WorldWideScience

Sample records for acinar cell vacuole

  1. Primary Culture of Porcine Pancreatic Acinar Cells

    OpenAIRE

    2001-01-01

    OBJECTIVE: To develop a method for the primary culture of porcine pancreatic acinar cells. INTERVENTIONS: Dispersed pancreatic acinar cells available utilizing RPMI-1640 medium containing collagenase III. After purification, the isolated acinar cells were cultured in RPMI-1640 medium with the addition of 2.5% fetal bovine serum. MAIN OUTCOME MEASURES: The morphological characteristics of acinar cells were described. (3)H-thymidine incorporation of acinar cells and the activity of amylase or l...

  2. Primary Culture of Porcine Pancreatic Acinar Cells

    Directory of Open Access Journals (Sweden)

    Zhao X

    2001-03-01

    Full Text Available OBJECTIVE: To develop a method for the primary culture of porcine pancreatic acinar cells. INTERVENTIONS: Dispersed pancreatic acinar cells available utilizing RPMI-1640 medium containing collagenase III. After purification, the isolated acinar cells were cultured in RPMI-1640 medium with the addition of 2.5% fetal bovine serum. MAIN OUTCOME MEASURES: The morphological characteristics of acinar cells were described. (3H-thymidine incorporation of acinar cells and the activity of amylase or lipase were determined during the culture process. RESULTS: There were no remarkable morphological changes in the pancreatic acinar cells during the 20 days culture. The acini showed a tendency to gather but did not attach to the walls of the culture disks. A good (3H-thymidine incorporation of acinar cells in the primary culture was maintained. The secretion of amylase or lipase from the acini decreased with the length of time of the culture. DISCUSSION: The primary culture of acinar cells from a porcine pancreas which was carried out in this study maintained the normal morphology of the acinar cells and their ability to grow but not their secretion of amylase or lipase. The method would benefit by the further experiments on acini of porcine pancreas.

  3. Acinar Cell Carcinoma of the Pancreas

    Institute of Scientific and Technical Information of China (English)

    Hua Li; Qiang Li

    2008-01-01

    Acinar cell carcinoma of the pancreas is a rare tumor which is defined as a carcinoma that exhibits pancreatic enzyme production by neoplastic cells. This review includes re-cent developments in our understanding of the epidemiology and pathogenesis of ACC, imaging and pathological diagnosis and ap-proaches to treatment with reference to the literature.

  4. Papillocystic Variant of Acinar Cell Pancreatic Carcinoma

    Directory of Open Access Journals (Sweden)

    Jasim Radhi

    2010-01-01

    Full Text Available Acinar cell pancreatic carcinoma is a rare solid malignant neoplasm. Recent review of the literature showed occasional cases with papillary or papillocystic growth patterns, ranging from 2 to 5 cm in diameter. We report a large 10 cm pancreatic tumor with papillocystic pathology features involving the pancreatic head. The growth pattern of these tumors could be mistaken for intraductal papillary mucinous tumors or other pancreatic cystic neoplasms.

  5. Inflammatory role of the acinar cells during acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Isabel; De; Dios

    2010-01-01

    Pancreatic acinar cells are secretory cells whose main function is to synthesize, store and f inally release digestive enzymes into the duodenum. However, in response to noxious stimuli, acinar cells behave like real inflammatory cells because of their ability to activate signalling transduction pathways involved in the expression of inflammatory mediators. Mediated by the kinase cascade, activation of Nuclear factor-κB, Activating factor-1 and Signal transducers and activators of transcription transcription factors has been demonstrated in acinar cells, resulting in overexpression of inflammatory genes. In turn, kinase activity is down-regulated by protein phosphatases and the f inal balance between kinase and phosphatase activity will determine the capability of the acinar cells to produce inflammatory factors. The kinase/ phosphatase pair is a redox-sensitive system in which kinase activation overwhelms phosphatase activity under oxidant conditions. Thus, the oxidative stress developed within acinar cells at early stages of acute pancreatitis triggers the activation of signalling pathways involved in the up-regulation of cytokines, chemokines and adhesion molecules. In this way, acinar cells trigger the release of the f irst inflammatory signals which can mediate the activation and recruitment of circulating inflammatorycells into the injured pancreas. Accordingly, the role of acinar cells as promoters of the inflammatory response in acute pancreatitis may be considered. This concept leads to amplifying the focus from leukocyte to acinar cells themselves, to explain the local inflammation in early pancreatitis.

  6. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    The aim of the present study was to investigate the physiological role of nitric oxide (NO) in mediating secretory processes in rat lacrimal acinar cells. In addition, we wanted to determine whether the acinar cells possess endogenous nitric oxide synthase (NOS) activity by measuring NO productio...... not by itself causing fast transient increases in [Ca2+]i. In addition, we suggest that endogenously produced NO activated by ß-adrenergic receptor stimulation, plays an important role in signalling to the surrounding tissue.......The aim of the present study was to investigate the physiological role of nitric oxide (NO) in mediating secretory processes in rat lacrimal acinar cells. In addition, we wanted to determine whether the acinar cells possess endogenous nitric oxide synthase (NOS) activity by measuring NO production......-adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...

  7. Calcium signaling of pancreatic acinar cells in the pathogenesis of pancreatitis.

    Science.gov (United States)

    Li, Jun; Zhou, Rui; Zhang, Jian; Li, Zong-Fang

    2014-11-21

    Pancreatitis is an increasingly common and sometimes severe disease that lacks a specific therapy. The pathogenesis of pancreatitis is still not well understood. Calcium (Ca(2+)) is a versatile carrier of signals regulating many aspects of cellular activity and plays a central role in controlling digestive enzyme secretion in pancreatic acinar cells. Ca(2+) overload is a key early event and is crucial in the pathogenesis of many diseases. In pancreatic acinar cells, pathological Ca(2+) signaling (stimulated by bile, alcohol metabolites and other causes) is a key contributor to the initiation of cell injury due to prolonged and global Ca(2+) elevation that results in trypsin activation, vacuolization and necrosis, all of which are crucial in the development of pancreatitis. Increased release of Ca(2+) from stores in the intracellular endoplasmic reticulum and/or increased Ca(2+) entry through the plasma membrane are causes of such cell damage. Failed mitochondrial adenosine triphosphate (ATP) production reduces re-uptake and extrusion of Ca(2+) by the sarco/endoplasmic reticulum Ca(2+)-activated ATPase and plasma membrane Ca(2+)-ATPase pumps, which contribute to Ca(2+) overload. Current findings have provided further insight into the roles and mechanisms of abnormal pancreatic acinar Ca(2+) signals in pancreatitis. The lack of available specific treatments is therefore an objective of ongoing research. Research is currently underway to establish the mechanisms and interactions of Ca(2+) signals in the pathogenesis of pancreatitis.

  8. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    O.H. Petersen

    2009-01-01

    Full Text Available The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

  9. Effects of Benzodiazepines on Acinar and Myoepithelial Cells

    Science.gov (United States)

    Mattioli, Tatiana M. F.; Alanis, Luciana R. A.; Sapelli, Silvana da Silva; de Lima, Antonio A. S.; de Noronha, Lucia; Rosa, Edvaldo A. R.; Althobaiti, Yusuf S.; Almalki, Atiah H.; Sari, Youssef; Ignacio, Sergio A.; Johann, Aline C. B. R.; Gregio, Ana M. T.

    2016-01-01

    Background: Benzodiazepines (BZDs), the most commonly prescribed psychotropic drugs with anxiolytic action, may cause hyposalivation. It has been previously shown that BZDs can cause hypertrophy and decrease the acini cell number. In this study, we investigated the effects of BZDs and pilocarpine on rat parotid glands, specifically on acinar, ductal, and myoepithelial cells. Methods: Ninety male Wistar rats were divided into nine groups. Control groups received a saline solution for 30 days (C30) and 60 days (C60), and pilocarpine (PILO) for 60 days. Experimental groups received lorazepam (L30) and midazolam (M30) for 30 days. Another group (LS60 or MS60) received lorazepam or midazolam for 30 days, respectively, and saline for additional 30 days. Finally, other groups (LP60 or MP60) received either lorazepam or midazolam for 30 days, respectively, and pilocarpine for additional 30 days. The expression of calponin in myoepithelial cells and the proliferating cell nuclear antigen (PCNA) in acinar and ductal cells were evaluated. Results: Animals treated with lorazepam showed an increase in the number of positive staining cells for calponin as compared to control animals (p acinar and ductal cells and a decrease in the positive staining cells for calponin as compared to midazolam administered with saline (MS60). Conclusion: We found that myoepithelial cells might be more sensitive to the effects of BZD than acinar and ductal cells in rat parotid glands. PMID:27445812

  10. File list: DNS.Pan.20.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.20.AllAg.Pancreatic_acinar_cells mm9 DNase-seq Pancreas Pancreatic acinar c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.20.AllAg.Pancreatic_acinar_cells.bed ...

  11. File list: ALL.Pan.05.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreatic_acinar_cells mm9 All antigens Pancreas Pancreatic acina...r cells SRX327163,SRX327162,SRX327160,SRX327161 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.05.AllAg.Pancreatic_acinar_cells.bed ...

  12. File list: Oth.Pan.05.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreatic_acinar_cells mm9 TFs and others Pancreas Pancreatic aci...nar cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.AllAg.Pancreatic_acinar_cells.bed ...

  13. File list: ALL.Pan.50.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreatic_acinar_cells mm9 All antigens Pancreas Pancreatic acina...r cells SRX327161,SRX327160,SRX327162,SRX327163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Pancreatic_acinar_cells.bed ...

  14. File list: Pol.Pan.50.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.AllAg.Pancreatic_acinar_cells mm9 RNA polymerase Pancreas Pancreatic aci...nar cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.50.AllAg.Pancreatic_acinar_cells.bed ...

  15. File list: Pol.Pan.10.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.AllAg.Pancreatic_acinar_cells mm9 RNA polymerase Pancreas Pancreatic aci...nar cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.10.AllAg.Pancreatic_acinar_cells.bed ...

  16. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina

    2000-01-01

    We investigated the cellular regulation of nitric oxide synthase (NOS) activity in isolated acinar cells from rat parotid and human labial salivary glands, using the newly developed fluorescent nitric oxide (NO) indicator, DAF-2. We found that sympathetic stimulation with norepinephrine (NE) caus...

  17. Salivary gland homeostasis is maintained through acinar cell self-duplication.

    Science.gov (United States)

    Aure, Marit H; Konieczny, Stephen F; Ovitt, Catherine E

    2015-04-20

    Current dogma suggests that salivary gland homeostasis is stem cell dependent. However, the extent of stem cell contribution to salivary gland maintenance has not been determined. We investigated acinar cell replacement during homeostasis, growth, and regeneration, using an inducible CreER(T2) expressed under the control of the Mist1 gene locus. Genetic labeling, followed by a chase period, showed that acinar cell replacement is not driven by the differentiation of unlabeled stem cells. Analysis using R26(Brainbow2.1) reporter revealed continued proliferation and clonal expansion of terminally differentiated acinar cells in all major salivary glands. Induced injury also demonstrated the regenerative potential of pre-labeled acinar cells. Our results support a revised model for salivary gland homeostasis based predominantly on self-duplication of acinar cells, rather than on differentiation of stem cells. The proliferative capacity of differentiated acinar cells may prove critical in the implementation of cell-based strategies to restore the salivary glands.

  18. Ultrastructural morphometry of parotid acinar cells following fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Grehn, A.-L.; Gustafsson, H.; Franzen, L.; Thornell, L.-E.; Henriksson, R. [Umeaa Univ. (Sweden)

    1997-01-01

    The aim of this study was to evaluate the long term effects on the ultrastructure of parotid glands after fractionated irradiation. The method implemented involved 5 x 6 Gy and 5 x 8 Gy, Monday to Friday 6 MV photons. By unilateral irradiation, the contralateral parotid gland served as a control. Although irradiation diminished the acinar cell density in light microscopic sections from 75 to 32% after 5 x 8 Gy of irradiation, ultrastructural morphometry could not detect any statistically significant differences in acinar cell size, nuclear size, nuclear density, granule area, mean granule size, or granule density. In general, greater differences were seen between rats receiving 30 or 40 Gy, on both the irradiated and the control side, than between the irradiated side and the control side. This was interpreted as due to differences in the nutritional state of the animals. This analysis concluded that individual acinar cells that survive irradiation seem not to be damaged in the long term when evaluated at the ultrastructural level. The study further stresses the importance of adequate sampling sizes and the use of adequate controls. (author).

  19. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  20. Proteoglycans support proper granule formation in pancreatic acinar cells.

    Science.gov (United States)

    Aroso, Miguel; Agricola, Brigitte; Hacker, Christian; Schrader, Michael

    2015-10-01

    Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas.

  1. Pancreatic acinar cells: molecular insight from studies of signal-transduction using transgenic animals.

    Science.gov (United States)

    Yule, David I

    2010-11-01

    Pancreatic acinar cells are classical exocrine gland cells. The apical regions of clusters of coupled acinar cells collectively form a lumen which constitutes the blind end of a tube created by ductal cells - a structure reminiscent of a "bunch of grapes". When activated by neural or hormonal secretagogues, pancreatic acinar cells are stimulated to secrete a variety of proteins. These proteins are predominately inactive digestive enzyme precursors called "zymogens". Acinar cell secretion is absolutely dependent on secretagogue-induced increases in intracellular free Ca(2+). The increase in [Ca(2+)](i) has precise temporal and spatial characteristics as a result of the exquisite regulation of the proteins responsible for Ca(2+) release, Ca(2+) influx and Ca(2+) clearance in the acinar cell. This brief review discusses recent studies in which transgenic animal models have been utilized to define in molecular detail the components of the Ca(2+) signaling machinery which contribute to these characteristics.

  2. Acinar Cell Carcinoma of the Pancreas with Colon Involvement

    Directory of Open Access Journals (Sweden)

    Naoki Asayama

    2014-01-01

    Full Text Available We report a case of acinar cell carcinoma of the pancreas with colon involvement that was difficult to distinguish from primary colon cancer. A 60-year-old man was admitted with a 1-month history of diarrhea. Contrast-enhanced computed tomography (CT revealed a large tumor (10.6×11.6 cm at the splenic flexure of the colon. Colonoscopy showed completely round ulcerative lesions, and biopsy revealed poorly differentiated adenocarcinoma. Left hemicolectomy, resection of the jejunum and pancreas body and tail, and splenectomy were performed based on a diagnosis of descending colon cancer (cT4N0M0, stage IIB, and surgery was considered to be curative. Diagnosis was subsequently confirmed as moderately differentiated acinar cell carcinoma of the pancreas by immunohistochemical staining (pT3N0M0, stage IIA. Multiple liver metastases with portal thrombosis were found 8 weeks postoperatively. Despite combination chemotherapy with oral S-1 and gemcitabine, the patient died of hepatic failure with no effect of chemotherapy 14 weeks postoperatively. Correct diagnosis was difficult to determine preoperatively from the clinical, CT, and colonoscopy findings. Moreover, the disease was extremely aggressive even after curative resection. Physicians should consider pancreatic cancer in the differential diagnosis of similar cases.

  3. File list: NoD.Pan.20.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.20.AllAg.Pancreatic_acinar_cells mm9 No description Pancreas Pancreatic aci...nar cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.20.AllAg.Pancreatic_acinar_cells.bed ...

  4. File list: InP.Pan.10.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.10.AllAg.Pancreatic_acinar_cells mm9 Input control Pancreas Pancreatic acin...ar cells SRX327162,SRX327163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Pan.10.AllAg.Pancreatic_acinar_cells.bed ...

  5. File list: InP.Pan.50.AllAg.Pancreatic_acinar_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.50.AllAg.Pancreatic_acinar_cells mm9 Input control Pancreas Pancreatic acin...ar cells SRX327162,SRX327163 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Pan.50.AllAg.Pancreatic_acinar_cells.bed ...

  6. Acinar Cell Carcinoma of the Pancreas: A Possible Role of S-1 as Chemotherapy for Acinar Cell Carcinoma. A Case Report

    Directory of Open Access Journals (Sweden)

    Tameyoshi Yamamoto

    2012-01-01

    Full Text Available Context Acinar cell carcinoma of the pancreas is a rare malignancy, accounting for 1-2% of pancreatic exocrine malignancies. This rarity makes it difficult to standardize a protocol of treatment for acinar cell carcinoma. Case report A 71-year-old male without any particular past history was referred to our institute with abdominal distention and mild liver dysfunction. Computed tomography (CT revealed a cystic lesion with a diameter of 3.5 cm, which originated from the neck of pancreas and had solid nodules inside. Several nodules were demonstrated surrounding the cystic tumor. Laparotomy and histological study demonstrated peritoneal dissemination of acinar cell carcinoma. The patient was treated with S-1 monotherapy (80 mg/m2 for four weeks with a two-week interval as one cycle. After one cycle of S-1 monotherapy, CT demonstrated remarkable shrinkage of the main tumor and disappearance of the nodules on the peritoneum. The patient underwent a radical distal pancreatectomy. The patient was then treated with 16 cycles of S-1 monotherapy after the radical pancreatectomy and remains without any recurrence of the disease two years later. Conclusion Initially inoperable acinar cell carcinoma was treated by monotherapy using S-1, resulting in curative operation and two years disease free survival post operation. S-1 might be more effective on acinar cell carcinoma, rather than gemcitabine

  7. Pancreatic acinar cells: effects of micro-ionophoretic polypeptide application on membrane potential and resistance.

    Science.gov (United States)

    Petersen, O H; Philpott, H G

    1979-05-01

    1. Acinar cell membrane potential and resistance were measured from superfused segments of mouse pancreas, in vitro, using intracellular glass micro-electrodes. One or two extracellular micropipettes containing caerulein, bombesin nonapeptide (Bn) or acetylcholine (ACh) were placed near to the surface of the impaled acinus. The secretagogues were ejected rapidly from the micropipettes by ionophoresis.2. Each secretagogue evoked a similar electrical response from the impaled acinar cell: membrane depolarization and a simultaneous reduction in input resistance. The duration of cell activation from caerulein ionophoresis was longer than that observed for ACh and Bn. The cell response to the peptide hormone applications could be repeated in the presence of atropine.3. The minimum interval before the onset of cell depolarization after caerulein ionophoresis was determined. Values ranged between 500 and 1000 msec. The minimum latencies after Bn ionophoresis were 500-1400 msec.4. With two electrodes inserted into electrically coupled acinar cells, direct measurements of the caerulein and Bn null potentials were made. At high negative membrane potentials an enhanced depolarization was evoked by caerulein ionophoresis. At low negative membrane potentials the caerulein stimulation produced a diminished depolarization, and at membrane potentials less than - 10 mV acinar cell hyperpolarizations were observed. A similar series of responses was obtained in experiments where Bn ionophoresis was used. The caerulein and the Bn null potentials were always contained within - 10 to - 15 mV.5. The results describe the almost identical electrical response of acinar cells to stimulation by ACh, caerulein and bombesin. All three secretagogues have similar null potentials and latencies of activation on acinar cells. The bombesin latency responses appear as short as those measured for caerulein and provide electro-physiological evidence that Bn acts directly on acinar cells. The findings

  8. Lacrimal gland primary acinar cell culture: the role of insulin

    Directory of Open Access Journals (Sweden)

    Leonardo Tannus Malki

    2016-04-01

    Full Text Available ABSTRACT Purpose: The goal of the present study was to establish a protocol for primary culture of lacrimal gland acinar cells (LGACs and to assess the effect of adding insulin to the culture media. Methods: LGACs were isolated and cultured from lacrimal glands of Wistar male rats. The study outcomes included cell number, viability, and peroxidase release over time and in response to three concentrations of insulin (0.5, 5.0, and 50.0 μg/mL. Results: In LGAC primary culture, cells started to form clusters by day 3. There was a time-response pattern of peroxidase release, which rose by day 6, in response to carbachol. Culture viability lasted for 12 days. An insulin concentration of 5.0 μg/mL in the culture medium resulted in higher viability and secretory capacity. Conclusions: The present method simplifies the isolation and culture of LGACs. The data confirmed the relevance of adding insulin to maintain LGACs in culture.

  9. Regeneration of parotid acinar cells after high radiation doses. A morphological study in rat

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, H. [Depts. of Oto-Rhino-Laryngology, Histology and Cell Biology, Umeaa Univ. (Sweden); Franzen, L. [Dept. of Oncology, Umeaa Univ. (Sweden); Henriksson, R. [Dept. of Oncology, Umeaa Univ. (Sweden)

    1995-12-31

    The acute and late effects of fractionated irradiation on rat parotid gland acinar cells were studied by light and electron microscopy. At 10 days after the last irradiation session (6 Gy or 9 Gy daily during five consecutive days) no effects were seen. At 180 days, minor loss of acini was detectable after a total dose of 30 Gy. After 45 Gy a massive acinar loss was seen at that time; the number of acini had diminished and minor duct-like structures and scattered amounts of fibrous stroma dominated the slides. The remaining acini were disorganized and usually larger compared with the control side and to non-irradiated animals. The acinar cells appeared larger than in the controls. The custs were better preserved but the intercalated ducts often seemed to be larger than normal. We suggest that this phenomenon indicates a remaining capacity of the parotid gland to regenerate acinar cells even after high radiation doses. (orig.).

  10. Expression of claudin-5 in canine pancreatic acinar cell carcinoma - An immunohistochemical study.

    Science.gov (United States)

    Jakab, Csaba; Rusvai, Miklós; Gálfi, Péter; Halász, Judit; Kulka, Janina

    2011-03-01

    Claudin-5 is an endothelium-specific tight junction protein. The aim of the present study was to detect the expression pattern of this molecule in intact pancreatic tissues and in well-differentiated and poorly differentiated pancreatic acinar cell carcinomas from dogs by the use of cross-reactive humanised anticlaudin-5 antibody. The necropsy samples taken from dogs included 10 nonneoplastic pancreatic tissues, 10 well-differentiated pancreatic acinar cell carcinomas, 10 poorly differentiated pancreatic acinar cell carcinomas, 5 intrahepatic metastases of well-differentiated and 5 intrahepatic metastases of poorly differentiated acinar cell carcinomas. A strong lateral membrane claudin-5 positivity was detected in exocrine cells in all intact pancreas samples. The endocrine cells of the islets of Langerhans and the epithelial cells of the ducts were negative for claudin-5. The endothelial cells of vessels and lymphatic channels in the stroma of the intact pancreas showed strong membrane positivity for this claudin. All well-differentiated exocrine pancreas carcinomas and all poorly-differentiated pancreatic acinar cell carcinoma samples showed a diffuse loss of claudin-5 expression. The claudin-5-positive peritumoural vessels and lymphatic channels facilitated the detection of vascular invasion of the claudin-5-negative cancer cells. In liver metastasis samples, the pancreatic carcinomas were negative for claudin-5. It seems that the loss of expression of claudin-5 may lead to carcinogenesis in canine exocrine pancreatic cells.

  11. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface.

    Science.gov (United States)

    Chen, Min-Huey; Chen, Yi-Jane; Liao, Chih-Chen; Chan, Yen-Hui; Lin, Chia-Yung; Chen, Rung-Shu; Young, Tai-Hong

    2009-09-15

    Tissue engineering of salivary glands offers the potential for future use in the treatment of patients with salivary hypofunction. Biocompatible materials that promote acinar cell aggregation and function in vitro are an essential part of salivary gland tissue engineering. In this study, rat parotid acinar cells assembled into three-dimensional aggregates above the polyvinyl alcohol (PVA)-coated surface. These aggregates developed compact acinar cell spheroids resembling in vivo physiological condition, which were different from the traditional monolayered morphology in vitro. Cells remained viable and with better functional activity in response to acetylcholine in the spheroids and could form monolayered acinar cells when they were reinoculated on tissue culture polystyrene wells. To interpret the phenomenon further, we proposed that the formation of acinar cell spheroids on the PVA is mediated by a balance between two competing forces: the interactions of cell-PVA and cell-cell. This study demonstrated the formation of functional cell spheroids above a PVA-coated surface may provide an in vitro system for investigating cell behaviors for tissue engineering of artificial salivary gland.

  12. Analysis and Optimization of Nutritional Set-up for Murine Pancreatic Acinar Cells.

    Directory of Open Access Journals (Sweden)

    Kurup S

    2002-01-01

    Full Text Available CONTEXT: Pancreatic acinar cell cultivation poses a serious problem due to limitations in the in vitro survival time despite variations of dissociation protocols, culture media and nutrient supplements. OBJECTIVE: To establish a long term culture of murine pancreatic acinar cells which retain their viability, monolayer formation and responsiveness to secretagogues. In order to investigate the mechanism of the short-life of acinar cells studied in vitro, we studied their survival under the influence of different supplements on nutrient media. INTERVENTIONS: Dissociated pancreatic acini were prepared from BALB/c mice pancreata by collagenase digestion supplemented with bovine serum albumin fraction V and soybean trypsin inhibitor. A nutrient set-up was designed for their long term survival in vitro. RESULTS: It was observed that mouse pancreatic acinar cells dissociated in presence of bovine serum albumin fraction V and soybean trypsin inhibitor result in 95% viability. Further cultivation of these acinar cells in Waymouth's MB 752/1 medium supplemented with 10% fetal calf serum (v/v, soybean trypsin inhibitor, bovine serum albumin, dexamethasone, and epidermal growth factor results in their survival for more than 6 days in culture with 85% viability, retention of the secretagogue responsiveness and formation of a monolayer without any extracellular matrix coating. CONCLUSIONS: Our study clearly demonstrates that the addition of soybean trypsin inhibitor to culture medium reduces zymogen granule fragility and acinar cell death, thus increasing their viability for sufficiently long periods. The present study offers an excellent, in vitro model for the investigation of exocrine dysfunction in response to acinar cell injury.

  13. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells.

    Science.gov (United States)

    Imai, Akane; Tsujimura, Maiko; Yoshie, Sumio; Fukuda, Mitsunori

    2015-06-05

    Amylase is released from exocrine parotid acinar cells via typical exocytosis. Exocytosis of amylase-containing granules occurs through several steps, including formation, maturation, and transport of granules. These steps are thought to be regulated by members of the small GTPase Rab family. We previously demonstrated that Rab27 and its effectors mediate amylase release from parotid acinar cells, but the functional involvement of other Rab proteins in exocrine granule exocytosis remains largely unknown. Here, we studied isoproterenol (IPR)-induced amylase release from parotid acinar cells to investigate the possible involvement of Rab33A, which was recently suggested to regulate exocytosis in hippocampal neurons and PC12 cells. Rab33A was endogenously expressed in parotid acinar cells and present in secretory granules and the Golgi body. Functional ablation of Rab33A with anti-Rab33A antibody or a dominant-negative Rab33A-T50N mutant significantly reduced IPR-induced amylase release. Our results indicated that Rab33A is a novel component of IPR-stimulated amylase secretion from parotid acinar cells.

  14. Alteration of chaperonin60 and pancreatic enzyme in pancreatic acinar cell under pathological condition

    Institute of Scientific and Technical Information of China (English)

    Yong-Yu Li; Moise Bendayan

    2005-01-01

    AIM: To investigate the changes of chaperonin60 (Cpn60)and pancreatic enzymes in pancreatic acinar cells, and to explore their roles in the development of experimental diabetes and acute pancreatitis (AP).METHODS: Two different pathological models were replicated in Sprague-Dawley rats: streptozotocininduced diabetes and sodium deoxycholate-induced AP. The contents of Cpn60 and pancreatic enzymes in different compartments of the acinar cells were measured by quantitative immunocytochemistry.RESULTS: The levels of Cpn60 significantly increased in diabetes, but decreased in AP, especially in the zymogen granules of the pancreatic acinar cells. The elevation of Cpn60 was accompanied with the increased levels of pancreatic lipase and chymotrypsinogen in diabetes.However, a decreased Cpn60 level was accompanied by high levels of lipase and chymotrypsinogen in AP.The amylase level was markedly reduced in both the pathological conditions.CONCLUSION: The equilibrium between Cpn60 and pancreatic enzymes in the acinar cells breaks in AP, and Cpn60 content decreases, suggesting an insufficient chaperone capacity. This may promote the aggregation and autoactivation of the premature enzymes in the pancreatic acinar cells and play roles in the development of AP.

  15. THE CHANGES OF PANCREATIC ACINAR CELL FUNCTION IN ACUTE NECROTIZING PANCREATITIS OF RATS

    Institute of Scientific and Technical Information of China (English)

    余枭; 韩天权; 汤耀卿; 雷若庆; 夏宗勤

    2000-01-01

    Objective To evaluate the changes of pancreatic acinar cell functions in the rats with acute necrotizing pancreatitis (ANP). Methods Seventy SD rats were randomized into two groups: experimental group (n=35) and control group (n=35). To prepare the experimental model, the retrograde injection of 5% sodium taurocholate into the pancreatic duct was used for inducing ANP. Radioactive tracing by L- 3H-phenylalanine and autoradiography were performed for scoring the differences of changes of amino acid uptake, enzyme-protein synthesis and output from acinar cells in rats between both groups. Results No changes were observed in amino acid uptake and enzyme-protein synthesis in rats with dotted and haemorrhagic necrotizing foci as compared with control group. However, accumulated zymogen granules in the interstitial of acinar cells were seen in the experimental group. Conclusion It indicates that in experimental ANP rats, the functions of acinar cells in both amino acid uptake and protein synthesis were essentially normal, but the pathway of enzyme output was affected into ectopic secretion through the bottom or lateral cellular membrane of pancreatic acinar cell.

  16. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-κB pathway in experimental pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ge [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wan, Rong [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Hu, Yanling [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Ni, Jianbo [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Yin, Guojian; Xing, Miao [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Shen, Jie [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Tang, Maochun [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Chen, Congying [Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Fan, Yuting; Xiao, Wenqin; Zhao, Yan [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Wang, Xingpeng, E-mail: wangxingpeng@hotmail.com [Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai (China); Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); and others

    2014-01-31

    Highlights: • CypA is upregulated in experimental pancreatitis. • CCK induces expression and release of CypA in acinar cell in vitro. • rCypA aggravates CCK-induced acinar cell death and inflammatory cytokine production. • rCypA activates the NF-κB pathway in acinar cells in vitro. - Abstract: Inflammation triggered by necrotic acinar cells contributes to the pathophysiology of acute pancreatitis (AP), but its precise mechanism remains unclear. Recent studies have shown that Cyclophilin A (CypA) released from necrotic cells is involved in the pathogenesis of several inflammatory diseases. We therefore investigated the role of CypA in experimental AP induced by administration of sodium taurocholate (STC). CypA was markedly upregulated and widely expressed in disrupted acinar cells, infiltrated inflammatory cells, and tubular complexes. In vitro, it was released from damaged acinar cells by cholecystokinin (CCK) induction. rCypA (recombinant CypA) aggravated CCK-induced acinar cell necrosis, promoted nuclear factor (NF)-κB p65 activation, and increased cytokine production. In conclusion, CypA promotes pancreatic damage by upregulating expression of inflammatory cytokines of acinar cells via the NF-κB pathway.

  17. Effect of Taurine on Acinar Cell Apoptosis and Pancreatic Fibrosis in Dibutyltin Dichloride-induced Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Sawa,Kiminari

    2012-08-01

    Full Text Available The relationship between pancreatic fibrosis and apoptosis of pancreatic acinar cells has not been fully elucidated. We reported that taurine had an anti-fibrotic effect in a dibutyltin dichloride (DBTC-chronic pancreatitis model. However, the effect of taurine on apoptosis of pancreatic acinar cells is still unclear. Therefore, we examined apoptosis in DBTC-chronic pancreatitis and in the AR42J pancreatic acinar cell line with/without taurine. Pancreatic fibrosis was induced by a single administration of DBTC. Rats were fed a taurine-containing diet or a normal diet and were sacrificed at day 5. The AR42J pancreatic acinar cell line was incubated with/without DBTC with taurine chloramines. Apoptosis was determined by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL assay. The expression of Bad and Bcl-2 proteins in the AR42J cells lysates was detected by Western blot analysis. The apoptotic index of pancreatic acinar cells in DBTC-administered rats was significantly increased. Taurine treatment inhibited pancreatic fibrosis and apoptosis of acinar cells induced by DBTC. The number of TUNEL-positive cells in the AR42J pancreatic acinar cell lines was significantly increased by the addition of DBTC. Incubation with taurine chloramines ameliorated these changes. In conclusion, taurine inhibits apoptosis of pancreatic acinar cells and pancreatitis in experimental chronic pancreatitis.

  18. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    Science.gov (United States)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  19. A Patient of Pancreatic Acinar Cell Carcinoma with Dilated Esophagogastric Vessels

    Directory of Open Access Journals (Sweden)

    Masakuni Fujii

    2015-07-01

    Full Text Available Left portal hypertension and splenic vein occlusion commonly occur with pancreatic tumors, however these signs are rarely observed in patients with acinar cell carcinoma. This report describes a rare left portal hypertension in a patient who presented with a dilated esophagogastric vein upon esophagogastroduodenoscopic examination of a gastric polyp. A contrast-enhanced computed tomography scan revealed a pancreatic tumor, with obstruction of the splenic vein and portal-systemic shunt. The patient was diagnosed with an acinar cell carcinoma of the pancreatic tail. This patient highlights that pancreatic acinar cell carcinoma should be considered as a differential diagnosis in patients with a dilated esophagogastric vein and without signs of liver disease.

  20. Cell vacuolation induced by Haemophilus influenzae supernatants in HEp-2 cells

    Directory of Open Access Journals (Sweden)

    Maria del Rosario Espinoza-Mellado

    2013-12-01

    Full Text Available Haemophilus influenzae belongs to respiratory tract microbiota. We observed vacuoles formation in previous studies with H. influenzae culture supernatants, so in this work we characterised that cytotoxic effect. We observed an abundant production of acidic cytoplasmic vacuoles due to the presence of a “vacuolating factor” in H. influenzae supernatants which was characterised as thermolabile. Greatest vacuolating activity was observed when utilizing the fraction > 50 kDa. The presence of a large number of vacuoles in HEp-2 cells was verified by transmission electron microscopy and some vacuoles were identified with a double membrane and/or being surrounded by ribosomes. These results suggest similar behaviour to that of vacuolating effects described by autotransporter proteins an undescribed cytotoxic effect induced by H. influenzae .

  1. Mitochondrial Extrusion through the cytoplasmic vacuoles during cell death.

    Science.gov (United States)

    Nakajima, Akihito; Kurihara, Hidetake; Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu

    2008-08-29

    Under various conditions, noxious stimuli damage mitochondria, resulting in mitochondrial fragmentation; however, the mechanisms by which fragmented mitochondria are eliminated from the cells remain largely unknown. Here we show that cytoplasmic vacuoles originating from the plasma membrane engulfed fragmented mitochondria and subsequently extruded them into the extracellular spaces in undergoing acute tumor necrosis factor alpha-induced cell death in a caspase-dependent fashion. Notably, upon fusion of the membrane encapsulating mitochondria to the plasma membrane, naked mitochondria were released into the extracellular spaces in an exocytotic manner. Mitochondrial extrusion was specific to tumor necrosis factor alpha-induced cell death, because a genotoxic stress-inducing agent such as cisplatin did not elicit mitochondrial extrusion. Moreover, intact actin and tubulin cytoskeletons were required for mitochondrial extrusion as well as membrane blebbing. Furthermore, fragmented mitochondria were engulfed by cytoplasmic vacuoles and extruded from hepatocytes of mice injected with anti-Fas antibody, suggesting that mitochondrial extrusion can be observed in vivo under pathological conditions. Mitochondria are eliminated during erythrocyte maturation under physiological conditions, and anti-mitochondrial antibody is detected in some autoimmune diseases. Thus, elucidating the mechanism underlying mitochondrial extrusion will open a novel avenue leading to better understanding of various diseases caused by mitochondrial malfunction as well as mitochondrial biology.

  2. The MET Receptor Tyrosine Kinase Confers Repair of Murine Pancreatic Acinar Cells following Acute and Chronic Injury

    Science.gov (United States)

    Gaziova, Ivana; Jackson, Daniel; Boor, Paul J.; Carter, Dwayne; Cruz-Monserrate, Zobeida; Elferink, Cornelis J.; Joshi, Aditya D.; Kaphalia, Bhupendra; Logsdon, Craig D.; Pereira de Castro, Karen; Soong, Lynn; Tao, Xinrong; Qiu, Suimin; Elferink, Lisa A.

    2016-01-01

    Acinar cells represent the primary target in necroinflammatory diseases of the pancreas, including pancreatitis. The signaling pathways guiding acinar cell repair and regeneration following injury remain poorly understood. The purpose of this study was to determine the importance of Hepatocyte Growth Factor Receptor/MET signaling as an intrinsic repair mechanism for acinar cells following acute damage and chronic alcohol-associated injury. Here, we generated mice with targeted deletion of MET in adult acinar cells (MET-/-). Acute and repetitive pancreatic injury was induced in MET-/- and control mice with cerulein, and chronic injury by feeding mice Lieber-DeCarli diets containing alcohol with or without enhancement of repetitive pancreatic injury. We examined the exocrine pancreas of these mice histologically for acinar death, edema, inflammation and collagen deposition and changes in the transcriptional program. We show that MET expression is relatively low in normal adult pancreas. However, MET levels were elevated in ductal and acinar cells in human pancreatitis specimens, consistent with a role for MET in an adaptive repair mechanism. We report that genetic deletion of MET in adult murine acinar cells was linked to increased acinar cell death, chronic inflammation and delayed recovery (regeneration) of pancreatic exocrine tissue. Notably, increased pancreatic collagen deposition was detected in MET knockout mice following repetitive injury as well alcohol-associated injury. Finally, we identified specific alterations of the pancreatic transcriptome associated with MET signaling during injury, involved in tissue repair, inflammation and endoplasmic reticulum stress. Together, these data demonstrate the importance of MET signaling for acinar repair and regeneration, a novel finding that could attenuate the symptomology of pancreatic injury. PMID:27798657

  3. Epiregulin is critical for the acinar cell regeneration of the submandibular gland in a mouse duct ligation model.

    Science.gov (United States)

    Nagai, Koichi; Arai, Hideo; Okudera, Michisato; Yamamura, Takashi; Oki, Hidero; Komiyama, Kazuo

    2014-05-01

    Acinar cell regeneration from tubular structures has been reported to occur in duct-deligated salivary glands. However, the detailed process of acinar cell regeneration has not been clarified. We have developed a mouse duct ligation model to clarify the mechanisms underlying acinar cell regeneration, and we analyzed the epidermal growth factor receptor (EGFR) and epidermal growth factor (EGF) ligands using the model. We studied these ligands expressions in the course of acinar cell regeneration using immunohistochemistry and RT-PCR methods. In the duct-ligated portion of the submandibular gland (SMG) that underwent atrophy, newly formed acinar cells were observed arising from the tubular structures after the release of the duct obstruction. The constitutive expression of EGFR was observed by immunohistochemistry in both the duct-ligated and duct-deligated animals as well as in normal controls. The EGFR phosphorylation detected on the tubular structures after duct ligation paralleled the acinar cell regeneration. RT-PCR showed an increase in the epiregulin and heparin-binding EGF levels from day 0 to day 3 after the release of the duct obstruction. The EGF level was increased only after day 7. In vitro, cultured cells isolated from ligated SMGs proliferated and produced EGF ligands following the addition of epiregulin to the culture medium. These findings suggest that the tubular structures localized in an atrophic gland are the source of acinar cell regeneration of the salivary gland. The induction of EGF ligands, in particular epiregulin, may play an important role in acinar cell regeneration in this model.

  4. Analysis of changes in the expression pattern of claudins using salivary acinar cells in primary culture.

    Science.gov (United States)

    Fujita-Yoshigaki, Junko

    2011-01-01

    Primary saliva is produced from blood plasma in the acini of salivary glands and is modified by ion adsorption and secretion as the saliva passes through the ducts. In rodents, acinar cells of salivary glands express claudin-3 but not claudin-4, whereas duct cells express both claudins-3 and -4. The distinct claudin expression patterns may reflect differences in the permeability of tight junctions between acinar and duct cells. To analyze the role of claudins in salivary glands, we established a system for the primary culture of parotid acinar cells, where the expression patterns of claudins are remarkably changed. Real-time RT-PCR and immunoblot analyses reveal that the expression levels of claudins-4 and -6 increased, whereas claudins-3 and -10 decreased. We found that the signal to induce those changes is triggered during cell isolation and is mediated by Src and p38 MAP kinase. Here, we introduce the methods used to determine the signal pathway that induces the change in claudin expression.

  5. Different cell death modes of pancreatic acinar cells on macrophage activation in rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Tao; LIU Tie-fu; XUE Dong-bo; SUN Bei; SHI Li-jun

    2008-01-01

    Background The pathogenesis of acute pancreatitis is complex and largely unclear. The aim of this study was to explore the relationship between modes of cell death in pancreatic acinar cells, the release of cell contents and the inflammatory response of macrophagas.Methods Our experiment included four groups: group A (the control group), group B (AR42J cells overstimulated by caerulein), group C (AR42J cells treated with lipopolysaccharide and caerulein), and group D (AR42J cells treated with octreotide and caerulein). Apoptosis and oncosis, and the release of amylase and lactate dehydrogenase (LDH) from AR42J cells were detected. Rat macrophages were stimulated by 1 ml supematant of culture medium of AR42J cells.Finally, NF-кB activation and TNF-α and IL-1β secretion by macrophages were detected.Results Oncotlc cells in group C increased while apoptctic cells decreased (P <0.05); cells in group D had the inverse reaction. The release of amylase and LDH changed directly with the occurrence of oncosis. The transcription factor NF-кB was activated and secretion of TNF-α and IL-1β were significantly higher in group C than in group B (P <0.05); in group D, these actions were significantly lower than in group B (P<0.05). This trend was in line with changes in amylase and LDH production.Conclusion There is a close relationship between modes of pancreatic acinar cell death, the release of cell contents and the inflammatory reaction of macrophages.

  6. Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells

    Indian Academy of Sciences (India)

    Neeraj Manhas; James Sneyd; K R Pardasani

    2014-06-01

    A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.

  7. Functional differences in the acinar cells of the murine major salivary glands.

    Science.gov (United States)

    Kondo, Y; Nakamoto, T; Jaramillo, Y; Choi, S; Catalan, M A; Melvin, J E

    2015-05-01

    In humans, approximately 90% of saliva is secreted by the 3 major salivary glands: the parotid (PG), the submandibular (SMG), and the sublingual glands (SLG). Even though it is known that all 3 major salivary glands secrete saliva by a Cl(-)-dependent mechanism, salivary secretion rates differ greatly among these glands. The goal of this study was to gain insight into the properties of the ion-transporting pathways in acinar cells that might account for the differences among the major salivary glands. Pilocarpine-induced saliva was simultaneously collected in vivo from the 3 major salivary glands of mice. When normalized by gland weight, the amount of saliva secreted by the PG was more than 2-fold larger than that obtained from the SMG and SLG. At the cellular level, carbachol induced an increase in the intracellular [Ca(2+)] that was more than 2-fold larger in PG and SMG than in SLG acinar cells. Carbachol-stimulated Cl(-) efflux and the protein levels of the Ca(2+)-activated Cl(-) channel TMEM16A, the major apical Cl(-) efflux pathway in salivary acinar cells, were significantly greater in PG compared with SMG and SLG. In addition, we evaluated the transporter activity of the Na(+)-K(+)-2Cl(-) cotransporters (NKCC1) and anion exchangers (AE), the 2 primary basolateral Cl(-) uptake mechanisms in acinar cells. The SMG NKCC1 activity was about twice that of the PG and more than 12-fold greater than that of the SLG. AE activity was similar in PG and SLG, and both PG and SLG AE activity was about 2-fold larger than that of SMG. In summary, the salivation kinetics of the 3 major glands are distinct, and these differences can be explained by the unique functional properties of each gland related to Cl(-) movement, including the transporter activities of the Cl(-) uptake and efflux pathways, and intracellular Ca(2+) mobilization.

  8. Glycosylations in demilunar and central acinar cells of the submandibular salivary gland of ferret investigated by lectin histochemistry.

    Science.gov (United States)

    Triantafyllou, Asterios; Fletcher, David; Scott, John

    2004-09-01

    'Resting' submandibular salivary glands obtained post-mortem from mature ferrets of both sexes were examined here. The binding patterns of labelled lectins applied to paraffin sections of tissue slivers fixed in an aldehyde-HgCl2 mixture and the effects of pretreatment procedures on the results were assessed lightmicroscopically. Lectins with affinity for terminal GalNAc residues (DBA, SBA) bound preferentially to demilunar acinar cells which were also strongly reactive with Fuc-directed UEA I. In contrast, lectins with affinity for neuraminic acid (SNA, WGA) bound to central acinar cells where consistent binding of DBA and SNA occurred only after neuraminidase digestion, and variation in the binding of UEA I was seen. The reactivities corresponded with the distribution of secretory granules, but staining in Golgi-like areas occurred in central acinar cells with PNA lectin. The results suggest that glycosylations are more advanced in central than demilunar acinar cells of the ferret submandibular gland. Possibly demilunar and central acinar cells reflect phenotypic changes of a single secretory cell, the 'central' acinar phenotype being influenced by incorporation of neuraminic acid in glycoprotein side chains and by increased Golgi activity.

  9. Regulating effects of arsenic trioxide on cell death pathways and inflammatory reactions of pancreatic acinar cells in rats

    Institute of Scientific and Technical Information of China (English)

    XUE Dong-bo; ZHANG Wei-hui; YUN Xiao-guang; SONG Chun; ZHENG Biao; SHI Xing-ye; WANG Hai-yang

    2007-01-01

    Background It is accepted that inflammatory cytokines play a key role in the development of acute pancreatitis, so blocking the initiation of inflammatory reactions may alleviate pathological changes of acute pancreatitis. We studied the regulatory effect of arsenic trioxide (As2O3) on apoptosis and oncosis of pancreatic acinar cells in vitro and in vivo and its therapeutic effect on acute pancreatitis.Methods Pancreatic acinar cells were isolated by collagenase digestion method. Apoptosis and oncosis of isolated pancreatic acinar cells were detected with Hoechst 33258+PI or Annexin V+PI double fluorescent staining. Amylase and lactate dehydrogenase release were measured. Acute pancreatitis was induced in Wistar rats by intraperitoneal injections of caerulein, and apoptosis was detected with terminal dUTP nick-end labeling method. Tumor necorsis factor α (TNF-α) mRNA, myeloperoxidase, nuclear factor-κB and histological grading of pancreatic damage were measured.Results There was an increased apoptosis but a decreased oncosis of pancreatic acinar cell after the treatment with As2O3. The levels of lactate dehydrogenase and amylase release were markedly decreased in As2O3 treated group.Myeloperoxidase content, TNF-α mRNA level, nuclear factor-κB activation and pathological score in As2O3 treated group were significantly lower than in the untreated group.Conclusions As2O3 can induce apoptosis and reduce oncosis of pancreatic acinar cell, thus resulting in reduced release of endocellular enzyme of acinar cells, reduced inflammatory cell infiltration and decreased the production of inflammatory cytokines, so that the outcome of alleviated pathological changes was finally achieved.

  10. Inactivation of TGFβ receptor II signalling in pancreatic epithelial cells promotes acinar cell proliferation, acinar-to-ductal metaplasia and fibrosis during pancreatitis.

    Science.gov (United States)

    Grabliauskaite, Kamile; Saponara, Enrica; Reding, Theresia; Bombardo, Marta; Seleznik, Gitta M; Malagola, Ermanno; Zabel, Anja; Faso, Carmen; Sonda, Sabrina; Graf, Rolf

    2016-02-01

    Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-β (TGFβ) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFβ receptor II (TGFβ-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFβ-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFβ-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFβ-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFβ-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFβ-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFβ as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer.

  11. Role of endodermal cell vacuoles in shoot gravitropism.

    Science.gov (United States)

    Kato, Takehide; Morita, Miyo Terao; Tasaka, Masao

    2002-06-01

    In higher plants, shoots and roots show negative and positive gravitropism, respectively. Data from surgical ablation experiments and analysis of starch deficient mutants have led to the suggestion that columella cells in the root cap function as gravity perception cells. On the other hand, endodermal cells are believed to be the statocytes (that is, gravity perceiving cells) of shoots. Statocytes in shoots and roots commonly contain amyloplasts which sediment under gravity. Through genetic research with Arabidopsis shoot gravitropism mutants, sgr1/scr and sgr7/shr, it was determined that endodermal cells are essential for shoot gravitropism. Moreover, some starch biosynthesis genes and EAL1 are important for the formation and maturation of amyloplasts in shoot endodermis. Thus, amyloplasts in the shoot endodermis would function as statoliths, just as in roots. The study of the sgr2 and zig/sgr4 mutants provides new insights into the early steps of shoot gravitropism, which still remains unclear. SGR2 and ZIG/SGR4 genes encode a phospholipase-like and a v-SNARE protein, respectively. Moreover, these genes are involved in vacuolar formation or function. Thus, the vacuole must play an important role in amyloplast sedimentation because the sgr2 and zig/sgr4 mutants display abnormal amyloplast sedimentation.

  12. Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion.

    Science.gov (United States)

    Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I; Williams, John A

    2016-03-18

    Small G protein Rab27B is expressed in various secretory cell types and plays a role in mediating secretion. In pancreatic acinar cells, Rab27B was found to be expressed on the zymogen granule membrane and by overexpression to regulate the secretion of zymogen granules. However, the effect of Rab27B deletion on the physiology of pancreatic acinar cells is unknown. In the current study, we utilized the Rab27B KO mouse model to better understand the role of Rab27B in the secretion of pancreatic acinar cells. Our data show that Rab27B deficiency had no obvious effects on the expression of major digestive enzymes and other closely related proteins, e.g. similar small G proteins, such as Rab3D and Rab27A, and putative downstream effectors. The overall morphology of acinar cells was not changed in the knockout pancreas. However, the size of zymogen granules was decreased in KO acinar cells, suggesting a role of Rab27B in regulating the maturation of secretory granules. The secretion of digestive enzymes was moderately decreased in KO acini, compared with the WT control. These data indicate that Rab27B is involved at a different steps of zymogen granule maturation and secretion, which is distinct from that of Rab3D.

  13. Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling.

    Science.gov (United States)

    Kopach, Olga; Vats, Juliana; Netsyk, Olga; Voitenko, Nana; Irving, Andrew; Fedirko, Nataliya

    2012-04-15

    Cannabinoid receptors (CBRs) belong to the G protein-coupled receptor superfamily, and activation of CBRs in salivary cells inhibits agonist-stimulated salivation and modifies saliva content. However, the role of different CBR subtypes in acinar cell physiology and in intracellular signalling remains unclear. Here, we uncover functional CB(1)Rs and CB(2)Rs in acinar cells of rat submandibular gland and their essential role in saliva secretion. Pharmacological activation of CB(1)Rs and CB(2)Rs in the submandibular gland suppressed saliva outflow and modified saliva content produced by the submandibular gland in vivo. Using Na(+)-selective microelectrodes to record secretory Na(+) responses in the lumen of acini, we observed a reduction in Na(+) transport following the activation of CBRs, which was counteracted by the selective CB(1)R antagonist AM251. In addition, activation of CB(1)Rs or CB Rs caused inhibition of Na(+)-K(+) 2 -ATPase activity in microsomes derived from the gland tissue as well as in isolated acinar cells. Using a Ca(2+) imaging technique, we showed that activation of CB(1)Rs and CB(2)Rs alters [Ca(2+)](cyt) signalling in acinar cells by distinct pathways, involving Ca(2+) release from the endoplasmic reticulum (ER) and store-operated Ca(2+) entry (SOCE), respectively. Our data demonstrate the expression of CB(1)Rs and CB(2)Rs in acinar cells, and their involvement in the regulation of salivary gland functioning.

  14. Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

    Science.gov (United States)

    Yoon, Mi Na; Kim, Dong Kwan; Kim, Se Hoon

    2017-01-01

    Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Perfusion of H2O2 at 300 µM resulted in additional elevation of intracellular Ca2+ levels and termination of oscillatory Ca2+ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca2+. Antioxidants, catalase or DTT, completely prevented H2O2-induced additional Ca2+ increase and termination of Ca2+ oscillation. In Ca2+-free medium, H2O2 still enhanced CCh-induced intracellular Ca2+ levels and thapsigargin (TG) mimicked H2O2-induced cytosolic Ca2+ increase. Furthermore, H2O2-induced elevation of intracellular Ca2+ levels was abolished under sarco/endoplasmic reticulum Ca2+ ATPase-inactivated condition by TG pretreatment with CCh. H2O2 at 300 µM failed to affect store-operated Ca2+ entry or Ca2+ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca2+ uniporter blocker, failed to attenuate H2O2-induced intracellular Ca2+ elevation. These results provide evidence that excessive generation of H2O2 in pathological conditions could accumulate intracellular Ca2+ by attenuating refilling of internal Ca2+ stores rather than by inhibiting Ca2+ extrusion to extracellular fluid or enhancing Ca2+ mobilization from extracellular medium in mouse pancreatic acinar cells.

  15. Up-regulation of Store-operated Ca2+ Entry and Nuclear Factor of Activated T Cells Promote the Acinar Phenotype of the Primary Human Salivary Gland Cells.

    Science.gov (United States)

    Jang, Shyh-Ing; Ong, Hwei Ling; Liu, Xibao; Alevizos, Ilias; Ambudkar, Indu S

    2016-04-15

    The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture.

  16. Pancreatic panniculitis as a paraneoplastic phenomenon of a pancreatic acinar cell carcinoma.

    Science.gov (United States)

    Naeyaert, Charlotte; de Clerck, Frederik; De Wilde, Vincent

    2016-12-01

    We present the case of a 59-year-old patient admitted with extreme painful erythematous subcutaneous nodules of the lower extremities in association with arthritis and peripheral eosinophilia. Upon skin biopsy, the diagnosis of pancreatic panniculitis was made. On further investigation, an underlying acinar cell type pancreas carcinoma was revealed. This clinical case does illustrate how a seemingly innocuous skin condition may herald an underlying malignant disease. The presence of pancreatic panniculitis should trigger clinicians to undertake further thorough diagnostic investigation of the pancreas.

  17. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    Science.gov (United States)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  18. Antigen-presenting cells in parotid glands contain cystatin D originating from acinar cells.

    Science.gov (United States)

    Nashida, Tomoko; Sato, Ritsuko; Haga-Tsujimura, Maiko; Yoshie, Sumio; Yoshimura, Ken; Imai, Akane; Shimomura, Hiromi

    2013-02-01

    Cystatin D encoded by Cst5 is a salivary classified type II cystatin. We investigated the dynamism of cystatin D by examining the distribution of cystatin D protein and mRNA in rats, to identify novel functions. The simultaneous expression of Cst5 and cystatin D was observed in parotid glands, however in situ hybridization showed that only acinar cells produced cystatin D. Synthesized cystatin D was localized in small vesicles and secreted from the apical side to the saliva, and from the basolateral side to the extracellular region, a second secretory pathway for cystatin D. We also identified antigen-presenting cells in the parotid glands that contained cystatin D without the expression of Cst5, indicating the uptake of cystatin D from the extracellular region. Cystatin D was detected in blood serum and renal tubular cells with megalin, indicating the circulation of cystatin D through the body and uptake by renal tubular cells. Thus, the novel dynamism of cystatin D was shown and a function for cystatin D in the regulation of antigen-presenting cell activity was proposed.

  19. Early cytoplasmic vacuolization of African green monkey kidney cells by SV40.

    Science.gov (United States)

    Miyamura, T; Kitahara, T

    1975-01-01

    As early as 3--4 hours after infection with SV40 at a high input multiplicity, African green monkey (Cercopithecus aethiops) kidney (AGMK) cells developed cytoplasmic vacuolization. At 10--20 hours after infection, the vacuolization reached its maximal level, then disappeared and SV40 specific cytopathic change followed. This vacuolization developed before the synthesis of the specific T and V antigens. This early cytoplasmic vacuolization (ECV) was prevented by preincubating the virus with specific antiserum, or by heating the virus with MgCl2. The ECV could be induced by UV-irradiated SV40. Addition of metabolic inhibitors had no effect on the induction of the ECV. These results suggest that the capacity to induce the ECV resides in a structural component(s) of SV40 virion and the vacuolization is not associated with the replication of SV40.

  20. Early cytoplasmic vacuolization of African green monkey kidney cells by SV40. [uv radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miyamura, T.; Kitahara, T.

    1975-01-01

    As early as 3 to 4 hours after infection with SV 40 at a high input multiplicity, African green monkey (Cercopithecus aethiops) kidney (AGMK) cells developed cytoplasmic vacuolization. At 10 to 20 hours after infection, the vacuolization reached its maximal level, then disappeared and SV 40 specific cytopathic change followed. This vacuolization developed before the synthesis of the specific T and V antigens. This early cytoplasmic vacuolization (ECV) was prevented by pre-incubating the virus with specific antiserum, or by heating the virus with MgCl/sub 2/. The ECV could be induced by uv-irradiated SV 40. Addition of metabolic inhibitors had no effect on the induction of the ECV. These results suggest that the capacity to induce the ECV resides in a structural component(s) of SV 40 virion and the vacuolization is not associated with the replication of SV 40.

  1. A tetanus toxin sensitive protein other than VAMP 2 is required for exocytosis in the pancreatic acinar cell.

    Science.gov (United States)

    Padfield, P J

    2000-11-01

    The neurotoxin sensitivity of regulated exocytosis in the pancreatic acinar cell was investigated using streptolysin-O permeabilized pancreatic acini. Treatment of permeabilized acini with botulinum toxin B (BoNT/B) or botulinum toxin D (BoNT/D) had no detectable effect on Ca(2+)-dependent amylase secretion but did result in the complete cleavage of VAMP 2. In comparison, tetanus toxin (TeTx) treatment both significantly inhibited Ca(2+)-dependent amylase secretion and cleaved VAMP 2. These results indicate that regulated exocytosis in the pancreatic acinar cell requires a tetanus toxin sensitive protein(s) other than VAMP 2.

  2. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis.

    Science.gov (United States)

    Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M

    2016-07-08

    Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific.

  3. Effect of Tetrandrine on LPS-induced NF-κB activation in isolated pancreatic acinar cells of rat

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Yong-Yu Li; Xian-Zhong Wu

    2006-01-01

    AIM: To investigate the effect of Tetrandrine (Tet) on LPS-induced NF-κB activation and cell injury in pancreatic acinar cells and to explore the mechanism of Tetrandrine preventing LPS-induced acinar cell injury.METHODS: Male rat pancreatic acinar cells were isolated by collagenase digestion, then exposed to LPS (10mg/L), Tet (50 μmol/L, 100 μmol/L) or normal media. At different time point (30 min, 1 h, 4 h, 10 h) after treatment with the agents, cell viability was determined by MTT, the product and nuclear translocation of subunit p65 of NF-κB was visualized by immunofluorescence staining and nuclear protein was extracted to perform EMSA which was used to assay the NF-κB binding activity.RESULTS: LPS induced cell damage directly in a time dependent manner and Tet attenuated LPS-induced cell damage (50 μmol/L, P < 0.05; 100 μmol/L, P < 0.01).NF-κB p65 immunofluorescence staining in cytoplasm increased and began showing its nuclear translocation within 30 min and the peak was shown at 1 h of LPS 10 mg/L treatment. NF-κB DNA binding activity showed the same alteration pattern as p65 immunofluorescence staining. In Tet group, the immunofluorescence staining in cytoplasm and nuclear translocation of NF-κB were inhibited significantly.CONCLUSION: NF-κB activation is an important early event that may contribute to inflammatory responses and cell injury in pancreatic acinar cells. Tet possesses the protective effect on LPS-induced acinar cell injury by inhibiting NF-κB activation.

  4. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation.

    Directory of Open Access Journals (Sweden)

    Melissa A Metzler

    Full Text Available The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process.A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation.Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1 activates the Mist1 promoter [corrected]. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation.This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a

  5. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice

    Directory of Open Access Journals (Sweden)

    Matthew D. Keefe

    2012-07-01

    The size of the pancreas is determined by intrinsic factors, such as the number of progenitor cells, and by extrinsic signals that control the fate and proliferation of those progenitors. Both the exocrine and endocrine compartments of the pancreas undergo dramatic expansion after birth and are capable of at least partial regeneration following injury. Whether the expansion of these lineages relies on similar mechanisms is unknown. Although we have shown that the Wnt signaling component β-catenin is selectively required in mouse embryos for the generation of exocrine acinar cells, this protein has been ascribed various functions in the postnatal pancreas, including proliferation and regeneration of islet as well as acinar cells. To address whether β-catenin remains important for the maintenance and expansion of mature acinar cells, we have established a system to follow the behavior and fate of β-catenin-deficient cells during postnatal growth and regeneration in mice. We find that β-catenin is continuously required for the establishment and maintenance of acinar cell mass, extending from embryonic specification through juvenile and adult self-renewal and regeneration. This requirement is not shared with islet cells, which proliferate and function normally in the absence of β-catenin. These results make distinct predictions for the relative role of Wnt–β-catenin signaling in the etiology of human endocrine and exocrine disease. We suggest that loss of Wnt–β-catenin activity is unlikely to drive islet dysfunction, as occurs in type 2 diabetes, but that β-catenin is likely to promote human acinar cell proliferation following injury, and might therefore contribute to the resolution of acute or chronic pancreatitis.

  6. The effect of irradiation on the intracellular transportation of the parotid gland acinar cells in the mouse. Localization of monosaccharides studied by electron microscopic autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Hajime (Nippon Dental Univ., Tokyo (Japan))

    1994-06-01

    The present study was designed to investigate the effects of radiation on the ability to ingest monosaccharides and intracellular transportation in the parotid gland in mice. The submandibular regions, including the parotid gland, was exposed to 10 Gy of X-rays. Three days after irradiation, the localization of reducing silver grains in organelles was determined, using electron microscopic autoradiography with H-3 labeled galactosamine, glucosamine, fucose, and mannose. In the non-irradiated group, the proportion of reducing silver grains in the acinar cells began to increase 15 min after administration of monosaccharides, reached a peak at 180 min, and thereafter decreased. Similar findings were observed in the irradiated group, although the values were lower than the non-irradiated group. The proportion of reducing silver grains in the endoplasmic reticulum reached a peak at 15 min in both the non-irradiated and irradiated groups, and gradually decreased until 120 min. Thereafter, it became almost constant and low, but the proportion in the irradiated group was slightly higher than in the non-irradiated group. The proportion of reducing silver grains in the Golgi apparatus was maximum at 60 min in the non-irradiated group, and gradually decreased until 360 min. A similar tendency was seen in the irradiated group, although its variation was not so marked as in the non-irradiated group. The proportion of reducing silver grains in the condensing vacuoles was maximum at 120 min, and thereafter, it decreased; the decrease was only slight in the irradiated group. The proportion of reducing silver grains in secretory granules increased with time in both the non-irradiated and irradiated groups, although this was only slight in the irradiated group, and reached a peak at 360 min. Transportation of monosaccharides in an acinar cell was found to be delayed by irradiation. (N.K.).

  7. Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells.

    Science.gov (United States)

    Romanenko, Victor G; Catalán, Marcelo A; Brown, David A; Putzier, Ilva; Hartzell, H Criss; Marmorstein, Alan D; Gonzalez-Begne, Mireya; Rock, Jason R; Harfe, Brian D; Melvin, James E

    2010-04-23

    Activation of an apical Ca(2+)-dependent Cl(-) channel (CaCC) is the rate-limiting step for fluid secretion in many exocrine tissues. Here, we compared the properties of native CaCC in mouse submandibular salivary gland acinar cells to the Ca(2+)-gated Cl(-) currents generated by Tmem16A and Best2, members from two distinct families of Ca(2+)-activated Cl(-) channels found in salivary glands. Heterologous expression of Tmem16A and Best2 transcripts in HEK293 cells produced Ca(2+)-activated Cl(-) currents with time and voltage dependence and inhibitor sensitivity that resembled the Ca(2+)-activated Cl(-) current found in native salivary acinar cells. Best2(-/-) and Tmem16A(-/-) mice were used to further characterize the role of these channels in the exocrine salivary gland. The amplitude and the biophysical footprint of the Ca(2+)-activated Cl(-) current in submandibular gland acinar cells from Best2-deficient mice were the same as in wild type cells. Consistent with this observation, the fluid secretion rate in Best2 null mice was comparable with that in wild type mice. In contrast, submandibular gland acinar cells from Tmem16A(-/-) mice lacked a Ca(2+)-activated Cl(-) current and a Ca(2+)-mobilizing agonist failed to stimulate Cl(-) efflux, requirements for fluid secretion. Furthermore, saliva secretion was abolished by the CaCC inhibitor niflumic acid in wild type and Best2(-/-) mice. Our results demonstrate that both Tmem16A and Best2 generate Ca(2+)-activated Cl(-) current in vitro with similar properties to those expressed in native cells, yet only Tmem16A appears to be a critical component of the acinar Ca(2+)-activated Cl(-) channel complex that is essential for saliva production by the submandibular gland.

  8. Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+ entry in mouse pancreatic acinar cells.

    Science.gov (United States)

    Rosado, Juan A; Redondo, Pedro C; Salido, Ginés M; Sage, Stewart O; Pariente, Jose A

    2005-01-01

    We recently reported that store-operated Ca(2+) entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca(2+) channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca(2+) entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca(2+) influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca(2+) store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type.

  9. Variations in the expression and distribution pattern of AQP5 in acinar cells of patients with sialadenosis.

    Science.gov (United States)

    Teymoortash, Afshin; Wiegand, Susanne; Borkeloh, Martin; Bette, Michael; Ramaswamy, Annette; Steinbach-Hundt, Silke; Neff, Andreas; Werner, Jochen A; Mandic, Robert

    2012-01-01

    Previously, we pointed out on a possible role of aquaporin 5 (AQP5) in the development of sialadenosis. The goal of the present study was to further assess the association of AQP5 in the development of this salivary gland disease. The acinar diameter and mean surface area appeared elevated in sialadenosis tissues, which is a typical observation in this disease. AQP5 expression was evaluated by immunohistochemistry using tissue samples derived from salivary glands of patients with confirmed sialadenosis either as a primary diagnosis or as a secondary diagnosis within the framework of other salivary gland diseases. Normal salivary gland tissue served as a control. In sialadenosis tissues, the AQP5 signal at the apical plasma membrane of acinar cells frequently appeared stronger compared with that in normal salivary glands. In addition, the distribution of AQP5 at the apical region seemed to differ between normal and sialadenosis tissues, where AQP5 frequently was diffusely distributed near or at the apical plasma membrane of the acinar cells in contrast to normal controls where the AQP5 signal was strictly confined to the apical plasma membrane. These observations suggest that sialadenosis is associated with a different AQP5 expression and distribution pattern in salivary acinar cells.

  10. Long-term dexamethasone treatment alters the histomorphology of acinar cells in rat parotid and submandibular glands.

    Science.gov (United States)

    Bighetti, Bruna B; d Assis, Gerson F; Vieira, Danilo C; Violato, Natalia M; Cestari, Tania M; Taga, Rumio; Bosqueiro, José R; Rafacho, Alex

    2014-10-01

    Glucocorticoids (GCs) induce insulin resistance (IR), a condition known to alter oral homeostasis. This study investigated the effects of long-term dexamethasone administration on morphofunctional aspects of salivary glands. Male Wistar rats received daily injections of dexamethasone [0.1 mg/kg body weight (b.w.), intraperitoneally] for 10 days (DEX), whereas control rats received saline. Subsequently, glycaemia, insulinaemia, insulin secretion and salivary flow were analysed. The parotid and submandibular glands were collected for histomorphometric evaluation and Western blot experiments. The DEX rats were found to be normoglycaemic, hyperinsulinaemic, insulin resistant and glucose intolerant (P glands (P salivary flux rate. The hypotrophy in both glands observed in the DEX group was associated with marked reduction in the volume of the acinar cells in these glands of 50% and 26% respectively (P acinar cells was increased in the submandibular glands of the DEX rats (P glands. The levels of proteins related to insulin and survival signalling in both glands did not differ between the groups. In conclusion, the long-term administration of dexamethasone caused IR, which was associated with significant reductions in both mass and flux rate of the salivary glands. The parotid and submandibular glands exhibited reduced acinar cell volume; however, the submandibular glands displayed acinar hyperplasia, indicating a gland-specific response to GCs. Our data emphasize that GC-based therapies and insulin-resistant states have a negative impact on salivary gland homeostasis.

  11. Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms.

    Science.gov (United States)

    Srinivasan, Padmanabhan; Kapadia, Rubina; Biswas, Arundhati; Said, Hamid M

    2014-11-01

    Chronic exposure to alcohol affects different physiological aspects of pancreatic acinar cells (PAC), but its effect on the uptake process of biotin is not known. We addressed this issue using mouse-derived pancreatic acinar 266-6 cells chronically exposed to alcohol and wild-type and transgenic mice (carrying the human SLC5A6 5'-promoter) fed alcohol chronically. First we established that biotin uptake by PAC is Na(+) dependent and carrier mediated and involves sodium-dependent multivitamin transporter (SMVT). Chronic exposure of 266-6 cells to alcohol led to a significant inhibition in biotin uptake, expression of SMVT protein, and mRNA as well as in the activity of the SLC5A6 promoter. Similarly, chronic alcohol feeding of wild-type and transgenic mice carrying the SLC5A6 promoter led to a significant inhibition in biotin uptake by PAC, as well as in the expression of SMVT protein and mRNA and the activity of the SLC5A6 promoters expressed in the transgenic mice. We also found that chronic alcohol feeding of mice is associated with a significant increase in the methylation status of CpG islands predicted to be in the mouse Slc5a6 promoters and a decrease in the level of expression of transcription factor KLF-4, which plays an important role in regulating SLC5A6 promoter activity. These results demonstrate, for the first time, that chronic alcohol exposure negatively impacts biotin uptake in PAC and that this effect is exerted (at least in part) at the level of transcription of the SLC5A6 gene and may involve epigenetic/molecular mechanisms.

  12. Ascl3 expression marks a progenitor population of both acinar and ductal cells in mouse salivary glands.

    Science.gov (United States)

    Bullard, Tara; Koek, Laurie; Roztocil, Elisa; Kingsley, Paul D; Mirels, Lily; Ovitt, Catherine E

    2008-08-01

    Ascl3, also know as Sgn1, is a member of the mammalian achaete scute (Mash) gene family of transcription factors, which have been implicated in cell fate specification and differentiation. In the mouse salivary gland, expression of Ascl3 is restricted to a subset of duct cells. Salivary gland function depends on the secretory acinar cells, which are responsible for saliva formation, and duct cells, which modify the saliva and conduct it to the oral cavity. The salivary gland ducts are also the putative site of progenitor cells in the adult gland. Using a Cre recombinase-mediated reporter system, we followed the fate of Ascl3-expressing cells after the introduction of an EGFP-Cre expression cassette into the Ascl3 locus by homologous recombination. Lineage tracing shows that these cells are progenitors of both acinar and ductal cell types in all three major salivary glands. In the differentiated progeny, expression of Ascl3 is down-regulated. These data directly demonstrate a progenitor-progeny relationship between duct cells and the acinar cell compartment, and identify a population of multipotent progenitor cells, marked by expression of Ascl3, which is capable of generating both gland cell types. We conclude that Ascl3-expressing cells contribute to the maintenance of the adult salivary glands.

  13. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini.

    Directory of Open Access Journals (Sweden)

    Aljona Gaiko-Shcherbak

    Full Text Available The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function.

  14. The potential role of kinesin and dynein in Golgi scattering and cytoplasmic vacuole formation during acute experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Ina A Weber; Igor Buchwalow; Daniela Hahn; Wolfram Domschke; Markus M Lerch; Jürgen Schnekenburger

    2010-01-01

    @@ Dear Editor, Acute pancreatitis is initiated in pancreatic acinar cells and characterized by a profound disturbance in intracel-lular vesicle transport. Moreover, secretion of pancreatic zymogens is blocked, paralleled by the formation of cytoplasmic vacuoles with premature protease activation that precedes cellular necrosis and organ damage.

  15. Uptake and metabolism of D-glucose in isolated acinar and ductal cells from rat submandibular glands.

    Science.gov (United States)

    Cetik, Sibel; Rzajeva, Aigun; Hupkens, Emeline; Malaisse, Willy J; Sener, Abdullah

    2014-07-01

    The present study deals with the possible effects of selected environmental agents upon the uptake and metabolism of d-glucose in isolated acinar and ductal cells from the rat submandibular salivary gland. In acinar cells, the uptake of d-[U-(14) C]glucose and its non-metabolised analogue 3-O-[(14) C-methyl]-d-glucose was not affected significantly by phloridzin (0.1 mM) or substitution of extracellular NaCl (115 mM) by an equimolar amount of CsCl, whilst cytochalasin B (20 μM) decreased significantly such an uptake. In ductal cells, both phloridzin and cytochalasin B decreased the uptake of d-glucose and 3-O-methyl-d-glucose. Although the intracellular space was comparable in acinar and ductal cells, the catabolism of d-glucose (2.8 or 8.3 mM) was two to four times higher in ductal cells than in acinar cells. Phloridzin (0.1 mM), ouabain (1.0 mM) and cytochalasin B (20 μM) all impaired d-glucose catabolism in ductal cells. Such was also the case in ductal cells incubated in the absence of extracellular Ca(2+) or in media in which NaCl was substituted by CsCl. It is proposed that the ductal cells in the rat submandibular gland are equipped with several systems mediating the insulin-sensitive, cytochalasin B-sensitive and phloridzin-sensitive transport of d-glucose across the plasma membrane.

  16. TNF-α inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation.

    Science.gov (United States)

    Yamamura, Yoshiko; Motegi, Katsumi; Kani, Kouichi; Takano, Hideyuki; Momota, Yukihiro; Aota, Keiko; Yamanoi, Tomoko; Azuma, Masayuki

    2012-08-01

    Sjögren's syndrome is a systemic autoimmune disease characterized by reductions in salivary and lacrimal secretions. The mechanisms underlying these reductions remain unclear. We have previously shown that TNF-α plays an important role in the destruction of acinar structures. Here we examined TNF-α's function in the expression of aquaporin (AQP) 5 in human salivary gland acinar cells. Immortalized human salivary gland acinar (NS-SV-AC) cells were treated with TNF-α, and then the expression levels of AQP5 mRNA and protein were analysed. In addition, the mechanisms underlying the reduction of AQP5 expression by TNF-α treatment were investigated. TNF-α-treatment of NS-SV-AC cells significantly suppressed the expression levels of AQP5 mRNA and protein, and reduced the net fluid secretion rate. We examined the expression and activation levels of DNA methyltransferases (Dnmts) in NS-SV-AC cells treated with TNF-α. However, no significant changes were observed in the expression or activation levels of Dnmt1, Dnmt3a or Dnmt3b. Although we also investigated the role of NF-κB activity in the TNF-α-induced suppression of AQP5 expression in NS-SV-AC cells, we detected similar TNF-α suppression of AQP5 expression in non-transfected cells and in a super-repressor form of IκBα cDNA-transfected cell clones. However, interestingly, chromatin immunoprecipitation analysis demonstrated a remarkable decrease in levels of acetylated histone H4 associated with the AQP5 gene promoter after treatment with TNF-α in NS-SV-AC cells. Therefore, our results may indicate that TNF-α inhibition of AQP5 expression in human salivary gland acinar cells is due to the epigenetic mechanism by suppression of acetylation of histone H4.

  17. Increase in muscarinic stimulation-induced Ca(2+) response by adenovirus-mediated Stim1-mKO1 gene transfer to rat submandibular acinar cells in vivo.

    Science.gov (United States)

    Morita, Takao; Nezu, Akihiro; Tojyo, Yosuke; Tanimura, Akihiko

    2013-10-01

    Adenoviruses have been used for gene transfer to salivary gland cells in vivo. Their use to study the function of salivary acinar cells was limited by a severe inflammatory response and by the destruction of fluid-secreting acinar cells. In the present study, low doses of adenovirus were administered to express Stim1-mKO1 by retrograde ductal injection to submandibular glands. The approach succeeded in increasing muscarinic stimulation-induced Ca(2+) responses in acinar cells without inflammation or decreased salivary secretions. This increased Ca(2+) response was notable upon weak muscarinic stimulation and was attributed to increased Ca(2+) release from internal stores and increased Ca(2+) entry. The basal Ca(2+) level was higher in Stim1-mKO1-expressing cells than in mKO1-expressing and non-expressing cells. Exposure of permeabilized submandibular acinar cells, where Ca(2+) concentration was fixed at 50 nM, to inositol 1,4,5-trisphosphate (IP3) produced similar effects on the release of Ca(2+) from stores in Stim1-mKO1-expressing and non-expressing cells. The low toxicity and relative specificity to acinar cells of the mild gene transfer method described herein are particularly useful for studying the molecular functions of salivary acinar cells in vivo, and may be applied to increase salivary secretions in experimental animals and human in future.

  18. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    Science.gov (United States)

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  19. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    Science.gov (United States)

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  20. Rab27A Is Present in Mouse Pancreatic Acinar Cells and Is Required for Digestive Enzyme Secretion.

    Directory of Open Access Journals (Sweden)

    Yanan Hou

    Full Text Available The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1. Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.

  1. [Thapsigargin-sensitive and insensitive intracellular calcium stores in acinar cells of the submandibular salivary gland in rats].

    Science.gov (United States)

    Kopach, O V; Kruhlykov, I A; Voĭtenko, N V; Fedirko, N V

    2005-01-01

    Acinar cells of rat submandibular salivary gland are characterized by heterogeneity of intracellular Ca2+ stores. In the present work we have studied this heterogeneity using Arsenazo III dye to measure a cellular total calcium content and Fura-2/AM, to determine free cytosolic calcium concentration ([Ca2+]i). We have found that the amount of Ca2+ released by inhibition of Ca2+ ATPase of the ER with thapsigargin comprises approximately 30% of total ER calcium. This result was obtained in experiments on both intact and permeabilized acinar cells. We have also shown that both Ca2+ ATPase inhibition with thapsigargin and emptying the stores with acetylcholine (ACh) led to activation of store-operated Ca2+ influx (an increase in total calcium content of approximately 14%). In permeabilized cells application of ACh after preincubation with thapsigargin led to a further decrease in total cellular calcium content (approximately 38%). At the same time in intact cells it resulted in generation of [Ca2+]i transients with gradually decreasing amplitudes. Thus, ACh is capable of producing an additional release of Ca2+ from thapsigargin-insensitive stores. This additional release is IP3-dependent since it was completely blocked by heparin. We conclude that in acinar cells of rat submandibular gland thapsigargin-sensitive and thapsigargin-insensitive Ca2+ stores could exist.

  2. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages

    Directory of Open Access Journals (Sweden)

    Casadevall Arturo

    2007-08-01

    Full Text Available Abstract Background The interaction between macrophages and Cryptococcus neoformans (Cn is critical for containing dissemination of this pathogenic yeast. However, Cn can either lyse macrophages or escape from within them through a process known as phagosomal extrusion. Both events result in live extracellular yeasts capable of reproducing and disseminating in the extracellular milieu. Another method of exiting the intracellular confines of cells is through host cell-to-cell transfer of the pathogen, and this commonly occurs with the human immuno-deficiency virus (HIV and CD4+ T cells and macrophages. In this report we have used time-lapse imaging to determine if this occurs with Cn. Results Live imaging of Cryptococcus neoformans interactions with murine macrophages revealed cell-to-cell spread of yeast cells from infected donor cells to uninfected cells. Although this phenomenon was relatively rare its occurrence documents a new capacity for this pathogen to infect adjacent cells without exiting the intracellular space. Cell-to-cell spread appeared to be an actin-dependent process. In addition, we noted that cryptococcal phagosomal extrusion was followed by the formation of massive vacuoles suggesting that intracellular residence is accompanied by long lasting damage to host cells. Conclusion C. neoformans can escape the intracellular confines of macrophages in an actin dependent manner by cell-to-cell transfer of the yeast leading to infection of adjacent cells. In addition, complete extrusion of internalized Cn cells can lead to the formation of a massive vacuole which may be a sign of damage to the host macrophage. These observations document new outcomes for the interaction of C. neoformans with host cells that provide precedents for cell biological effects that may contribute to the pathogenesis of cryptococcal infections.

  3. Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions

    Directory of Open Access Journals (Sweden)

    Geou-Yarh Liou

    2016-03-01

    Full Text Available The development of pancreatic cancer requires the acquisition of oncogenic KRas mutations and upregulation of growth factor signaling, but the relationship between these is not well established. Here, we show that mutant KRas alters mitochondrial metabolism in pancreatic acinar cells, resulting in increased generation of mitochondrial reactive oxygen species (mROS. Mitochondrial ROS then drives the dedifferentiation of acinar cells to a duct-like progenitor phenotype and progression to PanIN. This is mediated via the ROS-receptive kinase protein kinase D1 and the transcription factors NF-κB1 and NF-κB2, which upregulate expression of the epidermal growth factor, its ligands, and their sheddase ADAM17. In vivo, interception of KRas-mediated generation of mROS reduced the formation of pre-neoplastic lesions. Hence, our data provide insight into how oncogenic KRas interacts with growth factor signaling to induce the formation of pancreatic cancer.

  4. [Protein malnutrition and response of pancreatic acinar cells to stimulation by cholecystokinin].

    Science.gov (United States)

    Prost, J; Belleville, J

    1988-01-01

    Pancreatic lobules were isolated from 2 groups of male Wistar rats after 23 days of diet. A control group (C) fed on a 20% protein diet (16% gluten + 4% casein) and an experimental group (E) on a 5% protein diet (4% gluten + 1% casein). After isolation, lobules were preincubated 10 min with 10 muCi [3H]-leucine, washed, then incubate within Krebs Ringer bicarbonate Hepes. Basal secretion, then stimulated secretion (50 pM of cholecystokinin (CCK] of radioactive and non-radioactive protein and amylase outputs were measured. During basal secretion, in (E) group, lobules secreted more proteins than (C) one, the same outputs of amylase and radioactive protein were observed in both groups. The stimulated secretion by CCK increased the outputs of non-radioactive protein and amylase of lobules (T) (2-3 fold), but was without effect on lobule (E) outputs. Therefore, a low-protein diet involved a decrease of CCK sensibility on acinar cells, this fact might be mediated by a decreasing number and/or affinity of their CCK receptors.

  5. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    Science.gov (United States)

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.

  6. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  7. Organization of the cytoplasmic reticulum in the central vacuole of parenchyma cells in Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Tomasz J. Wodzicki

    2015-01-01

    Full Text Available An elaborate and complex cytoplasmic reticulum composed of fine filaments and lamellae ranging from 0.1 to 4 microns in size is revealed by viewing the central vacuole of onion bulb parenchyma cells with the scanning election microscope. The larger cytoplasmic strands, visible with the light microscope, are composed of numerous smaller filaments (some tubular which might explain the observed bidirectional movement of particles in these larger strands. The finely divided cytoplasmic network of filaments is continuous with the parietal cytoplasm inclosing the vacuolar sap. In these highly vacuolated cells the mass of the protoplast is in the form of an intravacuolar reticulum immersed in the cell sap. The probable significance of the vacuolar sap in relation to physiological processes of the cell is discussed.

  8. Mitochondrial Extrusion through the Cytoplasmic Vacuoles during Cell Death*S⃞

    OpenAIRE

    Nakajima, Akihito; Kurihara, Hidetake; Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu

    2008-01-01

    Under various conditions, noxious stimuli damage mitochondria, resulting in mitochondrial fragmentation; however, the mechanisms by which fragmented mitochondria are eliminated from the cells remain largely unknown. Here we show that cytoplasmic vacuoles originating from the plasma membrane engulfed fragmented mitochondria and subsequently extruded them into the extracellular spaces in undergoing acute tumor necrosis factor α-induced cell death in a caspase-dependent f...

  9. Apical Ca2+-activated potassium channels in mouse parotid acinar cells.

    Science.gov (United States)

    Almassy, Janos; Won, Jong Hak; Begenisich, Ted B; Yule, David I

    2012-02-01

    Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca(2+)] was used to investigate if Ca(2+)-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca(2+)-buffering conditions that produced brief, localized increases in [Ca(2+)] after focal laser photolysis of caged Ca(2+). Conditions were used to isolate K(+) and Cl(-) conductances. Photolysis at the apical PM resulted in a robust increase in K(+) and Cl(-) currents. A localized reduction in [Ca(2+)] at the apical PM after photolysis of Diazo-2, a caged Ca(2+) chelator, resulted in a decrease in both K(+) and Cl(-) currents. The K(+) currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance "maxi-K" (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34-sensitive K(+) currents were also observed in BK-null parotid acini. In contrast, when the [Ca(2+)] was increased at the basal or lateral PM, no increase in either K(+) or Cl(-) currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.

  10. Directed pancreatic acinar differentiation of mouse embryonic stem cells via embryonic signalling molecules and exocrine transcription factors.

    Directory of Open Access Journals (Sweden)

    Fabien Delaspre

    Full Text Available Pluripotent embryonic stem cells (ESC are a promising cellular system for generating an unlimited source of tissue for the treatment of chronic diseases and valuable in vitro differentiation models for drug testing. Our aim was to direct differentiation of mouse ESC into pancreatic acinar cells, which play key roles in pancreatitis and pancreatic cancer. To that end, ESC were first differentiated as embryoid bodies and sequentially incubated with activin A, inhibitors of Sonic hedgehog (Shh and bone morphogenetic protein (BMP pathways, fibroblast growth factors (FGF and retinoic acid (RA in order to achieve a stepwise increase in the expression of mRNA transcripts encoding for endodermal and pancreatic progenitor markers. Subsequent plating in Matrigel® and concomitant modulation of FGF, glucocorticoid, and folllistatin signalling pathways involved in exocrine differentiation resulted in a significant increase of mRNAs encoding secretory enzymes and in the number of cells co-expressing their protein products. Also, pancreatic endocrine marker expression was down-regulated and accompanied by a significant reduction in the number of hormone-expressing cells with a limited presence of hepatic marker expressing-cells. These findings suggest a selective activation of the acinar differentiation program. The newly differentiated cells were able to release α-amylase and this feature was greatly improved by lentiviral-mediated expression of Rbpjl and Ptf1a, two transcription factors involved in the maximal production of digestive enzymes. This study provides a novel method to produce functional pancreatic exocrine cells from ESC.

  11. Methods to monitor autophagy in H. pylori vacuolating cytotoxin A (VacA)-treated cells.

    Science.gov (United States)

    Raju, Deepa; Jones, Nicola L

    2010-01-01

    Helicobacter pylori is a gram negative pathogen that infects at least half of the world's population and is associated not only with gastric cancer but also with other diseases such as gastritis and peptic ulcers. Indeed, H. pylori is considered the single most important risk factor for the development of gastric cancer. The vacuolating cytotoxin VacA, secreted by H. pylori, promotes intracellular survival of the bacterium and modulates host immune responses. In a recent study, we reported that VacA induces autophagy. Multilamellar autophagosomes are detected in gastric epithelial cells that are distinct from the large vacuoles formed by VacA. Furthermore, inhibition of autophagy stabilizes VacA and reduces vacuolation in the cells indicating that the toxin is being degraded by autophagy, thus limiting toxin-induced host cell damage. Many of the methods that were used for this study are commonly employed techniques that were adapted for H. pylori infection and VacA intoxication. In this paper, we describe the various methods and specific protocols used for the assessment and monitoring of autophagy during H. pylori infection.

  12. ptf1a+, ela3l− cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae

    Science.gov (United States)

    Schmitner, Nicole; Kohno, Kenji

    2017-01-01

    ABSTRACT The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b. In

  13. Changes in vacuolation in the root apex cells of soybean seedlings in microgravity

    Science.gov (United States)

    Klymchuk, D. O.; Kordyum, E. L.; Vorobyova, T. V.; Chapman, D. K.; Brown, C. S.

    2003-05-01

    Changes in the vacuolation in root apex cells of soybean ( Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO 4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH) 6] in 0.1 M K 2HPO 4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. nonturgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage

  14. DNA quantification as prognostic factor in a case of acinar cell carcinoma of the parotid gland, diagnosed by FNA.

    Science.gov (United States)

    Azúa-Romeo, Javier; Sánchez-Garnica, Juan Carlos; Azúa-Blanco, Javier; Tovar-Lázaro, Mayte

    2005-01-01

    Hereby we present a case of a 43-years-old male who complained of a three years history preauricular painful mass. Fine needle aspiration cytology was performed, diagnosing of compatible with acinar cell carcinoma, thus DNA quantification by image cytometry was carried out. Biological parameters studied (ploidy, S-phase, 5-c exceeding rate) showed that it is a low grade of malignancy lesion. Total parotidectomy conservative of facial nerve was recommended, without regional lymphadenectomy. Patient remains, one year later, asymptomatic and free of disease.

  15. Vacuolization and apoptosis induced by nano-selenium in HeLa cell line

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Selenium(Se),a potential drug candidate for cancer prevention,has a special property:Its nutritional dosage and tolerable upper intake level appear in a narrow range,while the therapeutic use of this mineral may depend on a higher body intake level.Nano-selenium(nano-Se) particles,however,preserve the selenium element’s low toxicity characteristic but give a high biochemical activity effect of selenium compounds.In the present study different morphologies of synthesized nano-Se were evaluated concerning its anti-proliferation and apoptosis-inducing effect.Then nano-Se(sphere) were picked out to investigate its influence on two significant events involved in apoptosis,cell cycle arrest and mitochondrial membrane potential disruption.Furthermore,massive vacuolization of HeLa cells treated by nano-Se(sphere) was observed and more methods were used to measure the level of vacuolization.Such vacuolization needs energy supply and has been demonstrated to be related to Se endocytosis.These results suggest a possible mechanism to trigger apoptosis initiation.

  16. Effect of Helicobacter pylori's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells.

    Science.gov (United States)

    Terebiznik, Mauricio R; Raju, Deepa; Vázquez, Cristina L; Torbricki, Karl; Kulkarni, Reshma; Blanke, Steven R; Yoshimori, Tamotsu; Colombo, María I; Jones, Nicola L

    2009-04-01

    Host cell responses to Helicobacter pylori infection are complex and incompletely understood. Here, we report that autophagy is induced within human-derived gastric epithelial cells (AGS) in response to H. pylori infection. These autophagosomes were distinct and different from the large vacuoles induced during H. pylori infection. Autophagosomes were detected by transmission electron microscopy, conversion of LC3-I to LC3-II, GFP-LC3 recruitment to autophagosomes, and depended on Atg5 and Atg12. The induction of autophagy depended on the vacuolating cytotoxin (VacA) and, moreover, VacA was sufficient to induce autophagosome formation. The channel-forming activity of VacA was necessary for inducing autophagy. Intracellular VacA partially co-localized with GFP-LC3, indicating that the toxin associates with autophagosomes. The inhibition of autophagy increased the stability of intracellular VacA, which in turn resulted in enhanced toxin-mediated cellular vacuolation. These findings suggest that the induction of autophagy by VacA may represent a host mechanism to limit toxin-induced cellular damage.

  17. Differences in claudin synthesis in primary cultures of acinar cells from rat salivary gland are correlated with the specific three-dimensional organization of the cells.

    Science.gov (United States)

    Qi, Bing; Fujita-Yoshigaki, Junko; Michikawa, Hiromi; Satoh, Keitaro; Katsumata, Osamu; Sugiya, Hiroshi

    2007-07-01

    Tight junctions are essential for the maintenance of epithelial cell polarity. We have previously established a system for the primary culture of salivary parotid acinar cells that retain their ability to generate new secretory granules and to secrete proteins in a signal-dependent manner. Because cell polarity and cell-cell adhesion are prerequisites for the formation of epithelial tissues, we have investigated the structure of the tight junctions in these cultures. We have found two types of cellular organization in the culture: monolayers and semi-spherical clusters. Electron microscopy has revealed tight junctions near the apical region of the lateral membranes between cells in the monolayers and cells at the surface of the clusters. The cells in the interior of the clusters also have tight junctions and are organized around a central lumen. These interior cells retain more secretory granules than the surface or monolayer cells, suggesting that they maintain their original character as acinar cells. The synthesis of claudin-4 increases during culture, although it is not detectable in the cells immediately after isolation from the glands. Immunofluorescence microscopy has shown that claudin-4 is synthesized in the monolayers and at the surface of the clusters, but not inside the clusters. Only claudin-3, which is present in the original acinar cells following isolation and in the intact gland, has been detected inside the clusters. These results suggest that differences in claudin expression are related to the three-dimensional structures of the cell cultures and reflect their ability to function as acinar cells.

  18. Human salivary gland acinar cells spontaneously form three-dimensional structures and change the protein expression patterns.

    Science.gov (United States)

    Chan, Yen-Hui; Huang, Tsung-Wei; Young, Tai-Horng; Lou, Pei-Jen

    2011-11-01

    Applying tissue engineering principles to design an auto-secretory device is a potential solution for patients suffering loss of salivary gland function. However, the largest challenge in implementing this solution is the primary culture of human salivary gland cells, because the cells are highly differentiated and difficult to expand in vitro. This situation leads to the lack of reports on the in vitro cell biology and physiology of human salivary gland cells. This study used a low-calcium culture system to selectively cultivate human parotid gland acinar (PGAC) cells from tissues with high purity in cell composition. This condition enables PGAC cells to continuously proliferate and retain the phenotypes of epithelial acinar cells to express secreting products (α-amylase) and function-related proteins (aquaporin-3, aquaporin-5, and ZO-1). Notably, when the cells reached confluence, three-dimensional (3D) cell aggregates were observed in crowded regions. These self-formed cell spheres were termed post-confluence structures (PCSs). Unexpectedly, despite being cultured in the same media, cells in PCSs exhibited higher expression levels and different expression patterns of function-related proteins compared to the two-dimensional (2D) cells. Translocation of aquoporin-3 from cytosolic to alongside the cell boundaries, and of ZO-1 molecules to the boundary of the PCSs were also observed. These observations suggest that when PGAC cells cultured on the 2D substrate would form PCSs without the help of 3D scaffolds and retain certain differentiation and polarity. This phenomenon implies that it is possible to introduce 2D substrates instead of 3D scaffolds into artificial salivary gland tissue engineering.

  19. Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2014-06-01

    Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is displacement of the cytoplasm by large fluid-filled vacuoles derived from macropinosomes. The demise of the cell resembles many forms of necrosis, insofar as there is a loss of metabolic capacity and plasma membrane integrity, without the cell shrinkage and nuclear fragmentation associated with apoptosis. Methuosis was initially defined in glioblastoma cells after ectopic expression of activated Ras, but recent reports have described small molecules that can induce the features of methuosis in a broad spectrum of cancer cells, including those that are resistant to conventional apoptosis-inducing drugs. This review summarizes the available information about the distinguishing morphological characteristics and underlying mechanisms of methuosis. We compare and contrast methuosis with other cytopathological conditions in which accumulation of clear cytoplasmic vacuoles is a prominent feature. Finally, we highlight key questions that need to be answered to determine whether methuosis truly represents a unique form of regulated cell death.

  20. Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells.

    Science.gov (United States)

    Weber, Heike; Jonas, Ludwig; Wakileh, Michael; Krüger, Burkhard

    2014-03-01

    The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.

  1. Determination of Glutathione and Its Redox Status in Isolated Vacuoles of Red Beetroot Cells

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2016-02-01

    Full Text Available The glutathione of the red beetroot vacuoles (Beta vulgaris L. was measured using three well-known methods: the spectrofluorimetric method with orthophthalic aldehyde (OPT; the spectrophotometric method with 5.5'-dithiobis-2-nitrobenzoic acid (DTNB; the high-performance liquid chromatography (HPLC. The content of reduced (GSH and oxidized glutathione (GSSG differed depending on the research method. With OPT the concentration of glutathione was: GSH – 0.059 µmol /mg protein; GSSG – 0.019 µmol/mg protein and total glutathione (GSHtotal – 0.097 µmol/mg protein. In the case of determining with DTNB the concentration of glutathione was: GSH – 0.091 µmol/mg protein; GSSG – 0.031 µmol/mg protein; GSHtotal – 0.153 µmol/mg protein. HPLC-defined concentration of glutathione was lower: GSH – 0.039 µmol/mg protein; GSSG – 0.007 µmol/mg protein; GSHtotal – 0.053 µmol/mg protein. Redox ratio of GSH/GSSG was also dependent on the method of determination: with OPT – 3.11; with DTNB – 2.96 and HPLC – 5.57. Redox ratio of glutathione in vacuoles was much lower than the tissue extracts of red beetroot, which, depending on the method of determination, was: 7.23, 7.16 and 9.22. The results showed the vacuoles of red beetroot parenchyma cells contain glutathione. Despite the low value of the redox ratio GSH/GSSG, in vacuoles the pool of reduced glutathione prevailed over the pool of oxidized glutathione.

  2. Lycopene protects pancreatic acinar cells against severe acute pancreatitis by abating the oxidative stress through JNK pathway.

    Science.gov (United States)

    Lv, J C; Wang, G; Pan, S H; Bai, X W; Sun, B

    2015-02-01

    This study investigated the anti-oxidative and anti-inflammatory effects of lycopene on severe acute pancreatitis (SAP) in both in vivo and in vitro models. Utilizing a rat model, we found that lycopene administration protected against SAP, as indicated by the decreased levels of serum amylase and C-reactive protein. Pathological changes were alleviated by pretreatment with lycopene. The serum levels of tumor necrosis factor-α, interleukin-6, macrophage inflammatory protein-1α, and monocyte chemotactic protein-1 were decreased by lycopene. The decreased reactive oxygen species (ROS) content in the pancreatic tissues of the lycopene-treated group were indirectly evaluated by measuring the levels of myeloperoxidase, lipid peroxidase, and superoxide dismutase. Lycopene protected acinar cells against necrosis and apoptosis by relieving the mitochondrial and endoplasmic stress caused by ROS which was shown in electron microscopy and immunohistochemistry staining of active nuclear factor-κB p65. The protective effect was also observed in a simulated SAP model in a rat acinar cell line. ROS and apoptotic staining were compared between groups. Lycopene exerts protective effects against SAP in rats that may be related to its anti-inflammatory property through inhibiting the expression of damage-associated molecular patterns, and anti-oxidative property which can thus maintain cellular homeostasis and prevent the phosphorylation of JNK pathway.

  3. Fluorescence imaging analysis of taxol-induced ASTC-a-1 cell death with cell swelling and cytoplasmic vacuolization

    Science.gov (United States)

    Chen, Tong-sheng; Sun, Lei; Wang, Longxiang; Wang, Huiying

    2008-02-01

    Taxol (Paclitaxel), an isolated component from the bark of the Pacific yew Taxus brevifolia, exhibits a broad spectrum of clinical activity against human cancers. Taxol can promote microtubule (MT) assembly, inhibit depolymerization, and change MT dynamics, resulting in disruption of the normal reorganization of the microtubule network required for mitosis and cell proliferation. However, the molecular mechanism of taxol-induced cell death is still unclear. In this report, CCK-8 was used to assay the inhibition of taxol on the human lung adenocarcinoma (ASTC-a-1) cells viability, confocal fluorescence microscope was used to monitor the morphology changes of cells with taxol treatment. We for the first time describe the characteristics of taxol-induced cells swelling, cytoplasmic vacuolization and cell death. Taxol induced swelling, cytoplasmatic vacuolization and cell death without cell shrinkage and membrane rupture. These features differ from those of apoptosis and resemble the paraptosis, a novel nonapoptotic PCD.

  4. Trypanosoma cruzi: Entry Into Mammalian Host Cells and Parasitophorous Vacuole Formation

    Directory of Open Access Journals (Sweden)

    Emile Santos Barrias

    2013-08-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T.cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T.cruzi with phagocytic or non-phagocytic cell types, plasma membrane protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes and lysosomes, participate in the formation of the nascent parasithophorous vacuole (VP. Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the parasitophorous vacuole release from the host cell plasma membrane. This review focuses on the multiple pathways that T.cruzi can use to enter the host cells until complete VP formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss other mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair.

  5. Roles of AQP5/AQP5-G103D in carbamylcholine-induced volume decrease and in reduction of the activation energy for water transport by rat parotid acinar cells.

    Science.gov (United States)

    Satoh, Keitaro; Seo, Yoshiteru; Matsuo, Shinsuke; Karabasil, Mileva Ratko; Matsuki-Fukushima, Miwako; Nakahari, Takashi; Hosoi, Kazuo

    2012-10-01

    In order to assess the contribution of the water channel aquaporin-5 (AQP5) to water transport by salivary gland acinar cells, we measured the cell volume and activation energy (E (a)) of diffusive water permeability in isolated parotid acinar cells obtained from AQP5-G103D mutant and their wild-type rats. Immunohistochemistry showed that there was no change induced by carbamylcholine (CCh; 1 μM) in the AQP5 detected in the acinar cells in the wild-type rat. Acinar cells from mutant rats, producing low levels of AQP5 in the apical membrane, showed a minimal increase in the AQP5 due to the CCh. In the wild-type rat, CCh caused a transient swelling of the acinus, followed by a rapid agonist-induced cell shrinkage, reaching a plateau at 30 s. In the mutant rat, the acinus did not swell by CCh challenge, and the agonist-induced cell shrinkage was delayed by 8 s, reaching a transient minimum at around 1 min, and recovered spontaneously even though CCh was persistently present. In the unstimulated wild-type acinar cells, E (a) was 3.4 ± 0.6 kcal mol(-1) and showed no detectable change after CCh stimulation. In the unstimulated mutant acinar cells, high E (a) value (5.9 ± 0.1 kcal mol(-1)) was detected and showed a minimal decrease after CCh stimulation (5.0 ± 0.3 kcal mol(-1)). These results suggested that AQP5 was the main pathway for water transport in the acinar cells and that it was responsible for the rapid agonist-induced acinar cell shrinkage and also necessary to keep the acinar cell volume reduced during the steady secretion in the wild-type rat.

  6. Ae4 (Slc4a9) Anion Exchanger Drives Cl- Uptake-dependent Fluid Secretion by Mouse Submandibular Gland Acinar Cells.

    Science.gov (United States)

    Peña-Münzenmayer, Gaspar; Catalán, Marcelo A; Kondo, Yusuke; Jaramillo, Yasna; Liu, Frances; Shull, Gary E; Melvin, James E

    2015-04-24

    Transcellular Cl(-) movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na(+)-K(+)-2Cl(-) cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl(-) above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl(-) uptake pathway concentrates Cl(-) ions in acinar cells. To identify alternative molecular mechanisms, we studied mice lacking Ae2 and Ae4 Cl(-)/HCO3 (-) exchangers. We found that salivation stimulated by muscarinic and β-adrenergic receptor agonists was normal in the submandibular glands of Ae2(-/-) mice. In contrast, saliva secretion was reduced by 35% in Ae4(-/-) mice. The decrease in salivation was not related to loss of Na(+)-K(+)-2Cl(-) cotransporter or Na(+)/H(+) exchanger activity in Ae4(-/-) mice but correlated with reduced Cl(-) uptake during β-adrenergic receptor activation of cAMP signaling. Direct measurements of Cl(-)/HCO3 (-) exchanger activity revealed that HCO3 (-)-dependent Cl(-) uptake was reduced in the acinar cells of Ae2(-/-) and Ae4(-/-) mice. Moreover, Cl(-)/HCO3 (-) exchanger activity was nearly abolished in double Ae4/Ae2 knock-out mice, suggesting that most of the Cl(-)/HCO3 (-) exchanger activity in submandibular acinar cells depends on Ae2 and Ae4 expression. In conclusion, both Ae2 and Ae4 anion exchangers are functionally expressed in submandibular acinar cells; however, only Ae4 expression appears to be important for cAMP-dependent regulation of fluid secretion.

  7. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    Institute of Scientific and Technical Information of China (English)

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  8. Formation of post-confluence structure in human parotid gland acinar cells on PLGA through regulation of E-cadherin.

    Science.gov (United States)

    Chan, Yen-Hui; Huang, Tsung-Wei; Chou, Ya-Shuan; Hsu, Sheng-Hao; Su, Wei-Fang; Lou, Pei-Jen; Young, Tai-Horng

    2012-01-01

    As a potential solution for patients to retrieve their lost salivary gland functions, tissue engineering of an auto-secretory device is profoundly needed. Under serum-free environment, primary human parotid gland acinar (PGAC) cells can be obtained. After reaching confluence, PGAC cells spontaneously form three-dimension (3D) cell aggregations, termed post-confluence structure (PCS), and change their behaviors. Poly (lactic-co-glycolic acid) (PLGA) has been widely used in the field of biomedical applications because of its biodegradable properties for desired functions. Nonetheless, the role of PLGA in facilitating PGAC cells to form PCS has seldom been explored to recover epithelial characteristics. In this study, PGAC cells were found to have a greater tendency to form PCS on PLGA than on tissue culture polystyrene (TCPS). By tracing cell migration paths and modulating E-cadherin activity with specific inhibitor or antibody, we demonstrated that the static force of homophilic interaction on surfaces of individual cells, but not the dynamics of cell migration, played a more important role in PCS formation. Thus, PLGA was successfully confirmed to support PGAC cells to form more PCS through the effects on enhancing E-cadherin expression, which is associated with FAK/ILK/Snail expression in PGAC cells. This result indicates that selective appropriate biomaterials may be potentially useful in generating 3D PCS on two-dimension (2D) substrate without fabricating a complex 3D scaffold.

  9. A comparison study of pancreatic acinar cell carcinoma with ductal adenocarcinoma using computed tomography in Chinese patients

    Directory of Open Access Journals (Sweden)

    Wang Q

    2016-09-01

    Full Text Available Qingbing Wang,1,2 Xiaolin Wang,1,2 Rongfang Guo,2,3 Guoping Li1,2 1Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 2Shanghai Institute of Medical Imaging, 3Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China Abstract: Pancreatic acinar cell carcinoma (ACC is a rare tumor that is difficult to diagnose preoperatively. The aim of this study was to evaluate and describe the computed tomography (CT features of ACC and compare the results with pancreatic ductal adenocarcinoma (DAC for improving preoperative diagnosis. The control group consisted of 34 patients with DAC collected from the pathology electronic database. The CT imaging from nine patients with pathologically confirmed ACC was retrospectively reviewed. Two radiologists independently assessed the tumor location, size, texture, and enhancement patterns. We found that 64.3% (9/14 of ACC tumors were homogeneous and 35.7% (5/14 had necrosis. The percentage of common bile duct and pancreatic ductal dilation was 14.3% (2/14 and 7.1% (1/14, respectively. The mean size of ACC was 50.1±24.2 mm. The mean attenuation of ACC was 35.4±3.9 Hounsfield unit (HU before enhancement, 73.1±42.9 HU in arterial phase, and 71.8±15.6 HU in port venous phase. It is difficult to distinguish ACC from DAC preoperatively only based on CT findings. However, compared with DAC, we found that ACC tumors are likely to be larger and contain more heterogeneous intratumoral necrotic hypovascular regions, and less pancreatic ductal and common biliary dilation. Keywords: acinar cell carcinoma, computed tomography, pancreatic ductal carcinoma, pancreas

  10. Effects of Baicalin on inflammatory mediators and pancreatic acinar cell apoptosis in rats with sever acute pancreatitis

    Directory of Open Access Journals (Sweden)

    zhang xiping

    2009-02-01

    Full Text Available

    • BACKGROUND: To investigate the effects of Baicalin and Octreotide on inflammatory mediators and pancreatic acinar cells apoptosis of rats with severe acute pancreatitis (SAP.
    • METHODS: SD rats were randomly divided into sham operated group (I group, model control group (II group, Baicalin treated group (III group and Octreotide treated group (IV group. Each group was also divided into subgroup of 3, 6 and 12 h (n = 15. The mortality rate, ascites/body weight ratio as well as the level of endotoxin, NO and ET-1 in blood were measured. The pathological severity score of pancreas, apoptotic indexes, and expression levels of Bax and Bcl-2 proteins in each group were investigated.
    • RESULTS: The survival rate of III and IV group has a significant difference compared with II group (P12 h < 0.05. The ascites volume, contents of inflammatory mediators in blood and pathological severity score of pancreas of III and IV group declined at different degrees compared to II group (P < 0.05, P < 0.01 or P < 0.001. Apoptotic index in III group was significantly higher than that in II group at 3 and 6 h (P3, 6 h < 0.05. Apoptotic index in IV group was significantly higher than that in II group at pancreatic tail at 6 h (P6 h < 0.05. Expression level of Bax in III group was significantly higher than that in II group (pancreatic head P3 h,6 h < 0.01, pancreatic tail P3 h < 0.001.
    • CONCLUSIONS: Compared with Octreotide in the treatment of SAP, the protective mechanisms of Baicalin include reducing the excessive inflammatory mediators’ release, inducing the pancreatic acinar cells apoptosis.
    • KEY WORDS: Severe acute pancreatitis, baicalin, octreotide, inflammatory mediators, apoptosis, tissue microarrays.

  11. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease.

    Science.gov (United States)

    Teos, L Y; Zheng, C-Y; Liu, X; Swaim, W D; Goldsmith, C M; Cotrim, A P; Baum, B J; Ambudkar, I S

    2016-07-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  12. Simplification of vacuole structure during plant cell death triggered by culture filtrates of Erwinia carotovora

    Institute of Scientific and Technical Information of China (English)

    Yumi Hirakawa; Toshihisa Nomura; Seiichiro Hasezawa; Takumi Higaki

    2015-01-01

    Vacuoles are suggested to play crucial roles in plant defense-related cel death. During programmed cel death, previous live cel imaging studies have observed vacuoles to become simpler in structure and have implicated this simplification as a prelude to the vacuole’s rupture and consequent lysis of the plasma membrane. Here, we examined dynamics of the vacuole in cel cycle-synchronized tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yel ow 2) cel s during cel death induced by application of culture filtrates of Erwinia carotovora. The filtrate induced death in about 90%of the cel s by 24 h. Prior to cel death, vacuole shape simplified and endoplasmic actin filaments disassembled;however, the vacuoles did not rupture until after plasma membrane integrity was lost. Instead of facilitating rupture, the simplification of vacuole structure might play a role in the retrieval of membrane components needed for defense-related cel death.

  13. Mitochondrial targeted β-lapachone induces mitochondrial dysfunction and catastrophic vacuolization in cancer cells.

    Science.gov (United States)

    Ma, Jing; Lim, Chaemin; Sacher, Joshua R; Van Houten, Bennett; Qian, Wei; Wipf, Peter

    2015-11-01

    Mitochondria play important roles in tumor cell physiology and survival by providing energy and metabolites for proliferation and metastasis. As part of their oncogenic status, cancer cells frequently produce increased levels of mitochondrial-generated reactive oxygen species (ROS). However, extensive stimulation of ROS generation in mitochondria has been shown to be able to induce cancer cell death, and is one of the major mechanisms of action of many anticancer agents. We hypothesized that enhancing mitochondrial ROS generation through direct targeting of a ROS generator into mitochondria will exhibit tumor cell selectivity, as well as high efficacy in inducing cancer cell death. We thus synthesized a mitochondrial targeted version of β-lapachone (XJB-Lapachone) based on our XJB mitochondrial targeting platform. We found that the mitochondrial targeted β-lapachone is more efficient in inducing apoptosis compared to unconjugated β-lapachone, and the tumor cell selectivity is maintained. XJB-Lapachone also induced extensive cellular vacuolization and autophagy at a concentration not observed with unconjugated β-lapachone. Through characterization of mitochondrial function we revealed that XJB-Lapachone is indeed more capable of stimulating ROS generation in mitochondria, which led to a dramatic mitochondrial uncoupling and autophagic degradation of mitochondria. Taken together, we have demonstrated that targeting β-lapachone accomplishes higher efficacy through inducing ROS generation directly in mitochondria, resulting in extensive mitochondrial and cellular damage. XJB-Lapachone will thus help to establish a novel platform for the design of next generation mitochondrial targeted ROS generators for cancer therapy.

  14. Metastatic pancreatic acinar cell carcinoma in a younger male with marked AFP production: A potential pitfall on fine needle aspiration biopsy.

    Science.gov (United States)

    Valente, Kari; Yacoub, George; Cappellari, James O; Parks, Graham

    2017-02-01

    A 30-year-old male presented to his doctor with complaints of abdominal pain and was found to have retroperitoneal as well as multiple hepatic masses. A serum alpha-fetoprotein (AFP) level was significantly elevated (17,373 ng mL(-1) ), raising suspicions for a metastatic germ cell tumor. Fine needle aspiration biopsy of the pancreatic lesion revealed atypical epithelioid cells with round nuclei, large prominent nucleoli, and granular cytoplasm. The morphologic differential diagnosis included pancreatic neoplasm, metastatic germ cell tumor, other metastatic carcinoma, and melanoma. An extensive panel of immunohistochemical stains confirmed the diagnosis of acinar cell carcinoma. The diagnosis of acinar cell carcinoma could be confounded by the markedly increased AFP level, particularly in the setting of a retroperitoneal mass in a younger male. The increased AFP level in the setting of an acinar cell tumor is a potential pitfall to correct diagnosis by cytology. As the treatment for these two entities differs considerably, acute awareness of the phenomenon is important. We present a case of pancreatic ACC with an increased AFP level diagnosed on a cytology specimen. Diagn. Cytopathol. 2017;45:133-136. © 2016 Wiley Periodicals, Inc.

  15. Protein kinase C expression in salivary gland acinar epithelial cells in non-obese diabetic mice, an experimental model for Sjögren's syndrome.

    Science.gov (United States)

    Tensing, E-K; Ma, J; Hukkanen, M; Fox, H S; Li, T-F; Törnwall, J; Konttinen, Y T

    2005-01-01

    We planned to investigate the expression of protein kinase C (PKC) isoforms in acinar epithelial cells of salivary glands in the non-obese diabetic (NOD) mouse to find out if they develop changes of the PKC system like those seen in the human counterpart, i.e. in Sjögren's syndrome. Parotid, submandibular, and sublingual glands from NOD and control BALB/c mice were stained with a panel of monoclonal antibodies directed against conventional (alpha, beta, and gamma), novel (delta, epsilon, and theta), and atypical (lambda and iota) PKC isoforms using the streptavidin/HRP method. Similarly to human labial salivary glands, acinar epithelial cells of the healthy control BALB/c mice contained two of the conventional PKC isoforms, alpha and beta. Acinar and ductal epithelial cells also contained the atypical PKC isoforms lambda and iota. PKC isoforms gamma, delta, epsilon, and theta were not found. NOD mice which displayed focal sialadenitis contained the same conventional and atypical PKC isoforms. The acinar cells in NOD mice, in contrast to the Sjögren's syndrome patients, did not lack PKC alpha or beta. On the contrary, PKC alpha and beta staining was stronger than in the control BALB/c mice. The present results demonstrate that both conventional and atypical PKC isoforms participate in the salivary epithelial cell biology and that there are mouse strain-associated and/or disease state-associated changes in their expression. The lack of PKC alpha and beta isoforms found in Sjögren's syndrome was not reproduced in NOD mice, which discloses one more difference between the human disease and its NOD mouse model.

  16. 鼻中隔涎腺腺泡细胞癌1例%Salivary gland acinar cell carcinoma at nasal septum:a case report

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Salivary gland acinar cell carcinoma is a rare low grade malignant tumor,which always occurs in the parotid,submandibular and sublingual salivary glands,but extremely rare occurs in the nasal septum.This paper reports a case of the salivary gland acinar cell carcinoma that located in the nasal septum.%涎腺腺泡细胞癌是一种临床上少见的低度恶性肿瘤,多发生于腮腺、颌下腺、舌下腺及小唾液腺等涎腺。发生于鼻中隔的极为罕见,本文报道一例近期发现的位于鼻中隔的涎腺腺泡细胞癌。

  17. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation

    Science.gov (United States)

    Barrias, Emile Santos; de Carvalho, Tecia Maria Ulisses; De Souza, Wanderley

    2013-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes, and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T. cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T. cruzi with phagocytic or non-phagocytic cell types, plasma membrane (PM) protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis, and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes, and lysosomes, participate in the formation of the nascent parasitophorous vacuole (PV). Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the PV release from the host cell PM. This review focuses on the multiple pathways that T. cruzi can use to enter the host cells until complete PV formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, and endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss others mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair. PMID:23914186

  18. Delivery of prolamins to the protein storage vacuole in maize aleurone cells.

    Science.gov (United States)

    Reyes, Francisca C; Chung, Taijoon; Holding, David; Jung, Rudolf; Vierstra, Richard; Otegui, Marisa S

    2011-02-01

    Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals.

  19. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient

    Directory of Open Access Journals (Sweden)

    Sarah Pfrommer

    2013-09-01

    Full Text Available Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life.

  20. Successful Salvage Chemotherapy with FOLFIRINOX for Recurrent Mixed Acinar Cell Carcinoma and Ductal Adenocarcinoma of the Pancreas in an Adolescent Patient.

    Science.gov (United States)

    Pfrommer, Sarah; Weber, Achim; Dutkowski, Philipp; Schäfer, Niklaus G; Müllhaupt, Beat; Bourquin, Jean-Pierre; Breitenstein, Stefan; Pestalozzi, Bernhard C; Stenner, Frank; Renner, Christoph; D'Addario, Giannicola; Graf, Hans-Jörg; Knuth, Alexander; Clavien, Pierre-Alain; Samaras, Panagiotis

    2013-01-01

    Pancreatic tumors are rare in children and adolescents. Here, we report the case of a 15-year-old boy who presented with a mixed acinar cell carcinoma/ductal adenocarcinoma with blastomatous components. He received multimodal treatment including various chemotherapy regimens and multistep surgery including liver transplantation. Introduction of FOLFIRINOX after relapse repeatedly achieved a durable metabolic and clinical response with good quality of life.

  1. Leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of prostaglandin and constitutive nitric oxide synthase pathways.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2008-04-01

    Leptin, a pleiotropic cytokine secreted by adipocytes but also identified in salivary glands and saliva, is recognized as an important element of oral mucosal defense. Here, we report that in sublingual salivary glands leptin protects the acinar cells of against ethanol cytotoxicity. We show that ethanol- induced cytotoxicity, characterized by a marked drop in the acinar cell capacity for NO production, arachidonic acid release and prostaglandin generation, was subject to suppression by leptin. The loss in countering capacity of leptin on the ethanol-induced cytotoxicity was attained with cyclooxygenase inhibitor, indomethacin and nitric oxide synthase (cNOS) inhibitor, L-NAME, as well as PP2, an inhibitor of Src kinase. Indomethacin, while not affecting leptin-induced arachidonic acid release, caused the inhibition in PGE2 generation, pretreatment with L-NAME led to the inhibition in NO production, whereas PP2 exerted the inhibitory effect on leptin-induced changes in NO, arachidonic acid, and PGE2. The leptin-induced changes in arachidonic acid release and PGE2 generation were blocked by ERK inhibitor, PD98059, but not by PI3K inhibitor, wortmannin. Further, leptin suppression of ethanol cytotoxicity was reflected in the increased Akt and cNOS phosphorylation that was sensitive to PP2. Moreover, the stimulatory effect of leptin on the acinar cell cNOS activity was inhibited not only by PP2, but also by Akt inhibitor, SH-5, while wortmannin had no effect. Our findings demonstrate that leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of MAPK/ERK and Akt that result in up-regulation of the respective prostaglandin and nitric oxide synthase pathways.

  2. SGLT1 protein expression in plasma membrane of acinar cells correlates with the sympathetic outflow to salivary glands in diabetic and hypertensive rats.

    Science.gov (United States)

    Sabino-Silva, Robinson; Alves-Wagner, Ana B T; Burgi, Katia; Okamoto, Maristela M; Alves, Adilson S; Lima, Guilherme A; Freitas, Helayne S; Antunes, Vagner R; Machado, Ubiratan F

    2010-12-01

    Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (∼30%, P acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

  3. TP53 alterations in pancreatic acinar cell carcinoma: new insights into the molecular pathology of this rare cancer.

    Science.gov (United States)

    La Rosa, Stefano; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Furlan, Daniela; Sahnane, Nora; Vanoli, Alessandro; Albarello, Luca; Zhang, Lizhi; Notohara, Kenji; Casnedi, Selenia; Chenard, Marie-Pierre; Adsay, Volkan; Asioli, Sofia; Capella, Carlo; Sessa, Fausto

    2016-03-01

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) are poorly understood and have been reported as being different from those in ductal adenocarcinomas. Loss of TP53 gene function in the pathogenesis of ACCs is controversial since contradictory findings have been published. A comprehensive analysis of the different possible genetic and epigenetic mechanisms leading to TP53 alteration in ACC has never been reported and hence the role of TP53 in the pathogenesis and/or progression of ACC remains unclear. We investigated TP53 alterations in 54 tumor samples from 44 patients, including primary and metastatic ACC, using sequencing analysis, methylation-specific multiplex ligation probe amplification, fluorescence in situ hybridization, and immunohistochemistry. TP53 mutations were found in 13 % of primary ACCs and in 31 % of metastases. Primary ACCs and metastases showed the same mutational profile, with the exception of one case, characterized by a wild-type sequence in the primary carcinoma and a mutation in the corresponding metastasis. FISH analysis revealed deletion of the TP53 region in 53 % of primary ACCs and in 50 % of metastases. Promoter hypermethylation was found in one case. The molecular alterations correlated well with the immunohistochemical findings. A statistically significant association was found between the combination of mutation of one allele and loss of the other allele of TP53 and worse survival.

  4. CT and MR imaging of multilocular acinar cell cystadenoma: comparison with branch duct intraductal papillary mucinous neoplasia (IPMNs)

    Energy Technology Data Exchange (ETDEWEB)

    Delavaud, Christophe; Assignies, Gaspard d' ; Vilgrain, Valerie; Vullierme, Marie-Pierre [Hopital Beaujon, Service de Radiologie, Clichy (France); Cros, Jerome [Hopital Beaujon, Service d' Anatomopathologie, Clichy (France); Ruszniewski, Philippe; Hammel, Pascal; Levy, Philippe [Hopital Beaujon, Service de Pancreato-Gastro-Enterologie, Clichy (France); Couvelard, Anne [Hopital Bichat, Service d' Anatomopathologie, Paris (France); Sauvanet, Alain; Dokmak, Safi [Hopital Beaujon, Service de Chirurgie Hepato-Pancreato-Biliaire, Clichy (France)

    2014-09-15

    To describe CT and MR imaging findings of acinar cell cystadenoma (ACC) of the pancreas and to compare them with those of branch duct intraductal papillary mucinous neoplasia (BD-IPMN) to identify distinctive elements. Five patients with ACC and the 20 consecutive patients with histologically proven BD-IPMN were retrospectively included. Clinical and biological information was collected and histological data reviewed. CT and MR findings were analysed blinded to pathological diagnosis in order to identify imaging diagnostic criteria of ACC. Patients with ACC were symptomatic in all but one case and were younger than those with BD-IPMN (p = 0.006). Four radiological criteria allowed for differentiating ACC from IPMN: five or more cysts, clustered peripheral small cysts, presence of cyst calcifications and absence of communication with the main pancreatic duct (p < 0.05). Presence of at least two or three of these imaging criteria had a strong diagnostic value for ACC with a sensitivity of 100 % and 80 % and a specificity of 85 % and 100 %, respectively. Preoperative differential diagnosis between ACC and BD-IPMN can be achieved using a combination of four CT and/or MR imaging criteria. Recognition of ACC patients could change patient management and lead to more conservative treatment. (orig.)

  5. Early events of secretory granule formation in the rat parotid acinar cell under the influence of isoproterenol. An ultrastructural and lectin cytochemical study

    Directory of Open Access Journals (Sweden)

    F D’Amico

    2009-12-01

    Full Text Available The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, Glycine max agglutinin (SBA, Arachys hypogaea agglutinin (PNA]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory gran- ules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.

  6. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Directory of Open Access Journals (Sweden)

    Noriaki Kadohama

    Full Text Available It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg' and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  7. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Science.gov (United States)

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  8. Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2005-05-01

    Full Text Available Abstract Background Plant pigmentation is affected by a variety of factors. Light, an important plant developmental signal, influences the accumulation of anthocyanins primarily through the activation of the transcription factors that regulate the flavonoid biosynthetic pathway. In this study, we utilized maize Black Mexican Sweet (BMS cells expressing the R and C1 regulators of anthocyanin biosynthesis from a light-insensitive promoter as a means to investigate the existence of additional levels of control of pigmentation by light. Results BMS cells expressing the R and C1 regulators from the CaMV 35S constitutive promoter accumulate anthocyanins when grown in complete darkness, suggesting that the transcription factors R and C1 are sufficient for the transcription of the genes corresponding to the structural enzymes of the pathway, with no requirement for additional light-induced regulators. Interestingly, light induces a "darkening" in the color of the purple anthocyanin pigmentation of transgenic BMS cells expressing R and C1. This change in the pigment hue is not associated with a variation in the levels or types of anthocyanins present, or with an alteration of the transcript levels of several flavonoid biosynthetic genes. However, cytological observations show that light drives unexpected changes in the morphology and distribution of the anthocyanins-containing vacuolar compartments. Conclusion By uncoupling the effect of light on anthocyanin accumulation, we have found light to induce the fusion of anthocyanin-containing vacuoles, the coalescence of anthocyanic vacuolar inclusion (AVI-like structures contained, and the spread of anthocyanins from the inclusions into the vacuolar sap. Similar light-induced alterations in vacuolar morphology are also evident in the epidermal cells of maize floral whorls accumulating anthocyanins. Our findings suggest a novel mechanism for the action of light on the vacuolar storage of anthocyanin.

  9. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells.

    Science.gov (United States)

    Guyer, Debra M; Radulovic, Suzana; Jones, Faye-Ellen; Mobley, Harry L T

    2002-08-01

    The secreted autotransporter toxin (Sat) of uropathogenic Escherichia coli exhibits cytopathic activity upon incubation with HEp-2 cells. We further investigated the effects of Sat on cell lines more relevant to the urinary tract, namely, those derived from bladder and kidney epithelium. Sat elicited elongation of cells and apparent loosening of cellular junctions upon incubation with Vero kidney cells. Additionally, incubation with Sat triggered significant vacuolation within the cytoplasm of both human bladder (CRL-1749) and kidney (CRL-1573) cell lines. This activity has been associated with only a few other known toxins. Following transurethral infection of CBA mice with a sat mutant, no reduction of CFU in urine, bladder, or kidney tissue was seen compared to that in mice infected with wild-type E. coli CFT073. However, significant histological changes were observed within the kidneys of mice infected with wild-type E. coli CFT073, including dissolution of the glomerular membrane and vacuolation of proximal tubule cells. Such damage was not observed in kidney sections of mice infected with a Sat-deficient mutant. These results indicate that Sat, a vacuolating cytotoxin expressed by uropathogenic E. coli CFT073, elicits defined damage to kidney epithelium during upper urinary tract infection and thus contributes to pathogenesis of urinary tract infection.

  10. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  11. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation.

    Science.gov (United States)

    Tateishi, Yoshihisa; Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-02-01

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by gamma-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.

  12. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades

    Science.gov (United States)

    Sancho, Veronica; Berna, Marc J.; Thill, Michelle; Jensen, R. T.

    2011-01-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal(GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin(CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA were present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCKA-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125FAK and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ’s direct association with AKT, RafA, RafC and Lyn. These results show for the first time PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth). PMID:21810446

  13. Characteristics and mechanism of enzyme secretion and increase in [ Ca2+ ]i in Saikosaponin(I) stimulated rat pancreatic acinar cells

    Institute of Scientific and Technical Information of China (English)

    Yi Yu; Wen-Xiu Yang; Hui Wang; Wen-Zheng Zhang; Bao-Hua Liu; Zhi-Yong Dong

    2002-01-01

    AIM: This investigation was to reveal the characteristics andmechanism of enzyme secretion and increase in [ Ca2+ ]1stimulated by saikosaponin(I) [ SA(I) ] in rat pancreatic acini.METHODS: Pancreatic acini were prepared from male Wistarrats. Isolated acinar cells were suspended in Eagle's MEMsolution. After adding drugs, the incubation was performedat 37 ℃ for a set period of time. Amylase of supernatant wasassayed using starch-iodide reaction. Isolated acinar singlecell was incubated with Fura-2/AMat 37 ℃, then cells werewashed and resuspended in fresh solution and attached tothe chamber. Cytoplasm [ Ca2+ ]i of a single cell wasexpressed by fluorescence ratio F340/F380 recorded in aNikon PI Ca2+ measurement system.RESULTS: Rate course of amylase secretion stimulated bySA(I) in rat pancreatic acini appeared in bell-like shape. Thepeak amplitude increased depended on SA(I) concentration.The maximum rate responded to 1 × 10-5 mol/L SA(I) was 13.1-fold of basal and the rate decreased to basal level at 30min. CCK-8 receptor antagonist Bt2-cGMP markedly inhibitedamylase secretion stimulated by SA (I) and the dose-effectrelationship was similar to that by CCK-8. [Ca2+ ]i in a singleacinar cell rose to the peak st 5 min after adding 5 × l06 mol/LSA(I) and was 5. 1-fold of basal level. In addition, there was asecondary increase after the initial peak. GDP could inhibitboth the rate of amylase secretion and rising of [Ca2+ ]istimulated by SA(I) in a single pancreatic acinar cell.CONCLUSION: SA (I) is highly efficient in promoting thesecretion of enzymes synthesized in rat pancreatic acini andraising intracellular [Ca2+ ]i. Signaling transduction pathwayof SA(I) involves activating special membrane receptor andincrease in cytoplasm [Ca2+ ]i sequentially.

  14. Regulation of Ca²⁺ release through inositol 1,4,5-trisphosphate receptors by adenine nucleotides in parotid acinar cells.

    Science.gov (United States)

    Park, Hyung Seo; Betzenhauser, Matthew J; Zhang, Yu; Yule, David I

    2012-01-01

    Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we have investigated the role of adenine nucleotides in modulating Ca(2+) release in mouse parotid acinar cells. In permeabilized cells, the Ca(2+) release rate induced by submaximal [InsP(3)] was increased by 5 mM ATP. Enhanced Ca(2+) release was not observed at saturating [InsP(3)]. The EC(50) for the augmented Ca(2+) release was ∼8 μM ATP. The effect was mimicked by nonhydrolysable ATP analogs. ADP and AMP also potentiated Ca(2+) release but were less potent than ATP. In acini isolated from InsP(3)R-2-null transgenic animals, the rate of Ca(2+) release was decreased under all conditions but now enhanced by ATP at all [InsP(3)]. In addition the EC(50) for ATP potentiation increased to ∼500 μM. These characteristics are consistent with the properties of the InsP(3)R-2 dominating the overall features of InsP(3)R-induced Ca(2+) release despite the expression of all isoforms. Finally, Ca(2+) signals were measured in intact parotid lobules by multiphoton microscopy. Consistent with the release data, carbachol-stimulated Ca(2+) signals were reduced in lobules exposed to experimental hypoxia compared with control lobules only at submaximal concentrations. Adenine nucleotide modulation of InsP(3)R in parotid acinar cells likely contributes to the properties of Ca(2+) signals in physiological and pathological conditions.

  15. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuan-Zhi Shi; Xiao-Fang Zhu; Jiang-Xue Wan; Gui-Xin Li; Shao-Jian Zheng

    2015-01-01

    Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu þ Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu þ Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles.

  16. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.

    Science.gov (United States)

    Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan

    2014-12-01

    Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.

  17. Neospora caninum Recruits Host Cell Structures to Its Parasitophorous Vacuole and Salvages Lipids from Organelles.

    Science.gov (United States)

    Nolan, Sabrina J; Romano, Julia D; Luechtefeld, Thomas; Coppens, Isabelle

    2015-05-01

    Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.

  18. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2010-01-01

    Full Text Available Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS. We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  19. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells.

    Science.gov (United States)

    Slomiany, Bronislaw L; Slomiany, Amalia

    2010-01-01

    Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS) activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS). We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  20. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo Jr., Billy W.

    2000-06-09

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  1. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Jr., Billy W. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  2. Vasoactive intestinal peptide/vasoactive intestinal peptide receptor relative expression in salivary glands as one endogenous modulator of acinar cell apoptosis in a murine model of Sjögren's syndrome.

    Science.gov (United States)

    Hauk, V; Calafat, M; Larocca, L; Fraccaroli, L; Grasso, E; Ramhorst, R; Leirós, C Pérez

    2011-12-01

    Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by a progressive oral and ocular dryness that correlates poorly with the autoimmune damage of the glands. It has been proposed that a loss of homeostatic equilibrium in the glands is partly responsible for salivary dysfunction with acinar cells involved actively in the pathogenesis of SS. The non-obese diabetic (NOD) mouse model of Sjögren's syndrome develops secretory dysfunction and early loss of glandular homeostatic mechanisms, with mild infiltration of the glands. Based on the vasodilator, prosecretory and trophic effects of the vasoactive intestinal peptide (VIP) on acini as well as its anti-inflammatory properties we hypothesized that the local expression of VIP/vasoactive intestinal peptide receptor (VPAC) system in salivary glands could have a role in acinar cell apoptosis and macrophage function thus influencing gland homeostasis. Here we show a progressive decline of VIP expression in submandibular glands of NOD mice with no changes in VPAC receptor expression compared with normal mice. The deep loss of endogenous VIP was associated with a loss of acinar cells through apoptotic mechanisms that could be induced further by tumour necrosis factor (TNF)-α and reversed by VIP through a cyclic adenosine-5'-monophosphate (cAMP)/protein kinase A (PKA)-mediated pathway. The clearance of apoptotic acinar cells by macrophages was impaired for NOD macrophages but a shift from inflammatory to regulatory phenotype was induced in macrophages during phagocytosis of apoptotic acinar cells. These results support that the decline in endogenous VIP/VPAC local levels might influence the survival/apoptosis intracellular set point in NOD acinar cells and their clearance, thus contributing to gland homeostasis loss.

  3. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages

    OpenAIRE

    Casadevall Arturo; Alvarez Mauricio

    2007-01-01

    Abstract Background The interaction between macrophages and Cryptococcus neoformans (Cn) is critical for containing dissemination of this pathogenic yeast. However, Cn can either lyse macrophages or escape from within them through a process known as phagosomal extrusion. Both events result in live extracellular yeasts capable of reproducing and disseminating in the extracellular milieu. Another method of exiting the intracellular confines of cells is through host cell-to-cell transfer of the ...

  4. Mixed acinar-neuroendocrine carcinoma of the pancreas

    DEFF Research Database (Denmark)

    Jakobsen, Mark; Klöppel, Günter; Detlefsen, Sönke

    2016-01-01

    cells in the cystic areas were reminiscent of acinar cells, and the majority was arranged in a solid growth pattern. Immunohistochemistry revealed >30% positivity for chymotrypsin, chromogranin A, synaptophysin, and CD56. The diagnosis of a mixed acinar-neuroendocrine carcinoma (MAEC) was made. Review...... of the English-language literature revealed 44 previously published cases of resected MAECs. We found that, compared to pure acinar cell carcinoma, patients with MAEC have a slightly higher age and are less frequently males, as the male / female ratio was almost equal. The histogenesis of MAEC is still...

  5. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8⁺ T cells.

    Directory of Open Access Journals (Sweden)

    Melanie J Harriff

    Full Text Available Mycobacterium tuberculosis (Mtb is transmitted via inhalation of aerosolized particles. While alveolar macrophages are thought to play a central role in the acquisition and control of this infection, Mtb also has ample opportunity to interact with the airway epithelium. In this regard, we have recently shown that the upper airways are enriched with a population of non-classical, MR1-restricted, Mtb-reactive CD8⁺ T cells (MAIT cells. Additionally, we have demonstrated that Mtb-infected epithelial cells lining the upper airways are capable of stimulating IFNγ production by MAIT cells. In this study, we demonstrate that airway epithelial cells efficiently stimulate IFNγ release by MAIT cells as well as HLA-B45 and HLA-E restricted T cell clones. Characterization of the intracellular localization of Mtb in epithelial cells indicates that the vacuole occupied by Mtb in epithelial cells is distinct from DC in that it acquires Rab7 molecules and does not retain markers of early endosomes such as Rab5. The Mtb vacuole is also heterogeneous as there is a varying degree of association with Lamp1 and HLA-I. Although the Mtb vacuole shares markers associated with the late endosome, it does not acidify, and the bacteria are able to replicate within the cell. This work demonstrates that Mtb infected lung epithelial cells are surprisingly efficient at stimulating IFNγ release by CD8⁺ T cells.

  6. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    Directory of Open Access Journals (Sweden)

    Verena Ibl

    2014-09-01

    Full Text Available The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  7. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells.

    Science.gov (United States)

    Ibl, Verena; Stoger, Eva

    2014-01-01

    The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs) in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  8. Effects of the disaggregation of high-polymerized particles in guard cell vacuoles on osmoregulation of stomatal aperture (stomata opening)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Observation under an electron microscope reveals that in closed and open stomata of V. faba, the average volume of particles in guard cell vacuoles (GCV) reduces about 3 orders in magnitude, while the distribution density of the particles increases about 2 orders of magnitude. By using the method of the ratio of fluorescent emissions with laser scanning confocal microscopy, the monitoring to stomata opening shows that during 10 to 30 s before the first distinguishable aperture of stomata, there is a change of pH in GCV about-0.5 units. A quick stomatal opening immediately follows the changes of pH in GCV to reach a steady aperture about 12μm in 100-200 s. This work proposes a model for the osmoregulation in GCV for stomatal opening. The proposed osmoregulation is related to the disaggregation of some polymerized particles inside GCV, which is probably induced by a -(pH in the vacuole. This model describes a process of osmoregulation that avoids the massive energy consuming transportation across cell membranes, which is a foundation of the current chemiosmotic hypothesis. This model is a supplement to the multiple controlling hypothesis for the stomatal movement, which widens research principle ideas for other quick movements in plants.

  9. Impact of PI3Kγ gene knockout on acinar cells in mice with acute pancreatitis%磷脂酰肌醇3-激酶γ基因敲除对急性胰腺炎小鼠腺泡细胞的影响

    Institute of Scientific and Technical Information of China (English)

    贾文焯; 孙建华; 余涛; 肖刚

    2012-01-01

    injections of cerulean and mice of the control group were subjected to exactly the same regimen of saline injections. In addition, the pancreatic acini were isolated from another two different sets of mice (8 per set), and then the acinar cells were stimulated with CCK-8 to prepare an in vitro AP model. Control cells were treated with DMSO instead of CCK-8. Pathological changes of the pancreatic tissues were assessed, and the serum level of amylase, trypsin activity in pancreatic tissues and acinar cells, and level amylase release from the acinar cells were measured. The HSP70 protein expressions in pancreatic tissues and acinar cells were determined by Western blot analysis.Results: In pathological observation, the pancreatic tissues from the control groups of both types of mice showed no abnormality, while both AP groups presented varying degrees of edema, necrosis and hemorrhage. The quantitative analysis showed that the number of necrotic acinar cells and vacuoles of the KO mice were significantly less than those of the WT mice (both P0.05), but the trypsin activity of the pancreatic tissues and isolated acinar cells of the KO mice were significantly lower than those of the WT mice in the AP groups (in vivo and in vitro) (both P0.05). Compared with the control groups, the HSP70 protein expressions in both pancreatic tissues and acinar cells increased obviously in AP groups (in vivo and in vitro), in which the HSP70 expression levels of the KO mice were significantly higher than those of the WT mice (both P<0.05).Conclusion: PI3Kγ may promote acinar necrosis in acute pancreatitis by down-regulating HSP70 protein expressions and enhancing activation of trypsinogen, but it has no obvious effect on amylase secretion.

  10. Fractionated irradiation and late changes in rat parotid gland: effects on the number of acinar cells, potassium efflux, and amylase secretion

    Energy Technology Data Exchange (ETDEWEB)

    Franzen, L.; Gustafsson, H.; Sundstroem, S.; Karlsson, M.; Littbrand, B.; Henriksson, R. (Umeaa Univ. Hospital (Sweden). Dept. of Oncology, Otorhinolaryngology, Histology and Cell Biology)

    1993-07-01

    The authors used different in vitro secretory models and quantitative morphological characterization of rat parotid gland following fractionated unilateral irradiation to one gland on a 5-day fraction schedule with 6 MV photons (total dose 30, 35, 40 and 45 Gy) or a two-fractions regimen in 5 days with total dose of 24 and 32 Gy. The contralateral shielded gland served as control, and parallel analyses of irradiated and control glands were performed 180 days following the last irradiation. The relative noradrenaline stimulated electrolyte secretion ([sup 86]rubidium tracer for potassium) was decreased in the irradiated compared with control glands. The noradrenaline-stimulated exocytotic amylase release was not significantly affected by irradiation, but the gland content of amylase was decreased dose-dependently. The quantitative morphological analysis revealed a dose-dependent decline in the number of acinar cells; the other parenchymal cells were unaffected by irradiation compared with controls. (author).

  11. Effects of a diet high in fish oil (MaxEPA) on the formation of micronucleated erythrocytes in blood and on the number of atypical acinar cell foci induced in rat pancreas by Azaserine

    NARCIS (Netherlands)

    Appel, M.J.; Woutersen, R.A.

    2004-01-01

    The present study was performed to investigate the influence of fish oil on the genotoxic effects of azaserine, using the formation of micronucleated erythrocytes as a measure for the degree of initiating potency and the number and size of putative preneoplastic pancreatic atypical acinar cell foci

  12. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system.

    Science.gov (United States)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage.

  13. Direct imaging of RAB27B-enriched secretory vesicle biogenesis in lacrimal acinar cells reveals origins on a nascent vesicle budding site.

    Directory of Open Access Journals (Sweden)

    Lilian Chiang

    Full Text Available This study uses YFP-tagged Rab27b expression in rabbit lacrimal gland acinar cells, which are polarized secretory epithelial cells, to characterize early stages of secretory vesicle trafficking. Here we demonstrate the utility of YFP-Rab27b to delineate new perspectives on the mechanisms of early vesicle biogenesis in lacrimal gland acinar cells, where information is significantly limited. Protocols were developed to deplete the mature YFP-Rab27b-enriched secretory vesicle pool in the subapical region of the cell, and confocal fluorescence microscopy was used to track vesicle replenishment. This analysis revealed a basally-localized organelle, which we termed the "nascent vesicle site," from which nascent vesicles appeared to emerge. Subapical vesicular YFP-Rab27b was co-localized with p150(Glued, a component of the dynactin cofactor of cytoplasmic dynein. Treatment with the microtubule-targeted agent, nocodazole, did not affect release of mature secretory vesicles, although during vesicle repletion it significantly altered nascent YFP-Rab27b-enriched secretory vesicle localization. Instead of moving to the subapical region, these vesicles were trapped at the nascent vesicle site which was adjacent to, if not a sub-compartment of, the trans-Golgi network. Finally, YFP-Rab27b-enriched secretory vesicles which reached the subapical cytoplasm appeared to acquire the actin-based motor protein, Myosin 5C. Our findings show that Rab27b enrichment occurs early in secretory vesicle formation, that secretory vesicles bud from a visually discernable nascent vesicle site, and that transport from the nascent vesicle site to the subapical region requires intact microtubules.

  14. Juliprosopine and juliprosine from prosopis juliflora leaves induce mitochondrial damage and cytoplasmic vacuolation on cocultured glial cells and neurons.

    Science.gov (United States)

    Silva, Victor Diogenes A; Pitanga, Bruno P S; Nascimento, Ravena P; Souza, Cleide S; Coelho, Paulo Lucas C; Menezes-Filho, Noélio; Silva, André Mário M; Costa, Maria de Fátima D; El-Bachá, Ramon S; Velozo, Eudes S; Costa, Silvia L

    2013-12-16

    Prosopis juliflora is a shrub largely used for animal and human consumption. However, ingestion has been shown to induce intoxication in animals, which is characterized by neuromuscular alterations induced by mechanisms that are not yet well understood. In this study, we investigated the cytotoxicity of a total alkaloid extract (TAE) and one alkaloid fraction (F32) obtained from P. juliflora leaves to rat cortical neurons and glial cells. Nuclear magnetic resonance characterization of F32 showed that this fraction is composed of a mixture of two piperidine alkaloids, juliprosopine (majority constituent) and juliprosine. TAE and F32 at concentrations between 0.3 and 45 μg/mL were tested for 24 h on neuron/glial cell primary cocultures. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test revealed that TAE and F32 were cytotoxic to cocultures, and their IC50 values were 31.07 and 7.362 μg/mL, respectively. Exposure to a subtoxic concentration of TAE or F32 (0.3-3 μg/mL) induced vacuolation and disruption of the astrocyte monolayer and neurite network, ultrastructural changes, characterized by formation of double-membrane vacuoles, and mitochondrial damage, associated with changes in β-tubulin III and glial fibrillary acidic protein expression. Microglial proliferation was also observed in cultures exposed to TAE or F32, with increasing levels of OX-42-positive cells. Considering that F32 was more cytotoxic than TAE and that F32 reproduced in vitro the main morphologic and ultrastructural changes of "cara torta" disease, we can also suggest that piperidine alkaloids juliprosopine and juliprosine are primarily responsible for the neurotoxic damage observed in animals after they have consumed the plant.

  15. The nucleocytoplasmic microfilament network in protoplasts from cultured soybean cells is a plastic entity that pervades the cytoplasm except the central vacuole.

    Science.gov (United States)

    Villanueva, Marco A; Schindler, Melvin; Wang, John L

    2005-11-01

    The microfilament network of cultured Glycine max cells (SB-1 line), and protoplasts was visualized with rhodamine-phalloidin under conditions that lysed the protoplast and changed the cell shape. The whole cell had the typical microfilament distribution of a "cage" around the nucleus, from which the large subcortical cables and transvacuolar strands radiated towards the cortex until it reached the cortical microfilament network. Upon cell wall removal, the network conserved its compartmentalization. Thus, the redistribution of the shape where the vacuole becomes a central entity, made the cytoplasm displace peripherally, but the network distribution was conserved. When protoplasts were lysed in a low osmotic medium, the vacuoles were gradually released intact. Under these conditions, the F-actin staining remained within the ghost of the cell, but none was detected in either emerging or almost completely released vacuoles. Most of the released F-actin was found in debris from the cell lysate in the form of microfilaments. When the ghosts were constrained in a coverslip with an air bubble, the shape of the ghost changed accordingly, but the microfilament network distribution remained constant. These results provide further evidence that the vacuole of plant cells does not have detectable associated F-actin. In addition, we demonstrate that the actin microfilament network is a moldable entity that can change its shape but keeps its distribution under constant conditions, in these cultured cells.

  16. 高脂饮食对大鼠胰腺腺泡细胞三磷酸肌醇表达及淀粉酶释放影响的体外研究%In vitro studies of the effects of high-fat dieton the expression of pancreatic acinar cells' IP3 and amylase release in rats

    Institute of Scientific and Technical Information of China (English)

    闫明先; 赵华清; 王亚茹; 李晓荣; 杨静; 王文奇; 王义国

    2012-01-01

    Objective To investigate the effects of high-fat diet on pancreatic acinar cells' IP3 expression and CCK-induced amylase release in rats.Methods Male Wistar rats were divided into high-fat diet group and normal diet group,they were fed for 4 weeks.Blood triglycerides,cholesterol,amylase and glucose levels were determined by automatic biochemical analyzer.Pancreatic tissues were taken for histopathological observations.Pancreatic acinar cells were isolated and cultured,and intracellular inositol 1,4,5-trisphosphate (IP3) was detected using a commercial kit.Amylase release rates were measured after CCK-8 stimulation.Results The rats in high-fat diet group appeared hyperlipidemia,vacuolization of acinar cells and the lymphocytes appeared around the acinar cells can be seen on the pancreatic tissue pathology staining.The levels of IP3 in acinar cells of rats fed a high-fat diet were higher than that of normal rats [(31.807 ± 3.448) pmol/106 cells vs (24.632 ± 3.649) pmol/106 cells,t=7.479,P<0.001];and amylase release rate in these rats'acinar cells were also higher than those of normal rats [when CCK-8=0.01 nmol/L:( 11.056 ±3.369)% vs (7.354 ± 2.181) %,t=3.912,P<0.001;when CCK-8=1 nmol/L:( 13.854 ± 4.087 ) % vs (9.432 ±2.477) %,t=3.939,P<0.001 ) after CCK-8 stimulation in different concentrations.Additionally,there was a positive co-relationship between acinar cell's IP3 level and amylase release (r=0.896,P<0.001 ).Conclusion Chronic high-fat diet induces hypersensitivity for pancreatic acinar cells' exocrine function,and IP3 as a signal molecule may play an important role in this process.%目的 探讨高脂饮食对胰腺腺泡细胞内三磷酸肌醇( IP3)表达及淀粉酶释放的影响.方法 雄性Wistar大鼠分为高脂饮食组和正常饮食组,分别喂养4周,全自动生化仪检测血液甘油三酯、胆固醇、淀粉酶和葡萄糖浓度,并观察胰腺病理组织学变化.两组大鼠分离并培养胰腺腺泡细胞,应用[3H

  17. Constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation in ghrelin protection against Porphyromonas gingivalis-induced salivary gland acinar cell apoptosis.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2010-06-01

    Recent advances in identifying the salivary constituents capable of influencing the oral mucosal inflammatory responses have brought to focus the importance of a peptide hormone, ghrelin. Here, we report on the involvement of ghrelin in controlling the apoptotic processes induced in sublingual salivary gland acinar cells by the lipopolysaccharide (LPS) of a periodontopathic bacterium, Porphyromonas gingivalis. We show that the countering effect of ghrelin on the LPS-induced acinar cell apoptosis was associated with the increase in constitutive nitric oxide synthase (cNOS) activity, and the reduction in caspase-3 and inducible nitric oxide synthase (iNOS). The loss in countering effect of ghrelin on the LPS-induced changes in apoptosis and caspase-3 activity was attained with Src kinase inhibitor, PP2, as well as Akt inhibitor, SH-5, and cNOS inhibitor, L-NAME, but not the iNOS inhibitor, 1400W. The effect of ghrelin on the LPS-induced changes in cNOS activity, moreover, was reflected in the increased cNOS phosphorylation that was sensitive to PP2 as well as SH-5. Furthermore, the ghrelin-induced up-regulation in cNOS activity was associated with the increase in caspase-3 S-nitrosylation that was susceptible to the blockage by SH-5 and L-NAME. The findings point to the involvement of ghrelin in Src/Akt kinase-mediated cNOS activation and the apoptogenic signal inhibition through the NO-induced caspase-3 S-nitrosylation.

  18. Role of epidermal growth factor receptor transactivation in the activation of cytosolic phospholipase A(2) in leptin protection of salivary gland acinar cells against ethanol cytotoxicity.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2009-06-01

    A pleiotropic hormone, leptin, secreted into saliva by the acinar cells of salivary glands is an important mediator of the processes of oral mucosal defense. Here, we report on the role of epidermal growth factor receptor (EGFR) transactivation in the signaling events that mediate leptin protection of sublingual salivary gland acinar cells against ethanol cytotoxicity. We show that the protective effect of leptin against ethanol cytotoxicity was associated with the increased EGFR protein tyrosine kinase and cytosolic phospholipase A(2) (cPLA(2)) activity, and characterized by a marked increase in matrix metalloproteinase MMP-9 and arachidonic acid (AA) release, and PGE(2) generation. The loss in countering capacity of leptin against ethanol cytotoxicity was attained with JAK inhibitor AG490, Src inhibitor PP2, and EGFR inhibitor AG1478, as well as ERK inhibitor PD98059. Moreover, the agents evoked also the inhibition in leptin-induced up-regulation in cPLA(2) activity, AA release, and PGE(2) generation. The changes caused by leptin in EGFR phosphorylation, MMP-9, and cPLA(2) activation were susceptible to suppression by metalloprotease inhibitor GM6001, but the production of MMP-9 was not affected by EGFR inhibitor AG1478 or PKC inhibitor Ro318220. These findings point to the involvement of MMP-9 in the event of leptin-induced EGFR transactivation that results in the signaling cascade leading to cPLA(2) activation and up-regulation in PGE(2) generation, thus providing new insights into the mechanism of oral mucosal protection against ethanol toxicity.

  19. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Clea Ruy, Deborah; Garcia-Sanchez, Lourdes; Jimenez-Blasco, Daniel; Fernandez-Bermejo, Miguel; Bolaños, Juan P; Salido, Gines M; Gonzalez, Antonio

    2015-10-01

    The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2-ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca(2+) in the extracellular medium, induced a slow and progressive increase of [Ca(2+)](c) toward a stable level. Melatonin did not inhibit the typical Ca(2+) response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca(2+) in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl(3), to inhibit Ca(2+) entry, we could not detect any change in [Ca(2+)](c). Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca(2+). When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca(2+) in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca(2+)]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca(2+). Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and

  20. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    Science.gov (United States)

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression.

  1. Targeting host syntaxin-5 preferentially blocks Leishmania parasitophorous vacuole development in infected cells and limits experimental Leishmania infections.

    Science.gov (United States)

    Canton, Johnathan; Kima, Peter E

    2012-10-01

    Our previous observations established a role for syntaxin-5 in the development of Leishmania parasitophorous vacuoles (LPVs). In this study, we took advantage of the recent identification of Retro-2, a small organic molecule that can cause the redistribution of syntaxin-5; we show herein that Retro-2 blocks LPV development within 2 hours of adding it to cells infected with Leishmania amazonensis. In infected cells incubated for 48 hours with Retro-2, LPV development was significantly limited; furthermore, infected cells harbored four to five times fewer parasites than infected cells incubated in vehicle alone. In vivo studies revealed that Retro-2 curbed experimental L. amazonensis infections in a dose-dependent manner. Retro-2 did not have any appreciable effect on the host cell physiological characteristics; furthermore, it had no apparent toxicity in experimental animals. An unexpected, but welcome, finding was that Retro-2 inhibited the replication of Leishmania parasites in axenic cultures. This study is significant because it identifies an endoplasmic reticulum/Golgi SNARE as a potential target for the control of Leishmania infections; moreover, it suggests that small organic molecules can be identified that can selectively disrupt the vesicle fusion machinery that promotes the development of pathogen-containing compartments without exerting toxic effects on the host.

  2. Knockdown of GRP78 promotes apoptosis in pancreatic acinar cells and attenuates the severity of cerulein and LPS induced pancreatic inflammation.

    Directory of Open Access Journals (Sweden)

    Yong Liu

    Full Text Available Acute pancreatitis (AP is a potentially lethal disease characterized by inflammation and parenchymal cell death; also, the severity of AP correlates directly with necrosis and inversely with apoptosis. However, mechanisms of regulating cell death in AP remain unclear. The endoplasmic reticulum (ER chaperone protein GRP78 has anti-apoptotic properties, in addition to modulating ER stress responses. This study used RNA interference (RNAi approach to investigate the potential role of GRP78 in regulating apoptosis during AP. In vitro models of AP were successfully developed by treating AR42J cells with cerulein or cerulein plus lipoplysaccharide (LPS. There was more pancreatic inflammation and less apoptosis with the cerulein plus LPS treatment. Furthermore, knockdown of GRP78 expression markedly promoted apoptosis and reduced necrosis in pancreatic acinar cells. This was accomplished by enhancing the activation of caspases and inhibiting the activity of X-linked inhibitor of apoptosis protein (XIAP, as well as a receptor interacting protein kinase-1(RIPK1, which is a key mediator of necrosis. This attenuated the severity of pancreatic inflammation, especially after cerulein plus LPS treatment. In conclusion, these findings indicate that GRP78 plays an anti-apoptotic role in regulating the cell death response during AP. Therefore, GRP78 is a potential therapeutic target for AP.

  3. Pancreatic ductal bicarbonate secretion: challenge of the acinar acid load

    Directory of Open Access Journals (Sweden)

    Peter eHegyi

    2011-07-01

    Full Text Available Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel, however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.

  4. Vacuole formation in mast cells responding to osmotic stress and to F-actin disassembly

    DEFF Research Database (Denmark)

    Koffer, Anna; Williams, Mark; Johansen, Torben

    2002-01-01

    Fluorescent probes were used to visualize the morphology of membranes and of F-actin in rat peritoneal mast cells, exposed to hyperosmotic medium and consequently reversed to isotonicity. Hypertonicity induced cell shrinkage followed by a regulatory volume increase, and cell alkalinization...

  5. Effects of stereochemistry, saturation, and hydrocarbon chain length on the ability of synthetic constrained azacyclic sphingolipids to trigger nutrient transporter down-regulation, vacuolation, and cell death.

    Science.gov (United States)

    Perryman, Michael S; Tessier, Jérémie; Wiher, Timothy; O'Donoghue, Heather; McCracken, Alison N; Kim, Seong M; Nguyen, Dean G; Simitian, Grigor S; Viana, Matheus; Rafelski, Susanne; Edinger, Aimee L; Hanessian, Stephen

    2016-09-15

    Constrained analogs containing a 2-hydroxymethylpyrrolidine core of the natural sphingolipids sphingosine, sphinganine, N,N-dimethylsphingosine and N-acetyl variants of sphingosine and sphinganine (C2-ceramide and dihydro-C2-ceramide) were synthesized and evaluated for their ability to down-regulate nutrient transporter proteins and trigger cytoplasmic vacuolation in mammalian cells. In cancer cells, the disruptions in intracellular trafficking produced by these sphingolipids lead to cancer cell death by starvation. Structure activity studies were conducted by varying the length of the hydrocarbon chain, the degree of unsaturation and the presence or absence of an aryl moiety on the appended chains, and stereochemistry at two stereogenic centers. In general, cytotoxicity was positively correlated with nutrient transporter down-regulation and vacuolation. This study was intended to identify structural and functional features in lead compounds that best contribute to potency, and to develop chemical biology tools that could be used to isolate the different protein targets responsible for nutrient transporter loss and cytoplasmic vacuolation. A molecule that produces maximal vacuolation and transporter loss is expected to have the maximal anti-cancer activity and would be a lead compound.

  6. Tissue microarrays in pathological examination of apoptotic acinar cells induced by dexamethasone in the pancreas of rats with severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Xi-Ping Zhang; Hua Tian; Bei Lu; Li Chen; Ru-Jun Xu; Ke-Yi Wang; Zhi-Wei Wang; Qi-Hui Cheng; Hai-Ping Shen

    2007-01-01

    BACKGROUND:The good therapeutic effects of large dose of dexamethasone on severe acute pancreatitis (SAP) patients have been proved. This study was designed to investigate the inlfuence of dexamethasone on apoptosis of acinar cells in the pancreas of rats with SAP and the protein expression of the apoptosis-regulating genes Bax and Bcl-2. METHODS: Ninety Sprague-Dawley rats with SAP were randomly divided into a model group and a dexamethasone treated group (45 rats in each group), and another 45 rats formed the sham operation group. Survival rates were calculated and gross pathological changes in the pancreas of each group were observed under a light microscope 3, 6 and 12 hours after operation. Tissue microarray technology was applied to prepare pancreatic tissue sections. The changes in Bax and Bcl-2 protein expression levels of pancreatic tissues from each group were assessed by immunohistochemical staining, and TUNEL staining was used to evaluate changes in apoptosis index. RESULTS: The model and treated groups did not differ in mortality at each time point. The pathological score for the pancreas in the treated group was signiifcantly lower than that in the model group at 3 and 6 hours. The positive rates of Bax protein expression in the head and tail of the pancreas in the treated group at all time points were all markedly higher than those of the model group. The positive rate of Bcl-2 protein expression in the head of the pancreas in the treated group was signiifcantly higher than that of the model group at 3 hours. TUNEL staining showed that the pancreas head and tail apoptosis indices of the treated group were markedly higher than those of the model group after 6 hours. CONCLUSIONS: Apoptosis may be a protective response to pancreatic cell injury. The mechanism of action of dexamethasone in treating SAP may be related to the apoptosis of acinar cells in the pancreas induced by apoptosis-regulating genes such as Bax and Bcl-2. The advantages of tissue

  7. Protein dynamics and proteolysis in plant vacuoles.

    Science.gov (United States)

    Müntz, Klaus

    2007-01-01

    Plant cells cannot live without their vacuoles. The tissues and organs of a plant contain a wide variety of differentiated and specialized vacuoles -- even a single plant cell can possess two or more types of vacuoles. Vacuolar proteins are encoded by nuclear genes and synthesized in the cytoplasm. Their transport into the vacuolar compartment is under cytoplasmic control. Transcription seems to be a major control level for differential protein supply to the vacuoles. It is at this level that vacuole differentiation and functions are mainly integrated into cellular processes. Recycling amino acids generated by protein degradation is a major function of the vacuole. This is most evident when storage proteins are mobilized in storage tissues of generative or vegetative organs in order to nourish the embryo of germinating seeds or sprouting buds. When specific proteins are transferred to the vacuole for immediate degradation this compartment contributes to the adaptation of protein complexes in response to changes in developmental or environmental conditions. Vacuolar proteases are involved in protein degradation during reversible senescence and programmed cell death, which is also called irreversible senescence. Vacuoles contribute to defence against pathogens and herbivores by limited and unlimited proteolysis. Our present knowledge on functions and processes of vacuolar protein dynamics in plants is reviewed. Research perspectives are deduced.

  8. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    Science.gov (United States)

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells.

  9. 青霉素处理检查和分离蓝藻细胞液泡%Determination and Isolation of Cell Vacuoles from Blue-green Algae by Penicillin Method

    Institute of Scientific and Technical Information of China (English)

    郭碧薇; 易平; 刘希玲; 郭厚良

    2003-01-01

    Growing in the liquid medium containing penicillin, the cells of the Cyanobacteria,Anabaena 7120, Nostoc flagelliforme, and Synechocystis 6803 were broken and vacuoles were released. Percentage of broken cells declined and percentage of broken cells increased with the growing days of the algae. The percentage of vacuoles to broken cells were respectively 0.7%, 0.8%, and 13.3% in the three types of algae Anabaena 7120, N.flagelliforme and Synechocystis 6803 which had grown for 3 days.

  10. Anaplasma phagocytophilum APH0032 Is Exposed on the Cytosolic Face of the Pathogen-Occupied Vacuole and Co-opts Host Cell SUMOylation

    Science.gov (United States)

    Oki, Aminat T.; Huang, Bernice; Beyer, Andrea R.; May, Levi J.; Truchan, Hilary K.; Walker, Naomi J.; Galloway, Nathan L.; Borjesson, Dori L.; Carlyon, Jason A.

    2016-01-01

    Anaplasma phagocytophilum, a member of the family Anaplasmataceae and the obligate intracellular bacterium that causes granulocytic anaplasmosis, resides in a host cell-derived vacuole. Bacterial proteins that localize to the A. phagocytophilum-occupied vacuole membrane (AVM) are critical host-pathogen interfaces. Of the few bacterial AVM proteins that have been identified, the domains responsible for AVM localization and the host cell pathways that they co-opt are poorly defined. APH0032 is an effector that is expressed and localizes to the AVM late during the infection cycle. Herein, the APH0032 domain that is essential for associating with host cell membranes was mapped. Immunofluorescent labeling of infected cells that had been differentially permeabilized confirmed that APH0032 is exposed on the AVM's cytosolic face, signifying its potential to interface with host cell processes. SUMOylation is the covalent attachment of a member of the small ubiquitin-like modifier (SUMO) family of proteins to lysines in target substrates. Previous work from our laboratory determined that SUMOylation is important for A. phagocytophilum survival and that SUMOylated proteins decorate the AVM. Algorithmic prediction analyses identified APH0032 as a candidate for SUMOylation. Endogenous APH0032 was precipitated from infected cells using a SUMO affinity matrix, confirming that the effector co-opts SUMOylation during infection. APH0032 pronouncedly colocalized with SUMO1, but not SUMO2/3 moieties on the AVM. Ectopic expression of APH0032 in A. phagocytophilum infected host cells significantly boosted the bacterial load. This study delineates the first domain of any Anaplasmataceae protein that is essential for associating with the pathogen-occupied vacuole membrane, demonstrates the importance of APH0032 to infection, and identifies it as the second A. phagocytophilum effector that co-opts SUMOylation, thus underscoring the relevance of this post-translational modification to

  11. Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive plantago species : regulation of channel activity by salt stress.

    Science.gov (United States)

    Maathuis, F J; Prins, H B

    1990-01-01

    Plantago media L. and Plantago maritima L. differ in their strategy toward salt stress, a major difference being the uptake and distribution of ions. Patch clamp techniques were applied to root cell vacuoles to study the tonoplast channel characteristics. In both species the major channel found was a 60 to 70 picosiemens channel with a low ion selectivity. The conductance of this channel for Na(+) was the same as for K(+), P(K) (+)/P(Na) (+) = 1, whereas the cation/anion selectivity (P(K) (+)/P(c1) (-)) was about 5. Gating characteristics were voltage and calcium dependent. An additional smaller channel of 25 picosiemens was present in P. maritima. In the whole vacuole configuration, the summation of the single channel currents resulted in slowly activated inward currents (t((1/2)) = 1.2 second). Inwardly directed, ATP-dependent currents could be measured against a DeltapH gradient of 1.5 units over the tonoplast. This observation strongly indicated the physiological intactness of the used vacuoles. The open probability of the tonoplast channels dramatically decreased when plants were grown on NaCl, although single channel conductance and selectivity were not altered.

  12. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    Science.gov (United States)

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression.

  13. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    OpenAIRE

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and ind...

  14. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells in the hippocampal neurogenesis involving myelin vacuolation of cholinergic and glutamatergic inputs in mice.

    Science.gov (United States)

    Kato, Mizuho; Abe, Hajime; Itahashi, Megu; Kikuchihara, Yoh; Kimura, Masayuki; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2016-02-01

    Hexachlorophene (HCP) has been shown to induce myelin vacuolation due to intramyelinic edema of the nerve fibers in animal neural tissue. We investigated the maternal exposure effect of HCP on hippocampal neurogenesis in the offspring of pregnant mice supplemented with 0 (control), 33 or 100 ppm HCP in diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, offspring as examined in males exhibited decreased granule cell lineage populations expressing paired box 6, sex-determining region Y-box 2 and eomesodermin in the hippocampal subgranular zone (SGZ) accompanied by myelin vacuolation involving white matter tracts of the hippocampal fimbria at ≥ 33 ppm. However, SGZ cellular populations expressing brain lipid binding protein and doublecortin were unchanged at any dose. Transcript expression of cholinergic receptor genes, Chrna4 and Chrnb2, and glutamate receptor genes, Grm1 and Grin2d, examined at 100 ppm, decreased in the dentate gyrus. HCP exposure did not alter the number of proliferating or apoptotic cells in the SGZ, or reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)ergic interneurons in the dentate hilus, on PND 21 and PND 77. All neurogenesis-related changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77, suggesting that maternal HCP exposure at ≥ 33 ppm reversibly decreased type 2 intermediate-stage progenitor cells in the hippocampal neurogenesis. Myelin vacuolation might be responsible for changes in neurogenesis possibly by reducing nerve conduction velocity of cholinergic inputs from the septal-hippocampal pathway to granule cell lineages and/or GABAergic interneurons, and of glutamatergic inputs to granule cell lineages.

  15. Connexin 36 is expressed in beta and connexins 26 and 32 in acinar cells at the end of the secondary transition of mouse pancreatic development and increase during fetal and perinatal life.

    Science.gov (United States)

    Pérez-Armendariz, Elia Martha; Cruz-Miguel, Lourdes; Coronel-Cruz, Cristina; Esparza-Aguilar, Marcelino; Pinzon-Estrada, Enrique; Rancaño-Camacho, Elizabeth; Zacarias-Climaco, Gerardo; Olivares, Paola Fernández; Espinosa, Ana Maria; Becker, Ingeborg; Sáez, Juan C; Berumen, Jaime; Pérez-Palacios, Gregorio

    2012-06-01

    To identify when during fetal development connexins (Cxs) 26 (Cx26) 32 (Cx32), and 36 (Cx36) begin to be expressed, as well as to characterize their spatial distribution, real time polymerase chain reaction and immunolabeling studies were performed. Total RNA from mouse pancreases at 13 and 18 days postcoitum (dpc) and 3 days postpartum (dpp) was analyzed. In addition, pancreatic sections of mouse at 13, 14, 15, 16, 18 dpc and 3 dpp and of rat at term were double labeled with either anti-insulin or anti-α-amylase and anti-Cx26 or -Cx32 or -Cx36 antibodies and studied with confocal microscopy. From day 13 dpc, Cxs 26, 32, and 36 transcripts were identified and their levels increased with age. At 13-14 dpc, Cxs 26 and 32 were localized in few acinar cells, whereas Cx36 was distributed in small beta cell clumps. From day 14 dpc onwards, the number of labeled cells and relative immunofluorescent reactivity of all three Cxs at junctional membranes of the respective cell types increased. Cxs 26 and 32 colocalized in fetal acinar cells. In rat pancreas at term, a similar connexin distribution was found. Relative Cxs levels evaluated by immunoblotting also increased (two-fold) in pancreas homogenates from day 18 dpc to 3 dpp. The early cell specific, wide distribution, and age dependent expression of Cxs 26, 32, and 36 during fetal pancreas ontogeny suggests their possible involvement in pancreas differentiation and prenatal maturation.

  16. Activation of ERK1/2 by store-operated calcium entry in rat parotid acinar cells.

    Directory of Open Access Journals (Sweden)

    Stephen P Soltoff

    Full Text Available The regulation of intracellular Ca(2+ concentration ([Ca(2+]i plays a critical role in a variety of cellular processes, including transcription, protein activation, vesicle trafficking, and ion movement across epithelial cells. In many cells, the activation of phospholipase C-coupled receptors hydrolyzes membrane phosphoinositides and produces the depletion of endoplasmic reticulum Ca(2+ stores, followed by the sustained elevation of [Ca(2+]i from Ca(2+ entry across the plasma membrane via store-operated Ca(2+ entry (SOCE. Ca(2+ entry is also increased in a store-independent manner by arachidonate-regulated Ca(2+ (ARC channels. Using rat parotid salivary gland cells, we examined multiple pathways of Ca(2+ entry/elevation to determine if they activated cell signaling proteins and whether this occurred in a pathway-dependent manner. We observed that SOCE activates extracellular signal-related kinases 1 and 2 (ERK1/2 to ∼3-times basal levels via a receptor-independent mechanism when SOCE was initiated by depleting Ca(2+ stores using the endoplasmic reticulum Ca(2+-ATPase inhibitor thapsigargin (TG. TG-initiated ERK1/2 phosphorylation increased as rapidly as that initiated by the muscarinic receptor agonist carbachol, which promoted an increase to ∼5-times basal levels. Notably, ERK1/2 phosphorylation was not increased by the global elevation of [Ca(2+]i by Ca(2+ ionophore or by Ca(2+ entry via ARC channels in native cells, although ERK1/2 phosphorylation was increased by Ca(2+ ionophore in Par-C10 and HSY salivary cell lines. Agents and conditions that blocked SOCE in native cells, including 2-aminoethyldiphenyl borate (2-APB, SKF96363, and removal of extracellular Ca(2+, also reduced TG- and carbachol-stimulated ERK1/2 phosphorylation. TG-promoted ERK1/2 phosphorylation was blocked when SRC and Protein Kinases C (PKC were inhibited, and it was blocked in cells pretreated with β-adrenergic agonist isoproterenol. These observations demonstrate

  17. The Src kinase Yes is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters, but not pancreatic growth factors, which stimulate its association with numerous other signaling molecules.

    Science.gov (United States)

    Sancho, Veronica; Nuche-Berenguer, Bernardo; Jensen, R T

    2012-08-01

    For growth factors, cytokines, G-protein-coupled receptors and numerous other stimuli, the Src Family of kinases (SFK) play a central signaling role. SFKs also play an important role in pancreatic acinar cell function including metabolism, secretion, endocytosis, growth and cytoskeletal integrity, although the specific SFKs involved are not fully known. In the present study we used specific antibodies for the SFK, Yes, to determine its presence, activation by pancreatic secretagogues or growth factors, and interaction with cellular signaling cascades mediated by CCK in which Yes participates in to cause acinar cell responses. Yes was identified in acini and secretagogues known to activate phospholipase C (PLC) [CCK, carbachol, bombesin] as well as post-receptor stimulants activating PKC [TPA] or mobilizing cellular calcium [thapsigargin/calcium ionophore (A23187)] each activated Yes. Secretin, which activates adenylate cyclase did not stimulate Yes, nor did pancreatic growth factors. CCK activation of Yes required both high- and low-affinity CCK(1)-receptor states. TPA-/CCK-stimulated Yes activation was completely inhibited by thapsigargin and the PKC inhibitor, GF109203X. CCK/TPA stimulated the association of Yes with focal adhesion kinases (Pyk2, FAK) and its autophosphorylated forms (pY397FAK, pY402Pyk2). Moreover, CCK/TPA stimulated Yes interacted with a number of other signaling proteins, including Shc, PKD, p130(Cas), PI3K and PTEN. This study demonstrates that in rat pancreatic acini, the SFK member Yes is expressed and activated by CCK and other gastrointestinal hormones/neurotransmitters. Because its activation results in the direct activation of many cellular signaling cascades that have been shown to mediate CCK's effect in acinar cell function our results suggest that it is one of the important pancreatic SFKs mediating these effects.

  18. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    Science.gov (United States)

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  19. Mechanism of Cytosolic Phospholipase A(2) Activation in Ghrelin Protection of Salivary Gland Acinar Cells against Ethanol Cytotoxicity.

    Science.gov (United States)

    Slomiany, Bronislaw L; Slomiany, Amalia

    2010-01-01

    Ghrelin, a peptide hormone, newly identified in oral mucosal tissues, has emerged recently as an important mediator of the processes of mucosal defense. Here, we report on the mechanism of ghrelin protection against ethanol cytotoxicity in rat sublingual salivary gland cells. The protective effect of ghrelin was associated with the increase in NO and PGE2, and upregulation in cytosolic phospholipase A(2) (cPLA(2)) activity and arachidonic acid (AA) release. The loss in countering effect of ghrelin occurred with cNOS inhibitor, L-NAME, as well as indomethacin and COX-1 inhibitor, SC-560, while COX-2 inhibitor, NS-398, and iNOS inhibitor, 1400W, had no effect. The effect of L-NAME was reflected in the inhibition of ghrelin-induced cell capacity for NO production, cPLA(2) activation and PGE2 generation, whereas indomethacin caused only the inhibition in PGE2. Moreover, the ghrelin-induced up-regulation in AA release was reflected in the cPLA(2) phosphorylation and S-nitrosylation. Inhibition in ghrelin-induced S-nitrosylation was attained with L-NAME, whereas the ERK inhibitor, PD98059, caused the blockage in cPLA(2) protein phosphorylation as well as S-nitrosylation. Thus, ghrelin protection of salivary gland cells against ethanol involves cNOS-derived NO induction of cPLA(2) activation through S-nitrosylation for the increase in AA release at the site of COX-1 action for PGE2 synthesis.

  20. Mechanism of Cytosolic Phospholipase A2 Activation in Ghrelin Protection of Salivary Gland Acinar Cells against Ethanol Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2010-01-01

    Full Text Available Ghrelin, a peptide hormone, newly identified in oral mucosal tissues, has emerged recently as an important mediator of the processes of mucosal defense. Here, we report on the mechanism of ghrelin protection against ethanol cytotoxicity in rat sublingual salivary gland cells. The protective effect of ghrelin was associated with the increase in NO and PGE2, and upregulation in cytosolic phospholipase A2 (cPLA2 activity and arachidonic acid (AA release. The loss in countering effect of ghrelin occurred with cNOS inhibitor, L-NAME, as well as indomethacin and COX-1 inhibitor, SC-560, while COX-2 inhibitor, NS-398, and iNOS inhibitor, 1400W, had no effect. The effect of L-NAME was reflected in the inhibition of ghrelin-induced cell capacity for NO production, cPLA2 activation and PGE2 generation, whereas indomethacin caused only the inhibition in PGE2. Moreover, the ghrelin-induced up-regulation in AA release was reflected in the cPLA2 phosphorylation and S-nitrosylation. Inhibition in ghrelin-induced S-nitrosylation was attained with L-NAME, whereas the ERK inhibitor, PD98059, caused the blockage in cPLA2 protein phosphorylation as well as S-nitrosylation. Thus, ghrelin protection of salivary gland cells against ethanol involves cNOS-derived NO induction of cPLA2 activation through S-nitrosylation for the increase in AA release at the site of COX-1 action for PGE2 synthesis.

  1. 腺泡细胞在大鼠腮腺组织萎缩过程中的变化规律%Changes in the number and distribution of acinar cells in rat parotid gland during atrophy process

    Institute of Scientific and Technical Information of China (English)

    卢浩; 张赐童; 刘士维; 柳康; 张伟

    2015-01-01

    Objective:To investigate the changes of acinar cells during atrophy of rat duct-ligated parotid gland.Methods:The ex-cretory duct of parotid gland was doubly ligated with metal-clip unilaterally near the hilum,and the animals were sacrificed at 0,1 , 3,5,7,1 0,1 4,21 or 30 days after ligation respectively.The evolving glands were examined with HE and AB-PAS staining tech-nique and immunohistochemistry for the observation of caspase3,Ki-67,calponin and amylase expression.Results:30-days after ligation,the majority of acinar cells were disappeared;only residual acinar cells at the peripheral region of lobules were identified by HE and AB-PAS staining accompanying decreasing zymogen granules.During the atrophy of parotid glands,the caspase3-positive cells identified by immunohistochemistry were rarely observed at 0 d,but the cell number increased in the following days.There were occasional Ki-67 positive cells in the 0 d group,but after 3-days of the ligation Ki-67 positive cells reached a peak.The difference of the caspase3-positive cell number and the Ki-67 positive cells were statistically significant among the groups(P <0.05).Conclu-sion:During atrophy of the parotid gland,most acinar cells apoptosed but there are still some residual acinar cells at the perip-heral region of lobules 30 days after duct-ligation.%目的:研究大鼠腮腺主导管结扎诱导腺体萎缩过程中腺泡细胞的变化规律。方法:通过对大鼠腮腺主导管结扎,建立腮腺组织萎缩模型,分别于结扎术后0、1、3、5、7、10、14、21和30 d 获取腮腺组织标本,苏木精-伊红(HE)和阿新蓝-过碘酸雪夫(AB-PAS)染色观察腺体的组织学变化,免疫组织化学法检测半胱氨酸天冬氨酸蛋白水解酶3(caspase3)、增殖细胞核抗原(Ki-67)、钙调节蛋白(calponin)和淀粉酶(amylase)的表达变化。结果:组织学观察见导管结扎组大鼠腮腺大部分腺泡细胞萎缩、消失,酶

  2. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents.

    Science.gov (United States)

    Grippo, Paul J; Sandgren, Eric P

    2012-09-01

    Several important characteristics of exocrine pancreatic tumor pathogenesis remain incompletely defined, including identification of the cell of origin. Most human pancreatic neoplasms are ductal adenocarcinomas. However, acinar cells have been proposed as the source of some ductal neoplasms through a process of acinar-to-ductal metaplasia. The oncogenic transcription factor c-myc is associated with human pancreatic neoplasms. Transgenic mice overexpressing c-myc under control of acinar cell-specific elastase (Ela) gene regulatory elements not only develop acinar cell carcinomas but also mixed neoplasms that display both acinar-like neoplastic cells and duct-like neoplastic cells. In this report, we demonstrate that, first, c-myc is sufficient to induce acinar hyperplasia, though neoplastic lesions develop focally. Second, cell proliferation remains elevated in the neoplastic duct cell compartment of mixed neoplasms. Third, the proliferation/apoptosis ratio in cells from all lesion types remains constant, suggesting that differential regulation of these processes is not a feature of cancer progression in this model. Fourth, before the development of mixed neoplasms, there is transcriptional activation of the duct cell-specific cytokeratin-19 gene promoter in multicellular foci of amylase-positive acinar neoplasms. This observation provides direct evidence for metaplasia as the mechanism underlying development of ductal neoplastic cells within the context of an acinar neoplasm and suggests that the stimulus for this transformation acts over a multicellular domain or field within a neoplasm. Finally, focal ductal elements develop in some acinar cell carcinomas in Ela-c-myc transgenic rats, indicating that myc-associated acinar-to-ductal metaplasia is not restricted to the mouse.

  3. H1-antihistamines induce vacuolation in astrocytes through macroautophagy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Wei; Yang, Ying; Wang, Zhe; Shen, Zhe; Zhang, Xiang-Nan [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China); Wang, Guang-Hui [College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 (China); Chen, Zhong, E-mail: chenzhong@zju.edu.cn [Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Basic Medical Sciences, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058 (China)

    2012-04-15

    H1-antihistamines induce vacuolation in vascular smooth muscle cells, which may contribute to their cardiovascular toxicity. The CNS toxicity of H1-antihistamines may also be related to their non-receptor-mediated activity. The aim of this study was to investigate whether H1-antihistamines induce vacuolation in astrocytes and the mechanism involved. The H1-antihistamines induced large numbers of giant vacuoles in astrocytes. Such vacuoles were marked with both the lysosome marker Lysotracker Red and the alkalescent fluorescence dye monodansylcadaverine, which indicated that these vacuoles were lysosome-like acidic vesicles. Quantitative analysis of monodansylcadaverine fluorescence showed that the effect of H1-antihistamines on vacuolation in astrocytes was dose-dependent, and was alleviated by extracellular acidification, but aggravated by extracellular alkalization. The order of potency to induce vacuolation at high concentrations of H1-antihistamines (diphenhydramine > pyrilamine > astemizole > triprolidine) corresponded to their pKa ranking. Co-treatment with histamine and the histamine receptor-1 agonist trifluoromethyl toluidide did not inhibit the vacuolation. Bafilomycin A1, a vacuolar (V)-ATPase inhibitor, which inhibits intracellular vacuole or vesicle acidification, clearly reversed the vacuolation and intracellular accumulation of diphenhydramine. The macroautophagy inhibitor 3-methyladenine largely reversed the percentage of LC3-positive astrocytes induced by diphenhydramine, while only partly reversing the number of monodansylcadaverine-labeled vesicles. In Atg5{sup −/−} mouse embryonic fibroblasts, which cannot form autophagosomes, the number of vacuoles induced by diphenhydramine was less than that in wild-type cells. These results indicated that H1-antihistamines induce V-ATPase-dependent acidic vacuole formation in astrocytes, and this is partly mediated by macroautophagy. The pKa and alkalescent characteristic of H1-antihistamines may be the

  4. Clinicopathologic analyses of salivary gland acinar cell carcinoma and review of the literature%涎腺腺泡细胞癌临床病理分析并文献复习

    Institute of Scientific and Technical Information of China (English)

    刘畅; 许春伟; 王晶晶; 张立英

    2016-01-01

    Objective: To investigate the clinicopathological features and diagnostic criteria of salivary gland acinar cell carcinoma.Methods:Retrospectively analyzed the features of clinicopathology and immunohistochemistry of a case of salivary gland acinar cell carcinoma, and combined together the review of the literatures.Results: Under light microscope, the tumor cell body was wide, and basophilic cytoplasm was ifne granular, nuclear round tumor cell growth was gland bubbly or slice solid growth, area of tumor was the papillary change, this case showed positive immunostaining for AE1/AE3, CK8/18, CK7, AAT and S-100.Conclusion: Salivary gland acinar cell carcinoma has a low incidence, but its frequent position of invasion and typical histology shape, combining together immunohistochemistry methods, will make for diagnosis and differential diagnosis possible.%目的:探讨涎腺腺泡细胞癌的临床病理学特点及诊断要点。方法:对1例涎腺腺泡细胞癌进行临床资料、病理形态学及免疫组织化学观察,并结合文献对其诊断及鉴别诊断进行探讨。结果:镜下瘤细胞胞体宽大,胞浆嗜碱性呈细颗粒状,核圆形瘤细胞生长呈腺泡状或实性片状生长,部分区域呈乳头状改变,免疫组化显示AE1/AE3(+)、CK8/18(+)、CK7(+)、AAT(+)、S-100(+)。结论:涎腺腺泡细胞癌发病率低,但根据其常见的发病部位及特征性的组织形态,结合免疫组织化学方法,有助于其诊断及鉴别诊断。

  5. A preliminary study on trans-differentiation of pancreatic acinar cell in acute pancreatitis%急性胰腺炎胰腺腺泡细胞转分化的初步研究

    Institute of Scientific and Technical Information of China (English)

    谢荣理; 徐海燕; 祁梦之; 毛恩强; 陈尔真; 周同; 聂红; 费健

    2016-01-01

    [Abstrective] Objective To investigate the trans-differentiation of pancreatic acinar cell in acute pancreatitis (AP) by detection of the expression of transmembrane protein that is dendritic cell-specific intercellular adhesion molecule 3-grab-bing non-integrin (DC-SIGN). Methods An in vitro study was conducted using AR42J cell line for establishing the cell model of AP. The expression level of DC-SIGN protein was measured by flow cytometry. The transcription level of DC-SIGN mRNA was detected by RT-PCR. Results DC-SIGN in early phase of AP was characterized by high expression in gene and protein level ( P<0 . 05 ) . Conclusions The high expression of DC-SIGN on pancreatic acinar cells during AP demonstrates the epithelial-dendritic cell trans-differentiation.%目的:检测跨膜蛋白DC-SIGN在急性胰腺炎中的表达,探讨急性胰腺炎胰腺腺泡细胞的转分化现象。方法:采用AR42J细胞株建立急性胰腺炎的体外细胞模型。流式细胞法检测细胞表面DC-SIGN蛋白的表达量,RT-PCR检测DC-SIGN mRNA 转录水平。结果:在蛋白质和基因水平,腺泡细胞 DC-SIGN 在急性胰腺炎早期高表达(P<0.05)。结论:急性胰腺炎胰腺腺泡细胞DC-SIGN高表达,表明存在上皮-树突状细胞转分化现象。

  6. Vacuolation induced by unfavorable pH in cyanobacteria

    Institute of Scientific and Technical Information of China (English)

    赵以军; 吴红艳; 郭厚良; 许敏; 程凯; 祝海燕

    2001-01-01

    Six species or strains of cyanobacteria, Anabaena sp. 595, Plectonema boryanum 246, Scytonema hofmanni 248, Nostoc sp. 96, Oscillatoria animlis 284 and Spirulina maxima 438, were cultured in unfavorable pH conditions for vacuole induction. At pH 5.0, 6.5, or 7.0, vacuoles were observed to form in both Anabaena sp. 595 and Plectonema boryanum 246, especially in the former. The vacuolation took place with some morphological changes, such as the cells being inflated, spherical and vacuolated, and with unequalized division. The induced vacuoles in An- abaena sp. 595 and Plectonema boryanum 246 were in spherical shape and in rather transparent appearance under a phase microscope. For Scytonema hofmanni 248, it was less sensitive to pH, its vacuole formation was found only at pH 6.5. No vacuolization occurred in the cells of Nostoc sp. 96, Oscillatoria animlis 284 and Spirulina maxima 438 at all pH conditions we used. Vacuolization under unfavorable pH provides a new proof for the existence of vacuole in cells of cyanobacteria and reflects the prokaryote's function in ecological environment.

  7. The effect of immune reaction induced by alginate on parotid acinar cells in vitro%藻酸盐诱发的免疫反应对兔腮腺腺细胞的作用

    Institute of Scientific and Technical Information of China (English)

    何巍; 吕继连; 李龙江

    2009-01-01

    目的:探讨藻酸盐诱发的免疫反应对腮腺腺细胞的作用.方法:采用Alginate-BSA交联物免疫兔,ELISA法检测藻酸盐抗血清效价;实验分5 组:A、空白对照组, B、牛血清白蛋白组, C、藻酸盐组, D、抗藻酸盐血清组和E抗藻酸盐血清+藻酸盐组,分别在1、6、12和24 h采用MTT法检测各组腮腺腺细胞增殖情况.倒置显微镜观察不同组腮腺腺细胞生长、形态和结构变化;扫描电镜观察E组腺细胞超微结构的改变.结果:Alginate-BSA交联物免疫兔约40 d,藻酸盐抗血清的效价达到1∶ 400;二者适宜反应浓度:藻酸盐为40 μg/ml,抗藻酸盐血清的稀释度为1∶ 100;MTT检测结果A、B、C、D、E组在前3 个时间点没有差异,而在24 h时,E组与A、B、C、D组差异显著(P<0.05),说明抗藻酸盐血清和藻酸盐的免疫反应对腺细胞的增殖有显著的抑制.倒置显微镜下在12 h和24 h可观察到E组个别腺细胞表面有破裂,胞质外溢,细胞形态不完整;其它组未见异常.扫描电镜观察E组在6 h即有个别腺细胞胞膜有破裂,呈圆孔形,细胞的轮廓仍清晰完整.12 h可见破裂细胞数增多,且细胞膜上破裂孔、裂也增多变大.24 h可见细胞的形态不完整,有较大范围胞膜破裂,细胞崩解.结论:抗藻酸盐血清和藻酸盐反应对腮腺腺细胞可造成免疫损伤,导致细胞死亡.%Objective: To explore the effect of immune reaction induced by alginate on parotid acinar cells in vitro. Methods: Rabbits were immunized from the conjugated alginate- BSA (1.0 mg/kg) by 40-days routine immunity method. ELJSA method was used to examine the titration (valence) of anti-alginate serum. Five groups (group A: contrast, group B: BSA, group C; alginate, group D: anti-alginate serum, group E; alginate + anti-alginate serum) were examined by MTT method at four time points( 1, 6,12 and 24 h). The growth and morphology of parotid acinar cells were observed under inverted phase contrast

  8. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abasolo, Ibane [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Pujal, Judit; Navarro, Pilar [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Rabanal, Rosa M.; Serafin, Anna [Universitat Autonoma de Barcelona, Departament de Medicina i Cirurgia Animals, Barcelona (Spain); Millan, Olga [Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Real, Francisco X. [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Programa de Patologia Molecular, Centro Nacional de Investigaciones Oncologicas, Madrid (Spain)

    2009-07-15

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  9. Postmortem acinar autolysis in rat sublingual gland: a morphometric study

    Directory of Open Access Journals (Sweden)

    Leticia Rodrigues Nery

    2010-10-01

    Full Text Available ABSTRACT OBJECTIVE: To analyze and to quantify morphological acinar postmortem changes in rat sublingual glands (SLG. MATERIAL AND METHODSs: Fifty rats were divided into two groups of 25 animals each. Group I was used for morphological and morphometric evaluations and group II for the determination of gland density and processed gland volume. Acinar autolytic changes were studied at 0 (control group, 3, 6, 12 and 24 h postmortem periods. The morphometric analysis of the volume density (Vv and total volume (Vt of intact (ia and autolyzed (aa acini was performed under light microscopy using a Zeiss II integration grid with 100 symmetrically distributed points. RESULTS: Morphologically, temporal progressive nuclear alterations and gradual loss of the structural architecture of acinar cells were found. Regarding quantitative results, both the Vvaa and the Vvia showed statistically significant differences among all postmortem periods (p0.05, respectively. Vtaa increased from 0.18 mm³ at 0 h to 38.17 mm³ at 12 h, while Vtia showed a decrease from 33.47 mm³ to 0 mm³ between 3-24 h postmortem. Data concerning Vtaa were adjusted by two-variable linear regression, obtaining the equation: y=-3.54 + 3.38x (r²=0.90. The Vtaa growth rate calculated by this equation was 3.38 mm³/h between 0-12 h. CONCLUSION: Acinar autolysis on rat SLG demonstrated the most significant signs during the first 6 h postmortem and was widely spread through the gland at 12 h.

  10. Establishment of functional acinar-like cultures from human salivary glands.

    Science.gov (United States)

    Jang, S I; Ong, H L; Gallo, A; Liu, X; Illei, G; Alevizos, I

    2015-02-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients.

  11. Calcium Signals from the Vacuole

    Directory of Open Access Journals (Sweden)

    Gerald Schönknecht

    2013-10-01

    Full Text Available The vacuole is by far the largest intracellular Ca2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca2+ release and Ca2+ uptake is summarized, and how different vacuolar Ca2+ channels and Ca2+ pumps may contribute to Ca2+ signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca2+ transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca2+ channels that could elicit cytosolic [Ca2+] transients. Typical second messengers, such as InsP3 and cADPR, seem to trigger vacuolar Ca2+ release, but the molecular mechanism of this Ca2+ release still awaits elucidation. Some vacuolar Ca2+ channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca2+ signaling still has to be demonstrated. Ca2+ pumps in addition to establishing long-term Ca2+ homeostasis can shape cytosolic [Ca2+] transients by limiting their amplitude and duration, and may thus affect Ca2+ signaling.

  12. Helicobacter pylori vacuolating toxin A and apoptosis

    Directory of Open Access Journals (Sweden)

    Rassow Joachim

    2011-11-01

    Full Text Available Abstract VacA, the vacuolating cytotoxin A of Helicobacter pylori, induces apoptosis in epithelial cells of the gastic mucosa and in leukocytes. VacA is released by the bacteria as a protein of 88 kDa. At the outer surface of host cells, it binds to the sphingomyelin of lipid rafts. At least partially, binding to the cells is facilitated by different receptor proteins. VacA is internalized by a clathrin-independent mechanism and initially accumulates in GPI-anchored proteins-enriched early endosomal compartments. Together with early endosomes, VacA is distributed inside the cells. Most of the VacA is eventually contained in the membranes of vacuoles. VacA assembles in hexameric oligomers forming an anion channel of low conductivity with a preference for chloride ions. In parallel, a significant fraction of VacA can be transferred from endosomes to mitochondria in a process involving direct endosome-mitochondria juxtaposition. Inside the mitochondria, VacA accumulates in the mitochondrial inner membrane, probably forming similar chloride channels as observed in the vacuoles. Import into mitochondria is mediated by the hydrophobic N-terminus of VacA. Apoptosis is triggered by loss of the mitochondrial membrane potential, recruitment of Bax and Bak, and release of cytochrome c.

  13. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    Science.gov (United States)

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  14. Relationship between Carbachol Hyperstimulation-Induced Pancreatic Acinar Cellular Injury and Trypsinogen or NF-κB Activation in Rats in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between M3 cholinergic receptor agonist (carbachol) hyperstimulationinduced pancreatic acinar cellular injury and trypsinogen activation or NF-κB activation in rats was studied in vitro. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, the active protease inhibitor (pefabloc), and NF-κB inhibitor (PDTC) in vitro. Intracellular trypsin activity was measured by using a fluorogenic substrate. The cellular injury was evaluated by measuring the leakage of LDH from pancreatic acinar cells. The results showed that as compared with control group, 10-3 mol/L carbachol induced a significant increase of the intracellular trypsin activity and the leakage of LDH from pancreatic acinar cells. Pretreatment with 2 mmol/L pefabloc could significantly decrease the activity of trypsin and the leakage of LDH from pancreatic acinar cells (P <0.01) following the treatment with a high concentration of carbachol (10-3 mol/L) in vitro. The addition of 10-2 mol/L PDTC didn't result in a significant decrease in the activity of trypsin and the leakage of LDH from pancreatic acinar cells treated with a high concentration of carbachol (10-3 mol/L) in vitro (P>0.05). It was concluded that intracellular trypsinogen activation is likely involved in pancreatic acinar cellular injury induced by carbachol hyperstimulation in vitro. NF-κB activation may not be involved in pancreatic acinar cellular injury induced by carbachol hyperstimulation in vitro.

  15. cPrG-HCl a potential H+/Cl- symporter prevents acidification of storage vacuoles in aleurone cells and inhibits GA-dependent hydrolysis of storage protein and phytate.

    Science.gov (United States)

    Hwang, Yong-sic; Bethke, Paul C; Gubler, Frank; Jones, Russell L

    2003-07-01

    The putative H+/Cl- symporter cycloprodigiosin-HCl (cPrG-HCl) was used to investigate the role of vacuole acidification in cereal aleurone cell function. The protein storage vacuole (PSV) becomes acidified rapidly when aleurone cells are treated with gibberellic acid (GA) but not abscisic acid (ABA). We show that cPrG prevents PSV acidification in aleurone layers and prevents synthesis of secretory proteins such as alpha-amylase. Our data support the hypothesis that decreased hydrolase synthesis is a consequence of decreased hydrolysis of storage proteins in PSV. Support for this hypothesis comes from experiments showing that breakdown of barley 7S globulins and phytate is inhibited by cPrG in GA-treated aleurone layers. Decreased mobilization of PSV reserves is accompanied by reductions in the free amino acid pool size and in the amount of ions released from the aleurone layer. Vacuolation of the aleurone cell is a diagnostic feature of the response to GA, and vacuolation is also inhibited by cPrG. Evidence that cPrG acts as a potential H+/Cl- symporter in aleurone is presented. We show that cPrG does not inhibit the synthesis and secretion of alpha-amylase when Cl- ions are omitted from the incubation medium. Although cPrG blocks many GA-induced responses of aleurone layers, it does not affect early steps in GA signaling. The SLN1 protein, a negative regulator of GA signaling, is turned over in GA-treated cells in the presence and absence of cPrG. Similarly, synthesis of the transcriptional activator GAMYB is unaffected by the presence of cPrG in GA-treated cells.

  16. Root bark extracts of Juncus effusus and Paeonia suffruticosa protect salivary gland acinar cells from apoptotic cell death induced by cis-platinum (II) diammine dichloride.

    Science.gov (United States)

    Mukudai, Yoshiki; Kondo, Seiji; Shiogama, Sunao; Koyama, Tomoyuki; Li, Chunnan; Yazawa, Kazunaga; Shintani, Satoru

    2013-12-01

    Cis-platinum (II) diammine dichloride (CDDP) is a platinum-based anticancer agent, and is often used for chemotherapy for malignant tumors, albeit CDDP has serious side-effects, including xerostomia (dry mouth). Since patients with xerostomia have reduced quality of life, it is urgent and important to identify nontoxic and natural agents capable of reducing the adverse effect of chemotherapy on salivary gland function. Therefore, we commenced an institutional collaborative project in which candidates of herbal extracts were selected from more than 400 bioactive herbal products for their potential therapeutic effects not only on xerostomia, but also on oral diseases. In the present study, we report on two Chinese medical herbal extracts from the root barks of Juncus effusus and Paeonia suffruticosa. The two extracts showed a protective effect in NS-SV-Ac cells from the cytotoxicity and apoptosis caused by CDDP. The effect was dependent on the p53 pathway, protein kinase B/Akt 1 and mitochondrial apoptosis-related proteins (i.e. Bcl-2 and Bax), but was not dependent on nuclear factor κB. Notably, the apoptosis-protective effect of the extracts was not observed in adenocystic carcinoma cell lines. Although these extracts have been utilized in traditional Chinese medicine for hundreds of years, there are no reports to our knowledge, on their therapeutic effects on xerostomia. Thus, in the present study, we elucidated the potency of these herbal extracts as novel candidates for xerostomia to improve the quality of life of patients undergoing chemotherapy.

  17. Pancreatic (acinar) metaplasia of the gastric mucosa. Histology, ultrastructure, immunocytochemistry, and clinicopathologic correlations of 101 cases.

    Science.gov (United States)

    Doglioni, C; Laurino, L; Dei Tos, A P; De Boni, M; Franzin, G; Braidotti, P; Viale, G

    1993-11-01

    The occasional finding within the gastric mucosa of unidentified epithelial cells with morphological features closely resembling those of pancreatic acinar cells has prompted us to investigate a retrospective series of 8,430 consecutive gastric biopsies and of 126 surgical specimens of gastric resection and total gastrectomy. The aims of the study were to morphologically and immunocytochemically characterize these cells, to define their actual prevalence in a large series of unselected cases, and to assess the clinicopathologic correlates of their occurrence. Pancreatic acinar-like cells characterized by abundant cytoplasm, which was acidophilic and finely granular in the apical and middle portions and basophilic in the basal compartment, have been identified in 101 cases (84 gastric biopsies and 17 gastrectomies). These cells, arranged in nests or in variably sized lobules among the gastric glands, were morphologically indistinguishable from pancreatic acinar cells, both by light and by electron microscopy. Furthermore, they were consistently immunoreactive for pancreatic lipase and trypsinogen and, in 75% of the cases, for pancreatic alpha-amylase. The appearance of these cells within the gastric mucosa was correlated significantly with chronic gastritis (p = 0.032) and with the simultaneous occurrence of intestinal and pyloric types of gastric metaplasia (p = 0.021). The findings indicate that this is a previously unrecognized pancreatic (acinar) metaplasia of the gastric mucosa, clinically and morphologically distinct from pancreatic heterotopia.

  18. Mixed Acinar-Neuroendocrine Carcinoma of the Pancreas with Neuroendocrine Predominance

    Directory of Open Access Journals (Sweden)

    Onyekachi Henry Ogbonna

    2013-01-01

    Full Text Available Background. Pancreatic tumors are rare and could arise from either the exocrine (ductal and acinar cells or the endocrine (neuroendocrine cells components of the pancreas. In some instances, the occurrence of pancreatic tumors comprising both acinar cells and neuroendocrine cells, with neuroendocrine cells making up more than 30% of the tumor, has been identified. This unique entity has been referred to as mixed acinar-neuroendocrine carcinoma (MANEC. Only about 20 such cases have been reported in the literature. Case Report. We report an interesting case of MANEC with neuroendocrine cell predominance in a woman presenting with epigastric pain secondary to a pancreatic mass with acinar and endocrine differentiation. She underwent surgical resection of the tumor and was offered adjuvant treatment chemotherapy with carboplatin, etoposide, and radiotherapy for positive tumor resection margins. Conclusions. Given the paucity of the cases of MANEC, continuous reporting of these cases when identified should be encouraged to aid oncologists in understanding the disease and help establish standardized management.

  19. Reactive oxygen species (ROS) is not a promotor of taxol-induced cytoplasmic vacuolization

    Science.gov (United States)

    Sun, Qingrui; Chen, Tongsheng

    2009-02-01

    we have previously reported that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Reactive oxygen species (ROS) has been reported to be involved in the taxol-induced cell death. Here, we employed confocal fluorescence microscopy imaging to explore the role of ROS in taxol-induced cytoplasmic vacuolization. We found that ROS inhibition by addition of N-acetycysteine (NAC), a total ROS scavenger, did not suppress these vacuolization but instead increased vacuolization. Take together, our results showed that ROS is not a promotor of the taxol-induced cytoplasmic vacuolization.

  20. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    Science.gov (United States)

    AZEVEDO-ALANIS, Luciana Reis; TOLENTINO, Elen de Souza; de ASSIS, Gerson Francisco; CESTARI, Tânia Mary; LARA, Vanessa Soares; DAMANTE, José Humberto

    2015-01-01

    Although some morphological investigations on aged human sublingual glands (HSG) found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated. Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death. Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years); II (31–60), and III (61–90). Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM). Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05). Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001). However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis. Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death. PMID:26537715

  1. Acinar autolysis and mucous extravasation in human sublingual glands: a microscopic postmortem study

    Directory of Open Access Journals (Sweden)

    Luciana Reis AZEVEDO-ALANIS

    2015-10-01

    Full Text Available Although some morphological investigations on aged human sublingual glands (HSG found eventual phenomena identified as autolysis and mucous extravasation, the exact meaning of these findings has not been elucidated.Objective The aim of this work is to investigate whether acinar autolysis and mucous extravasation are related to the aging process in human sublingual glands. We also speculate if autolytic changes may assist forensic pathologists in determining time of death.Material and Methods 186 cadavers’ glands were allocated to age groups: I (0–30 years; II (31–60, and III (61–90. Time and mode of death were also recorded. Acinar autolysis and mucous extravasation were classified as present or absent. Ultrastructural analysis was performed using transmission electron microscopy (TEM. Data were compared using Mann-Whitney U, Spearman’s correlation coefficient, Kruskal-Wallis, and Dunn tests (p<0.05.Results There was correlation between age and acinar autolysis (r=0.38; p=0.0001. However, there was no correlation between autolysis and time of death. No differences were observed between genders. TEM showed mucous and serous cells presenting nuclear and membrane alterations and mucous cells were more susceptible to autolysis.Conclusion Acinar autolysis occurred in all age groups and increased with age while mucous extravasation was rarely found. Both findings are independent. Autolysis degrees in HSG could not be used to determine time of death.

  2. PIKfyve Regulates Vacuole Maturation and Nutrient Recovery following Engulfment.

    Science.gov (United States)

    Krishna, Shefali; Palm, Wilhelm; Lee, Yongchan; Yang, Wendy; Bandyopadhyay, Urmi; Xu, Haoxing; Florey, Oliver; Thompson, Craig B; Overholtzer, Michael

    2016-09-12

    The scavenging of extracellular macromolecules by engulfment can sustain cell growth in a nutrient-depleted environment. Engulfed macromolecules are contained within vacuoles that are targeted for lysosome fusion to initiate degradation and nutrient export. We have shown that vacuoles containing engulfed material undergo mTORC1-dependent fission that redistributes degraded cargo back into the endosomal network. Here we identify the lipid kinase PIKfyve as a regulator of an alternative pathway that distributes engulfed contents in support of intracellular macromolecular synthesis during macropinocytosis, entosis, and phagocytosis. We find that PIKfyve regulates vacuole size in part through its downstream effector, the cationic transporter TRPML1. Furthermore, PIKfyve promotes recovery of nutrients from vacuoles, suggesting a potential link between PIKfyve activity and lysosomal nutrient export. During nutrient depletion, PIKfyve activity protects Ras-mutant cells from starvation-induced cell death and supports their proliferation. These data identify PIKfyve as a critical regulator of vacuole maturation and nutrient recovery during engulfment.

  3. A fluorescent reporter protein containing AtRMR1 domains is targeted to the storage and central vacuoles in Arabidopsis thaliana and tobacco leaf cells.

    Science.gov (United States)

    Scabone, Camila María; Frigerio, Lorenzo; Petruccelli, Silvana

    2011-10-01

    To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles.

  4. Co-occurrence of tannin and tannin-less vacuoles in sensitive plants.

    Science.gov (United States)

    Fleurat-Lessard, Pierrette; Béré, Emile; Lallemand, Magali; Dédaldéchamp, Fabienne; Roblin, Gabriel

    2016-05-01

    Vacuoles of different types frequently coexist in the same plant cell, but the duality of the tannin/tannin-less vacuoles observed in Mimosa pudica L. is rare. In this plant, which is characterized by highly motile leaves, the development and original features of the double vacuolar compartment were detailed in primary pulvini from the young to the mature leaf stage. In young pulvini, the differentiation of tannin vacuoles first occurred in the epidermis and progressively spread toward the inner cortex. In motor cells of nonmotile pulvini, tannin deposits first lined the membranes of small vacuole profiles and then formed opaque clusters that joined together to form a large tannin vacuole (TV), the proportion of which in the cell was approximately 45%. At this stage, transparent vacuole profiles were rare and small, but as the parenchyma cells enlarged, these profiles coalesced to form a transparent vacuole with a convexity toward the larger-sized tannin vacuole. When leaf motility began to occur, the two vacuole types reached the same relative proportion (approximately 30%). Finally, in mature cells displaying maximum motility, the large transparent colloidal vacuole (CV) showed a relative proportion increasing to approximately 50%. At this stage, the proportion of the tannin vacuole, occurring in the vicinity of the nucleus, decreased to approximately 10%. The presence of the condensed type of tannins (proanthocyanidins) was proven by detecting their fluorescence under UV light and by specific chemical staining. This dual vacuolar profile was also observed in nonmotile parts of M. pudica (e.g., the petiole and the stem). Additional observations of leaflet pulvini showing more or less rapid movements showed that this double vacuolar structure was present in certain plants (Mimosa spegazzinii and Desmodium gyrans), but absent in others (Albizzia julibrissin, Biophytum sensitivum, and Cassia fasciculata). Taken together, these observations strongly suggest that a

  5. Organelle acidification negatively regulates vacuole membrane fusion in vivo

    Science.gov (United States)

    Desfougères, Yann; Vavassori, Stefano; Rompf, Maria; Gerasimaite, Ruta; Mayer, Andreas

    2016-01-01

    The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector. PMID:27363625

  6. Plasmodium berghei Δp52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells.

    Directory of Open Access Journals (Sweden)

    Ivo H J Ploemen

    Full Text Available The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM. However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.

  7. Plasmodium berghei Δp52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells.

    Science.gov (United States)

    Ploemen, Ivo H J; Croes, Huib J; van Gemert, Geert-Jan J; Wijers-Rouw, Mietske; Hermsen, Cornelus C; Sauerwein, Robert W

    2012-01-01

    The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM). However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.

  8. Induction of C-FOS, C-MYC and P53 by US -adrenergic receptor (US -AR) stimulation of rat parotid acinar cells (RPAC)

    Energy Technology Data Exchange (ETDEWEB)

    Kousvelari, E.E.; Louis, J.; Curran, T.; Baum, B.J.

    1987-05-01

    Treatment of rats with the US -agonist isoproterenol (ISO) results in dramatically increased parotid gland protein synthesis, processing and cell proliferation. The authors have shown that in RPAC in vitro, US -AR stimulation has similar effect on protein synthesis and processing. Proto-oncogenes have been implicated in growth regulation, differentiation and in mediating some extracellular stimulated events at the level of gene expression. To understand the regulation of cellular events after US -AR stimulation, the expression of c-fos, c-myc and p53 was investigated. RPAC were incubated with or without 10 VM ISO for 15, 30, 60 min. mRNA was isolated from cells and hybridization analysis was performed on nitrocellulose paper-transferred mRNA using TSP-labeled DNA probes. At early time points, the levels of c-fos gene activation in ISO-treated and control cells were comparable. After 60 min of ISO treatment, a sharp 20-30 fold induction of c-fos expression occurred. Similar increases in c-myc and p53 gene expression were observed after 60 min of ISO treatment. The authors data indicate that early effects of US -AR stimulation of RPAC include induction of c-fos, c-myc and p53 gene expression as well as enhanced protein synthesis and processing.

  9. Vps1 in the late endosome-to-vacuole traffic

    Indian Academy of Sciences (India)

    Jacob Hayden; Michelle Williams; Ann Granich; Hyoeun Ahn; Brandon Tenay; Joshua Lukehart; Chad Highfill; Sarah Dobard; Kyoungtae Kim

    2013-03-01

    Vacuolar protein sorting 1 (Vps1), the yeast homolog to human dynamin, is a GTP hydrolyzing protein, which plays an important role in protein sorting and targeting between the Golgi and late endosomal compartments. In this study, we assessed the functional significance of Vps1 in the membrane traffic towards the vacuole. We show here that vps1 cells accumulated FM4-64 to a greater extent than wild-type (WT) cells, suggesting slower endocytic degradation traffic toward the vacuole. In addition, we observed that two endosome-to-vacuole traffic markers, DsRed-FYVE and Ste2-GFP, were highly accumulated in Vps1-deficient cells, further supporting Vps1’s implication in efficient trafficking of endocytosed materials to the vacuole. Noteworthy, a simultaneous imaging analysis in conjunction with FM4-64 pulse-chase experiment further revealed that Vps1 plays a role in late endosome to the vacuole transport. Consistently, our subcellular localization analysis showed that Vps1 is present at the late endosome. The hyperaccumulation of endosomal intermediates in the vps1 mutant cells appears to be caused by the disruption of integrity of HOPS tethering complexes, manifested by mislocalization of Vps39 to the cytoplasm. Finally, we postulate that Vps1 functions together with the Endosomal Sorting Complex Required for Transport (ESCRT) complex at the late endosomal compartments, based on the observation that the double mutants, in which VPS1 along with singular ESCRT I, II and III genes have been disrupted, exhibited synthetic lethality. Together, we propose that Vps1 is required for correct and efficient trafficking from the late endosomal compartments to the vacuole.

  10. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices

    Directory of Open Access Journals (Sweden)

    Goldenberg Anna

    2006-06-01

    Full Text Available Abstract Background Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV which serves to match lung perfusion to ventilation. The underlying mechanisms are not fully resolved yet. The major vascular segment contributing to HPV, the intra-acinar artery, is mostly located in that part of the lung that cannot be selectively reached by the presently available techniques, e.g. hemodynamic studies of isolated perfused lungs, recordings from dissected proximal arterial segments or analysis of subpleural vessels. The aim of the present study was to establish a model which allows the investigation of HPV and its underlying mechanisms in small intra-acinar arteries. Methods Intra-acinar arteries of the mouse lung were studied in 200 μm thick precision-cut lung slices (PCLS. The organisation of the muscle coat of these vessels was characterized by α-smooth muscle actin immunohistochemistry. Basic features of intra-acinar HPV were characterized, and then the impact of reactive oxygen species (ROS scavengers, inhibitors of the respiratory chain and Krebs cycle metabolites was analysed. Results Intra-acinar arteries are equipped with a discontinuous spiral of α-smooth muscle actin-immunoreactive cells. They exhibit a monophasic HPV (medium gassed with 1% O2 that started to fade after 40 min and was lost after 80 min. This HPV, but not vasoconstriction induced by the thromboxane analogue U46619, was effectively blocked by nitro blue tetrazolium and diphenyleniodonium, indicating the involvement of ROS and flavoproteins. Inhibition of mitochondrial complexes II (3-nitropropionic acid, thenoyltrifluoroacetone and III (antimycin A specifically interfered with HPV, whereas blockade of complex IV (sodium azide unspecifically inhibited both HPV and U46619-induced constriction. Succinate blocked HPV whereas fumarate had minor effects on vasoconstriction. Conclusion This study establishes the first model for investigation of basic characteristics of HPV

  11. Motile tubular vacuoles in extramatrical mycelium and sheath hyphae of ectomycorrhizal systems.

    Science.gov (United States)

    Allaway, W G; Ashford, A E

    2001-01-01

    Extramatrical mycelium and outer hyphae of the sheath of Eucalyptus pilularis-Pisolithus tinctorius mycorrhizas contain abundant motile tubular vacuoles which accumulate the carboxyfluorescein analogue Oregon Green 488 carboxylic acid. The fluorochrome accumulates in a system of small vacuoles, tubules, and larger vacuoles, which are interlinked, motile, and pleiomorphic, in external hyphae, cords, and hyphae of the outer sheath. There is often a difference in fluorescence between two neighbouring cells, indicating that the dolipore septum exercises control on the movement of material between cells. Generally the motile tubular vacuole system in mycorrhizas resembles that previously found in isolated mycelium. The majority of fungal cells in the sheath contain no fluorochrome even after long exposure of the mycorrhiza to the solution, but with differential interference optics the cells are clearly seen to be alive and to contain vacuoles resembling those in the outer hyphae. In translocation experiments, long-distance transport of the fluorochrome is slow and slight, or even nonexistent in some cases.

  12. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis.

    Science.gov (United States)

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda; Real, Fernando

    2016-05-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol.

  13. Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance.

    Science.gov (United States)

    Chan, Yee-Hung M; Reyes, Lorena; Sohail, Saba M; Tran, Nancy K; Marshall, Wallace F

    2016-05-09

    It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model.

  14. KLF4 Is Essential for Induction of Cellular Identity Change and Acinar-to-Ductal Reprogramming during Early Pancreatic Carcinogenesis.

    Science.gov (United States)

    Wei, Daoyan; Wang, Liang; Yan, Yongmin; Jia, Zhiliang; Gagea, Mihai; Li, Zhiwei; Zuo, Xiangsheng; Kong, Xiangyu; Huang, Suyun; Xie, Keping

    2016-03-14

    Understanding the molecular mechanisms of tumor initiation has significant impact on early cancer detection and intervention. To define the role of KLF4 in pancreatic ductal adenocarcinoma (PDA) initiation, we used molecular biological analyses and mouse models of klf4 gain- and loss-of-function and mutant Kras. KLF4 is upregulated in and required for acinar-to-ductal metaplasia. Klf4 ablation drastically attenuates the formation of pancreatic intraepithelial neoplasia induced by mutant Kras(G12D), whereas upregulation of KLF4 does the opposite. Mutant KRAS and cellular injuries induce KLF4 expression, and ectopic expression of KLF4 in acinar cells reduces acinar lineage- and induces ductal lineage-related marker expression. These results demonstrate that KLF4 induces ductal identity in PanIN initiation and may be a potential target for prevention of PDA initiation.

  15. 咪唑诱导的人子宫内膜癌细胞HEC-1B空泡化现象研究%Study on the Vacuolation of Imidazole-Treated Human Endometrial Carcinoma Cell Line HEC-1B

    Institute of Scientific and Technical Information of China (English)

    张玖航; 曾申明

    2011-01-01

    As a kind of weak bases, imidazole cause vacuolation of animal endometrial cells, and affect the physiological and reproductive functions. Our study discuss the mechanism of vacuolation after treatment with imidazole through experimental model of human endometrial carcinoma cell line HEC -IB. We study through Genechip research, fluorescence quantitative PCR and observation of laser confocal microscopy. Results: Genechip research results show that gene of subunit V0D2 of human vacuolar type H+-ATPase (V-ATPase) had an increased expression after the treatment with imidazole on human endometrial carcinoma cell line HEC -IB. Genechip research results were verified by fluorescence quantitative PCR. The expression of the mRNA of subunit V0D2 of human V -ATPase increased.Another subunit V1E1 of human V-ATPase also had an increased expression by fluorescence quantitative PCR. Bafilomycin Al, an inhibitor of V-ATPase, significantly inhibited the vacuolation caused by imidazole. The phenomenon was observed by laser confocal microscopy after staining human endometrial carcinoma cell line HEC-IB with Acridine orange. These results suggest that V-ATPase plays an important role in cell vacuolation caused by imidazole.%咪唑作为一种弱碱性物质,处理动物子宫内膜细胞后,可诱导其产生空泡化现象,进而影响其生殖生理功能.本研究使用人子宫内膜癌细胞HEC-1B作为模型,使用咪唑处理导致细胞空泡化后探讨空泡化产生的生理机制.通过基因芯片分析、荧光定量PCR检测、激光共聚焦显微镜观察等方法进行研究.结果表明:咪唑处理人子宫内膜癌细胞HEC-1B后,空泡型质子泵(V-ATPase)亚基VOD2基因表达量上调.使用荧光定量PCR验证芯片结果,V-ATPase亚基VOD2mRNA表达量有所上调.对V-ATPase另外一个亚基V1E1基因进行荧光定量PCR,其mRNA表达量也有所上调.使用V-ATPase抑制剂巴弗洛霉素A1和咪唑共同处理人子宫内膜癌细胞HEC-1B后,通过

  16. The research of rat bone marrow mesenchymal stem cells differentiation into salivary gland acinar-like cells%诱导大鼠骨髓间充质干细胞分化为唾液腺腺泡样细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    梁亮; 孙沫逸; 李建虎; 杨永勤; 申志远; 苏忠平

    2012-01-01

    Objective To explore the possibility of rat bone marrow mesenchymal stem cells(MSCs) differentiation intosalivary gland acinar-like cells induced by co-culture with salivary gland acinar cells (SGCS) in vitro. Methods SGCsof passage 1 and MSCs of passage 3 were taken as subject investigated.Following groups were allocated:co-culturewith salivary gland medium group;co-culture with 10% FBS DMEM/F12 group;salivary gland medium group;group with10% FBS DMEM/F12.MSCs of every group were identified by immunohistochemiscal analysis withα -amylase After amonth cultivation.MSCs conversion rate is attained by calculation of the number of positive cells.By the opticalmicroscope and scanning electron microscope observes the morphological changes of cells. Results Compared withnone-co-cultured groups,Most cells in co-culture groups were stained by α-amylase(P<0.05). Conclusions The cellsof success induction morphology which similar to salivary gland acinar cells at the optical microscope and scanningelectron microscope display.MSCs could differentiate into SGs at phenotype and molecule level by co-culture of SGs invitro.Changing the experimental conditions and can improve induction efficiency.%目的:探讨在共培养系统下大鼠骨髓间充质干细胞分化为唾液腺腺泡样细胞的实验.方法:以纯化1代SD大鼠颌下腺腺泡细胞和3代骨髓间充质干细胞作为共培养实验对象.实验分组:含唾液腺培养液的共培养组;含10%FBS、DMEM/F12的共培养组;含唾液腺培养液的非共培养组;含10%FBS、DMEM/F12的非共培养组.培养1个月经α-淀粉酶(α-amylase)免疫组化染色各组的MSCs,计算阳性细胞数得出MSCs的转化率,并且通过光镜和电镜鉴定细胞形态变化.结果:各组诱导的MSCs经α-amylase染色,共培养组阳性细胞数较非共培养组多(P<0.05),且诱导成功的细胞在镜下形态类似于唾液腺腺泡细胞.结论:在共培养条件下成功实现了MSCs向 SGCs的形态学转

  17. Effect of the Vacuolation of Helicobacter Pylori

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Cytotoxic test in vitro combined with cytochemical stain, fluorescent stain, transmission electronmicrograph was used to study the vacuolated effect by helicobacter pylori (H.pylori) (Toxin+) and its pathological mechanism. 78.26 % patients with peptic ulcer associated with H.pylori was infected with H.pylori (Toxin+), while 42.86 % patients with gastritis was infected with H.pylori (Toxin+). It was positive in vacuole with acridine orange and acid phosphatase stain. Transmission electronmicrograph of vacuole revealed the presence of abounding membrane. There was a closed relationship between infection with H.pylori (Toxin+) and peptic ulcer disease. The vacuole induced by H.pylori (Toxin+) was autophagosome, which was pathological phenomenon induced by toxin.

  18. The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles

    Science.gov (United States)

    Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo

    2016-01-01

    Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf. We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf/Ps), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements

  19. The water to solute permeability ratio governs the osmotic volume dynamics in beetroot vacuoles

    Directory of Open Access Journals (Sweden)

    Victoria Vitali

    2016-09-01

    Full Text Available Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf. We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modelling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf/Ps, which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons or stems that perform extensive rhythmic

  20. Shigella subverts the host recycling compartment to rupture its vacuole.

    Science.gov (United States)

    Mellouk, Nora; Weiner, Allon; Aulner, Nathalie; Schmitt, Christine; Elbaum, Michael; Shorte, Spencer L; Danckaert, Anne; Enninga, Jost

    2014-10-08

    Shigella enters epithlial cells via internalization into a vacuole. Subsequent vacuolar membrane rupture allows bacterial escape into the cytosol for replication and cell-to-cell spread. Bacterial effectors such as IpgD, a PI(4,5)P2 phosphatase that generates PI(5)P and alters host actin, facilitate this internalization. Here, we identify host proteins involved in Shigella uptake and vacuolar membrane rupture by high-content siRNA screening and subsequently focus on Rab11, a constituent of the recycling compartment. Rab11-positive vesicles are recruited to the invasion site before vacuolar rupture, and Rab11 knockdown dramatically decreases vacuolar membrane rupture. Additionally, Rab11 recruitment is absent and vacuolar rupture is delayed in the ipgD mutant that does not dephosphorylate PI(4,5)P₂ into PI(5)P. Ultrastructural analyses of Rab11-positive vesicles further reveal that ipgD mutant-containing vacuoles become confined in actin structures that likely contribute to delayed vacular rupture. These findings provide insight into the underlying molecular mechanism of vacuole progression and rupture during Shigella invasion.

  1. Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments.

    Directory of Open Access Journals (Sweden)

    Coreen Johnson

    Full Text Available Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.

  2. Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis.

    Science.gov (United States)

    Song, Won-Yong; Mendoza-Cózatl, David G; Lee, Youngsook; Schroeder, Julian I; Ahn, Sang-Nag; Lee, Hyun-Sook; Wicker, Thomas; Martinoia, Enrico

    2014-05-01

    Cadmium (Cd) and arsenic (As) are toxic to all living organisms, including plants and humans. In plants, Cd and As are detoxified by phytochelatins (PCs) and metal(loid)-chelating peptides and by sequestering PC-metal(loid) complexes in vacuoles. Consistent differences have been observed between As and Cd detoxification. Whereas chelation of Cd by PCs is largely sufficient to detoxify Cd, As-PC complexes must be sequestered into vacuoles to be fully detoxified. It is not clear whether this difference in detoxification pathways is ubiquitous among plants or varies across species. Here, we have conducted a PC transport study using vacuoles isolated from Arabidopsis and barley. Arabidopsis vacuoles accumulated low levels of PC2 -Cd, and vesicles from yeast cells expressing either AtABCC1 or AtABCC2 exhibited negligible PC2 -Cd transport activity compared with PC2 -As. In contrast, barley vacuoles readily accumulated comparable levels of PC2 -Cd and PC2 -As. PC transport in barley vacuoles was inhibited by vanadate, but not by ammonium, suggesting the involvement of ABC-type transporters. Interestingly, barley vacuoles exhibited enhanced PC2 transport activity when essential metal ions, such as Zn(II), Cu(II) and Mn(II), were added to the transport assay, suggesting that PCs might contribute to the homeostasis of essential metals and detoxification of non-essential toxic metal(loid)s.

  3. Localization of acid hydrolases in protoplasts. Examination of the proposed lysosomal function of the mature vacuole

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, H.C.; Wagner, G.J.; Siegelman, H.W.

    1977-06-01

    The development of techniques to isolate and purify relatively large quantities of intact vacuoles from mature tissues permits direct biochemical analysis of this ubiquitous mature plant cell organelle. Vacuoles and a fraction enriched in soluble cytoplasmic constituents were quantitatively prepared from Hippeastrum flower petal protoplasts. Vacuolar lysate and soluble cytoplasmic fractions were examined for acid hydrolase activities commonly associated with animal lysosomes, and pH optima were determined. Esterase, protease, carboxypeptidase, ..beta..-galactosidase, ..cap alpha..-glycosidase and ..beta..-glycosidase, not found in the vacuole lysate fraction, were components of the soluble cytoplasmic fraction. Acid phosphatase, RNase and DNase were present in both fractions. Vacuolar enzyme activities were also examined as a function of flower development from bud through senescent stages. The data obtained are not consistent with the concept that the mature plant cell vacuole functions as a generalized lysosome.

  4. A soluble acid invertase is directed to the vacuole by a signal anchor mechanism.

    Science.gov (United States)

    Rae, Anne L; Casu, Rosanne E; Perroux, Jai M; Jackson, Mark A; Grof, Christopher P L

    2011-06-15

    Enzyme activities in the vacuole have an important impact on the net concentration of sucrose. In sugarcane (Saccharum hybrid), immunolabelling demonstrated that a soluble acid invertase (β-fructofuranosidase; EC 3.2.1.26) is present in the vacuole of storage parenchyma cells during sucrose accumulation. Examination of sequences from sugarcane, barley and rice showed that the N-terminus of the invertase sequence contains a signal anchor and a tyrosine motif, characteristic of single-pass membrane proteins destined for lysosomal compartments. The N-terminal peptide from the barley invertase was shown to be capable of directing the green fluorescent protein to the vacuole in sugarcane cells. The results suggest that soluble acid invertase is sorted to the vacuole in a membrane-bound form.

  5. Cytotoxic effect of desoxycholic acid on pancreatic acinar cells and its influence on the activity of nuclear transcription factors%脱氧胆酸对胰腺腺泡细胞的损伤及核转录因子活性的影响

    Institute of Scientific and Technical Information of China (English)

    张桂信; 陈海龙; 曹传海; 林小洋; 张利; 纪军; 王永鹏

    2011-01-01

    目的 观察脱氧胆酸(DCA)对AR42J胰腺腺泡细胞的损伤作用并探讨其对核转录因子(TF)活性的影响。方法 应用噻唑蓝(MTT)比色法检测DCA作用下细胞存活率改变,流式细胞术AV/PI双染法检测细胞的凋亡/坏死率。细胞经0.4mmoL/L DCA分别作用15 min、30 min、4h后收集培液上清,收集细胞并提取细胞质和细胞核蛋白,分别检测培液上清和胞质淀粉酶的活性,利用Luminex检测细胞核TF的DNA结合活性。结果 DCA对AR42J胰腺腺泡细胞的损伤作用呈浓度和时间依赖性,对细胞质内和培液中的淀粉酶水平无明显影响。在检测的40种TF活性变化中,DCA诱导ATF2、AR33、STAT5、NFAT、FKHR和NKX-2.5这6种TF活性明显升高,而RUNX/AML、NF-Y、MEF2和E2F1这4种TF活性则明显下降,其余30种TF活性无明显变化。结论 DCA对腺泡细胞的损伤作用主要表现为凋亡和坏死,对细胞内酶的合成和分泌功能没有明显影响。DCA诱导细胞核TF活性的变化,可能是其诱导细胞损伤的分子生物学基础。%Objective To study the cytotoxic effect of desoxycholic acid (DCA) on pancreatic acinar cells AR42J, its impact on the synthesis and secretion function of amylase, and the influence on the activity of nuclear transcription factor (TF). MethodsThe cytotoxic effect of DCS was detected in rat AR42J cells by using methyl thiazol tetrazolium (MTT) assay. The rate of apoptosis or necrosis was determined by flow cytometry. After the cells were incubated with DCA (0. 4 mmol/L) for 15 min, 30 min, or 4 h, the medium was collected to detect the activity of amylase. The cytoplamic protein was extracted to detect the activity of amylase, and nuclear protein was extracted to detect the DNA binding activity of 40 TFs by Luminex. Results DCA exerted cytotoxic effects on AR42J cells in a time-and dose-dependent manner, and induced cell apoptosis and necrosis. DCA had no significant influence on the amylase synthesis and secretion

  6. Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation.

    Directory of Open Access Journals (Sweden)

    Kendi Okuda

    2016-06-01

    Full Text Available Leishmania amastigotes manipulate the activity of macrophages to favor their own success. However, very little is known about the role of innate recognition and signaling triggered by amastigotes in this host-parasite interaction. In this work we developed a new infection model in adult Drosophila to take advantage of its superior genetic resources to identify novel host factors limiting Leishmania amazonensis infection. The model is based on the capacity of macrophage-like cells, plasmatocytes, to phagocytose and control the proliferation of parasites injected into adult flies. Using this model, we screened a collection of RNAi-expressing flies for anti-Leishmania defense factors. Notably, we found three CD36-like scavenger receptors that were important for defending against Leishmania infection. Mechanistic studies in mouse macrophages showed that CD36 accumulates specifically at sites where the parasite contacts the parasitophorous vacuole membrane. Furthermore, CD36-deficient macrophages were defective in the formation of the large parasitophorous vacuole typical of L. amazonensis infection, a phenotype caused by inefficient fusion with late endosomes and/or lysosomes. These data identify an unprecedented role for CD36 in the biogenesis of the parasitophorous vacuole and further highlight the utility of Drosophila as a model system for dissecting innate immune responses to infection.

  7. Saccharomyces cerevisiae depend on vesicular traffic between Golgi and vacuole when Inositolphosphorylceramide synthase Aur1 is inactivated

    DEFF Research Database (Denmark)

    Voynova, Natalia S; Roubaty, Carole; Vazquez, Hector M

    2015-01-01

    that vesicle mediated transport between Golgi, endosomes and vacuole becomes crucial for survival when Aur1 is repressed, irrespective of the mode of repression. In addition, vacuolar acidification becomes essential when cells are acutely stressed by AbA, and Quinacrine uptake into vacuoles shows that Ab...

  8. The Expression of VacA in BCF of Helicobacter Pylori and Its Relationship to Vacuolated Effect

    Institute of Scientific and Technical Information of China (English)

    施理; 侯晓华; 易粹琼; 张锦坤

    2002-01-01

    Summary: The vacuolated effect of Helicobacter (H. Pylori) and its relationship to vacuolated cyto toxin antigen (VacA) were investigated by the method of cytotoxic test and SDS-pobyacrylamide gel electrophoresis (SDS-PAGE). Of the 62 clinical isolates, the broth culture filter (BCF) of 43 strains causecl the Vero cell intracytoplasmically vacuolated. H. Pylori strains were divided into H. Pylori (Toxin+) group with vacuolated effect and H. Pylori (Toxin-) group without vacuolated effect. The analysis of the BCF of H. Pylori (Toxin+) and that of H. Pylori (Toxin-) was studied by SDS-PAGE and Scan reader. A kind of protein with 87 ku molecular weight was recognized in the BCF of 30.23 % (13/43) H. Pylori (Toxin+) strains but in none of that of H. Pylori (Toxin-) strains, the difference was statistically significant (P<0. 05). There was a significant and concordant relation ship between OD of the protein band with 87 ku molecular weight and titer of vacuolated activity of H. Pylori(Toxin+) (r=0. 67 and P<0. 05 by linear regression analysis). H. Pylori strains were di-vided into H. Pylori (Toxin+) group with vacuolated effect and H. Pylori (Toxin-) group without vacuolated effect. The vacuolated effect of H. Pylori (Toxin+) was caused by the protein with 87 ku molecular weight (VacA).

  9. THE TONOPLAST TRANSPORT SYSTEMS OF PLANT VACUOLES AND THEIR POTENTIAL APPLICATION IN BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    S. V. Isayenkov

    2013-06-01

    Full Text Available The pivotal role of plant vacuoles in plant survival was discussed in the review. Particularly, the providing of cellular turgor, accumulation of inorganic osmolytes and nutrients are the primary tasks of these cellular organelles. The main mechanisms of tonoplast transport systems were described. The known transport pathways of minerals, heavy metals, vitamins and other organic compounds were classified and outlined. The main systems of membrane vacuolar transport were reviewed. The outline of the physiological functions and features of vacuolar membrane transport proteins were performed. The physiological role of transport of minerals, nutrients and other compounds into vacuoles were discussed. This article reviews the main types of plant vacuoles and their functional role in plant cell. Current state and progress in vacuolar transport research was outlined. The examples of application for rinciples and mechanisms of vacuolar membrane transport in plant biotechnology were iven. The perspectives and approaches in plant and food biotechnology concerning transport and physiology of vacuoles are discussed.

  10. ER and vacuoles: never been closer

    Directory of Open Access Journals (Sweden)

    Corrado eViotti

    2014-02-01

    Full Text Available The endoplasmic reticulum (ER represents the gateway for intracellular trafficking of membrane proteins, soluble cargoes and lipids. In all eukaryotes, the best described mechanism of exiting the ER is via COPII-coated vesicles, which transport both membrane proteins and soluble cargo to the cis-Golgi. The vacuole, together with the plasma membrane, is the most distal point of the secretory pathway, and many vacuolar proteins are transported from the ER through intermediate compartments. However, past results and recent findings demonstrate the presence of alternative transport routes from the ER towards the tonoplast, which are independent of Golgi- and post-Golgi trafficking. Moreover, the transport mechanism of the vacuolar proton pumps VHA-a3 and AVP1 challenges the current model of vacuole biogenesis, pointing to the endoplasmic reticulum for being the main membrane source for the biogenesis of the plant lytic compartment. This review gives an overview of the current knowledge on the transport routes towards the vacuole and discusses the possible mechanism of vacuole biogenesis in plants.

  11. Culture supernatants from V. cholerae O1 ElTor strains isolated from different geographic areas induce cell vacuolation and cytotoxicity Cepas de V. cholerae O1 biotipo ElTor aisladas de diferente origen geográfico inducen vacuolización celular y citotoxicidad

    Directory of Open Access Journals (Sweden)

    Jorge E Vidal

    2009-02-01

    Full Text Available OBJECTIVE: To investigate whether the HlyA-induced vacuolating effect is produced by V. cholerae O1 ElTor strains isolated from different geographic origins, including Mexico. MATERIAL AND METHODS: Supernatant-induced haemolysis, vacuolating activity and cytotoxicity in Vero cells were recorded. PCR, RFLP analysis and molecular cloning were performed. RESULTS: All ElTor strains analyzed induced cellular vacuolation. Ribotype 2 strains isolates from the U.S. gulf coast yielded the highest titer of vacuolating activity. Eight of nine strains were haemolytic, while all strains were PCR positive for the hlyA gene. We cloned the hlyA gene from two ElTor strains, a toxigenic (2514-88, ctxAB+ and a non-toxigenic Mexican strain (CM 91-3, ctxAB-. Supernatant from those recombinant E. coli strains induced haemolysis, cell vacuolation and cytotoxicity. RFLP-PCR analysis revealed similarities in the hlyA gene from all strains tested. CONCLUSION: The HlyA-induced vacuolating effect is a widespread phenotype of epidemic V. cholerae O1 ElTor strains.OBJETIVO: Analizar el efecto vacuolizante de cepas de V. cholerae O1 ElTor aisladas de diferente origen geográfico, incluyendo México. MATERIAL Y MÉTODOS: Se realizaron pruebas de hemolisis, vacuolización y citotoxicidad en células Vero, así como PCR, análisis por RFLP y clonación molecular. RESULTADOS: Todas las cepas indujeron el efecto vacuolizante. Las cepas del ribotipo 2, aisladas de las costas del Golfo en Estados Unidos, presentaron títulos altos de vacuolización. El gen hlyA fue amplificado en las nueve cepas mediante PCR, aunque sólo ocho fueron hemolíticas. Se clonó el gen hlyA de una cepa toxigénica (2514-88, ctxAB+ y de una cepa no toxigénica aislada en México (CM 91-3, ctxAB-. El sobrenadante de las clonas recombinantes indujo hemólisis, efecto vacuolizante y citotoxicidad. El RFLP mostró alta similitud del gen hlyA de las cepas estudiadas. CONCLUSIÓN: El efecto vacuolizante es un

  12. Vibrio cholerae O1 Strains of Different Ribotypes have Similar hlyA RFLP Patterns but Different Vacuolating Ability

    Directory of Open Access Journals (Sweden)

    Jorge E. Vidal

    2007-01-01

    Full Text Available Extensive cytoplasmic vacuolation on Vero and HeLa cells in vitro by the Vibrio cholerae pore forming toxin HlyA, has been previously reported by our group. Vibrio cholerae O1 and non-O1 pathogenic strains show differences in the potential to induce vacuolation, here we study occurring variations on vacuolating cytotoxic ability, related to changes in the nucleotide sequence of the hlyA-orf. A collection of eight toxigenic strains of V. cholerae O1 El Tor and a non-toxigenic one, all belonging to different ribotypes was tested for their vacuolating ability, and hlyA-orf similarity based on PCR and RFLPs. The strains had extremely different vacuolating capacities, those from the ribotype 2 isolated from the US Gulf Coast, showed the highest vacuolating titer (10240 dil, and the rest of the collection had considerably lower titers ranging among 40 to 360 dilutions. PCR of hlyA-orf, was performed and RFLPs were generated using seven restriction enzymes, this approach later revealed small changes of restriction maps, among the strains. The phenogram constructed from the RFLPs, showed two major branches, one of them included most of the strains, the other separates the only Mexican wild type non-O1 Vibrio cholerae. To test for vacuolating ability out of the Vibrio genetic context, the amplified hlyA-orfs from the collection of strains were cloned in pGEMT- vector system and supernatants from the recombinant E coli DH5-, showed no differences on vacuolating titers, the clones always were low producers. Results from the cloning, together with those from the phenogram indicated that the hlyA gene is mainly conserved and the differences on vacuolating activity are unrelated to minute changes seen in the hlyA-orf. Production of high vacuolating titers on Vibrio strains could be due to transcriptional regulation. Whether the high vacuolating titer would be related to increased virulence, is still to be found.

  13. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  14. A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland.

    Science.gov (United States)

    Catalán, Marcelo A; Kondo, Yusuke; Peña-Munzenmayer, Gaspar; Jaramillo, Yasna; Liu, Frances; Choi, Sooji; Crandall, Edward; Borok, Zea; Flodby, Per; Shull, Gary E; Melvin, James E

    2015-02-17

    Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)). Ca(2+)-dependent salivation was abolished in Tmem16A(-/-) mice, demonstrating that Tmem16A is obligatory for Ca(2+)-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A(-/-) mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr(∆F508/∆F508)) or ClC-2 (Clcn2(-/-)) Cl(-) channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl(-) channel. Indeed, Cl(-) channel blockers abolished fluid secretion, indicating that Cl(-) channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic-induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A(-/-) mice identify Tmem16A as the Cl(-) channel essential for muscarinic, Ca(2+)-dependent fluid secretion in adult mouse salivary glands.

  15. 糖尿病/星型胶质细胞富集磷蛋白酶-15的表达对急性胰腺炎腺泡细胞凋亡的影响%Effects of diabetes mellitus/astrocyte enriched phosphorus protease 15 expression on the apoptosis of acinar cells in acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    胡明星; 王玉柱; 刘传江; 秦涛

    2015-01-01

    目的 观察糖尿病/星型胶质细胞富集磷蛋白酶-15(PED/PEA-15)的表达对蛙皮素诱导的体外急性胰腺炎(AP)模型腺泡细胞凋亡的影响.方法 建立体外AP模型:用10 nmol/L的蛙皮素处理胰腺腺泡细胞株(AR42J细胞)建立AP模型,4h后检测培养液淀粉酶水平,实时荧光定量反转录聚合酶链反应(RT-PCR)检测PED/PEA-15的mRNA表达,吖啶橙/溴乙锭(AO/EB)法检测AR42J细胞的凋亡.构建PED/PEA-15的真核表达载体pcDNA3和空载体,利用脂质体转染AR42J细胞,72 h后加入10 nmol/L的蛙皮素处理,RT-PCR检测PED/PEA-15的mRNA表达水平,AO/EB法检测AR42J细胞的凋亡.结果 蛙皮素处理的AR42J细胞培养液淀粉酶水平较未处理细胞明显升高[(748.75±42.90) U/L较(249.75±27.16) U/L,P<0.05],PED/PEA-15的mRNA表达降低(5.24±0.66)倍(P<0.05),细胞凋亡率[(78.75±0.03)%]较未处理组[(17.50±0.04)%]升高(P<0.05).PED/PEA-15-pcDNA组AR42J细胞较空载体组PED/PEA-15的mRNA表达升高(4.27±0.78)倍(P<0.05),淀粉酶水平[(528.71±34.92) U/L]较空载体组[(856.29±52.39) U/L]明显下降(P<0.05),细胞凋亡率[(22.19±1.21)%]较空载体组[(68.92±1.83)%]降低(P<0.05),转染空载体组各项指标与未转染组差异无统计学意义(P>0.05).结论 PED/PEA-15蛋白在胰腺腺泡细胞的表达升高,能够抑制蛙皮素诱导的AR42J胰腺腺泡细胞凋亡.%Objective To investigate the effect of diabetes mellitus/astrocyte enriched phosphorus protease 15 (PED/PEA-15) expression on the apoptosis of acinar cells in bombesin-induced acute pancreatitis.Methods A model of acute pancreatitis with bombesin of 10 nmol/L was established.Amylase was determined 4 h later.The real-time reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of PED/PEA-15 mRNA.The pcDNA or empty vehicle was created and transfected into AR42J cells.After the AR42J cells were treated with 10 nmol/L bombesin for 72 h, the

  16. A functional connection of Dictyostelium paracaspase with the contractile vacuole and a possible partner of the vacuolar proton ATPase

    Indian Academy of Sciences (India)

    Entsar Saheb; Ithay Biton; Katherine Maringer; John Bush

    2013-09-01

    Dictyostelium discoideum possesses only one caspase family member, paracaspase (pcp). Two separate mutant cell lines were first analysed: one cell line was an over-expressed GFP-tagged Pcp (GFP-Pcp), while the other cell line was a pcp-null (pcp-). Microscopic analysis of cells expressing GFP-Pcp revealed that Pcp was associated with the contractile vacuole membrane consisting of bladder-like vacuoles. This association was disrupted when cells were exposed to osmotic stress conditions. Compared with wild-type cells, the GFP-Pcp-over-expressing cells were susceptible to osmotic stress and were seen to be very rounded in hypo-osmotic conditions and contained more abnormally swollen contractile vacuole. Cells with pcp- were also rounded but had few, if any, contractile vacuoles. These observations suggest that Pcp is essential for Dictyostelium osmotic regulation via its functioning in the contractile vacuole system. Subjecting these cells to selected contractile vacuole inhibitor provided additional support for these findings. Furthermore, yeast two-hybrid system identified vacuolar proton ATPase (VatM) as the protein interacting with Pcp. Taken together, this work gives evidence for an eukaryotic paracaspase to be associated with both localization in and regulation of the contractile vacuolar system, an organelle critical for maintaining the normal morphology of the cell.

  17. Redox Enzymes of Red Beetroot Vacuoles (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2014-12-01

    Full Text Available Years of research have shown that some of the redox elements (enzymes, coenzymes, and co-substrate are isolated from each other kinetic and spatial manner (compartmentalization in the eukaryotic cells. The redox elements forming the "highly" and "widely" specialized redox system are found in all cell structures: mitochondria, plastids, peroxisomes, apoplast, nucleus etc. In recent years the active involvement of the central vacuole in the maintenance of the plant cell redox homeostasis is discussed, actually the information about the vacuolar redox system is very small. The high-priority redox processes and "redox-specialization" of the vacuolar compartment are not known. We have begun a study of red beet-root vacuole redox systems (Beta vulgaris L. and have identified redox enzymes such as: phenol peroxidase (EC 1.11.1.7, superoxide dismutase (EC 1.15.1.1 and glutathione reductase (EC 1.8.1.7. This paper presents some of the characteristics of these enzymes and considers the probable ways of their functioning in vacuolar redox chains.

  18. Intratumoral injection of taxol in vivo suppresses A549 tumor showing cytoplasmic vacuolization.

    Science.gov (United States)

    Wang, Chaoyang; Chen, Tongsheng

    2012-04-01

    Based on our recent in vitro studies, this report was designed to explore the mechanism by which high concentration of taxol (70 µM) induced paraptosis-like cell death in human lung carcinoma (A549) cells, and to evaluate the therapeutic efficacy of taxol using A549 tumor-bearing mice in vivo. Exposure of cells to taxol induced time-dependent cytotoxicity and cytoplasmic vacuolization without the involvement of Bax, Bak, Mcl-1, Bcl-XL, and caspase-3. Although taxol treatment induced activating transcription factor 6 (ATF6) cleavage indicative of endoplasmic reticulum (ER) stress, silencing ATF6 by shATF6 did not prevent taxol-induced both cytotoxcity and cytoplasmic vacuolization, suggesting that taxol-induced cytoplasmic vacuolization and cell death were not due to ER stress. Moreover, taxol-treated cells did not show DNA fragmentation and loss of mitochondrial membrane potential, the typical characteristics of apoptosis. In addition, taxol-induced cytoplasmic vacuolization did not show the cellular lysis, the characteristics of oncosis, and positive of β-galactosidase, the characteristic of senescence, indicating that taxol induced paraptosis-like cell death is neither oncosis nor senescence. Moreover, our in vivo data showed that intratumoral injection of taxol (50 mg/kg) in A549 tumor xenograft mice on day 1 and day 19 potently suppressed tumor growth showing significant ER vacuolization without toxicity. In conclusion, high concentration of taxol exhibits a significant anticancer activity by inducing paraptosis-like cell death in vitro and in vivo, without significant toxicity, suggesting a promising therapeutic strategy for apoptosis-resistance cancer by inducing ER vacuolization.

  19. COMPUTER-AIDED DETECTION OF ACINAR SHADOWS IN CHEST RADIOGRAPHS

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2013-05-01

    Full Text Available Despite the technological advances in medical diagnosis, accurate detection of infectious tuberculosis (TB still poses challenges due to complex image features and thus infectious TB continues to be a public health problem of global proportions. Currently, the detection of TB is mainly conducted visually by radiologists examining chest radiographs (CXRs. To reduce the backlog of CXR examination and provide more precise quantitative assessment, computer-aided detection (CAD systems for potential lung lesions have been increasingly adopted and commercialized for clinical practice. CADs work as supporting tools to alert radiologists on suspected features that could have easily been neglected. In this paper, an effective CAD system aimed for acinar shadow regions detection in CXRs is proposed. This system exploits textural and photometric features analysis techniques which include local binary pattern (LBP, grey level co-occurrence matrix (GLCM and histogram of oriented gradients (HOG to analyze target regions in CXRs. Classification of acinar shadows using Adaboost is then deployed to verify the performance of a combination of these techniques. Comparative study in different image databases shows that the proposed CAD system delivers consistent high accuracy in detecting acinar shadows.

  20. Purification and proteomics of pathogen-modified vacuoles and membranes

    Directory of Open Access Journals (Sweden)

    Jo-Ana eHerweg

    2015-06-01

    Full Text Available Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e. the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.

  1. Glutathione Reductase of Vacuole. Comparison of Glutathione Reductase Activity of Vacuole and Tissue Extract of Red Beet Root (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2016-02-01

    Full Text Available Glutathione reductase (GR, EC 1.8.1.7 is the enzyme that reduces oxidized glutathione (GSSG and thus regulates the redox state of glutathione (GSH/GSSG. GR has been studied in most plants. This enzyme has been identified in chloroplasts and cytosol, so these cellular compartments are considered to be the main place of the enzyme localization. In the same time, just a little is known about GR vacuoles. There are no conclusive evidences to prove the presence or absence of this enzyme in the vacuoles. GR activity was found in the vacuoles of red beet root cells (Beta vulgaris L.. The level of activity, the optimum pH and isoenzyme composition of GR were compared in the vacuoles and tissue extract of beet root. Vacuolar GR activity was quite high, it was 1.5-2 times higher than the activity of the tissue extract. Enzyme pH optimum of all the objects were identical. pH-optimum depend on the pyridine nucleotide nature: pH 7.0-8.0 was an optimal range with NADPH; pH 5.0 – with NADH. GR activity of the vacuoles and tissue extracts decreased in the presence of a noncompetitive inhibitor 1-chloro-2.4-dinitrobenzene (CDNB, indicating the specificity of this enzymatic reaction. Two bands with glutathione reductase activity have been identified in the vacuoles and tissue extracts using zymography method to determine the enzymatic activity in PAAG after electrophoresis of proteins. Belonging to the GR isoforms of these bands was confirmed by enzyme immunoassay (Western blotting. The electric mobility of isoforms of the study objects did not differ significantly. It is concluded that the biochemical characteristics of vacuolar glutathione reductase were substantially identical to the biochemical characteristics of other localization GR.

  2. Cell therapy for salivary gland regeneration.

    Science.gov (United States)

    Lin, C-Y; Chang, F-H; Chen, C-Y; Huang, C-Y; Hu, F-C; Huang, W-K; Ju, S-S; Chen, M-H

    2011-03-01

    There are still no effective therapies for hyposalivation caused by irradiation. In our previous study, bone marrow stem cells can be transdifferentiated into acinar-like cells in vitro. Therefore, we hypothesized that transplantation with bone marrow stem cells or acinar-like cells may help functional regeneration of salivary glands. Bone marrow stem cells were labeled with nanoparticles and directly co-cultured with acinar cells to obtain labeled acinar-like cells. In total, 140 severely combined immune-deficiency mice were divided into 4 groups for cell therapy experiments: (1) normal mice, (2) mice receiving irradiation around their head-and-neck areas; (3) mice receiving irradiation and intra-gland transplantation with labeled stem cells; and (4) mice receiving irradiation and intra-gland transplantation with labeled acinar-like cells. Our results showed that salivary glands damaged due to irradiation can be rescued by cell therapy with either bone marrow stem cells or acinar-like cells for recovery of saliva production, body weight, and gland weight. Transdifferentiation of bone marrow stem cells into acinar-like cells in vivo was also noted. This study demonstrated that cell therapy with bone marrow stem cells or acinar-like cells can help functional regeneration of salivary glands, and that acinar-like cells showed better therapeutic potentials than those of bone marrow stem cells.

  3. The role of Plasmodium falciparum food vacuole plasmepsins.

    Science.gov (United States)

    Liu, Jun; Gluzman, Ilya Y; Drew, Mark E; Goldberg, Daniel E

    2005-01-14

    Plasmepsins (PMs) are thought to have an important function in hemoglobin degradation in the malarial parasite Plasmodium falciparum and have generated interest as antimalarial drug targets. Four paralogous plasmepsins reside in the food vacuole of P. falciparum. Targeted gene disruption by double crossover homologous recombination has been employed to study food vacuole plasmepsin function in cultured parasites. Parasite clones with deletions in each of the individual PM I, PM II, and HAP genes as well as clones with a double PM IV/PM I disruption have been generated. All of these clones lack the corresponding PMs, are viable, and appear morphologically normal. PM II and PM IV/I disruptions have longer doubling times than the 3D7 parental line in rich RPMI medium. This appears to be because of a decreased level of productive progeny rather than an increased cell cycle time. In amino acid-limited medium, all four knockouts exhibit slower growth than the parental strain. Compared with 3D7, knock-out clone sensitivity to aspartic and cysteine protease inhibitors is changed minimally. These results suggest substantial functional redundancy and have important implications for the design of antimalarial drugs. The slow growth phenotype may explain why P. falciparum has maintained four plasmepsin genes with overlapping functions.

  4. A Leydig Cell Tumour in a Cat: Histological and Immunohistochemical Findings

    Directory of Open Access Journals (Sweden)

    Pietro Asproni

    2013-01-01

    Full Text Available A 13-year-old intact male cat was submitted to castration after the finding of the enlargement of the right testis during the clinical visit. Macroscopically, a nodule of 2 cm of diameter was observed on the cut surface of the enlarged testis. Histologically, the nodule was composed by polyhedral to elongated cells with a large, eosinophilic, and vacuolated cytoplasm and small, round, and dark nuclei. These cells were arranged in acinar structures and solid sheets. The tumour was diagnosed as a Leydig cell tumour. Immunohistochemical analysis revealed that neoplastic cells were vimentin, calretinin, and melan-A positive, whereas a lack of immunoreactivity to cytokeratins confirmed the diagnosis. To our knowledge, this is the first description of a feline Leydig cells tumour without any concurrent testicular neoplasm or in a nonretained testis.

  5. Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA.

    Science.gov (United States)

    Isomoto, Hajime; Moss, Joel; Hirayama, Toshiya

    2010-01-01

    Helicobacter pylori produces a vacuolating cytotoxin, VacA, and most virulent H. pylori strains secrete VacA. VacA binds to two types of receptor-like protein tyrosine phosphatase (RPTP), RPTPalpha and RPTPbeta, on the surface of host cells. VacA bound to RPTPbeta, relocates and concentrates in lipid rafts in the plasma membrane. VacA causes vacuolization, membrane anion-selective channel and pore formation, and disruption of endosomal and lysosomal activity in host cells. Secreted VacA is processed into p33 and p55 fragments. The p55 domain not only plays a role in binding to target cells but also in the formation of oligomeric structures and anionic membrane channels. Oral administration of VacA to wild-type mice, but not to RPTPbeta knockout mice, resulted in gastric ulcers, in agreement with the clinical effect of VacA. VacA with s1/m1 allele has more potent cytotoxic activity in relation to peptic ulcer disease and appears to be associated with human gastric cancer. VacA activates pro-apoptotic Bcl-2 family proteins, and induces apoptosis via a mitochondria-dependent pathway. VacA can disrupt other signal transduction pathways; VacA activates p38 MAPK, enhancing production of IL-8 and PGE(2), and PI3K/Akt, suppressing GSK-3beta activity. VacA has immunomodulatory actions on T cells and other immune cells, possibly contributing to the chronic infection seen with this organism. H. pylori virulence factors including VacA and CagA, which is encoded by cytotoxin-associated gene A, along with host genetic and environmental factors, constitute a complex network to regulate chronic gastric injury and inflammation, which is involved in a multistep process leading to gastric carcinogenesis.

  6. Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga.

    Science.gov (United States)

    Lamothe, Julie; Thyssen, Sandra; Valvano, Miguel A

    2004-12-01

    We have previously demonstrated that isolates of the Burkholderia cepacia complex can survive intracellularly in murine macrophages and in free-living Acanthamoeba. In this work, we show that the clinical isolates B. vietnamiensis strain CEP040 and B. cenocepacia H111 survived but did not replicate within vacuoles of A. polyphaga. B. cepacia-containing vacuoles accumulated the fluid phase marker Lysosensor Blue and displayed strong blue fluorescence, indicating that they had low pH. In contrast, the majority of intracellular bacteria within amoebae treated with the V-ATPse inhibitor bafilomycin A1 localized in vacuoles that did not fluoresce with Lysosensor Blue. Experiments using bacteria fluorescently labelled with chloromethylfluorescein diacetate demonstrated that intracellular bacteria remained viable for at least 24 h. In contrast, Escherichia coli did not survive within amoebae after 2 h post infection. Furthermore, intracellular B. vietnamiensis CEP040 retained green fluorescent protein within the bacterial cytoplasm, while this protein rapidly escaped from the cytosol of phagocytized heat-killed bacteria into the vacuolar lumen. Transmission electron microscopy analysis confirmed that intracellular Burkholderia cells were structurally intact. In addition, both Legionella pneumophila- and B. vietnamiensis-containing vacuoles did not accumulate cationized ferritin, a compound that localizes within the lysosome. Thus, our observations support the notion that B. cepacia complex isolates can use amoebae as a reservoir in the environment by surviving without intracellular replication within an acidic vacuole that is distinct from the lysosomal compartment.

  7. Primary Acinic Cell Carcinoma of the Breast: A Clinicopathological and Immunohistochemical Study

    Directory of Open Access Journals (Sweden)

    Kiyoshi Shingu

    2013-01-01

    Full Text Available Acinic cell carcinoma of the breast is an extremely rare, malignant neoplasm characterized by widespread acinar cell-like differentiation and clinically low-grade malignancy. Herein, we report a case of acinic cell carcinoma of the breast in a 41-year-old woman. The tumor was poorly demarcated but had a firm consistency. It was removed with lumpectomy, and sentinel lymph node biopsy was performed to check for metastasis. Microscopically, the tumor showed an infiltrative growth pattern with a combination of solid, trabecular, and microglandular areas. Many of the tumor cells had abundant clear vacuolated cytoplasm containing zymogen-typed granules which resemble acinar cells of the salivary glands. The immunohistochemical profile of the tumor was also similar to that of salivary gland acinic cell carcinoma: the tumor cells were positive for amylase, lysozyme, α-1-antichymotrypsin, S-100 protein, and epithelial membrane antigen and negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. She received postoperative chemoradiation therapy and has been well for 3 years since surgery. As studies on large series are lacking, further studies are needed to elucidate the biological characteristics of acinic cell carcinoma of the breast.

  8. Pathogen vacuole purification from legionella-infected amoeba and macrophages.

    Science.gov (United States)

    Hoffmann, Christine; Finsel, Ivo; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila replicates intracellularly in environmental and immune phagocytes within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). Formation of LCVs is strictly dependent on the Icm/Dot type IV secretion system and the translocation of "effector" proteins into the cell. Some effector proteins decorate the LCV membrane and subvert host cell vesicle trafficking pathways. Here we describe a method to purify intact LCVs from Dictyostelium discoideum amoebae and RAW 264.7 murine macrophages. The method comprises a two-step protocol: first, LCVs are enriched by immuno-magnetic separation using an antibody against a bacterial effector protein specifically localizing to the LCV membrane, and second, the LCVs are further purified by density gradient centrifugation. The purified LCVs can be characterized by proteomics and other biochemical approaches.

  9. Disruption of Toxoplasma gondii Parasitophorous Vacuoles by the Mouse p47-Resistance GTPases.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available The p47 GTPases are essential for interferon-gamma-induced cell-autonomous immunity against the protozoan parasite, Toxoplasma gondii, in mice, but the mechanism of resistance is poorly understood. We show that the p47 GTPases, including IIGP1, accumulate at vacuoles containing T. gondii. The accumulation is GTP-dependent and requires live parasites. Vacuolar IIGP1 accumulations undergo a maturation-like process accompanied by vesiculation of the parasitophorous vacuole membrane. This culminates in disruption of the parasitophorous vacuole and finally of the parasite itself. Over-expression of IIGP1 leads to accelerated vacuolar disruption whereas a dominant negative form of IIGP1 interferes with interferon-gamma-mediated killing of intracellular parasites. Targeted deletion of the IIGP1 gene results in partial loss of the IFN-gamma-mediated T. gondii growth restriction in mouse astrocytes.

  10. Emergence of the Terrestrial Ciliate Colpoda cucullus from a Resting Cyst: Rupture of the Cyst Wall by Active Expansion of an Excystment Vacuole

    Science.gov (United States)

    Funadani, Ryoji; Suetomo, Yasutaka; Matsuoka, Tatsuomi

    2013-01-01

    The first sign of excysting Colpoda cucullus cells is the initiation of the pulsation of a contractile vacuole, which is then replaced by a non-pulsating vacuole (excystment vacuole) that continues to expand and finally ruptures the outermost cyst wall (ectocyst) due to inner pressure. A ciliate surrounded by flexible membranes (endocyst) thus emerges. The osmolarity of the excysting cells is estimated to be 140 mOsm L−1 from the relationship between the frequency of contractile vacuole pulsation and the external sucrose concentration. Both the expansion of the excystment vacuole and the emergence of ciliates occurred even when the cysts were immersed in hypertonic medium. In hypotonic medium containing sodium azide (NaN3, a cytochrome c oxidase inhibitor), the contractile vacuole of vegetative cells stopped pulsating and gradually expanded, causing cells to burst. When C. cucullus was induced to encyst in a hypotonic medium containing NaN3, the expansion of the excystment vacuoles was inhibited. These results suggest that the active uptake of water may be responsible for the expansion of the excystment vacuole required for the ectocyst to rupture. PMID:23268793

  11. Effects of lysosomal membrane protein depletion on the Salmonella-containing vacuole.

    Directory of Open Access Journals (Sweden)

    Everett A Roark

    Full Text Available Salmonella is an intracellular bacterial pathogen that replicates within a membrane-bound vacuole in host cells. The major lysosomal membrane proteins 1 and 2 (LAMP-1 and LAMP-2 are recruited to the Salmonella-containing vacuole as well as Salmonella- associated filaments (Sifs that emerge from the vacuole. LAMP-1 is a dominant membrane marker for the vacuole and Sifs. Its colocalization with both is dependent on a major secreted bacterial virulence protein, SifA. Here, we show that SifA is required for the recruitment of LAMP-2 and can be used as a second independent marker for both the bacterial vacuolar membrane and Sifs. Further, RNAi studies revealed that in LAMP-1 depleted cells, the bacteria remain membrane bound as measured by their association with LAMP-2 protein. In contrast, LAMP-2 depletion increased the amount of LAMP-1 free bacteria. Together, the data suggests that despite its abundance, LAMP-1 is not essential, but LAMP-2 may be partially important for the Salmonella-containing vacuolar membrane.

  12. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases.

    Science.gov (United States)

    Meunier, Etienne; Dick, Mathias S; Dreier, Roland F; Schürmann, Nura; Kenzelmann Broz, Daniela; Warming, Søren; Roose-Girma, Merone; Bumann, Dirk; Kayagaki, Nobuhiko; Takeda, Kiyoshi; Yamamoto, Masahiro; Broz, Petr

    2014-05-15

    Lipopolysaccharide from Gram-negative bacteria is sensed in the host cell cytoplasm by a non-canonical inflammasome pathway that ultimately results in caspase-11 activation and cell death. In mouse macrophages, activation of this pathway requires the production of type-I interferons, indicating that interferon-induced genes have a critical role in initiating this pathway. Here we report that a cluster of small interferon-inducible GTPases, the so-called guanylate-binding proteins, is required for the full activity of the non-canonical caspase-11 inflammasome during infections with vacuolar Gram-negative bacteria. We show that guanylate-binding proteins are recruited to intracellular bacterial pathogens and are necessary to induce the lysis of the pathogen-containing vacuole. Lysis of the vacuole releases bacteria into the cytosol, thus allowing the detection of their lipopolysaccharide by a yet unknown lipopolysaccharide sensor. Moreover, recognition of the lysed vacuole by the danger sensor galectin-8 initiates the uptake of bacteria into autophagosomes, which results in a reduction of caspase-11 activation. These results indicate that host-mediated lysis of pathogen-containing vacuoles is an essential immune function and is necessary for efficient recognition of pathogens by inflammasome complexes in the cytosol.

  13. V-ATPase, ScNhxlp and Yeast Vacuole Fusion

    Institute of Scientific and Technical Information of China (English)

    Quan-Sheng Qiu

    2012-01-01

    Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos.It is a central cellular reaction that plays important roles in signal transduction,protein sorting and subcellular compartmentation.Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summanzed in this article.It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhxlp are key components of the vacuole fusion machinery in yeast.Yeast ScNhxlp regulates vacuole fusion by controlling the luminal pH.V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast.Fission defects are epistatic to fusion defects.Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast,the fusion reaction does not need the transport activity but requires the physical presence of the proton pump.Vo,the membrane-integral sector of the V-ATPase,forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the Vo trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion.

  14. 荧光蛋白在植物活细胞液泡成像中的应用研究进展%Recent Progress in Living Cell Imaging of Plant Vacuole Using Fluorescent-protein Transgenic Lines and Three-dimensional Imaging

    Institute of Scientific and Technical Information of China (English)

    叶庆亮; 曹建华

    2011-01-01

    高等植物细胞中,液泡在各种细胞信号转导事件和形态建成中起着重要的作用.这一细胞内部结构在分裂和分化期间其功能和形状不断地变化着.为分析这些连续的变化,绿色荧光蛋白(green fluorescent protein,GFP)及其他荧光蛋白活体标记技术普遍用来跟踪特异蛋白的定位及变动.为使液泡可视成像,有几种途径可用来选择适当的荧光蛋白融合伴侣,如液泡膜内在蛋白和构造蛋白相关蛋白等就非常适合应用于液泡成像.此外,三维重建法在定位细胞内广为分布的细胞器时也不可或缺.同时,等值面表面模化过程对液泡膜成像也非常有用.本文综述液泡的结构、种类和功能,并概括各种融合的绿色荧光蛋白在植物活细胞液泡成像中的应用及其三维成像技术的研究进展.%In high plant cells, vacuoles play important roles in a variety of cellular events, including cell division,morphogenesis, and signal transduction.These intracellular structures undergo dynamic changes in their shapes and functions during cell division and differentiation, and to analyze these sequential structural changes, the vital labeling technique, using the green-fluorescent protein or other fluorescent proteins, has commonly been used to follow the localization and translocation of specific proteins.To visualize vacuoles, the tonoplast-intrinsic proteins and syntaxin-related proteins are available for selecting the appropriate fluorescent-protein fusion partner for vacuolar imaging.In addition, three-dimensional reconstruction methods are indispensable for localizing the widely distributed organelles within the cell.The maximum intensity projection method is suitable for cytoskeletal structures, while contour-based surface modeling possesses many advantages for vacuolar membranes.In this article, we summarize the plant vacuoles and the recent progress in living cell imaging of the plant vacuoles using various fusions

  15. Molecular markers for granulovacuolar degeneration are present in rimmed vacuoles.

    Directory of Open Access Journals (Sweden)

    Masahiro Nakamori

    Full Text Available BACKGROUND: Rimmed vacuoles (RVs are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM and distal myopathy with RVs (DMRV. Granulovacuolar degeneration (GVD bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers. METHODS: Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1 tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK], (2 lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1, and (3 other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43] in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization. RESULTS: GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs. CONCLUSIONS: These results suggest that RVs of muscle

  16. Loss of the BRCA1-interacting helicase BRIP1 results in abnormal mammary acinar morphogenesis.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Daino

    Full Text Available BRIP1 is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1 and plays an important role in BRCA1-dependent DNA repair and DNA damage-induced checkpoint control. Recent studies implicate BRIP1 as a moderate/low-penetrance breast cancer susceptibility gene. However, the phenotypic effects of BRIP1 dysfunction and its role in breast cancer tumorigenesis remain unclear. To explore the function of BRIP1 in acinar morphogenesis of mammary epithelial cells, we generated BRIP1-knockdown MCF-10A cells by short hairpin RNA (shRNA-mediated RNA interference and examined its effect in a three-dimensional culture model. Genome-wide gene expression profiling by microarray and quantitative RT-PCR were performed to identify alterations in gene expression in BRIP1-knockdown cells compared with control cells. The microarray data were further investigated using the pathway analysis and Gene Set Enrichment Analysis (GSEA for pathway identification. BRIP1 knockdown in non-malignant MCF-10A mammary epithelial cells by RNA interference induced neoplastic-like changes such as abnormal cell adhesion, increased cell proliferation, large and irregular-shaped acini, invasive growth, and defective lumen formation. Differentially expressed genes, including MCAM, COL8A1, WIPF1, RICH2, PCSK5, GAS1, SATB1, and ELF3, in BRIP1-knockdown cells compared with control cells were categorized into several functional groups, such as cell adhesion, polarity, growth, signal transduction, and developmental process. Signaling-pathway analyses showed dysregulation of multiple cellular signaling pathways, involving LPA receptor, Myc, Wnt, PI3K, PTEN as well as DNA damage response, in BRIP1-knockdown cells. Loss of BRIP1 thus disrupts normal mammary morphogenesis and causes neoplastic-like changes, possibly via dysregulating multiple cellular signaling pathways functioning in the normal development of mammary glands.

  17. Unsteady diffusional screening in 3D pulmonary acinar structures: from infancy to adulthood.

    Science.gov (United States)

    Hofemeier, Philipp; Shachar-Berman, Lihi; Tenenbaum-Katan, Janna; Filoche, Marcel; Sznitman, Josué

    2016-07-26

    Diffusional screening in the lungs is a physical phenomenon where the specific topological arrangement of alveolated airways of the respiratory region leads to a depletion, or 'screening', of oxygen molecules with increasing acinar generation. Here, we revisit diffusional screening phenomena in anatomically-inspired pulmonary acinar models under realistic breathing maneuvers. By modelling 3D bifurcating alveolated airways capturing both convection and diffusion, unsteady oxygen transport is investigated under cyclic breathing motion. To evaluate screening characteristics in the developing lungs during growth, four representative stages of lung development were chosen (i.e. 3 months, 1 year and 9 months, 3 years and adulthood) that capture distinct morphological acinar changes spanning alveolarization phases to isotropic alveolar growth. Numerical simulations unveil the dramatic changes in O2 transport occurring during lung development, where young infants exhibit highest acinar efficiencies that rapidly converge with age to predictions at adulthood. With increased ventilatory effort, transient dynamics of oxygen transport is fundamentally altered compared to tidal breathing and emphasizes the augmented role of convection. Resolving the complex convective acinar flow patterns in 3D acinar trees allows for the first time a spatially-localized and time-resolved characterization of oxygen transport in the pulmonary acinus, from infancy to adulthood.

  18. An Acanthamoeba castellanii metacaspase associates with the contractile vacuole and functions in osmoregulation.

    Science.gov (United States)

    Saheb, Entsar; Trzyna, Wendy; Bush, John

    2013-03-01

    Acanthamoeba castellanii is a free-living protozoan. Some strains are opportunistic pathogens. A type-I metacaspase was identified in A. castellanii (Acmcp) and was shown to be expressed through the encystation process. The model organism, Dictyostelium discoideum, has been used here as a model for studying these caspase-like proteins. Separate cell lines expressing a GFP-tagged version of the full length Acmcp protein, as well as a deletion proline region mutant of Acmcp protein (GFP-Acmcp-dpr), have been introduced into D. discoideum. Both mutants affect the cellular metabolism, characterized by an increase in the growth rate. Microscopic imaging revealed an association between Acmcp and the contractile vacuole system in D. discoideum. The treatment of cells with selected inhibitors in different environments added additional support to these findings. This evidence shows that Acmcp plays an important role in contractile vacuole regulation and mediated membrane trafficking in D. discoideum. Additionally, the severe defect in contractile vacuole function in GFP-Acmcp-dpr mutant cells suggests that the proline-rich region in Acmcp has an essential role in binding this protein with other partners to maintain this process. Furthermore, Yeast two-hybrid system identified there are weak interactions of the Dictyostelium contractile vacuolar proteins, including Calmodulin, RabD, Rab11 and vacuolar proton ATPase, with Acmcp protein. Taken together, our findings suggest that A. castellanii metacaspase associate with the contractile vacuole and have an essential role in cell osmoregulation, which contributes to its attractiveness as a possible target for treatment therapies against A. castellanii infection.

  19. Characterization of the Vacuolating Cytotoxin in Helicobacter pylori Strains Isolated from Iran

    Directory of Open Access Journals (Sweden)

    Akbar Oghalaie

    2010-01-01

    Full Text Available Objective: Helicobacter pylori (H. pylori cytotoxin and its heterogeneity amongst strains hasbeen closely linked to the varying infection-associated clinical outcomes. In order to determinethe decisive role of the vacuolating cytotoxin (vacA gene mosaicism in its corresponding geneexpression and phenotype, we aimed to characterize vacA alleles of different H. pylori strainsin addition to the resulting protein and its vacuolating activity in epithelial cell culture.Materials and Methods: vacA gene polymorphism was determined for 80 H. pylori strainsisolated from dyspeptic patients, using multiplex gene-specific polymerase chain reaction(PCR. VacA protein was detected by immuno-blotting assay using a polyclonal anti-VacAantibody. In vitro cytotoxicity assay was conducted on HeLa cells in order to evaluate thevacuolating cytotoxin activity.Results: Genotyping revealed the following strain distribution: 26 (32.5% s1m1, 35(43.8% s1m2, and 19 (23.8% s2m2 subtypes. Infection with s1m1 type strain was significantlyassociated with gastric cancer as compared to non-ulcer dyspepsia (p=0.005and peptic ulcer disease (p=0.008. A 95-kDa immuno-reactive band that represented thevacuolating toxin was demonstrated in SDS-PAGE analysis of concentrated culture filtrate(CCF of H. pylori strains. H. pylori CCFs induced HeLa cell vacuolation which correlatedwith the strain genotype; s1m1 strains demonstrated higher levels of vacuolation as comparedto s1m2 strains, whereas s2m2 strains showed no detectable cytotoxic activity.Conclusion: The current study confirmed the relatively high cytotoxic activity of s1m1type H. pylori strains which infect the majority of patients suffering from gastric cancer andmay be partly responsible for the pathogenesis of this mortal disease.

  20. DOG1: a novel marker of salivary acinar and intercalated duct differentiation.

    Science.gov (United States)

    Chênevert, Jacinthe; Duvvuri, Umamaheswar; Chiosea, Simion; Dacic, Sanja; Cieply, Kathleen; Kim, Jean; Shiwarski, Daniel; Seethala, Raja R

    2012-07-01

    Anoctamin-1 (ANO1) (DOG1, TMEM16a) is a calcium-activated chloride channel initially described in gastrointestinal stromal tumors, but now known to be expressed in a variety of normal and tumor tissues including salivary tissue in murine models. We herein perform a comprehensive survey of DOG1 expression in 156 cases containing non-neoplastic human salivary tissues and tumors. ANO1 mRNA levels were significantly higher (8-fold increase, Pcells, striated and excretory ducts were invariably negative. All acinic cell carcinomas (n=28) were DOG1 positive demonstrating a complex mixture of intense (3+) apical membranous, cytoplasmic and complete membranous staining. Most ductal tumor types were negative or only showed a subset of positive cases. Within the biphasic tumor category, adenoid cystic carcinomas (18/24 cases) and epithelial-myoepithelial carcinomas (8/15 cases) were frequently positive, often showing a distinctive combined apical ductal and membranous/cytoplasmic myoepithelial staining profile. Thus, DOG1 staining is a marker of salivary acinar and to a lesser extent intercalated duct differentiation. Strong staining can be used to support the diagnosis of acinic cell carcinoma. DOG1 may also be a marker of a 'transformed' myoepithelial phenotype in a subset of biphasic salivary gland malignancies.

  1. Vacuole-targeting fungicidal activity of amphotericin B

    Directory of Open Access Journals (Sweden)

    Akira eOgita

    2012-03-01

    Full Text Available Invasive fungal infections are recognized as major threats to patients with immune depression as well as those with cancer chemotherapy. Amphotericin B (AmB, a classical antifungal agent with a polyene macrolide structure, is widely used for the control of serious fungal infections. However, the clinical use of this antibiotic is limited by the treatment-associated side effects and the appearance of resistant strains. AmB lethality has been generally elucidated by the alteration of plasma membrane ion permeability due to its specific binding to plasma membrane ergosterol. While, the recent studies with Saccharomyces cerevisiae and Candida albicans reveals the vacuole disruptive action as another cause of AmB lethality on the basis of its marked amplification in combination with allicin, an allyl sulfur compound from garlic. Indeed, AmB causes a serious structural damage to the vacuole membrane at a lethal concentration, and even at a non-lethal concentration in combination with allicin. Such an enhancement effect of allicin is dependent on an inhibition of ergosterol-trafficking from the plasma membrane to the vacuole membrane, which is considered to be a cellular response to protect against the vacuole membrane disintegration. Allicin can also decrease the minimum fungicidal concentration of AmB against the pathogenic fungi C. albicans and Aspergillus fumigatus, as is the case of S. cerevisiae. The synergistic fungicidal activities of AmB and allicin may have significant implications in the development of the vacuole-targeting chemotherapy against fungal infections.

  2. Interorganelle interactions and inheritance patterns of nuclei and vacuoles in budding yeast meiosis.

    Science.gov (United States)

    Tsai, I-Ting; Lin, Jyun-Liang; Chiang, Yi-Hsuan; Chuang, Yu-Chien; Liang, Shu-Shan; Chuang, Chi-Ning; Huang, Tzyy-Nan; Wang, Ting-Fang

    2014-02-01

    Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.

  3. Vacuole import and degradation pathway:Insights into a specialized autophagy pathway

    Institute of Scientific and Technical Information of China (English)

    Abbas; A; Alibhoy; Hui-Ling; Chiang

    2011-01-01

    Glucose deprivation induces the synthesis of pivotagluconeogenic enzymes such as fructose-1,6-bisphos-phatase, malate dehydrogenase, phosphoenolpyruvatecarboxykinase and isocitrate lyase in Saccharomycescerevisiae. However, following glucose replenishment,these gluconeogenic enzymes are inactivated and de-graded. Studies have characterized the mechanismsby which these enzymes are inactivated in response toglucose. The site of degradation of these proteins hasalso been ascertained to be dependent on the dura-tion of starvation. Glucose replenishment of short-termstarved cells results in these proteins being degradedin the proteasome. In contrast, addition of glucose tocells starved for a prolonged period results in theseproteins being degraded in the vacuole. In the vacuoledependent pathway, these proteins are sequestered inspecialized vesicles termed vacuole import and degra-dation (Vid). These vesicles converge with the endo-cytic pathway and deliver their cargo to the vacuolefor degradation. Recent studies have identified thatinternalization, as mediated by actin polymerization, isessential for delivery of cargo proteins to the vacuolefor degradation. In addition, components of the targetof rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissoci-ates from cargo proteins following glucose replenish-ment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway.

  4. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Directory of Open Access Journals (Sweden)

    Kazunari Momma

    Full Text Available Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  5. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Science.gov (United States)

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  6. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology.

    Directory of Open Access Journals (Sweden)

    Florante Ricarte

    Full Text Available Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY. Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.

  7. Mucolipin co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning.

    Science.gov (United States)

    Remis, Natalie N; Wiwatpanit, Teerawat; Castiglioni, Andrew J; Flores, Emma N; Cantú, Jorge A; García-Añoveros, Jaime

    2014-12-01

    During the suckling period, intestinal enterocytes are richly endowed with endosomes and lysosomes, which they presumably utilize for the uptake and intracellular digestion of milk proteins. By weaning, mature intestinal enterocytes replace those rich in lysosomes. We found that mouse enterocytes before weaning express high levels of two endolysosomal cation channels, mucolipins 3 and 1 -products of Trpml3 and Trpml1 genes; moreover neonatal enterocytes of mice lacking both mucolipins (Trpml3-/-;Trpml1-/-) vacuolated pathologically within hours of birth and remained so until weaning. Ultrastructurally and chemically these fast-forming vacuoles resembled those that systemically appear in epithelial cells of mucolipidosis type IV (MLIV) patients, which bear mutations in Trpml1. Hence, lack of both mucolipins 1 and 3 causes an accelerated MLIV-type of vacuolation in enterocytes. The vacuoles were aberrant hybrid organelles with both endosomal and lysosomal components, and were not generated by alterations in endocytosis or exocytosis, but likely by an imbalance between fusion of lysosomes and endosomes and their subsequent scission. However, upon extensive vacuolation enterocytes displayed reduced endocytosis from the intestinal lumen, a defect expected to compromise nutrient uptake. Mice lacking both mucolipins suffered a growth delay that began after birth and continued through the suckling period but recovered after weaning, coinciding with the developmental period of enterocyte vacuolation. Our results demonstrate genetic redundancy between lysosomal mucolipins 3 and 1 in neonatal enterocytes. Furthermore, our Trpml3-/-;Trpml1-/- mice represent a polygenic animal model of the poorly-understood, and often intractable, neonatal failure-to-thrive with intestinal pathology. Our results implicate lysosomes in neonatal intestinal pathologies, a major cause of infant mortality worldwide, and suggest transient intestinal dysfunction might affect newborns with lysosomal

  8. Mucolipin co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning.

    Directory of Open Access Journals (Sweden)

    Natalie N Remis

    2014-12-01

    Full Text Available During the suckling period, intestinal enterocytes are richly endowed with endosomes and lysosomes, which they presumably utilize for the uptake and intracellular digestion of milk proteins. By weaning, mature intestinal enterocytes replace those rich in lysosomes. We found that mouse enterocytes before weaning express high levels of two endolysosomal cation channels, mucolipins 3 and 1 -products of Trpml3 and Trpml1 genes; moreover neonatal enterocytes of mice lacking both mucolipins (Trpml3-/-;Trpml1-/- vacuolated pathologically within hours of birth and remained so until weaning. Ultrastructurally and chemically these fast-forming vacuoles resembled those that systemically appear in epithelial cells of mucolipidosis type IV (MLIV patients, which bear mutations in Trpml1. Hence, lack of both mucolipins 1 and 3 causes an accelerated MLIV-type of vacuolation in enterocytes. The vacuoles were aberrant hybrid organelles with both endosomal and lysosomal components, and were not generated by alterations in endocytosis or exocytosis, but likely by an imbalance between fusion of lysosomes and endosomes and their subsequent scission. However, upon extensive vacuolation enterocytes displayed reduced endocytosis from the intestinal lumen, a defect expected to compromise nutrient uptake. Mice lacking both mucolipins suffered a growth delay that began after birth and continued through the suckling period but recovered after weaning, coinciding with the developmental period of enterocyte vacuolation. Our results demonstrate genetic redundancy between lysosomal mucolipins 3 and 1 in neonatal enterocytes. Furthermore, our Trpml3-/-;Trpml1-/- mice represent a polygenic animal model of the poorly-understood, and often intractable, neonatal failure-to-thrive with intestinal pathology. Our results implicate lysosomes in neonatal intestinal pathologies, a major cause of infant mortality worldwide, and suggest transient intestinal dysfunction might affect newborns

  9. Parasitophorous vacuole membrane of Plasmodium knowlesi

    Energy Technology Data Exchange (ETDEWEB)

    Nillni, E.A.; Wallach, D.F.H.

    1986-05-01

    The authors have evaluated the occurrence of host cell membrane protein and parasite protein in the vacuolar membrane (VM) of isolated parasites. Parasites were labeled by incorporation of (/sup 35/S)methionine and by lactoperoxidase-catalyzed /sup 125/I iodination. Of the two prominent /sup 125/I-labeled components, one, not detected by metabolic labeling corresponded in M/sub r/ to erythrocyte band 3 (90 kDa). Trypsinization of radioiodinated parasites for 5' or 20' yield a 35 kDa fragment, not seen in untreated samples and compatible with the trypsin degradation of band 3 from the cytoplasmic side. Tryptic peptide maps of the 35 kDa revealed a very acidic peptide corresponding to the highly anionic tryptic peptide of band 3 showed by others. The second prominent /sup 125/I-labeled VM protein had an M/sub r/ 74,000 corresponding to a protein metabolically labeled with (/sup 35/S)methionine, suggesting it is inserted into the VM by the parasites. Several less prominent proteins labeling with both (/sup 35/S)methionine and /sup 125/I were also detected (140 kDa, 55 kDa, 45 kDa). A faint /sup 125/I-labeled triple (220-230 kDa) is compatible with a trace amounts of spectrin, usually a prominent component of red cell membrane. The results indicate that host cell band 3 is a prominent component of the VM, but that this membrane also contains several parasite-synthesized proteins.

  10. Hyperacidification of Vacuoles by the Combined Action of Two Different P-ATPases in the Tonoplast Determines Flower Color

    Directory of Open Access Journals (Sweden)

    Marianna Faraco

    2014-01-01

    Full Text Available The acidification of endomembrane compartments is essential for enzyme activities, sorting, trafficking, and trans-membrane transport of various compounds. Vacuoles are mildly acidic in most plant cells because of the action of V-ATPase and/or pyrophosphatase proton pumps but are hyperacidified in specific cells by mechanisms that remained unclear. Here, we show that the blue petal color of petunia ph mutants is due to a failure to hyperacidify vacuoles. We report that PH1 encodes a P3B-ATPase, hitherto known as Mg2+ transporters in bacteria only, that resides in the vacuolar membrane (tonoplast. In vivo nuclear magnetic resonance and genetic data show that PH1 is required and, together with the tonoplast H+ P3A-ATPase PH5, sufficient to hyperacidify vacuoles. PH1 has no H+ transport activity on its own but can physically interact with PH5 and boost PH5 H+ transport activity. Hence, the hyperacidification of vacuoles in petals, and possibly other tissues, relies on a heteromeric P-ATPase pump.

  11. Formation of the food vacuole in Plasmodium falciparum: a potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19.

    Directory of Open Access Journals (Sweden)

    Anton R Dluzewski

    Full Text Available Plasmodium falciparum Merozoite Surface Protein 1 (MSP1 is synthesized during schizogony as a 195-kDa precursor that is processed into four fragments on the parasite surface. Following a second proteolytic cleavage during merozoite invasion of the red blood cell, most of the protein is shed from the surface except for the C-terminal 19-kDa fragment (MSP1(19, which is still attached to the merozoite via its GPI-anchor. We have examined the fate of MSP1(19 during the parasite's subsequent intracellular development using immunochemical analysis of metabolically labeled MSP1(19, fluorescence imaging, and immuno-electronmicroscopy. Our data show that MSP1(19 remains intact and persists to the end of the intracellular cycle. This protein is the first marker for the biogenesis of the food vacuole; it is rapidly endocytosed into small vacuoles in the ring stage, which coalesce to form the single food vacuole containing hemozoin, and persists into the discarded residual body. The food vacuole is marked by the presence of both MSP1(19 and the chloroquine resistance transporter (CRT as components of the vacuolar membrane. Newly synthesized MSP1 is excluded from the vacuole. This behavior indicates that MSP1(19 does not simply follow a classical lysosome-like clearance pathway, instead, it may play a significant role in the biogenesis and function of the food vacuole throughout the intra-erythrocytic phase.

  12. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer.

    Directory of Open Access Journals (Sweden)

    Steven T Lott

    2009-05-01

    Full Text Available BACKGROUND: Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium-associated RING Chromosome 1, a novel gene encoding a member of the TRIM (tripartite motif subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer. METHODS AND FINDINGS: Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS, an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue

  13. 幽门螺杆菌VacA蛋白体外诱导胃上皮AGS细胞内HMGB1的表达%HMGB1 expression in gastric epithelial AGS cells in vitro induced by vacuolating cytotoxin of Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    赵琪; 郭继中; 黄学文; 陈国千; 罗瑞华; 黄丽丽; 安仙园; 赵兰静

    2011-01-01

    目的 探讨幽门螺杆菌(HP)感染的胃上皮AGS细胞内高迁移率族蛋白B1(high mobbility group box 1,HMGB1)的表达.方法 Hpl1638(CagA+,VacA+)和Hp1638突变株(Hp1638M,CagA+,VacA-)的提取液与AGS细胞共同温育后,收集细胞及培养上清液.裂解AGS细胞,western blot分析AGS细胞内HMGB1的表达,ELISA法检测培养上清液中HMGB1的水平.结果 HpLL638提取液刺激AGS细胞后HMGB1表达量为(123.33±25.2)μg/mL,明显高于Hpll638M提取液刺激后的(46.67±7.23)μg/mL(q=8.49,P<0.01).Hp11638和Hp11638M提取液刺激的AGS细胞培养上清液中HMGB1的水平分别为(115.59±16.62)和(48.32±6.30)ng/mL,差异有统计学意义(q=12.25,P<0.01).结论 在胃炎发生、发展过程中,VacA蛋白是刺激细胞中HMGB1高表达的主要因子.%Objective To explore the expression of high mobility group box 1 (HMGB1) in gastric epithelial AGS cells infected by He-licobacter pylori (HP). Methods Both the extracts of Hp11638 strain, which was positively expressed cytotoxin-associated protein (CagA) and vacuolating cytotoxin (VacA) , and Hp] 1638 mutant strain (Hp11638M, CagA+ , VacA- ) were incubated with AGS cells respectively. The AGS cells and the supernatant were collected. The AGS cells were splitted to analyze the expression of HMGB1 by west-em blotting, and the level of HMGB1 in the supernatant was measured by ELISA. Results The content of HMGB1 in AGS cells infected by extracts of Hp11638 was (123.3 ±25.2) μg/mL, which was significantly higher than that of Hpll638M (46.67 ±7.23) μg/mL, q = 8.49, P <0.01. The level of HMGB1 in the culture supernatant infected by the extracts of Hpl 1638 was (115.59 ± 16. 62 ) ng/mL which was significantly higher than that of Hpll638M (48.32±6.30) ng/mL, q = 12. 25, P <0. 01. Conclusions During the development and advance of gastritis, vacuolating cytotoxin may be the main factor for stimulating AGS cells to highly express HMGB1 protein.

  14. The Rice RMR1 Associates with a Distinct Prevacuolar Compartment for the Protein Storage Vacuole Pathway

    Institute of Scientific and Technical Information of China (English)

    Yun Shen; Junqi Wang; Yu Ding; SzeWan Lo; Guillaume Gouzerh; Jean-Marc Neuhaus; Liwen Jiang

    2011-01-01

    Transport of vacuolar proteins from Golgi apparatus or trans-Golgi network (TGN) to vacuoles is a receptormediated process via an intermediate membrane-bound prevacuolar compartment (PVC) in plant cells.Both vacuolar sorting receptor (VSR) and receptor homology region-transmembrane domain-RING-H2 (RMR) proteins have been shown to function in transporting storage proteins to protein storage vacuole (PSV),but little is known about the nature of the PVC for the PSV pathway.Here,we use the rice RMR1 (OsRMR1) as a probe to study the PSV pathway in plants.Immunogold electron microscopy (EM) with specific OsRMR1 antibodies showed that OsRMR1 proteins were found in the Golgi apparatus,TGN,and a distinct organelle with characteristics of PVC in both rice culture cells and developing rice seeds,as well as the protein body type Ⅱ (PBII) or PSV in developing rice seeds.This organelle,also found in both tobacco BY-2 and Arabidopsis suspension cultured cells,is morphologically distinct from the VSR-positive multivesicular lytic PVC or multivesicular body (MVB) and thus represent a PVC for the PSV pathway that we name storage PVC (sPVC).Further in vivo and in vitro interaction studies using truncated OsRMR1 proteins secreted into the culture media of transgenic BY-2 suspension cells demonstrated that OsRMR1 functions as a sorting receptor in transporting vicilin-like storage proteins.

  15. Identification and characterization of receptors for vacuolating activity of subtilase cytotoxin.

    Science.gov (United States)

    Yahiro, Kinnosuke; Morinaga, Naoko; Satoh, Mamoru; Matsuura, Gen; Tomonaga, Takeshi; Nomura, Fumio; Moss, Joel; Noda, Masatoshi

    2006-10-01

    Some shiga toxin-producing Escherichia coli secrete a novel AB5 cytotoxin, named subtilase cytotoxin (SubAB), which induces vacuole formation in addition to cytotoxicity in susceptible cells. By immunoprecipitation with SubAB from Vero cells, we discovered proteins of 100 kDa, 135 kDa and 155 kDa as potential candidates for its receptor. These proteins were N-glycosylated in their extracellular domains, a modification that was necessary for interaction with SubAB. Biotinylated receptors were partially purified by Datura stramonium agglutinin affinity chromatography and avidin-agarose and analysed by TOF mass spectroscopy. The peptide sequences of p135 were identical to beta1 integrin, and its identification was confirmed with anti-integrin beta1 antibody. The p155 protein was identified as alpha2 integrin using anti-integrin alpha2 antibody. In addition, treatment of Vero cells with beta1 integrin RNAi before exposure to SubAB prevented vacuolating activity. These results suggested that SubAB recognizes alpha2beta1 integrin as a functional receptor; this first interaction may be an important key step leading to the SubAB-induced morphological changes in Vero cells.

  16. The vacuolating cytotoxin of Helicobacter pylori%幽门螺杆菌空泡毒素研究进展

    Institute of Scientific and Technical Information of China (English)

    刘纯杰; 陶好霞; 张兆山

    2001-01-01

    幽门螺杆菌空泡毒素是该菌产生的与已知其它细菌毒素无明显同源性的唯一蛋白毒素。该毒素是幽门螺杆菌重要的毒力致病因子,它的产生与感染者胃肠上皮损伤和溃疡形成密切相关。本文就幽门螺杆菌空泡毒素的结构与功能研究进展以及在未来免疫预防与免疫治疗中的作用进行了简述。%The vacuolating cytotoxin is a unique proteinous cytotoxin producted by H. pylori that showed no striking primary sequence homology with other known baterial toxins. The cytotoxin is an important fator in the pathogenesis of H. pylori, which induces vacuolation of epithelial cells and plays an important role in gastric epithelial necrosis and peptic ulceration. In the paper, the progress on structure and function of the vacuolating cytotoxin of H. pylori and the roles of the H. pylori vacuolating cytotoxin in the future immunoprophylaxis and immunotherapy were reviewed.

  17. LAMP proteins account for the maturation delay during the establishment of the Coxiella burnetii-containing vacuole.

    Science.gov (United States)

    Schulze-Luehrmann, Jan; Eckart, Rita A; Ölke, Martha; Saftig, Paul; Liebler-Tenorio, Elisabeth; Lührmann, Anja

    2016-02-01

    The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-1/2 double-deficient fibroblasts as well as in LAMP-1/2 knock-down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii.

  18. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    Directory of Open Access Journals (Sweden)

    Eri O Maruyama

    Full Text Available The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER was targeted to the prolactin-induced protein (Pip gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  19. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    Science.gov (United States)

    Maruyama, Eri O; Aure, Marit H; Xie, Xiaoling; Myal, Yvonne; Gan, Lin; Ovitt, Catherine E

    2016-01-01

    The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER) was targeted to the prolactin-induced protein (Pip) gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  20. Effect of NaCl and Helicobacter pylori vacuolating cytotoxin on cytokine expression and viability

    Institute of Scientific and Technical Information of China (English)

    Juan Sun; Kazuo Aoki; Jin-Xu Zheng; Bing-Zhong Su; Xiao-Hui Ouyang; Junichi Misumi

    2006-01-01

    AIM: To determine whether Helicobacter pylori (H pylori) vacuolating cytotoxin (VacA) regulates release of proinflammatory cytokines (IL-1β, IL-8, TNF-α, and IL-6)or alters gastric epithelial cell viability and to determine whether NaCl affects these VacA-induced changes.METHODS: Vacuolating activity was determined by measuring the uptake of neutral red into vacuoles of VacA-treated human gastric epithelial (AGS) cells. AGS cell viability was assessed by direct cell counting. Specific enzyme-linked immunosorbent assays (ELISA) and reverse transcriptase-polymerase chain reaction(RT-PCR)were performed to examine the effects of Hpylori VacA and NaCl on cell pro-inflammatory cytokine production in AGS cells. Immunohistochemical staining of gastric tissue from Mongolian gerbils was used to confirm VacA-induced pro-inflammatory cytokine production and the effects of NaCl on this VacA-induced response.RESULTS: Addition of VacA alone reduced AGS cell viability (P< 0.05), and this reduction was enhanced by high doses of NaCl (P< 0.05). VacA alone induced expression of TNF-α, IL-8 and IL-1β, while NaCl alone induced expression of TNF-α and IL-1β. Changes in mRNA levels in the presence of both VacA and NaCl were more complicated. For the case of TNF-a, expression was dosedependent on NaCl. IL-6 mRNA was not detected. However, low levels of IL-6 were detected by ELISA. Positive immunohistochemical staining of IL- 1, IL-6, and TNF-αwas found in gastric tissue of H pylori-infected gerbils fed with either a normal diet or a high salt diet. However,the staining of these three cytokines was stronger in H pylori-infected animals fed with a 5g/kg NaCl diet.CONCLUSION: VacA decreases the viability of AGS cells, and this effect can be enhanced by NaCl. NaCl also affects the production of pro-inflammatory cytokines induced by Vac A, suggesting that NaCl plays an important role in Hpylori-induced gastric epithelial cell cytotoxicity.

  1. Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles.

    Directory of Open Access Journals (Sweden)

    Jenny Olofsson

    Full Text Available The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81-176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced.

  2. Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles.

    Science.gov (United States)

    Olofsson, Jenny; Axelsson-Olsson, Diana; Brudin, Lars; Olsen, Björn; Ellström, Patrik

    2013-01-01

    The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81-176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced.

  3. Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new mode of intracellular growth within contractile vacuoles.

    Science.gov (United States)

    Gaze, W H; Burroughs, N; Gallagher, M P; Wellington, E M H

    2003-10-01

    Acanthamoeba polyphaga feeding on Salmonella typhimurium in a simple model biofilm were observed by light microscopy and a detailed record of interactions kept by digital image capture and image analysis. A strain of S. typhimurium SL1344 carrying a fis: gfp reporter construct (pPDT105) was used to assess intracellular growth in A. polyphaga on non-nutrient agar (NNA) plates. Invasion of the contractile vacuole (CV) was observed at a frequency of 1:100-1000 acanthamoebae at 35 degrees C. The salmonellae contained in CVs illustrated significant up-regulation of fis relative to extracellular bacteria, indicating that they were in the early stages of logarithmic growth, and reached numbers of 100-200 cells per vacuole after 4 days. This is the first report of this mode of intracellular growth. Up-regulation of fis was also observed in a proportion of S. typhimurium cells contained within food vacuoles. Filamentation of S. typhimurium and E. coli cells was frequently observed in coculture with A. polyphaga on NNA plates, with bacterial cells reaching lengths of up to 500 microm after 10 days' incubation at 35 degrees C. A. polyphaga was also seen to mediate bacterial translocation over the agar surface; egested salmonellae subsequently formed microcolonies along amoebal tracks. This illustrated intracellular survival of a fraction of the S. typhimurium population. These phenomena suggest that protozoa such as A. polyhaga may play an important role in the ecology of S. typhimurium in soil and aquatic environments.

  4. Acyl-CoA-binding protein, Acb1p, is required for normal vacuole function and ceramide synthesis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren; Christiansen, Janne K;

    2004-01-01

    -sensitive fusion protein attachment protein receptors) Nyv1p, Vam3p and Vti1p, and are unable to fuse in vitro. Mass spectrometric analysis revealed a dramatic reduction in the content of ceramides in whole-cell lipids and in vacuoles isolated from Acb1p-depleted cells. Maturation of yeast aminopeptidase I...

  5. Dot/Icm Effector Translocation by Legionella longbeachae Creates a Replicative Vacuole Similar to That of Legionella pneumophila despite Translocation of Distinct Effector Repertoires.

    Science.gov (United States)

    Wood, Rebecca E; Newton, Patrice; Latomanski, Eleanor A; Newton, Hayley J

    2015-10-01

    Legionella organisms are environmental bacteria and accidental human pathogens that can cause severe pneumonia, termed Legionnaires' disease. These bacteria replicate within a pathogen-derived vacuole termed the Legionella-containing vacuole (LCV). Our understanding of the development and dynamics of this vacuole is based on extensive analysis of Legionella pneumophila. Here, we have characterized the Legionella longbeachae replicative vacuole (longbeachae-LCV) and demonstrated that, despite important genomic differences, key features of the replicative LCV are comparable to those of the LCV of L. pneumophila (pneumophila-LCV). We constructed a Dot/Icm-deficient strain by deleting dotB and demonstrated the inability of this mutant to replicate inside THP-1 cells. L. longbeachae does not enter THP-1 cells as efficiently as L. pneumophila, and this is reflected in the observation that translocation of BlaM-RalFLLO (where RalFLLO is the L. longbeachae homologue of RalF) into THP-1 cells by the L. longbeachae Dot/Icm system is less efficient than that by L. pneumophila. This difference is negated in A549 cells where L. longbeachae and L. pneumophila infect with similar entry dynamics. A β-lactamase assay was employed to demonstrate the translocation of a novel family of proteins, the Rab-like effector (Rle) proteins. Immunofluorescence analysis confirmed that these proteins enter the host cell during infection and display distinct subcellular localizations, with RleA and RleC present on the longbeachae-LCV. We observed that the host Rab GTPase, Rab1, and the v-SNARE Sec22b are also recruited to the longbeachae-LCV during the early stages of infection, coinciding with the LCV avoiding endocytic maturation. These studies further our understanding of the L. longbeachae replicative vacuole, highlighting phenotypic similarities to the vacuole of L. pneumophila as well as unique aspects of LCV biology.

  6. The pattern of fibrosis in the acinar zone 3 areas in early alcoholic liver disease

    DEFF Research Database (Denmark)

    Junge, Jette; Horn, T; Vyberg, M;

    1991-01-01

    The degree of fibrosis and the pattern of collagen distribution in the acinar zone 3, as well as the thickness of the terminal hepatic vein walls (THV) were analyzed in 48 consecutive liver needle biopsies from 48 alcoholics with preserved liver architecture. The fibrosis occurred to more or less....... No relationship was found between TTHV and PSF. The results were compared to similar data obtained in liver biopsies from 117 non-alcoholics with normal morphology or slight non-specific changes. No significant difference concerning TTHV and THV diameter was found between alcoholic and non-alcoholic patients....... The results suggest that the initial liver fibrosis in alcoholics is slightly asymmetrical distributed in each acinar zone 3 area. With progression, the fibrosis tends to be more uniformly distributed and septa appear, eventually linking THV with portal tracts. Apparently, thickening of the THV walls does...

  7. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  8. Preparative procedures markedly influence the appearance and structural integrity of protein storage vacuoles in soybean seeds.

    Science.gov (United States)

    Krishnan, Hari B

    2008-05-14

    In legumes, vacuoles serve as the final depository for storage proteins. The protein storage vacuoles (PSVs) of soybean contain electron-transparent globoid regions in which phytic acid ( myo-inositol-1,2,3,4,5,6-hexakisphosphate) is sequestered. This paper reports the effect of preparative procedures on the appearance and ultrastructural integrity of PSVs in soybeans. Electron microscopy examination of both developing and mature soybean seeds that were postfixed with osmium tetroxide revealed PSVs that had a homogeneous appearance with very few globoid crystals dispersed in them. Numerous electron-dense lipid bodies were readily seen in these cells. Omission of osmium tetroxide strikingly altered the appearance of PSVs and aided the visualization of the location of the globoids in the PSVs. In contrast to the osmicated tissue, lipid bodies appeared as electron-transparent spheres. The choice of dehydration reagent or staining procedure had little influence on the appearance of the PSVs. The results of this study demonstrate the profound effect of osmium tetroxide on the appearance and structural integrity of PSVs in soybean.

  9. Hitchhiking vesicular transport routes to the vacuole: amyloid recruitment to the Insoluble Protein Deposit (IPOD).

    Science.gov (United States)

    Kumar, Rajesh; Neuser, Nicole; Tyedmers, Jens

    2017-03-09

    Sequestration of aggregates into specialized deposition sites occurs in many species across all kingdoms of life ranging from bacteria to mammals and is commonly believed to have a cytoprotective function. Yeast cells possess at least three different spatially separated deposition sites, one of which is termed "Insoluble Protein Deposit (IPOD)" and harbors amyloid aggregates. We have recently discovered that recruitment of amyloid aggregates to the IPOD employs an actin cable based recruitment machinery that also involves vesicular transport (1) . Here we discuss how different proteins known to be involved in vesicular transport processes to the vacuole might act to guide amyloid aggregates to the IPOD. These factors include the Myosin V motor protein Myo2 involved in transporting vacuolar vesicles along actin cables, the transmembrane protein Atg9 involved in the recruitment of large precursor hydrolase complexes to the vacuole, the phosphatidylinositol/ phosphatidylcholine (PI/PC) transfer protein Sec 14 and the SNARE chaperone Sec 18. Furthermore, we present new data suggesting that the yeast dynamin homolog Vps1 is also crucial for faithful delivery of the amyloid model protein PrD-GFP to the IPOD. This is in agreement with a previously identified role for Vps1 in recruitment of heat-denatured aggregates to a perivacuolar deposition site (2) .

  10. Coxiella burnetii and Leishmania mexicana residing within similar parasitophorous vacuoles elicit disparate host responses

    Directory of Open Access Journals (Sweden)

    Jess A Millar

    2015-08-01

    Full Text Available Coxiella burnetii is a bacterium that thrives in an acidic parasitophorous vacuole (PV derived from lysosomes. Leishmania mexicana, a eukaryote, has also independently evolved to live in a morphologically similar PV. As Coxiella and Leishmania are highly divergent organisms that cause different diseases, we reasoned that their respective infections would likely elicit distinct host responses despite producing phenotypically similar parasite-containing vacuoles. The objective of this study was to investigate, at the molecular level, the macrophage response to each pathogen. Infection of THP-1 (human monocyte/macrophage cells with Coxiella and Leishmania elicited disparate host responses. At 5 days post-infection, when compared to uninfected cells, 1057 genes were differentially expressed (746 genes up- and 311 genes down-regulated in C. burnetii infected cells, whereas 698 genes (534 genes up- and 164 genes down-regulated were differentially expressed in L. mexicana infected cells. Interestingly, of the 1755 differentially expressed genes identified in this study, only 126 genes (~7% are common to both infections. We also discovered that 1090 genes produced mRNA isoforms at significantly different levels under the two infection conditions, suggesting that alternate proteins encoded by the same gene might have important roles in host response to each infection. Additionally, we detected 257 micro RNAs (miRNAs that were expressed in THP-1 cells and identified miRNAs that were specifically expressed during Coxiella or Leishmania infections. Collectively, this study identified host mRNAs and miRNAs that were influenced by Coxiella and/or Leishmania infections. Intriguingly, our data indicate that although their PVs are morphologically similar, Coxiella and Leishmania have evolved different strategies that perturb distinct host processes to create and thrive within their respective intracellular niches.

  11. Enzymic and protein character of tonoplast from Hippeastrum vacuoles

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.J.

    1981-01-01

    The membrane of anthocyanin containing Hippeastrum petal vacuoles was examined for protein and enzyme content after purification by equilibrium density centrifugation. Light scattering, protein, and a Mg/sup 2 +/ -dependent nucleotide specific ATPase were associated with membrane having a density of 1.08 to 1.12 grams per cubic centimeter. A small amount of acid phosphatase was also present in this region of the gradient, but this activity peaked at about 1.12 grams per cubic centimeter. A component of yeast tonoplast, ..cap alpha..-mannosidase, was not significantly present. UDP-glucose, anthocyanidin-3-O-glucosyltransferase, thought to be a cytosol enzyme in Hippeastrum, was absent from tonoplast of vacuoles isolated by osmotic shock in 0.2 molar K/sub 2/HPO/sub 4/ or 0.35 molar mannitol. Vacuolar acid phosphatase was insensitive to ethylenediaminetetraacetate but was 80% inhibited by 10 millimolar KF, while ATPase was inactivated by 2 millimolar ethylenediaminetetraacetate and only 50% inhibited by 10 millimolar KF,. Five major and about 9 minor polypeptides were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane protein on 5 to 30 and 6 to 16% gradient gels.

  12. Electron tomography characterization of hemoglobin uptake in Plasmodium chabaudi reveals a stage-dependent mechanism for food vacuole morphogenesis.

    Science.gov (United States)

    Wendt, Camila; Rachid, Rachel; de Souza, Wanderley; Miranda, Kildare

    2016-05-01

    In the course of their intraerythrocytic development, malaria parasites incorporate and degrade massive amounts of the host cell cytoplasm. This mechanism is essential for parasite development and represents a physiological step used as target for many antimalarial drugs; nevertheless, the fine mechanisms underlying these processes in Plasmodium species are still under discussion. Here, we studied the events of hemoglobin uptake and hemozoin nucleation in the different stages of the intraerythrocytic cycle of the murine malaria parasite Plasmodium chabaudi using transmission electron tomography of cryofixed and freeze-substituted cells. The results showed that hemoglobin uptake in P. chabaudi starts at the early ring stage and is present in all developmental stages, including the schizont stage. Hemozoin nucleation occurs near the membrane of small food vacuoles. At the trophozoite stage, food vacuoles are found closely localized to cytostomal tubes and mitochondria, whereas in the schizont stage, we observed a large food vacuole located in the central portion of the parasite. Taken together, these results provide new insights into the mechanisms of hemoglobin uptake and degradation in rodent malaria parasites.

  13. Beyond Rab GTPases Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection.

    Science.gov (United States)

    Hilbi, Hubert; Rothmeier, Eva; Hoffmann, Christine; Harrison, Christopher F

    2014-01-01

    Legionella spp. are amoebae-resistant environmental bacteria that replicate in free-living protozoa in a distinct compartment, the Legionella-containing vacuole (LCV). Upon transmission of Legionella pneumophila to the lung, the pathogens employ an evolutionarily conserved mechanism to grow in LCVs within alveolar macrophages, thus triggering a severe pneumonia termed Legionnaires' disease. LCV formation is a complex and robust process, which requires the bacterial Icm/Dot type IV secretion system and involves the amazing number of 300 different translocated effector proteins. LCVs interact with the host cell's endosomal and secretory vesicle trafficking pathway. Accordingly, in a proteomics approach as many as 12 small Rab GTPases implicated in endosomal and secretory vesicle trafficking were identified and validated as LCV components. Moreover, the small GTPase Ran and its effector protein RanBP1 have been found to decorate the pathogen vacuole. Ran regulates nucleo-cytoplasmic transport, spindle assembly, and cytokinesis, as well as the organization of non-centrosomal microtubules. In L. pneumophila-infected amoebae or macrophages, Ran and RanBP1 localize to LCVs, and the small GTPase is activated by the Icm/Dot substrate LegG1. Ran activation by LegG1 leads to microtubule stabilization and promotes intracellular pathogen vacuole motility and bacterial growth, as well as chemotaxis and migration of Legionella-infected cells.

  14. In Vivo Biotinylation of the Toxoplasma Parasitophorous Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and Pathogenesis

    Science.gov (United States)

    Nadipuram, Santhosh M.; Kim, Elliot W.; Vashisht, Ajay A.; Lin, Andrew H.; Bell, Hannah N.; Coppens, Isabelle; Wohlschlegel, James A.

    2016-01-01

    ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that invades host cells and replicates within a unique parasitophorous vacuole. To maintain this intracellular niche, the parasite secretes an array of dense granule proteins (GRAs) into the nascent parasitophorous vacuole. These GRAs are believed to play key roles in vacuolar remodeling, nutrient uptake, and immune evasion while the parasite is replicating within the host cell. Despite the central role of GRAs in the Toxoplasma life cycle, only a subset of these proteins have been identified, and many of their roles have not been fully elucidated. In this report, we utilize the promiscuous biotin ligase BirA* to biotinylate GRA proteins secreted into the vacuole and then identify those proteins by affinity purification and mass spectrometry. Using GRA-BirA* fusion proteins as bait, we have identified a large number of known and candidate GRAs and verified localization of 13 novel GRA proteins by endogenous gene tagging. We proceeded to functionally characterize three related GRAs from this group (GRA38, GRA39, and GRA40) by gene knockout. While Δgra38 and Δgra40 parasites showed no altered phenotype, disruption of GRA39 results in slow-growing parasites that contain striking lipid deposits in the parasitophorous vacuole, suggesting a role in lipid regulation that is important for parasite growth. In addition, parasites lacking GRA39 showed dramatically reduced virulence and a lower tissue cyst burden in vivo. Together, the findings from this work reveal a partial vacuolar proteome of T. gondii and identify a novel GRA that plays a key role in parasite replication and pathogenesis. PMID:27486190

  15. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity

    Science.gov (United States)

    Hwang, Gi-Wook; Murai, Yasutaka; Takahashi, Tsutomu; Naganuma, Akira

    2014-07-01

    Methylmercury causes serious damage to the central nervous system, but the molecular mechanisms of methylmercury toxicity are only marginally understood. In this study, we used a gene-deletion mutant library of budding yeast to conduct genome-wide screening for gene knockouts affecting the sensitivity of methylmercury toxicity. We successfully identified 31 genes whose deletions confer resistance to methylmercury in yeast, and 18 genes whose deletions confer hypersensitivity to methylmercury. Yeast genes whose deletions conferred resistance to methylmercury included many gene encoding factors involved in protein transport to vacuoles. Detailed examination of the relationship between the factors involved in this transport system and methylmercury toxicity revealed that mutants with loss of the factors involved in the transportation pathway from the trans-Golgi network (TGN) to the endosome, protein uptake into the endosome, and endosome-vacuole fusion showed higher methylmercury resistance than did wild-type yeast. The results of our genetic engineering study suggest that this vesicle transport system (proteins moving from the TGN to vacuole via endosome) is responsible for enhancing methylmercury toxicity due to the interrelationship between the pathways. There is a possibility that there may be proteins in the cell that enhance methylmercury toxicity through the protein transport system.

  16. The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles.

    Directory of Open Access Journals (Sweden)

    Nina Schroeder

    Full Text Available Salmonella enterica serovar Typhimurium is a Gram-negative bacterial pathogen causing gastroenteritis in humans and a systemic typhoid-like illness in mice. The capacity of Salmonella to cause diseases relies on the establishment of its intracellular replication niche, a membrane-bound compartment named the Salmonella-containing vacuole (SCV. This requires the translocation of bacterial effector proteins into the host cell by type three secretion systems. Among these effectors, SifA is required for the SCV stability, the formation of Salmonella-induced filaments (SIFs and plays an important role in the virulence of Salmonella. Here we show that the effector SopD2 is responsible for the SCV instability that triggers the cytoplasmic release of a sifA(- mutant. Deletion of sopD2 also rescued intra-macrophagic replication and increased virulence of sifA(- mutants in mice. Membrane tubular structures that extend from the SCV are the hallmark of Salmonella-infected cells. Until now, these unique structures have not been observed in the absence of SifA. The deletion of sopD2 in a sifA(- mutant strain re-established membrane trafficking from the SCV and led to the formation of new membrane tubular structures, the formation of which is dependent on other Salmonella effector(s. Taken together, our data demonstrate that SopD2 inhibits the vesicular transport and the formation of tubules that extend outward from the SCV and thereby contributes to the sifA(- associated phenotypes. These results also highlight the antagonistic roles played by SopD2 and SifA in the membrane dynamics of the vacuole, and the complex actions of SopD2, SifA, PipB2 and other unidentified effector(s in the biogenesis and maintenance of the Salmonella replicative niche.

  17. Determinants of GBP recruitment to Toxoplasma gondii vacuoles and the parasitic factors that control it.

    Directory of Open Access Journals (Sweden)

    Sebastian Virreira Winter

    Full Text Available IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1 upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.

  18. Regulation of mucous acinar exocrine secretion with age.

    Science.gov (United States)

    Culp, D J; Richardson, L A

    1996-01-01

    Denny and co-workers (Navazesh et al., 1992) recently reported decreased concentrations of MG1 and MG2 mucins in resting and stimulated whole human saliva with age. The current study was therefore conducted to examine whether there is a corresponding attenuation with age in stimulus secretion coupling regulating mucous cell exocrine secretion. We utilized an in vitro model system, isolated rat sublingual acini, to evaluate the regulation of mucous cell exocrine secretion. Rat sublingual glands are similar to human sublingual and minor mucous glands, both histologically and in terms of their pattern of innervation, which is predominantly parasympathetic. Mucin secretion is thus activated primarily by muscarinic cholinergic agonist and to a lesser extent by vasoactive intestinal peptide (VIP), which is co-localized with acetylcholine in parasympathetic nerve terminals. We isolated sublingual mucous acini from five-month-old and 24-month-old rats and compared the concentration responses for mucin secretion induced by VIP and the muscarinic agonist, arecaidine propargyl ester (APE). Concentration-response curves for VIP were nearly identical for mucous acini from the five-month-old and 24-month-old animals. Values for basal secretion, maximal secretion, and EC50 (approximately equal to 200 nmol/L VIP) were statistically equivalent between both age groups. Concentration-response curves for APE were also very similar between age groups, with no statistically significant difference in basal secretion or EC50 values (approximately equal to 50 nmol/L APE). Maximal secretion was slightly less but statistically different for 24-month-old vs. five-month-old animals, 158% vs. 169% above basal secretion, respectively. Collectively, we found no substantial age-related changes in the secretory responsiveness of salivary mucous cells.

  19. Preparative Procedures Markedly Influence the Appearance and Structural Integrity of Protein Storage Vacuoles in Soybean Seeds

    Science.gov (United States)

    In legumes, vacuoles serve as the final depository for storage proteins. The protein storage vacuoles (PSVs) of soybean contain electron-transparent globoid regions in which phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) is sequestered. Here, I report the effect of preparative procedures o...

  20. Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole

    Directory of Open Access Journals (Sweden)

    Lara J. Kohler

    2016-07-01

    Full Text Available Coxiella burnetii replicates in an acidified lysosome-derived vacuole. Biogenesis of the Coxiella-containing vacuole (CCV requires bacterial effector proteins delivered into host cells by the Dot/Icm secretion system. Genetic and cell biological analysis revealed that an effector protein called Cig2 promotes constitutive fusion of autophagosomes with the CCV to maintain this compartment in an autolysosomal stage of maturation. This distinguishes the CCV from other pathogen-containing vacuoles that are targeted by the host autophagy pathway, which typically confers host resistance to infection by delivering the pathogen to a toxic lysosomal environment. By maintaining the CCV in an autolysosomal stage of maturation, Cig2 enabled CCV homotypic fusion and enhanced bacterial virulence in the Galleria mellonella (wax moth model of infection by a mechanism that decreases host tolerance. Thus, C. burnetii residence in an autolysosomal organelle alters host tolerance of infection, which indicates that Cig2-dependent manipulation of a lysosome-derived vacuole influences the host response to infection.

  1. The nature of human sperm head vacuoles: a systematic literature review.

    Science.gov (United States)

    Boitrelle, Florence; Guthauser, Bruno; Alter, Laura; Bailly, Marc; Wainer, Robert; Vialard, François; Albert, Martine; Selva, Jacqueline

    2013-01-01

    Motile sperm organelle morphology examination (MSOME) involves the use of differential interference contrast microscopy (also called Nomarski contrast) at high magnification (at least 6300x) to improve the observation of live human spermatozoa. In fact, this technique evidences sperm head vacuoles that are not necessarily seen at lower magnifications - particularly if the vacuoles are small (i.e. occupying nature. In an attempt to clarify this debate, we performed a systematic literature review in accordance with the PRISMA guidelines. The PubMed database was searched from 2001 onwards with the terms "MSOME", "human sperm vacuoles", "high-magnification, sperm". Out of 180 search results, 21 relevant English-language publications on the nature of human sperm head vacuoles were finally selected and reviewed. Our review of the literature prompted us to conclude that sperm-head vacuoles are nuclear in nature and are related to chromatin condensation failure and (in some cases) sperm DNA damage.

  2. Food vacuole associated enolase in plasmodium undergoes multiple post-translational modifications: evidence for atypical ubiquitination.

    Directory of Open Access Journals (Sweden)

    Saudamini Shevade

    Full Text Available Plasmodium enolase localizes to several sub-cellular compartments viz. cytosol, nucleus, cell membrane, food vacuole (FV and cytoskeleton, without having any organelle targeting signal sequences. This enzyme has been shown to undergo multiple post-translational modifications (PTMs giving rise to several variants that show organelle specific localization. It is likely that these PTMs may be responsible for its diverse distribution and moonlighting functions. While most variants have a MW of ~50 kDa and are likely to arise due to changes in pI, food vacuole (FV associated enolase showed three forms with MW~50, 65 and 75 kDa. Evidence from immuno-precipitation and western analysis indicates that the 65 and 75 kDa forms of FV associated enolase are ubiquitinated. Using mass spectrometry (MS, definitive evidence is obtained for the nature of PTMs in FV associated variants of enolase. Results showed several modifications, viz. ubiquitination at K147, phosphorylation at Y148 and acetylation at K142 and K384. MS data also revealed the conjugation of three ubiquitin (Ub molecules to enolase through K147. Trimeric ubiquitin has a linear peptide linkage between the NH2-terminal methionine of the first ubiquitin (Ub1 and the C-terminal G76 of the second (Ub2. Ub2 and third ubiquitin (Ub3 were linked through an atypical isopeptide linkage between K6 of Ub2 and G76 of Ub3, respectively. Further, the tri-ubiquitinated form was found to be largely associated with hemozoin while the 50 and 65 kDa forms were present in the NP-40 soluble fraction of FV. Mass spectrometry results also showed phosphorylation of S42 in the cytosolic enolase from P. falciparum and T337 in the cytoskeleton associated enolase from P. yoelii. The composition of food vacuolar proteome and likely interactors of enolase are also being reported.

  3. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  4. Content and vacuole extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.J.

    1979-07-01

    Neutral sugar, free amino acid, and anthocyanin levels and vacuole/extravacuole distribution were determined for Hippeastrum and Tulipa petal and Tulipa leaf protoplasts. Glucose and fructose, the predominant neutral monosaccharides observed, were primarily vacuolar in location. Glutamine, the predominant free amino acid found, was primarily extravacuolar. ..gamma..-methyleneglutamate was identified as a major constituent of Tulipa protoplasts. Qualitative characterization of Hippeastrum petal and vacuole organic acids indicated the presence of oxalic, malic, citric, and isocitric acids. Data are presented which indicate that vacuoles obtained by gentle osmotic shock of protoplasts in dibasic phosphate have good purity and retain their contents.

  5. Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency.

    Science.gov (United States)

    Compton, Lauren M; Ikonomov, Ognian C; Sbrissa, Diego; Garg, Puneet; Shisheva, Assia

    2016-09-01

    The two evolutionarily conserved mammalian lipid kinases Vps34 and PIKfyve are involved in an important physiological relationship, whereby the former produces phosphatidylinositol (PtdIns) 3P that is used as a substrate for PtdIns(3,5)P2 synthesis by the latter. Reduced production of PtdIns(3,5)P2 in proliferating mammalian cells is phenotypically manifested by the formation of multiple translucent cytoplasmic vacuoles, readily rescued upon exogenous delivery of PtdIns(3,5)P2 or overproduction of PIKfyve. Although the aberrant vacuolation phenomenon has been frequently used as a sensitive functional measure of localized PtdIns(3,5)P2 reduction, cellular factors governing the appearance of cytoplasmic vacuoles under PtdIns3P-PtdIns(3,5)P2 loss remain elusive. To gain further mechanistic insight about the vacuolation process following PtdIns(3,5)P2 reduction, in this study we sought for cellular mechanisms required for manifestation of the aberrant endomembrane vacuoles triggered by PIKfyve or Vps34 dysfunction. The latter was achieved by various means such as pharmacological inhibition, gene disruption, or dominant-interference in several proliferating mammalian cell types. We report here that inhibition of V-ATPase with bafilomycin A1 as well as inactivation of the GTP-GDP cycle of Rab5a GTPase phenotypically rescued or completely precluded the cytoplasmic vacuolization despite the continued presence of inactivated PIKfyve or Vps34. Bafilomycin A1 also restored the aberrant EEA1-positive endosomes, enlarged upon short PIKfyve inhibition with YM201636. Together, our work identifies for the first time that factors such as active V-ATPase or functional Rab5a cycle are acting coincidentally with the PtdIns(3,5)P2 reduction in triggering formation of aberrant cytoplasmic vacuoles under PIKfyve or Vps34 dysfunction.

  6. Oculopharyngeal Weakness, Hypophrenia, Deafness, and Impaired Vision: A Novel Autosomal Dominant Myopathy with Rimmed Vacuoles

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Conclusions: We reported a novel autosomal dominant myopathy with rimmed vacuoles characterized by dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision, but the causative gene has not been found and needs further study.

  7. Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae.

    Science.gov (United States)

    Becker, Argentina; Kannan, T R; Taylor, Alexander B; Pakhomova, Olga N; Zhang, Yanfeng; Somarajan, Sudha R; Galaleldeen, Ahmad; Holloway, Stephen P; Baseman, Joel B; Hart, P John

    2015-04-21

    Mycoplasma pneumoniae (Mp) infections cause tracheobronchitis and "walking" pneumonia, and are linked to asthma and other reactive airway diseases. As part of the infectious process, the bacterium expresses a 591-aa virulence factor with both mono-ADP ribosyltransferase (mART) and vacuolating activities known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). CARDS TX binds to human surfactant protein A and annexin A2 on airway epithelial cells and is internalized, leading to a range of pathogenetic events. Here we present the structure of CARDS TX, a triangular molecule in which N-terminal mART and C-terminal tandem β-trefoil domains associate to form an overall architecture distinct from other well-recognized ADP-ribosylating bacterial toxins. We demonstrate that CARDS TX binds phosphatidylcholine and sphingomyelin specifically over other membrane lipids, and that cell surface binding and internalization activities are housed within the C-terminal β-trefoil domain. The results enhance our understanding of Mp pathogenicity and suggest a novel avenue for the development of therapies to treat Mp-associated asthma and other acute and chronic airway diseases.

  8. The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging.

    Directory of Open Access Journals (Sweden)

    Fernando Real

    Full Text Available An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i hosting amastigotes of either L. major or L. amazonensis and ii loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms.

  9. Protein Kinase D Regulates Cell Death Pathways in Experimental Pancreatitis

    OpenAIRE

    Yuan, Jingzhen; Liu, Yannan; Tan, Tanya; Guha, Sushovan; Gukovsky, Ilya; Gukovskaya, Anna; Pandol, Stephen J.

    2012-01-01

    Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early e...

  10. Enhanced Membrane Fusion in Sterol-enriched Vacuoles Bypasses the Vrp1p RequirementD⃞

    OpenAIRE

    Tedrick, Kelly; Trischuk, Tim; Lehner, Richard; Eitzen, Gary

    2004-01-01

    Organization of lipids into membrane microdomains is a vital mechanism of protein processing. Here we show that overexpression of ERG6, a gene involved in ergosterol synthesis, elevates sterol levels 1.5-fold on the vacuole membrane and enhances their homotypic fusion. The mechanism of sterol-enhanced fusion is not via more efficient sorting, but instead promotes increased kinetics of fusion subreactions. We initially isolated ERG6 as a suppressor of a vrp1Δ growth defect selective for vacuol...

  11. Membrane-bound ATPase of intact vacuoles and tonoplasts isolated from mature plant tissue

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Wagner, G.J.; Siegelman, H.W.; Hind, G.

    1977-01-01

    Intact vacuoles were isolated from petals of Hippeastrum and Tulipa (Wagner, G. J. and Siegelman, H. W. (1975) Science 190, 1298 to 1299). The ATPase activity of fresh vacuole suspensions was found to be 2 to 3 times that of protoplasts from the same tissue. 70 to 80% of the ATPase activity of intact vacuoles was recovered in tonoplast preparations. The antibiotic Dio-9 at 6 ..mu..g/10/sup 6/ vacuoles or protoplasts causes 40% inhibition. However, only the protoplast ATPase is sensitive to oligomycin. N,N'-dicyclohexylcarbondiimide (DCCD) slightly stimulates ATPase activity in both vacuole and protoplast suspensions, whereas ethyl-3-(3-dimethylaminopropyl carbodiimide) (EDAC) strongly inhibits. Spectrophotometric studies show that in the petal the vacuolar contents have a pH of 4.0 for Tulipa and 4.3 for Hippeastrum, whereas the intact isolated vacuole has an internal pH of 7.0 (in pH 8.0 buffer) for Tulipa and about 7.3 for Hippeastrum. Internal ion concentrations of 150, 46, 30, 30 and 6 mM were found for K/sup +/, Na/sup +/, Mg/sup 2 +/, Cl/sup -/, and Ca/sup 2 +/ respectively, which are about the same as those in protoplasts.

  12. Analysis of a β-helical region in the p55 domain of Helicobacter pylori vacuolating toxin

    Directory of Open Access Journals (Sweden)

    Algood Holly

    2010-02-01

    Full Text Available Abstract Background Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. VacA, a toxin secreted by H. pylori, is comprised of two domains, designated p33 and p55. Analysis of the crystal structure of the p55 domain indicated that its structure is predominantly a right-handed parallel β-helix, which is a characteristic of autotransporter passenger domains. Substitution mutations of specific amino acids within the p33 domain abrogate VacA activity, but thus far, it has been difficult to identify small inactivating mutations within the p55 domain. Therefore, we hypothesized that large portions of the p55 domain might be non-essential for vacuolating toxin activity. To test this hypothesis, we introduced eight deletion mutations (each corresponding to a single coil within a β-helical segment spanning VacA amino acids 433-628 into the H. pylori chromosomal vacA gene. Results All eight of the mutant VacA proteins were expressed by the corresponding H. pylori mutant strains and underwent proteolytic processing to yield ~85 kDa passenger domains. Three mutant proteins (VacA Δ484-504, Δ511-536, and Δ517-544 were secreted and induced vacuolation of mammalian cells, which indicated that these β-helical coils were dispensable for vacuolating toxin activity. One mutant protein (VacA Δ433-461 exhibited reduced vacuolating toxin activity compared to wild-type VacA. Other mutant proteins, including those containing deletions near the carboxy-terminal end of the β-helical region (amino acids Val559-Asn628, exhibited marked defects in secretion and increased susceptibility to proteolytic cleavage by trypsin, which suggested that these proteins were misfolded. Conclusions These results indicate that within the β-helical segment of the VacA p55 domain, there are regions of plasticity that tolerate alterations without detrimental effects on protein

  13. The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.

    Directory of Open Access Journals (Sweden)

    Lukas Aeberhard

    2015-06-01

    Full Text Available Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells' antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.

  14. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes.

    Science.gov (United States)

    Hellinga, Jacqueline R; Garduño, Rafael A; Kormish, Jay D; Tanner, Jennifer R; Khan, Deirdre; Buchko, Kristyn; Jimenez, Celine; Pinette, Mathieu M; Brassinga, Ann Karen C

    2015-08-01

    Legionella pneumophila, a causative agent of Legionnaires' disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila.

  15. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles.

    Science.gov (United States)

    Passeri, Valentina; Koes, Ronald; Quattrocchio, Francesca M

    2016-01-01

    In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food. In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells. The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  16. New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles

    Directory of Open Access Journals (Sweden)

    Valentina ePasseri

    2016-02-01

    Full Text Available In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food.In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells.The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  17. Vibrio cholerae hemolysin is required for lethality, developmental delay, and intestinal vacuolation in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hediye Nese Cinar

    Full Text Available BACKGROUND: Cholera toxin (CT and toxin-co-regulated pili (TCP are the major virulence factors of Vibrio cholerae O1 and O139 strains that contribute to the pathogenesis of disease during devastating cholera pandemics. However, CT and TCP negative V. cholerae strains are still able to cause severe diarrheal disease in humans through mechanisms that are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: To determine the role of other virulence factors in V. cholerae pathogenesis, we used a CT and TCP independent infection model in the nematode Caenorhabditis elegans and identified the hemolysin A (hlyA gene as a factor responsible for animal death and developmental delay. We demonstrated a correlation between the severity of infection in the nematode and the level of hemolytic activity in the V. cholerae biotypes. At the cellular level, V. cholerae infection induces formation of vacuoles in the intestinal cells in a hlyA dependent manner, consistent with the previous in vitro observations. CONCLUSIONS/SIGNIFICANCE: Our data strongly suggest that HlyA is a virulence factor in C. elegans infection leading to lethality and developmental delay presumably through intestinal cytopathic changes.

  18. Quantitative trait locus mapping of genes associated with vacuolation in the adrenal X-zone of the DDD/Sgn inbred mouse

    Directory of Open Access Journals (Sweden)

    Suto Jun-ichi

    2012-11-01

    Full Text Available Abstract Background Adrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone. There are clear strain differences in terms of X-zone morphology. Nulliparous females of the inbred mouse DDD strain develop adrenal X-zones containing exclusively vacuolated cells, whereas females of the inbred mouse B6 strain develop X-zones containing only non-vacuolated cells. The X-zone vacuolation is a physiologic process associated with the X-zone degeneration and is tightly regulated by genetic factors. Identification of the genetic factors controlling such strain differences should help analyze the X-zone function. In this study, a quantitative trait locus (QTL analysis for the extent of X-zone vacuolation was performed for two types of F2 female mice: F2Ay mice (F2 mice with the Ay allele and F2 non-Ay mice (F2 mice without the Ay allele. These were produced by crossing B6 females and DDD.Cg-Ay males. DDD.Cg-Ay is a congenic mouse strain for the Ay allele at the agouti locus and is used for this study because a close association between the X-zone morphology and the agouti locus genotype has been suggested. The Ay allele is dominant and homozygous lethal; therefore, living Ay mice are invariably heterozygotes. Results Single QTL scans identified significant QTLs on chromosomes 1, 2, 6, and X for F2 non-Ay mice, and on chromosomes 2, 6, and 12 for F2Ay mice. The QTL on chromosome 2 was considered to be because of the agouti locus, which has been suggested to be associated with X-zone vacuolation. A significant QTL that interacted with the agouti locus was identified on chromosome 8. Conclusions The extent of X-zone vacuolation in DDD females was controlled by multiple genes with complex interactions. The murine X-zone is considered analogous structure to the human fetal zone. Therefore, the results of this study will aid in understanding function of not only of the X-zone but also of the human fetal zone

  19. Abscisic acid prevents the coalescence of protein storage vacuoles by upregulating expression of a tonoplast intrinsic protein gene in barley aleurone.

    Science.gov (United States)

    Lee, Sung-eun; Yim, Hui-kyung; Lim, Mi-na; Yoon, In sun; Kim, Jeong hoe; Hwang, Yong-sic

    2015-03-01

    Tonoplast intrinsic proteins (TIPs) are integral membrane proteins that are known to function in plants as aquaporins. Here, we propose another role for TIPs during the fusion of protein storage vacuoles (PSVs) in aleurone cells, a process that is promoted by gibberellic acid (GA) and prevented by abscisic acid (ABA). Studies of the expression of barley (Hordeum vulgare) TIP genes (HvTIP) showed that GA specifically decreased the abundance of HvTIP1;2 and HvTIP3;1 transcripts, while ABA strongly increased expression of HvTIP3;1. Increased or decreased expression of HvTIP3;1 interfered with the hormonal effects on vacuolation in aleurone protoplasts. HvTIP3;1 gain-of-function experiments delayed GA-induced vacuolation, whereas HvTIP3;1 loss-of-function experiments promoted vacuolation in ABA-treated aleurone cells. These results indicate that TIP plays a key role in preventing the coalescence of small PSVs in aleurone cells. Hormonal regulation of the HvTIP3;1 promoter is similar to the regulation of the endogenous gene, indicating that induction of the transcription of HvTIP3;1 by ABA is a critical factor in the prevention of PSV coalescence in response to ABA. Promoter analysis using deletions and site-directed mutagenesis of sequences identified three cis-acting elements that are responsible for ABA responsiveness in the HvTIP3;1 promoter. Promoter analysis also showed that ABA responsiveness of the HvTIP3;1 promoter is likely to occur via a unique regulatory system distinct from that involving the ABA-response promoter complexes.

  20. Rab GTPases and the Autophagy Pathway: Bacterial Targets for a Suitable Biogenesis and Trafficking of Their Own Vacuoles

    Directory of Open Access Journals (Sweden)

    María Milagros López de Armentia

    2016-03-01

    Full Text Available Autophagy is an intracellular process that comprises degradation of damaged organelles, protein aggregates and intracellular pathogens, having an important role in controlling the fate of invading microorganisms. Intracellular pathogens are internalized by professional and non-professional phagocytes, localizing in compartments called phagosomes. To degrade the internalized microorganism, the microbial phagosome matures by fusion events with early and late endosomal compartments and lysosomes, a process that is regulated by Rab GTPases. Interestingly, in order to survive and replicate in the phagosome, some pathogens employ different strategies to manipulate vesicular traffic, inhibiting phagolysosomal biogenesis (e.g., Staphylococcus aureus and Mycobacterium tuberculosis or surviving in acidic compartments and forming replicative vacuoles (e.g., Coxiella burnetti and Legionella pneumophila. The bacteria described in this review often use secretion systems to control the host’s response and thus disseminate. To date, eight types of secretion systems (Type I to Type VIII are known. Some of these systems are used by bacteria to translocate pathogenic proteins into the host cell and regulate replicative vacuole formation, apoptosis, cytokine responses, and autophagy. Herein, we have focused on how bacteria manipulate small Rab GTPases to control many of these processes. The growing knowledge in this field may facilitate the development of new treatments or contribute to the prevention of these types of bacterial infections.

  1. Primary alveolar capillary dysplasia (acinar dysplasia) and surfactant protein B deficiency: a clinical, radiological and pathological study

    Energy Technology Data Exchange (ETDEWEB)

    Hugosson, Claes O.; Khoumais, Nuha [King Faisal Specialist Hospital and Research Centre, Department of Radiology MBC 28, Riyadh (Saudi Arabia); Salama, Husam M.; Kattan, Abdul H. [King Faisal Specialist Hospital and Research Centre, Department of Paediatrics, Riyadh (Saudi Arabia); Al-Dayel, Fouad [King Faisal Specialist Hospital and Research Centre, Department of Pathology, Riyadh (Saudi Arabia)

    2005-03-01

    Full-term infants with severe and prolonged respiratory distress represent a diagnostic challenge. Plain radiographic findings may be nonspecific or similar to classic surfactant deficiency disease for infants with surfactant protein B deficiency and acinar dysplasia. Objectives: To describe the similar clinical-radiolgical patterns of two rare neonatal conditions. Six newborn babies with severe respiratory distress at birth demonstrated clinical and radiographically prolonged and progressive diffuse pulmonary opacification. All infants demonstrated hyperinflation of the lungs. The diffuse hazy opacification, which varied from mild (n=3) to moderate (n=3), progressed to severe diffuse opacification preceding death, which occurred at 12-36 days of life. Open lung biopsy confirmed the diagnosis of primary alveolar acinar dysplasia (AD) in four infants and surfactant protein B deficiency (SPBD) in two infants. In full-term babies with unexplained progressive respiratory distress from birth and progress of radiological changes, both AD and SPBD should be considered. (orig.)

  2. Transport of proteins to the plant vacuole is not by bulk flow through the secretory system, and requires positive sorting information.

    Science.gov (United States)

    Dorel, C; Voelker, T A; Herman, E M; Chrispeels, M J

    1989-02-01

    Plant cells, like other eukaryotic cells, use the secretory pathway to target proteins to the vacuolar/lysosomal compartment and to the extracellular space. We wished to determine whether the presence of a hydrophobic signal peptide would result in the transport of a reporter protein to vacuoles by bulk flow; to investigate this question, we expressed a chimeric gene in transgenic tobacco. The chimeric gene, Phalb, used for this study consists of the 1,188-bp 5' upstream sequence and the hydrophobic signal sequence of a vacuolar seed protein phytohemagglutinin, and the coding sequence of a cytosolic seed albumin (PA2). The chimeric protein PHALB cross-reacted with antibodies to PA2 and was found in the seeds of the transgenic plants (approximately 0.7% of total protein), but not in the leaves, roots, or flowers. Immunoblot analyses of seed extracts revealed four glycosylated polypeptides ranging in molecular weight from 29,000 to 32,000. The four polypeptides are glycoforms of a single polypeptide of Mr 27,000, and the heterogeneity is due to the presence of high mannose and endoglycosidase H-resistant glycans. The PHALB products reacted with an antiserum specific for complex plant glycans indicating that the glycans had been modified in the Golgi apparatus. Subcellular fractionation of glycerol extracts of mature seeds showed that only small amounts of PHALB accumulated in the protein storage vacuoles of the tobacco seeds. In homogenates made in an isotonic medium, very little PHALB was associated with the organelle fraction containing the endoplasmic reticulum and Golgi apparatus; most of it was in the soluble fraction. We conclude that PHALB passed through the Golgi apparatus, but did not arrive in the vacuoles. Transport to vacuoles is not by a bulk-flow mechanism, once proteins have entered the secretory system, and requires information beyond that provided by a hydrophobic signal peptide.

  3. Clustering of Helicobacter pylori VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 Cells

    DEFF Research Database (Denmark)

    Nakayama, Masaaki; Hisatsune, Jyunzo; Yamasaki, Eiki;

    2006-01-01

    Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflamm......Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation...

  4. Proteome analysis of potato juice and tuber vacuoles from cv. Kuras

    DEFF Research Database (Denmark)

    Jørgensen, Malene

    from the vacuoles of mature potato tuber. A comprehensive investigation of the vacuolar proteome and a detailed analysis of the identified proteins and their possible roles in vacuolar function were carried out. A primary requirement of any proteomic analysis of an organelle is purity of the isolated...... organelle. A method was developed for isolation of highly purified intact vacuoles. The proteome analysis of the purified vacuoles involved separation of native soluble proteins by gel filtration with Superdex 200 into nine fractions. Each fraction was analyzed in two ways, by SDS-PAGE followed by protein...... open reading frames and expressed sequence tag databases were identified.   The putative vacuolar proteins were categorized into nine major functional groups (number of proteins in brackets): storage proteins (8), stress or defense related proteins (102), protein signaling and degradation processes (25...

  5. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes.

    Science.gov (United States)

    Kern, Beate; Jain, Utkarsh; Utsch, Ciara; Otto, Andreas; Busch, Benjamin; Jiménez-Soto, Luisa; Becher, Dörte; Haas, Rainer

    2015-12-01

    The human pathogen Helicobacter pylori colonizes half of the global population. Residing at the stomach epithelium, it contributes to the development of diseases such as gastritis, duodenal and gastric ulcers, and gastric cancer. A major factor is the secreted vacuolating toxin VacA, which forms anion-selective channels in the endosome membrane that cause the compartment to swell, but the composition and purpose of the resulting VacA-containing vacuoles (VCVs) are still unknown. VacA exerts influence on the host immune response in various ways, including inhibition of T-cell activation and proliferation and suppression of the host immune response. In this study, for the first time the composition of VCVs from T cells was comprehensively analysed to investigate VCV function. VCVs were successfully isolated via immunomagnetic separation, and the purified vacuoles were analysed by mass spectrometry. We detected a set of 122 VCV-specific proteins implicated among others in immune response, cell death and cellular signalling processes, all of which VacA is known to influence. One of the individual proteins studied further was stromal interaction molecule (STIM1), a calcium sensor residing in the endoplasmic reticulum (ER) that is important in store-operated calcium entry. Live cell imaging microscopy data demonstrated colocalization of VacA with STIM1 in the ER and indicated that VacA may interfere with the movement of STIM1 towards the plasma membrane-localized calcium release activated calcium channel protein ORAI1 in response to Ca(2+) store depletion. Furthermore, VacA inhibited the increase of cytosolic-free Ca(2+) in the Jurkat E6-1 T-cell line and human CD4(+) T cells. The presence of VacA in the ER and its trafficking to the Golgi apparatus was confirmed in HeLa cells, identifying these two cellular compartments as novel VacA target structures.

  6. Inhibitory monoclonal antibody against a (myristylated) small-molecular-weight antigen from Plasmodium falciparum associated with the parasitophorous vacuole membrane.

    Science.gov (United States)

    Kara, U A; Stenzel, D J; Ingram, L T; Bushell, G R; Lopez, J A; Kidson, C

    1988-04-01

    A small-molecular-weight antigen that occurs in asexual blood stages in synchronized cultures of Plasmodium falciparum was detected by a monoclonal antibody which inhibits parasite growth in vitro. This antigen, QF116, showed a molecular weight of 15,000 in parasite strain FCR-3K+ from The Gambia and 19,000 in strain FCQ-27 from Papua New Guinea. The protein did not show significant glycosylation by galactose or glucosamine labeling but was found to be acylated by myristic acid. By using immunogold labeling and electron microscopy, the location of the antigen could be attributed to the parasitophorous vacuole membrane and to inclusions and vesicles residing within the cytoplasm of the erythrocyte host cell.

  7. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei.

    Directory of Open Access Journals (Sweden)

    Peng Liu

    Full Text Available The rodent malaria parasite Plasmodium berghei is a practical model organism for experimental studies of human malaria. Plasmepsins are a class of aspartic proteinase isoforms that exert multiple pathological effects in malaria parasites. Plasmepsins residing in the food vacuole (FV of the parasite hydrolyze hemoglobin in red blood cells. In this study, we cloned PbPM4, the FV plasmepsin gene of P. berghei that encoded an N-terminally truncated pro-segment and the mature enzyme from genomic DNA. We over-expressed this PbPM4 zymogen as inclusion bodies (IB in Escherichia coli, and purified the protein following in vitro IB refolding. Auto-maturation of the PbPM4 zymogen to mature enzyme was carried out at pH 4.5, 5.0, and 5.5. Interestingly, we found that the PbPM4 zymogen exhibited catalytic activity regardless of the presence of the pro-segment. We determined the optimal catalytic conditions for PbPM4 and studied enzyme kinetics on substrates and inhibitors of aspartic proteinases. Using combinatorial chemistry-based peptide libraries, we studied the active site preferences of PbPM4 at subsites S1, S2, S3, S1', S2' and S3'. Based on these results, we designed and synthesized a selective peptidomimetic compound and tested its inhibition of PbPM4, seven FV plasmepsins from human malaria parasites, and human cathepsin D (hcatD. We showed that this compound exhibited a >10-fold selectivity to PbPM4 and human malaria parasite plasmepsin 4 orthologs versus hcatD. Data from this study furthesr our understanding of enzymatic characteristics of the plasmepsin family and provides leads for anti-malarial drug design.

  8. "Autophagy suite": Atg9 cycling in the cytoplasm to vacuole targeting pathway.

    Science.gov (United States)

    Munakata, Nobuo; Klionsky, Daniel J

    2010-08-01

    Macroautophagy continues to gather increasing attention because it is connected with a wide range of human pathophysiologies, developmental processes and life span extension. It is also an interesting process from a basic cellular biology standpoint, as it involves dynamic membrane rearrangements and multiple protein-protein interactions. Although macroautophagy can be nonspecific, there are many examples of selective sequestration including pexophagy, mitophagy and the cytoplasm to vacuole targeting (Cvt) pathway. At present, the Cvt pathway is unique in that it is the only example of a biosynthetic use of macroautophagy. Most of the autophagy-related (Atg) proteins are involved in the Cvt pathway, and various types of analyses have placed these proteins at particular stages of the process. For example, Atg9 is the only characterized transmembrane protein that is absolutely required for Cvt vesicle formation, and it is proposed to carry membrane from peripheral donor sites to the phagophore assembly site where the vesicle forms. Additional proteins, including Atg11, Atg23 and Atg27 are involved in this anterograde movement, whereas Atg1-Atg13 and Atg2-Atg18 are required for the retrograde return to the peripheral sites. Even when we illustrate our understanding of these events in a schematic model, however, they are by necessity flat two-dimensional representations, lacking movement and sound. Yet the cell is a living entity that is not well served by this sole method of information display. Accordingly, we decided to present the Cvt pathway as a vibrant, dynamic process by combining science, music and illustration.

  9. Toxoplasma gondii sporozoites form a transient parasitophorous vacuole that is impermeable and contains only a subset of dense-granule proteins.

    OpenAIRE

    Tilley, M; Fichera, M E; Jerome, M E; Roos, D. S.; White, M W

    1997-01-01

    Toxoplasma gondii sporozoites form two parasitophorous vacuoles during development within host cells, the first (PV1) during host cell invasion and the second (PV2) 18 to 24 h postinoculation. PV1 is structurally distinctive due to its large size, yet it lacks a tubulovesicular network (C. A. Speer, M. Tilley, M. Temple, J. A. Blixt, J. P. Dubey, and M. W. White, Mol. Biochem. Parasitol. 75:75-86, 1995). Confirming the finding that sporozoites have a different electron-dense-granule compositi...

  10. Vacuoles in sperm head are not associated with head morphology, DNA damage and reproductive success.

    Science.gov (United States)

    Fortunato, Adriana; Boni, Raffaele; Leo, Rita; Nacchia, Giuseppina; Liguori, Francesca; Casale, Sofia; Bonassisa, Paolo; Tosti, Elisabetta

    2016-02-01

    In this retrospective study of 873 men enrolled for assisted reproduction techniques, relationships between sperm quality parameters, motile sperm organelle morphology examination (MSOME), DNA damage and live birth rate were evaluated. The presence of vacuoles in the sperm heads was detected by MSOME. Either chromatin decondensation or DNA fragmentation was used to study DNA damage. Results show that age significantly affected some of the examined parameters. In particular, sperm concentration was positively correlated (R = 0.088; P = 0.01) and chromatin decondensation was negatively correlated (R = -0.102; P = 0.003) with age. Furthermore, live birth rate was significantly lower in men aged 40 years or older (P fragmentation and live birth rate. Considering sperm heads in relation to the shape (normal/abnormal) and vacuoles (presence/absence), no significant variations in the occurrence of vacuoles in either normal or abnormal heads were found. These data suggest that vacuoles are physiological features that do not alter sperm functionality, and it seems that MSOME is not necessary for increasing the success of assisted reproduction techniques.

  11. Essential domain of receptor tyrosine phosphatase beta (RPTPbeta) for interaction with Helicobacter pylori vacuolating cytotoxin

    DEFF Research Database (Denmark)

    Yahiro, Kinnosuke; Wada, Akihiro; Yamasaki, Eiki

    2004-01-01

    Helicobacter pylori produces a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Although VacA was able to interact with two receptor-like protein tyrosine phosphatases, RPTPbeta and RPTPalpha, RPTPbeta was found to be responsible for gastric damage caused...

  12. Rimmed vacuoles and the added value of SMI-31 staining in diagnosing sporadic inclusion body myositis.

    Science.gov (United States)

    van der Meulen, M F; Hoogendijk, J E; Moons, K G; Veldman, H; Badrising, U A; Wokke, J H

    2001-07-01

    Problems in diagnosing sporadic inclusion body myositis may arise if all clinical features fit a diagnosis of polymyositis, but the muscle biopsy shows some rimmed vacuoles. Recently, immunohistochemistry with an antibody directed against phosphorylated neurofilament (SMI-31) has been advocated as a diagnostic test for sporadic inclusion body myositis. The aims of the present study were to define a quantitative criterion to differentiate sporadic inclusion body myositis from polymyositis based on the detection of rimmed vacuoles in the haematoxylin-eosin staining and to evaluate the additional diagnostic value of the SMI-31 staining. Based on clinical criteria and creatine kinase levels in patients with endomysial infiltrates, 18 patients complied with the diagnosis of sporadic inclusion body myositis, and 17 with the diagnosis of polymyositis. A blinded observer counted the abnormal fibres in haematoxylin-eosin-stained sections and in SMI-31-stained sections. The optimal cut-off in the haematoxylin-eosin test was 0.3% vacuolated fibres. Adding the SMI-31 staining significantly increased the positive predictive value from 87 to 100%, but increased the negative predictive value only to small extent. We conclude that (1) patients with clinical and laboratory features of polymyositis, including response to treatment, may show rimmed vacuoles in their muscle biopsy and that (2) adding the SMI-31 stain can be helpful in differentiating patients who respond to treatment from patients who do not.

  13. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole

    DEFF Research Database (Denmark)

    Payne, Richard; Xu, Deyang; Foureau, Emilien

    2017-01-01

    /peptide family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding...

  14. Retromer and the dynamin Vps1 cooperate in the retrieval of transmembrane proteins from vacuoles

    NARCIS (Netherlands)

    Arlt, Henning; Reggiori, Fulvio; Ungermann, Christian

    2015-01-01

    Endosomes are dynamic organelles that need to combine the ability to successfully deliver proteins and lipids to the lysosome-like vacuole, and recycle others to the Golgi or the plasma membrane. We now show that retromer, which is implicated in retrieval of proteins from endosomes to the Golgi or t

  15. PAS-positive lymphocyte vacuoles can be used as diagnostic screening test for Pompe disease.

    Science.gov (United States)

    Hagemans, Marloes L C; Stigter, Rolinda L; van Capelle, Carine I; van der Beek, Nadine A M E; Winkel, Leon P F; van Vliet, Laura; Hop, Wim C J; Reuser, Arnold J J; Beishuizen, Auke; van der Ploeg, Ans T

    2010-04-01

    Screening of blood films for the presence of periodic acid-Schiff (PAS)-positive lymphocyte vacuoles is sometimes used to support the diagnosis of Pompe disease, but the actual diagnostic value is still unknown. We collected peripheral blood films from 65 untreated Pompe patients and 51 controls. Lymphocyte vacuolization was quantified using three methods: percentage vacuolated lymphocytes, percentage PAS-positive lymphocytes, and a PAS score depending on staining intensity. Diagnostic accuracy of the tests was assessed using receiver operating characteristic (ROC) curves. All three methods fully discerned classic infantile patients from controls. The mean values of patients with milder forms of Pompe disease were significantly higher than those of controls, but full separation was not obtained. The area under the ROC curve was 0.98 for the percentage vacuolated lymphocytes (optimal cutoff value 3; sensitivity 91%, specificity 96%) and 0.99 for the percentage PAS-positive lymphocytes and PAS score (optimal cutoff value 9; sensitivity 100%, specificity 98%). Our data indicate that PAS-stained blood films can be used as a reliable screening tool to support a diagnosis of Pompe disease. The percentage of PAS-positive lymphocytes is convenient for use in clinical practice but should always be interpreted in combination with other clinical and laboratory parameters.

  16. Natural Diversity in the N Terminus of the Mature Vacuolating Cytotoxin of Helicobacter pylori Determines Cytotoxin Activity

    OpenAIRE

    Letley, D. P.; Atherton, J C

    2000-01-01

    Naturally occurring noncytotoxic vacA type s2 strains of Helicobacter pylori have a 12-residue extension to the vacuolating cytotoxin (VacA) compared with cytotoxic type s1 strains. We show that adding the region encoding this extension to type s1 vacA completely abolishes vacuolating cytotoxin activity but has no effect on VacA production.

  17. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated memb

  18. Vacuolating cytotoxin A (VacA) - A multi-talented pore-forming toxin from Helicobacter pylori.

    Science.gov (United States)

    Junaid, Muhammad; Linn, Aung Khine; Javadi, Mohammad Bagher; Al-Gubare, Sarbast; Ali, Niaz; Katzenmeier, Gerd

    2016-08-01

    Helicobacter pylori is associated with severe and chronic diseases of the stomach and duodenum such as peptic ulcer, non-cardial adenocarcinoma and gastric lymphoma, making Helicobacter pylori the only bacterial pathogen which is known to cause cancer. The worldwide rate of incidence for these diseases is extremely high and it is estimated that about half of the world's population is infected with H. pylori. Among the bacterial virulence factors is the vacuolating cytotoxin A (VacA), which represents an important determinant of pathogenicity. Intensive characterization of VacA over the past years has provided insight into an ample variety of mechanisms contributing to host-pathogen interactions. The toxin is considered as an important target for ongoing research for several reasons: i) VacA displays unique features and structural properties and its mechanism of action is unrelated to any other known bacterial toxin; ii) the toxin is involved in disease progress and colonization by H. pylori of the stomach; iii) VacA is a potential and promising candidate for the inclusion as antigen in a vaccine directed against H. pylori and iv) the vacA gene is characterized by a high allelic diversity, and allelic variants contribute differently to the pathogenicity of H. pylori. Despite the accumulation of substantial data related to VacA over the past years, several aspects of VacA-related activity have been characterized only to a limited extent. The biologically most significant effect of VacA activity on host cells is the formation of membrane pores and the induction of vacuole formation. This review discusses recent findings and advances on structure-function relations of the H. pylori VacA toxin, in particular with a view to membrane channel formation, oligomerization, receptor binding and apoptosis.

  19. Retargeting a maize β-glucosidase to the vacuole--evidence from intact plants that zeatin-O-glucoside is stored in the vacuole.

    Science.gov (United States)

    Kiran, Nagavalli S; Benková, Eva; Reková, Alena; Dubová, Jaroslava; Malbeck, Jiří; Palme, Klaus; Brzobohatý, Břetislav

    2012-07-01

    Cytokinin (CK) activity is regulated by the complex interplay of their metabolism, transport, stability and cellular/tissue localization. O-glucosides of zeatin-type CKs are postulated to be storage and/or transport forms. Active CK levels are determined in part by their differential distribution of CK metabolites across different subcellular compartments. We have previously shown that overexpressing chloroplast-localized Zm-p60.1, a maize β-glucosidase capable of releasing active cytokinins from their O- and N3-glucosides, perturbs CK homeostasis in transgenic tobacco. We obtained tobacco (Nicotiana tabacum L., cv Petit Havana SR1) plants overexpressing a recombinant Zm-p60.1 that is targeted to the vacuole. The protein is correctly processed and localized to the vacuole. When grown on medium containing exogenous zeatin, transgenic seedlings rapidly accumulate fresh weight due to ectopic growths at the base of the hypocotyl. The presence of the enzyme in these ectopic structures is shown by histochemical staining. CK quantification reveals that these transgenic seedlings are unable to accumulate zeatin-O-glucoside to levels similar to those observed in the wild type. When crossed with tobacco overexpressing the zeatin-O-glucosyltransferase gene from Phaseolus, the vacuolar variant shows an almost complete reversion in the root elongation assay. This is the first evidence from intact plants that the vacuole is the storage organelle for CK O-glucosides and that they are available to attack by Zm-p60.1. We propose the use of Zm-p60.1 as a robust molecular tool that exploits the reversibility of O-glucosylation and enables delicate manipulations of active CK content at the cellular level.

  20. Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction.

    Science.gov (United States)

    Singh, Lipi; Arora, Sunil Kumar; Bakshi, Dapinder K; Majumdar, Siddarth; Wig, Jai Dev

    2010-06-01

    Chemokines have been known to play a critical role in pathogenesis of chronic pancreatitis and acinar cell death. However, the role played by one of the CXC chemokines: CXCL10 in regulation of acinar cell death has remained unexplored. Hence, this study was designed to assess the role of CXCL10 promoting apoptosis in ex vivo cultured acinar cells. Primary human pancreatic acinar cell cultures were established and exposed to varying doses of CXCL10 for different time intervals. Apoptotic induction was evaluated by both qualitative as well as quantitative analyses. Various mediators of apoptosis were also studied by Western blotting, membrane potential (Psim) and ATP depletion in acinar cells. Analysis of apoptosis via DNA ladder and cell death detection - ELISA demonstrated that CXCL10 induced 3.9-fold apoptosis when administrated at an optimal dose of 0.1 mug of recombinant CXCL10 for 8 h. Quantitative analysis using FACS and dual staining by PI-annexin showed increased apoptosis (48.98 and 53.78% respectively). The involvement of upstream apoptotic regulators like pJNK, p38 and Bax was established on the basis of their increased expression of CXCL10. The change of Psim by 50% was observed in the presence of CXCL10 in treated acinar cells along with enhanced expression of Cytochrome C, apaf-1 and caspase 9/3 activation. In addition, ATP depletion was also noticed in CXCL10 stimulated acinar cells. CXCL10 induces cell death in human cultured pancreatic cells leading to apoptosis and DNA fragmentation via CXCR3 signalling. These signalling mechanisms may play an important role in parenchymal cell loss and injury in pancreatitis.

  1. Vacuole/extravacuole distribution of soluble protease in Hippeastrum petal and Triticum leaf protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.J.; Mulready, P.; Cutt, J.

    1981-11-01

    The subcellular distribution of soluble protease in anthesis-stage, anthocyanin-containing Hippeastrum cv. Dutch Red Hybrid petal protoplasts has been reevaluated and that of Triticum aestivum L. var. Red Coat leaf protoplasts determined using /sup 125/I-fibrin as a protease substrate and improved methods for protoplast and vacuole volume estimation. Results indicate that about 20% of the Hippeastrum petal-soluble protease and about 90% of the wheat leaf-soluble protease can be assigned to the vacuole. Protoplast isolation enzyme labeled with /sup 125/I has been used to assess the efficiency of removing isolation enzyme from protoplasts by repeated washing and by separation of protoplasts from debris using density centrifugation. Results of these studies suggest that protoplasts prepared by both methods retain low levels of isolation enzyme. However, when protoplasts prepared by either method were lysed with washing medium lacking osmoticum, little isolation enzyme contaminated the lysates.

  2. Polyketide synthase (PKS) reduces fusion of Legionella pneumophila-containing vacuoles with lysosomes and contributes to bacterial competitiveness during infection.

    Science.gov (United States)

    Shevchuk, Olga; Pägelow, Dennis; Rasch, Janine; Döhrmann, Simon; Günther, Gabriele; Hoppe, Julia; Ünal, Can Murat; Bronietzki, Marc; Gutierrez, Maximiliano Gabriel; Steinert, Michael

    2014-11-01

    L. pneumophila-containing vacuoles (LCVs) exclude endocytic and lysosomal markers in human macrophages and protozoa. We screened a L. pneumophila mini-Tn10 transposon library for mutants, which fail to inhibit the fusion of LCVs with lysosomes by loading of the lysosomal compartment with colloidal iron dextran, mechanical lysis of infected host cells, and magnetic isolation of LCVs that have fused with lysosomes. In silico analysis of the mutated genes, D. discoideum plaque assays and infection assays in protozoa and U937 macrophage-like cells identified well established as well as novel putative L. pneumophila virulence factors. Promising candidates were further analyzed for their co-localization with lysosomes in host cells using fluorescence microscopy. This approach corroborated that the O-methyltransferase, PilY1, TPR-containing protein and polyketide synthase (PKS) of L. pneumophila interfere with lysosomal degradation. Competitive infections in protozoa and macrophages revealed that the identified PKS contributes to the biological fitness of pneumophila strains and may explain their prevalence in the epidemiology of Legionnaires' disease.

  3. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples.

    Science.gov (United States)

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Cheng, Lailiang; Hao, Yu-Jin

    2016-03-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H(+)-pumping activities of vacuolar H(+)-ATPase (VHA) and/or vacuolar H(+)-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H(+)-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants.

  4. Oculopharyngeal Weakness, Hypophrenia, Deafness, and Impaired Vision: A Novel Autosomal Dominant Myopathy with Rimmed Vacuoles

    Institute of Scientific and Technical Information of China (English)

    Ting Chen; Xiang-Hui Lu; Hui-Fang Wang; Rui Ban; Hua-Xu Liu; Qiang Shi; Qian Wang

    2016-01-01

    Background:Myopathies with rimmed vacuoles are a heterogeneous group of muscle disorders with progressive muscle weakness and varied clinical manifestations but similar features in muscle biopsies.Here,we describe a novel autosomal dominant myopathy with rimmed vacuoles in a large family with 11 patients of three generations affected.Methods:A clinical study including family history,obstetric,pediatric,and development history was recorded.Clinical examinations including physical examination,electromyography (EMG),serum creatine kinase (CK),bone X-rays,and brain magnetic resonance imaging (MRI) were performed in this family.Open muscle biopsies were performed on the proband and his mother.To find the causative gene,the whole-exome sequencing was carried out.Results:Disease onset was from adolescence to adulthood,but the affected patients of the third generation presented an earlier onset and more severe clinical manifestations than the older generations.Clinical features were characterized as dysarthria,dysphagia,external ophthalmoplegia,limb weakness,hypophrenia,deafness,and impaired vision.However,not every patient manifested all symptoms.Serum CK was mildly elevated and EMG indicated a myopathic pattern.Brain MRI showed cerebellum and brain stem mildly atrophy.Rimmed vacuoles and inclusion bodies were observed in muscle biopsy.The whole-exome sequencing was performed,but the causative gene has not been found.Conclusions:We reported a novel autosomal dominant myopathy with rimmed vacuoles characterized by dysarthria,dysphagia,external ophthalmoplegia,limb weakness,hypophrenia,deafness,and impaired vision,but the causative gene has not been found and needs further study.

  5. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  6. Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Watanabe, Takashi; Tani, Motohiro; Ishibashi, Yohei; Endo, Ikumi; Okino, Nozomu; Ito, Makoto

    2015-10-01

    Sterylglucosides (SGs) are composed of a glucose and sterol derivatives, and are distributed in fungi, plants and mammals. We recently identified EGCrP1 and EGCrP2 (endoglycoceramidase-related proteins 1 and 2) as a β-glucocerebrosidase and steryl-β-glucosidase, respectively, in Cryptococcus neoformans. We herein describe an EGCrP2 homologue (Egh1; ORF name, Yir007w) involved in SG catabolism in Saccharomyces cerevisiae. The purified recombinant Egh1 hydrolyzed various β-glucosides including ergosteryl β-glucoside (EG), cholesteryl β-glucoside, sitosteryl β-glucoside, para-nitrophenyl β-glucoside, 4-methylumberifellyl β-glucoside and glucosylceramide. The disruption of EGH1 in S. cerevisiae BY4741 (egh1Δ) resulted in the accumulation of EG and fragmentation of vacuoles. The expression of EGH1 in egh1Δ (revertant) reduced the accumulation of EG, and restored the morphology of vacuoles. The accumulation of EG was not detected in EGH1 and UGT51(ATG26) double-disrupted mutants (ugt51Δegh1Δ), indicating that EG was synthesized by Ugt51(Atg26) and degraded by Egh1 in vivo. These results clearly demonstrated that Egh1 is an ergosteryl-β-glucosidase that is functionally involved in the EG catabolic pathway and vacuole formation in S. cerevisiae.

  7. Mutations that affect vacuole biogenesis inhibit proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Koning, Ann J; Larson, Lynnelle L; Cadera, Emily J; Parrish, Mark L; Wright, Robin L

    2002-04-01

    In yeast, increased levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase isozyme, Hmg1p, induce assembly of nuclear-associated ER membranes called karmellae. To identify additional genes involved in karmellae assembly, we screened temperature-sensitive mutants for karmellae assembly defects. Two independently isolated, temperature-sensitive strains that were also defective for karmellae biogenesis carried mutations in VPS16, a gene involved in vacuolar protein sorting. Karmellae biogenesis was defective in all 13 other vacuole biogenesis mutants tested, although the severity of the karmellae assembly defect varied depending on the particular mutation. The hypersensitivity of 14 vacuole biogenesis mutants to tunicamycin was well correlated with pronounced defects in karmellae assembly, suggesting that the karmellae assembly defect reflected alteration of ER structure or function. Consistent with this hypothesis, seven of eight mutations causing defects in secretion also affected karmellae assembly. However, the vacuole biogenesis mutants were able to proliferate their ER in response to Hmg2p, indicating that the mutants did not have a global defect in the process of ER biogenesis.

  8. TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi.

    Science.gov (United States)

    Jimenez, Veronica; Docampo, Roberto

    2015-09-01

    We have identified a phosphate transporter (TcPho91) localized to the bladder of the contractile vacuole complex (CVC) of Trypanosoma cruzi, the etiologic agent of Chagas disease. TcPho91 has 12 transmembrane domains, an N-terminal regulatory SPX (named after SYG1, Pho81 and XPR1) domain and an anion permease domain. Functional expression in Xenopus laevis oocytes followed by two-electrode voltage clamp showed that TcPho91 is a low-affinity transporter with a Km for Pi in the millimolar range, and sodium-dependency. Epimastigotes overexpressing TcPho91-green fluorescent protein have significantly higher levels of pyrophosphate (PPi ) and short-chain polyphosphate (polyP), suggesting accumulation of Pi in these cells. Moreover, when overexpressing parasites were maintained in a medium with low Pi , they grew at higher rates than control parasites. Only one allele of TcPho91 in the CL strain encodes for the complete open reading frame, while the other one is truncated encoding for only the N-terminal domain. Taking advantage of this characteristic, knockdown experiments were performed resulting in cells with reduced growth rate as well as a reduction in PPi and short-chain polyP levels. Our results indicate that TcPho91 is a phosphate sodium symporter involved in Pi homeostasis in T. cruzi.

  9. Saccharomyces cerevisiae Is Dependent on Vesicular Traffic between the Golgi Apparatus and the Vacuole When Inositolphosphorylceramide Synthase Aur1 Is Inactivated.

    Science.gov (United States)

    Voynova, Natalia S; Roubaty, Carole; Vazquez, Hector M; Mallela, Shamroop K; Ejsing, Christer S; Conzelmann, Andreas

    2015-12-01

    Inositolphosphorylceramide (IPC) and its mannosylated derivatives are the only complex sphingolipids of yeast. Their synthesis can be reduced by aureobasidin A (AbA), which specifically inhibits the IPC synthase Aur1. AbA reportedly, by diminishing IPC levels, causes endoplasmic reticulum (ER) stress, an increase in cytosolic calcium, reactive oxygen production, and mitochondrial damage leading to apoptosis. We found that when Aur1 is gradually depleted by transcriptional downregulation, the accumulation of ceramides becomes a major hindrance to cell survival. Overexpression of the alkaline ceramidase YPC1 rescues cells under this condition. We established hydroxylated C26 fatty acids as a reliable hallmark of ceramide hydrolysis. Such hydrolysis occurs only when YPC1 is overexpressed. In contrast, overexpression of YPC1 has no beneficial effect when Aur1 is acutely repressed by AbA. A high-throughput genetic screen revealed that vesicle-mediated transport between Golgi apparatus, endosomes, and vacuole becomes crucial for survival when Aur1 is repressed, irrespective of the mode of repression. In addition, vacuolar acidification becomes essential when cells are acutely stressed by AbA, and quinacrine uptake into vacuoles shows that AbA activates vacuolar acidification. The antioxidant N-acetylcysteine does not improve cell growth on AbA, indicating that reactive oxygen radicals induced by AbA play a minor role in its toxicity. AbA strongly induces the cell wall integrity pathway, but osmotic support does not improve the viability of wild-type cells on AbA. Altogether, the data support and refine current models of AbA-mediated cell death and add vacuolar protein transport and acidification as novel critical elements of stress resistance.

  10. The Effect of Herbicides on Hydrogen Peroxide Generation in Isolated Vacuoles of Red Beet Root (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2015-12-01

    Full Text Available Influence of herbicides on the hydrogen peroxide generation in vacuolar extracts of red beet root (Beta vulgaris L. was investigated. Belonging to different chemical classes of herbicide compounds have been used. Herbicides differ from each other in the mechanism of effects on plants. Clopyralid (aromatic acid herbicide, derivative of picolinic acid and 2.4-D (phenoxyacetic herbicide, characterized by hormone-like effects, contributed to the formation of H2O2 in vacuolar extracts. Fluorodifen (nitrophenyl ether herbicide and diuron (urea herbicide also have increased contents H2O2. These compounds inhibit the electron transport, photosynthesis, and photorespiration in sensitive plants. Herbicidal effect of glyphosate (organophosphorus herbicide is due to the inhibition of amino acid synthesis in plant cells. Glyphosate did not affect the content of H2O2 in vacuolar extracts. Herbicide dependent H2O2-generation did not occur with oxidoreductase inhibitors, potassium cyanide and sodium azide. The results suggest that the formation of ROS in the vacuoles due to activity of oxidoreductases, which could interact with herbicides.

  11. Dictyostelium discoideum RabS and Rab2 colocalize with the Golgi and contractile vacuole system and regulate osmoregulation

    Indian Academy of Sciences (India)

    Katherine Maringer; Azure Yarbrough; Sunder Sims-Lucas; Entsar Saheb; Sanaa Jawed; John Bush

    2016-06-01

    Small-molecular-weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and is required for protein transport from the ER to the Golgi complex; however, Rab2 has yet to be characterized in Dictyostelium discoideum. DdRabS is a Dictyostelium Rab that is 80% homologous to DdRab1 which is required for protein transport between the ER and Golgi. Expression of GFP-tagged DdRab2 and DdRabS proteins showed localization to Golgi membranes and to the contractile vacuole system (CV) in Dictyostelium. Microscopic imaging indicates that the DdRab2 and DdRabS proteins localize at, and are essential for, the proper structure of Golgi membranes and the CV system. Dominant negative (DN) forms show fractionation of Golgi membranes, supporting their role in the structure and function of it. DdRab2 and DdRabS proteins, and their dominant negative and constitutively active (CA) forms, affect osmoregulation of the cells, possibly by the influx and discharge of fluids, which suggests a role in the function of the CV system. This is the first evidence of GTPases being localized to both Golgi membranes and the CV system in Dictyostelium.

  12. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones.

    Science.gov (United States)

    Finsel, Ivo; Hilbi, Hubert

    2015-07-01

    Legionella species are ubiquitous, waterborne bacteria that thrive in numerous ecological niches. Yet, in contrast to many other environmental bacteria, Legionella spp. are also able to grow intracellularly in predatory protozoa. This feature mainly accounts for the pathogenicity of Legionella pneumophila, which causes the majority of clinical cases of a severe pneumonia termed Legionnaires' disease. The pathomechanism underlying L. pneumophila infection is based on macrophage resistance, which in turn is largely defined by the opportunistic pathogen's resistance towards amoebae. L. pneumophila replicates in macrophages or amoebae in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and involves a plethora of translocated effector proteins, which subvert pivotal processes in the host cell. Of the ca. 300 different experimentally validated Icm/Dot substrates, about 50 have been studied and attributed a cellular function to date. The versatility and ingenuity of these effectors' mode of actions is striking. In this review, we summarize insight into the cellular functions and biochemical activities of well-characterized L. pneumophila effector proteins and the host pathways they target. Recent studies not only substantially increased our knowledge about pathogen-host interactions, but also shed light on novel biological mechanisms.

  13. The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole.

    Science.gov (United States)

    Diacovich, Lautaro; Lorenzi, Lucía; Tomassetti, Mauro; Méresse, Stéphane; Gramajo, Hugo

    2016-12-09

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that causes various host-specific diseases. During their life cycle, Salmonellae survive frequent exposures to a variety of environmental stresses, e.g. carbon-source starvation. The virulence of this pathogen relies on its ability to establish a replicative niche, named Salmonella-containing vacuole, inside host cells. However, the microenvironment of the SCV and the bacterial metabolic pathways required during infection are largely undefined. In this work we developed different biological probes whose expression is modulated by the environment and the physiological state of the bacterium. We constructed transcriptional reporters by fusing promoter regions to the gfpmut3a gene to monitor the expression profile of genes involved in glucose utilization and lipid catabolism. The induction of these probes by a specific metabolic change was first tested in vitro, and then during different conditions of infection in macrophages. We were able to determine that Entner-Doudoroff is the main metabolic pathway utilized by Salmonella during infection in mouse macrophages. Furthermore, we found sub-populations of bacteria expressing genes involved in pathways for the utilization of different sources of carbon. These populations are modified in presence of different metabolizable substrates, suggesting the coexistence of Salmonella with diverse metabolic states during the infection.

  14. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte*

    Science.gov (United States)

    Ruecker, Andrea; Shea, Michael; Hackett, Fiona; Suarez, Catherine; Hirst, Elizabeth M. A.; Milutinovic, Katarina; Withers-Martinez, Chrislaine; Blackman, Michael J.

    2012-01-01

    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte. PMID:22984267

  15. Cdc42p and Rho1p are sequentially activated and mechanistically linked to vacuole membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Michael R.; Jones, Lynden [Department of Cell Biology, University of Alberta, Edmonton, Alta., Canada T6G 2H7 (Canada); Eitzen, Gary, E-mail: gary.eitzen@ualberta.ca [Department of Cell Biology, University of Alberta, Edmonton, Alta., Canada T6G 2H7 (Canada)

    2010-03-26

    Small monomeric GTPases act as molecular switches, regulating many biological functions via activation of membrane localized signaling cascades. Activation of their switch function is controlled by GTP binding and hydrolysis. Two Rho GTPases, Cdc42p and Rho1p, are localized to the yeast vacuole where they regulate membrane fusion. Here, we define a method to directly examine vacuole membrane Cdc42p and Rho1p activation based on their affinity to probes derived from effectors. Cdc42p and Rho1p showed unique temporal activation which aligned with distinct subreactions of in vitro vacuole fusion. Cdc42p was rapidly activated in an ATP-independent manner while Rho1p activation was kinetically slower and required ATP. Inhibitors that are known to block vacuole membrane fusion were examined for their effect on Cdc42p and Rho1p activation. Rdi1p, which inhibits the dissociation of GDP from Rho proteins, blocked both Cdc42p and Rho1p activation. Ligands of PI(4,5)P{sub 2} specifically inhibited Rho1p activation while pre-incubation with U73122, which targets Plc1p function, increased Rho1p activation. These results define unique activation mechanisms for Cdc42p and Rho1p, which may be linked to the vacuole membrane fusion mechanism.

  16. LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Terry L Bennett

    Full Text Available During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes. This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis.

  17. The degradation of potato virus M (PVM particles in plant cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-02-01

    Full Text Available Degradation of potato virus M particles was observed in the cells of Solanum tuberosum, Solanum rostratum, Lycopersicon esculentum and Lycopersicon chilense plants infected with this virus. PVM particles found in the cytoplasm of infected parenchyma cells grouped together in the form of inclusions, often found near the tonoplast. The ends of the virus particles and the tonoplast came into close contact. Cytoplasmic protrusions containing PVM particles, reaching into vacuoles were formed in those places. In addition to a large central vacuole, small vacuoles were observed in cells containing PVM particles. Various stages of degradation of cytoplasmic protrusions were observed both in the large and small vacuoles.

  18. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole.

    Science.gov (United States)

    Payne, Richard M E; Xu, Deyang; Foureau, Emilien; Teto Carqueijeiro, Marta Ines Soares; Oudin, Audrey; Bernonville, Thomas Dugé de; Novak, Vlastimil; Burow, Meike; Olsen, Carl-Erik; Jones, D Marc; Tatsis, Evangelos C; Pendle, Ali; Ann Halkier, Barbara; Geu-Flores, Fernando; Courdavault, Vincent; Nour-Eldin, Hussam Hassan; O'Connor, Sarah E

    2017-01-13

    Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered. Here we present the discovery of a tonoplast localized nitrate/peptide family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding and controlling the central branch point of this pharmacologically important group of compounds.

  19. Matrigel improves functional properties of primary human salivary gland cells.

    Science.gov (United States)

    Maria, Ola M; Zeitouni, Anthony; Gologan, Olga; Tran, Simon D

    2011-05-01

    Currently, there is no effective treatment available to patients with irreversible loss of functional salivary acini caused by Sjogren's syndrome or after radiotherapy for head and neck cancer. A tissue-engineered artificial salivary gland would help these patients. The graft cells for this device must establish tight junctions in addition to being of fluid-secretory nature. This study analyzed a graft source from human salivary glands (huSG) cultured on Matrigel. Cells were obtained from parotid and submandibular glands, expanded in vitro, and then plated on either Matrigel-coated (2 mg/mL) or uncoated culture dish. Immunohistochemistry, transmission electron microscopy, quantitative real-time-polymerase chain reaction, Western blot, and transepithelial electrical resistance were employed. On Matrigel, huSG cells adopted an acinar phenotype by forming three-dimensional acinar-like units (within 24 h of plating) as well as a monolayer of cells. On uncoated surfaces (plastic), huSG cells only formed monolayers of ductal cells. Both types of culture conditions allowed huSG cells to express tight junction proteins (claudin-1, -2, -3, -4; occludin; JAM-A; and ZO-1) and adequate transepithelial electrical resistance. Importantly, 99% of huSG cells on Matrigel expressed α-amylase and the water channel protein Aquaporin-5, as compared to cells on plastic. Transmission electron microscopy confirmed an acinar phenotype with many secretory granules. Matrigel increased the secretion of α-amylase two to five folds into the media, downregulated certain salivary genes, and regulated the translation of acinar proteins. This three-dimensional in vitro serum-free cell culture method allows the organization and differentiation of huSG cells into salivary cells with an acinar phenotype.

  20. Controlled 3D culture in Matrigel microbeads to analyze clonal acinar development.

    Science.gov (United States)

    Dolega, Monika E; Abeille, Fabien; Picollet-D'hahan, Nathalie; Gidrol, Xavier

    2015-06-01

    3D culture systems are a valuable tool for modeling morphogenesis and carcinogenesis of epithelial tissue in a structurally appropriate context. We present a novel approach for 3D cell culture based on a flow-focusing microfluidic system that encapsulates epithelial cells in Matrigel beads. As a model we use prostatic and breast cells and assay for development of acini, polarized cellular spheres enclosing lumen. Each individual bead on average acts as a single 3D cell culture compartment generating one acinus per bead. Compared to standard protocols microfluidics provides increased control over the environment leading to more a uniform acini population. The increased facility of bead manipulation allowed us to isolate single cells which are self-sufficient to fully develop into acini in presence of Matrigel. Furthermore, combination of our microfluidic approach with large particle FACS opens new avenues in high throughput screening on single acini or spheroids.

  1. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy.

    Science.gov (United States)

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikus, Katarina; Kreft, Ivan

    2011-07-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved.

  2. The role of suppression of p38 MAPK in cellular vacuole formation%阻断p38丝裂原活化蛋白激酶在细胞空泡形成中的作用

    Institute of Scientific and Technical Information of China (English)

    张春燕; 冯春红; 敬健雄; 段春燕; 刘友平; 夏先明; 李洪; 代荣阳; 陈绍坤

    2014-01-01

    目的:探讨p38丝裂原活化蛋白激酶(p38MAPK)通路与细胞空泡形成的关系。方法应用茴香霉素、放线菌酮、p38MAPK抑制剂SB203580、JNK抑制剂SP600125处理HepG2、LM3、QBC939、Hela和A549细胞,光学显微镜和激光共聚焦显微镜观察细胞空泡化情况;Westernblot法检测p38MAPK等通路相关分子的表达水平;内质网红色荧光探针标记内质网,激光共聚焦显微镜观察内质网结构变化;溶酶体红色荧光探针标记溶酶体,激光共聚焦显微镜观察溶酶体荧光染色情况。结果(1)茴香霉素对HepG2细胞空泡有消除作用。(2)茴香霉素通过活化p38MAPK消除细胞空泡。(3)阻断p38MAPK诱导多种肿瘤细胞空泡形成。(4)阻断p38MAPK介导的空泡形成破坏内质网结构的整体性。(5)阻断p38MAPK介导的空泡形成具有可逆性。结论p38MAPK通路在调节细胞空泡形成中发挥了重要作用。%Objective To investigate the role of the p38 MAPK pathway in the formation of cytoplasmic vacuoles .Methods Af-ter treated with Anisomycin ,SB203580 or SP600125 ,images of HepG2 ,LM3 ,QBC939 ,Hela and A549 cells were recorded by light microscopy and taken at a magnification of 400 × .The effects of anisomycin ,SB203580 and SP600125 on the activity of p38 and JNK were measured by Western blot .LM3 and A549 cells were stained with the ER-tracker red and the lyso-tracker red and subjec-ted to confocal microscopy analysis .Results (1)Anisomycin could abolish cytoplasmic vacuolization of HepG2 cells .(2)p38 MAPK activation was responsible for anisomycin-induced cytoplasmic vacuolization abolishment .(3)p38 MAPK blocking initiated cytoplas-mic vacuoles formation in various cancer cell lines .(4)p38 MAPK blocking-induced cytoplasmic vacuoles disrupted the integrity of endoplasmic reticulum .(5)p38 MAPK blocking reversibly induced cytoplasmic vacuoles formation .Conclusion These observations provide direct evidence for a

  3. No Effect of Dietary Aspartame or Stevia on Pancreatic Acinar Carcinoma Development, Growth, or Induced Mortality in a Murine Model

    Science.gov (United States)

    Dooley, James; Lagou, Vasiliki; Dresselaers, Tom; van Dongen, Katinka A.; Himmelreich, Uwe; Liston, Adrian

    2017-01-01

    Pancreatic cancer has an extremely poor prognosis, largely due to a poor record for early detection. Known risk factors for pancreatic cancer include obesity, diet, and diabetes, implicating glucose consumption and regulation as a key player. The role of artificial sweeteners may therefore be pertinent to disease kinetics. The oncogenic impact of artificial sweeteners is a highly controversial area. Aspartame, one of the most studied food additives, is widely recognized as being generally safe, although there are still specific areas where research is incomplete due to study limitations. Stevia, by contrast, has been the subject of relatively few studies, and the potential health benefits are based on extrapolation rather than direct testing. Here, we used longitudinal tracking of pancreatic acinar carcinoma development, growth, and lethality in a sensitized mouse model. Despite exposure to aspartame and stevia from the in utero stage onward, we found no disease modification activity, in either direction. These results contribute to the data on aspartame and stevia safety, while also reducing confidence in several of the purported health benefits. PMID:28232906

  4. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    2008-01-01

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35: 296-30

  5. E2f1-deficient NOD/SCID mice have dry mouth due to a change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland.

    Science.gov (United States)

    Satoh, Keitaro; Narita, Takanori; Matsuki-Fukushima, Miwako; Okabayashi, Ken; Ito, Tatsuro; Senpuku, Hidenobu; Sugiya, Hiroshi

    2013-02-01

    Non-obese diabetic (NOD) mice have been used as a model for dry mouth. NOD mice lacking the gene encoding E2f1, a transcription factor, develop hyposalivation more rapidly progressively than control NOD mice. However, the model mice are associated with an underlying disease such as diabetes. We have now established E2f1-deficient NOD/severe combined immunodeficiency disease (NOD/SCID.E2f1(-/-)) mice to avoid the development of diabetes (Matsui-Inohara et al., Exp Biol Med (Maywood) 234(12):1525-1536, 2009). In this study, we investigated the pathophysiological features of dry mouth using NOD/SCID.E2f1(-/-) mice. In NOD/SCID.E2f1(-/-) mice, the volume of secreted saliva stimulated with pilocarpine is about one third that of control NOD/SCID mice. In behavioral analysis, NOD/SCID.E2f1(-/-) mice drank plenty of water when they ate dry food, and the frequency and time of water intake were almost double compared with control NOD/SCID mice. Histological analysis of submandibular glands with hematoxylin-eosin stain revealed that NOD/SCID.E2f1(-/-) mice have more ducts than NOD/SCID mice. In western blot analysis, the expression of aquaporin 5 (AQP5), a marker of acinar cells, in parotid and in submandibular glands of NOD/SCID.E2f1(-/-) mice was lower than in NOD/SCID mice. Immunohistochemical analysis of parotid and submandibular acini revealed that the localization of AQP5 in NOD/SCID.E2f1(-/-) mice differs from that in NOD/SCID mice; AQP5 was leaky and diffusively localized from the apical membrane to the cytosol in NOD/SCID.E2f1(-/-) mice. The ubiquitination of AQP5 was detected in submandibular glands of NOD/SCID.E2f1(-/-) mice. These findings suggest that the change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland cause the pathogenesis of hyposalivation in NOD/SCID.E2f1(-/-) mice.

  6. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia- and Toxoplasma-containing vacuoles and host resistance.

    Directory of Open Access Journals (Sweden)

    Arun K Haldar

    Full Text Available Cell-autonomous immunity to the bacterial pathogen Chlamydia trachomatis and the protozoan pathogen Toxoplasma gondii is controlled by two families of Interferon (IFN-inducible GTPases: Immunity Related GTPases (IRGs and Guanylate binding proteins (Gbps. Members of these two GTPase families associate with pathogen-containing vacuoles (PVs and solicit antimicrobial resistance pathways specifically to the intracellular site of infection. The proper delivery of IRG and Gbp proteins to PVs requires the autophagy factor Atg5. Atg5 is part of a protein complex that facilitates the transfer of the ubiquitin-like protein Atg8 from the E2-like conjugation enzyme Atg3 to the lipid phosphatidylethanolamine. Here, we show that Atg3 expression, similar to Atg5 expression, is required for IRG and Gbp proteins to dock to PVs. We further demonstrate that expression of a dominant-active, GTP-locked IRG protein variant rescues the PV targeting defect of Atg3- and Atg5-deficient cells, suggesting a possible role for Atg proteins in the activation of IRG proteins. Lastly, we show that IFN-induced cell-autonomous resistance to C. trachomatis infections in mouse cells depends not only on Atg5 and IRG proteins, as previously demonstrated, but also requires the expression of Atg3 and Gbp proteins. These findings provide a foundation for a better understanding of IRG- and Gbp-dependent cell-autonomous resistance and its regulation by Atg proteins.

  7. LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling

    NARCIS (Netherlands)

    J. Chang (Jufang); M.M. Nicolau (Monica); T.R. Cox (Thomas); D. Wetterskog (Daniel); J.W.M. Martens (John); H. E Barker (Holly); J.T. Erler (Janine)

    2013-01-01

    textabstractIntroduction: Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expr

  8. Poorly differentiated angiosarcoma without vasoformative channels but with focal intracytoplastic vacuoles mimicking liposarcomas

    Directory of Open Access Journals (Sweden)

    Tadashi Terada, MD, PhD

    2016-03-01

    Full Text Available Angiosarcoma (AS showed diverse morphologies from well formed malignant vasculatures to poorly differentiated tumor with only a few clues of endothelial differentiation. Herein reported are two cases of AS without primitive vasoformative channels (VC. They showed, instead, a very few foci of intracytoplasmic vacuoles (ICV that mimicked liposarcoma. The two cases were found in 12 cases of AS in computer database. Both are men, 57 and 68 years. One is cutaneous (foot AS and another is soft tissue (thigh AS. The largest diameter of cutaneous AS was 5 cm, and that of soft tissue AS 9 cm. The prognosis of both patients was poor; both died of metastases 4 and 6 years after initial presentation. In both cases, hematoxylin and eosin (HE diagnosis was difficult because there were no VC, and most of the tumors were composed of primitive mesenchymal tissues. In both cases, however, a few very tiny foci consisting of ICV were seen. At first, the author considered them as mucins or fat, and suspected liposarcoma. In fact, they were pseudolipoblasts. Several mucin stains showed no mucins, and fat stains of frozen sections of formalin fixed tissue were negative for fat. Immunohistochemically, the vacuoles were positive for factor VIII-related antigen (F-VIII-RA, Ulex lectin, CD31, CD34, vimentin, p53 and Ki-67 (labeling index = 64% and 75%, but negative for various types of cytokeratins (CK, EMA, CEA, CA19-9, CD45, smooth muscle actins, S100 protein, myoglobin, HMB-45, Melan A, NCAM, and NSE. F-VIII-RA is specific and Ulex lectin and CD31 are relatively specific for endothelium. Therefore, the pathological diagnosis of AS could be made by the combined histologic features (ICV and Immunohistochemical positivity of F-VIII-RA, Ulex lectin, and CD31. Thus, it appeared that the ICV may be the only clue of poorly differentiated or undifferentiated AS. In such undifferentiated cases, combined observations of meticulous histologic observations (intracytoplasmic

  9. Transport of Arginine and Aspartic Acid into Isolated Barley Mesophyll Vacuoles 1

    Science.gov (United States)

    Martinoia, Enrico; Thume, Monika; Vogt, Esther; Rentsch, Doris; Dietz, Karl-Josef

    1991-01-01

    The transport of arginine into isolated barley (Hordeum vulgare L.) mesophyll vacuoles was investigated. In the absence of ATP, arginine uptake was saturable with a Km of 0.3 to 0.4 millimolar. Positively charged amino acids inhibited arginine uptake, lysine being most potent with a Ki of 1.2 millimolar. In the presence of free ATP, but not of its Mg-complex, uptake of arginine was drastically enhanced and a linear function of its concentration up to 16 millimolar. The nonhydrolyzable adenylyl imidodiphosphate, but no other nucleotide tested, could substitute for ATP. Therefore, it is suggested that this process does not require energy and does not involve the tonoplast ATPase. The ATP-dependent arginine uptake was strongly inhibited by p-chloromercuriphenylsulfonic acid. Furthermore, hydrophobic amino acids were inhibitory (I50 phenylalanine 1 millimolar). Similar characteristics were observed for the uptake of aspartic acid. However, rates of ATP-stimulated aspartic acid transport were 10-fold lower as compared to arginine transport. Uptake of aspartate in the absence of ATP was negligible. PMID:16668447

  10. The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation

    DEFF Research Database (Denmark)

    Müller, Oliver; Bayer, Martin J; Peters, Christopher;

    2002-01-01

    The fusion of cellular membranes comprises several steps; membrane attachment requires priming of SNAREs and tethering factors by Sec18p/NSF (N-ethylmaleimide sensitive factor) and LMA1. This leads to trans-SNARE pairing, i.e. formation of SNARE complexes between apposed membranes. The yeast...... vacuole system has revealed two subsequent molecular events: trans-complex formation of V-ATPase proteolipid sectors (V(0)) and release of LMA1 from the membrane. We have now identified a hetero-oligomeric membrane integral complex of vacuolar transporter chaperone (Vtc) proteins integrating these events....... The Vtc complex associates with the R-SNARE Nyv1p and with V(0). Subunits Vtc1p and Vtc4p control the initial steps of fusion. They are required for Sec18p/NSF activity in SNARE priming, membrane binding of LMA1 and V(0) trans-complex formation. In contrast, subunit Vtc3p is required for the latest step...

  11. Shape, shell, and vacuole formation during the drying of a single concentrated whey protein droplet.

    Science.gov (United States)

    Sadek, Céline; Tabuteau, Hervé; Schuck, Pierre; Fallourd, Yannick; Pradeau, Nicolas; Le Floch-Fouéré, Cécile; Jeantet, Romain

    2013-12-17

    The drying of milk concentrate droplets usually leads to specific particle morphology influencing their properties and their functionality. Understanding how the final shape of the particle is formed therefore represents a key issue for industrial applications. In this study, a new approach to the investigation of droplet-particle conversion is proposed. A single droplet of concentrated globular proteins extracted from milk was deposited onto a hydrophobic substrate and placed in a dry environment. Complementary methods (high-speed camera, confocal microscopy, and microbalance) were used to record the drying behavior of the concentrated protein droplets. Our results showed that whatever the initial concentration, particle formation included three dynamic stages clearly defined by the loss of mass and the evolution of the internal and external shapes of the droplet. A new and reproducible particle shape was related in this study. It was observed after drying a smooth, hemispherical cap-shaped particle, including a uniform protein shell and the nucleation of an internal vacuole. The particle morphology was strongly influenced by the drying environment, the contact angle, and the initial protein concentration, all of which governed the duration of the droplet shrinkage, the degree of buckling, and the shell thickness. These results are discussed in terms of specific protein behaviors in forming a predictable and a characteristic particle shape. The way the shell is formed may be the starting point in shaping particle distortion and thus represents a potential means of tuning the particle morphology.

  12. Rimmed vacuoles with beta-amyloid and ubiquitinated filamentous deposits in the muscles of patients with long-standing denervation (postpoliomyelitis muscular atrophy): similarities with inclusion body myositis.

    Science.gov (United States)

    Semino-Mora, C; Dalakas, M C

    1998-10-01

    In the chronically denervated muscles of patients with prior paralytic poliomyelitis, there are secondary myopathic features, including endomysial inflammation and rare vacuolated fibers. To assess the frequency and characteristics of the vacuoles and their similarities with those seen in inclusion body myositis (IBM), we examined 58 muscle biopsy specimens from patients with prior paralytic poliomyelitis for (1) the presence of rimmed vacuoles; (2) acid-phosphatase reactivity; (3) Congo-red-positive amyloid deposits; (4) electron microscopy, searching for tubulofilaments; and (5) immunoelectron microscopy, using antibodies against beta-amyloid and ubiquitin. We found vacuolated muscle fibers in 18 of 58 (31%) biopsies, with a mean frequency of 2.06 +/- 0.42 fibers per specimen. The vacuoles contained acid phosphatase-positive material in 6 of the 18 (33.30%) specimens and stained positive for Congo red in five (27.80%). By immunoelectron microscopy, the vacuoles contained 5.17 +/- 0.13 nm fibrils and 14.9 +/- 0.31 nm filaments that immunoreacted with antibodies to beta-amyloid and ubiquitin in a pattern identical to the one seen in IBM. We conclude that vacuolated muscle fibers containing filamentous inclusions positive for amyloid and ubiquitin are not unique to IBM and the other vacuolar myopathies but can also occur in a chronic neurogenic condition, such as postpoliomyelitis. The chronicity of the underlying disease, rather than the cause, may lead to vacuolar formation, amyloid deposition, and accumulation of ubiquitinated filaments.

  13. Expression of 87 kD protein in the broth culture filtrate of Helicobacter pylori and its association with the vacuolating effect

    Institute of Scientific and Technical Information of China (English)

    SHI Li; YIE Gui-an; NAN Qing-zhen; SUN Yong; ZHANG Ya-li; ZHANG Zhen-shu; ZHOU Dian-yuan

    2001-01-01

    To study the vacuolating effect of Helicobacter pylori(H.pylori). Method: The vacuolating effect and its relationship with vacuolating cytotoxin antigen (an 87 kD protein) were investigated by the method of cytotoxic test, SDS-PAGE and scanning. Result: Of the 62 clinical isolates, 43 strains were H.pylori (Toxin+) with vacuolating effect, while the others were H.pylori (Toxin-) without vacuolating effect. Altogether 78.26%(36/46) patients with peptic ulcer were infected with H.pylori (Toxin+) strains, and only 42.86%(6/14) who had gastritis were infected with H.pylori (Toxin+) strains, with significant difference between them(χ2=4.83,P<0.05). A protein with relativemolecular mass of 87 kD was identified in the broth culture filter(BCF) of 30.23% H. Pylori (Toxin+) strains (13/43) but in none of that of H.pylori (Toxin-) strains, and the difference was statistically significant(P<0.05). There was a significant and concordant relationship between the OD value of the protein band and the titer of vacuolating activity of H.pylori (Toxin+) (r=0.67 and P<0.05 by linear regression analysis). Conclusion: H.pylori (Toxin+) were more often associated with peptic ulcerous diseases than with gastritis diseases. The vacuolating effect of H.pylori (Toxin+) may be caused by the 87 kD protein.

  14. Estrategias para la diferenciación in vitro de células ES de ratón a células acinares pancreáticas

    OpenAIRE

    Rovira Clusellas, Meritxell

    2007-01-01

    Las patologías más importantes del páncreas exocrino, como la pancreatitis crónica (PC) o el cáncer de páncreas, representan un gran problema de salud pública en Europa. En la PC, el tejido acinar es substituido por complejos ductales. Además, es difícil mantener el fenotipo diferenciado de las células acinares en cultivo ya que sufren una transdiferenciación acinar-ductal.Las células madre embrionarias (ES) de ratón han sido utilizadas en la última década para generar in vitro células comple...

  15. Perlecan domain IV peptide stimulates salivary gland cell assembly in vitro.

    Science.gov (United States)

    Pradhan, Swati; Zhang, Chu; Jia, Xinqiao; Carson, Daniel D; Witt, Robert; Farach-Carson, Mary C

    2009-11-01

    Treatment of xerostomia would benefit from development of a functional implantable artificial salivary gland. Salivary gland tissue from surgical patients was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Ductal and acinar cells were identified in tissue and cultured cells from dispersed tissue. High levels of laminin and perlecan/HSPG2 (heparan sulfate proteoglycan 2) were noted in basement membranes, and perlecan also was secreted and organized by cultured acinar populations, which formed lobular structures that mimicked intact glands when cultured on Matrigel or a bioactive peptide derived from domain IV of perlecan. On either matrix, large acini-like lobular structures grew and formed connections between the lobes. alpha-Amylase secretion was confirmed by staining and activity assay. Biomarkers, including tight junction protein E-cadherin and water channel protein aquaporin 5 found in tissue, were expressed in cultured acinar cells. Cells cultured on Matrigel or domain IV of perlecan peptide organized stress fibers and activated focal adhesion kinase. We report a novel technique to isolate acinar cells from human salivary gland and identify a human peptide sequence in perlecan that triggers differentiation of salivary gland cells into self-assembling acini-like structures that express essential biomarkers and which secrete alpha-amylase.

  16. Involvement of Pancreatic Stellate Cells in Regeneration of Remnant Pancreas after Partial Pancreatectomy

    Science.gov (United States)

    Ota, Shigenori; Nishimura, Miyuki; Murakami, Yuya; Birukawa, Naoko Kubo; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Sato, Yasushi; Minomi, Kenjiro; Kajiwara, Keiko; Miyazaki, Miyono; Uchiumi, Maki; Mikuni, Shintaro; Tamura, Yasuaki; Mizuguchi, Toru; Imamura, Masafumi; Meguro, Makoto; Kimura, Yasutoshi; Hirata, Koichi; Niitsu, Yoshiro

    2016-01-01

    Background and objectives Mechanism of regeneration of remnant pancreas after partial pancreatectomy (PX) is still unknown. In this study, effect of siRNA against the collagen specific chaperone, HSP47, which inhibits collagen secretion from activated pancreas stellate cells (aPSCs), and induces their apoptosis, on regeneration of remnant pancreas was determined. Methods Pancreatectomy was performed according to established methods. Proliferation of cells was assessed by BrdU incorporation. Immunostaining of HSP47 was employed to identify PSCs. Progenitor cells were identified by SOX9 staining. Acinar cells were immunostained for amylase. Co-culture of acinar cells with aPSCs were carried out in a double chamber with a cell culture insert. siRNA HSP47 encapsulated in vitamin A-coupled liposome (VA-lip siRNA HSP47) was delivered to aPSCs by iv injection. Results In remnant pancreas of 90% PX rat, new areas of foci were located separately from duodenal areas with normal pancreatic features. After PX, BrdU uptake of acinar cells and islet cells significantly increased, but was suppressed by treatment with VA-lip siRNA HSP47. BrdU uptake by acinar cells was augmented by co-culturing with aPSCs and the augmentation was nullified by siRNA HSP47. BrdU uptake by progenitor cells in foci area was slightly enhanced by the same treatment. New area which exhibited intermediate features between those of duodenal and area of foci, emerged after the treatment. Conclusion aPSCs play a crucial role in regeneration of remnant pancreas, proliferation of acinar and islet cells after PX through the activity of secreted collagen. Characterization of new area emerged by siRNA HSP47 treatment as to its origin is a future task. PMID:27935983

  17. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    Science.gov (United States)

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs.

  18. Glucagon-like peptide-1 receptor signaling in acinar cells causes growth dependent release of pancreatic enzymes

    DEFF Research Database (Denmark)

    Albrechtsen, Nicolai Jacob Wewer; Albrechtsen, Reidar; Bremholm, l;

    2016-01-01

    Incretin-based therapies are widely used for type 2 diabetes and now also for obesity, but they are associated with elevated plasma levels of pancreatic enzymes and perhaps a modestly increased risk of acute pancreatitis. However, little is known about the effects of the incretin hormone glucagon...

  19. Ascl3 marks adult progenitor cells of the mouse salivary gland.

    Science.gov (United States)

    Rugel-Stahl, Anastasia; Elliott, Marilyn E; Ovitt, Catherine E

    2012-05-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands.

  20. Salmonella Effectors SseF and SseG Interact with Mammalian Protein ACBD3 (GCP60 To Anchor Salmonella-Containing Vacuoles at the Golgi Network

    Directory of Open Access Journals (Sweden)

    Xiu-Jun Yu

    2016-07-01

    Full Text Available Following infection of mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium replicates within membrane-bound compartments known as Salmonella-containing vacuoles (SCVs. The Salmonella pathogenicity island 2 type III secretion system (SPI-2 T3SS translocates approximately 30 different effectors across the vacuolar membrane. SseF and SseG are two such effectors that are required for SCVs to localize close to the Golgi network in infected epithelial cells. In a yeast two-hybrid assay, SseG and an N-terminal variant of SseF interacted directly with mammalian ACBD3, a multifunctional cytosolic Golgi network-associated protein. Knockdown of ACBD3 by small interfering RNA (siRNA reduced epithelial cell Golgi network association of wild-type bacteria, phenocopying the effect of null mutations of sseG or sseF. Binding of SseF to ACBD3 in infected cells required the presence of SseG. A single-amino-acid mutant of SseG and a double-amino-acid mutant of SseF were obtained that did not interact with ACBD3 in Saccharomyces cerevisiae. When either of these was produced together with the corresponding wild-type effector by Salmonella in infected cells, they enabled SCV-Golgi network association and interacted with ACBD3. However, these properties were lost and bacteria displayed an intracellular replication defect when cells were infected with Salmonella carrying both mutant genes. Knockdown of ACBD3 resulted in a replication defect of wild-type bacteria but did not further attenuate the growth defect of a ΔsseFG mutant strain. We propose a model in which interaction between SseF and SseG enables both proteins to bind ACBD3, thereby anchoring SCVs at the Golgi network and facilitating bacterial replication.

  1. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells

    DEFF Research Database (Denmark)

    Giannuzzo, Andrea; Saccomano, Mara; Napp, Joanna

    2016-01-01

    into nude mice and tumour growth was followed noninvasively by bioluminescence imaging. AZ10606120-treated mice showed reduced bioluminescence compared to saline-treated mice. Immunohistochemical analysis confirmed P2X7R expression in cancer and PSC cells, and in metaplastic/neoplastic acinar and duct...

  2. Effect of Trimethyltin Chloride on Slow Vacuolar (SV) Channels in Vacuoles from Red Beet (Beta vulgaris L.) Taproots.

    Science.gov (United States)

    Trela, Zenon; Burdach, Zbigniew; Siemieniuk, Agnieszka; Przestalski, Stanisław; Karcz, Waldemar

    2015-01-01

    In the present study, patch-clamp techniques have been used to investigate the effect of trimethyltin chloride (Met3SnCl) on the slow vacuolar (SV) channels in vacuoles from red beet (Beta vulgaris L.) taproots. Activity of SV channels has been measured in whole-vacuole and cytosolic side-out patch configurations. It was found that addition of trimethyltin chloride to the bath solution suppressed, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant, τ, increased significantly in the presence of the organotin. When single channel activity was analyzed, only little channel activity could be recorded at 100 μM Met3SnCl. Trimethyltin chloride added to the bath medium significantly decreased (by ca. threefold at 100 μM Met3SnCl and at 100 mV voltage, as compared to the control medium) the open probability of single channels. Single channel recordings obtained in the presence and absence of trimethyltin chloride showed that the organotin only slightly (by <10%) decreased the unitary conductance of single channels. It was also found that Met3SnCl significantly diminished the number of SV channel openings, whereas it did not change the opening times of the channels. Taking into account the above and the fact that under the here applied experimental conditions (pH = 7.5) Met3SnCl is a non-dissociated (more lipophilic) compound, we suggest that the suppression of SV currents observed in the presence of the organotin results probably from its hydrophobic properties allowing this compound to translocate near the selectivity filter of the channel.

  3. Pulp tissue vacuolization and necrosis after direct pulp capping with calcium hydroxide and transforming growth factor-β1

    Directory of Open Access Journals (Sweden)

    Sri Kunarti

    2008-03-01

    Full Text Available Mechanical pulp exposure by a rotary cutting instrument or a hand-cutting instrument often happens in deep caries. Application of protective dressing can protect the pulp from additional injury by facilitating healing and repair. Pulp capping has been suggested as one treatment of choice after pulp exposure to maintain pulp vitality. TGF-β1 is growth factor that has important rule in wound healing. The application of Ca(OH2 and exogenous TGF-β1 as direct pulp capping tr4eatment must be experimented in-vivo to see the vacuolization and necrosis in 7, 14, and 21 days after application. This research was done in vivo experiment from orthodontic patients indicated for premolar extraction, between ages 10–15 years. A class V cavity preparation was created in the buccal aspect 1 mm above gingival margin until pulp exposure. Cavity was irrigated slowly with saline solution and dried with a sterile small cotton pellet. Group 1 calcium hydroxide was applied as manufacture procedure. Group 2, the sterile absorbable collagen membrane used, as inert carrier of TGF-β1 was soaked with 5 ml. All groups were covered by a Teflon pledge to separate pulp capping agent from glass ionomer cement restoration. Teeth extracted in 7, 14 and 21 days after treatment. All samples were hystopathologically examined. There were significant difference of TGF-β1 (p < 0.05 in the vacuolization day 14th and 21th compared with 7th. there were not significant difference in necrosis for all variables. Vacuolization and necrosis decreased in the application of TGF-β1.

  4. Taxol-induced paraptosis-like A549 cell death is not senescence

    Science.gov (United States)

    Wang, Chao-yang; Chen, Tong-Sheng

    2011-03-01

    Our previous studies have shown that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung cancer cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Cytoplasmic vacuolization have been reported to be a characteristic of cell senescence. Here, we employed confocal fluorescence microscopy imaging to study the reversibility of taxol-induced cytoplasmic vacuolization and whether taxol triggers senescence in A549 cells. We found that taxol-induced cytoplasmic vacuolization at 6 or 9 h after treatment with taxol did not decrease but increase at 24 h or 72 h after refreshing the culture medium without taxol, indicating taxol-induced cytoplasmic vacuolization is irreversible. We used SA-β-Gal (senescence-associated β-galactosidase) to assess whether taxol-induced cell death in cytoplasmic vacuolization fashion is senescence, and found that hydrogen peroxide (H2O2)-treated, but not taxol-treated cells is significantly stained by the SA-β-Gal, a senescence testing kit, indicating that the form of taxol-induced cell death is not senescence.

  5. Virulence-related Mycobacterium avium subsp hominissuis MAV_2928 gene is associated with vacuole remodeling in macrophages

    Directory of Open Access Journals (Sweden)

    Vogt Steven

    2010-04-01

    Full Text Available Abstract Background Mycobacterium avium subsp hominissuis (previously Mycobacterium avium subsp avium is an environmental organism associated with opportunistic infections in humans. Mycobacterium hominissuis infects and replicates within mononuclear phagocytes. Previous study characterized an attenuated mutant in which the PPE gene (MAV_2928 homologous to Rv1787 was inactivated. This mutant, in contrast to the wild-type bacterium, was shown both to have impaired the ability to replicate within macrophages and to have prevented phagosome/lysosome fusion. Results MAV_2928 gene is primarily upregulated upon phagocytosis. The transcriptional profile of macrophages infected with the wild-type bacterium and the mutant were examined using DNA microarray, which showed that the two bacteria interact uniquely with mononuclear phagocytes. Based on the results, it was hypothesized that the phagosome environment and vacuole membrane of the wild-type bacterium might differ from the mutant. Wild-type bacterium phagosomes expressed a number of proteins different from those infected with the mutant. Proteins on the phagosomes were confirmed by fluorescence microscopy and Western blot. The environment in the phagosome of macrophages infected with the mutant differed from the environment of vacuoles with M. hominissuis wild-type in the concentration of zinc, manganese, calcium and potassium. Conclusion The results suggest that the MAV_2928 gene/operon might participate in the establishment of bacterial intracellular environment in macrophages.

  6. Ubiquilin/Dsk2 promotes inclusion body formation and vacuole (lysosome)-mediated disposal of mutated huntingtin.

    Science.gov (United States)

    Chuang, Kun-Han; Liang, Fengshan; Higgins, Ryan; Wang, Yanchang

    2016-07-01

    Ubiquilin proteins contain a ubiquitin-like domain (UBL) and ubiquitin-associated domain(s) that interact with the proteasome and ubiquitinated substrates, respectively. Previous work established the link between ubiquilin mutations and neurodegenerative diseases, but the function of ubiquilin proteins remains elusive. Here we used a misfolded huntingtin exon I containing a 103-polyglutamine expansion (Htt103QP) as a model substrate for the functional study of ubiquilin proteins. We found that yeast ubiquilin mutant (dsk2Δ) is sensitive to Htt103QP overexpression and has a defect in the formation of Htt103QP inclusion bodies. Our evidence further suggests that the UBL domain of Dsk2 is critical for inclusion body formation. Of interest, Dsk2 is dispensable for Htt103QP degradation when Htt103QP is induced for a short time before noticeable inclusion body formation. However, when the inclusion body forms after a long Htt103QP induction, Dsk2 is required for efficient Htt103QP clearance, as well as for autophagy-dependent delivery of Htt103QP into vacuoles (lysosomes). Therefore our data indicate that Dsk2 facilitates vacuole-mediated clearance of misfolded proteins by promoting inclusion body formation. Of importance, the defect of inclusion body formation in dsk2 mutants can be rescued by human ubiquilin 1 or 2, suggesting functional conservation of ubiquilin proteins.

  7. Active penetration of Trypanosoma cruzi into host cells: historical considerations and current concepts

    Science.gov (United States)

    de Souza, Wanderley; de Carvalho, Tecia M. Ulisses

    2013-01-01

    In the present short review, we analyze past experiments that addressed the interactions of intracellular pathogenic protozoa (Trypanosoma cruzi, Toxoplasma gondii, and Plasmodium) with host cells and the initial use of the term active penetration to indicate that a protozoan “crossed the host cell membrane, penetrating into the cytoplasm.” However, the subsequent use of transmission electron microscopy showed that, for all of the protozoans and cell types examined, endocytosis, classically defined as involving the formation of a membrane-bound vacuole, took place during the interaction process. As a consequence, the recently penetrated parasites are always within a vacuole, designated the parasitophorous vacuole (PV). PMID:23355838

  8. Increased heat shock protein 70 expression in the pancreas of rats with endotoxic shock

    Institute of Scientific and Technical Information of China (English)

    Xue-Lian Wang; Ying Li; Jin-Song Kuang; Yue Zhao; Pei Liu

    2006-01-01

    AIM: To investigate the ultra-structural changes and heat shock protein 70 (HSP70) expression in the pancreas of rats with endotoxic shock and to detect their possible relationship.METHODS: A total of 33 Wistar rats were randomly divided into three groups: control group (given normal saline), small dose lipopolysaccharide (LPS) group (given LPS 5 mg/kg) and large dose LPS group (given LPS 10mg/kg). Pancreas was explanted to detect the ultrastructural changes by TEM and the HSP70 expression by immunohistochemistry and Western blot.RESULTS: Rats given small doses of LPS showed swelling and loss of mitochondrial cristae of acinar cells and increased number of autophagic vacuoles in the cytoplasm of acinar cells. Rats given large doses of LPS showed swelling, vacuolization, and obvious myeloid changes of mitochondrial cristae of acinar cells, increased number of autophagic vacuoles in the cytoplasm of acinar cells. HSP70 expression was increased compared to the control group (P<0.05).CONCLUSION: Small doses of LPS may induce stronger expression of HSP70, promote autophagocytosis and ameliorate ultra-structural injuries.

  9. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity.

    Science.gov (United States)

    Cantara, Shraddha I; Soscia, David A; Sequeira, Sharon J; Jean-Gilles, Riffard P; Castracane, James; Larsen, Melinda

    2012-11-01

    Epithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells. Although apicobasal cell polarity was promoted by the nanofiber scaffolds relative to flat surfaces, as determined by the apical localization of ZO-1, it was antagonized by the presence of chitosan. Neither salivary gland acinar nor ductal cells fully polarized on the nanofiber scaffolds, as determined by the homogenous membrane distribution of the mature tight junction marker, occludin. However, nanofiber scaffolds chemically functionalized with the basement membrane protein, laminin-111, promoted more mature tight junctions, as determined by apical localization of occludin, but did not affect cell proliferation. To emulate the multifunctional capabilities of the basement membrane, bifunctional PLGA nanofibers were generated. Both acinar and ductal cell lines responded to signals provided by bifunctional scaffolds coupled to chitosan and laminin-111, demonstrating the applicability of such scaffolds for epithelial cell types.

  10. Vacúolos de gás e flutuação em Difflugia mitriformis Wallich (Protista, Rhizopoda, Testaceolobosea Gas vacuoles and flotation in Diffugia mitriformis Wallich (Protista, Rhizopoda, Testaceolobosea

    Directory of Open Access Journals (Sweden)

    Vladimir Stolzenberg Torres

    1996-01-01

    Full Text Available The natural formation of gas vacuoles as a method of locomotion is described for Difflugia mitriformis Wallich, 1984. These vacuoles may contain different compositions of gases, basicly carbodioxyde or oxigen, with a membranous limitation similar or identical to other types of vacuoles. Those vacuoles are utilised by the organism as a mode of dislocation frorn the bottom to the water surface by flotation permiting better conditions for the survival of the individual, with the consequence of the perpetuance of the taxon.

  11. Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion

    DEFF Research Database (Denmark)

    Ungermann, C; von Mollard, G F; Jensen, Ole Nørregaard

    1999-01-01

    in the same cis multi-SNARE complex. After priming, which disassembles the cis-SNARE complex, antibodies to any of the five SNARE proteins still inhibit the fusion assay until the docking stage is completed, suggesting that each SNARE plays a role in docking. Furthermore, vti1 temperature-sensitive alleles...... cause a synthetic fusion-defective phenotype in our reaction. Our data show that vacuole-vacuole fusion requires a cis-SNARE complex of five SNAREs, the t-SNAREs Vam3p and Vam7p and the v-SNAREs Nyv1p, Vti1p, and Ykt6p....

  12. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after feeding amino acids

    DEFF Research Database (Denmark)

    Rojek, Aleksandra; Füchtbauer, Ernst-Martin; Füchtbauer, Annette

    2013-01-01

    of the mice (24 h) induced modest dilatation of the rough endoplasmic reticulum (RER) in the periportal hepatocytes. Refeeding with standard mouse chow induced rapid generation of large RER-derived vacuoles in Aqp11 KO mice hepatocytes. Similar effects were observed following oral administration of pure...... protein or larger doses of various amino acids. The fasting/refeeding challenge is associated with increased expression of markers of ER stress Grp78 and GADD153 and decreased glutathione levels, suggesting that ER stress may play role in the development of vacuoles in the AQP11-deficient hepatocytes. NMR...

  13. High Cell Sensitivity to Helicobacter pylori VacA Toxin Depends on a GPI-anchored Protein and is not Blocked by Inhibition of the Clathrin-mediated Pathway of Endocytosis

    OpenAIRE

    2000-01-01

    Helicobacter pylori vacuolating toxin (VacA) causes vacuolation in a variety of cultured cell lines, sensitivity to VacA differing greatly, however, among the different cell types. We found that the high sensitivity of HEp-2 cells to VacA was impaired by treating the cells with phosphatidylinositol-specific phospholipase C (PI-PLC) which removes glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface. Incubation of cells with a cholesterol-seques...

  14. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    Science.gov (United States)

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications.

  15. [Calcium distribution in the egg cell, zygote and proembryo of lettuce (Lactuca sativa L.)].

    Science.gov (United States)

    Qiu, Yi Lan; Liu, Ru Shi; Wei, Dong Mei; Tian, Hui Qiao

    2006-02-01

    Potassium antimonite precipitation was used to located calcium in the egg cells (before and after anthesis), zygotes and proembryos of lettuce (Lactuca sativa L.). A few calcium precipitates (ppts) were located in the small vacuoles of cytoplasm of egg cell at 3 d before anthesis, when egg cells just formed. Then the small vacuoles fused to form some bigger vacuoles in egg cell at 2d before anthesis. Calcium ppts increased evidently in the cytoplasm and nucleus of egg cells at this time. At 1d before anthesis, a biggest vacuole located at the micropyle end of the cell and its nucleus was pushed toward the chalazal end of the cell, which made an evident cellular polarity. The number of calcium ppts in the egg cell markedly decreased, suggesting that change of calcium distribution may be related to the development of egg cell. After anthesis and before fertilization, calcium ppts were still few in the egg cells, and most of them were accumulated in the nucleus, especially in the vacuoles of nucleolus. At 4h after anthesis, egg cell was fertilized and the wall at the chalazal end of egg cell was formed completely. Calcium ppts evidently increased again in egg cell, and some big ppts appeared in the karyoplasm of nucleus and abundant small ppts in the large vacuole. At 9h after anthesis, zygote completed its first division. Calcium ppts in the nucleus and cytoplasm of two-celled proembryo began to decrease, and only some ones accumulated in the vacuoles of nucleolus. At 18h after anthesis, zygote divided several times and became a multi-celled proembryo. Calcium ppts in the cells of proembryo ulteriorly diminished but there were many ppts on the surface of proembryo. The result indicates that calcium in egg cell, zygote and the cells of proembryo orderly changes its temporal and spatial position, which suggests that calcium may play a role during the development of egg cell and zygote.

  16. The neutral lipid composition present in the digestive vacuole of Plasmodium falciparum concentrates heme and mediates β-hematin formation with an unusually low activation energy.

    Science.gov (United States)

    Hoang, Anh N; Sandlin, Rebecca D; Omar, Aneesa; Egan, Timothy J; Wright, David W

    2010-11-30

    In eukaryotic cells, neutral lipids serve as major energy storage molecules; however, in Plasmodium falciparum, a parasite responsible for causing malaria in humans, neutral lipids may have other functions during the intraerythrocytic stage of the parasite life cycle. Specifically, experimental data suggest that neutral lipid structures behave as a catalyst for the crystallization of hemozoin, a detoxification byproduct of several blood-feeding organisms, including malaria parasites. Synthetic neutral lipid droplets (SNLDs) were produced by depositing a lipid blend solution comprised of mono- and diglycerides onto an aqueous surface. These lipid droplets are able to mediate the production of brown pigments that are morphologically and chemically identical to hemozoin. The partitioning of heme into these SNLDs was examined by employing Nile Red, a lipid specific dye. Soluble ferriprotoporphyrin IX was observed to spontaneously localize to the lipid droplets, partitioning in a pH-dependent manner with an estimated log P of 2.6. Interestingly, the pH profile of heme partitioning closely resembles that of β-hematin formation. Differential scanning calorimetry and kinetic studies demonstrated that the SNLDs provide a unique environment that promotes hemozoin formation. SNLD-mediated formation of the malaria pigment displayed an activation energy barrier lower than those of individual lipid components. In particular, lipid droplets composed of diglycerides displayed activation barriers lower than those composed of monoglycerides. This difference was attributed to the greater fluidity of these lipids. In conjunction with the known pattern of lipid body proliferation, it is suggested that neutral lipid structures within the digestive vacuole not only are the location of in vivo hemozoin formation but are also essential for the survival of the parasite by functioning as a kinetically competent and site specific mediator for heme detoxification.

  17. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells.

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    Full Text Available The synthetic, cell penetrating hexapeptide PAF26 (RKKWFW is antifungal at low micromolar concentrations and has been proposed as a model for cationic, cell-penetrating antifungal peptides. Its short amino acid sequence facilitates the analysis of its structure-activity relationships using the fungal models Neurospora crassa and Saccharomyces cerevisiae, and human and plant pathogens Aspergillus fumigatus and Penicillium digitatum, respectively. Previously, PAF26 at low fungicidal concentrations was shown to be endocytically internalized, accumulated in vacuoles and then actively transported into the cytoplasm where it exerts its antifungal activity. In the present study, two PAF26 derivatives, PAF95 (AAAWFW and PAF96 (RKKAAA, were designed to characterize the roles of the N-terminal cationic and the C-terminal hydrophobic motifs in PAF26's mode-of-action. PAF95 and PAF96 exhibited substantially reduced antifungal activity against all the fungi analyzed. PAF96 localized to fungal cell envelopes and was not internalized by the fungi. In contrast, PAF95 was taken up into vacuoles of N. crassa, wherein it accumulated and was trapped without toxic effects. Also, the PAF26 resistant Δarg1 strain of S. cerevisiae exhibited increased PAF26 accumulation in vacuoles. Live-cell imaging of GFP-labelled nuclei in A. fumigatus showed that transport of PAF26 from the vacuole to the cytoplasm was followed by nuclear breakdown and dissolution. This work demonstrates that the amphipathic PAF26 possesses two distinct motifs that allow three stages in its antifungal action to be defined: (i its interaction with the cell envelope; (ii its internalization and transport to vacuoles mediated by the aromatic hydrophobic domain; and (iii its transport from vacuoles to the cytoplasm. Significantly, cationic residues in PAF26 are important not only for the electrostatic attraction and interaction with the fungal cell but also for transport from the vacuole to the

  18. Analyzing Ca(2+) dynamics in intact epithelial cells using spatially limited flash photolysis.

    Science.gov (United States)

    Almassy, Janos; Yule, David I

    2013-01-01

    The production of saliva by parotid acinar cells is stimulated by Ca(2+) activation of Cl(-) and K(+) channels located in the apical plasma membrane of these polarized cells. Here we describe a paradigm for the focal photorelease of either Ca(2+) or an inositol 1,4,5 trisphosphate (InsP(3)) analog. The protocol is designed to be useful for investigating subcellular Ca(2+) dynamics in polarized cells with minimal experimental intervention. Parotid acinar cells are loaded with cell-permeable versions of the caged precursors (NP-EGTA-AM or Ci-InsP(3)/PM). Photolysis is accomplished using a spatially limited, focused diode laser, but the experiment can be readily modified to whole-field photolysis using a xenon flash lamp.

  19. Latent and persistent lethal injury in mouse salivary gland cells following gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.

    1976-07-01

    Newly synthesized DNA in previously irradiated and isoproterenol-stimulated mouse salivary gland cells was found to be quickly degraded when the stimulation for DNA synthesis was given 10 days after a dose of 1000 rad ..gamma.. radiation. The degradation of the DNA was due to degeneration of acinar cells prior to mitosis. When the stimulation with isoproterenol was given 1 or 3 months after irradiation, DNA degradation in parotids was not detectable. An autoradiographic analysis revealed, however, that about half of the acinar cells labeled with tritiated thymidine were eliminated from irradiated parotids in a few days, even when the stimulation with isoproterenol was given 3 months after irradiation. This indicates that irradiation of mouse salivary gland cells produced latent lethal damage and that this damage is unmasked by the stimulation for DNA synthesis and cell division.

  20. Formation of hydrogen sulfide from cysteine in Saccharomyces cerevisiae BY4742: genome wide screen reveals a central role of the vacuole.

    Directory of Open Access Journals (Sweden)

    Gal Winter

    Full Text Available Discoveries on the toxic effects of cysteine accumulation and, particularly, recent findings on the many physiological roles of one of the products of cysteine catabolism, hydrogen sulfide (H2S, are highlighting the importance of this amino acid and sulfur metabolism in a range of cellular activities. It is also highlighting how little we know about this critical part of cellular metabolism. In the work described here, a genome-wide screen using a deletion collection of Saccharomyces cerevisiae revealed a surprising set of genes associated with this process. In addition, the yeast vacuole, not previously associated with cysteine catabolism, emerged as an important compartment for cysteine degradation. Most prominent among the vacuole-related mutants were those involved in vacuole acidification; we identified each of the eight subunits of a vacuole acidification sub-complex (V1 of the yeast V-ATPase as essential for cysteine degradation. Other functions identified included translation, RNA processing, folate-derived one-carbon metabolism, and mitochondrial iron-sulfur homeostasis. This work identified for the first time cellular factors affecting the fundamental process of cysteine catabolism. Results obtained significantly contribute to the understanding of this process and may provide insight into the underlying cause of cysteine accumulation and H2S generation in eukaryotes.

  1. Campylobacter jejuni Actively Invades the Amoeba Acanthamoeba polyphaga and Survives within Non Digestive Vacuoles

    OpenAIRE

    Jenny Olofsson; Diana Axelsson-Olsson; Lars Brudin; Björn Olsen; Patrik Ellström

    2013-01-01

    The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81–176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furt...

  2. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  3. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  4. Myoepithelial cells in pathology.

    Science.gov (United States)

    Balachander, N; Masthan, K M K; Babu, N Aravindha; Anbazhagan, V

    2015-04-01

    Myoepithelial cells are a normal constituent of the salivary acini and ducts and are found between the epithelial cells and the basement membrane. Microscopically myoepithelial cells are thin and spindle-shaped and ultrastructurally they possess a number of Cytoplasmic processes that extend between and over the acinar and ductal-lining cells, and they show features of both smooth muscle and epithelium. They play a vital role during expulsion of saliva and regulates the electrolytic exchange. They also perform as tumor suppressors and are considered to play a very important role in differentiation of various salivary gland tumors and help in the diagnosis of tumors. Neoplastic myoepithelial cells in both benign and malignant tumors can take numerous forms including epithelioid, plasmacytoid, spindle and clear cell variant, and this variability largely accounts for difficulties in histopathological diagnosis.

  5. Myoepithelial cells in pathology

    Directory of Open Access Journals (Sweden)

    N Balachander

    2015-01-01

    Full Text Available Myoepithelial cells are a normal constituent of the salivary acini and ducts and are found between the epithelial cells and the basement membrane. Microscopically myoepithelial cells are thin and spindle-shaped and ultrastructurally they possess a number of Cytoplasmic processes that extend between and over the acinar and ductal-lining cells, and they show features of both smooth muscle and epithelium. They play a vital role during expulsion of saliva and regulates the electrolytic exchange. They also perform as tumor suppressors and are considered to play a very important role in differentiation of various salivary gland tumors and help in the diagnosis of tumors. Neoplastic myoepithelial cells in both benign and malignant tumors can take numerous forms including epithelioid, plasmacytoid, spindle and clear cell variant, and this variability largely accounts for difficulties in histopathological diagnosis.

  6. Legionella pneumophila infection of Drosophila S2 cells induces only minor changes in mitochondrial dynamics.

    Directory of Open Access Journals (Sweden)

    Elizabeth Wen Sun

    Full Text Available During infection of cells by Legionella pneumophila, the bacterium secretes a large number of effector proteins into the host cell cytoplasm, allowing it to alter many cellular processes and make the vacuole and the host cell into more hospitable environments for bacterial replication. One major change induced by infection is the recruitment of ER-derived vesicles to the surface of the vacuole, where they fuse with the vacuole membrane and prevent it from becoming an acidified, degradative compartment. However, the recruitment of mitochondria to the region of the vacuole has also been suggested by ultrastructural studies. In order to test this idea in a controlled and quantitative experimental system, and to lay the groundwork for a genome-wide screen for factors involved in mitochondrial recruitment, we examined the behavior of mitochondria during the early stages of Legionella pneumophila infection of Drosophila S2 cells. We found that the density of mitochondria near vacuoles formed by infection with wild type Legionella was not different from that found in dotA(- mutant-infected cells during the first 4 hours after infection. We then examined 4 parameters of mitochondrial motility in infected cells: velocity of movement, duty cycle of movement, directional persistence and net direction. In the 4 hours following infection, most of these measures were indistinguishable between wild type and dotA(-.infection. However, wild type Legionella did induce a modest shift in the velocity distribution toward faster movement compared dotA(- infection, and a small downward shift in the duty cycle distribution. In addition, wild type infection produced mitochondrial movement that was biased in the direction of the bacterial vacuole relative to dotA-, although not enough to cause a significant accumulation within 10 um of the vacuole. We conclude that in this host cell, mitochondria are not strongly recruited to the vacuole, nor is their motility

  7. Haemophilus influenzae triggers autophagy in HEp-2 cells.

    Science.gov (United States)

    Espinoza-Mellado, María del Rosario; Reyes-Picaso, Carolina; Garcés-Pérez, Miriam S; Jardón-Serrano, Cynthia V; López-Villegas, Edgar O; Giono-Cerezo, Silvia

    2016-03-01

    The MAP-LC3 system regulates the intracellular formation of autophagy-associated vacuoles. These vacuoles contain the LC3 protein; thus it has been utilized as a marker to identify autophagosomes. The aim of our study was to investigate whether Haemophilus influenzae strains and their supernatants could activate autophagy in human larynx carcinoma cell line (HEp-2). We demonstrate that higher expression of the LC3B-II protein was induced, particularly by nontypeable Haemophilus influenzae (NTHi) 49766 and by supernatants, containing <50 kDa proteins, of both strains. Ultrastructural studies demonstrate vacuoles with a double membrane and/or membrane material inside, showing similar features to those of autophagic vacuoles. Together, our findings demonstrate that H. influenzae strains and their supernatants trigger an autophagic process.

  8. Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl2 in cells derived from neural precursor cells.

    Science.gov (United States)

    Cárdenas-Aguayo, María del Carmen; Santa-Olalla, Jesús; Baizabal, José-Manuel; Salgado, Luis-Miguel; Covarrubias, Luis

    2003-12-01

    Although apoptosis has been considered the typical mechanism for physiological cell death, presently alternative mechanisms need to be considered. We previously showed that fibroblast growth factor-2 (FGF2) could act as a survival factor for neural precursor cells. To study the death mechanism activated by the absence of this growth factor, we followed the changes in cell morphology and determined cell viability by staining with several dyes after FGF2 removal from mesencephalic neural-progenitor-cell cultures. The changes observed did not correspond to those associated with apoptosis. After 48 h in the absence of FGF2, cells began to develop vacuoles in their cytoplasm, a phenotype that became very obvious 3-5 days later. Double-membrane vacuoles containing cell debris were observed. Vacuolated cells did not stain with either ethidium bromide or trypan Blue, and did not show chromatin condensations. Nonetheless, during the course of culture, vacuolated cells formed aggregates with highly condensed chromatin and detached from the plate. Neural progenitor cells grown in the presence of FGF2 did not display any of those characteristics. The vacuolated phenotype could be reversed by the addition of FGF2. Typical autophagy inhibitors such as 3-MA and LY294002 inhibited vacuole development, whereas a broad-spectrum caspase inhibitor did not. Interestingly, Bcl-2 overexpression retarded vacuole development. In conclusion, we identified a death autophagy-like mechanism activated by the lack of a specific survival factor that can be inhibited by Bcl2. We propose that anti-apoptotic Bcl2 family members are key molecules controlling death activation independently of the cell degeneration mechanism used.

  9. Functional analysis of Plasmodium falciparum parasitophorous vacuole membrane protein (Pfs16) during gametocytogenesis and gametogenesis by targeted gene disruption.

    Science.gov (United States)

    Kongkasuriyachai, Darin; Fujioka, Hisashi; Kumar, Nirbhay

    2004-02-01

    Gametocytogenesis is a tightly regulated process marked by differentiation through distinct morphological forms and coordinated expression of sexual stage gene products. The earliest known gene product expressed at the onset of Plasmodium falciparum gametocytogenesis is Pfs16 localized on the parasitophorous vacuole membrane (PVM). Targeted gene disruption was undertaken to disrupt expression of Pfs16 and examine its potential role during sexual development. Three independent clones were demonstrated to have the coding sequence of Ps16 gene disrupted by the targeting plasmid by homologous recombination. No full-length transcripts and PVM localized 16 kDa protein were detected. Instead, all three "16ko" clones expressed a protein of 14 kDa recognized by Pfs16 specific antibodies that was mislocalized to an unidentified double membrane compartment in the parasites. Disruption of Pfs16 gene resulted in a significant reduction in gametocyte production, although the small number of gametocytes produced appeared to be normal by molecular and phenotypic evidences. Preliminary observation also suggested impaired ability of male gametocytes to exflagellate in vitro. Pfs16 does not appear to be essential for sexual development, instead may be required for optimal production of sexual parasites. Understanding mechanisms involved in the development of sexual stages of P. falciparum may identify novel targets for drugs and vaccines effective in reducing malaria transmission.

  10. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.

    Science.gov (United States)

    Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-09-15

    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.

  11. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Science.gov (United States)

    Campbell, Jonathan J; Davidenko, Natalia; Caffarel, Maria M; Cameron, Ruth E; Watson, Christine J

    2011-01-01

    Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM) hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  12. A multifunctional 3D co-culture system for studies of mammary tissue morphogenesis and stem cell biology.

    Directory of Open Access Journals (Sweden)

    Jonathan J Campbell

    Full Text Available Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM in three dimensional (3D space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.

  13. Electronic expert consultation using digital still images for evaluation of atypical small acinar proliferations of the prostate: a comparison with immunohistochemistry.

    Science.gov (United States)

    Banihashemi, Amir; Asgari, Mojgan; Shooshtarizade, Tina; Abolhasani, Maryam; Mireskandari, Masoud

    2014-06-01

    This study was performed on a series of prostate needle biopsies with diagnosis of atypical small acinar proliferation (ASAP) to verify to what extent the application of immunohistochemistry (IHC) for p504s and p63 markers as well as expert consultation by still images could affect the diagnosis. The results of these 2 methods were compared. Immunohistochemistry staining for p504s and p63 was performed on sections from 42 patients with a primary diagnosis of ASAP. Meanwhile, digital still images were taken from hematoxylin and eosin-stained slides of cases and were sent to an expert uropathologist, blind to IHC staining interpretations. The results of IHC staining were compared with diagnostic interpretations of the consultant pathologist. In 13 cases, the focus of concern was not detectable on IHC slides. In the remaining 29 cases, IHC showed a benign and malignant expression pattern in 17 and 9 patients, respectively. In 3 cases, IHC findings were inconclusive and retained the diagnosis of ASAP. The consultant pathologist diagnosed 11 cases of benign and 7 cases of malignant processes. He retained the diagnosis of ASAP in 11 cases. There was high concordance between the results of IHC and electronic consultation in the group of benign cases. All 11 cases with the diagnosis of benignancy by electronic consultation showed a benign IHC pattern. Among 7 cases with the diagnosis of malignancy by the consultant pathologist, 5 were classified as malignant, 1 as benign, and 1 as inconclusive IHC groups. Considering problems with IHC staining of prostate needle biopsy, including loss of focus of interest, expert consultation using still images can provide very useful diagnostic information. This approach can be used as an adjunct to other diagnostic activities like IHC or even as an independent source of information to reach more accurate diagnoses in ASAP cases, particularly in institutions with limited resources.

  14. Primary observations of the existence of Fas-like cytoplasmic death factor in plant cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The main activity of Fas is to trigger cytoplasm death program in animal cells. In G2 pea, vacuole plays a pivotal role in inducing cell death in the cytoplasm of longday (LD) grown apical meristem cells. Expression patterns of the Fas in G2 pea cells revealed that the Fas is mainly localized in the vacuole of cells undergoing programmed cell death (PCD). The Fas expression is corresponding to the initiation of menadione-induced PCD in tobacco protoplasts.The results suggest the existence of the Fas-like mediated cytoplasmic death pathway in plant cells.``

  15. P2Y2 nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells.

    Science.gov (United States)

    El-Sayed, Farid G; Camden, Jean M; Woods, Lucas T; Khalafalla, Mahmoud G; Petris, Michael J; Erb, Laurie; Weisman, Gary A

    2014-07-01

    Hyposalivation resulting from salivary gland dysfunction leads to poor oral health and greatly reduces the quality of life of patients. Current treatments for hyposalivation are limited. However, regenerative medicine to replace dysfunctional salivary glands represents a revolutionary approach. The ability of dispersed salivary epithelial cells or salivary gland-derived progenitor cells to self-organize into acinar-like spheres or branching structures that mimic the native tissue holds promise for cell-based reconstitution of a functional salivary gland. However, the mechanisms involved in salivary epithelial cell aggregation and tissue reconstitution are not fully understood. This study investigated the role of the P2Y2 nucleotide receptor (P2Y2R), a G protein-coupled receptor that is upregulated following salivary gland damage and disease, in salivary gland reconstitution. In vitro results with the rat parotid acinar Par-C10 cell line indicate that P2Y2R activation with the selective agonist UTP enhances the self-organization of dispersed salivary epithelial cells into acinar-like spheres. Other results indicate that the P2Y2R-mediated response is dependent on epidermal growth factor receptor activation via the metalloproteases ADAM10/ADAM17 or the α5β1 integrin/Cdc42 signaling pathway, which leads to activation of the MAPKs JNK and ERK1/2. Ex vivo data using primary submandibular gland cells from wild-type and P2Y2R(-/-) mice confirmed that UTP-induced migratory responses required for acinar cell self-organization are mediated by the P2Y2R. Overall, this study suggests that the P2Y2R is a promising target for salivary gland reconstitution and identifies the involvement of two novel components of the P2Y2R signaling cascade in salivary epithelial cells, the α5β1 integrin and the Rho GTPase Cdc42.

  16. Selection of normal spermatozoa with a vacuole-free head (x6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates.

    Science.gov (United States)

    Hammoud, I; Boitrelle, F; Ferfouri, F; Vialard, F; Bergere, M; Wainer, B; Bailly, M; Albert, M; Selva, J

    2013-06-01

    Intracytoplasmic morphologically selected sperm injection (IMSI, 6300× magnification with Nomarski contrast) of a normal spermatozoon with a vacuole-free head could improve the embryo's ability to grow to the blastocyst stage and then implant. However, the most relevant indications for IMSI remain to be determined. To evaluate the potential value of IMSI for patients with a high degree of sperm DNA fragmentation (n = 8), different types of spermatozoa were analysed in terms of DNA fragmentation. Motile normal spermatozoa with a vacuole-free head selected at 6300× magnification had a significantly lower mean DNA fragmentation rate (4.1 ± 1.1%, n = 191) than all other types of spermatozoa: non-selected spermatozoa (n = 8000; 26.1 ± 1.5% versus 4.1 ± 1.1%; P sperm DNA fragmentation rates, selection of normal spermatozoa with a vacuole-free head (6300×) yields the greatest likelihood of obtaining spermatozoa with non-fragmented DNA.

  17. Ultrastructure and morphometry of the urethral glands in normal, castrated, and testosterone-treated castrated male mice.

    Science.gov (United States)

    Parr, M B; Ren, H P; Kepple, L; Parr, E L; Russell, L D

    1993-07-01

    Recent studies of the urethral glands in the male mouse and rat have suggested that they are testosterone-dependent glands that may be potential sites for secretory immunity in the male genital tract. In the present study we describe the ultrastructural features of these glands in normal mice and provide quantitative data on the sizes of the acinar cells and their organelles in sham-, oil-, and testosterone-treated castrated mice. Acinar cells in urethral glands from normal mice contain numerous secretory granules, prominent Golgi complexes, elongated mitochondria, and an abundance of rough endoplasmic reticulum (RER) with large and dilated cisternae, all of which are features characteristic of secretory cells. In some acinar cells the cisternae of the RER were filled with closely packed, unbranched, straight, tubular structures that were oriented parallel to one another, that radiated from aggregates of dense material, or that were randomly arranged. In other acinar cells the cisternae of the RER showed a network of branching and anastomosing vesicular-like structures whose limiting membranes were occasionally seen in continuity with the membranes of the RER. Secretory acini showed large, unbranched tubules in the acinar lumen. When cut at right angles the large tubules exhibited a distinct fuzzy outer coat with fine projections radiating outwards. The ultrastructure of the acinar cells and the presence of tubules in the lumen suggests that they are engaged in secretion of a tubular protein. Morphometric analysis of acinar cells in the urethral glands showed that the mean volumes of nuclei, cytoplasm, secretory granules, vacuoles, and mitochondria were significantly reduced in castrated mice in comparison to either normal or testosterone-treated castrated mice. This confirms earlier observations that the urethral glands are targets of testosterone.

  18. Activation of Salivary Secretion: Coupling of Cell Volume and [Ca2+]i in Single Cells

    Science.gov (United States)

    Foskett, J. Kevin; Melvin, James E.

    1989-06-01

    High-resolution differential interference contrast microscopy and digital imaging of the fluorescent calcium indicator dye fura-2 were performed simultaneously in single rat salivary gland acinar cells to examine the effects of muscarinic stimulation on cell volume and cytoplasmic calcium concentration ([Ca2+]i). Agonist stimulation of fluid secretion is initially associated with a rapid tenfold increase in [Ca2+]i as well as a substantial cell shrinkage. Subsequent changes of cell volume in the continued presence of agonist are tightly coupled to dynamic levels of [Ca2+]i, even during [Ca2+]i oscillations. Experiments with Ca2+ chelators and ionophores showed that physiological elevations of [Ca2+]i are necessary and sufficient to cause changes in cell volume. The relation between [Ca2+]i and cell volume suggests that the latter reflects the secretory state of the acinar cell. Agonist-induced changes in [Ca2+]i, by modulating specific ion permeabilities, result in solute movement into or out of the cell. The resultant cell volume changes may be important in modulating salivary secretion.

  19. Ascl3 knockout and cell ablation models reveal complexity of salivary gland maintenance and regeneration.

    Science.gov (United States)

    Arany, Szilvia; Catalán, Marcelo A; Roztocil, Elisa; Ovitt, Catherine E

    2011-05-15

    Expression of the transcription factor, Ascl3, marks a population of adult progenitor cells, which can give rise to both acinar and duct cell types in the murine salivary glands. Using a previously reported Ascl3(EGFP-Cre/+) knock-in strain, we demonstrate that Ascl3-expressing cells represent a molecularly distinct, and proliferating population of progenitor cells located in salivary gland ducts. To investigate both the role of the Ascl3 transcription factor, and the role of the cells in which it is expressed, we generated knockout and cell-specific ablation models. Ascl3 knockout mice develop smaller salivary glands than wild type littermates, but secrete saliva normally. They display a lower level of cell proliferation, consistent with their smaller size. In the absence of Ascl3, the cells maintain their progenitor function and continue to generate both acinar and duct cells. To directly test the role of the progenitor cells, themselves, in salivary gland development and regeneration, we used Cre-activated expression of diphtheria toxin (DTA) in the Ascl3-expressing (Ascl3+) cell population, resulting in specific cell ablation of Ascl3+ cells. In the absence of the Ascl3+ progenitor cells, the mice developed morphologically normal, albeit smaller, salivary glands able to secrete saliva. Furthermore, in a ductal ligation model of salivary gland injury, the glands of these mice were able to regenerate acinar cells. Our results indicate that Ascl3+ cells are active proliferating progenitors, but they are not the only precursors for salivary gland development or regeneration. We conclude that maintenance of tissue homeostasis in the salivary gland must involve more than one progenitor cell population.

  20. Death of mitochondria during programmed cell death of leaf mesophyll cells.

    Science.gov (United States)

    Selga, Tūrs; Selga, Maija; Pāvila, Vineta

    2005-12-01

    The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.

  1. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Science.gov (United States)

    Tourlakis, Marina E; Zhang, Siyi; Ball, Heather L; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S; Guidos, Cynthia J; Durie, Peter R; Rommens, Johanna M

    2015-06-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b) and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  2. The Regulatory Role of Rolipram on Inflammatory Mediators and Cholinergic/Adrenergic Stimulation-Induced Signals in Isolated Primary Mouse Submandibular Gland Cells

    Directory of Open Access Journals (Sweden)

    Dong Un Lee

    2016-01-01

    Full Text Available Exposure to bacterial lipopolysaccharides (LPS induces inflammatory signals in salivary glands. We investigated the regulatory role of phosphodiesterase 4 (PDE4 inhibitor rolipram on inflammatory mediators and cholinergic/adrenergic stimulation-induced intracellular Ca2+ signaling in salivary acinar and ductal cells. Submandibular gland (SMG expressed PDE4A through 4D mRNA and PDE4 was localized in the luminal membrane of SMG. LPS induced Ca2+ signaling and ROS production in SMG. Treatment with rolipram blocked LPS-induced Ca2+ increase and ROS production. The application of histamine evoked Ca2+ signals and ROS production, which were attenuated by rolipram in SMG cells. Moreover, LPS-induced NLRP3 inflammasome and cleaved caspase-1 were inhibited by rolipram. The inhibitory role of rolipram in ROS-induced Ca2+ signaling was mainly observed in acinar cells and not in ductal cells. Rolipram also protected SMG acinar but not ductal cells from LPS-induced cell membrane damage. In the case of cholinergic/adrenergic stimulation, carbachol/isoproterenol-induced Ca2+ signals were upregulated by the treatment of rolipram in SMG. In the case of cAMP-dependent ductal bicarbonate secretion by rolipram, no effect was observed on the modulation of ductal chloride/bicarbonate exchange activity. Rolipram could suppress the inflammatory signals and could be a potential therapeutic strategy against LPS-induced inflammation to protect the salivary gland cells.

  3. The Regulatory Role of Rolipram on Inflammatory Mediators and Cholinergic/Adrenergic Stimulation-Induced Signals in Isolated Primary Mouse Submandibular Gland Cells

    Science.gov (United States)

    Lee, Dong Un; Shin, Dong Min; Hong, Jeong Hee

    2016-01-01

    Exposure to bacterial lipopolysaccharides (LPS) induces inflammatory signals in salivary glands. We investigated the regulatory role of phosphodiesterase 4 (PDE4) inhibitor rolipram on inflammatory mediators and cholinergic/adrenergic stimulation-induced intracellular Ca2+ signaling in salivary acinar and ductal cells. Submandibular gland (SMG) expressed PDE4A through 4D mRNA and PDE4 was localized in the luminal membrane of SMG. LPS induced Ca2+ signaling and ROS production in SMG. Treatment with rolipram blocked LPS-induced Ca2+ increase and ROS production. The application of histamine evoked Ca2+ signals and ROS production, which were attenuated by rolipram in SMG cells. Moreover, LPS-induced NLRP3 inflammasome and cleaved caspase-1 were inhibited by rolipram. The inhibitory role of rolipram in ROS-induced Ca2+ signaling was mainly observed in acinar cells and not in ductal cells. Rolipram also protected SMG acinar but not ductal cells from LPS-induced cell membrane damage. In the case of cholinergic/adrenergic stimulation, carbachol/isoproterenol-induced Ca2+ signals were upregulated by the treatment of rolipram in SMG. In the case of cAMP-dependent ductal bicarbonate secretion by rolipram, no effect was observed on the modulation of ductal chloride/bicarbonate exchange activity. Rolipram could suppress the inflammatory signals and could be a potential therapeutic strategy against LPS-induced inflammation to protect the salivary gland cells. PMID:27143817

  4. Beta cell dynamics: beta cell replenishment, beta cell compensation and diabetes.

    Science.gov (United States)

    Cerf, Marlon E

    2013-10-01

    Type 2 diabetes, characterized by persistent hyperglycemia, arises mostly from beta cell dysfunction and insulin resistance and remains a highly complex metabolic disease due to various stages in its pathogenesis. Glucose homeostasis is primarily regulated by insulin secretion from the beta cells in response to prevailing glycemia. Beta cell populations are dynamic as they respond to fluctuating insulin demand. Beta cell replenishment and death primarily regulate beta cell populations. Beta cells, pancreatic cells, and extra-pancreatic cells represent the three tiers for replenishing beta cells. In rodents, beta cell self-replenishment appears to be the dominant source for new beta cells supported by pancreatic cells (non-beta islet cells, acinar cells, and duct cells) and extra-pancreatic cells (liver, neural, and stem/progenitor cells). In humans, beta cell neogenesis from non-beta cells appears to be the dominant source of beta cell replenishment as limited beta cell self-replenishment occurs particularly in adulthood. Metabolic states of increased insulin demand trigger increased insulin synthesis and secretion from beta cells. Beta cells, therefore, adapt to support their physiology. Maintaining physiological beta cell populations is a strategy for targeting metabolic states of persistently increased insulin demand as in diabetes.

  5. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2014-12-01

    Endosymbiosis between symbiotic Chlorella and alga-free Paramecium bursaria cells can be induced by mixing them. To establish the endosymbiosis, algae must acquire temporary resistance to the host lysosomal enzymes in the digestive vacuoles (DVs). When symbiotic algae isolated from the alga-bearing paramecia are kept under a constant dark conditions for 24 h before mixing with the alga-free paramecia, almost all algae are digested in the host DVs. To examine the cause of algal acquisition to the host lysosomal enzymes, the isolated algae were kept under a constant light conditions with or without a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea for 24 h, and were mixed with alga-free paramecia. Unexpectedly, most of the algae were not digested in the DVs irrespective of the presence of the inhibitor. Addition of 1 mM maltose, a main photosynthetic product of the symbiotic algae or of a supernatant of the isolated algae kept for 24 h under a constant light conditions, did not rescue the algal digestion in the DVs. These observations reveal that unknown factors induced by light are a prerequisite for algal resistance to the host lysosomal enzymes.

  6. K63-Linked Ubiquitination Targets Toxoplasma gondii for Endo-lysosomal Destruction in IFNγ-Stimulated Human Cells

    Science.gov (United States)

    Clough, Barbara; Wright, Joseph D.; Pereira, Pedro M.; Johnston, Ashleigh C.; Frickel, Eva-Maria

    2016-01-01

    Toxoplasma gondii is the most common protozoan parasitic infection in man. Gamma interferon (IFNγ) activates haematopoietic and non-haematopoietic cells to kill the parasite and mediate host resistance. IFNγ-driven host resistance pathways and parasitic virulence factors are well described in mice, but a detailed understanding of pathways that kill Toxoplasma in human cells is lacking. Here we show, that contrary to the widely held belief that the Toxoplasma vacuole is non-fusogenic, in an immune-stimulated environment, the vacuole of type II Toxoplasma in human cells is able to fuse with the host endo-lysosomal machinery leading to parasite death by acidification. Similar to murine cells, we find that type II, but not type I Toxoplasma vacuoles are targeted by K63-linked ubiquitin in an IFNγ-dependent manner in non-haematopoetic primary-like human endothelial cells. Host defence proteins p62 and NDP52 are subsequently recruited to the type II vacuole in distinct, overlapping microdomains with a loss of IFNγ-dependent restriction in p62 knocked down cells. Autophagy proteins Atg16L1, GABARAP and LC3B are recruited to <10% of parasite vacuoles and show no parasite strain preference, which is consistent with inhibition and enhancement of autophagy showing no effect on parasite replication. We demonstrate that this differs from HeLa human epithelial cells, where type II Toxoplasma are restricted by non-canonical autophagy leading to growth stunting that is independent of lysosomal acidification. In contrast to mouse cells, human vacuoles do not break. In HUVEC, the ubiquitinated vacuoles are targeted for destruction in acidified LAMP1-positive endo-lysosomal compartments. Consequently, parasite death can be prevented by inhibiting host ubiquitination and endosomal acidification. Thus, K63-linked ubiquitin recognition leading to vacuolar endo-lysosomal fusion and acidification is an important, novel virulence-driven Toxoplasma human host defence pathway. PMID

  7. Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion

    DEFF Research Database (Denmark)

    Sørensen, Jakob B.; Larsen, Erik Hviid

    1999-01-01

    Adrenaline; carbachol; Cl- secretion; exocrine gland; isoproterenol; noradrenaline; prostaglandin E*U2......Adrenaline; carbachol; Cl- secretion; exocrine gland; isoproterenol; noradrenaline; prostaglandin E*U2...

  8. Mechanisms Underlying Activation of α1-Adrenergic Receptor-Induced Trafficking of AQP5 in Rat Parotid Acinar Cells under Isotonic or Hypotonic Conditions

    Science.gov (United States)

    Bragiel, Aneta M.; Wang, Di; Pieczonka, Tomasz D.; Shono, Masayuki; Ishikawa, Yasuko

    2016-01-01

    Defective cellular trafficking of aquaporin-5 (AQP5) to the apical plasma membrane (APM) in salivary glands is associated with the loss of salivary fluid secretion. To examine mechanisms of α1-adrenoceptor (AR)-induced trafficking of AQP5, immunoconfocal microscopy and Western blot analysis were used to analyze AQP5 localization in parotid tissues stimulated with phenylephrine under different osmolality. Phenylephrine-induced trafficking of AQP5 to the APM and lateral plasma membrane (LPM) was mediated via the α1A-AR subtype, but not the α1B- and α1D-AR subtypes. Phenylephrine-induced trafficking of AQP5 was inhibited by ODQ and KT5823, inhibitors of nitric oxide (NO)-stimulated guanylcyclase (GC) and protein kinase (PK) G, respectively, indicating the involvement of the NO/ soluble (c) GC/PKG signaling pathway. Under isotonic conditions, phenylephrine-induced trafficking was inhibited by La3+, implying the participation of store-operated Ca2+ channel. Under hypotonic conditions, phenylephrine-induced trafficking of AQP5 to the APM was higher than that under isotonic conditions. Under non-stimulated conditions, hypotonicity-induced trafficking of AQP5 to the APM was inhibited by ruthenium red and La3+, suggesting the involvement of extracellular Ca2+ entry. Thus, α1A-AR activation induced the trafficking of AQP5 to the APM and LPM via the Ca2+/ cyclic guanosine monophosphate (cGMP)/PKG signaling pathway, which is associated with store-operated Ca2+ entry. PMID:27367668

  9. Analysis of the clinical pathologic acinar cell carcinoma of salivary gland%涎腺腺泡细胞癌临床病理分析

    Institute of Scientific and Technical Information of China (English)

    林楚忠; 吴小霞; 李广文; 苏文雄

    2014-01-01

    目的 探讨涎腺腺泡细胞癌的临床特点、组织形态学特征、免疫组化特点、诊断、治疗及预后.方法 复习15例涎腺腺泡细胞癌手术切除标本的病理切片,并进行免疫组织化学染色,结合相关临床资料进行分析.结果 涎腺腺泡细胞癌各年龄段均可发病,好发于腮腺,生长缓慢,病程长,预后相对较好.涎腺腺泡细胞癌可见包膜,大部分肿物界限清楚,小部分肿物与周围组织粘连较紧,边界不清.组织形态学可见肿瘤细胞呈圆形,胞浆丰富,嗜碱性或透明,细胞核较小、深染,无明显异型性,排列成实性片状及腺泡状.免疫组织化学显示:CK阳性、S100部分病例阳性,β-catenin在73.3%的病例中存在异常表达,Ki-67阳性指数为5%~30%.结论 涎腺腺泡细胞癌发病少,属低度恶性肿瘤,影像学诊断对其无特异性,主要依靠病理诊断来证实,治疗以根治性手术切除为主,术后可辅以放射治疗,以减少肿瘤复发及转移.

  10. Enhanced proliferation of acinar and progenitor cells by prophylactic pilocarpine treatment underlies the observed amelioration of radiation injury to parotid glands

    NARCIS (Netherlands)

    Burlage, Fred R.; Faber, Hette; Kampinga, Harm H.; Langendijk, Johannes A.; Vissink, Arjan; Coppes, Rob P.

    2009-01-01

    Background: Administration of pilocarpine before irradiation can ameliorate radiation-induced hyposalivation. Indirect evidence Suggests that this effect may be mediated through induction of a compensatory response. In this study, this hypothesis is tested directly, by assessing the proliferation of

  11. Quantitative assessment of cytosolic Salmonella in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Leigh A Knodler

    Full Text Available Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV. We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1, but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.

  12. Vacuolating cytotoxin genotypes are strong markers of gastric cancer and duodenal ulcer-associated Helicobacter pylori strains: a matched case-control study.

    Science.gov (United States)

    Memon, Ameer A; Hussein, Nawfal R; Miendje Deyi, Véronique Y; Burette, Alain; Atherton, John C

    2014-08-01

    The Helicobacter pylori virulence gene, cagA, and active forms of the vacuolating cytotoxin gene, vacA, are major determinants of pathogenesis. However, previous studies linking these factors to disease risk have often included patients using aspirin/nonsteroidal anti-inflammatory agents (NSAIDs) or acid-suppressing drugs, both of which may confound results. Also, particularly for gastric cancer (GC), controls have often been of quite different ages. Here, we performed a careful study in a "clean" Belgian population with gastric cancer cases age and sex matched to 4 controls and with a parallel duodenal ulcer (DU) group. As in other populations, there was a close association between the presence of cagA and the vacA s1 genotype. For GC, associations were found for vacA s1-positive (P = 0.01, odds ratio [OR], 9.37; 95% confidence interval [CI], 1.16 to 201.89), i1-positive (P = 0.003; OR, 12.08; 95% CI, 1.50 to 259.64), and cagA-positive status (P ulcer-associated strains are the vacA s1 and i1 genotypes. This fits with experimental data showing that the s and i regions are the key determinants of vacuolating cytotoxin activity.

  13. Endocytic Trafficking towards the Vacuole Plays a Key Role in the Auxin Receptor SCFTIR-Independent Mechanism of Lateral Root Formation in A.thaliana

    Institute of Scientific and Technical Information of China (English)

    Patricio Pérez-Henríquez; Natasha V.Raikhel; Lorena Norambuena

    2012-01-01

    Plants' developmental plasticity plays a pivotal role in responding to environmental conditions.One of the most plastic plant organs is the root system.Different environmental stimuli such as nutrients and water deficiency may induce lateral root formation to compensate for a low level of water and/or nutrients.It has been shown that the hormone auxin tunes lateral root development and components for its signaling pathway have been identified.Using chemical biology,we discovered an Arabidopsis thaliana lateral root formation mechanism that is independent of the auxin receptor SCFTIR.The bioactive compound Sortin2 increased lateral root occurrence by acting upstream from the morphological marker of lateral root primordium formation,the mitotic activity.The compound did not display auxin activity.At the cellular level,Sortin2 accelerated endosomal trafficking,resulting in increased trafficking of plasma membrane recycling proteins to the vacuole.Sortin2 affected Late endosome/PVC/MVB trafficking and morphology.Combining Sortin2 with well-known drugs showed that endocytic trafficking of Late E/PVC/MVB towards the vacuole is pivotal for Sortin2induced SCFTIR-independent lateral root initiation.Our results revealed a distinctive role for endosomal trafficking in the promotion of lateral root formation via a process that does not rely on the auxin receptor complex SCFTIR.

  14. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells.

    Science.gov (United States)

    Baek, Hyunjung; Noh, Yoo Hun; Lee, Joo Hee; Yeon, Soo-In; Jeong, Jaemin; Kwon, Heechung

    2014-09-01

    Salivary gland stem/progenitor cells belong to the endodermal lineage and may serve as good candidates to replace their dysfunctional counterparts. The objective of this study was to isolate large numbers of salivary gland tissue-derived stem cells (SGSCs) from adult rats in order to develop a clinically applicable method that does not involve sorting or stem cell induction by duct ligation. We analysed SGSCs isolated from normal rat salivary glands to determine whether they retained the major characteristics of stem cells, self-renewal and multipotency, especially with respect to the various endodermal cell types. SGSCs expressed high levels of integrin α6β1 and c-kit, which are surface markers of SGSCs. In particular, the integrin α6β1(+) /c-kit(+) salivary gland cells maintained the morphology, proliferation activity and multipotency of stem cells for up to 92 passages in 12 months. Furthermore, we analysed the capacity of SGSCs to differentiate into endoderm lineage cell types, such as acinar-like and insulin-secreting cells. When cultured on growth factor reduced matrigel, the morphology of progenitor cells changed to acinar-like structures and these cells expressed the acinar cell-specific marker, α-amylase, and tight junction markers. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) data showed increased expression of pancreatic cell markers, including insulin, Pdx1, pan polypeptide and neurogenin-3, when these cells formed pancreatic clusters in the presence of activin A, exendin-4 and retinoic acid. These data demonstrate that adult salivary stem/progenitor cells may serve as a potential source for cell therapy in salivary gland hypofunction and diabetes.

  15. Sensitivity of Hep G2 cells to Bacillus cereus emetic toxin.

    Science.gov (United States)

    Kamata, Yoichi; Kanno, Shinji; Mizutani, Noriko; Agata, Norio; Kawakami, Hiroshi; Sugiyama, Kei-ichi; Sugita-Konishi, Yoshiko

    2012-11-01

    We herein examined the sensitivity of Hep G2 human hepatoma cells to Bacillus cereus emetic toxin. Hep G2 cells were treated with the emetic toxin, and the cell shape was observed. The same experiments were performed for comparison purposes, using HEp-2 cells, which are currently used by most laboratories for a bioassay of the emetic toxin. Hep G2 cells showed clearer vacuolation in the cytosol within 2 hr and required a shorter incubation period than HEp-2 cells (10 hr). The number of vacuoles in the Hep G2 cells was greater, and the size of the vacuoles was larger than those observed in HEp-2 cells. The minimal concentration of the emetic toxin required to induce the vacuolation of Hep G2 cells was 0.04 ng/ml. The concentration for the HEp-2 cells was 1 ng/ml. These findings indicate that Hep G2 cells show higher sensitivity to the emetic toxin. Hep G2 cells may be superior to the currently used HEp-2 cells for the bioassay of the emetic toxin.

  16. Cell Secretion: Current Structural and Biochemical Insights

    Directory of Open Access Journals (Sweden)

    Saurabh Trikha

    2010-01-01

    Full Text Available Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150nm in diameter in acinar cells of the exocrine pancreas to 12nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  17. Rescue of salivary gland function after stem cell transplantation in irradiated glands.

    Directory of Open Access Journals (Sweden)

    Isabelle M A Lombaert

    Full Text Available Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome. In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit(+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.

  18. OsGAP1 functions as a positive regulator of OsRab11-mediated TGN to PM or vacuole trafficking.

    Science.gov (United States)

    Heo, Jae Bok; Rho, Hee Sun; Kim, Se Won; Hwang, Sung Min; Kwon, Hyun Jin; Nahm, Min Yeop; Bang, Woo Young; Bahk, Jeong Dong

    2005-12-01

    The Ypt/Rab family of small G-proteins is important in regulating vesicular transport. Rabs hydrolyze GTP very slowly on their own and require GTPase-activating proteins (GAPs). Here we report the identification and characterization of OsGAP1, a Rab-specific rice GAP. OsGAP1 strongly stimulated OsRab8a and OsRab11, which are homologs of the mammalian Rab8 and Rab11 proteins that are essential for Golgi to plasma membrane (PM) and trans-Golgi network (TGN) to PM trafficking, respectively. Substitution of two invariant arginines within the catalytic domain of Oryza sativa GTPase-activating protein 1 (OsGAP1) with alanines significantly inhibited its GAP activity. In vivo targeting experiments revealed that OsGAP1 localizes to the TGN or pre-vacuolar compartment (PVC). A yeast expression system demonstrated that wild-type OsGAP1 facilitates O. sativa dissociation inhibitor 3 (OsGDI3)-catalyzed OsRab11 recycling at an early stage, but the OsGAP1(R385A) and (R450A) mutants do not. Thus, GTP hydrolysis is essential for Rab recycling. Moreover, expression of the OsGAP1 mutants in Arabidopsis protoplasts inhibited the trafficking of some cargo proteins, including the PM-localizing H+-ATPase-green fluorescent protein (GFP) and Ca2+-ATPase8-GFP and the central vacuole-localizing Arabidopsis aleurain-like protein (AALP)-GFP. The OsGAP1 mutants caused these proteins to accumulate at the Golgi apparatus. Surprisingly, OsRab11 overproduction relieved the inhibitory effect of the OsGAP1 mutants on vesicular trafficking. OsRab8a had no such effect. Thus, the OsGAP1 mutants may inhibit TGN to PM or central vacuole trafficking because they induce the sequestration of endogenous Rab11. We propose that OsGAP1 facilitates vesicular trafficking from the TGN to the PM or central vacuole by both stimulating the GTPase activity of OsRab11 and increasing the recycling of inactive OsRab11.

  19. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Marica Vaapil

    Full Text Available INTRODUCTION: Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. METHODS: Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. RESULTS: In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar

  20. Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy

    Indian Academy of Sciences (India)

    Donghua Liu; Ingrid Kottke

    2003-06-01

    The ultrastructural investigation of the root cells of Allium sativum L. exposed to three different concentrations of Cd (100 M, 1 mM and 10 mM) for 9 days was carried out. The results showed that Cd induced several significant ultrastructural changes – high vacuolization in cytoplasm, deposition of electron-dense material in vacuoles and nucleoli and increment of disintegrated organelles. Data from electron energy loss spectroscopy (EELS) revealed that Cd was localized in the electron-dense precipitates in the root cells treated with 10 mM Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiating and mature root tissues. The mechanisms of detoxification and tolerance of Cd are briefly explained.

  1. the versatility of the Helicobacter pylori vacuolating cytotoxin vacA in signal transduction and molecular crosstalk.

    Science.gov (United States)

    Backert, Steffen; Tegtmeyer, Nicole

    2010-01-01

    By modulating important properties of eukaryotic cells, many bacterial protein toxins highjack host signalling pathways to create a suitable niche for the pathogen to colonize and persist. Helicobacter pylori VacA is paradigm of pore-forming toxins which contributes to the pathogenesis of peptic ulceration. Several cellular receptors have been described for VacA, which exert different effects on epithelial and immune cells. The crystal structure of VacA p55 subunit might be important for elucidating details of receptor interaction and pore formation. Here we discuss the multiple signalling activities of this important toxin and the molecular crosstalk between VacA and other virulence factors.

  2. High Cell Sensitivity to Helicobacter pylori VacA Toxin Depends on a GPI-anchored Protein and is not Blocked by Inhibition of the Clathrin-mediated Pathway of Endocytosis

    Science.gov (United States)

    Ricci, Vittorio; Galmiche, Antoine; Doye, Anne; Necchi, Vittorio; Solcia, Enrico; Boquet, Patrice

    2000-01-01

    Helicobacter pylori vacuolating toxin (VacA) causes vacuolation in a variety of cultured cell lines, sensitivity to VacA differing greatly, however, among the different cell types. We found that the high sensitivity of HEp-2 cells to VacA was impaired by treating the cells with phosphatidylinositol-specific phospholipase C (PI-PLC) which removes glycosylphosphatidylinositol (GPI)-anchored proteins from the cell surface. Incubation of cells with a cholesterol-sequestering agent, that impairs both structure and function of sphingolipid-cholesterol-rich membrane microdomains (“lipid rafts”), also impaired VacA-induced cell vacuolation. Overexpression into HEp-2 cells of proteins inhibiting clathrin-dependent endocytosis (i.e., a dominant-negative mutant of Eps15, the five tandem Src-homology-3 domains of intersectin, and the K44A dominant-negative mutant of dynamin II) did not affect vacuolation induced by VacA. Nevertheless, F-actin depolymerization, known to block the different types of endocytic mechanisms, strongly impaired VacA vacuolating activity. Taken together, our data suggest that the high cell sensitivity to VacA depends on the presence of one or several GPI-anchored protein(s), intact membrane lipid rafts, and an uptake mechanism via a clathrin-independent endocytic pathway. PMID:11071915

  3. Myoepithelial cells: Current perspectives in salivary gland tumors

    Directory of Open Access Journals (Sweden)

    C Pramod Redder

    2013-01-01

    Full Text Available Myoepithelial cells are normal constituent of the salivary acini and smaller ducts, and are found between the epithelial cells and the basement membrane. Microscopic examination shows that myoepithelial cells are thin and spindle-shaped and situated between the basement membrane and epithelial cells. Ultrastructurally they possess a number of cytoplasmic processes that extend between and over the acinar and ductal-lining cells. They display features of both smooth muscle and epithelium, such as numerous microfilaments with focal densities in the cytoplasmic processes, and desmosomes which attach the myoepithelial to the epithelial cells. Neoplastic myoepithelial cells in both benign and malignant tumors can take several forms, including epithelioid, spindle, plasmacytoid, and clear, and this variability largely accounts for difficulties in histopathological diagnosis. This review article highlights the role of myoepithelial cells in salivary gland tumors.

  4. Methods for assessing autophagy and autophagic cell death.

    Science.gov (United States)

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  5. Green Nanochemistry Approach to Titanium Dioxide Nanoparticle, Dye- Sensitized Solar Cells

    Science.gov (United States)

    2012-06-01

    of flavonoid