently defined as a chronic inflammatory disease of the airway. Several evidence indicate that vehicle emissions in cities is correlated with the allergic respiratory diseases. In the present study, we evaluated in the A549 cells the production and release of IL-4, IL-5 and IL-13 after treatment with sub-micron PM 1.0 particles (PM 1.0 ), Parietaria officinalis (ALL), and PM 1.0 + ALL together. Our data demonstrated that PM 1.0 + ALL together exhibited the greatest capacity to induce A549 cells to enhance the expression of IL-4 and IL-5 compared with the only PM 1.0 or ALL treatment. Interestingly, IL-13 that is necessary for allergen-induced airway hyper responsiveness, is increased in cells treated with PM 1.0 + ALL together, but is higher expressed when the cells are treated only with the allergen. Our data support the hypothesis that the urban environment damage the acinar lung units and activates cells of the immune system. - Highlights: ► The genetic factors plays a key role in the development of the asthma. ► Its development can only be made in the presence of specific environmental factors. ► We evaluated in the A549 cells the production and release of IL-4, IL-5 and IL-13. ► IL-4, IL-5 and IL-13 expression increased when the A549 cells are treated with PM 1.0 + ALL together. - The urban environment with the combination of inhalable air pollution and particulate are able to damage the acinar lung units and are able to activate cells of the immune system.

  18. Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas.

    Science.gov (United States)

    Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu

    2016-01-01

    The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.

  19. 14-Deoxy-11,12-didehydroandrographolide induces DDIT3-dependent endoplasmic reticulum stress-mediated autophagy in T-47D breast carcinoma cells

    International Nuclear Information System (INIS)

    Tan, Heng Kean; Muhammad, Tengku Sifzizul Tengku; Tan, Mei Lan

    2016-01-01

    14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells. - Highlights: • The mechanistic toxicology properties of 14-DDA in T-47D breast carcinoma cells were investigated. • 14-DDA induces the formation of ER vacuoles and autophagosomes, with concurrent upregulation of LC3-II. • It stimulates an increase in cytosolic calcium concentration and causing collapse in the mitochondrial membrane potential. • Both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. • 4-DDA induces ER stress-mediated autophagy in T-47D cells possibly via GADD45A/p38 MAPK/DDIT3 pathway.

  20. Integrative Genomic Analysis of Coincident Cancer Foci Implicates CTNNB1 and PTEN Alterations in Ductal Prostate Cancer.

    Science.gov (United States)

    Gillard, Marc; Lack, Justin; Pontier, Andrea; Gandla, Divya; Hatcher, David; Sowalsky, Adam G; Rodriguez-Nieves, Jose; Vander Griend, Donald; Paner, Gladell; VanderWeele, David

    2017-12-08

    Ductal adenocarcinoma of the prostate is an aggressive subtype, with high rates of biochemical recurrence and overall poor prognosis. It is frequently found coincident with conventional acinar adenocarcinoma. The genomic features driving evolution to its ductal histology and the biology associated with its poor prognosis remain unknown. To characterize genomic features distinguishing ductal adenocarcinoma from coincident acinar adenocarcinoma foci from the same patient. Ten patients with coincident acinar and ductal prostate cancer underwent prostatectomy. Laser microdissection was used to separately isolate acinar and ductal foci. DNA and RNA were extracted, and used for integrative genomic and transcriptomic analyses. Single nucleotide mutations, small indels, copy number estimates, and expression profiles were identified. Phylogenetic relationships between coincident foci were determined, and characteristics distinguishing ductal from acinar foci were identified. Exome sequencing, copy number estimates, and fusion genes demonstrated coincident ductal and acinar adenocarcinoma diverged from a common progenitor, yet they harbored distinct alterations unique to each focus. AR expression and activity were similar in both histologies. Nine of 10 cases had mutually exclusive CTNNB1 hotspot mutations or phosphatase and tensin homolog (PTEN) alterations in the ductal component, and these were absent in the acinar foci. These alterations were associated with changes in expression in WNT- and PI3K-pathway genes. Coincident ductal and acinar histologies typically are clonally related and thus arise from the same cell of origin. Ductal foci are enriched for cases with either a CTNNB1 hotspot mutation or a PTEN alteration, and are associated with WNT- or PI3K-pathway activation. These alterations are mutually exclusive and may represent distinct subtypes. The aggressive subtype ductal adenocarcinoma is closely related to conventional acinar prostate cancer. Ductal foci

  1. Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Allon Weiner

    2016-05-01

    Full Text Available Intracellular pathogens include all viruses, many bacteria and parasites capable of invading and surviving within host cells. Key to survival is the subversion of host cell pathways by the pathogen for the purpose of propagation and evading the immune system. The intracellular bacterium Shigella flexneri, the causative agent of bacillary dysentery, invades host cells in a vacuole that is subsequently ruptured to allow growth of the pathogen within the host cytoplasm. S. flexneri invasion has been classically described as a macropinocytosis-like process, however the underlying details and the role of macropinosomes in the intracellular bacterial lifestyle have remained elusive. We applied dynamic imaging and advanced large volume correlative light electron microscopy (CLEM to study the highly transient events of S. flexneri's early invasion into host epithelial cells and elucidate some of its fundamental features. First, we demonstrate a clear distinction between two compartments formed during the first step of invasion: the bacterial containing vacuole and surrounding macropinosomes, often considered identical. Next, we report a functional link between macropinosomes and the process of vacuolar rupture, demonstrating that rupture timing is dependent on the availability of macropinosomes as well as the activity of the small GTPase Rab11 recruited directly to macropinosomes. We go on to reveal that the bacterial containing vacuole and macropinosomes come into direct contact at the onset of vacuolar rupture. Finally, we demonstrate that S. flexneri does not subvert pre-existing host endocytic vesicles during the invasion steps leading to vacuolar rupture, and propose that macropinosomes are the major compartment involved in these events. These results provide the basis for a new model of the early steps of S. flexneri epithelial cell invasion, establishing a different view of the enigmatic process of cytoplasmic access by invasive bacterial

  2. Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2003-12-01

    Full Text Available Abstract Background Little is known regarding the trafficking mechanisms of small molecules within plant cells. It remains to be established whether phytochemicals are transported by pathways similar to those used by proteins, or whether the expansion of metabolic pathways in plants was associated with the evolution of novel trafficking pathways. In this paper, we exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively. Results We investigated the accumulation and sub-cellular localization of the green and yellow auto-fluorescent compounds in maize BMS cells expressing the P1 transcription factor from an estradiol inducible promoter. We established that the yellow fluorescent compounds accumulate inside the vacuole in YFBs that resemble AVIs. The green fluorescent compounds accumulate initially in the cytoplasm in large spherical GFBs. Cells accumulating GFBs also contain electron-dense structures that accumulate initially in the ER and which later appear to fuse with the plasma membrane. Structures resembling the GFBs were also observed in the periplasmic space of plasmolized cells. Ultimately, the green fluorescence accumulates in the cell wall, in a process that is insensitive to the Golgi-disturbing agents BFA and monensin. Conclusions Our results suggest the presence of at least two distinct trafficking pathways, one to the cell wall and the other to the vacuole, for different auto-fluorescent compounds induced by the same transcription factor in maize BMS cells. These compartments represent two of the major sites of accumulation of phenolic compounds characteristic of maize cells. The secretion of the green auto-fluorescent compounds occurs by a pathway that does not involve the TGN, suggesting that it is different from the secretion of most proteins, polysaccharides or epicuticular waxes. The

  3. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis.

    Science.gov (United States)

    Ben-Hayyim, G; Kochba, J

    1983-07-01

    A NaCl-tolerant cell line which was selected from ovular callus of ;Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na(+) and Cl(-) uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K(+) and Cl(-) accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl(-). (d) Removal of Ca(2+) from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.

  4. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  5. Cytologic studies on irradiated gestric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Isono, S; Takeda, T; Amakasu, H; Asakawa, H; Yamada, S [Miyagi Prefectural Adult Disease Center, Natori (Japan)

    1981-06-01

    The smears of the biopsy and resected specimens obtained from 74 cases of irradiated gastric cancer were cytologically analyzed for effects of irradiation. Irradiation increased the amount of both necrotic materials and neutrophils in the smears. Cancer cells were decreased in number almost in inverse proportion to irradiation dose. Clusters of cancer cells shrank in size and cells were less stratified after irradiation. Irradiated cytoplasms were swollen, vacuolated and stained abnormally. Irradiation with less than 3,000 rads gave rise to swelling of cytoplasms in almost all cases. Nuclei became enlarged, multiple, pyknotic and/or stained pale after irradiation. Nuclear swelling was more remarkable in cancer cells of differentiated adenocarcinomas.

  6. Radioprotective effect of vitamin E in parotid glands: a morphometric analysis in rats

    International Nuclear Information System (INIS)

    Gomes, Carolina Cintra; Boscolo, Frab Norberto; Almeida, Solange Maria de; Ramos-Perez, Flavia Maria de Moraes; Perez, Danyel Elias da Cruz; Novaes, Pedro Duarte

    2013-01-01

    The aim of this study was to evaluate the radioprotective effect of vitamin E on rat parotid glands by morphometric analysis. Sixty male rats were divided into 5 groups (n=6): control, in which animals received olive oil solution; olive oil/irradiated, in which animals received olive oil and were irradiated with a dose of 15 Gy of gamma radiation; irradiated, in which animals were irradiated with a dose of 15 Gy gamma radiation; vitamin E, which received α-tocopherol acetate solution; vitamin E/irradiated, which received α-tocopherol acetate solution before irradiation with a dose of 15 Gy gamma rays. Half of the animals were euthanized at 8 h, and the remaining at 30 days after irradiation. Both parotid glands were surgically removed and morphometric analysis of acinar cells was performed. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Morphometric analysis showed a significant reduction in the number of parotid acinar cells at 30 days in olive oil/irradiated and irradiated groups. In groups evaluated over time a significant reduction was shown at 30 days in olive oil/irradiated and irradiated groups, indicating that ionizing radiation caused tissue damage. The vitamin E/irradiated group presented more acinar cells than the irradiated group, but no statistically significant difference was observed (p>0.05). In conclusion, vitamin E seems to have failed as a radioprotective agent on acinar cells in rat parotid glands. (author)

  7. Radioprotective effect of vitamin E in parotid glands: a morphometric analysis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Carolina Cintra; Boscolo, Frab Norberto; Almeida, Solange Maria de [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Dept. de Diagnostico Oral; Ramos-Perez, Flavia Maria de Moraes; Perez, Danyel Elias da Cruz, E-mail: flavia.ramosperez@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Clinica e Odontologia Preventiva; Novaes, Pedro Duarte [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Escola de Odontologia. Dept. de Morfologia

    2013-11-01

    The aim of this study was to evaluate the radioprotective effect of vitamin E on rat parotid glands by morphometric analysis. Sixty male rats were divided into 5 groups (n=6): control, in which animals received olive oil solution; olive oil/irradiated, in which animals received olive oil and were irradiated with a dose of 15 Gy of gamma radiation; irradiated, in which animals were irradiated with a dose of 15 Gy gamma radiation; vitamin E, which received {alpha}-tocopherol acetate solution; vitamin E/irradiated, which received {alpha}-tocopherol acetate solution before irradiation with a dose of 15 Gy gamma rays. Half of the animals were euthanized at 8 h, and the remaining at 30 days after irradiation. Both parotid glands were surgically removed and morphometric analysis of acinar cells was performed. Data were subjected to two-way ANOVA and Tukey's test ({alpha}=0.05). Morphometric analysis showed a significant reduction in the number of parotid acinar cells at 30 days in olive oil/irradiated and irradiated groups. In groups evaluated over time a significant reduction was shown at 30 days in olive oil/irradiated and irradiated groups, indicating that ionizing radiation caused tissue damage. The vitamin E/irradiated group presented more acinar cells than the irradiated group, but no statistically significant difference was observed (p>0.05). In conclusion, vitamin E seems to have failed as a radioprotective agent on acinar cells in rat parotid glands. (author)

  8. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    Science.gov (United States)

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  9. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes.

    Science.gov (United States)

    Hellinga, Jacqueline R; Garduño, Rafael A; Kormish, Jay D; Tanner, Jennifer R; Khan, Deirdre; Buchko, Kristyn; Jimenez, Celine; Pinette, Mathieu M; Brassinga, Ann Karen C

    2015-08-01

    Legionella pneumophila, a causative agent of Legionnaires' disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. The pathobiological impact of cigarette smoke on pancreatic cancer development (review).

    Science.gov (United States)

    Wittel, Uwe A; Momi, Navneet; Seifert, Gabriel; Wiech, Thorsten; Hopt, Ulrich T; Batra, Surinder K

    2012-07-01

    Despite extensive efforts, pancreatic cancer remains incurable. Most risk factors, such as genetic disposition, metabolic diseases or chronic pancreatitis cannot be influenced. By contrast, cigarette smoking, an important risk factor for pancreatic cancer, can be controlled. Despite the epidemiological evidence of the detrimental effects of cigarette smoking with regard to pancreatic cancer development and its unique property of being influenceable, our understanding of cigarette smoke-induced pancreatic carcinogenesis is limited. Current data on cigarette smoke-induced pancreatic carcinogenesis indicate multifactorial events that are triggered by nicotine, which is the major pharmacologically active constituent of tobacco smoke. In addition to nicotine, a vast number of carcinogens have the potential to reach the pancreatic gland, where they are metabolized, in some instances to even more toxic compounds. These metabolic events are not restricted to pancreatic ductal cells. Several studies show that acinar cells are also greatly affected. Furthermore, pancreatic cancer progenitor cells do not only derive from the ductal epithelial lineage, but also from acinar cells. This sheds new light on cigarette smoke-induced acinar cell damage. On this background, our objective is to outline a multifactorial model of tobacco smoke-induced pancreatic carcinogenesis.

  11. Effect of ionizing radiation on the primate pancreas: an endocrine and morphologic study

    International Nuclear Information System (INIS)

    Du Toit, D.F.; Heydenrych, J.J.; Smit, B.

    1987-01-01

    In this study we evaluated the endocrine, biochemical, and haematological derangements as well as pancreatic and histological changes of the bonemarrow in the primate following external fractionated subtotal marrow irradiation without bonemarrow reconstitution. The irradiation was administered in preparation for pancreatic transplantation. Two groups of animals (ten in each group) received 800 rad (8 Gy) and 1000 rad (10 Gy) respectively over 4 to 5 weeks. A maximum of 200 rads (2 Gy) were administered weekly as photons from a 6 MV linear accelerator. During irradiation the animals remained normoglycaemic in the presence of transiently elevated liver enzymes and serum amylase values, which returned to normal on completion of the irradiation. Insulin release was significantly reduced in both groups during irradiation and was associated with minimally decreased K-values in the presence of mild glucose intolerance. Pancreatic light morphologic changes included structural changes of both exocrine and endocrine elements and included necrosis of the islet cells and acinar tissue. Islet histology demonstrated striking cytocavitary network changes of alpha and beta cells, including degranulation, vacuolization, mitochondrial destruction, and an increase in lysosomes. A hypoplastic bonemarrow ranging from moderate to severe was observed in all irradiated recipients. Near total fractionated body irradiation in the primate is therefore associated with elevated liver enzymes, pancytopenia, transient hyperamylasaemia, hypoinsulinaemia, a varying degree of pancreatitis, and bonemarrow hypoplasia

  12. Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2017-06-01

    Full Text Available Pluripotent stem cells have been proposed as an unlimited source of pancreatic β cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional β cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas. These cultured pancreatic progenitor (cPP cells express key pancreatic transcription factors, including PDX1 and SOX9, and exhibit transcriptomes closely related to their in vivo counterparts. Upon exposure to differentiation cues, cPP cells give rise to pancreatic endocrine, acinar, and ductal lineages, indicating multilineage potency. Furthermore, cPP cells generate insulin+ β-like cells in vitro and in vivo, suggesting that they offer a convenient alternative to pluripotent cells as a source of adult cell types for modeling pancreatic development and diabetes.

  13. Regenerating 1 and 3b gene expression in the pancreas of type 2 diabetic Goto-Kakizaki (GK rats.

    Directory of Open Access Journals (Sweden)

    Sophie Calderari

    Full Text Available Regenerating (REG proteins are associated with islet development, β-cell damage, diabetes and pancreatitis. Particularly, REG-1 and REG-3-beta are involved in cell growth/survival and/or inflammation and the Reg1 promoter contains interleukin-6 (IL-6-responsive elements. We showed by transcriptome analysis that islets of Goto-Kakizaki (GK rats, a model of spontaneous type 2 diabetes, overexpress Reg1, 3α, 3β and 3γ, vs Wistar islets. Goto-Kakizaki rat islets also exhibit increased cytokine/chemokine expression/release, particularly IL-6. Here we analyzed Reg1 and Reg3β expression and REG-1 immuno-localization in the GK rat pancreas in relationship with inflammation. Isolated pancreatic islets and acinar tissue from male adult Wistar and diabetic GK rats were used for quantitative RT-PCR analysis. REG-1 immunohistochemistry was performed on paraffin sections with a monoclonal anti-rat REG-1 antibody. Islet cytokine/chemokine release was measured after 48 h-culture. Islet macrophage-positive area was quantified on cryostat sections using anti-CD68 and major histocompatibility complex (MHC class II antibodies. Pancreatic exocrine-to-endocrine Reg1 and Reg3β mRNA ratios were markedly increased in Wistar vs GK rats. Conversely, both genes were upregulated in isolated GK rat islets. These findings were unexpected, because Reg genes are expressed in the pancreatic acinar tissue. However, we observed REG-1 protein labeling in acinar peri-ductal tissue close to islets and around large, often disorganized, GK rat islets, which may retain acinar cells due to their irregular shape. These large islets also showed peri-islet macrophage infiltration and increased release of various cytokines/chemokines, particularly IL-6. Thus, IL-6 might potentially trigger acinar REG-1 expression and secretion in the vicinity of large diabetic GK rat islets. This increased acinar REG-1 expression might reflect an adaptive though unsuccessful response to deleterious

  14. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis1

    Science.gov (United States)

    Ben-Hayyim, Gozal; Kochba, Joshua

    1983-01-01

    A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl− uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl− accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl−. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change. Images Fig. 3 PMID:16663067

  15. Effects of cyclosporin A on a kidney epithelial cell line (LLC-PK1).

    Science.gov (United States)

    Becker, G M; Gandolfi, A J; Nagle, R B

    1987-05-01

    Cyclosporin A (CSA), a potent immunosuppressant with the adverse side effect of nephrotoxicity, inhibited cell growth of pig kidney tubule cells (LLC-PK1) in culture. CSA (10(-5) M) also induced intense cytoplasmic vacuolation and the formation of dense granules. At the same concentration an analogue of CSA, cyclosporin G, had much less effect. This cell line may prove useful for revealing the mechanism of CSA-nephrotoxicity and testing the nephrotoxic potential of new analogues of cyclosporine.

  16. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands

    International Nuclear Information System (INIS)

    Kishi, Teruki; Takao, Tukasa; Fujita, Kiyohide; Taniguchi, Hideki

    2006-01-01

    Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD = ±7.02) h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2 ± 4.18 vs. 4.5 ± 1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands

  17. Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).

    Science.gov (United States)

    Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong

    2016-11-01

    Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Ultrastructure of the midgut endocrine cells in Melipona quadrifasciata anthidioides (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    C. A. Neves

    Full Text Available In this study we describe the ultrastructure of the endocrine cells observed in the midgut of M. quadrifasciata anthidioides. This bee has two types of endocrine cells, which are numerous on the posterior midgut region. Cells of the closed type are smaller and have irregular secretory granules with lower electrondensity than those of the open cell type. The open cell type has elongated mitochondria mainly on the basal area, where most of the secretory granules are also found. Besides the secretion granules and mitochondria, endocrine cells in this species have well-developed autophagic vacuoles and Golgi complex elements.

  19. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  20. Calcium transport into the cells of the sea urchin larva in relation to spicule formation.

    Science.gov (United States)

    Vidavsky, Netta; Addadi, Sefi; Schertel, Andreas; Ben-Ezra, David; Shpigel, Muki; Addadi, Lia; Weiner, Steve

    2016-10-24

    We investigated the manner in which the sea urchin larva takes up calcium from its body cavity into the primary mesenchymal cells (PMCs) that are responsible for spicule formation. We used the membrane-impermeable fluorescent dye calcein and alexa-dextran, with or without a calcium channel inhibitor, and imaged the larvae in vivo with selective-plane illumination microscopy. Both fluorescent molecules are taken up from the body cavity into the PMCs and ectoderm cells, where the two labels are predominantly colocalized in particles, whereas the calcium-binding calcein label is mainly excluded from the endoderm and is concentrated in the spicules. The presence of vesicles and vacuoles inside the PMCs that have openings through the plasma membrane directly to the body cavity was documented using high-resolution cryo-focused ion beam-SEM serial imaging. Some of the vesicles and vacuoles are interconnected to form large networks. We suggest that these vacuolar networks are involved in direct sea water uptake. We conclude that the calcium pathway from the body cavity into cells involves nonspecific endocytosis of sea water with its calcium.

  1. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole.

    Directory of Open Access Journals (Sweden)

    Aurélie Fougère

    2016-11-01

    Full Text Available Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC. P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites.

  2. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  3. Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds.

    Science.gov (United States)

    Novikova, Galina V; Tournaire-Roux, Colette; Sinkevich, Irina A; Lityagina, Snejana V; Maurel, Christophe; Obroucheva, Natalie

    2014-09-01

    A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Difference in the distribution and speciation of cellular nickel between nickel-tolerant and non-tolerant Nicotiana tabacum L. cv. BY-2 cells.

    Science.gov (United States)

    Saito, Akihiro; Saito, Misa; Ichikawa, Yusuke; Yoshiba, Masaaki; Tadano, Toshiaki; Miwa, Eitaro; Higuchi, Kyoko

    2010-02-01

    To evaluate Ni dynamics at the subcellular level, the distribution and speciation of Ni were determined in wild-type (WT) and Ni-tolerant (NIT) tobacco BY-2 cell lines. When exposed to low but toxic levels of Ni, NIT cells were found to contain 2.5-fold more Ni (14% of whole-cell Ni values) in their cell walls than WT cells (6% of whole-cell Ni values). In addition to higher levels of Ni in the apoplast, a higher proportion (94%) of symplastic Ni was localized in the vacuoles of NIT cells than in the vacuoles of WT cells (81%). The concentration of cytosolic Ni in the NIT cells was significantly lower (18 nmol g(-1) FW) than that in the WT cells (85 nmol g(-1) FW). In silico simulation showed that 95% of vacuolar Ni was in the form of Ni-citrate complexes, and that free Ni(2+) was virtually absent in the NIT cells. On the other hand, the amount of free metal ions was markedly increased in WT cells because free citrate was depleted by chelation of Ni. A protoplast viability assay using BCECF-AM further demonstrated that the main mechanism that confers strong Ni tolerance was present in the symplast as opposed to the cell wall.

  5. Effect of 808 nm Diode Laser on Swimming Behavior, Food Vacuole Formation and Endogenous ATP Production of Paramecium primaurelia (Protozoa).

    Science.gov (United States)

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2015-01-01

    Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. To clarify the mechanisms of action of PBM at cellular and organism levels, we investigated its effect on Paramecium primaurelia (Protozoa) irradiated by an 808 nm infrared diode laser with a flat-top handpiece (1 W in CW). Our results led to the conclusion that: (1) the 808 nm laser stimulates the P. primaurelia without a thermal effect, (2) the laser effect is demonstrated by an increase in swimming speed and in food vacuole formation, (3) the laser treatment affects endogenous adenosine triphosphate (ATP) production in a positive way, (4) the effects of irradiation dose suggest an optimum exposure time of 50 s (64 J cm(-2) of fluence) to stimulate the Paramecium cells; irradiation of 25 s shows no effect or only mild effects and irradiation up to 100 s does not increase the effect observed with 50 s of treatment, (5) the increment of endogenous ATP concentration highlights the positive photobiomodulating effect of the 808 nm laser and the optimal irradiation conditions by the flat-top handpiece. © 2015 The American Society of Photobiology.

  6. Ultrastructural Changes in the Kidneys of the Stickleback ...

    African Journals Online (AJOL)

    The alterations include vacuolation of the haemotopoetic cells, enlargement of nuclei, of renal cells, shrunken and rounded mitochondria increased electron dense materials necrotic cells and electron transparent vacuoles becoming occupied by granulomas. Lysosomes become numerous in all cells notably the collumnar ...

  7. Effect of different exercise intensities on the pancreas of animals with metabolic syndrome.

    Science.gov (United States)

    Amaral, Fernanda; Lima, Nathalia Ea; Ornelas, Elisabete; Simardi, Lucila; Fonseca, Fernando Luiz Affonso; Maifrino, Laura Beatriz Mesiano

    2015-01-01

    Metabolic syndrome (MS) comprises several metabolic disorders that are risk factors for cardiovascular disease and has its source connected to the accumulation of visceral adipose tissue (VAT) and development of insulin resistance. Despite studies showing beneficial results of exercise on several risk factors for cardiovascular disease, studies evaluating the effects of different intensities of exercise training on the pancreas with experimental models are scarce. In total, 20 Wistar rats were used, divided into four groups: control (C), metabolic syndrome (MS and without exercise), metabolic syndrome and practice of walking (MSWalk), and metabolic syndrome and practice of running (MSRun). The applied procedures were induction of MS by fructose in drinking water; experimental protocol of walking and running; weighing of body mass and VAT; sacrifice of animals with blood collection and removal of organs and processing of samples for light microscopy using the analysis of volume densities (Vv) of the studied structures. Running showed a reduction of VAT weight (-54%), triglyceride levels (-40%), Vv[islet] (-62%), Vv[islet.cells] (-22%), Vv[islet.insterstitial] (-44%), and Vv[acinar.insterstitial] (-24%) and an increase of Vv[acini] (+21%) and Vv[acinar.cells] (+22%). Regarding walking, we observed a decrease of VAT weight (-34%) and triglyceride levels (-27%), an increase of Vv[islet.cells] (+72%) and Vv[acinar.cells] (+7%), and a decrease of Vv[acini] (-4%) and Vv[acinar.insterstitial] (-16%) when compared with those in the MS group. Our results suggest that the experimental model with low-intensity exercise (walking) seems to be more particularly recommended for preventing morphological and metabolic disorders occurring in the MS.

  8. A comparative immunohistochemical study on amylase localization in the rat and human exocrine pancreas

    International Nuclear Information System (INIS)

    Aughsteen, Adib A.

    2001-01-01

    Objective was to localize amylase enzyme immunohistochemically in the pancreatic acinar cells of rats and humans using polyclonal sheep anti-human amylase antibody, and to compare between the intensities of their amylase-immunostaining. Indirect immunofluorescence method was applied on formaldehyde-fixed, and paraffin-embedded pancreatic sections obtained from adult male Wistar rats and autopsied human samples. Primary incubation was performed using sheep anti-amylase antibody followed by secondary incubation with fluorescein isothiocyanate-labeled rabbit anti-sheep IgG serum. Control tests of amylase immunospecificity were also undertaken either by incubation with primary antibodies previously pre-adsorbed with an excess of human pancreatic amylase, or only with secondary antibodies. The amylase immunofluorescence was positively and homogenously detected in all acinar cells of both rat and human pancreatic stained sections. The immunostaining was clearly demonstrated in the cell apices and peri-nuclear areas, but it was consistently brighter and more intense in the human acinar cells compared with that of the rat pancreas. Control tests of amylase immunofluorescence revealed the specificity of the antibodies applied for amylase localization in rat and human pancreas. Although many previous immunohisto- and cytochemical reports have successfully localized amylase in the pancreas of different mammalian species, but all of them have used locally prepared anti-amylase antibodies. The present report successfully illustrates immuno-localization of amylase in the pancreatic acinar cells of rats and humans using commercial polyclonal sheep anti-human pancreatic amylase antibodies, and also suggests their useful application in the immunochemical studies on various mammalian species. Additionally, the results indicate a structural similarity between the human and rat pancreatic amylases, a concept required further exploration. (author)

  9. Real time, in situ observation of the photocatalytic inactivation of Saccharomyces cerevisiae cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xiaoxin [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Qi, E-mail: qili@imr.ac.cn [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shang, Jian Ku [Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-04-01

    An in situ microscopy technique was developed to observe in real time the photocatalytic inactivation process of Saccharomyces cerevisiae (S. cerevisiae) cells by palladium-modified nitrogen-doped titanium oxide (TiON/PdO) under visible light illumination. The technique was based on building a photocatalytic micro-reactor on the sample stage of a fluorescence/phase contrast microscopy capable of simultaneously providing the optical excitation to activate the photocatalyst in the micro-reactor and the illumination to acquire phase contrast images of the cells undergoing the photocatalytic inactivation process. Using TiON/PdO as an example, the technique revealed for the first time the vacuolar activities inside S. cerevisiae cells subjected to a visible light photocatalytic inactivation. The vacuoles responded to the photocatalytic attack by the first expansion of the vacuolar volume and then contraction, before the vacuole disappeared and the cell structure collapsed. Consistent with the aggregate behavior observed from the cell culture experiments, the transition in the vacuolar volume provided clear evidence that photocatalytic disinfection of S. cerevisiae cells started with an initiation period in which cells struggled to offset the photocatalytic damage and moved rapidly after the photocatalytic damage overwhelmed the defense mechanisms of the cells against oxidative attack. - Highlights: • Palladium-modified nitrogen-doped titanium oxidephotocatalyst (TiON/PdO) • Effective visible-light photocatalytic disinfection of yeast cells by TiON/PdO • Real time, in situ observation technique was developed for photocatalytic disinfection. • The fluorescence/phase contrast microscope with a photocatalytic micro-reactor • Yeast cell disinfection happened before the cell structure collapsed.

  10. Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells.

    Science.gov (United States)

    Deponte, Marcel; Hoppe, Heinrich C; Lee, Marcus C S; Maier, Alexander G; Richard, Dave; Rug, Melanie; Spielmann, Tobias; Przyborski, Jude M

    2012-12-01

    Quite aside from its immense importance as a human pathogen, studies in recent years have brought to light the fact that the malaria parasite Plasmodium falciparum is an interesting eukaryotic model system to study protein trafficking. Studying parasite cell biology often reveals an overrepresentation of atypical cell biological features, possibly driven by the parasites' need to survive in an unusual biological niche. Malaria parasites possess uncommon cellular compartments to which protein traffic must be directed, including secretory organelles such as rhoptries and micronemes, a lysosome-like compartment referred to as the digestive vacuole and a complex (four membrane-bound) plastid, the apicoplast. In addition, the parasite must provide proteins to extracellular compartments and structures including the parasitophorous vacuole, the parasitophorous vacuolar membrane, the Maurer's clefts and both cytosol and plasma membrane of the host cell, the mature human red blood cell. Although some of these unusual destinations are possessed by other cell types, only Plasmodium parasites contain them all within one cell. Here we review what is known about protein and membrane transport in the P. falciparum-infected cell, highlighting novel features of these processes. A growing body of evidence suggests that this parasite is a real "box of tricks" with regards to protein traffic. Possibly, these tricks may be turned against the parasite by exploiting them as novel therapeutic targets. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. No Effect of Dietary Aspartame or Stevia on Pancreatic Acinar Carcinoma Development, Growth, or Induced Mortality in a Murine Model

    Science.gov (United States)

    Dooley, James; Lagou, Vasiliki; Dresselaers, Tom; van Dongen, Katinka A.; Himmelreich, Uwe; Liston, Adrian

    2017-01-01

    Pancreatic cancer has an extremely poor prognosis, largely due to a poor record for early detection. Known risk factors for pancreatic cancer include obesity, diet, and diabetes, implicating glucose consumption and regulation as a key player. The role of artificial sweeteners may therefore be pertinent to disease kinetics. The oncogenic impact of artificial sweeteners is a highly controversial area. Aspartame, one of the most studied food additives, is widely recognized as being generally safe, although there are still specific areas where research is incomplete due to study limitations. Stevia, by contrast, has been the subject of relatively few studies, and the potential health benefits are based on extrapolation rather than direct testing. Here, we used longitudinal tracking of pancreatic acinar carcinoma development, growth, and lethality in a sensitized mouse model. Despite exposure to aspartame and stevia from the in utero stage onward, we found no disease modification activity, in either direction. These results contribute to the data on aspartame and stevia safety, while also reducing confidence in several of the purported health benefits. PMID:28232906

  12. Dynamic Contrast Enhanced MRI in Patients With Advanced Breast or Pancreatic Cancer With Metastases to the Liver or Lung

    Science.gov (United States)

    2014-05-28

    Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Liver Metastases; Lung Metastases; Recurrent Breast Cancer; Recurrent Pancreatic Cancer; Stage IV Breast Cancer; Stage IV Pancreatic Cancer

  13. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.

    Science.gov (United States)

    Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob

    2017-11-01

    Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands.

    Science.gov (United States)

    Sobhan, Ubaidus; Sato, Masaki; Shinomiya, Takashi; Okubo, Migiwa; Tsumura, Maki; Muramatsu, Takashi; Kawaguchi, Mitsuru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-11-01

    Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 μM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 μM WS12 and 100 μM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.

  15. Subcellular localization of Cd in the root cells of Allium sativum by ...

    Indian Academy of Sciences (India)

    The ultrastructural investigation of the root cells of Allium sativum L. exposed to three different concentrations of Cd (100 M, 1 mM and 10 mM) for 9 days was carried out. The results showed that Cd induced several significant ultrastructural changes – high vacuolization in cytoplasm, deposition of electron-dense material in ...

  16. Effects of Helicobacter pylori infection and long-term proton pump inhibitor use on enterochromaffin-like cells

    Science.gov (United States)

    Bektaş, Mehmet; Saraç, Nurşen; Çetinkaya, Hülya; Törüner, Murat; Erdemli, Esra; Keskin, Onur; Soykan, İrfan; Oktay, Esen Ismet; Korkut, Esin; Üstün, Yusuf; Bahar, Kadir

    2012-01-01

    Background Excessive release of gastrin leads to hypertrophy and hyperplasia of enterochromaffin-like cells (ECL) and prolonged stimulation of these cells causes functional impairment. The purpose of this study was to investigate the effect of Helicobacter pylori (H. pylori) infection and long-term proton pump inhibitors (PPI) use on ECL cells. Methods Fifteen patients who underwent endoscopy because of dyspeptic symptoms were enrolled in the present study. Biopsies were taken from corpus and antrum and existence of H. pylori was investigated with culture, cytology and CLOtest. The patients were divided into 3 groups. Group-A: H. pylori-negative, never treated previously with PPI; Group-B: H. pylori-positive, never treated previously with PPI; and group-C: H. pylori-negative and continuously treated with PPI for more than 6 months before the subject recruitment period. The features of ECL cell in oxyntic glands were examined with electron microscopy on biopsy specimens. Results ECL cells were completely normal in Group A. In group B, moderate hyperplasia and vacuolization was seen in ECL cells. In group C, ECL cell hyperplasia was observed and vacuoles with greater amounts of granules in enlarged vesicles were found more intensely in cytoplasm. Conclusion The use of PPI for a long period of time and presence of H. pylori infection are risk factors for ECL hyperplasia. PMID:24714139

  17. Salivary gland NK cells are phenotypically and functionally unique.

    Directory of Open Access Journals (Sweden)

    Marlowe S Tessmer

    2011-01-01

    Full Text Available Natural killer (NK cells and CD8(+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV. However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  18. The first case of acinic cell carcinoma of the breast within a fibroadenoma: case report.

    Science.gov (United States)

    Limite, G; Di Micco, R; Esposito, E; Sollazzo, V; Cervotti, M; Pettinato, G; Varone, V; Benassai, G; Monda, A; Luglio, G; Maisto, V; Izzo, G; Forestieri, P

    2014-01-01

    A case of acinic cell carcinoma of the breast is reported in a 26-year-old woman. She presented a lump in her right breast, that seemed to be a fibroadenoma. The open biopsy revealed a well-bordered fibroadenoma, together with a proliferation of cells characterized by serous acinar differentiation and eosinophilic cytoplasmic granules. Tumor cells stained for amylase, lysozyme, α-1-antichymotripsin, epithelial membrane antigen, S-100 protein, pan-cytokeratin, cytokeratin 7 and E-cadherin. Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 overexpression, CD10, P63, smooth muscle actin, cytokeratin 5/6 were negative. The sentinel node was negative. 8 months after surgery she is in good clinical conditions without recurrence or metastases. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Good Preservation of Stromal Cells and No Apoptosis in Human Ovarian Tissue after Vitrification

    Directory of Open Access Journals (Sweden)

    Raffaella Fabbri

    2014-01-01

    Full Text Available The aim of this study was to develop a vitrification procedure for human ovarian tissue cryopreservation in order to better preserve the ovarian tissue. Large size samples of ovarian tissue retrieved from 15 female-to-male transgender subjects (18–38 years were vitrified using two solutions (containing propylene glycol, ethylene glycol, and sucrose at different concentrations in an open system. Light microscopy, transmission electron microscopy, and TUNEL assay were applied to evaluate the efficiency of the vitrification protocol. After vitrification/warming, light microscopy showed oocyte nucleus with slightly thickened chromatin and irregular shape, while granulosa and stromal cells appeared well preserved. Transmission electron microscopy showed oocytes with slightly irregular nuclear shape and finely dispersed chromatin. Clear vacuoles and alterations in cellular organelles were seen in the oocyte cytoplasm. Stromal cells had a moderately dispersed chromatin and homogeneous cytoplasm with slight vacuolization. TUNEL assay revealed the lack of apoptosis induction by vitrification in all ovarian cell types. In conclusion after vitrification/warming the stromal compartment maintained morphological and ultrastructural features similar to fresh tissue, while the oocyte cytoplasm was slightly damaged. Although these data are encouraging, further studies are necessary and essential to optimize vitrification procedure.

  20. Myoepithelial Cells: Their Origin and Function in Lacrimal Gland Morphogenesis, Homeostasis, and Repair.

    Science.gov (United States)

    Makarenkova, Helen P; Dartt, Darlene A

    2015-09-01

    Lacrimal gland (LG) is an exocrine tubuloacinar gland that secretes the aqueous layer of the tear film. LG epithelium is composed of ductal, acinar, and myoepithelial cells (MECs) bordering the basal lamina and separating the epithelial layer from the extracellular matrix. Mature MECs have contractile ability and morphologically resemble smooth muscle cells; however, they exhibit features typical for epithelial cells, such as the presence of specific cytokeratin filaments. Increasing evidence supports the assertion that myoepithelial cells (MECs) play key roles in the lacrimal gland development, homeostasis, and stabilizing the normal structure and polarity of LG secretory acini. MECs take part in the formation of extracellular matrix gland and participate in signal exchange between epithelium and stroma. MECs have a high level of plasticity and are able to differentiate into several cell lineages. Here, we provide a review on some of the MEC characteristics and their role in LG morphogenesis, maintenance, and repair.

  1. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells

    DEFF Research Database (Denmark)

    Zheng, Lin; Terman, Alexei; Hallbeck, Martin

    2011-01-01

    and accumulation of Aβ within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as Aβ monomers and oligomers, (2) increased reactive oxygen species production...... and resulting lysosomal Aβ accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide additional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration....

  2. Clinical and Pathologic Study of Feline Merkel Cell Carcinoma With Immunohistochemical Characterization of Normal and Neoplastic Merkel Cells.

    Science.gov (United States)

    Dohata, A; Chambers, J K; Uchida, K; Nakazono, S; Kinoshita, Y; Nibe, K; Nakayama, H

    2015-11-01

    The authors herein describe the morphologic and immunohistochemical features of normal Merkel cells as well as the clinicopathologic findings of Merkel cell carcinoma in cats. Merkel cells were characterized as vacuolated clear cells and were individually located in the epidermal basal layer of all regions examined. Clusters of Merkel cells were often observed adjacent to the sinus hair of the face and carpus. Immunohistochemically, Merkel cells were positive for cytokeratin (CK) 20, CK18, p63, neuron-specific enolase, synaptophysin, and protein gene product 9.5. Merkel cell carcinoma was detected as a solitary cutaneous mass in 3 aged cats (13 to 16 years old). On cytology, large lymphocyte-like cells were observed in all cases. Histologic examinations of surgically resected tumors revealed nests of round cells separated by various amounts of a fibrous stroma. Tumor cells were commonly immunopositive for CK20, CK18, p63, neuron-specific enolase, and synaptophysin, representing the characteristics of normal Merkel cells. © The Author(s) 2015.

  3. Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection.

    Directory of Open Access Journals (Sweden)

    Eva Rothmeier

    2013-09-01

    Full Text Available The causative agent of Legionnaires' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS to form in phagocytes a distinct "Legionella-containing vacuole" (LCV, which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.

  4. STING Signaling Promotes Inflammation in Experimental Acute Pancreatitis.

    Science.gov (United States)

    Zhao, Qinglan; Wei, Yi; Pandol, Stephen J; Li, Lingyin; Habtezion, Aida

    2018-05-01

    Acute pancreatitis (AP) is characterized by severe inflammation and acinar cell death. Transmembrane protein 173 (TMEM173 or STING) is a DNA sensor adaptor protein on immune cells that recognizes cytosolic nucleic acids and transmits signals that activate production of interferons and the innate immune response. We investigated whether leukocyte STING signaling mediates inflammation in mice with AP. We induced AP in C57BL/6J mice (control) and C57BL/6J-Tmem173gt/J mice (STING-knockout mice) by injection of cerulein or placement on choline-deficient DL-ethionine supplemented diet. In some mice, STING signaling was induced by administration of a pharmacologic agonist. AP was also induced in C57BL/6J mice with bone marrow transplants from control or STING-knockout mice and in mice with disruption of the cyclic GMP-AMP synthase (Cgas) gene. Pancreata were collected, analyzed by histology, and acini were isolated and analyzed by flow cytometry, quantitative polymerase chain reaction, immunoblots, and enzyme-linked immunosorbent assay. Bone-marrow-derived macrophages were collected from mice and tested for their ability to detect DNA from dying acinar cells in the presence and absence of deoxyribonuclease (DNaseI). STING signaling was activated in pancreata from mice with AP but not mice without AP. STING-knockout mice developed less severe AP (less edema, inflammation, and markers of pancreatic injury) than control mice, whereas mice given a STING agonist developed more severe AP than controls. In immune cells collected from pancreata, STING was expressed predominantly in macrophages. Levels of cGAS were increased in mice with vs without AP, and cGAS-knockout mice had decreased edema, inflammation, and other markers of pancreatic injury upon induction of AP than control mice. Wild-type mice given bone marrow transplants from STING-knockout mice had less pancreatic injury and lower serum levels of lipase and pancreatic trypsin activity following induction of AP than

  5. Relationship between aquaporin-5 expression and saliva flow in streptozotocin-induced diabetic mice?

    Science.gov (United States)

    Soyfoo, M S; Bolaky, N; Depoortere, I; Delporte, C

    2012-07-01

    To investigate the expression and distribution of AQP5 in submandibular acinar cells from sham- and streptozotocin (STZ)-treated mice in relation to the salivary flow. Mice were sham or STZ injected. Distribution of AQP5 subcellular expression in submandibular glands was determined by immunohistochemistry. AQP5 labelling indices (LI), reflecting AQP5 subcellular distribution, were determined in acinar cells. Western blotting was performed to determine the expression of AQP5 in submandibular glands. Blood glycaemia and osmolality and saliva flow rates were also determined. AQP5 immunoreactivity was primarily located at the apical and apical-basolateral membranes of submandibular gland acinar cells from sham- and STZ-treated mice. No significant differences in AQP5 protein levels were observed between sham- and STZ-treated mice. Compared to sham-treated mice, STZ-treated mice had significant increased glycaemia, while no significant differences in blood osmolality were observed. Saliva flow rate was significantly decreased in STZ-treated mice as compared to sham-treated mice. In STZ-treated mice, significant reduction in salivary flow rate was observed without any concomitant modification in AQP5 expression and localization. © 2011 John Wiley & Sons A/S.

  6. Fructan active enzymes (FAZY) activities and biosynthesis of fructooligosaccharides in the vacuoles of Agave tequilana Weber Blue variety plants of different age.

    Science.gov (United States)

    Mellado-Mojica, Erika; González de la Vara, Luis E; López, Mercedes G

    2017-02-01

    Biosynthesis of agave fructans occurs in mesontle vacuoles which showed fluctuations in FAZY activities and synthesized a diverse spectrum of fructooligosaccharide isomers. Agave tequilana Weber Blue variety is an important agronomic crop in Mexico. Fructan metabolism in A. tequilana exhibits changes in fructan content, type, degree of polymerization (DP), and molecular structure. Specific activities of vacuolar fructan active enzymes (FAZY) in A. tequilana plants of different age and the biosynthesis of fructooligosaccharides (FOSs) were analyzed in this work. Vacuoles from mesontle (stem) protoplasts were isolated and collected from 2- to 7-year-old plants. For the first time, agave fructans were identified in the vacuolar content by HPAEC-PAD. Several FAZY activities (1-SST, 6-SFT, 6G-FFT, 1-FFT, and FEH) with fluctuations according to the plant age were found in protein vacuolar extracts. Among vacuolar FAZY, 1-SST activities appeared in all plant developmental stages, as well as 1-FFT and FEH activities. The enzymes 6G-FFT and 6-SST showed only minimal activities. Lowest and highest FAZY activities were found in 2- and 6-year-old plants, respectively. Synthesized products (FOS) were analyzed by TLC and HPAEC-PAD. Vacuolar FAZYs yielded large FOS isomers diversity, being 7-year-old plants the ones that synthesized a greater variety of fructans with different DP, linkages, and molecular structures. Based on the above, we are proposing a model for the FAZY activities constituting the FOS biosynthetic pathways in Agave tequilana Weber Blue variety.

  7. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation

    International Nuclear Information System (INIS)

    Feng Jielin; Zwaag, Marianne van der; Stokman, Monique A.; Os, Ronald van; Coppes, Robert P.

    2009-01-01

    Background: Recently, we showed that transplantation of 100-300 c-Kit + stem cells isolated from cultured salispheres ameliorates radiation-damage in murine salivary glands. The aim of this study is to optimize and translate these findings from mice to man. Methods: Mouse and human non-malignant parotid and submandibular salivary gland tissue was collected and enzymatically digested. The remaining cell suspension was cultured according to our salisphere culture method optimized for murine salispheres. Salisphere cells were tested using 3D matrix culturing for their in vitro stem cell characteristics such as the potential to differentiate into tissue specific cell types. Several potential mouse and human salivary gland stem cells were selected using FACS. Results: In human salivary gland, c-Kit + cells were only detected in excretory ducts as shown previously in mice. From both human parotid and submandibular gland cell suspensions salispheres could be grown, which when placed in 3D culture developed ductal structures and mucin-expressing acinar-like cells. Moreover, cells dispersed from primary salispheres were able to form secondary spheres in matrigel, a procedure that could be repeated for at least seven passages. Approximately 3000 c-Kit + cells could be isolated from primary human salispheres per biopsy. Conclusion: Human salivary glands contain a similar 'putative' stem cell population as rodents, expressing c-kit and capable of in vitro differentiation and self-renewal. In the future, these cells may have the potential to reduce radiotherapy-induced salivary gland dysfunction in patients.

  8. Ionizing radiation induces heritable disruption of epithelial cell interactions

    Science.gov (United States)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  9. Synergistic effects in mice of trichloroethylene and copper overload on pulmonary clara cells injury

    International Nuclear Information System (INIS)

    Giovanetti, A.; Winik, B.; Schlick, C.

    1992-01-01

    Trichloroethylene (TCE), an organic solvent of worldwide use, is also emitted by autovehicles as a by-product of fuel combustion. Previous works have demonstrated that TCE, given by inhalation or by i.p. injection, induces a selective, dose-dependent damage to pulmonary non-ciliated Clara cells. TCE needs to be bioactivated in order to exert its toxic effect. Compounds altering the enzymes activity can therefore modulate TCE cytotoxicity. Copper (Cu) is an essential element and its concentration in serum is under homeostatic control; it is a cofactor for enzymes such as cytochrome oxidase. Humans are exposed to Cu by drinking water. In order to investigate whether a Cu overload enhances enzymes-mediated damage, Albin Swiss male mice were fed with a Cu-supplemented diet; afterwards, they were treated with TCE. Epithelial damage was quantified by counting the percentage of non ciliated vacuolated cells. Ultrastructural studies showed that vacuolations consisted in swelling of SER cisternae. It was postulated that, at physiological levels, Cu protects against lipid peroxidation, while at higher dosages, it promotes free radical formation

  10. A rare occurrence of a steroid cell tumor of the pelvic mesentery: a case report

    OpenAIRE

    Louis Robert; Murhekar Kanchan; Majhi Urmila

    2011-01-01

    Abstract Introduction Steroid cell tumors are microscopically characterized by abundant eosinophilic or vacuolated cytoplasm that is often positive for fat stains. These tumors could be of ovarian or ectopic adrenal origin. We present a rare case of a steroid cell tumor arising from the pelvic mesentery. Case presentation A 31-year-old Asian woman was undergoing treatment for infertility and virilizing symptoms. She underwent laparoscopy followed by laprotomy for a suspected ovarian cyst/pelv...

  11. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dziedzic, Slawomir A; Caplan, Allan B

    2011-05-01

    Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.

  12. Protoplast isolation from Ulmus americana l. Pollen mother cells, tetrads, and microspores

    Energy Technology Data Exchange (ETDEWEB)

    Redenbaugh, M K; Westfall, R D; Karnosky, D F

    1980-01-01

    Meiotic protoplasts of U. amerciana are potentially valuable for producing interspecific elm hybrids through protoplast fusion. Meiotic cells(pollen mother cells, tetrads, and microspores) were incubated in either a cellulase, hemicellylase and pectinase enzyme solution of a beta-1,3-glucanase (lainarinase) solution. Respective protoplast isolation frequencies for the three meiotic cell types were 100, 50, and 10%. Exclusion staining with 0.2% Evans blue and 0.1% methyl blue suggested protoplast viability. Some of the microspore protoplasts were vacuolated, which is an important condition for cell division. Although attempts of regenerating cell walls and inducing cell division were unsuccessful, these two problems may be superceded by protoplast fusion with more regenerative protoplasts.

  13. Endolysosomal pathway activity protects cells from neurotoxic TDP-43

    Directory of Open Access Journals (Sweden)

    Christine Leibiger

    2018-03-01

    Full Text Available The accumulation of protein aggregates in neurons is a typical pathological hallmark of the motor neuron disease amyotrophic lateral sclerosis (ALS and of frontotemporal dementia (FTD. In many cases, these aggregates are composed of the 43 kDa TAR DNA-binding protein (TDP‑43. Using a yeast model for TDP‑43 proteinopathies, we observed that the vacuole (the yeast equivalent of lysosomes markedly contributed to the degradation of TDP‑43. This clearance occurred via TDP‑43-containing vesicles fusing with the vacuole through the concerted action of the endosomal-vacuolar (or endolysosomal pathway and autophagy. In line with its dominant role in the clearance of TDP‑43, endosomal-vacuolar pathway activity protected cells from the detrimental effects of TDP‑43. In contrast, enhanced autophagy contributed to TDP‑43 cytotoxicity, despite being involved in TDP‑43 degradation. TDP‑43’s interference with endosomal-vacuolar pathway activity may have two deleterious consequences. First, it interferes with its own degradation via this pathway, resulting in TDP‑43 accumulation. Second, it affects vacuolar proteolytic activity, which requires endosomal-vacuolar trafficking. We speculate that the latter contributes to aberrant autophagy. In sum, we propose that ameliorating endolysosomal pathway activity enhances cell survival in TDP‑43-associated diseases.

  14. Induction of Non-Apoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6

    OpenAIRE

    Bhanot, Haymanti; Young, Ashley M.; Overmeyer, Jean H.; Maltese, William A.

    2010-01-01

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating-protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to...

  15. Racial Variation in the Outcome of Subsequent Prostate Biopsies in Men With an Initial Diagnosis of Atypical Small Acinar Proliferation.

    Science.gov (United States)

    Scott Libby, Robert; Kramer, Jordan J; Tue Nguyen, Hoang Minh; Feibus, Allison; Thomas, Raju; Silberstein, Jonathan L

    2017-12-01

    African American (AA) men are known to have more aggressive prostate cancer (PCa) compared with Caucasian American men. We sought to determine predictors of subsequent detection and risk stratification of PCa in a racially diverse group of men with atypical small acinar proliferation (ASAP) on initial prostate biopsy. A retrospective analysis was conducted on data from men with ASAP on initial prostate biopsy who subsequently received confirmatory biopsies between September 2000 and July 2015. Biopsies with more than 3 years between initial and confirmatory biopsies were excluded. Race, age, body mass index, transrectal ultrasound volume, serum prostate-specific antigen (PSA), PSA velocity, PSA density, and elapsed time between biopsies were assessed for predictive value in subsequent PCa diagnosis after an initial finding of ASAP. Of 106 men analyzed, 75 (71%) were AA and 31 (29%) were non-AA. Baseline variables revealed AA men had higher PSA levels, PSA velocity, and PSA density (all P level, and PSA density were significant predictors of PCa. AA men diagnosed with ASAP on initial prostate biopsy do not have increased risk of PCa on confirmatory biopsy compared with non-AA men. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A Rare Case of Clear Cell Carcinoma, Müllerian Type in the Renal Pelvis of a 21-Year-Old Woman

    Directory of Open Access Journals (Sweden)

    Diandra Perez

    2018-01-01

    Full Text Available Clear Cell Carcinomas of Müllerian origin are extremely rare within the upper urinary system. Their morphology is identical to that of the Clear Cell Carcinomas of the female genital tract. When they arise in the urinary tract, it is thought to be due to ectopic Müllerian embryogenesis. Here, we present a case of a 21-year-old woman with a Clear Cell Carcinoma, Müllerian type, arising from the renal pelvis. Histologically, it consisted of tubulopapillary architecture with associated foamy macrophages and a mucinous background. The neoplastic cells exhibited variably sized round nuclei with prominent nucleoli, eosinophilic to vacuolated cytoplasm with occasional intracytoplasmic mucin vacuoles, and a hobnail appearance. Immunohistochemical stains showed that the neoplastic cells were positive for Pax-8, p53, CK7, HMWK 903, and INI-1 and focally positive for p504s (AMACR. The neoplastic cells were negative for GATA-3, CK5/CK6, p63, CK20, and CDX-2 immunostains, ruling out urothelial or enteric phenotype. Additional immunostains performed by an outside institution showed that the neoplastic cells were positive for HNF-1β. The overall morphology and immunophenotype were consistent with Clear Cell Carcinoma of Müllerian origin arising from the renal pelvis. Follow-up revealed no metastasis or other tumor sites, supporting that this was the primary location.

  17. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Luisa Martino

    Full Text Available We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.

  18. High Volume Washing of the Abdomen in Increasing Survival After Surgery in Patients With Pancreatic Cancer That Can Be Removed by Surgery

    Science.gov (United States)

    2017-10-25

    Acinar Cell Carcinoma; Ampulla of Vater Adenocarcinoma; Cholangiocarcinoma; Duodenal Adenocarcinoma; Pancreatic Adenocarcinoma; Pancreatic Ductal Adenocarcinoma; Pancreatic Intraductal Papillary Mucinous Neoplasm, Pancreatobiliary-Type; Periampullary Adenocarcinoma

  19. Lectin histochemical evaluation of glycoconjugates in dog efferent ductules.

    Science.gov (United States)

    Wakui, S; Furusato, M; Takahashi, H; Motoya, M; Ushigome, S

    1996-06-01

    Glycoconjugates in the epithelial cells of the efferent ductules in the dog were investigated using lectin histochemistry. These ductules connect the extratesticular rete with the epididymis. The epithelium of the ductules consisted both of ciliated and nonciliated cells. Whereas the apical zone of ciliated cells showed selective binding with WGA, SWGA, SNA, MAA and neuraminidase-PNA, that of nonciliated cells bound to all lectins used in the present study: WGA, SWGA, SNA, MAA, PNA, neuraminidase-PNA, RCA1, DBA and SBA. The nonciliated cells were divided into 3 types: type A cells which lacked both specific granules and vacuoles, type B cells which were characterised by a few specific apical vacuoles and many large specific granules, and type C cells which were characterised by some specific apical vacuoles and small basal granules. The specific granules and vacuoles of type B cells showed binding with WGA, SWGA and MAA. The specific granules of type C cells showed binding with WGA, SWGA, SNA, MAA, PNA and neuraminidase-PNA, while their specific vacuoles showed binding with WGA, SWGA, SNA and MAA. The Golgi zone both of ciliated and type A cells did not bind with any lectins used in this study, while type B and C cells showed similar lectin binding patterns between the Golgi zone and their specific granules. Specific lectin binding patterns revealed a different carbohydrate composition of each type of cell, indicating a biological difference between the ciliated cells and the 3 types of nonciliated cells in dog efferent ductules.

  20. Balloon cell nevus of the iris.

    Science.gov (United States)

    Morcos, Mohib W; Odashiro, Alexandre; Bazin, Richard; Pereira, Patricia Rusa; O'Meara, Aisling; Burnier, Miguel N

    2014-12-01

    Balloon cell nevus is a rare histopathological lesion characterized by a predominance of large, vesicular and clear cells, called balloon cells. There is only 1 case of balloon cell nevus of the iris reported in the literature. A 55 year-old man presented a pigmented elevated lesion in the right iris since the age of 12 years old. The lesion had been growing for the past 2 years and excision was performed. Histopathological examination showed a balloon cell nevus composed of clear and vacuolated cells without atypia. A typical spindle cell nevus of the iris was also observed. The differential diagnosis included xanthomatous lesions, brown adipocyte or other adipocytic lesions, clear cell hidradenoma, metastatic clear cell carcinoma of the kidney and clear cell sarcoma. The tumor was positive for Melan A, S100 protein and HMB45. Balloon cell nevus of the iris is rare but should be considered in the differential diagnosis of melanocytic lesions of the iris. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  2. Dietary supplementation of antioxidants improves semen quality of IVF patients in terms of motility, sperm count, and nuclear vacuolization.

    Science.gov (United States)

    Wirleitner, Barbara; Vanderzwalmen, Pierre; Stecher, Astrid; Spitzer, Dietmar; Schuff, Maximilian; Schwerda, Delf; Bach, Magnus; Schechinger, Birgit; Herbert Zech, Nicolas

    2012-12-01

    This study aimed to investigate the influence of an oral antioxidative supplementation on sperm quality of in vitro fertilization (IVF) patients, as analyzed by sperm motility according to the WHO criteria and motile sperm organelle morphology examination (MSOME). Semen samples were collected from 147 patients before undergoing an IVF/intracytoplasmic morphologically-selected sperm injection (IMSI) cycle and 2 - 12 months after an antioxidative supplementation. Semen analysis was evaluated according to WHO and MSOME criteria. Spermatozoa were grouped according to the size of nuclear vacuoles within the sperm's heads. Patients were divided into oligoasthenoteratozoospermic (OAT) and non-OAT men. Between first and second semen analysis, patients were supplemented orally with an antioxidative preparation. After the antioxidative therapy we observed a significant reduction in the percentage of immotile sperm cells in the patients. Additionally, the percentage of class I spermatozoa according to MSOME criteria was significantly higher after antioxidative supplementation. In OAT patients the percentage of class I sperm was found to be increased, although not significantly. However, we observed a drastic improvement in sperm motility as well as in total sperm count in this group. The results demonstrated a considerable improvement in semen quality, notably in OAT patients. Considering the putative relationship between semen quality on the one hand and reactive oxygen species on the other, the observed changes in the sperm parameters indicate that a decline in semen quality, and even subtle morphological changes, might be associated with oxidative stress. Our findings suggest that an antioxidative and micronutrient supplementation has a remarkable benefit for IVF patients having restricted sperm parameters, in particular.

  3. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Junko Y., E-mail: yama_jun@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Jiro, E-mail: jtosiscb@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  4. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    International Nuclear Information System (INIS)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show; Toshima, Junko Y.; Toshima, Jiro

    2014-01-01

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V o subunit of vacuolar-type H + -ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling

  5. Studies of rhodamine-123: effect on rat prostate cancer and human prostate cancer cells in vitro.

    Science.gov (United States)

    Arcadi, J A; Narayan, K S; Techy, G; Ng, C P; Saroufeem, R M; Jones, L W

    1995-06-01

    The effect of the lipophilic, cationic dye, Rhodamine-123 (Rh-123), on prostate cancer in rats, and on three tumor cell lines in vitro is reported here. The general toxicity of Rh-123 in mice has been found to be minimal. Lobund-Wistar (L-W) rats with the autochthonous prostate cancer of Pollard were treated for six doses with Rh-123 at a dose of 15 mg/kg subcutaneously every other day. Microscopic examination of the tumors revealed cellular and acinar destruction. The effectiveness of Rh-123 as a cytotoxic agent was tested by clonogenic and viability assays in vitro with three human prostate cancer cell lines. Severe (60-95%) growth inhibition was observed following Rh-123 exposure for 2-5 days at doses as low as 1.6 micrograms/ml in all three prostate cancer cell lines.

  6. Pep3p/Pep5p complex: a putative docking factor at multiple steps of vesicular transport to the vacuole of Saccharomyces cerevisiae.

    OpenAIRE

    Srivastava, A; Woolford, C A; Jones, E W

    2000-01-01

    Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional ...

  7. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, François, E-mail: francois.marceau@crchul.ulaval.ca [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Bawolak, Marie-Thérèse [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Lodge, Robert [Centre de recherche en infectiologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Bouthillier, Johanne; Gagné-Henley, Angélique [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada); Gaudreault, René C. [Unité des Biotechnologies et de Bioingénierie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1L 3L5 (Canada); Morissette, Guillaume [Centre de recherche en rhumatologie et immunologie, Centre Hospitalier Universitaire de Québec, Québec QC, Canada G1V 4G2 (Canada)

    2012-02-15

    “Lysosomotropic” cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent with V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.

  8. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs

    International Nuclear Information System (INIS)

    Marceau, François; Bawolak, Marie-Thérèse; Lodge, Robert; Bouthillier, Johanne; Gagné-Henley, Angélique; Gaudreault, René C.; Morissette, Guillaume

    2012-01-01

    “Lysosomotropic” cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent with V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.

  9. Methods of expressing and detecting activity of expansin in plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Elizabeth E.; Yoon, Sangwoong

    2017-10-10

    A method of expressing heterologous expansin in a plant cell is provided where a nucleic acid molecule encoding expansin is introduced into the plant cell and in an embodiment is operably linked to a promoter preferentially expressing in the seed tissue of the plant, and in another embodiment is linked to a promoter preferentially expressing in the embryo tissue of the seed. An embodiment provides the nucleic acid molecule is operably linked to a second nucleic acid molecule that directs expression to the endoplasmic reticulum, vacuole or cell wall. Plants and plant parts expressing expansin are provided. An assay for detection of expansin activity is also provided.

  10. Delivering of Proteins to the Plant Vacuole—An Update

    Directory of Open Access Journals (Sweden)

    Cláudia Pereira

    2014-05-01

    Full Text Available Trafficking of soluble cargo to the vacuole is far from being a closed issue as it can occur by different routes and involve different intermediates. The textbook view of proteins being sorted at the post-Golgi level to the lytic vacuole via the pre-vacuole or to the protein storage vacuole mediated by dense vesicles is now challenged as novel routes are being disclosed and vacuoles with intermediate characteristics described. The identification of Vacuolar Sorting Determinants is a key signature to understand protein trafficking to the vacuole. Despite the long established vacuolar signals, some others have been described in the last few years, with different properties that can be specific for some cells or some types of vacuoles. There are also reports of proteins having two different vacuolar signals and their significance is questionable: a way to increase the efficiency of the sorting or different sorting depending on the protein roles in a specific context? Along came the idea of differential vacuolar sorting, suggesting a possible specialization of the trafficking pathways according to the type of cell and specific needs. In this review, we show the recent advances in the field and focus on different aspects of protein trafficking to the vacuoles.

  11. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Ushiro, Yuuki; Sekiyama, Kazunari; Yamaguchi, Osamu; Yoshioka, Kazuki; Mutoh, Ken-Ichiro; Hasegawa, Yoshihisa

    2006-01-01

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  12. Aberrant Hedgehog ligands induce progressive pancreatic fibrosis by paracrine activation of myofibroblasts and ductular cells in transgenic zebrafish.

    Directory of Open Access Journals (Sweden)

    In Hye Jung

    Full Text Available Hedgehog (Hh signaling is frequently up-regulated in fibrogenic pancreatic diseases including chronic pancreatitis and pancreatic cancer. Although recent series suggest exclusive paracrine activation of stromal cells by Hh ligands from epithelial components, debates still exist on how Hh signaling works in pathologic conditions. To explore how Hh signaling affects the pancreas, we investigated transgenic phenotypes in zebrafish that over-express either Indian Hh or Sonic Hh along with green fluorescence protein (GFP to enable real-time observation, or GFP alone as control, at the ptf1a domain. Transgenic embryos and zebrafish were serially followed for transgenic phenotypes, and investigated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR, in situ hybridization, and immunohistochemistry. Over-expression of Ihh or Shh reveals virtually identical phenotypes. Hh induces morphologic changes in a developing pancreas without derangement in acinar differentiation. In older zebrafish, Hh induces progressive pancreatic fibrosis intermingled with proliferating ductular structures, which is accompanied by the destruction of the acinar structures. Both myofibroblasts and ductular are activated and proliferated by paracrine Hh signaling, showing restricted expression of Hh downstream components including Patched1 (Ptc1, Smoothened (Smo, and Gli1/2 in those Hh-responsive cells. Hh ligands induce matrix metalloproteinases (MMPs, especially MMP9 in all Hh-responsive cells, and transform growth factor-ß1 (TGFß1 only in ductular cells. Aberrant Hh over-expression, however, does not induce pancreatic tumors. On treatment with inhibitors, embryonic phenotypes are reversed by either cyclopamine or Hedgehog Primary Inhibitor-4 (HPI-4. Pancreatic fibrosis is only prevented by HPI-4. Our study provides strong evidence of Hh signaling which induces pancreatic fibrosis through paracrine activation of Hh-responsive cells in vivo. Induction of

  13. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of non-apoptotic cell death

    OpenAIRE

    Robinson, Michael W.; Overmeyer, Jean H.; Young, Ashley M.; Erhardt, Paul W.; Maltese, William A.

    2012-01-01

    Methuosis is a novel caspase-independent form of cell death in which massive accumulation of vacuoles derived from macropinosomes ultimately causes cells to detach from the substratum and rupture. We recently described a chalcone-like compound, 3-(2-methyl-1H indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (i.e. MIPP), which can induce methuosis in glioblastoma and other types of cancer cells. Herein we describe the synthesis and structure-activity relationships of a directed library of related co...

  14. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues.

    Directory of Open Access Journals (Sweden)

    Leonie Harmse

    Full Text Available Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05. Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05, with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.

  15. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues.

    Science.gov (United States)

    Harmse, Leonie; Dahan-Farkas, Nurit; Panayides, Jenny-Lee; van Otterlo, Willem; Penny, Clement

    2015-01-01

    Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05). Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05), with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues.

  16. Ablation of Phosphoinositide 3-Kinase-γ Reduces the Severity of Acute Pancreatitis

    Science.gov (United States)

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P.; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-01-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-γ (PI3Kγ) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3Kγ, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3Kγ significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3Kγ-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3Kγ, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3Kγ. Our results thus suggest that inhibition of PI3Kγ may be of therapeutic value in acute pancreatitis. PMID:15579443

  17. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis.

    Science.gov (United States)

    Conn, Simon J; Gilliham, Matthew; Athman, Asmini; Schreiber, Andreas W; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A; Hirschi, Kendal D; Webb, Alex A R; Burton, Rachel; Kaiser, Brent N; Tyerman, Stephen D; Leigh, Roger A

    2011-01-01

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis 60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.

  18. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  19. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling.

    Science.gov (United States)

    Manara, Maria Cristina; Terracciano, Mario; Mancarella, Caterina; Sciandra, Marika; Guerzoni, Clara; Pasello, Michela; Grilli, Andrea; Zini, Nicoletta; Picci, Piero; Colombo, Mario P; Morrione, Andrea; Scotlandi, Katia

    2016-11-29

    CD99 is a cell surface molecule that has emerged as a novel target for Ewing sarcoma (EWS), an aggressive pediatric bone cancer. This report provides the first evidence of methuosis in EWS, a non-apoptotic form of cell death induced by an antibody directed against the CD99 molecule. Upon mAb triggering, CD99 induces an IGF-1R/RAS/Rac1 complex, which is internalized into RAB5-positive endocytic vacuoles. This complex is then dissociated, with the IGF-1R recycling to the cell membrane while CD99 and RAS/Rac1 are sorted into immature LAMP-1-positive vacuoles, whose excessive accumulation provokes methuosis. This process, which is not detected in CD99-expressing normal mesenchymal cells, is inhibited by disruption of the IGF-1R signaling, whereas enhanced by IGF-1 stimulation. Induction of IGF-1R/RAS/Rac1 was also observed in the EWS xenografts that respond to anti-CD99 mAb, further supporting the role of the IGF/RAS/Rac1 axis in the hyperstimulation of macropinocytosis and selective death of EWS cells. Thus, we describe a vulnerability of EWS cells, including those resistant to standard chemotherapy, to a treatment with anti-CD99 mAb, which requires IGF-1R/RAS signaling but bypasses the need for their direct targeting. Overall, we propose CD99 targeting as new opportunity to treat EWS patients resistant to canonical apoptosis-inducing agents.

  20. Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control.

    Directory of Open Access Journals (Sweden)

    David Cobley

    Full Text Available Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1 activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline growth conditions. While it is well established that PI(3,5P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes, neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division.

  1. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  2. Neuronal vacuolation of the trigeminal nuclei in goats caused by ingestion of Prosopis juliflora pods (mesquite beans).

    Science.gov (United States)

    Tabosa, I M; Souza, J C; Graça, D L; Barbosa-Filho, J M; Almeida, R N; Riet-Correa, F

    2000-06-01

    Three groups of 6 goats each were fed a ration containing 30, 60, or 90%, on a dry matter base, of Prosopis juliflora pods. A control group of 4 goats ingested only the basic ration. Two hundred and ten days after the start of the experiment 3 goats that ingested 60% pods in and 4 that ingested 90% had mandibular tremors, mainly during chewing. All animals were killed after 270 d of ingestion. No gross lesions were observed. Histologic lesions were characterized by fine vacuolation of the pericaryon of neurons from the trigeminal nuclei. Occasionally neurons of the oculomotor nuclei were also affected. Wallerian degeneration was occasionally observed in the mandibular and trigeminal nerves. Denervation atrophy of the masseter, temporal, hypoglossus, genioglossus, styloglossus, medial pterygoid and lateral pterygoid muscles was seen. The clinical signs from feeding the P juliflora pods were caused by a selective toxicity to neurons of some cranial nerve nuclei.

  3. Expression of ODC Antizyme Inhibitor 2 (AZIN2 in Human Secretory Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Tiina Rasila

    Full Text Available Ornithine decarboxylase (ODC antizyme inhibitor 2 (AZIN2, originally called ODCp, is a regulator of polyamine synthesis that we originally identified and cloned. High expression of ODCp mRNA was found in brain and testis. We reported that AZIN2 is involved in regulation of cellular vesicle transport and / or secretion, but the ultimate physiological role(s of AZIN2 is still poorly understood. In this study we used a peptide antibody (K3 to human AZIN2 and by immunohistochemistry mapped its expression in various normal tissues. We found high expression in the nervous system, in type 2 pneumocytes in the lung, in megakaryocytes, in gastric parietal cells co-localized with H,K-ATPase beta subunit, in selected enteroendocrine cells, in acinar cells of sweat glands, in podocytes, in macula densa cells and epithelium of collecting ducts in the kidney. The high expression of AZIN2 in various cells with secretory or vesicle transport activity indicates that the polyamine metabolism regulated by AZIN2 is more significantly involved in these events than previously appreciated.

  4. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling

    OpenAIRE

    Manara, Maria Cristina; Terracciano, Mario; Mancarella, Caterina; Sciandra, Marika; Guerzoni, Clara; Pasello, Michela; Grilli, Andrea; Zini, Nicoletta; Picci, Piero; Colombo, Mario P.; Morrione, Andrea; Scotlandi, Katia

    2016-01-01

    CD99 is a cell surface molecule that has emerged as a novel target for Ewing sarcoma (EWS), an aggressive pediatric bone cancer. This report provides the first evidence of methuosis in EWS, a non-apoptotic form of cell death induced by an antibody directed against the CD99 molecule. Upon mAb triggering, CD99 induces an IGF-1R/RAS/Rac1 complex, which is internalized into RAB5-positive endocytic vacuoles. This complex is then dissociated, with the IGF-1R recycling to the cell membrane while CD9...

  5. Seminal epithelium in prostate biopsy can mimic malignant and premalignant prostatic lesions.

    Science.gov (United States)

    Arista-Nasr, J; Trolle-Silva, A; Aguilar-Ayala, E; Martínez-Benítez, B

    2016-01-01

    In most prostate biopsies, the seminal epithelium is easily recognised because it meets characteristic histological criteria. However, some biopsies can mimic malignant or premalignant prostatic lesions. The aims of this study were to analyse the histological appearance of the biopsies that mimic adenocarcinomas or preneoplastic prostatic lesions, discuss the differential diagnosis and determine the frequency of seminal epithelia in prostate biopsies. We consecutively reviewed 500 prostate puncture biopsies obtained using the sextant method and selected those cases in which we observed seminal vesicle or ejaculatory duct epithelium. In the biopsies in which the seminal epithelium resembled malignant or premalignant lesions, immunohistochemical studies were conducted that included prostate-specific antigen and MUC6. The most important clinical data were recorded. Thirty-six (7.2%) biopsies showed seminal epithelium, and 7 of them (1.4%) resembled various prostate lesions, including high-grade prostatic intraepithelial neoplasia, atypical acinar proliferations, adenocarcinomas with papillary patterns and poorly differentiated carcinoma. The seminal epithelium resembled prostate lesions when the lipofuscin deposit, the perinuclear vacuoles or the nuclear pseudoinclusions were inconspicuous or missing. Five of the 7 biopsies showed mild to moderate cellular atypia with small and hyperchromatic nuclei, and only 2 showed cellular pleomorphism. The patients were alive and asymptomatic after an average of 6 years of progression. The seminal epithelium resembles prostatic intraepithelial neoplasia, atypical acinar proliferations and various types of prostatic adenocarcinomas in approximately 1.4% of prostate biopsies. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells.

    Science.gov (United States)

    Korytnikov, Roman; Nostro, Maria Cristina

    2016-05-15

    Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Therapeutic Effect of Low Doses of Acenocoumarol in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats

    Directory of Open Access Journals (Sweden)

    Zygmunt Warzecha

    2017-04-01

    Full Text Available Intravascular activation of coagulation is observed in acute pancreatitis and is related to the severity of this inflammation. The aim of our study was to evaluate the impact of acenocoumarol therapy on the course of acute pancreatitis induced in male rats by pancreatic ischemia followed by reperfusion. Acenocoumarol at a dose of 50, 100, or 150 µg/kg/dose was administered intragastrically once a day, starting the first dose 24 h after the initiation of pancreatic reperfusion. Results: Histological examination showed that treatment with acenocoumarol reduces pancreatic edema, necrosis, and hemorrhages in rats with pancreatitis. Moreover, the administration of acenocoumarol decreased pancreatic inflammatory infiltration and vacuolization of pancreatic acinar cells. These findings were accompanied with a reduction in the serum activity of lipase and amylase, concentration of interleukin-1β, and plasma d-Dimer concentration. Moreover, the administration of acenocoumarol improved pancreatic blood flow and pancreatic DNA synthesis. Acenocoumarol given at a dose of 150 µg/kg/dose was the most effective in the treatment of early phase acute pancreatitis. However later, acenocoumarol given at the highest dose failed to exhibit any therapeutic effect; whereas lower doses of acenocoumarol were still effective in the treatment of acute pancreatitis. Conclusion: Treatment with acenocoumarol accelerates the recovery of ischemia/reperfusion-induced acute pancreatitis in rats.

  8. Maize EMBRYO SAC family peptides interact differentially with pollen tubes and fungal cells.

    Science.gov (United States)

    Woriedh, Mayada; Merkl, Rainer; Dresselhaus, Thomas

    2015-08-01

    EMBRYO SAC1-4 (ES1-4) peptides belong to the defensin subgroup of cysteine-rich peptides known to mediate pollen tube burst in Zea mays (maize). ES1-4 are reported here to also be capable of inhibiting germination and growth of the maize fungal pathogens Fusarium graminearum and Ustilago maydis at higher concentrations. Dividing the peptides into smaller pieces showed that a 15-amino-acid peptide located in a highly variable loop region lacking similarity to other defensins or defensin-like peptides binds to maize pollen tube surfaces, causing swelling prior to burst. This peptide fragment and a second conserved neighbouring fragment showed suppression of fungal germination and growth. The two peptides caused swelling of fungal cells, production of reactive oxygen species, and finally the formation of big vacuoles prior to burst at high peptide concentration. Furthermore, peptide fragments were found to bind differently to fungal cells. In necrotrophic F. graminearum, a peptide fragment named ES-d bound only at cell surfaces whereas the peptide ES-c bound at cell surfaces and also accumulated inside cells. Conversely, in biotrophic U. maydis, both peptide fragments accumulated inside cells, but, if applied at higher concentration, ES-c but not ES-d accumulated mainly in vacuoles. Mapping of peptide interaction sites identified amino acids differing in pollen tube burst and fungal response reactions. In summary, these findings indicate that residues targeting pollen tube burst in maize are specific to the ES family, while residues targeting fungal growth are conserved within defensins and defensin-like peptides. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. The early effects of radiation on in vitro explants of mouse pancreas. A morphological and immunocytochemical study

    International Nuclear Information System (INIS)

    Kosanlavit, R.

    2001-01-01

    Prodromal radiation sickness involving the digestive system may occur less than an hour following whole-body or abdominal irradiation, and may be of such severity as to prevent cancer patients from completing their course of radiotherapy. The contribution of radiation-induced pancreatic damage to radiation sickness is poorly understood. This study seeks to demonstrate the early effects of X-rays (0.5-10 Gy) on mouse pancreas in vitro. The response of exocrine acinar cells, and endocrine cells from the islets of Langerhans was examined using immunocytochemistry, light and transmission electron microscopy, and morphometric analysis. There was an approximate 50% decrease in the mean number of zymogen granules in acinar cells following 10 Gy irradiation at 1 hour, which may have been due to the acceleration of enzyme secretion or the interruption of enzyme synthesis or a combination of both. The frequency distributions of zymogen granules diameter showed minor change. The gross structure of acinar cells appeared not to be affected by irradiation at the doses and times used. Following 5 and 10 Gy irradiation a few pancreatic endocrine cells within each islet lost their chromogranin A-immunoreactivity whereas other islet cells showed more intense immunostaining for chromogranin A. A dose of 10 Gy significantly decreased the volume density of glucagon-containing cells at 1 hour. Doses of 5 and 10 Gy slightly decreased the volume density of somatostatin-containing cells from 30 minutes to 3 hours. Such changes in the expression of endocrine products from these cells are likely to have profound physiological effects. Radiation induced no changes in the volume density of insulin and PP-containing cells. The results of the present study suggest that X-irradiation induce changes to exocrine and endocrine pancreatic cells, and that this may contribute to some of the symptoms of radiation sickness. (author)

  10. Huaier Extract Induces Autophagic Cell Death by Inhibiting the mTOR/S6K Pathway in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Huaier extract is attracting increased attention due to its biological activities, including antitumor, anti-parasite and immunomodulatory effects. Here, we investigated the role of autophagy in Huaier-induced cytotoxicity in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cells. Huaier treatment inhibited cell viability in all three cell lines and induced various large membranous vacuoles in the cytoplasm. In addition, electron microscopy, MDC staining, accumulated expression of autophagy markers and flow cytometry revealed that Huaier extract triggered autophagy. Inhibition of autophagy attenuated Huaier-induced cell death. Furthermore, Huaier extract inhibited the mammalian target of the rapamycin (mTOR/S6K pathway in breast cancer cells. After implanting MDA-MB-231 cells subcutaneously into the right flank of BALB/c nu/nu mice, Huaier extract induced autophagy and effectively inhibited xenograft tumor growth. This study is the first to show that Huaier-induced cytotoxicity is partially mediated through autophagic cell death in breast cancer cells through suppression of the mTOR/S6K pathway.

  11. The role of Cajal cells in chronic prostatitis

    Directory of Open Access Journals (Sweden)

    Ozgur Haki Yuksel

    2016-07-01

    Full Text Available Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra, two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.

  12. The role of Cajal cells in chronic prostatitis.

    Science.gov (United States)

    Haki Yuksel, Ozgur; Urkmez, Ahmet; Verit, Ayhan

    2016-07-04

    Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra), two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.

  13. Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) induce differential cytotoxic effects in bovine brain microvessel endothelial cells.

    Science.gov (United States)

    Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M; Rice, Kenner C; Gannon, Brenda M; Fantegrossi, William E; Gonzalez, Carmen; Paule, Merle G; Ali, Syed F

    2016-08-26

    Designer drugs such as synthetic psychostimulants are indicative of a worldwide problem of drug abuse and addiction. In addition to methamphetamine (METH), these drugs include 3,4-methylenedioxy-methamphetamine (MDMA) and commercial preparations of synthetic cathinones including 3,4-methylenedioxypyrovalerone (MDPV), typically referred to as "bath salts." These psychostimulants exert neurotoxic effects by altering monoamine systems in the brain. Additionally, METH and MDMA adversely affect the integrity of the blood-brain barrier (BBB): there are no current reports on the effects of MDPV on the BBB. The aim of this study was to compare the effects of METH, MDMA and MDPV on bovine brain microvessel endothelial cells (bBMVECs), an accepted in vitro model of the BBB. Confluent bBMVEC monolayers were treated with METH, MDMA and MDPV (0.5mM-2.5mM) for 24h. METH and MDMA increased lactate dehydrogenase release only at the highest concentration (2.5mM), whereas MDPV induced cytotoxicity at all concentrations. MDMA and METH decreased cellular proliferation only at 2.5mM, with similar effects observed after MDPV exposures starting at 1mM. Only MDPV increased reactive oxygen species production at all concentrations tested whereas all 3 drugs increased nitric oxide production. Morphological analysis revealed different patterns of compound-induced cell damage. METH induced vacuole formation at 1mM and disruption of the monolayer at 2.5mM. MDMA induced disruption of the endothelial monolayer from 1mM without vacuolization. On the other hand, MDPV induced monolayer disruption at doses ≥0.5mM without vacuole formation; at 2.5mM, the few remaining cells lacked endothelial morphology. These data suggest that even though these synthetic psychostimulants alter monoaminergic systems, they each induce BBB toxicity by different mechanisms with MDPV being the most toxic. Published by Elsevier Ireland Ltd.

  14. The physiology of a local renin-angiotensin system in the pancreas.

    Science.gov (United States)

    Leung, Po Sing

    2007-04-01

    The systemic renin-angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested.

  15. The physiology of a local renin–angiotensin system in the pancreas

    Science.gov (United States)

    Leung, Po Sing

    2007-01-01

    The systemic renin–angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested. PMID:17218353

  16. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    Directory of Open Access Journals (Sweden)

    Michalski Christoph W

    2007-12-01

    Full Text Available Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP, and pancreatic ductal adenocarcinoma (PDAC using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.

  17. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    Science.gov (United States)

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  18. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    Directory of Open Access Journals (Sweden)

    Eun Namkoong

    Full Text Available Sodium bicarbonate cotransporters (NBCs are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1 and electrogenic NBC (NBCe1, with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs and HSG cells. Intracellular pH (pHi was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  19. Transport and phosphorylation of choline in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Bligny, R.; Foray, M.F.; Roby, C.; Douce, R.

    1989-03-25

    When sycamore cells were suspended in basal medium containing choline, the latter was taken up by the cells very rapidly. A facilitated diffusion system appertained at low concentrations of choline and exhibited Michaelis-Menten kinetics. At higher choline concentrations simple diffusion appeared to be the principal mode of uptake. Addition of choline to the perfusate of compressed sycamore cells monitored by /sup 31/P NMR spectroscopy resulted in a dramatic accumulation of P-choline in the cytoplasmic compartment containing choline kinase and not in the vacuole. The total accumulation of P-choline over a 10-h period exhibited Michaelis-Menten kinetics. During this period, in the absence of Pi in the perfusion medium there was a marked depletion of glucose-6-P, and the cytoplasmic Pi resonance disappeared almost completely. When a threshold of cytoplasmic Pi was attained, the phosphorylation of choline was sustained by the continuous release of Pi from the vacuole although at a much lower rate. However, when 100 microM inorganic phosphate was present in the perfusion medium, externally added Pi was preferentially used to sustain P-choline synthesis. It is clear, therefore, that cytosolic choline kinase associated with a carrier-mediated transport system for choline uptake appeared as effective systems for continuously trapping cytoplasmic Pi including vacuolar Pi entering the cytoplasm.

  20. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    International Nuclear Information System (INIS)

    Chen, Han; Sun, Yan Ping; Li, Yang; Liu, Wen Wu; Xiang, Hong Gang; Fan, Lie Ying; Sun, Qiang; Xu, Xin Yun; Cai, Jian Mei; Ruan, Can Ping; Su, Ning; Yan, Rong Lin; Sun, Xue Jun; Wang, Qiang

    2010-01-01

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.

  1. Ultrastructural changes in the sublingual salivary gland of prenatal buffalo (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    A. D. Singh

    2016-03-01

    Full Text Available Aim: The present study was aimed to elucidate ultrastructural changes in the development of sublingual salivary gland of buffalo during prenatal life. Materials and Methods: The study was carried out on sublingual salivary gland of 36 buffalo fetuses ranging from 13.2 cm curved crown-rump length (CVRL (88th day to full term. The fetuses were categorized into three groups based on their CVRL. Results: The cells lining the terminal tubules were undifferentiated with poorly developed cytoplasmic organelles but lacked secretory granules (SGs at 13.2 cm CVRL (88th day. The SGs appeared first in the form of membrane-bound secretory vesicles with homogeneous electron-dense as well as electron-lucent contents at 21.2 cm CVRL (122nd day; however, mucous acinar cells contained electron-lucent granules, while serous secretory cells as well as serous demilunes showed electron-dense granules at 34 cm CVRL (150th day of prenatal life. At 53.5 cm CVRL (194th day, both mucous and serous acini were differentiated by the density of SGs. Conclusion: The cytoplasm of acinar cells was filled with mitochondria, rough endoplasmic reticulum, and Golgi profiles in mid and late fetal age groups. The SGs were increased in number during the late fetal age group. The myoepithelial cells (MECs were located at the base of the acinar cells as well as intercalated and striated ducts and were stellate in shape. The ultrastructure of MEC revealed a parallel stream of myofilaments in the cytoplasm and its processes. The mucous cells were predominantly present in the sublingual salivary gland and were pyramidal in shape.

  2. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    Science.gov (United States)

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  3. Intracellular position of mitochondria and chloroplasts in bundle sheath and mesophyll cells of C3 grasses in relation to photorespiratory CO2 loss

    Directory of Open Access Journals (Sweden)

    Yuto Hatakeyama

    2016-10-01

    Full Text Available In C3 plants, photosynthetic efficiency is reduced by photorespiration. A part of CO2 fixed during photosynthesis in chloroplasts is lost from mitochondria during photorespiration by decarboxylation of glycine by glycine decarboxylase (GDC. Thus, the intracellular position of mitochondria in photosynthetic cells is critical to the rate of photorespiratory CO2 loss. We investigated the intracellular position of mitochondria in parenchyma sheath (PS and mesophyll cells of 10 C3 grasses from 3 subfamilies (Ehrhartoideae, Panicoideae, and Pooideae by immunostaining for GDC and light and electron microscopic observation. Immunostaining suggested that many mitochondria were located in the inner half of PS cells and on the vacuole side of chloroplasts in mesophyll cells. Organelle quantification showed that 62–75% of PS mitochondria were located in the inner half of cells, and 62–78% of PS chloroplasts were in the outer half. In mesophyll cells, 61–92% of mitochondria were positioned on the vacuole side of chloroplasts and stromules. In PS cells, such location would reduce the loss of photorespiratory CO2 by lengthening the path of CO2 diffusion and allow more efficient fixation of CO2 from intercellular spaces. In mesophyll cells, it would facilitate scavenging by chloroplasts of photorespiratory CO2 released from mitochondria. Our data suggest that the PS cells of C3 grasses have already acquired an initial structure leading to proto-Kranz and further C3–C4 intermediate anatomy. We also found that in the Pooideae, organelle positioning in PS cells on the phloem side resembles that in mesophyll cells.

  4. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis.

    Science.gov (United States)

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-12-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.

  5. Amorphous areas in the cytoplasm of Dendrobium tepal cells

    Science.gov (United States)

    van Doorn, Wouter G.; Kirasak, Kanjana; Ketsa, Saichol

    2013-01-01

    In Dendrobium flowers some tepal mesophyll cells showed cytoplasmic areas devoid of large organelles. Such amorphous areas comprised up to about 40% of the cross-section of a cell. The areas were not bound by a membrane. The origin of these areas is not known. We show data suggesting that they can be formed from vesicle-like organelles. The data imply that these organelles and other material become degraded inside the cytoplasm. This can be regarded as a form of autophagy. The amorphous areas became surrounded by small vacuoles, vesicles or double membranes. These seemed to merge and thereby sequester the areas. Degradation of the amorphous areas therefore seemed to involve macroautophagy. PMID:23823702

  6. Autophagy in retinal ganglion cells in a rhesus monkey chronic hypertensive glaucoma model.

    Directory of Open Access Journals (Sweden)

    Shuifeng Deng

    Full Text Available Primary open angle glaucoma (POAG is a neurodegenerative disease characterized by physiological intraocular hypertension that causes damage to the retinal ganglion cells (RGCs. In the past, RGC damage in POAG was suggested to have been attributed to RGC apoptosis. However, in the present study, we applied a model closer to human POAG through the use of a chronic hypertensive glaucoma model in rhesus monkeys to investigate whether another mode of progressive cell death, autophagy, was activated in the glaucomatous retinas. First, in the glaucomatous retinas, the levels of LC3B-II, LC3B-II/LC3B-I and Beclin 1 increased as demonstrated by Western blot analyses, whereas early or initial autophagic vacuoles (AVi and late or degraded autophagic vacuoles (AVd accumulated in the ganglion cell layer (GCL and in the inner plexiform layer (IPL as determined by transmission electron microscopy (TEM analysis. Second, lysosome activity and autophagosome-lysosomal fusion increased in the RGCs of the glaucomatous retinas, as demonstrated by Western blotting against lysosome associated membrane protein-1 (LAMP1 and double labeling against LC3B and LAMP1. Third, apoptosis was activated in the glaucomatous eyes with increased levels of caspase-3 and cleaved caspase-3 and an increased number of TUNEL-positive RGCs. Our results suggested that autophagy was activated in RGCs in the chronic hypertensive glaucoma model of rhesus monkeys and that autophagy may have potential as a new target for intervention in glaucoma treatment.

  7. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    Science.gov (United States)

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  8. In vitro secretion of zymogens by bovine pancreatic acini and ultra-structural analysis of exocytosis

    Directory of Open Access Journals (Sweden)

    Sivalingam Jayaveni

    2016-03-01

    Full Text Available The aim of this study is to establish a bovine pancreatic acinar cell culture model with longer viability and functionality. The cells could be maintained in a functional state for upto 20 days with normal morphology. Cells were positive for amylase as observed by immunofluorescence staining. Acinar cells are spherical and range about 2–3 µm in diameter. The porosome formed by exocytosis and heterogenous enzyme granules of size ranging 100–300 nm were seen on the surface of cells by electron microscopy. The activity of the enzymes was high on day 15 and the activity profile of the enzymes is in the order: protease>lipase>amylase and the enzymes were identified by SDS-PAGE. Long-term culture of bovine pancreatic acini could be useful in studying the pathogenesis of pancreatitis. Since the bovine genome shares about 80% identity with the human genome, the cells derived from bovine pancreas can be engineered and used as a potential xenotransplant to treat conditions like pancreatitis as the tissue source is abundantly available.

  9. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  10. Maternal microchimerism: increased in the insulin positive compartment of type 1 diabetes pancreas but not in infiltrating immune cells or replicating islet cells.

    Directory of Open Access Journals (Sweden)

    Jody Ye

    Full Text Available Maternal microchimeric cells (MMc transfer across the placenta during pregnancy. Increased levels of MMc have been observed in several autoimmune diseases including type 1 diabetes but their role is unknown. It has been suggested that MMc are 1 effector cells of the immune response, 2 targets of the autoimmune response or 3 play a role in tissue repair. The aim of this study was to define the cellular phenotype of MMc in control (n = 14 and type 1 diabetes pancreas (n = 8.Using sex chromosome-based fluorescence in-situ hybridization, MMc were identified in male pancreas and their phenotype determined by concomitant immunofluorescence.In normal pancreas, MMc positive for endocrine, exocrine, duct and acinar markers were identified suggesting that these cells are derived from maternal progenitors. Increased frequencies of MMc were observed in type 1 diabetes pancreas (p = 0.03 with particular enrichment in the insulin positive fraction (p = 0.01. MMc did not contribute to infiltrating immune cells or Ki67+ islet cell populations in type 1 diabetes.These studies provide support for the hypothesis that MMc in human pancreas are derived from pancreatic precursors. Increased frequencies of MMc beta cells may contribute to the initiation of autoimmunity or to tissue repair but do not infiltrate islets in type 1 diabetes.

  11. Obestatin Accelerates the Recovery in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats.

    Directory of Open Access Journals (Sweden)

    Jakub Bukowczan

    Full Text Available Several previous studies have shown that obestatin exhibits protective and regenerative effects in some organs including the stomach, kidney, and the brain. In the pancreas, pretreatment with obestatin inhibits the development of cerulein-induced acute pancreatitis, and promotes survival of pancreatic beta cells and human islets. However, no studies investigated the effect of obestatin administration following the onset of experimental acute pancreatitis.The aim of this study was to evaluate the impact of obestatin therapy in the course of ischemia/reperfusion-induced pancreatitis. Moreover, we tested the influence of ischemia/reperfusion-induced acute pancreatitis and administration of obestatin on daily food intake and pancreatic exocrine secretion.Acute pancreatitis was induced by pancreatic ischemia followed by reperfusion of the pancreas. Obestatin (8 nmol/kg/dose was administered intraperitoneally twice a day, starting 24 hours after the beginning of reperfusion. The effect of obestatin in the course of necrotizing pancreatitis was assessed between 2 and 14 days, and included histological, functional, and biochemical analyses. Secretory studies were performed on the third day after sham-operation or induction of acute pancreatitis in conscious rats equipped with chronic pancreatic fistula.Treatment with obestatin ameliorated morphological signs of pancreatic damage including edema, vacuolization of acinar cells, hemorrhages, acinar necrosis, and leukocyte infiltration of the gland, and led to earlier pancreatic regeneration. Structural changes were accompanied by biochemical and functional improvements manifested by accelerated normalization of interleukin-1β level and activity of myeloperoxidase and lipase, attenuation of the decrease in pancreatic DNA synthesis, and by an improvement of pancreatic blood flow. Induction of acute pancreatitis by pancreatic ischemia followed by reperfusion significantly decreased daily food intake and

  12. Rice bran water extract attenuates pancreatic abnormalities in high ...

    African Journals Online (AJOL)

    p < 0.05) reversed HFD-induced obesity, hyperglycemia, impaired glucose tolerance and pancreatic triglyceride accumulation in rats. Histological examination of HFD-induced obese rats revealed fat droplets in acinar cells, but these alterations ...

  13. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas, acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist

    Science.gov (United States)

    Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T.

    2014-01-01

    Objectives Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1) in acute/chronic pancreatitis, however the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues, and the effects of CX3CL1 on activated-PSCs. Methods CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated-PSCs were examined with realtime-PCR, BrdU assays and Western Blotting. Results In normal pancreas, acinar cells expressed CX3CR1 within granule-like-formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal and activated-PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1, did not induce inflammatory-genes expression in activated-PSCs, but induced proliferation. Conclusions CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis and the CX3CR1s are activated. CX3CL1 induces proliferation of activated-PSCs without increasing release of inflammatory-mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSCs proliferation in pancreatitis where CX3CL1 levels are elevated. PMID:24681877

  14. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Kamalini Ghosh

    Full Text Available Advancement in cancer therapy requires a better understanding of the detailed mechanisms that induce death in cancer cells. Besides apoptosis, themode of other types of cell death has been increasingly recognized in response to therapy. Paraptosis is a non-apoptotic alternative form of programmed cell death, morphologically distinct from apoptosis and autophagy. In the present study, Withaferin-A (WA induced hyperpolarization of mitochondrial membrane potential and formation of many cytoplasmic vesicles. This was due to progressive swelling and fusion of mitochondria and dilation of endoplasmic reticulum (ER, forming large vacuolar structures that eventually filled the cytoplasm in human breast cancer cell-lines MCF-7 and MDA-MB-231. The level of indigenous paraptosis inhibitor, Alix/AIP-1 (Actin Interacting Protein-1 was down-regulated by WA treatment. Additionally, prevention of WA-induced cell death and vacuolation on co-treatment with protein-synthesis inhibitor indicated requirement of de-novo protein synthesis. Co-treatment with apoptosis inhibitor resulted in significant augmentation of WA-induced death in MCF-7 cells, while partial inhibition in MDA-MB-231 cells; implyingthat apoptosis was not solely responsible for the process.WA-mediated cytoplasmic vacuolationcould not be prevented by autophagy inhibitor wortmanninas well, claiming this process to be a non-autophagic one. Early induction of ROS (Reactive Oxygen Speciesby WA in both the cell-lines was observed. ROS inhibitorabrogated the effect of WA on: cell-death, expression of proliferation-associated factor andER-stress related proteins,splicing of XBP-1 (X Box Binding Protein-1 mRNA and formation of paraptotic vacuoles.All these results conclusively indicate thatWA induces deathin bothMCF-7 and MDA-MB-231 cell lines byROS-mediated paraptosis.

  15. The Importance of the Nurse Cells and Regulatory Cells in the Control of T Lymphocyte Responses

    Directory of Open Access Journals (Sweden)

    María Guadalupe Reyes García

    2013-01-01

    Full Text Available T lymphocytes from the immune system are bone marrow-derived cells whose development and activities are carefully supervised by two sets of accessory cells. In the thymus, the immature young T lymphocytes are engulfed by epithelial “nurse cells” and retained in vacuoles, where most of them (95% are negatively selected and removed when they have an incomplete development or express high affinity autoreactive receptors. The mature T lymphocytes that survive to this selection process leave the thymus and are controlled in the periphery by another subpopulation of accessory cells called “regulatory cells,” which reduce any excessive immune response and the risk of collateral injuries to healthy tissues. By different times and procedures, nurse cells and regulatory cells control both the development and the functions of T lymphocyte subpopulations. Disorders in the T lymphocytes development and migration have been observed in some parasitic diseases, which disrupt the thymic microenvironment of nurse cells. In other cases, parasites stimulate rather than depress the functions of regulatory T cells decreasing T-mediated host damages. This paper is a short review regarding some features of these accessory cells and their main interactions with T immature and mature lymphocytes. The modulatory role that neurotransmitters and hormones play in these interactions is also revised.

  16. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist.

    Science.gov (United States)

    Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T

    2014-07-01

    Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.

  17. Case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, K.; Ootsuka, F. (Tokyo Univ. (Japan). Faculty of Medicine); Mizoguchi, M.

    1980-12-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered.

  18. The Cysteine Protease CEP1, a Key Executor Involved in Tapetal Programmed Cell Death, Regulates Pollen Development in Arabidopsis[W][OPEN

    Science.gov (United States)

    Zhang, Dandan; Liu, Di; Lv, Xiaomeng; Wang, Ying; Xun, Zhili; Liu, Zhixiong; Li, Fenglan; Lu, Hai

    2014-01-01

    Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation. PMID:25035401

  19. Multiphoton-generated localized electron plasma for membrane permeability modification in single cells

    Science.gov (United States)

    Merritt, T.; Leblanc, M.; McMillan, J.; Westwood, J.; Khodaparast, G. A.

    2014-03-01

    Successful incorporation of a specific macromolecule into a single cell would be ideal for characterizing trafficking dynamics through plasmodesmata or for studying intracellular localizations. Here, we demonstrate NIR femtosecond laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into living cells of Arabidopsis thaliana seedling stems. Based on the reactions of fluorescing vacuoles of transgenic cells and artificial cell walls comprised of nanocellulose, laser intensity and exposure time were adjusted to avoid deleterious effects. Using these plant-tailored laser parameters, cells were injected with the fluorophores and long-term dye retention was observed, all while preserving vital cell functions. This method is ideal for studies concerning cell-to-cell interactions and potentially paves the way for introducing transgenes to specific cells. This work was supported by NSF award IOS-0843372 to JHW, with additional support from and U.S. Department of Agriculture Hatch Project no. 135997, and by the Institute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech.

  20. GLP-1 receptor localization in monkey and human tissue

    DEFF Research Database (Denmark)

    Pyke, Charles; Heller, R Scott; Kirk, Rikke K

    2014-01-01

    and increase heart rate. Using a new monoclonal antibody for immunohistochemistry, we detected GLP-1 receptor (GLP-1R) in important target organs in humans and monkeys. In the pancreas, GLP-1R was predominantly localized in β-cells with a markedly weaker expression in acinar cells. Pancreatic ductal epithelial...

  1. New Insights into the Pathogenesis of Pancreatitis

    Science.gov (United States)

    Sah, Raghuwansh P.; Dawra, Rajinder K.; Saluja, Ashok K.

    2014-01-01

    Purpose of review In this article, we review important advances in our understanding of the mechanisms of pancreatitis. Recent Findings The relative contribution of intra-pancreatic trypsinogen activation and NFκB activation, the two major early independent cellular events in the etiology of pancreatitis, have been investigated using novel genetic models. Trypsinogen activation has traditionally held the spotlight for many decades as it is believed to be the central pathogenic event of pancreatitis However, recent experimental evidence points to the role of trypsin activation in early acinar cell damage but not in the inflammatory response of acute pancreatitis through NFκB activation. Further, chronic pancreatitis in the caerulein model develops independently of typsinogen activation. Sustained activation of the NFκB pathway, but not persistent intra-acinar expression of active trypsin, was shown to result in chronic pancreatitis. Calcineurin-NFAT signaling was shown to mediate downstream effects of pathologic rise in intracellular calcium. IL-6 was identified as a key cytokine mediating pancreatitis-associated lung injury. Summary Recent advances challenge the long-believed trypsin-centered understanding of pancreatitis. It is becoming increasingly clear that activation of intense inflammatory signaling mechanisms in acinar cells is crucial to the pathogenesis of pancreatitis, which may explain the strong systemic inflammatory response in pancreatitis. PMID:23892538

  2. A histochemical study of rat salivary gland acid phosphatase.

    Science.gov (United States)

    Isacsson, G

    1986-01-01

    Male Sprague-Dawley rats received 4 mg pilocarpine/100 g body wt intraperitoneally or physiological saline as control and were killed at various intervals. Acid phosphatase was reacted on frozen sections from soft palate, parotid and submandibular glands using sodium-alpha-naphthyl acid phosphate as substrate. Various inhibitors were added to the incubation medium. The strongest acid phosphatase activity was in the parotid gland acinar and proximal secretory duct cells; the mucous minor glands of the palate were completely negative. Activity was found in the acinar cells, proximal secretory duct cells, granular and striated duct and excretory duct cells. Pilocarpine injection slightly reduced the activity up to 6 h after injection. Cupric chloride added to the incubation medium lowered the overall activity. Fluoride and molybdate inhibited the acid phosphatase reaction in all structures. Tartrate inhibited the reaction in all structures except the submandibular striated duct cells. The tartrate-resistant activity may be a Na+K+-dependent ATPase involved in re-absorbing water and electrolytes from the primary saliva.

  3. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction.

    Science.gov (United States)

    Gil-Bona, Ana; Reales-Calderon, Jose A; Parra-Giraldo, Claudia M; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a "veil growth," never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.

  4. Different cell moieties and white blood cell (WBC) integrity in In-111 labeled WBC preparations

    International Nuclear Information System (INIS)

    Saha, G.B.; Feiglin, D.H.I.; McMahon, J.T.; Go, R.T.; O'Donnell, J.K.; MacIntyre, W.J.

    1985-01-01

    Indium-111 labeled white blood cells (WBC) have become very popular in detecting inflammatory diseases. The purpose of this paper is to determine the distribution of different types of cells in WBC preparation for In-111 oxine labeling, and also to assess the histological integrity of WBC's after labeling with In-111 oxine. Forty to fifty cc of blood was collected from each patient and WBC's were separated by sedimentation and centrifugation. After labeling with In-111 oxine, an aliquot of the WBC sample was used for cell counting and a second aliquot was used for electron microscopic (EM) examination. The different cell moieties were counted, and the mean and standard deviation of twelve determinations calculated. Cells were prepared by the standard technique for electron microscopic examination and images of the cells were obtained at different magnifications (X8,000-25,000). The EM images revealed that although minimal cytoplasmic vacuolization occurred in the WBC's due to the labeling process, the overall histological integrity of the cells remained intact. The relative labeling efficiency of WBC's is greater than those of RBC's and platelets (J Nuc) Med 25:p98, 1984) and, therefore, even a comparatively low population of WBC's gives optimal imaging due to their increased tracer uptake

  5. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis

    NARCIS (Netherlands)

    Lutgendorff, Femke; Trulsson, Lena M.; van Minnen, L. Paul; Rijkers, Ger T.; Timmerman, Harro M.; Franzen, Lennart E.; Gooszen, Hein G.; Akkermans, Louis M. A.; Soderholm, Johan D.; Sandstrom, Per A.

    2008-01-01

    Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress,

  6. Vhc1, a novel transporter belonging to the family of electroneutral cation–Cl− cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles

    Czech Academy of Sciences Publication Activity Database

    Petrezsélyová, Silvia; Kinclová-Zimmermannová, Olga; Sychrová, Hana

    2013-01-01

    Roč. 1828, č. 2 (2013), s. 623-631 ISSN 0005-2736 R&D Projects: GA AV ČR(CZ) IAA500110801; GA MŠk(CZ) LC531; GA MŠk(CZ) OC10012 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200110901 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : salt tolerance * yeast vacuole * potassium homeostasis * cation- chloride cotransport Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.431, year: 2013

  7. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  8. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jing [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Liu, Gexiu [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Yan, Guoyao [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); He, Dongmei [Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong (China); Zhou, Ying [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China); Chen, Shengting, E-mail: shengtingchen@sina.cn [The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong (China)

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  9. The intracellular uptake and protracted release of exogenous heparins by cultured endothelial cells

    International Nuclear Information System (INIS)

    Hiebert, L.M.; McDuffie, N.M.

    1989-01-01

    Heparins from bovine or porcine sources were fed in media for 48 hrs to cultured porcine aortic and human umbilical vein endothelial cells. Heparin was found in pericellular and cellular fractions after extraction by chemical methods and 125 I radiolabelled heparins were recovered when radiolabelled heparin was included in the feed. Even after washing and media changes heparin was detected in media and cell fractions up to 6 days post feeding. Metachromatic vacuoles within cells were demonstrated histologically up to 7 days post feeding after staining with toluidine blue. This is the first report of protracted internalization of exogenous heparin by cultured endothelial cells with concurrent prolonged release of the heparin to the media. This clearly demonstrates that the endothelium plays an important role in the distribution and metabolism of heparin

  10. Autophagy/Xenophagy as a survival strategy of cancer cells. The role of Cathepsins

    International Nuclear Information System (INIS)

    Malorni, W.; Matarrese, P.; Ascione, B.; Ciarlo, L.; Zakeri, Z.

    2009-01-01

    Macroautophagy, often referred as to autophagy (self-cannibalism), designates the genetically determined process by which portions of the cytoplasm, organelles and long-lived proteins are engulfed in double-membraned vacuoles (autophagosomes) and sent for lysosomal degradation. Basal levels of autophagy contribute to the maintenance of intracellular homoeostasis by ensuring the turnover of supernumerary, aged and/or damaged components. Under conditions of starvation, the autophagic pathway operates to supply cells with metabolic substrates, and thus represents an important pro-survival mechanism. In cultured cells, the withdrawal of growth factors, known to represent an experimental condition triggering autophagy, can also enhance xeno-cannibalism (xenophagy; xeno is from ancient greek=foreign)

  11. Attenuation of endocrine-exocrine pancreatic communication in type 2 diabetes: pancreatic extracellular matrix ultrastructural abnormalities.

    Science.gov (United States)

    Hayden, Melvin R; Patel, Kamlesh; Habibi, Javad; Gupta, Deepa; Tekwani, Seema S; Whaley-Connell, Adam; Sowers, James R

    2008-01-01

    Ultrastructural observations reveal a continuous interstitial matrix connection between the endocrine and exocrine pancreas, which is lost due to fibrosis in rodent models and humans with type 2 diabetes mellitus (T2DM). Widening of the islet-exocrine interface appears to result in loss of desmosomes and adherens junctions between islet and acinar cells and is associated with hypercellularity consisting of pericytes and inflammatory cells in T2DM pancreatic tissue. Organized fibrillar collagen was closely associated with pericytes, which are known to differentiate into myofibroblasts-pancreatic stellate cells. Of importance, some pericyte cellular processes traverse both the connecting islet-exocrine interface and the endoacinar interstitium of the exocrine pancreas. Loss of cellular paracrine communication and extracellular matrix remodeling fibrosis in young animal models and humans may result in a dysfunctional insulino-acinar-ductal-incretin gut hormone axis, resulting in pancreatic insufficiency and glucagon-like peptide deficiency, which are known to exist in prediabetes and overt T2DM in humans.

  12. Ultrastructural localization of lead in Stigeoclonium tenue (chlorophyceae, ulotrichales) as demonstrated by cytochemical and x-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Silverberg, B A

    1975-12-01

    Results of ultrastructural studies and TEM-X-ray microanalysis of the ulotrichalean alga Stigeoclonium tenue experimentally exposed to increasing concentrations of lead nitrate are presented. A fine-structural examination of the cells revealed that detectable amounts of lead (Pb) had entered the cytoplasm and could be recognized most easily as electron-dense precipitates localized on the cell wall and within the two large peripheral vacuoles. Dense deposits were never observed in mitochondria, plastids or nuclei. Pinocytotic vacuoles containing lead spheroids are removed endocytotically to the cytoplasmic vacuoles, rendering the Pb innocuous. The evidence suggests that the cell wall and vacuoles are important structures in maintaining a relatively low cytoplasmic concentration of lead, thereby reducing the toxic effects of lead ions on sensitive cellular functions. At high concentrations, ranging from 0.15 to 0.5 mg Pb/l, noticeable alterations in the fine structure of the chloroplast are evident. A method is described for the visualization of Pb deposits in fresh, chemically fixed and plastic-embedded material using a saturated solution of sodium rhodizonate.

  13. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    Science.gov (United States)

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  14. Effects of 60Co gamma-rays on some biological characteristics of Chinese hamster lung cells

    International Nuclear Information System (INIS)

    Tang Pei; Wang Shoufang; Zhang Shuxian

    1988-01-01

    The proliferation of cells and the relationship between survival and dose were investigated in Chinese hamster lung (CHL) cells grown at stationary phase and irradiated with 60 Co gamma-rays. The ultrastructural changes and chromosome aberration in the cells after irradiation were also observed. The frequency of chromosome aberrations increased linearly with dose and the yields of dicentrics plus rings were best fitted to a linear-quadratic model. The 50% growth-inhibited dose was found to be 4.0Gy. Electron microscopy observation revealed swelling and vacuolation of mitochodria and indistinct cristae at lower doses. The alterations in nucleus at higher doses appeared to be depression of nuclear membrane and disappearance of chromatin

  15. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis.

    Science.gov (United States)

    Zhang, Dandan; Liu, Di; Lv, Xiaomeng; Wang, Ying; Xun, Zhili; Liu, Zhixiong; Li, Fenglan; Lu, Hai

    2014-07-01

    Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation. © 2014 American Society of Plant Biologists. All rights reserved.

  16. Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast

    Directory of Open Access Journals (Sweden)

    Kasaras Alexis

    2012-04-01

    Full Text Available Abstract Background Arabidopsis DMP1 was discovered in a genome-wide screen for senescence-associated membrane proteins. DMP1 is a member of a novel plant-specific membrane protein family of unknown function. In rosette leaves DMP1 expression increases from very low background level several 100fold during senescence progression. Results Expression of AtDMP1 fused to eGFP in Nicotiana benthamiana triggers a complex process of succeeding membrane remodeling events affecting the structure of the endoplasmic reticulum (ER and the vacuole. Induction of spherical structures (“bulbs”, changes in the architecture of the ER from tubular to cisternal elements, expansion of smooth ER, formation of crystalloid ER, and emergence of vacuolar membrane sheets and foamy membrane structures inside the vacuole are proceeding in this order. In some cells it can be observed that the process culminates in cell death after breakdown of the entire ER network and the vacuole. The integrity of the plasma membrane, nucleus and Golgi vesicles are retained until this stage. In Arabidopsis thaliana plants expressing AtDMP1-eGFP by the 35S promoter massive ER and vacuole vesiculation is observed during the latest steps of leaf senescence, whereas earlier in development ER and vacuole morphology are not perturbed. Expression by the native DMP1 promoter visualizes formation of aggregates termed “boluses” in the ER membranes and vesiculation of the entire ER network, which precedes disintegration of the central vacuole during the latest stage of senescence in siliques, rosette and cauline leaves and in darkened rosette leaves. In roots tips, DMP1 is strongly expressed in the cortex undergoing vacuole biogenesis. Conclusions Our data suggest that DMP1 is directly or indirectly involved in membrane fission during breakdown of the ER and the tonoplast during leaf senescence and in membrane fusion during vacuole biogenesis in roots. We propose that these properties of DMP1

  17. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    mouse pancreatic acinar cells (see review by Berridge. 1995). But these currents differ .... Continued work in this field will eventually disclose further properties which .... a new twist to the tale and opens up many plausible hypo- theses and ...

  18. TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

    Energy Technology Data Exchange (ETDEWEB)

    Sunavala-Dossabhoy, Gulshan, E-mail: gsunav@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Palaniyandi, Senthilnathan; Richardson, Charles; De Benedetti, Arrigo [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Schrott, Lisa [Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Caldito, Gloria [Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2012-09-01

    Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect against IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.

  19. Gene delivery to pancreatic exocrine cells in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Houbracken Isabelle

    2012-10-01

    Full Text Available Abstract Background Effective gene transfer to the pancreas or to pancreatic cells has remained elusive although it is essential for studies of genetic lineage tracing and modulation of gene expression. Different transduction methods and viral vectors were tested in vitro and in vivo, in rat and mouse pancreas. Results For in vitro transfection/transduction of rat exocrine cells lipofection reagents, adenoviral vectors, and Mokola- and VSV-G pseudotyped lentiviral vectors were used. For in vivo transduction of mouse and rat pancreas adenoviral vectors and VSV-G lentiviral vectors were injected into the parenchymal tissue. Both lipofection of rat exocrine cell cultures and transduction with Mokola pseudotyped lentiviral vectors were inefficient and resulted in less than 4% EGFP expressing cells. Adenoviral transduction was highly efficient but its usefulness for gene delivery to rat exocrine cells in vitro was hampered by a drastic increase in cell death. In vitro transduction of rat exocrine cells was most optimal with VSV-G pseudotyped lentiviral vectors, with stable transgene expression, no significant effect on cell survival and about 40% transduced cells. In vivo, pancreatic cells could not be transduced by intra-parenchymal administration of lentiviral vectors in mouse and rat pancreas. However, a high efficiency could be obtained by adenoviral vectors, resulting in transient transduction of mainly exocrine acinar cells. Injection in immune-deficient animals diminished leukocyte infiltration and prolonged transgene expression. Conclusions In summary, our study remarkably demonstrates that transduction of pancreatic exocrine cells requires lentiviral vectors in vitro but adenoviral vectors in vivo.

  20. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells.

    Science.gov (United States)

    Xu, Mei-Ying; Lee, Dong Hwa; Joo, Eun Ji; Son, Kun Ho; Kim, Yeong Shik

    2013-09-01

    In this study, we investigated the anticancer mechanism of akebia saponin PA (AS), a natural product isolated from Dipsacus asperoides in human gastric cancer cell lines. It was shown that AS-induced cell death is caused by autophagy and apoptosis in AGS cells. The apoptosis-inducing effect of AS was characterized by annexin V/propidium (PI) staining, increase of sub-G1 phase and caspase-3 activation, while the autophagy-inducing effect was indicated by the formation of cytoplasmic vacuoles and microtubule-associated protein 1 light chain-3 II (LC3-II) conversion. The autophagy inhibitor bafilomycin A1 (BaF1) decreased AS-induced cell death and caspase-3 activation, but caspase-3 inhibitor Ac-DEVD-CHO did not affect LC3-II accumulation or AS-induced cell viability, suggesting that AS induces autophagic cell death and autophagy contributes to caspase-3-dependent apoptosis. Furthermore, AS activated p38/c-Jun N-terminal kinase (JNK), which could be inhibited by BaF1, and caspase-3 activation was attenuated by both SB202190 and SP600125, indicating that AS-induced autophagy promotes mitogen-activated protein kinases (MAPKs)-mediated apoptosis. Taken together, these results demonstrate that AS induces autophagic and apoptotic cell death and autophagy plays the main role in akebia saponin PA-induced cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.