WorldWideScience

Sample records for aciers austenitiques irradies

  1. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors; Caracterisation microstructurale et modelisation du durcissement des aciers austenitiques irradies des structures internes des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Pokor, C

    2003-07-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  2. The electrochemical aspect of the corrosion of austenitic stainless steels, in nitric acid and in the presence of hexavalent chromium (1961); Aspect electrochimique de la corrosion d'aciers inoxydables austenitiques en milieu nitrique et en presence de chrome hexavalent (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Hure, J.; Plante, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The corrosion of austenitic stainless steels in boiling nitric acid markedly increases when the medium contains hexavalent chromium ions. Because of several redox phenomena, the potential of the steel generally changes in course of time. Measurements show a relation between the weight loss and the potential of specimens. Additions of Mn(VII) and Ce(IV) are compared with that of Cr(VI), and show that the relation is a general one. The attack cf the metal in oxidizing media is largely intergranular, leading to exfoliation of the grains, although the steel studied is not sensitive to the classical Huey and Strauss tests. Also even in the absence of any other oxidizing reaction, the current density observed when the steel is anodically polarized under potentiostatic conditions does not correspond to the actual weight loss of the metal. (authors) [French] La corrosion d'aciers inoxydables austenitiques en milieu nitrique bouillant augmente notablement quand le milieu contient des ions chrome a l'etat hexavalent. Par suite de divers phenomenes d'oxydo-reduction, le potentiel de l'acier evolue generalement au cours du temps. Les mesures effectuees permettent d'etablir une relation entre les pertes de poids et le potentiel des echantillons. L'addition de Mn(VI) et Ce(IV) est compare a celle de Cr(VI) et montre que la relation precedente s'applique de facon generale. L'attaque du metal en milieu oxydant est en grande, partie due a une corrosion intergranulaire conduisant a un dechaussement des grains bien que l'acier etudie ne soit pas sensible aux tests classiques de Huey et de Strauss. Aussi, meme en l'absence de toute autre reaction d'oxydation l'intensite qu l'on observerait en soumettant l'acier a un potentiel anodique dans un montage potentiostatique ne correspondrait pas a la perte de poids reelle du metal. (auteurs)

  3. Etude des lois de comportement a haute temperature en ``plasticite-fluage'', d'un acier inoxydable austenitique (12 17 SPH)

    Science.gov (United States)

    Delobelle, P.; Oytana, C.

    1986-07-01

    De façon à compléter une étude antérieure portant sur le fluage à haute température d'un acier inoxydable austénitique du Type 316 (12-17 SPH) et afin de comprendre les relations de couplage qui existent entre les grandes déformations quasiment indépendantes du temps (plasticité) et les petites déformations souvent trés lentes (viscoplasticité), toujours intimement liées pour cet alliage, nous avons réalisé différents essais à vitesse imposée: traction, traction-compression, torsion-alternée., Durant ces essais nous avons estimé l'ordre de grandeur de la contrainte visqueuse σzz = σv par la méthode de la relaxation inverse. De façon à révéler clairement les effets liés intrinsèquement au temps avons réalisé différentes séquences de vieillissement après écrouissage. Pour intégrer et décrire l'ensemble des phénonèmes observés, nous proposons un modèle unifié dont les caractéristiques principales sont les suivantes: (i) Unicité de l'équation d'état viscoplastique: ɛ = f¦σ - α¦, avec f fortement non linéaire, ce qui permet de traduire les effets dépendant et quasiment indépendant du temps. (ii) La distinction entre grande et petite déformations s'effectue à l'aide d'un critére de charge, active ou passive, portant sur la variable α. (iii) Dans l'état de microviscoplasticé, on a α = α1, tel que α 1 présente un fort coefficient d'écrouissage h0. Dans le cas inverse, on décompose α selon α = α1 = α2 + Y et tel que les coefficients d'écrouissage vérifient: H1 + Hα2 ≪ hα1 . (iv) L'effet du temps, permettant d'atteindre l'écoulement stationnaire, indifférent à l'état du système, est pris en compte par les termes de restauration dans les lois d'évolution des variables internes. On présente quelques simulations, réalisées avec le modèle développé, pour différents types de sollicitations.

  4. Etude de la microstructure d'un acier 316 titane apres vieillissement et apres irradiation aux neutrons

    Science.gov (United States)

    Brun, G.; Le Naour, J.; Vouillon, M.

    1981-10-01

    La précipitation qui se produit lors de vieillissements de longue durée entre 450 et 700°C dans un acier 316 Ti soit hypertrempé soit écroui, a été étudiée en couplant les techniques de microscopic électronique et de microanalyse X. Pour les cas expérimentaux étudiés, les résultats obtenus montrent que la composition des carbures M 23C 6 et des phases σ, Laves et χ est peu sensible aux conditions de vieillissement et dépend également peu de l'état structural initial. Leur teneur en éléments principaux de l'alliage est d'ailleurs voisine de celle des phases précipitées dans l'acier non stabilisé. Excepté les carbures de type M 6C, toutes ces phases ont une teneur en nickel inférieure à celle de la matrice. Les premiers rérultats obtenus sur des matériaux irradiés aux neutrons montrent que la précipitation sous flux est différente de celle qui se produit dans l'acier vieilli. Les phases γ' et G ainsi que les carbures riches en nickel ont été observés. L'attention a été attirée sur le fait qu'il n'y a pas de corrélation simple entre la vitesse de gonflement et la teneuer résiduelle en nickel de la matrice.

  5. Behaviour comparison of various flux cored wires in FCAW on austenitic stainless steel; Comparaison du comportement de differents fils fourres en soudage MIG/MAG sur acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Legoeuil, N. [Stagiaire/AREVA NP Tour AREVA, 92084 - Paris La Defense cedex, (France)

    2007-07-01

    This study deals with the GMAW process evaluation for the orbital butt welding of strong thickness pipings, in order to increase the productivity of these operations (higher deposition rate than in GTAW, process currently used). The main goal of this project is to evaluate the operational feasibility of mechanized orbital welding under gas protection in narrow gap with stainless flux cored wire 308L on stainless steel 304L. The study was composed of two parts with firstly a bibliographical research which has allowed to underline this operation practice, as good with rutile flux cored wire in smooth mode as with metal cored wire in pulsed mode. In the second part, flat and in position welding tests, by unit cords and filling of narrow grooves, made possible to define preliminary welding parameters. (author) [French] Cette etude s'inscrit dans le cadre de l'evaluation du procede MIG/MAG pour le soudage orbital bout a bout de tuyauteries de forte epaisseur, afin d'augmenter la productivite de ces operations (taux de depot plus eleve qu'en TIG, procede utilise actuellement). L'objectif du projet est d'evaluer la faisabilite operatoire du soudage orbital sous protection gazeuse en chanfrein etroit en mode mecanise avec fil fourre inoxydable 308L sur acier inoxydable 304L. L'etude s'est deroulee en deux parties avec dans un premier temps une recherche bibliographique qui a permis de mettre en evidence la pratique de cette operation, aussi bien avec des fils fourres rutiles en regime lisse qu'avec des fils fourres a poudre metallique en regime pulse. Dans un second temps, des essais de soudage a plat et en position, en cordons unitaires et en remplissage de chanfreins etroits, ont permis de definir des parametres preliminaires de soudage. (auteur)

  6. Influence of plastic strain localization on the stress corrosion cracking of austenitic stainless steels; Influence de la localisation de la deformation plastique sur la CSC d'aciers austenitiques inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, S.; Tanguy, B. [CEA Saclay, DEN, SEMI, 91 - Gif-sur-Yvette (France); Andrieu, E.; Laffont, L.; Lafont, M.Ch. [Universite de Toulouse. CIRIMAT, UPS/INPT/CNRS, 31 - Toulous (France)

    2010-03-15

    The authors present a research study of the role of strain localization on the irradiation-assisted stress corrosion cracking (IASCC) of vessel steel in PWR-type (pressurized water reactor) environment. They study the interaction between plasticity and intergranular corrosion and/or oxidation mechanisms in austenitic stainless steels with respect to sublayer microstructure transformations. The study is performed on three austenitic stainless grades which have not been sensitized by any specific thermal treatment: the A286 structurally hardened steel, and the 304L and 316L austenitic stainless steels

  7. Etude d'un revêtement d'acier inoxydable Z 2 CND 18-12 réalisé sur un acier doux, sous irradiation laser avec injection de poudre coaxiale au faisceau

    OpenAIRE

    FOUQUET, F; Sallamand, P.; Dierickx, P.; Bonne, D.; Millet, J.

    1994-01-01

    Le présent travail traite du dépôt d'acier inoxydable austénitique de type AISI 316 L sur acier doux par projection de poudre sous faisceau laser et de la caractérisation du revêtement élaboré. Les revêtements obtenus par cette technique sont de bonne qualité, exempts de fissures, avec peu de porosités et parfaitement adhérents au substrat. Leur microstructure très fine est dendritique ou cellulaire. La structure est apparue majoritairement austénitique, mais avec présence non négligeable de ...

  8. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water; Influence de la localisation de la deformation sur la corrosion sous contrainte de l'acier inoxydable austenitique A-286 en milieu primaire des REP

    Energy Technology Data Exchange (ETDEWEB)

    Savoie, M

    2007-01-15

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels is known to be a critical issue for structural components of nuclear reactor cores. The deformation of irradiated austenitic stainless steels is extremely heterogeneous and localized in deformation bands that may play a significant role in IASCC. In this study, an original approach is proposed to determine the influence of localized deformation on austenitic stainless steels SCC in simulated PWR primary water. The approach consists in (i) performing low cycle fatigue tests on austenitic stainless steel A-286 strengthened by {gamma}' precipitates Ni{sub 3}(Ti,Al) in order to shear and dissolve the precipitates in intense slip bands, leading to a localization of the deformation within and in (ii) assessing the influence of these {gamma}'-free localized deformation bands on A-286 SCC by means of comparative CERT tests performed on specimens with similar yield strength, containing or not {gamma}'-free localized deformation bands. Results show that strain localization significantly promotes A-286 SCC in simulated PWR primary water at 320 and 360 C. Moreover, A-286 is a precipitation-hardening austenitic stainless steel used for applications in light water reactors. The second objective of this work is to gain insights into the influence of heat treatment and metallurgical structure on A-286 SCC susceptibility in PWR primary water. The results obtained demonstrate a strong correlation between yield strength and SCC susceptibility of A-286 in PWR primary water at 320 and 360 C. (author)

  9. Experimental investigation of the residual stresses of 304L tubular welded joints; Caracterisation des contraintes residuelles sur assemblages soudes tubulaires en acier 304L

    Energy Technology Data Exchange (ETDEWEB)

    Monin, L.; Panier, S.; Hariri, S.; Zakrzewski, D. [Ecole des Mines de Douai, 941, rue Charles Bourseul, BP 10838, 59508 DOUAI Cedex (France); Faidi, C. [EDF-SEPTEN, 12-14, avenue Dutrievoz, 69628 VILLEURBANNE (France)

    2007-07-01

    In the nuclear energy industry, the use of components made of austenitic stainless steel is widely spread, because of its specific thermal properties. The assembly of these pressure vessels and piping by welding processes often requires surface mechanical operations. These operations aim at hardening surfaces and lowering roughness. Nevertheless the main effect of these operations is the occurrence of residual stresses which can have positive or negative effects on the fatigue life. In this study, we focus on the evaluation and relaxation of residual stresses level on AISI 304L austenitic stainless steel tubular welded structures. Some of these rings are base metal rings (which stand as reference), the rest presents a longitudinal and symmetrical Y-weld joint, with or without grinding. Surface residual stresses, and their relaxation, were determined by using the X-ray diffraction method. (authors) [French] L'utilisation de composants en acier inoxydable austenitique, aux proprietes thermiques bien specifiques, est tres courante dans le domaine de la production d'energie nucleaire. Les procedes d'assemblage par soudage de ces equipements sous pression requierent des traitements de parachevement mecanique afin d'ameliorer l'etat de surface et modifier l'etat mecanique en introduisant des contraintes residuelles, qui peuvent avoir une influence sur la duree de vie de la structure. Cette etude porte sur la caracterisation et la relaxation des contraintes residuelles, determinees sur des eprouvettes annulaires specifiques en acier inoxydable austenitique de type 304L, a l'etat brut ou avec des soudures, arasees ou non. La methode de determination utilisee est la diffraction des rayons X. La relaxation de ces contraintes au cours d'essais de fatigue est egalement etudiee. (auteurs)

  10. Thermal fatigue cracking of austenitic stainless steels; Fissuration en fatigue thermique des aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, A

    2001-07-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N{sub i} is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50{mu}m to 150{open_square}m long crack is observed. Additional SPLASH tests were performed for N >> N{sub i}, with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that usual approaches are adapted in used conditions ( 280 {<=} T{sub max} {<=} 550 deg C, 100 {<=} {open_square}T {<=} 300 deg C): they are simply based on thermal loading mechanical loading equivalence. However, they appear not to be well adapted when additional factors exist such as roughness, residual stresses... Furthermore, Scanning Electron Microscopy observations show that damage is initiated well before the 'engineer initiation', as previously detected using optical microscopy on SPLASH specimen. First stage damage evolutions are thus a new task. Strain and stress fields generated during test are estimated thanks to finite element method computations (FEM), using CASTEM-2000 CEA software. Information coming from these FEM computations monitor lower-scale modelling: Discrete dislocation Dynamics (MICROMEGAS software). In order to continue that task, a new specimen has been adapted to the CYTHIA facility. Specimens consist of removable disks in which different and well-controlled conditions may be enforced. In order to estimate propagation of long crack, conventional fracture mechanic approach seems to be well adapted. The effective Stress Intensity Factor calculation takes into account of plastic strain. Furthermore, it is assumed that crack is opened during 60 % of cyclic loading. Shielding effect is clearly underlined by all the observations: on surface, on cross side section, and after sub-surface step-by-step removal. Multiple crack propagation (in the depth direction) is simulated using the previous single crack modelling. An auto-adaptative meshing allows simulating growth of 10 cracks up to 35,000 cycles. Two-development tasks are now in progress. The first task is oriented on the multiple crack growth and stability after an additional mechanical loading. The second task deals with the first damage stage up to the 'engineer crack initiation'. (author)

  11. Modelling of the plasticity and brittle failure of the irradiated bainitic steels; Modelisation du comportement en plasticite et a rupture des aciers bainitiques irradies

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, C.N.

    2010-02-15

    Low alloy steels are used in various equipments of nuclear reactors. Subjected to neutron irradiation produced during the operation of reactors, these materials exhibit significant changes in their microstructure, especially with the formation of radiation defects as interstitial loops, void clusters and precipitates. These defects in interactions with dislocations lead to a hardening and embrittlement which are directly related to the received dose and neutron flux. The plastic behaviour of non-irradiated low alloy bainitic steels has been the object of several modelling based on observations from experiments and atomistic simulations. Some of them result from thesis supported by EDF and CEA, which describe different strategies for the micro-mechanical modelling of brittle failure. Improvements in this work come from the integration of new physical characteristics and the attention paid to the representativeness of the microstructure: whereas realistic microstructures in terms of morphology and crystal orientations have been adopted, a dislocation density based constitutive model in the large deformation framework is used to describe crystal plasticity. This choice is justified by the need to take into account, in the constitutive modelling, the interactions between dislocations and irradiation defects under severe loading conditions. The plasticity laws have been implemented in the finite elements code ZeBuLoN in order to perform computations of polycrystalline aggregates. Such aggregates are representative volume elements. They thus provide the database required for the application of brittle failure models to structures. This multi-scale character confers to the modelling the status of 'micro-mechanical local approach of failure'. (author)

  12. Elaboration de revêtements sur acier inoxydable: simulation de la fusion par irradiation laser, caractérisation structurale, mécanique et tribologique.

    OpenAIRE

    Avril, Ludovic

    2003-01-01

    A pulsed Nd-YAG laser is used to irradiate and alloy X30Cr13 stainless steel by surface melting, with incorporation of boron or hexagonal boron nitride (h-BN), and to obtain thick coatings: multiphase borided alloys or metal-ceramic composites. The metallographic analyses allow to determine the thickness for each coating (melting zone) and reveal characteristic solidification microstructures: planar front and cellular dendrites. Optical characteristics of the laser beam are measured: divergen...

  13. Dynamical recrystallization of high purity austenitic stainless steels; Recristallisation dynamique d'aciers inoxydables austenitiques de haute purete

    Energy Technology Data Exchange (ETDEWEB)

    Gavard, L

    2001-01-01

    The aim of this work is to optimize the performance of structural materials. The elementary mechanisms (strain hardening and dynamical regeneration, germination and growth of new grains) occurring during the hot working of metals and low pile defect energy alloys have been studied for austenitic stainless steels. In particular, the influence of the main experimental parameters (temperature, deformation velocity, initial grain size, impurities amount, deformation way) on the process of discontinuous dynamical recrystallization has been studied. Alloys with composition equal to those of the industrial stainless steel-304L have been fabricated from ultra-pure iron, chromium and nickel. Tests carried out in hot compression and torsion in order to cover a wide range of deformations, deformation velocities and temperatures for two very different deformation ways have allowed to determine the rheological characteristics (sensitivity to the deformation velocity, apparent activation energy) of materials as well as to characterize their microstructural deformations by optical metallography and electron back-scattered diffraction. The influence of the initial grain size and the influence of the purity of the material on the dynamical recrystallization kinetics have been determined. An analytical model for the determination of the apparent mobility of grain boundaries, a semi-analytical model for the dynamical recrystallization and at last an analytical model for the stationary state of dynamical recrystallization are proposed as well as a new criteria for the transition between the refinement state and the state of grain growth. (O.M.)

  14. Welding hot cracking in an austenitic stainless steel; Fissuration a chaud en soudage d'un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Kerrouault, N

    2001-07-01

    The occurrence of hot cracking is linked to several conditions, in particular, the composition of the material and the local strains due to clambering. The aim of this study is to better analyse the implied mechanisms and to lead to a local thermomechanical criterion for hot cracking. The example studied is an AISI 321-type stainless steel (X10CrNiTi18-12) strongly prone to cracking. Two weldability tests are studied: - the first one consists in carrying out a fusion line by the TIG process on a thin sheet. In the case of the defect occurrence, the crack is longitudinal and follows the back of the molten bath. The influence of the operating conditions welding (speed, welding heat input, width test sample) is studied. - the second one is the Varestraint test. It is widely used to evaluate the sensitivity of a material to hot cracking. It consists in loading the material by bending during a fusion line by the TIG process and in characterising the defects quantity (length, number). Various thermal and mechanical instrumentation methods were used. The possibilities of a local instrumentation instrumentation being limited because of the melting, the experimental results were complemented by a numerical modelling whose aim is to simulate the thermomechanical evolution of the loading thanks to the finite element analysis code ABAQUS. First, the heat input for thermal simulation is set by the use of an inverse method in order to optimise the energy deposit mode during welding in the calculation. Then, the mechanical simulation needs the input of a constitutive law that fits the mechanical behaviour over a wide temperature range from ambient to melting temperature. Thus, a mechanical characterization is performed by selecting strain values and strain rates representative of what the material undergoes during the tests. The results come from tensile and compressive tests and allow to settle an elasto-visco-plastic constitutive law over temperatures up to liquidus. Once validated, the thermomechanical simulation brings new interpretations of the tests observations and instrumentation results. The comparison of experimental and numerical results make it possible to determine a thermomechanical welding hot cracking criterion during solidification. This criterion simultaneously considers mechanical (strain and strain rates threshold) and thermal (temperature range, thermal gradient) parameters which give the position and orientation of the first crack initiation. The criterion precision are in good agreement with the observations on the two considered weldability tests. (author)

  15. Study of a design criterion for 316L irradiated represented by a strain hardened material; Etude d'un critere de dimensionnement d'un acier 316L irradie represente par un materiau ecroui

    Energy Technology Data Exchange (ETDEWEB)

    Gouin, H

    1999-07-01

    The aim of this study is to analyse the consequence of radiation on different structure submitted to imposed displacement loading and for damages due to plastic instability or rupture. The main consequence of radiation is a material hardening with a ductility decrease. This effect is similar to initial mechanical hardening: the mechanical properties (determined on smooth tensile specimen) evolve in the same way while irradiation or mechanical hardening increase. So in this study, radiation hardening is simulated by mechanical hardening (swaging). Tests were carried out for which two damages were considered: plastic instability and rupture. These two damages were studied with initial mechanical hardening (5 tested hammering rate 0, 15, 25, 35 and 45% on 316L stainless steel). Likewise two types of loading were studied: tensile or bending loading on specimens with or without geometrical singularities (notches). From tensile tests, two deformation criteria are proposed for prevention against the two quoted damages. Numerical study is carried out allowing to confirm hypothesis made at the time of the tensile test result interpretation and to validate the rupture criterion by applying on bending test. (author)

  16. Les aciers inoxydables dans les fixations

    CERN Document Server

    CETIM

    2010-01-01

    Cet ouvrage, qui fait la synthèse de plusieurs travaux menés par le Cetim, propose une vue d'ensemble sur les aciers inoxydables utilisés pour les fixations. Au sommaire : les normes EN, ISO et ATSM qui s'y rapportent , les désignations symboliques , les nuances et caractéristiques mécaniques , les différentes formes de corrosion, les méthodes pour les détecter , les règles du métier , les mises en oeuvre. L'ouvrage comprend plusieurs fiches matériaux et des tableaux qui présentent les équivalences entre les désignations.

  17. Crack growth in an austenitic stainless steel at high temperature; Propagation de fissure a haute temperature dans un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Polvora, J.P

    1998-12-31

    This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C*{sub s}. Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors) 104 refs.

  18. Crack initiation at high temperature on an austenitic stainless steel; Amorcage de fissure a haute temperature dans un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Laiarinandrasana, L.

    1994-11-25

    The study deals with crack initiation at 600 and 650 degrees Celsius, on an austenitic stainless steel referenced by Z2 CND 17 12. The behaviour laws of the studied plate were update in comparison with existing data. Forty tests were carried out on CT specimens, with continuous fatigue with load or displacement controlled, pure creep, pure relaxation, creep-fatigue and creep-relaxation loadings. The practical initiation definition corresponds to a small crack growth of about the grain size. The time necessary for the crack to initiate is predicted with fracture mechanics global and local approaches, with the helps of microstructural observations and finite elements results. An identification of a `Paris`law` for continuous cyclic loading and of a unique correlation between the initiation time and C{sup *}{sub k} for creep tests was established. For the local approach, crack initiation by creep can be interpreted as the reaching of a critical damage level, by using a damage incremental rule. For creep-fatigue tests, crack growth rates at initiation are greater than those of Paris`law for continuous fatigue. A calculation of a transition time between elastic-plastic and creep domains shows that crack initiation can be interpreted whether by providing Paris`law with an acceleration term when the dwell period is less than the transition time, or by calculating a creep contribution which relies on C{sup *}{sub k} parameter when the dwell period and/or the initiation times are greater than the transition time. Creep relaxation tests present crack growth rates at initiation which are less than those for `equivalent` creep-fatigue tests. These crack growth rates when increasing hold time, but also when temperature decreases. Though, for hold times which are important enough and at lower temperature, there is no effect of the dwell period insofar as crack growth rate is equal to continuous fatigue Paris law predicted ones. (Abstract Truncated)

  19. Study of stress relief cracking in titanium stabilized austenitic stainless steel; Etude de la fissuration differee par relaxation d'un acier inoxydable austenitique stabilise au titane

    Energy Technology Data Exchange (ETDEWEB)

    Chabaud-Reytier, M

    1999-07-01

    The heat affected zone (HAZ) of titanium stabilised austenitic stainless steel welds (AISI 321) may exhibit a serious form of intercrystalline cracking during service at high temperature. This type of cracking, called 'stress relief cracking', is known to be due to work hardening but also to ageing: a fine and abundant intragranular Ti(C,N) precipitation appears near the fusion line and modifies the mechanical behaviour of the HAZ. This study aims to better know the accused mechanism and to succeed in estimating the risk of such cracking in welded junctions of 321 stainless steel. To analyse this embrittlement mechanism, and to assess the lifetime of real components, different HAZ are simulated by heat treatments applied to the base material which is submitted to various cold rolling and ageing conditions in order to reproduce the HAZ microstructure. Then, we study the effects of work hardening and ageing on the titanium carbide precipitation, on the mechanical (tensile and creep) behaviour of the resulting material and on its stress relief cracking sensitivity. It is shown that work hardening is the main parameter of the mechanism and that ageing do not favour crack initiation although it leads to titanium carbide precipitation. The role of this precipitation is also discussed. Moreover, a creep damage model is identified by a local approach to fracture. Materials sensitive to stress relief cracking are selected. Then, creep tests are carried out on notched bars in order to quantify the intergranular damage of these different materials; afterwards, these measurements are combined with calculated mechanical fields. Finally, it is shown that the model gives good results to assess crack initiation for a compact tension (CT) specimen during relaxation tests, as well as for a notched tubular specimen tested at 600 deg. C under a steady torque. (author)

  20. Study of structural modifications induced by ion implantation in austenitic stainless steel; Etude des modifications structurales induites par implantation ionique dans les aciers austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Dudognon, J

    2006-12-15

    Ion implantation in steels, although largely used to improve the properties of use, involves structural modifications of the surface layer, which remain still prone to controversies. Within this context, various elements (N, Ar, Cr, Mo, Ag, Xe and Pb) were implanted (with energies varying from 28 to 280 keV) in a 316LVM austenitic stainless steel. The implanted layer has a thickness limited to 80 nm and a maximum implanted element concentration lower than 10 % at. The analysis of the implanted layer by grazing incidence X ray diffraction highlights deformations of austenite lines, appearance of ferrite and amorphization of the layer. Ferritic phase which appears at the grain boundaries, whatever the implanted element, is formed above a given 'threshold' of energy (produced of fluency by the energy of an ion). The formation of ferrite as well as the amorphization of the implanted layer depends only on energy. In order to understand the deformations of austenite diffraction lines, a simulation model of these lines was elaborated. The model correctly describes the observed deformations (broadening, shift, splitting) with the assumption that the expansion of the austenitic lattice is due to the presence of implanted element and is proportional to the element concentration through a coefficient k'. This coefficient only depends on the element and varies linearly with its radius. (author)

  1. Traitement superficiel d'acier par laser excimère

    Science.gov (United States)

    Pereira, A.; Cros, A.; Delaporte, Ph.; Marine, W.; Sentis, M.

    2003-06-01

    Motivée par des nécessités économiques et environnementales, l'industrie est amenée à développer de nouveaux procédés propres, notamment pour les applications concernant la préparation de surface (nettoyage, décapage...). Dans ce domaine, l'utilisation du laser excinière présente de nombreux avantages. En effet, en raison d'un temps d'interaction de courte durée (ns), suivi d'un échauffement et d'un refroidissement rapide de la zone irradiée sur une profondeur très fine (μm), il est possible de modifier localement les propriétés physico-chimiques d'une surface sans changer les propriétés intrinsèques du matériau. Le but de nos travaux a consisté en l'étude des effets d'un traitement par laser excimère (XeCI) sur les propriétés chimiques (XPS et AES), structurales (XRD et GIXRD) et morphologiques (MEB) de surface d'acier. Outre le nettoyage de la surface, les analyses chimiques réalisées sur de l'acier ont mis en évidence pour des densités d'énergie importantes la formation d'une couche de Fe2O3 au détriment de FeOOH. Les observations MEB ont révélé la création de structures sphériques nanométriques. Ce traitement permet notamment d'améliorer la tenue à la corrosion de la surface.

  2. Comportement sous polarisation d'un acier dans des solutions simulant des bétons (sans chlorures ) : Etude 2003

    OpenAIRE

    Bouteiller, Véronique

    2004-01-01

    Un acier de précontrainte a été étudié sous polarisation dans des solutions simulant des bétons (sans chlorures). L'acier a été étudié sous quatre états de surface différents (acier tel quel, acier poli, acier rouillé artificiellement et acier rouillé naturellement dans trois solutions différentes simulant des bétons "sain", légèrement carbonaté et "carbonaté". Les courbes potentiodynamiques montrent que la formation d'oxydes et/ou le dégagement d'hydrogène dépendent de la surface de l'acier ...

  3. Some problems on the aqueous corrosion of structural materials in nuclear engineering; Problemes de corrosion aqueuse de materiaux de structure dans les constructions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Grall, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The purpose of this report is to give a comprehensive view of some aqueous corrosion studies which have been carried out with various materials for utilization either in nuclear reactors or in irradiated fuel treatment plants. The various subjects are listed below. Austenitic Fe-Ni-Cr alloys: the behaviour of austenitic Fe-Ni-Cr alloys in nitric medium and in the presence of hexavalent chromium; the stress corrosion of austenitic alloys in alkaline media at high temperatures; the stress corrosion of austenitic Fe-Ni-Cr alloys in 650 C steam. Ferritic steels: corrosion of low alloy steels in water at 25 and 360 C; zirconium alloys; the behaviour of ultrapure zirconium in water and steam at high temperature. (authors) [French] On presente un ensemble d'etudes de corrosion en milieu aqueux effectuees sur des materiaux utilises, soit dans la construction des reacteurs soit pour la realisation des usines de traitement des combustibles irradies. Les differents sujets etudies sont les suivants. Les alliages austenitiques Fer-Nickel-Chrome: comportement d'alliages austenitiques fer-nickel-chrome en milieu nitrique en presence de chrome hexavalent; Corrosion sous contrainte d'alliages austenitiques dans les milieux alcalins a haute temperature; Corrosion sous contrainte dans la vapeur a 650 C d'alliages austenitiques fer-nickel-chrome. Les aciers ferritiques; Corrosion d'aciers faiblement allies dans l'eau a 25 et 360 C; le zirconium et ses alliages; Comportement du zirconium tres pur dans l'eau et la vapeur a haute temperature. (auteurs)

  4. Soudage des aciers pour application mécanique

    CERN Document Server

    Deveaux, Dominique

    2016-01-01

    Ce guide détermine les bonnes pratiques pour comprendre les risques d’une forme d’assemblage multimatériaux : celui par soudage de nuances à forte teneur en carbone avec des éléments en acier de construction. Dans un premier temps, le rapport passe en revue l’examen des avaries sur des assemblages soudés pour l’application mécanique mettant en cause les aciers. Fissuration par fatigue, rupture fragile, rupture ductile, fissuration à chaud ou à froid sont autant de causes qui seront analysées. Dans un deuxième temps, il se concentre sur la conception des joints soudés. Du choix des nuances à la tenue vis-à-vis de la rupture fragile en passant par l’analyse en fatigue des assemblages soudés, c’est l’ensemble de la problématique qui est pris en compte.

  5. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects; Mecanismes de fragilisation sous irradiation aux neutrons d'alliages modeles ferritiques et d'un acier de cuve: amas de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Meslin-Chiffon, E

    2007-11-15

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  6. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  7. Cartel de l'acier : Des sanctions surprenantes pour une méthodologie exemplaire

    OpenAIRE

    Boy, Laurence

    2010-01-01

    National audience; Competition authorities and Cour de cassation bases in Iron Cartel case.; analyse détaillée de la motivation de la condamnation du Cartel de l'acier en 2010 par les autorités de concurrence.

  8. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage; Fissuration en relaxation des aciers inoxydables austenitiques - influence de l'ecrouissage sur l'endommagement intergranulaire

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  9. Influence of nitrogen on the stress corrosion cracking resistance of austenitic stainless steels in chloride environment; Influence de l'azote sur la resistance a la corrosion sous contrainte d'aciers inoxydables austenitiques en milieu chlorure

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, S

    2001-11-01

    The aim of this study is to investigate the influence of nitrogen additions on the Stress Corrosion Cracking (SSC) resistance of austenitic stainless steel in chloride environment. The investigation was carried out in two part: first, an experimental investigation with model industrial steels was carried out and secondly, numerical simulations based on the Corrosion Enhanced Plasticity Model were developed. Both slow strain rate tensile tests and constant load test of the different steels in boiling MgCl{sub 2} (153 deg C) at free potential show that, for a given plastic strain rate, nitrogen addition increases the critical stress for crack initiation without influencing the crack propagation rate. We observed that the creep rate under constant load was affected by the nitrogen content. As a consequence, the SCC behaviour (cracks density and propagation rate) depends on the nitrogen content. We thus confirm that the nitrogen content influences the corrosion - deformation interaction mechanisms via its positive contribution to the flow stress. These experimental results are reproduced semi-quantitatively by means of numerical simulations at the scale of crack. - dislocation interactions. The presence of nitrogen is modelled by an increased lattice friction stress, which in turn affects the dynamics of crack tip shielding by dislocation pile-ups. We conclude that nitrogen addition in austenitic stainless steels increases the SC crack initiation stress in proportion of the increased flow stress, without penalty in terms of SC crack propagation rate. (author)

  10. Modelling of microstructural creep damage in welded joints of 316L stainless steel; Modelisation de l'endommagement a haute temperature dans le metal d'apport des joints soudes d'acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, G

    2000-07-01

    Welded joints of 316L stainless steel under service conditions at elevated temperature are known to be preferential sites of creep damage, as compared to the base material. This damage results in the formation of cavities and the development of creep cracks which can lead to a premature failure of welded components. The complex two-phase microstructure of 316L welds was simulated by manually filling a mould with longitudinal deposited weld beads. The moulded material was then aged during 2000 hours at 600 deg. C. High resolution Scanning Electron Microscopy was largely used to examine the microstructure of the simulated material before and after ageing. Smooth and notched creep specimens were cut from the mould and tested at 600 deg. C under various stress levels. A comparison of the lifetime versus nominal stress curves for the base and welded materials shows a greater dependence of the welded material to creep phenomena. Observation and EBSD analysis show that damage is preferentially located along the austenite grain boundaries. The stress and strain fields in the notched specimens were calculated by finite element method. A correlation of this field to the observed damage was made in order to propose a predictive law relating the creep damage to the mechanical conditions applied locally. Further mechanical tests and simulation on CT specimens and mode II tubular specimens allowed validating the model under various multiaxial loading conditions. (author)

  11. Local approach: fracture at high temperature in an austenitic stainless steel submitted to thermomechanical loadings. Calculations and experimental validations; Approche locale: fissuration a haute temperature dans un acier inoxydable austenitique sous chargements thermomecaniques. Simulations numeriques et validations experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Poquillon, D

    1997-10-01

    Usually, for the integrity assessment of defective components, well established rules are used: global approach to fracture. A more fundamental way to deal with these problems is based on the local approach to fracture. In this study, we choose this way and we perform numerical simulations of intergranular crack initiation and intergranular crack propagation. This type of damage can be find in components of fast breeder reactors in 316 L austenitic stainless steel which operate at high temperatures. This study deals with methods coupling partly the behaviour and the damage for crack growth in specimens submitted to various thermomechanical loadings. A new numerical method based on finite element computations and a damage model relying on quantitative observations of grain boundary damage is proposed. Numerical results of crack initiation and growth are compared with a number of experimental data obtained in previous studies. Creep and creep-fatigue crack growth are studied. Various specimen geometries are considered: compact Tension Specimens and axisymmetric notched bars tested under isothermal (600 deg C) conditions and tubular structures containing a circumferential notch tested under thermal shock. Adaptative re-meshing technique and/or node release technique are used and compared. In order to broaden our knowledge on stress triaxiality effects on creep intergranular damage, new experiments are defined and conducted on sharply notched tubular specimens in torsion. These isothermal (600 deg C) Mode II creep tests reveal severe intergranular damage and creep crack initiation. Calculated damage fields at the crack tip are compared with the experimental observations. The good agreement between calculations and experimental data shows the damage criterion used can improve the accuracy of life prediction of components submitted to intergranular creep damage. (author) 200 refs.

  12. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  13. Understanding and modelling of the aniso-thermal cyclic mechanical behaviour of the AISI 316LN austenitic stainless steel; Comprehension et modelisation du comportement mecanique cyclique anisotherme de l'acier austenitique AISI 316LN

    Energy Technology Data Exchange (ETDEWEB)

    Gentet, D.

    2009-11-15

    The main subject of this report consists in proposing a mechanical model of the viscoplastic behaviour of an austenitic stainless steel under isothermal and aniso-thermal low cycle fatigue loadings at high temperatures (550-900 K). In this domain, numerous phenomena linked to dynamic strain ageing (DSA) and to dipolar dislocation structure formation may appear. Isothermal and aniso-thermal low cycle fatigue tension-compression tests were performed in order to verify some aspects about the effect of temperature on the mechanical behaviour. The study of the hysteresis loops and the observation of dislocation structures carried on transmission electron microscopy establish two different DSA mechanisms during isothermal tests. The effect of temperature history is shown for for particular temperature sequences. It is demonstrated that the stress amplitude increase when the sample is submitted to cycles at 'high temperature' is linked to the second mechanism of DSA. It comes from the increase of short range interaction between dislocations (chromium segregation), but it is also the consequence of the lack of dipolar structure annihilation at low temperature. From the experimental analysis of DSA mechanisms and dipolar restoration, a macroscopic aniso-thermal model is developed using physical internal variables (densities of dislocations). The equations of a polycrystalline model are rewritten with the aim of getting a simple multi-scale approach which can be used on finite elements analysis software. Between 550 and 873 K, the simulation results are in good accordance with the macroscopic and microscopic observations of low cycle fatigue, relaxation, and 2D-ratchetting tests. (author)

  14. Damage study of an austenitic stainless steel in high cycle multiaxial fatigue regime;Etude de l'endommagement d'un acier inoxydable austenitique par fatigue multiaxiale a grand nombre de cycles

    Energy Technology Data Exchange (ETDEWEB)

    Poncelet, M. [CEA Saclay, DEN, SRMA, 91 - Gif-sur-Yvette (France); Barbier, G.; Raka, B.; Vincent, L.; Desmorat, R. [LMT Cachan, ENS Cachan/CNRS/UPMC/PRES Univ. Sud Paris, 94 - Cachan (France); Barbier, G. [EDF R and D / LaMSID, 92 - Clamart (France)

    2010-02-15

    Biaxial fatigue tests are performed up to 1 000 000 cycles at room temperature. Cross specimens of 304L steel thinned in their centre to initiate crack, are loaded by a biaxial testing machine. The strain at the centre of the sample is measured during loading using a stroboscopic Digital Image Correlation (DIC) technique, and crack initiation on the whole gauge zone is early detected by a second DIC-based measurement. A special optical assembly is designed to allow for simultaneous measurements. Three types of loadings are performed: equi-biaxial with a loading ratio R = 0.1, equi-biaxial with loading ratio R = -1, pseudo uniaxial (cyclic loading at R 0.1 in one direction and constant loading in the other). First results are commented. (authors)

  15. ETUDE DU COMPORTEMENT MECANIQUE DES ACIERS HYPEREUTECTOIDES DANS LE DOMAINE DE TEMPERATURE INTERCRITIQUE DYNAMIQUE

    Directory of Open Access Journals (Sweden)

    R GHERIANI

    2001-06-01

    Full Text Available L'étude que nous présentons contribue à une meilleure compréhension de l'influence de la vitesse de déformation et de la température sur le comportement mécanique des aciers hypereutectoïdes dans le domaine de température intercritique dynamique. Les courbes expérimentales obtenues en torsion présentent un intérêt notable dans la mesure où elles permettent de caractériser le comportement mécanique de l'acier 100C6; de plus, elles fournissent  des informations précieuses sur la capacité maximale de déformation de l'alliage. Les essais de torsion, menés jusqu'à rupture des éprouvettes, permettent d'effectuer un classement des matériaux selon leur ductilité. Les résultats obtenus sur l'acier 100C6 ont permis de préciser le comportement mécanique à tiède  de cet acier. Les aciers hypoeutectoïdes présentent, dans les domaines de température compris entre Ac1 et Ac3 en condition dynamique, une capacité de déformation élevée résultant de l'évolution, en cours de déformation, des phases a et g et de leurs mécanismes d'adoucissement. Nous nous sommes alors posé la question: quel est le comportement d'un acier hypereutectoïde, donc ne présentant  pas de domaine biphasé (a + g à l'équilibre, lorsqu'il est déformé à une température supérieure à Ac1?

  16. Influence de la nuance d'acier des roues ferroviaires en Fatigue de Contact de Roulement

    Directory of Open Access Journals (Sweden)

    Langueh Amavi

    2013-11-01

    Full Text Available Cet article propose une méthodologie de prédiction de la durée de vie des roues ferroviaires permettant de prendre en compte les sollicitations locales via la géométrie réelle du contact roue/rail, le comportement inélastique du matériau (acier et d'intégrer un critère de fatigue. Le contexte industriel, d'étudier l'influence de la nuance d'acier sur la durabilité de la roue. Les principales étapes de l'approche sont l'identification du comportement des matériaux, la détermination des champs de contrainte-déformation stabilisés et l'application d'un critère de fatigue. L'algorithme stationnaire est utilisé pour déterminer les contraintes et déformations suivant les conditions d'exploitation. Trois aciers ont été étudiés en analysant leurs réponses mécaniques, leurs limites d'adaptation et leurs durées de vie moyenne.

  17. DIAGRAMME TRC ET STRUCTURES DE TREMPE ET DE REVENU D'UN ACIER FAIBLEMENT ALLIE AU MANGANESE-CHROME

    Directory of Open Access Journals (Sweden)

    Z LAROUK

    2008-06-01

    Full Text Available Cette étude concerne un acier faiblement allié au manganèse et chrome. L’utilisation principale de cet acier est la fabrication des tubes sans soudure, employés pour le forage ou le transport pétrolier. Les tubes traités thermiquement doivent supporter d’importantes contraintes de tension et de compression, sans risque de rupture. Les tubes trempés à l’eau souffrent d’une hétérogénéité structurale impliquant une diminution de dureté à la surface interne. Le but de cette étude est de déterminer les structures de l’acier après différents types de traitements, au cours de refroidissement continus dans les conditions industrielles de trempe (930°C et de revenu (670°C. Les résultats montrent que la vitesse critique de trempe est de 50°C/sec et, pour éviter la formation de la ferrite, une vitesse plus grande que 12°C/sec est nécessaire. Cet acier a une bonne trempabilité (11mm. La décroissance de la dureté de la martensite revenue est remarquable lorsque la température atteint 600°C.

  18. SOUDAGE D'ACIER Z 2 CN 18-10 PAR LASER CO2

    OpenAIRE

    Petesch, B.; Sakout, A.; LAURENT M.; M. Robin

    1987-01-01

    Le soudage d'un acier Z 2 CN 18 par faisceau laser a été étudié. L'influence principaux paramètres vitesse, puissance, focalisation a été examinée. Les moyens classiques de caractérisation des soudures ont été utilisées : observations métallographiques forme de la zone fondue, quantité de porosités et énergie absorbée. Le maximum de pénétration correspond au maximum d'énergie absorbée.

  19. Effets du titane et du niobium sur l'oxydation à 950circC d'aciers ferritiques

    Science.gov (United States)

    Issartel, C.; Buscail, H.; Caudron, E.; Cueff, R.; Riffard, F.; El Messki, S.; Karimi, N.; Antoni, L.

    2004-11-01

    Nous avons étudié l'effet du titane et du niobium sur l'oxydation à 950circC d'un acier Fe-Cr chrominoformeur. La DRX in situ montre que le titane semble s'oxyder en formant Cr{2}TiO{5} et TiO{2} qui contribuent à une augmentation de la prise de masse des échantillons. Une partie du titane issu de ces oxydes semble doper la couche de chromine. Sa présence augmente la concentration en lacunes cationiques dans la chromine et augmente donc la diffusion du chrome dans la couche. Nous avons aussi montré que le niobium n'a pas d'influence sur l'oxydation de ce type d'acier à 950circC.

  20. Influence des inclusions sur la rupture d'un acier faiblement allié

    Science.gov (United States)

    Hausild, P.; Berdin, C.; Bompard, P.; Prioul, C.

    2003-03-01

    L'étude de la rupture d'un acier faiblement allié dans le domaine de la transition ductile fragile a permis de mettre en évidence la présence croissante, avec la température de sollicitation, d'amas d'inclusions de seconde phase sur les surfaces de rupture. On montre, à l'aide de modélisations par éléments finis, que ces amas jouent néanmoins un rôle mineur dans le déclenchement du clivage. En revanche, leur influence sur la propagation de la rupture ductile est importante. On peut alors expliquer l'anisotropie de la résilience en prenant en compte la géométrie des inclusions et leur répartition spatiale.

  1. Victor Legley: some notes on his thoughts and Cathédrale d’acier

    Directory of Open Access Journals (Sweden)

    de Roeck, Ronald

    2010-12-01

    Full Text Available The article proposes to extend the knowledge of the figure and work of Victor Legley. It offers some notes about his life, studies and professional activities. It informs about his activities as a musical philosopher, and makes some of his thoughts known about contemporary composition, music’s social function, the composer’s role, and the relations between composer, interpreter, critic and management, today. The major part of the article is dedicated to his compositions. La Cathédrale d’acier, opus 52, from 1958, has been chosen for an analytical research on his intense thematic work, typical for his production, and also to establish the general characteristics of this composition, representative of much of his work. Finally, we present some conclusions on the importance of his ideas and his production as a composerEl artículo propone ampliar el conocimiento de la figura y obra de Victor Legley. Empieza con unos apuntes sobre su vida, sus estudios y actividades profesionales. Destaca sus actividades como pensador de la música, y da a conocer algunas de sus ideas sobre la composición contemporánea, la función social de la música, el papel del compositor, el nivel estético en nuestros días. Buena parte del artículo se centra en su producción compositiva. Se ha escogido La Cathédrale d’acier, opus 52, de 1958, para hacer una investigación analítica del intenso trabajo temático, que es propio de su obra, y para establecer la características generales de esta composición, representativa de buena parte de su obra. Finalmente, se presentan unas conclusiones sobre la importancia de las ideas y la producción compositiva de Legley.

  2. Suivi in situ de l'avancement du frittage d'une poudre d'acier

    Science.gov (United States)

    Lame, O.; Bordère, S.; Denux, D.; Bouvard, D.

    2002-12-01

    Une manière simple de caractériser l'avancement du frittage d'une poudre est de suivre ses variations de densité relative. Cependant, pour les poudres d'acier préalablement compactées en matrice, la densité initiale est grande, par conséquent évolue peu lors du frittage. Au contraire, la microstructure et les propriétés du matériau évoluent beaucoup. Dans cette étude, l'avancement du frittage est suivi in situ au cours du frittage par deux caractéristiques physiques : la résistivité électrique et la viscosité. Les techniques innovantes développées pour ces mesures expérimentales sont présentées ainsi que l'intérêt des résultats pour la compréhension et la modélisation du frittage.

  3. Etude expérimentale et numérique de la propagation d'une fissure par fatigue dans un fil d'acier tréfilé entaillé.

    OpenAIRE

    CHARTIER, Cédric

    2007-01-01

    L'objectif de ce stage est d'étudier la propagation d'une fissure au sein d'un fil d'acier et a pour objectif, d'une part, d'initier des fissures les plus représentatives et reproductibles possibles sur fil d'acier non corrodé et, d'autre part, d'étudier la propagation sous l'effet de la fatigue.

  4. TRANSFORMATION ISOTHERME D'UN ACIER A HAUTE RESISTANCE 40 CDV 13

    Directory of Open Access Journals (Sweden)

    A BOUTEFNOUCHET

    2001-06-01

    Full Text Available L'étude dilatométrique du comportement de l'austénite en condition isotherme d'un acier ternaire, à haute résistance mécanique de nuance 40 CDV 13, nous a permis de tracer son diagramme TTT. L'austénitisation a été réalisée pendant 10 minutes à  qg = 950°C (utilisée dans  l'industrie. Les températures de maintien sont comprises entre Ac1 = 810°C et Ms  = 310°C. Dans ce diagramme TTT, on distingue deux domaines de transformation isotherme de l'austénite. Le domaine I (625°C £  qiso < Ac1 = 810°C dans lequel l'austénite se transforme en ferrite et en perlite, et le domaine II (325°C  £  qiso £ 475°C où l'austénite se transforme en bainite ou en ferrite probainitique. Ces transformations sont précédées pour toutes les températures de maintien isotherme d'une précipitation de carbures. En outre, ces deux domaines de transformation de l'austénite sont séparés par une large zone de stabilité de l'austénite comprise entre 500°C et 600°C. L'analyse approfondie des courbes dilatométriques enregistrées durant le maintien isotherme et le refroidissement final jusqu'à l'ambiante, nous a permis de déterminer qualitativement et quantitativement les phase mises en jeu par ces transformations isothermes de l'austénite.

  5. Fissuration en relaxation des aciers inoxydables austénitiques au voisinage des soudures

    Science.gov (United States)

    Auzoux, Q.; Allais, L.; Gourgues, A. F.; Pineau, A.

    2003-03-01

    Des fissures intergranulaires peuvent se développer au voisinage des soudures des aciers inoxydables austénitiques lorsqu'ils sont réchauffés dans le domaine de température compris entre 500^{circ}C et 700^{circ}C. A ces températures, les contraintes résiduelles post-soudage se relaxent par déformation viscoplastique. Il peut arriver que ces zones proches de la soudure soient tellement fragiles, qu'elles ne puissent accommoder cette faible déformation. Afin de préciser quelles peuvent être les modifications microstructurales qui conduisent à une telle fragilisation, on a examiné les microstructures de ces zones et révélé ainsi un écrouissage résiduel, responsable d'une forte élévation de la dureté. On a pu reproduire par hypertrempe puis laminage entre 400^{circ}C et 600^{circ}C une microstructure similaire. Des essais mécaniques (traction, fluage, relaxation, sur éprouvettes lisses et pré-fissurées) ont été réalisés à 550^{circ}C et à 600^{circ}C sur ces zones affectées simulées et sur un état de référence hypertrempé. Ils ont montré que l'écrouissage diminuait la ductilité dans le domaine de rupture intergranulaire, sans modifier qualitativement le mécanisme d'endommagement. Pendant la pré-déformation les incompatibilités de déformation entre grains conduiraient à l'existence de contraintes locales élevées qui favoriseraient la germination des cavités intergranulaires.

  6. Influence de la composition chimique et de la microstructure sur le dégazage de l'hydrogène des aciers inoxydables austénitiques destinés à l'ultravide

    CERN Document Server

    Reinert, Marie-Pierre

    Dans les installations métalliques sous ultravide, l'hydrogène est le principal constituant de l'atmosphère résiduelle. Le flux de dégazage d'une tôle en acier inoxydable austénitique, matériau fréquemment utilisé en technologie du vide, après un étuvage sous vide, est typiquement de quelques 10-12 Torr.1/cm2.s, et est constitué principalement d'hydrogène. Dans le cadre de cette étude, un appareillage de thermodésorption sous ultravide a été conçu et mis au point pour étudier les phénomènes d'adsorption, de diffusion et de piégeage de l'hydrogène résiduel dans les aciers inoxydables austénitiques. Différents aciers ont été étudiés: l'acier 316L (avec trois modes d'élaboration différents), l'acier 316LN et d'autres aciers stabilisés au titane ou au niobium. La microstructure et la couche d'oxyde de ces aciers ont été caractérisées à l'état de réception et pendant les cycles de thermodésorption. Pendant un cycle de thermodésorption, les principales espèces désorbées...

  7. Solutions adhésives et durabilité d'une liaison structurale d'un capteur céramique sur un roulement acier

    OpenAIRE

    Gaussens, Clélia

    2010-01-01

    L'application industrielle (non développée pour des raisons de confidentialité) concerne un assemblage céramique/acier. Cette thèse s’inscrit dans un programme Européen et vise à développer un assemblage industriel fiable entre des substrats céramique et acier par le biais d’un adhésif structural. L’assemblage doit assurer une transmission des efforts sur une large gamme de température et malgré un environnement sévère. La méthodologie de travail a consisté à définir l’impact des paramètres d...

  8. Évolution de la surface de plasticité sous chargement biaxial dans un acier inoxydable duplex

    Science.gov (United States)

    Aubin, V.; Quaegebeur, P.; Degallaix, S.

    2002-12-01

    Nous proposons une méthodologie de mesure automatique de la surface de plasticité pendant des chargements cycliques biaxiaux. La surface de plasticité est mesurée de manière discrète avec un faible offset de déformation plastique (2 10^{-5}) et des paramètres de mesure optimisés. La méthode est appliquée à un acier inoxydable duplex soumis à un trajet de chargement non-proportionnel. Les résultats montrent une distorsion et une translation de la surface de plasticité sans changement de taille. La méthode présentée permet également de vérifier la normalité de la vitesse d'écoulement plastique par rapport à la surface de plasticité.

  9. Prediction du profil de durete de l'acier AISI 4340 traite thermiquement au laser

    Science.gov (United States)

    Maamri, Ilyes

    Les traitements thermiques de surfaces sont des procedes qui visent a conferer au coeur et a la surface des pieces mecaniques des proprietes differentes. Ils permettent d'ameliorer la resistance a l'usure et a la fatigue en durcissant les zones critiques superficielles par des apports thermiques courts et localises. Parmi les procedes qui se distinguent par leur capacite en terme de puissance surfacique, le traitement thermique de surface au laser offre des cycles thermiques rapides, localises et precis tout en limitant les risques de deformations indesirables. Les proprietes mecaniques de la zone durcie obtenue par ce procede dependent des proprietes physicochimiques du materiau a traiter et de plusieurs parametres du procede. Pour etre en mesure d'exploiter adequatement les ressources qu'offre ce procede, il est necessaire de developper des strategies permettant de controler et regler les parametres de maniere a produire avec precision les caracteristiques desirees pour la surface durcie sans recourir au classique long et couteux processus essai-erreur. L'objectif du projet consiste donc a developper des modeles pour predire le profil de durete dans le cas de traitement thermique de pieces en acier AISI 4340. Pour comprendre le comportement du procede et evaluer les effets des differents parametres sur la qualite du traitement, une etude de sensibilite a ete menee en se basant sur une planification experimentale structuree combinee a des techniques d'analyse statistiques eprouvees. Les resultats de cette etude ont permis l'identification des variables les plus pertinentes a exploiter pour la modelisation. Suite a cette analyse et dans le but d'elaborer un premier modele, deux techniques de modelisation ont ete considerees, soient la regression multiple et les reseaux de neurones. Les deux techniques ont conduit a des modeles de qualite acceptable avec une precision d'environ 90%. Pour ameliorer les performances des modeles a base de reseaux de neurones, deux

  10. Quelques considérations sur l’évolution des normes de calcul des poteaux avec la section mixte acier-béton

    Directory of Open Access Journals (Sweden)

    Nicolae Chira

    2010-03-01

    Full Text Available Depuis près d’un siècle, le système de construction basé sur des portiques en acier ou mixtes acier béton est devenu l’un des types les plus utilisés dans le domaine du génie civil. Plusieurs générations d’ingénieurs se sont préoccupées du développement des méthodes de calcul et des technologies de fabrication relatives à ces structures. En vue d’un dimensionnement optimal des structures, les ingénieurs sont tenus de trouver un compromis entre les exigences structurales de résistance, rigidité et ductilité d’une part, et les objectifs d’utilisation et de fonction relevant d’exigences architecturales d’autre part. Cette article fait une comparaison entre différents méthodes de dimensionnement des poteaux mixtes acier béton, en tenant compte des plusieurs paramètres.

  11. Fragilisation par le zinc liquide des aciers haute résistance pour l'automobile Liquid zinc embrittlement of high strength automotive steels

    Directory of Open Access Journals (Sweden)

    Frappier Renaud

    2013-11-01

    Full Text Available Cette étude présente les investigations menées sur la fragilisation par le zinc liquide d'un acier électro-zingué. La caractérisation mécanique par essais de traction à haute température montre un important puits de ductilité entre environ 700 ∘C et environ 950 ∘C. L'observation au MEB des éprouvettes de traction indique que, dans la gamme de température observée pour laquelle il y a fragilisation, on a mouillage intergranulaire des joints de grains de l'acier à l'interface acier/revêtement par des films de Zn. La corrélation entre mouillage intergranulaire thermiquement activé d'une part, et propagation de fissure lors du chargement d'autre part, est discutée. This study deals with liquid zinc embrittlement for electro-galvanized steel. Mechanical characterization by high temperature tensile tests shows a drastic loss of ductility between 700 ∘C and 950 ∘C. SEM investigations show that steel grain boundaries under the steel/coating interface are penetrated by a liquid Zn channel, only in the temperature range of embrittlement. A correlation can be drawn between i thermal activated-grain boundary wetting and ii crack propagation in presence of external stress.

  12. Stress corrosion of austenitic steels mono and polycrystals in Mg Cl{sub 2} medium: micro fractography and study of behaviour improvements; Corrosion sous contrainte de mono et polycristaux d`aciers inoxydables austenitiques en milieu MgCI{sub 2}: analyse microfractographique et recherche d`ameliorations du comportement

    Energy Technology Data Exchange (ETDEWEB)

    Chambreuil-Paret, A

    1997-09-19

    The austenitic steels in a hot chlorinated medium present a rupture which is macroscopically fragile, discontinuous and formed with crystallographic facets. The interpretation of these facies crystallographic character is a key for the understanding of the stress corrosion damages. The first aim of this work is then to study into details the micro fractography of 316 L steels mono and polycrystals. Two types of rupture are observed: a very fragile rupture which stresses on the possibility of the interatomic bonds weakening by the corrosive medium Mg Cl{sub 2} and a discontinuous rupture (at the micron scale) on the sliding planes which is in good agreement with the corrosion enhanced plasticity model. The second aim of this work is to search for controlling the stress corrosion by the mean of a pre-strain hardening. Two types of pre-strain hardening have been tested. A pre-strain hardening with a monotonic strain is negative. Indeed, the first cracks starts very early and the cracks propagation velocity is increased. This is explained by the corrosion enhanced plasticity model through the intensifying of the local corrosion-deformation interactions. On the other hand, a cyclic pre-strain hardening is particularly favourable. The first micro strains starts later and the strain on breaking point levels are increased. The delay of the starting of the first strains is explained by a surface distortion structure which is very homogeneous. At last, the dislocations structure created in fatigue at saturation is a planar structure of low energy which reduces the corrosion-deformation interactions, source of micro strains. (O.M.) 139 refs.

  13. Initiation and growth of thermal fatigue crack networks in an AISI 304 L type austenitic stainless steel (X2 CrNi18-09); Amorcage et propagation de reseaux de fissures de fatigue thermique dans un acier inoxydable austenitique de type X2 CrNi18-09 (AISI 304 L)

    Energy Technology Data Exchange (ETDEWEB)

    Maillot, V

    2004-07-01

    We studied the behaviour of a 304 L type austenitic stainless steel submitted to thermal fatigue. Using the SPLASH equipment of CEA/SRMA we tested parallelepipedal specimens on two sides: the specimens are continuously heated by Joule effect, while two opposites faces are cyclically. cooled by a mixed spray of distilled water and compressed air. This device allows the reproduction and the study of crack networks similar to those observed in nuclear power plants, on the inner side of circuits fatigued by mixed pressurized water flows at different temperatures. The crack initiation and the network constitution at the surface were observed under different thermal conditions (Tmax = 320 deg C, {delta}T between 125 and 200 deg C). The experiment produced a stress gradient in the specimen, and due to this gradient, the in-depth growth of the cracks finally stopped. The obtained crack networks were studied quantitatively by image analysis, and different parameters were studied: at the surface during the cycling, and post mortem by step-by-step layer removal by grinding. The maximal depth obtained experimentally, 2.5 mm, is relatively coherent with the finite element modelling of the SPLASH test, in which compressive stresses appear at a depth of 2 mm. Some of the crack networks obtained by thermal fatigue were also tested in isothermal fatigue crack growth under 4-point bending, at imposed load. The mechanisms of the crack selection, and the appearance of the dominating crack are described. Compared to the propagation of a single crack, the crack networks delay the propagation, depending on the severity of the crack competition for domination. The dominating crack can be at the network periphery, in that case it is not as shielded by its neighbours as a crack located in the center of the network. It can also be a straight crack surrounded by more sinuous neighbours. Indeed, on sinuous cracks, the loading is not the same all along the crack path, leading to some morphological effect instead of shielding effect. A 2-D finite element modelling of multiple crack propagation has been performed: when the morphological effects are not dominant, there is a good agreement between modelling and experimental results. (author)

  14. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis; Modelisation physique des stades precurseurs de l'endommagement en fatigue dans l'acier inoxydable austenitique 316L

    Energy Technology Data Exchange (ETDEWEB)

    Depres, Ch

    2005-07-01

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  15. Improvement of stress corrosion cracking (SCC) resistance by cyclic pre-straining of 316L austenitic stainless steel in an aqueous boiling MgCl{sub 2} solution; Amelioration de la tenue a la corrosion sous contrainte (CSC) de l'acier inoxydable austenitique 316L en solution bouillante de MgCl{sub 2} par application d'une predeformation cyclique

    Energy Technology Data Exchange (ETDEWEB)

    Curiere, I. de; Bayle, B.; Magnin, Th. [Ecole Nationale Superieure des Mines, URA CNRS 1884, 42 - Saint-Etienne (France)

    2000-07-01

    Improving the materials resistance to stress corrosion cracking (SCC) has become a topic of wide interest for theoretical, engineering and financial reasons. The aim of this paper is to propose a process to delay the SCC damage. Recent studies of 316L austenitic stainless steel in boiling MgCl{sub 2} solutions show an improvement in SCC resistance by cyclic pre-straining in low cycle fatigue. This improvement consists of an increase in both strain to failure and crack initiation strain, during Slow Rate Tensile (SSRT) tests in aqueous solution. This paper analyses the effect of pre-fatigue in 316L on its mechanical and electrochemical responses to better understand the delay of SCC damage in boiling MgCl{sub 2}. The explanation for this beneficial effect is related to a modification of both surface electrochemical reactions kinetics and corrosion/plasticity interactions at the crack tip, due to the particular dislocation structure. (authors)

  16. Thermal fatigue of a 304L austenitic stainless steel: simulation of the initiation and of the propagation of the short cracks in isothermal and aniso-thermal fatigue; Fatigue thermique d'un acier inoxydable austenitique 304L: simulation de l'amorcage et de la croissance des fissures courtes en fatigue isotherme et anisotherme

    Energy Technology Data Exchange (ETDEWEB)

    Haddar, N

    2003-04-01

    The elbow pipes of thermal plants cooling systems are submitted to thermal variations of short range and of variable frequency. These variations bound to temperature changes of the fluids present a risk of cracks and leakages. In order to solve this problem, EDF has started the 'CRECO RNE 808' plan: 'thermal fatigue of 304L austenitic stainless steels' to study experimentally on a volume part, the initiation and the beginning of the propagation of cracks in thermal fatigue on austenitic stainless steels. The aim of this study is more particularly to compare the behaviour and the damage of the material in mechanic-thermal fatigue (cycling in temperature and cycling in deformation) and in isothermal fatigue (the utmost conditions have been determined by EDF for the metal: Tmax = 165 degrees C and Tmin = 90 degrees C; the frequency of the thermal variations can reach a Hertz). A lot of experimental results are given. A model of lifetime is introduced and validated. (O.M.)

  17. Proprietés mécaniques de surface d'un acier inoxydable traité par explosif

    Science.gov (United States)

    Paillé, L.; Gerland, M.; Villain, J. P.; Badawi, K. F.; Presles, H. N.; Bouchet, B.

    1994-02-01

    A new surface treatment technique by primary explosive was used on a 316L type austenitic stainless steel. Two explosive compositions, inducing a pressure of 1 GPa and 4 GPa respectively, were deposited in a thin layer on plane samples. The detonation induced effects have been characterized by different techniques. The surface roughness increases with the applied pressure, but remains lower than that obtained after shot peening. The microbardness profiles along a direction perpendicular to the treated surface and the microstructural study exhibit a marked hardening on several hundred micrometers associated with a profuse twinning. Moreover, for the 4 GPa pressure a very thin surface layer of fine recrystallized grains appears. In both cases, tensile residual stresses are measured at the surface and compressive stresses beyond 10~μm. The microstructure in the surface layers results of a noticeable thermal effect. The wear resistance of this stainless steel is improved by a factor 10 to 200 depending on the treatment conditions. Une technique de traitement de surface utilisant un explosif primaire a été utilisée sur un acier inoxydable austénitique de type 316L. Deux compositions explosives délivrant des pressions respectives de 1 GPa et 4 GPa ont été déposées en couche mince sur des échantillons plans. Les effets induits par la détonation ont été caractérisés par différentes techniques. La rugosité en surface augmente avec la pression appliquée mais reste très inférieure à celle obtenue après grenaillage. Les profils de microdureté suivant un axe perpendiculaire à la surface traitée et l'étude microstructurale montrent un écrouissage marqué sur quelques centaines de micromètres associé à un maclage important auquel s'ajoute, pour la pression de 4 GPa, une fine recristallisation en surface. Dans les deux cas, les contraintes résiduelles sont de tension en surface et passent en compression au-delà de 10~μm. La microstructure des

  18. Etude de la migration des interstitiels dans des austenites Fe, Cr (18), Ni (14) pures et industrielles par irradiation dans un microscope a tres haute tension: Role du carbone et du titane

    Science.gov (United States)

    Housseau, N.; Pelissier, J.

    1983-12-01

    Nous avons étudié le rôle des impurtés (C ou Ti) dans la condensation et la migration des défauts interstitiels. Les échantillons étudiés sont des aciers austénitiques: (a) acier de synthèse de haute pureté (Cr 18, Ni 14, Fe) avec ou sans carbone; (b) acier industriel avec C (800 ppm) ou Ti (0,45%). Les échantillons ont été irradiés dans un microscope à très haute tension aux doses allant de 10 -4 jusqu'à 10 -1 dpa aux températures de 300°C à 400°C. Dans de telles conditions les défauts observés sont des boucles interstitielles. L'étude de la variation de l'épaisseur de la zone dénudée près du bord de la lame mince en fonction de la température nous a permis d'évaluer l'énergie de migration effective de l'interstitiel dans ces alliages. Dans l'austénite de synthèse carburée ou non sa valeur est de 0.8 eV. Dans l'acier industriel au titane carburé ou non on obtient 2.0 eV. Nous n'avons pas observé d'effet lié au carbone. L'examen de la densité de boucles à saturation dans les divers aciers suggère une forte énergie de liaison interstitiel-titane. Cette énergie de liaison, si l'ont admet que le titane est la seule impureté agissante du système, peut être estimée à 1.2 eV.

  19. Effet de l'etat de la surface de l'acier au carbone 300W sur l'entartrage par la gibbsite dans le procede Bayer

    Science.gov (United States)

    Gavril, Liliana

    Une etude a ete effectuee sur l'entartrage des surfaces en acier au carbone par la gibbsite dans le procede Bayer. Trois methodes ont ete utilisees afin de determiner le mecanisme de formation du tartre: mesure de la vitesse d'entartrage, etude electrochimique et protection cathodique. Cette etude demontre que le tartre de gibbsite est un tartre de cristallisation et que l'etat physico-chimique de la surface metallique a une influence marquee sur l'entartrage. Ainsi, l'oxyde en surface a ete identifie comme un facteur determinant pour l'entartrage. Les essais electrochimiques ont montre que la couche d'oxyde formee dans les solutions Bayer est un oxyde mixte de fer et d'aluminium. Les essais de protection cathodique a courant constant valident le role determinant joue par l'oxyde sur l'entartrage, puisqu'en empechant l'oxyde de se former, l'entartrage est pratiquement elimine. Le mecanisme d'adherence du tartre a l'acier implique trois etapes, soit l'oxydation du metal, la formation de la goethite/goethite alumineuse sur l'oxyde et finalement, la germination de la gibbsite sur la goethite/goethite alumineuse.

  20. EFFET DES TRAITEMENTS THERMIQUES SUR LA REACTION ENTRE DES COUCHES MINCES DE TITANE ET DES SUBSTRATS EN ACIER

    Directory of Open Access Journals (Sweden)

    D Slimani

    2015-06-01

    Full Text Available Des couches minces du titane pur ont été déposées avec la méthode de pulvérisation cathodique sur des substrats en acier, type FF80 K-1 contenants ~1% mass. en carbone. La réaction entre les deux parties du système substrat-couche mince est activée avec des traitements thermiques sous vide dans l’intervalle de températures de 400 à900°Cpendant 30 minutes. Les Spectres de diffraction de rayons x confirment l’inter- diffusion des éléments  chimiques du système résultants la formation et la croissance des nouvelles phases en particulier le carbure binaire TiC ayant des caractéristiques thermomécaniques importantes. L’analyse morphologique des échantillons traités  avec le microscope électronique à balayage (MEB montre l’augmentation du flux de diffusion atomique avec la température de recuit, notamment la diffusion du manganèse et du fer vers la surface libre des échantillons aux températures élevées provoquant la dégradation des propriétés mécaniques des revêtements contrairement au premiers stades d’interaction où on a obtenu des bonnes valeurs de la microdureté.

  1. Caractérisation physique et mécanique de l'acier 4140 nitruré et implanté

    Science.gov (United States)

    Benarioua, Y.; Chicot, D.; Lesage, J.

    2005-05-01

    La nitruration est un procédé thermochimique destiné à améliorer les propriétés chimiques et mécaniques des aciers et des fontes. Les procédés les plus courant sont la nitruration gazeuse, la nitruration en bain de sels et la nitruration ionique par plasma. Cette dernière présente certains avantages par rapport aux deux précédentes, elle est moins polluante, consomme moins d'énergie et permet un traitement local. De manière générale, quel que soit le procédé utilisé, le processus de nitruration des aciers se caractérise par la diffusion d'azote à partir de la surface vers le cœur du matériau et par la formation d'une couche de combinaison superficielle après une période d'incubation. Si le temps du traitement est suffisamment long, on constate un ralentissement de la croissance de la couche de combinaison alors que la diffusion de l'azote se poursuivre vers le cœur de la pièce en formant une solution solide d'insertion dans la nitroferrite ou des précipités de nitrures ou de carbonitrures d'éléments alliés. Pour ce travail et en vue d'améliorer le comportement mécanique des échantillons, les aciers nitrurés ioniquement pour deux taux d'activation ont subi un traitement supplémentaire d'implantation d'ions d'azote. La caractérisation, tant du point de vue microstructurale que mécanique, des couches obtenues à partir de la nitruration ionique avec ou sans implantation ionique a été effectué et les moyens utilisés dans cette étude sont la microdureté, diffraction de rayons X, microscopies optique et électronique à balayage.

  2. Inhibition de la corrosion d'acier au carbone en milieu H3PO4 2M par des composés organiques de type ``triazine''

    Science.gov (United States)

    Bekkouch, K.; Aouniti, A.; Hammouti, B.; Kertit, S.

    1999-05-01

    The effect of addition of some triazine compounds on the corrosion behaviour of steel in 2M H3PO4 has been studied by weight loss and electrochemical polarisation methods. Both methods showed that the dissolution rate was dependent on the chemical properties and concentration of the product. From comparison of results, it was found that 6-azathymine (T6) is the best inhibitor and its inhibition efficiency reaches a maximum value of 86% at 10-3 M. Polarisation measurements indicated that T6 acts as cathodic inhibitor by merely blocking the reaction sites without changing the mechanism of the hydrogen evolution reaction. It was found that T6 was adsorbed on steel surface according to a Langmuir isotherm model. The effect of temperature indicated that inhibition efficiency of T6 is dependent on the temperature in the range 25-50 circC. L'effet de l'addition de certains composés organiques de type triazine sur la corrosion d'un acier en milieu H3PO4 2M a été étudié à l'aide des méthodes électrochimiques et gravimétriques. Les résultats obtenus ont montré que la vitesse de dissolution de l'acier dépend de la structure moléculaire et de la concentration du produit. La comparaison des efficacités inhibitrices montre que le 6-azathymine (T6) est le meilleur inhibiteur de la série des triazines testés. L'efficacité inhibitrice du T6 atteint une valeur maximale de 86 % à 10-3 M. L'allure des courbes de polarisation indique que le T6 agit essentiellement comme inhibiteur de type cathodique par adsorption à la surface de l'acier selon le modèle de l'isotherme de Langmuir. L'efficacité inhibitrice du T6 dépend de la température dans le domaine allant de 25 à 50 circC.

  3. Corrosion influencée par les micro-organismes : influence du biofilm sur la corrosion des aciers, techniques et résultats recents

    Science.gov (United States)

    Feugeas, F.; Magnin, J. P.; Cornet, A.; Rameau, J. J.

    1997-03-01

    Microbiologically Influenced Corrosion (M.I.C.) studied since the beginning of this century, is responsible for the degradation of many metallic equipments. This study is a review of results dealing with M.I.C. on several types of steels as: carbon steels, stainless steels, welded steels and covered steels. M.I.C. occurs only in presence of a biofilm. The first part of this study describes chemical and physical factors involved in its development, technical methods for studying biofilms, and its contribution in the corrosion process. The second part is devoted to the study of M.I.C. cases linked with metal nature and different aqueous environments and the last part reviews the mainly mecanisms of biocorrosion. La Corrosion Influencée par les Micro-organismes (C.I.M.) ou biocorrosion, phénomène étudié depuis le début du siècle, est responsable de la dégradation d'un grand nombre d'ouvrages métalliques. Cette étude a pour but de faire le point des connaissances sur la corrosion influencée microbiologiquement de divers types d'aciers au carbone, d'aciers inoxydables, d'assemblages soudés et d'aciers revêtus. La C.I.M. n'apparaît qu'en présence d'un biofilm. La première partie de cette étude décrit les facteurs physico-chimiques impliqués dans la formation du biofilm, ces moyens d'études ainsi que son action dans le processus de biocorrosion. La seconde partie est consacrée à la description des cas de biocorrosion classés en fonction de la nature des métaux et des milieux avec lesquels ils sont en contact. La dernière partie de ce document passe en revue les principaux mécanismes de biocorrosion décrits.

  4. Évolution des contraintes résiduelles dans la couche de diffusion d’un acier modèle Fe-Cr-C nitruré

    DEFF Research Database (Denmark)

    Jegou, Sébastien; Barrallier, Laurent; Somers, Marcel A. J.

    2011-01-01

    Limiter la fatigue et la corrosion des pièces est possible grâce à une nitruration. Des contraintes résiduelles en découlent. Le rôle de la diffusion du carbone sur le développement de ces contraintes a été étudié sur un acier modèle Fe-3%m.Cr-0.35%m.C.......Limiter la fatigue et la corrosion des pièces est possible grâce à une nitruration. Des contraintes résiduelles en découlent. Le rôle de la diffusion du carbone sur le développement de ces contraintes a été étudié sur un acier modèle Fe-3%m.Cr-0.35%m.C....

  5. Électropolymérisation de l'aniline en milieu neutre : application au dépôt de polyaniline sur acier doux

    Science.gov (United States)

    Camalet, J. L.; Lacroix, J. C.; Aeiyach, S.; Lacaze, P. C.

    1998-06-01

    The use of perchlorate ions allowed to carry out the aniline electropolymerization on Pt and mild steel in neutral aqueous medium and yield conducting, homogenoeus and adhering polyaniline films. Their structure, studied by IR, SEC and MS-MALDI, was characterized by a low degree of polymerization (DP ≈ 9) and a linear structure with chain coupling in 1,4 position of aniline rings. L'utilisation de l'ion perchlorate permet de réaliser l'électropolymé risation de l'aniline sur électrode de Pt et d'acier doux en milieu aqueux neutre (pH = 7). Des films conducteurs, homogènes et adhérents aux substrats sont obtenus. L'analyse par IR, CES et MS-MALDI, révèle un faible degré de polymérisation (DP ≈ 9) et des couplages essentiellement 1-4 des noyaux aromatiques.

  6. Analyse statistique de l'assemblage acier/aluminium réalisé par le procédé de soudage MIG-CMT

    OpenAIRE

    Mezrag, Bachir; Benachour, Mustapha; Deschaux Beaume, Frédéric

    2014-01-01

    International audience; La dépendance vis-à-vis des paramètres de soudage de la géométrie de l'assemblage hétérogène acier/aluminium réalisé par le procédé MIG-CMT dans une configuration à clin est étudiée à travers un plan d'expérience. Les paramètres choisis comme facteurs d'influence sont la puissance de soudage, la distance entre la torche et la pièce ou "stick-out", le débit de gaz et la vitesse de soudage, tandis que les caractéristiques géométriques sélectionnées comme fonctions object...

  7. ECHAUFFEMENT ET EVOLUTION STRUCTURALE D’UN ACIER XC 42 LORS D’UN ESSAI DE TORSION A 700 °C

    Directory of Open Access Journals (Sweden)

    R BENSAHA

    2001-12-01

    Full Text Available Ce travail a pour but de montrer qu'il est possible d’apprécier la température et de développer un modèle simple de calcul de la recrudescence de la température en cours de déformation pour un acier XC 42 à une température d'essai  de 700°C et pour deux vitesses de déformation généralisées différentes de 5s-1 et 30s-1.                 Cette étude prend en considération, d'une part l'enthalpie  du changement de phase a®g  qui se libère au cours de la déformation dans l'intervalle de température A1-A3, et d'autre part, des mécanismes thermiquement activées (restauration et recristallisation dynamique mis en jeu lors de la déformation du matériau. Comme nos essais étaient pratiqués à la température de 700°C, proche de celle du point de transformation A1, les structures obtenues après trempe rapide montrent bien que pendant la déformation le matériau a subi la transformation de phase a®g, provoquée par l'auto échauffement de l'acier XC42. Le degré d'austénitisation est donc fonction de l'auto échauffement du matériau qui, à grande vitesse de déformation (227°C, est plus important qu'à faible vitesse (142°C.

  8. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  9. Etude analytique et numérique de la réponse en vibration à hautes fréquences d'éprouvettes de fatigue vibratoire des métaux. Application aux aciers

    Science.gov (United States)

    Ben Aich, A.; El Kihel, B.; Kifani, A.; Sahban, F.

    1994-07-01

    In the present paper, the so-called " ultrasonic fatigue " or fatigue at very high frequency has been studied in the materials elastic behaviour case while neglecting the thermal effects that influence the mechanical fields. The determination of mechanical fields and specimen resonance length has been done both analytically and numerically. The numerical method used for this calculation is the finite element method (FEM). Martensitic steel " Soleil A2 " and austenitic steel " ICL 472 BC " have been considered in order to compare the two methods (analytical and numerical). It is shown that a perfect convergence is obtained between the two solutions. Dans le présent travail, la fatigue vibratoire a été étudiée dans le cas du comportement élastique des matériaux en négligeant les effets thermiques pouvant influencer les champs mécaniques. La détermination de ces champs et de la longueur de résonance des éprouvettes de fatigue a été faite analytiquement et numériquement. Le calcul numérique effectué se base sur la méthode des éléments finis. Dans le but d'une comparaison des solutions analytiques et numériques, deux aciers ont été considérés : un acier martensitique (Soleil A2) et un acier austénitique de type 18-10 (ICL 472 BC). Une parfaite convergence est obtenue entre les deux solutions.

  10. MODÉLISATION DES FLUX DE CHALEUR GÉNÉRÉS PAR FROTTEMENT GLISSANT DANS UN CONTACT CUIVRE-ACIER TRAVERSÉ PAR UN COURANT ÉLECTRIQUE

    Directory of Open Access Journals (Sweden)

    A BOUCHOUCHA

    2001-06-01

    Full Text Available Le problème de la conduction de la chaleur dans un contact électrique glissant cuivre–acier est étudié. Le couple fonctionne dans des conditions atmosphériques et est donc refroidi par convection naturelle à travers les faces latérales. En utilisant l'équation de la chaleur, un modèle de calcul de la température interfaciale a été élaboré. A l'aide de la méthode des volumes finis, les résultats de la température en fonction de la charge normale, la vitesse de glissement et le courant électrique sont donnés. Une comparaison avec la méthode d'Archard est faite. Les résultats montrent une bonne concordance. Une discussion globale du modèle élaboré et son application dans les contacts électriques glissants a été dégagée.

  11. Controle sismique d'un batiment en acier de 1 etage par amortisseurs elastomeres et contreventements en Chevron

    Science.gov (United States)

    Girard, Olivier

    ). Bien que la demande en deplacement soit plus grande pour le systeme propose que pour un systeme contrevente traditionnel, la demande en deplacement est adequatement controlee. Finalement, il a ete possible de confirmer que le systeme propose repond elastiquement aux sollicitations sismiques et son comportement apres une sollicitation violente est adequat. Toutefois, les connaissances limitees du materiel elastomere employe causent l'obtention de dimensionnement moins performant qu'attendu. L'ensemble de l'etude a permis de mettre en relief les caracteristiques et les avantages indeniables du SRFS propose. Toutefois, certains points, necessitant davantage d'etudes, ont egalement ete souleves lors de cette recherche : le comportement de l'elastomere utilise pour un plus vaste domaine de situations que celle consideree dans cette etude (par exemple, l'impact de la temperature sur le caoutchouc et le comportement en fatigue de ce dernier) ainsi que le comportement du systeme etudie pour un domaine plus vaste d'applicabilite (par exemple, l'applicabilite du systeme a des batiments multietages). mots cles : Controle sismique, elastomere, saut de periode, amortisseur, charpente d'acier, genie parasismique, dynamique des structures.

  12. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Webb, T.

    1986-01-01

    The proposed use of gamma radiation from cobalt 60 and cesium 137 for food irradiation in the United Kingdom is discussed, with particular reference to the possible dangers and disadvantages to the safety and wholesomeness of the food.

  13. [Food irradiation].

    Science.gov (United States)

    Migdał, W

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by Codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Institute of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19MeV, 1 kW) and an industrial unit Elektronika (10MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permission for irradiation for: spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables.

  14. Soudage hybride Laser-MAG d'un acier Hardox® Hybrid Laser Arc Welding of a Hardox® steel

    Directory of Open Access Journals (Sweden)

    Chaussé Fabrice

    2013-11-01

    Full Text Available Le soudage hybride laser-MAG est un procédé fortement compétitif par rapport aux procédés conventionnels notamment pour le soudage de fortes épaisseurs et les grandes longueurs de soudure. Il connait de ce fait un développement important dans l'industrie. La présente étude s'est portée sur la soudabilité de l'acier Hardox® par ce procédé. Un large panel de techniques de caractérisation a été employé (mesures thermiques, radiographie X, duretés Vickers, macrographie…. L'objectif étant de déterminer l'influence des paramètres du procédé sur la qualité de la soudure et d'étendre notre compréhension des phénomènes se déroulant lors de ce type de soudage. Hybrid Laser Arc Welding (HLAW technology is a highly competitive metal joining process especially when high productivity is needed and for the welding of thick plates. It is a really new technology but its implementation in industry accelerates thanks to recent improvements of high power laser equipment and development of integrated hybrid welding heads. This study focuses on weldability of Hardox® 450 steel by HLAW. Welding tests were conducted by making critical process parameters vary. Then a large panel of characterization techniques (X-Ray radiography, macroscopic examination and hardness mapping was used to determine process parameters influence on weldability of Hardox 450® Steel.

  15. Etude du revenu de l'acier z 10 CDNbV0902 (type 9% Cr, 2% Mo + Nb,V) envisage pour la realisation de certains composants des reacteurs a neutrons rapides

    Science.gov (United States)

    Pelletier, M.; Vilar, R. M.; Cizeron, G.

    1982-02-01

    Après trempe depuis 1100°C, l'acier étudié est formé de ferrite stable à haute température et de martensite. Au cours de revenus anisothermes, la phase martensitique est le siège de la précipitation successive de carbures des types M 3C, M 7C 3 et M 2C, ces deux derniers étant responsables d'un durcissement secondaire significatif. Aux températures plus élevées, ces carbures se dissolvent tandis qu'apparaissent des carbures des types M 23C 6 et M 6C. La phase ferritique initialement sursaturée est, par ailleurs, le siège d'une précipitation de carbures des types M 2C et M 23C 6.

  16. Étude par diffraction des rayons X de la nitruration plasma d'un acier 304L Influence sur l'oxydation à 1000 ^{circ}C

    Science.gov (United States)

    Marot, L.; Buscail, H.; Straboni, A.; Riffard, F.; Caudron, E.; Cueff, R.

    2002-07-01

    This work presents the influence of various nitridation parameters on the 304L steel oxidation at 1000 ^{circ}C, in air under atmospheric pressure. Nitridation temperatures were ranging between 300 ^{circ}C and 430 ^{circ}C with exposure times lasting from 2 to 8 hours. At 300 and 430 ^{circ}C, the nitridation treatment leads to the solid solution surface formation γ-N without any nitride formation. After oxidation at 1000 ^{circ}C of blank specimens, X ray diffraction reveals the FeCr2O4 spinel formation. This oxide does not act as a good diffusion barrier. With nitrogen treated specimens, the higher the nitridation temperature is and the longer the exposure time is, better is the oxidation behaviour at 1000 ^{circ}C. We then observe that the Cr{1,3}Fe{0,7}O3 oxide is more present in the oxide sale from the very beginning of the oxidation test which is correlated to a final lower mass gain. Cette étude porte sur l'influence des paramètres de nitruration plasma sur l'oxydation de l'acier 304L à 1000 ^{circ}C, sous air, à la pression atmosphérique. Les températures employées lors de la nitruration ont été de 300 ^{circ}C et 430 ^{circ}C pour des durées de nitruration variant entre 2 et 8 heures. A 300 et 430 ^{circ}C, la nitruration conduit à la formation d'une solution solide γ-N en surface sans provoquer la formation de nitrures. Après oxydation à 1000 ^{circ}C du 304L non nitruré, la diffraction des rayons X révèle la formation d'une couche de type spinelle FeCr2O4 qui ne semble pas jouer le rôle de barrière de diffusion. Pour les échantillons préalablement nitrurés, plus la température de nitruration est élevée et plus la durée du traitement est longue, meilleur est le comportement en oxydation. Nous observons alors l'oxyde Cr{1,3}Fe{0,7}O3 en proportion importante dès le début de l'oxydation et une prise de masse finale plus faible.

  17. Comportement des poteaux composites en profils creux en acier remplis de béton Behavior of composite columns in hollow steel section filled with concrete

    Directory of Open Access Journals (Sweden)

    Othmani N.

    2012-09-01

    Full Text Available Le but de cet article, est la determination des rigidites flexionnelles EIx et EIy d’fune section mixte acier beton et plus precisement d’fun poteau en tube d’facier de section rectangulaire, remplie de beton, sollicitee a la flexion bi-axiale (N, Mx et My. L’festimation des rigidites sera faite a partir d’fune approche theorique par une analyse du poteau en elements finis (element barre a 4 degres de liberte, basee sur les conditions d’fequilibres a mi-portee en utilisant la relation moment-courbure (M–Φ de l’felement deforme par application de l’fequation suivante: EI=M/Φ. Le comportement des materiaux est celui comme adopte par les reglements Eurocode 2 et 3, respectivement pour le beton et l’facier. Afin de valider l’fapproche theorique utilisee dans cette etude, deux comparaisons ont ete faites : une premiere permettant de comparer les resultats des rigidites determinees par les relations moments courbures et celles calculees par l’fEurocode 4 et une deuxieme comparaison entre les charges de ruines de deux poteaux de grandeurs natures avec ceux testes au laboratoire [2]. Au vu des resultats obtenus, nous pouvons conclure que l’approche théorique utilisée dans cette étude ainsi que les modèles de comportement des matériaux sont adéquats pour ce genre de problèmes. The purpose of this paper is the determination of flexural stiffness EIx and EIy of a concrete filled rectangular cross section of a composite steel column, under biaxial bending (N, Mx and My. The rigidities will be estimated from a theoretical approach using a finite element analysis (element bar with 4 degrees of freedom, based on the equilibrium conditions at mid-span using the moment-curvature relationships (M–Φ of the deformed element by applying the following equation: EI=M/Φ. The material behavior is the one adopted by Eurocode 2 and 3, respectively, for concrete and steel. To validate the theoretical approach used, two comparisons

  18. Improvement of the SCC resistance of FCC alloys: influence of pre-fatigue on the SCC resistance of the austenitic stainless steel-316L in a MgCl{sub 2} boiling solution at 117 deg C; Recherche d'une amelioration du comportement en CSC d'alliages de structure CFC: influence d'une pre-deformation en fatigue oligocyclique sur le comportement en CSC de l'acier inoxydable austenitique 316L dans une solution bouillante de MgCl{sub 2} a 117 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Curiere, I. de

    2000-12-01

    The aim of this study is to analyse the effect of pre-fatigue of FCC materials on their mechanical and electrochemical response to better understand and delay the SCC damage. The material/environment couple tested is the 316L polycrystalline austenitic stainless steel in boiling MgCl{sub 2} at 30% mass. Samples are pre-strained in low cycle fatigue under plastic strain control, with a p/2 value of 0.4%, for various number of cycles (25%, 75% and at the number of cycles to reach saturation during pre-fatigue). It was found that only pre-fatigue at saturation improves the SCC resistance of the material, both on SSRT and constant load tests. A delayed crack initiation up to 10% of strain. which increases strain to failure by half. mostly accounts for this beneficial effect, during SSRT tests. Furthermore, other pre-straining only resulted in loss of strain to fracture and no delay in crack initiation. We related the crack initiation delay to the surface strain state due to pre-fatigue. It provides fine parallel slip bands. homogeneously located at the surface of the samples. This surface state induces an increasing anodic surface-cathodic surface ratio which lowers the kinetics of localised corrosion. thus that of crack initiation. We also show some experiments implying that pre-fatigue at saturation decreases the SCC crack growth velocity which can be understood through the CEP (Corrosion Enhanced Plasticity) Model. We also show that this beneficial effect is probably available on other fcc material/environment couples, such as OFHC Cu/ 1 M NaNO{sub 2} at pH 9. (author)

  19. Food irradiation makes progress

    Energy Technology Data Exchange (ETDEWEB)

    Kooij, J. van (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria))

    1984-06-01

    In the past fifteen years, food irradiation processing policies and programmes have been developed both by a number of individual countries, and through projects supported by FAO, IAEA and WHO. These aim at achieving general acceptance and practical implementation of food irradiation through rigorous investigations of its wholesomeness, technological and economic feasibility, and efforts to achieve the unimpeded movement of irradiated foods in international trade. Food irradiation processing has many uses.

  20. Food irradiation in China

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, L.

    1986-08-01

    The paper concerns food irradiation in The People's Republic of China. Its use is envisaged to prolong storage times and to improve the quality of specific foodstuffs. Commercialisation in China, demonstration plants, seasonal shortages and losses, Shanghai irradiation centre, health and safety approval, prospects for wider applications and worldwide use of food irradiation, are all discussed.

  1. Variations de résistivité électrique associées aux transformations martensitiques dans l'acier à mémoire de forme FM30

    Science.gov (United States)

    Bouraoui, Tarak; Tamarat, Karim; Dubois, Bernard

    1996-07-01

    The Fe-31.6wt% Mn-6.45wt% Si (FM30) steel showed forward, reverse and isothermal martensitic transformations. These phenomena were detected by electrical resistance measurements as a function of temperature. The forward transformation failed at the appearance of the antiferromagnetism of the austenitic phase. However, a M_f^{prime} temperature can be considered as a end of evolution. By studying the reverse transformation \\varepsilon to γ, it was shown that the fcc high temperature phase was unstable at 298 K when the quenching temperature was equal or higher than 1073 K. L'acier Fe-31,6Mn-6,45Si (FM30) présente des transformations martensitiques (directe, inverse et isotherme) qui sont mises en évidence par mesure de résistence électrique en température. La transformation directe γ to \\varepsilon est inhibée par l'apparition de l'antiferromagnétisme de la phase γ. Cependant nous avons envisagé une température de fin d'évolution M_f^{prime}. L'étude de la transformation inverse \\varepsilon to γ montre que la phase cfc de haute température est instable à 298 K après trempe depuis des températures égales ou supérieures à 1073 K.

  2. Etude métallurgique du soudage par friction malaxage sur un acier à haute limite élastique destiné à la construction navale : le 80 HLES Metallurgical study of friction stir welding on a steel high yield for shipbuilding: The 80 HLES

    Directory of Open Access Journals (Sweden)

    Allart Marion

    2013-11-01

    Full Text Available Le soudage par friction malaxage est un procédé de soudage relativement récent (début des années 90. Il est aujourd'hui utilisé couramment sur des alliages légers mais ne l'est que depuis peu sur les aciers. L'objectif de nos travaux est de chercher à caractériser la microstructure métallurgique et l'état de déformation et de contrainte après soudage par friction malaxage sur des échantillons d'aciers à haute limite élastique utilisés dans l'industrie navale. Nous chercherons à comprendre les phénomènes métallurgiques qui interviennent en cours de soudage. The friction stir welding is a welding process relatively recent (early 90s. It is now commonly used on light alloys but is only recently on steels. The objective of our work is to try to characterize the metallurgical microstructure and state of stress and strain after friction stir welding on samples of high strength steels used in the shipbuilding industry. We seek to understand the metallurgical phenomena that occur during welding.

  3. Crystalline plasticity constitutive equations for BCC steel at low temperature; Loi de comportement en plasticite cristalline pour acier a basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, G. [EDF RD, MMC, Avenue des Renardieres, Ecuelles, 77818 Moret-sur-Loing Cedex (France); Vincent, L. [CEA Saclay, DEN, SRMA, 91191 Gif-sur-Yvette Cedex (France)

    2011-07-01

    The prediction of the irradiation-induced evolution of the ductile-fragile transition curve of pressure vessel steels is a major research topic in the nuclear industry. Multi-scale approaches starting from ab initio scale up to macroscopic continuum mechanics are currently investigated through the European project PERFORM60. At the intermediate level of crystal plasticity, several effects need to be described accurately before considering the introduction of irradiation hardening mechanisms, such as the thermal activity of dislocations slip, the different mobilities between screw and edge dislocations at low temperature. These effects should be introduced in a crystal plasticity law used in finite-element simulations of polycrystalline aggregates. Accordingly, a new crystal plasticity law is proposed in this paper based on a critical analysis of previous numerical results obtained with a discrete dislocations dynamics code. (authors)

  4. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  5. Application de la diffraction des rayons X in situ à haute température pour l'identification d'une nouvelle phase lors de l'oxydation à 900circC de l'acier 304

    Science.gov (United States)

    Riffard, F.; Buscail, H.; Caudron, E.; Cueff, R.; Issartel, C.; El Messki, S.; Perrier, S.

    2004-11-01

    Une nouvelle interprétation du comportement atypique couramment appelé "breakaway" observé lors de l'oxydation à haute température d'alliages chromino-formeurs est proposée grâce à l'utilisation de la diffraction des rayons X in situ à haute température. L'acier chromino-formeur AISI 304 doit établir une couche d'oxyde superficielle généralement dense et majoritairement, constituée de chromine, dont la vitesse de croissance est lente, afin d'assurer sa protection contre la corrosion à haute température. Cette faible vitesse de croissance de la couche d'oxyde est effectivement observée à 1000circC. Elle serait favorisée par l'établissement d'une couche de chromine induite par la présence d'une sous-couche continue de silice à l'interface interne. Cette dernière limiterait la diffusion du fer. Le phénomène du "breakaway" est observé à la température de 900circC après 40 heures d'oxydation. Ce phénomène serait lié à la croissance initiale d'oxydes contenant du fer. L'oxyde Fe{7}SiO{10, }a été identifié{ }pour la première fois grâce à la technique de diffraction des rayons X in situ à haute température. Cet oxyde semble piéger le silicium dans la couche d'oxyde, empêchant son accumulation à l'interface interne et la formation d'une couche continue de silice.

  6. Etude des effets du martelage repetitif sur les contraintes residuelles

    Science.gov (United States)

    Hacini, Lyes

    L'assemblage par soudage peut engendrer des contraintes residuelles. Ces contraintes provoquent des fissurations prematurees et un raccourcissement de la duree de vie des composants. Dans ce contexte, le martelage robotise est utilise pour relaxer ces contraintes residuelles. Trois volets sont presentes: le premier est l'evaluation des effets des impacts unitaires repetes sur le champ de contraintes developpe dans des plaques d'acier inoxydable austenitique 304L vierges ou contenant des contraintes residuelles initiales. Dans la deuxieme partie de ce projet, le martelage est applique grace au robot SCOMPI. Les contraintes residuelles induites et relaxees par martelage sont ensuite mesurees par la methode des contours, qui a ete adaptee a cet effet. Dans la troisieme partie, le martelage est modelise par la methode des elements finis. Un modele axisymetrique developpe grace au logiciel ANSYS permet de simuler des impacts repetes d'un marteau elastique sur une plaque ayant un comportement elastoplastique.

  7. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  8. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels; Microstructure et fragilisation des aciers de cuve des reacteurs nucleaires VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, A

    1999-03-15

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  9. AGC-2 Irradiation Report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the

  10. Irradiation Defects in Silicon Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The application of irradiation in silicon crystal is introduced.The defects caused by irradiation are reviewed and some major ways of studying defects in irradiated silicon are summarized.Furthermore the problems in the investigation of irradiated silicon are discussed as well as its properties.

  11. Food irradiation; Napromieniowanie zywnosci

    Energy Technology Data Exchange (ETDEWEB)

    Migdal, W. [Instytut Chemii i Techniki Jadrowej, Doswiadczalna Stacja Radiacyjnego Utrwalania Plodow Rolnych, Warsaw (Poland)

    1995-12-31

    A worldwide standard on food irradiation was adopted in 1983 by codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and The World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Inst. of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19 MeV, 1 kW) and industrial unit Electronika (10 MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for irradiation for; spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. (author) 14 refs, 3 tabs

  12. Total lymphoid irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  13. Irradiation and food processing.

    Science.gov (United States)

    Sigurbjörnsson, B; Loaharanu, P

    1989-01-01

    After more than four decades of research and development, food irradiation has been demonstrated to be safe, effective and versatile as a process of food preservation, decontamination or disinfection. Its various applications cover: inhibition of sprouting of root crops; insect disinfestation of stored products, fresh and dried food; shelf-life extension of fresh fruits, vegetables, meat and fish; destruction of parasites and pathogenic micro-organisms in food of animal origin; decontamination of spices and food ingredients, etc. Such applications provide consumers with the increase in variety, volume and value of food. Although regulations on food irradiation in different countries are largely unharmonized, national authorities have shown increasing recognition and acceptance of this technology based on the Codex Standard for Irradiated Foods and its associated Code of Practice. Harmonization of national legislations represents an important prerequisite to international trade in irradiated food. Consumers at large are still not aware of the safety and benefits that food irradiation has to offer. Thus, national and international organizations, food industry, trade associations and consumer unions have important roles to play in introducing this technology based on its scientific values. Public acceptance of food irradiation may be slow at the beginning, but should increase at a faster rate in the foreseeable future when consumers are well informed of the safety and benefits of this technology in comparison with existing ones. Commercial applications of food irradiation has already started in 18 countries at present. The volume of food or ingredients treated on a commercial scale varies from country to country ranging from several tons of spices to hundreds of thousands of tons of grains per annum. With the increasing interest of national authorities and the food industry in applying the process, it is anticipated that some 25 countries will use some 55 commercial

  14. The Birmingham Irradiation Facility

    Science.gov (United States)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Wilson, J.

    2013-12-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1×1 cm2) silicon sensors.

  15. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J

    2013-01-01

    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  16. Irradiation of food

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, J.; Stanbrook, I.; Shersby, M.

    1989-07-12

    The House of Commons was asked to support the Government's intention to allow the use of the irradiation of foodstuffs under conditions that will fully safeguard the interests of the consumer. The Government, it was stated, regards this process as a useful additional way to ensure food safety. The effect of the radiation in killing bacteria will enhance safety standards in poultry meat, in some shell-fish and in herbs and spices. The problem of informing the public when the food has been irradiated, especially as there is no test to detect the irradiation, was raised. The subject was debated for an hour and a half and is reported verbatim. The main point raised was over whether the method gave safer food as not all bacteria were killed in the process. The motion was carried. (U.K.).

  17. Solar Irradiance Variability

    CERN Document Server

    Solanki, Sami K

    2012-01-01

    The Sun has long been considered a constant star, to the extent that its total irradiance was termed the solar constant. It required radiometers in space to detect the small variations in solar irradiance on timescales of the solar rotation and the solar cycle. A part of the difficulty is that there are no other constant natural daytime sources to which the Sun's brightness can be compared. The discovery of solar irradiance variability rekindled a long-running discussion on how strongly the Sun affects our climate. A non-negligible influence is suggested by correlation studies between solar variability and climate indicators. The mechanism for solar irradiance variations that fits the observations best is that magnetic features at the solar surface, i.e. sunspots, faculae and the magnetic network, are responsible for almost all variations (although on short timescales convection and p-mode oscillations also contribute). In spite of significant progress important questions are still open. Thus there is a debat...

  18. NSUF Irradiated Materials Library

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  19. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  20. Wholesomeness of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Raica, Nicholas; McDowell, Marion E.; Darby, William J.

    1963-01-15

    The wholesomeness of irradiated foods was evaluated in mice, rats, dogs, and monkeys over a 2-year period, or 4 generations. Data are presented on the effects of a diet containing radiation-processed foods on growth, reproduction, hematology, histopathology, carcinogenicity, and life span. (86 references) (C.H.)

  1. Post irradiation test report of irradiated DUPIC simulated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are {gamma}-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  2. Measurement of the in-pile core temperature of an EL-4 pencil element, first charge (can of type-347 stainless steel, 0.4 mm thick, UO{sub 2} fuel, 11 mm diameter). Determination of the apparent thermal conductivity integral of in-pile UO{sub 2}; Mesure de la temperature a coeur en pile d'un crayon EL-4 1er jeu (gaine acier inoxydable, nuance 347 - epaisseur 0,4 mm - combustible UO{sub 2} - diametre 11 mm). Determination de l'integrale de conductibilite thermique apparente de l'UO{sub 2} en pile

    Energy Technology Data Exchange (ETDEWEB)

    Lavaud, B.; Ringot, C.; Vignesoult, N. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-11-01

    temperature a coeur d'un element combustible EL-4, type premier jeu, a gaine en acier inoxydable. On mesure cette temperature au coeur du crayon en pile a l'aide d'un thermocouple pour haute temperature: tungstene-rhenium a gaine tantale. Le crayon est place dans des conditions de fonctionnement analogues a celles de EL-4, tant en ce qui concerne la puissance specifique et la temperature sur gaine que la pression externe sur la gaine. La puissance specifique est obtenue dans le reacteur EL-3 avec un enrichissement de l'UO{sub 2} legerement superieur a celui normalement prevu pour EL-4. La temperature de gaine et la pression visees sont realisees a l'aide d'un conteneur d'irradiation en zircaloy-2 et a remplissage NaK, adapte, aux conditions du reacteur EL-3. - Les temperatures de l'UO{sub 2} a coeur, et de la surface de la gaine etant mesurees; - La puissance etant calculee a partir des echanges thermiques dans le conteneur etalonne en laboratoire; - La chute de temperature au contact UO{sub 2}-gaine etant deduite de mesures faites en laboratoire dans des conditions de flux calorifique comparables et sous une atmosphere de gaz correspondant au debut de la vie de l'element combustible; on peut tracer la courbe integrale de conductibilite. Les examens micro-graphiques de la structure de l'oxyde permettent de verifier la repartition des temperatures dans l'oxyde, deduite de l'integrale de conductibilite thermique. (auteurs)

  3. Irradiated cocoa beans

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, R.; Tesh, J.M.

    1982-11-01

    Groups of 40 male and 40 female CD rats were fed powdered rodent diet containing 25% (w/w) of either non-irradiated, irradiated or fumigated cocoa beans. The diets were supplemented with certain essential dietary constituents designed to satisfy normal nutritional requirements. An additional 40 male and 40 female rats received basal rodent diet alone (ground) and acted as an untreated control. After 70 days of treatment, 15 male and 15 female rats from each group were used to assess reproductive function of the F/sub 0/ animals and growth and development of the F/sub 1/ offspring up to weaning; the remaining animals were killed after 91 days of treatment.

  4. Irradiated brown dwarfs

    CERN Document Server

    Casewell, S L; Lawrie, K A; Maxted, P F L; Dobbie, P D; Napiwotzki, R

    2014-01-01

    We have observed the post common envelope binary WD0137-349 in the near infrared $J$, $H$ and $K$ bands and have determined that the photometry varies on the system period (116 min). The amplitude of the variability increases with increasing wavelength, indicating that the brown dwarf in the system is likely being irradiated by its 16500 K white dwarf companion. The effect of the (primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is possible that stratospheric hazes are formed. It is also possible that the brown dwarf (an L-T transition object) itself is variable due to patchy cloud cover. Both these scenarios are discussed, and suggestions for further study are made.

  5. Regulation of food irradiation and detection of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B. [Institute of Geological and Nuclear Sciences, Lower Hutt (New Zealand)

    1998-12-31

    The main international standards for irradiated foods are those produced by the Codex Alimentarius Commission. The international regulatory environment is now favourable towards irradiated foods. Most countries still regulate on a food-by-food, case-by-case basis. However in Asia there is movement towards a Harmonised Regulation for Irradiated Foods. The WHO believes that irradiated foods may be safely irradiated at any dose above 10 kGy. This may lead to the Codex maximum dose being raised or abandoned. If this occurs there are opportunities to produce shelf-stable foods in lightweight packaging that last for years at room temperature. Detection methods for irradiated foods are now available and may assist to reassure consumers that labelling regulations can be enforced. (author)

  6. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cetiner, N. O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; McDuffee, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.

  7. Gemstone dedicated gamma irradiation development

    Energy Technology Data Exchange (ETDEWEB)

    Omi, Nelson M.; Rela, Paulo R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: nminoru@ipen.br; prela@ipen.br

    2007-07-01

    The gemstones gamma irradiation process to enhance the color is widely accepted for the jewelry industry. These gems are processed in conventional industrial gamma irradiation plant which are optimized for other purposes, using underwater irradiation devices with high rejection rate due to its poor dose uniformity. A new conception design, which states the working principles and manufacturing ways of the device, was developed in this work. The suggested device's design is based on the rotation of cylindrical baskets and their translation in circular paths inside and outside a cylindrical source rack as a planetary system. The device is meant to perform the irradiation in the bottom of the source storage pool, where the sources remain always shielded by the water layer. The irradiator matches the Category III IAEA classification. To verify the physical viability of the basic principle, tests with rotating cylindrical baskets were performed in the Multipurpose Irradiator constructed in the CTR, IPEN. Also, simulations using the CADGAMMA software, adapted to simulate underwater irradiations, were performed. With the definitive optimized irradiator, the irradiation quality will be enhanced with better dose control and the production costs will be significantly lower than market prices due to the intended treatment device's optimization. This work presents some optimization parameters and the expected performance of the irradiator. (author)

  8. Prévision de l'épaisseur du film passif d'un acier inoxydable 316L soumis au fretting corrosion grâce au Point Defect Model, PDM Predicting the steady state thickness of passive films with the Point Defect Model in fretting corrosion experiments

    Directory of Open Access Journals (Sweden)

    Geringer Jean

    2013-11-01

    Full Text Available Les implants orthopédiques de hanche ont une durée de vie d'environ 15 ans. Par exemple, la tige fémorale d'un tel implant peut être réalisée en acier inoxydable 316L ou 316LN. Le fretting corrosion, frottement sous petits déplacements, peut se produire pendant la marche humaine en raison des chargements répétés entre le métal de la prothèse et l'os. Plusieurs investigations expérimentales du fretting corrosion ont été entreprises. Cette couche passive de quelques nanomètres, à température ambiante, est le point clef sur lequel repose le développement de notre civilisation, selon certains auteurs. Ce travail vise à prédire les épaisseurs de cette couche passive de l'acier inoxydable soumis au fretting corrosion, avec une attention spécifique sur le rôle des protéines. Le modèle utilisé est basé sur le Point Defect Model, PDM (à une échelle microscopique et une amélioration de ce modèle en prenant en compte le processus de frottement sous petits débattements. L'algorithme génétique a été utilisé pour optimiser la convergence du problème. Les résultats les plus importants sont, comme démontré avec les essais expérimentaux, que l'albumine, la protéine étudiée, empêche les dégradations de l'acier inoxydable aux plus faibles concentrations d'ions chlorure ; ensuite, aux plus fortes concentrations de chlorures, un temps d'incubation est nécessaire pour détruire le film passif. Some implants have approximately a lifetime of 15 years. The femoral stem, for example, should be made of 316L/316LN stainless steel. Fretting corrosion, friction under small displacements, should occur during human gait, due to repeated loadings and un-loadings, between stainless steel and bone for instance. Some experimental investigations of fretting corrosion have been practiced. As well known, metallic alloys and especially stainless steels are covered with a passive film that prevents from the corrosion and degradation

  9. Craniospinal irradiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Scarlatescu, Ioana, E-mail: scarlatescuioana@gmail.com; Avram, Calin N. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223 Timisoara (Romania); Virag, Vasile [County Hospital “Gavril Curteanu” - Oradea (Romania)

    2015-12-07

    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  10. Étude expérimentale de l'interaction laser-matière dans le cas du soudage d'un acier inoxydable austénitique par laser Nd:YAG continu de 2 kW

    Science.gov (United States)

    Dumord, E.; Jouvard, J. M.; Grevey, D.; Druetta, M.; Ottavi, P.

    1997-05-01

    The laser-matter interaction acting during cw 2 kW Nd:YAG laser welding of an austenitic stainless steel is studied and particulary the effects linked to the presence of a keyhole in the liquid bath. This is done in order to define parameters useful to the process modelling. The absorption factor of target has been measured in order to better understand the Nd:YAG laser/stainless steel 304 interaction. Then an experimental approach of the keyhole angle value determination is proposed. Values are presented showing the important keyhole angle at the bottom of the bead. Finally a study relative to the plume above the keyhole shows that it is responsible for the formation of the nail-head part, observed on the experimental melting zone, by laser beam scattering. L'interaction laser-matière se produisant lors du soudage par laser Nd:YAG continu de 2kW d'un acier inoxydable austénitique est étudiée, et notamment les effets liés à la présence du capillaire dans le bain liquide, de façon à définir les paramètres utiles à la modélisation du processus. Le facteur d'absorption des cibles utilisées a été mesuré afin de mieux appréhender l'interaction laser Nd:YAG/acier inoxydable austénitique 304. Puis une approche expérimentale de détermination de l'angle d'inclinaison du capillaire est proposée. Des valeurs sont présentées montrant la forte inclinaison du capillaire en fond de cordon. Finalement une étude relative au panache présent audessus du capillaire met en évidence qu'il est responsable de la formation de la partie en tête de clou observée sur les zones fondues expérimentales par diffusion du faisceau laser

  11. Irradiated stars with convective envelopes

    CERN Document Server

    Lucy, L B

    2016-01-01

    The structure of low-mass stars irradiated by a close companion is considered. Irradiation modifies the surface boundary conditions and thereby also the adiabatic constants of their outer convection zones. This then changes the models' radii and luminosities. For short-period M dwarf binaries with components of similar mass, the radius inflation due to their mutual irradiation is found to be < 0.4%. This is an order of magnitude too small to explain the anomalous radii found for such binaries. Although stronger irradiation of an M dwarf results in a monotonically increasing radius, a saturation effect limits the inflation to < 5%.

  12. International Developments of Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940`s: discovery of principles of food irradiation; 1950`s: initiation of research in advanced countries; 1960`s: research and development were intensified in some advanced and developing countries; 1970`s: proof of wholesomeness of irradiated foods; 1980`s: establishment of national regulations; 1990`s: commercialization and international trade. (Author)

  13. Irradiation of northwest agricultural products

    Science.gov (United States)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  14. Food irradiation and sterilization

    Science.gov (United States)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  15. Wholesomeness of irradiated food

    Science.gov (United States)

    Ehlermann, Dieter A. E.

    2016-12-01

    Just with the emergence of the idea to treat food by ionizing radiation, the concerns were voiced whether it would be safe to consume such food. Now, we look back on more than hundred years of research into the 'wholesomeness', a terminology developed during those efforts. This review will cover the many questions which had been raised, explaining the most relevant ones in some detail; it will also give place to the concerns and elucidate their scientific relevance and background. There has never been any other method of food processing studied in such depth and in such detail as food irradiation. The conclusion based on science is: Consumption of any food treated at any high dose is safe, as long as the food remains palatable. This conclusion has been adopted by WHO, also by international and national bodies. Finally, this finding has also been adopted by Codex Alimentarius in 2003, the international standard for food. However, this conclusion has not been adopted and included at its full extent in most national regulations. As the literature about wholesomeness of irradiated food is abundant, this review will use only a few, most relevant references, which will guide the reader to further reading.

  16. Consumer acceptance of irradiated poultry.

    Science.gov (United States)

    Hashim, I B; Resurreccion, A V; McWatters, K H

    1995-08-01

    A simulated supermarket setting (SSS) test was conducted to determine whether consumers (n = 126) would purchase irradiated poultry products, and the effects of marketing strategies on consumer purchase of irradiated poultry products. Consumer preference for irradiated poultry was likewise determined using a home-use test. A slide program was the most effective educational strategy in changing consumers' purchase behavior. The number of participants who purchased irradiated boneless, skinless breasts and irradiated thighs after the educational program increased significantly from 59.5 and 61.9% to 83.3 and 85.7% for the breasts and thighs, respectively. Using a label or poster did not increase the number of participants who bought irradiated poultry products. About 84% of the participants consider it either "somewhat necessary" or "very necessary" to irradiate raw chicken and would like all chicken that was served in restaurants or fast food places to be irradiated. Fifty-eight percent of the participants would always buy irradiated chicken if available, and an additional 27% would buy it sometimes. About 44% of the participants were willing to pay the same price for irradiated chicken as for nonirradiated. About 42% of participants were willing to pay 5% or more than what they were currently paying for nonirradiated chicken. Seventy-three percent or more of consumers who participated in the home-use test (n = 74) gave the color, appearance, and aroma of the raw poultry products a minimum rating of 7 (= like moderately). After consumers participated in a home-use test, 84 and 88% selected irradiated thighs and breasts, respectively, over nonirradiated in a second SSS test.

  17. Sensorial evaluation of irradiated mangoes

    Energy Technology Data Exchange (ETDEWEB)

    Broisler, Paula Olhe; Cruz, Juliana Nunes da; Sabato, Susy Frey [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: paulabroisler@hotmail.com; juliananc@ig.com.br; sfsabato@ipen.br

    2007-07-01

    Mango (Mangifera indica L.) is a tropical fruit of great economical relevance in the world, mainly for tropical countries like Brazil. It consists in the second tropical fruit more important grown in the world. On the other hand it is a very perishable fruit and its delivery to distant points is restricted due to short shelf life at environmental temperature. Food irradiation process is applied to fruits for their preservation, once it promotes disinfestation and even maturation retard, among other mechanisms. The Brazilian legislation permits the food irradiation and does not restrict the doses to be delivered. In order to verify eventual changes, sensorial evaluation is very important to study how irradiation affects the quality of the fruit and its acceptability. Mangoes were irradiated in a Cobalto-60 source, from the Radiation Technology Center, CTR, of IPEN/CNEN-SP at doses 0,5 kGy e 0,75 kGy. The sensorial evaluation was measured through Acceptance Test where irradiated samples were offered together with control sample to the tasters who answered their perception through hedonic scale. The parameters Color, Odor, Flavor and Texture were analyzed. Statistical analysis showed that only Odor parameter was different from control (sample irradiated at 0.5 kGy). Few tasters indicated that irradiated mangoes had fewer odors in relation to non-irradiated samples. (author)

  18. World trend of food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kooij, J.G. van

    1984-01-01

    Over the past fifteen years several policies and programmes have been developed in the field of food irradiation at the national level and by international organizations concerned, which aim at the general acceptance and practical implementation of food irradiation through rigorous investigations of the wholesomeness, the technological and economic feasibility, and the regulatory aspects of this process. This paper reviews international aspects of the standardization of food irradiation, national regulatory aspects of food irradiation, general remarks on the acceptance of Codex General Standards for irradiated foods, and specific remarks on the Codex General Standard for irradiated foods. An overall average dose for all foods, which was formulated in 1980 by a Joint FAO/IAEA/WHO Expert Committee, is 10 kGy. This 10 kGy is not a level above which irradiated foods become unsafe, rather, it is a level at or below which safety has been established. Irradiation dose is divided into low-dose (up to about 1 kGy) and medium-dose (about 1-10 kGy). Future outlook and needs are discussed.

  19. Food irradiation and bacterial toxins

    Energy Technology Data Exchange (ETDEWEB)

    Tranter, H.S.; Modi, N.K.; Hambleton, P.; Melling, J.; Rose, S.; Stringer, M.F.

    1987-07-04

    The authors' findings indicate that irradiation confers no advantage over heat processing in respect of bacterial toxins (clostridium botulinum, neurotoxin A and staphylococcal enterotoxin A). It follows that irradiation at doses less than the ACINF recommended upper limit of 10 kGy could not be used to improve the ambient temperature shelf life on non-acid foods.

  20. Commercial implementation of food irradiation

    Science.gov (United States)

    Welt, M. A.

    In July 1981, the first specifically designed multi-purpose irradiation facility for food irradiation was put into service by the Radiation Technology, Inc. subsidiary Process Technology, Inc. in West Memphis, Arkansas. The operational experience gained, resulted in an enhanced design which was put into commercial service in Haw River, North Carolina, by another subsidiary, Process Technology (N.C.), Inc. in October 1983. These facilities have enabled the food industry to assess the commercial viability of food irradiation. Further impetus towards commercialization of food irradiation was gained in March 1981 with the filing in the Federal Register, by the FDA, of an Advanced Proposed Notice of Rulemaking for Food Irradiation. Two years later in July 1983, the FDA approved the first food additive regulation involving food irradiation in nineteen years, when they approved the Radiation Technology, Inc. petition calling for the sanitization of spices, onion powder and garlic powder at a maximum dosage of 10 kGy. Since obtaining the spice irradiation approval, the FDA has accepted four additional petitions for filing in the Federal Register. One of the petitions which extended spice irradiation to include insect disinfestation has issued into a regulation while the remaining petitions covering the sanitization of herbs, spice blends, vegetable seasonings and dry powdery enzymes as well as the petition to irradiate hog carcasses and pork products for trichinae control at 1 kGy, are expected to issue either before the end of 1984 or early in 1985. More recently, food irradiation advocates in the United States received another vote of confidence by the announcement that a joint venture food irradiation facility to be constructed in Hawaii by Radiation Technology, is backed by a contractual committment for the processing of 40 million pounds of produce per year. Another step was taken when the Port of Salem, New Jersey announced that the Radiation Technology Model RT-4104

  1. Irradiation of fresh fish

    Science.gov (United States)

    Yueh-jen, Yen; Jin-lai, Zhou; Shao-chun, Lai

    Occasionally, in China, marine products can not be provided for the markets in good quality, for during the time when they are being transported from the sea port to inland towns or even at the time when they are unloaded from the ship, they are beginning to spoil. Obviously, it is very important that appropiate measures should be taken to prevent them from decay. Our study has proved that the shelf life of fresh Flatfish (Cynoglossue robustus) and Silvery pomfret (stromateoides argenteus), which, packed in sealed containers, are irradiated by 1.5 kGy, 2.2 kGy and 3.0 kGy, can be stored for about 13-26 days at 3° - 5° C.

  2. Consumer acceptance of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/ IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    There was a widely held opinion during the 1970`s and 1980`s that consumers would be reluctant to purchase irradiated food, as it was perceived that consumers would confuse irradiated food with food contaminated by radionuclides. Indeed, a number of consumer attitude surveys conducted in several western countries during these two decades demonstrated that the concerns of consumers on irradiated food varied from very concerned to seriously concerned.This paper attempts to review parameters conducting in measuring consumer acceptance of irradiated food during the past three decades and to project the trends on this subject. It is believed that important lessons learned from past studies will guide further efforts to market irradiated food with wide consumer acceptance in the future. (Author)

  3. Pallet irradiators for food processing

    Science.gov (United States)

    McKinnon, R. G.; Chu, R. D. H.

    This paper looks at the various design concepts for the irradiation processing of food products, with particular emphasis on handling the products on pallets. Pallets appear to offer the most attractive method for handling foods from many considerations. Products are transported on pallets. Warehouse space is commonly designed for pallet storage and, if products are already palletized before and after irradiation, then labour could be saved by irradiating on pallets. This is also an advantage for equipment operation since a larger carrier volume means lower operation speeds. Different pallet irradiator design concepts are examined and their suitability for several applications are discussed. For example, low product holdup for fast turn around will be a consideration for those operating an irradiation "service" business; others may require a very large source where efficiency is the primary requirement and this will not be consistent with low holdup. The radiation performance characteristics and processing costs of these machines are discussed.

  4. Late sequelae of superficial irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hood, I.C.; Young, J.E.

    1984-10-01

    Superficial irradiation results in well recognized late sequelae including not only sclerosis and atrophy of skin and subcutaneous tissue, but also the development of benign and malignant tumors of skin and adjacent structures. The long latency between irradiation and its late effects allowed the early uncontrolled use of radiation treatment for benign conditions. The subsequent recognition of the causal relationship between tumors and previous irradiation has restricted its use to more appropriate purposes, although it is possible that it is still overused in some areas of dermatologic practice. Clinicians need to be aware of the time interval between irradiation and the development of its late sequelae, and the incidence of these sequelae. Appropriate irradiation exposure history should be a part of the evaluation of every patient.

  5. Étude expérimentale du comportement cyclique d'un acier du type 316 L sous chargement multiaxial complexe en traction-torsion-pressions interne et externe

    Science.gov (United States)

    Bocher, L.; Delobelle, P.

    1997-09-01

    are very rich in informations and lead to classify the different types of loading, with two or three cyclic components, with respect to the observed supplementary hardening. This classification was established as follows: i) The in-phase tests with two or three components (δ = \\varphi = 0^circ); no supplementary hardening is observed. ii) The tension-pressure tests such as r_1 = 1, \\varphi = 90^circ and r_1 = - 1, \\varphi = 60^circ, the hardening is slightly inferior to that of tension-torsion tests. iii) The tension-torsion tests such as r_2 = 1 and δ = 90^circ, where a substantial additionnal hardening takes place. iv) The tension-torsion-pressure tests where the three components are strongly shifted, namely: r_1 = r_2 = 1, δ = 90^circ and \\varphi = 60^circ, and r_2 = 1, r_1 = -1, δ = 41.4^circ and \\varphi = 82.8^circ. The hardening is slightly superior to the one recorded in tension-torsion. A more thorough study is in preparation which considers all the possible combinations in tension-torsion-pressures, and will be performed on the same material. The early results tend to validate the observations presented in this article. Cette étude réside dans la détermination expérimentale du comportement à la température ambiante de l'acier inoxydable 316 L sous chargement cyclique non proportionnel en traction-torsion-pressions interne et externe. Les deux ou trois déformations sinusoïdales appliquées sont soit en phase, soit hors-phase et l'on étudie l'amplitude du durcissement supplémentaire en fonction du degré de multiaxialité. On présente quelques boucles stabilisées typiques. Par rapport au durcissement supplémentaire maximal, les différents essais peuvent être classés comme suit: essais en phase (pas de durcissement supplémentaire), essais de traction-pressions hors-phase, essais de traction-torsion hors phase et essais de traction-torsion-pressions avec déphasages conséquents.

  6. Phytosanitary irradiation - Development and application

    Science.gov (United States)

    Hallman, Guy J.; Loaharanu, Paisan

    2016-12-01

    Phytosanitary irradiation, the use of ionizing radiation to disinfest traded agricultural commodities of regulated pests, is a growing use of food irradiation that has great continued potential for increase in commercial application. In 2015 approximately 25,000 t of fresh fruits and vegetables were irradiated globally for phytosanitary purposes. Phytosanitary irradiation has resulted in a paradigm shift in phytosanitation in that the final burden of proof of efficacy of the treatment has shifted from no live pests upon inspection at a port of entry (as for all previous phytosanitary treatments) to total dependence on certification that the treatment for target pests is based on adequate science and is commercially conducted and protected from post-treatment infestation. In this regard phytosanitary irradiation is managed more like a hazard analysis and critical control point (HACCP) approach more consistent with food safety than phytosanitation. Thus, phytosanitary irradiation offers a more complete and rigorous methodology for safeguarding than other phytosanitary measures. The role of different organizations in achieving commercial application of phytosanitary irradiation is discussed as well as future issues and applications, including new generic doses.

  7. Proton irradiation of simple gas mixtures: Influence of irradiation parameters

    Science.gov (United States)

    Sack, Norbert J.; Schuster, R.; Hofmann, A.

    1990-01-01

    In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.

  8. New facility for post irradiation examination of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo; Kawamura, Hiroshi [Oarai Research Establishment, Ibaraki-Ken (Japan)

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  9. Irradiation embrittlement of neutron-irradiated ferritic steel

    Science.gov (United States)

    Kayano, H.; Narui, M.; Ohta, S.; Morozumi, S.

    1985-08-01

    In this study three kinds of Fe-Cr ferritic steels were examined by the instrumented Charpy test and tensile test before and after JMTR irradiation ( 2.2×10 23 f.n./m 2). In the unirradiated samples, 100%-martensite 5Cr-2Mo steel showed the highest adsorbed energy and the highest toughness at low temperatures, follewed by the 9Cr-2Mo steel, and the 20%-martensite 5Cr-2Mo steel showed the third highest toughness. In the irradiated samples, however, thoughness was low as a whole, especially in 20%-martensite 5Cr-2Mo steel. It was clarified that 100%-martensite 5Cr-2Mo steel had the lowest Ductile-to-Brittle Transition Temperature (DBTT) and the highest fracture toughness, and that its DBTT and fracture toughness changed a little upon irradiation, showing excellent irradiation characteristics. The general equations were considered for correlation among strength, ductillity, DBTT and fracture toughness ( J value)

  10. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  11. Irradiation of food - the facts

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, V. (International Food Research Association, Leatherhead (UK))

    1985-06-01

    The author outlines the history of the process for the interest of the baking industry, and discusses the difficulties concerning public relations in this field, before the introduction of irradiation to the British food industry.

  12. Sanitary safety of irradiated foods

    Science.gov (United States)

    Wolf, A.

    Consideration on the acceptability of the irradiation of food, especially from the toxicological point of view, is presented. The conditions of the potencial permission of the preservation of food by radiation in CSSR are briefly given.

  13. Progress in food irradiation: Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Stegeman, H.

    1982-11-01

    The Dutch contribution gives an accurate description of the gamma radio preservation facility where a great variety of types of fruit, vegetables, meat and spices were treated with radiosensitivity of bacteria and fungi as well as spores being tested. Wholesomeness studies were limited to feeding tests on pigs and mutagenity tests on Salmonella typhimurium. 12 products were given as authorized for irradiation stating irradiation effect, radiation dose and shelf-life duration.

  14. ATLAS Pixel Group - Photo Gallery from Irradiation

    CERN Multimedia

    2001-01-01

    Photos 1,2,3,4,5,6,7 - Photos taken before irradiation of Pixel Test Analog Chip and Pmbars (April 2000) Photos 8,9,10,11 - Irradiation of VDC chips (May 2000) Photos 12, 13 - Irradiation of Passive Components (June 2000) Photos 14,15, 16 - Irradiation of Marebo Chip (November 1999)

  15. Effects of irradiation upon spices

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    ESR studies were performed on untreated and irradiated samples of paprika powder, ground black pepper, and a spice mixture of the following composition: paprika, 55%; black pepper, 14%; allspice, 9%; coriander, 9%; marjoram, 7%; cumin, 4%; and nutmeg, 2%. Gamma radiation doses from 0.5 to 5 Mrad were applied. In the case of paprika samples, the effect of moisture content on the formation and disappearance of radiation-induced free radicals was also investigated. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in irradiated spice samples but they diminished upon storage. After a period of 3 months the ESR signals of the irradiated samples approximated those of the controls. The free radicals found in unirradiated ground spices did not disappear during a storage period as long as one year. The formation and disappearance of radiation-induced free radicals were found to be strongly affected by the moisture content of samples. If a sample of low moisture content containing a high free radical concentration after irradiation was placed in an atmosphere of higher moisture content, the free radicals decayed rapidly.

  16. Irradiation damage to the lung

    Energy Technology Data Exchange (ETDEWEB)

    Fennessy, J.J.

    1987-07-01

    While some degree of injury to normal, non-tumor-bearing, intrathoracic structures always occurs following irradiation for cure or palliation of neoplastic disease, clinical expression of this injury is uncommon. However, under certain circumstances, clinical manifestations may be severe and life threatening. Acute radiographic manifestations of pulmonary injury usually appear either synchronous with or, more typically, seven to ten days after the onset of the clinical syndrome. The acute signs of edema and slight volume loss within the irradiated zone are nonspecific except for their temporal and spatial relationship to the irradiation of the patient. Resolution of the acute changes is followed by pulmonary cicatrization, which is almost always stable within one year after completion of therapy. Change in postirradiation scarring following stabilization of the reaction must always be assumed to be due to some other process. While the radiograph primarily reveals pulmonary injury, all tissues, including the heart and major vessels, are susceptible, and the radiologist must recognize that any change within the thorax of a patient who has undergone thoracic irradiation may be a complication of that treatment. Differentiation of irradiation injury from residual or recurrent tumor, drug reaction, or opportunistic infection may be difficult and at times impossible.

  17. Nutritional aspects of food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Murray, T.K.

    1981-08-01

    From the nutritional point of view the irradiation of fruits and vegetables presents few problems. It should be noted that irradiation-induced changes in the ..beta..-carotene content of papaya (not available to the Joint Expert Committee in 1976) have been demonstrated to be unimportant. The Joint Expert Committee also noted the need for more data on thiamine loss. These have been forthcoming and indicate that control of insects in rice is possible without serious loss of the vitamin. Experiments with other cereal crops were also positive in this regard. The most important evidence on the nutritional quality of irradiated beef and poultry was the demonstration that they contained no anti-thiamine properties. A point not to be overlooked is the rather serious loss of thiamine when mackerel is irradiated at doses exceeding 3 kGy. Recent evidence indicates that thiamine loss could be reduced by using a high dose rate application process. Though spices contribute little directly to the nutritional quality of the food supply they play an important indirect role. It is thus encouraging that they can be sterilized by irradiation without loss of aroma and taste and without significant loss of ..beta..-carotenes. Of future importance are the observations on single cell protein and protein-fat-carbohydrate mixtures. The reduction of net protein utilization in protein-fat mixtures may be the result of physical interaction of the components.

  18. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)

    1997-12-31

    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  19. Currently developing opportunities in food irradiation and modern irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, R. [Director Business Development. SteriGenics International Inc. 17901 East Warren Avenue No. 4, Detroit, Michigan 48224-1333 (United States)

    1997-12-31

    I. Factor currently influencing advancing opportunities for food irradiation include: heightened incidence and awareness of food borne illnesses and causes. Concerns about ensuring food safety in international as well as domestic trade. Regulatory actions regarding commonly used fumigants/pesticides e.g. Me Br. II. Modern irradiator design: the SteriGenics {sup M}ini Cell{sup .} A new design for new opportunities. Faster installation of facility. Operationally and space efficient. Provides local {sup o}nsite control{sup .} Red meat: a currently developing opportunity. (Author)

  20. Compréhension et modélisation de la rupture fragile des aciers renforcés par nano-précipitation : effets de texture, de vieillissement et de composition

    OpenAIRE

    Rouffié, Anne-Laure

    2014-01-01

    The Oxide Dispersion Strengthened (ODS) steels have been identified as potential materials for fuel cladding in Generation IV nuclear reactors. They are characterized by a very good resistance to swelling under irradiation and to high temperature creep, but questions still remain about the impact toughness of these materials. The first aim of this work is to understand the effects of different parameters (chemical composition, texture, thermal ageing...) on the impact behaviour of ODS steels....

  1. Modélisation du procédé de soudage hybride Arc / Laser par une approche level set application aux toles d'aciers de fortes épaisseurs A level-set approach for the modelling of hybrid arc/laser welding process application for high thickness steel sheets joining

    Directory of Open Access Journals (Sweden)

    Desmaison Olivier

    2013-11-01

    Full Text Available Le procédé de soudage hybride Arc/Laser est une solution aux assemblages difficiles de tôles de fortes épaisseurs. Ce procédé innovant associe deux sources de chaleur : un arc électrique produit par une torche MIG et une source laser placée en amont. Ce couplage améliore le rendement du procédé, la qualité du cordon et les déformations finales. La modélisation de ce procédé par une approche Level Set permet une prédiction du développement du cordon et du champ de température associé. La simulation du soudage multi-passes d'une nuance d'acier 18MnNiMo5 est présentée ici et les résultats sont comparés aux observations expérimentales. The hybrid arc/laser welding process has been developed in order to overcome the difficulties encountered for joining high thickness steel sheets. This innovative process gathers two heat sources: an arc source developed by a MIG torch and a pre-located laser source. This coupling improves the efficiency of the process, the weld bead quality and the final deformations. The Level-Set approach for the modelling of this process enables the prediction of the weld bead development and the temperature field evolution. The simulation of the multi-passes welding of a 18MnNiMo5 steel grade is detailed and the results are compared to the experimental observations.

  2. Contribution à la modélisation du soudage TIG des tôles minces d'acier austénitique 304L par un modèle source bi-elliptique, avec confrontation expérimentale

    Science.gov (United States)

    Aissani, M.; Maza, H.; Belkessa, B.; Maamache, B.

    2005-05-01

    Ce travail contribue dans la modélisation du phénomène du soudage de l'acier inoxydable Austénitique 304L, afin d'étudier le comportement thermique d'un joint de soudure, obtenu par le procédé de soudage à l'arc électrique TIG (Tungsten-Inert-Gas). Le modèle simulant la source d'énergie de soudage, utilise une distribution surfacique Gaussienne du flux de chaleur provenant de l'arc électrique. La forme de cette source est supposée circulaire pour un premier cas et de forme bi-elliptique pour un second cas, tout en procédant à l'évaluation des champs et cycles thermiques à chaque instant, pour déterminer l'étendu des zones à risque, et l'effet de la vitesse de soudage sur ces dernières. Permettant ainsi de remonter par la suite, aux problèmes de contraintes résiduelles et déformations générées dans l'assemblage soudé. L'équation de chaleur régissant le problème est discrétisée par la méthode des volumes finis. Les calculs sont effectués en considérant que les propriétés physiques et thermiques ainsi que les conditions aux limites de convection et rayonnement, sont dépendante de la température. Pour évaluer la précision du modèle, une comparaison avec des mesures expérimentales de température d'un essai de soudage a été effectuée, les résultats indiquent un bon accord.

  3. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Yong Bum; Min, Duck Kee; Kim, Eun Ka and others

    2000-12-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described.

  4. Directional irradiances and fractional clouds

    Science.gov (United States)

    Pagh Nielsen, Kristian; Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2017-04-01

    For large scale implementation of solar energy, better understanding of the directional and temporal variations in the solar resource is needed. This includes understanding the shading within a multiple row field of solar panels and how this affects the electricity or heat production. We have studied directional irradiances measured simultaneously from 16 downward directions at 1 minute temporal resolution. Also, we have performed measurements of the variations in the field of view across individual solar heating panels in the operational solar district heating plant in Hedehusene in Denmark. By combining a model of directional diffuse irradiances with the field of view variation across a solar panel in a solar panel field we can quantify the effect of shading of diffuse irradiances on the heat flow from the panel.

  5. Neutron irradiation of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

    1998-03-01

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  6. Endodontics and the irradiated patient

    Energy Technology Data Exchange (ETDEWEB)

    Cox, F.L.

    1976-11-01

    With increasingly larger numbers of irradiated patients in our population, it seems likely that all dentists will eventually be called upon to manage the difficult problems that these patients present. Of utmost concern should be the patient's home care program and the avoidance of osteroradionecrosis. Endodontics and periodontics are the primary areas for preventing or eliminating the infection that threatens osteoradionecrosis. Endodontic treatment must be accomplished with the utmost care and maximum regard for the fragility of the periapical tissues. Pulpally involved teeth should never be left open in an irradiated patient, and extreme care must be taken with the between-visits seal. If one is called upon for preradiation evaluation, routine removal of all molar as well as other compromised teeth should be considered. Attention should be directed to the literature for further advances in the management of irradiated patients.

  7. Thermal Expansion of Irradiated Polytetrafluoroethylene

    OpenAIRE

    Subrahmanyam, HN; Subramanyam, SV

    1987-01-01

    The thermal expansion coefficient of gamma-irradiated Polytetrafluoroethylene (PTFE) has been measured in the temperature range 80-340 K by using a three-terminal capacitance technique. The samples are irradiated in air at room temperature with gamma rays from a $Co^{60}$ source at a dose rate of 0.26 Mrad/h. The change in crystallinity is measured by an x-ray technique. The expansion coefficient is found to increase with radiation dose below 140 K owing to the predominant effect of degradati...

  8. Dislocation morphology in deformed and irradiated niobium. [Neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. P.

    1977-06-01

    Niobium foils of moderate purity were examined for the morphology of dislocations or defect clusters in the deformed or neutron-irradiated state by transmission electron microscopy. New evidence has been found for the dissociation of screw dislocations into partials on the (211) slip plane according to the Crussard mechanism: (a/2) (111) ..-->.. (a/3) (111) + (a/6) (111).

  9. Inhomogeneous microstructural growth by irradiation

    DEFF Research Database (Denmark)

    Krishan, K.; Singh, Bachu Narain; Leffers, Torben

    1985-01-01

    In the present paper we discuss the development of heterogeneous microstructure for uniform irradiation conditions. It is shown that microstructural inhomogeneities on a scale of 0.1 μm can develop purely from kinematic considerations because of the basic structure of the rate equations used to d...

  10. Microstructural processes in irradiated materials

    Science.gov (United States)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.

  11. Preservation of foodstuffs by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sielaff, H.; Thiemig, F.; Schleusener, H. (Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Nahrungsgueterwirtschaft und Lebensmitteltechnologie)

    1985-03-01

    Application and experimental testing of irradiation in foodstuff processing are accomplished in more than 20 countries. Radiation treatment of foodstuffs and commodities with doses between 0.5 - 50 kGy is licensed in the GDR, too. Examples of application of ionizing radiation in food processing are discussed.

  12. Decommissioning of an irradiation unit

    Energy Technology Data Exchange (ETDEWEB)

    Richards, A.G. [Radiation Protection and Safety Services, Univ. of Leeds, Leeds (United Kingdom)

    2000-05-01

    Distributed throughout hospital, research establishments in the United Kingdom and many other countries are Irradiation Units and Teletherapy machines used for either research purposes or treatment of patients for radiotherapy. These Irradiation Units and Teletherapy machines are loaded with radioactive sources of either Cobalt 60 or Caesium 137. The activity of these sources can range from 1 Terabecquerel up to 100 Terabecquerels or more. Where it is possible to load the radioactive sources without removal from the shielded container into a transport package which is suitable for transport decommissioning of a Teletherapy machine is not a major exercise. When the radioactive sources need to be unloaded from the Irradiation Unit or Teletherapy machine the potential exists for very high levels of radiation. The operation outlined in the paper involved the transfer from an Irradiation Unit to a transport package of two 3.25 Terabecquerel sources of Cobalt 60. The operation of the removal and transfer comes within the scope of the United Kingdom Ionising Radiation Regulations 1985 which were made following the Recommendations of the International Commission on Radiological Protection. This paper illustrates a safe method for this operation and how doses received can be kept within ALARA. (author)

  13. Statistical criteria for characterizing irradiance time series.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2010-10-01

    We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

  14. Ultrasonic Transducer Irradiation Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Paul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Kohse, Gordon [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Tittmann, Bernhard [Pennsylvania State Univ., University Park, PA (United States); Reinhardt, Brian [Pennsylvania State Univ., University Park, PA (United States); Rempe, Joy [Rempe and Associates, Idaho Falls, ID (United States)

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  15. How irradiation can help food processors

    Energy Technology Data Exchange (ETDEWEB)

    Upton, M. (University Coll., Dublin (Ireland). Dept. of Industrial Microbiology)

    1984-06-01

    A review is given of Cobalt-60 irradiation in the food processing industry, and in particular the techniques of preservation of foodstuffs and the extension of shelf life. A typical food irradiation facility is described, and the economics of such facilities are presented. The consumer acceptance and safety of irradiated foods are discussed, and the potential applications of a food irradiation programme in Ireland is examined.

  16. Neutron irradiation effects on plasma facing materials

    Science.gov (United States)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  17. Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, Kiyohiro, E-mail: kiyohiro.yabuuchi@qse.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-01-2 Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi 980-8579 (Japan); Kuribayashi, Yutaka [Graduate School of Engineering, Tohoku University, 6-6-01-2 Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi 980-8579 (Japan); Nogami, Shuhei, E-mail: shuhei.nogami@qse.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-01-2 Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi 980-8579 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hasegawa, Akira, E-mail: akira.hasegawa@qse.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-01-2 Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi 980-8579 (Japan)

    2014-03-15

    Ion irradiation experiments are useful for investigating irradiation damage. However, estimating the irradiation hardening of ion-irradiated materials is challenging because of the shallow damage induced region. Therefore, the purpose of this study is to prove usefulness of nanoindentation technique for estimation of irradiation hardening for ion-irradiated materials. SUS316L austenitic stainless steel was used and it was irradiated by 1 MeV H{sup +} ions to a nominal displacement damage of 0.1, 0.3, 1, and 8 dpa at 573 K. The irradiation hardness of the irradiated specimens were measured and analyzed by Nix–Gao model. The indentation size effect was observed in both unirradiated and irradiated specimens. The hardness of the irradiated specimens changed significantly at certain indentation depths. The depth at which the hardness varied indicated that the region deformed by the indenter had reached the boundary between the irradiated and unirradiated regions. The hardness of the irradiated region was proportional to the inverse of the indentation depth in the Nix–Gao plot. The bulk hardness of the irradiated region, H{sub 0}, estimated by the Nix–Gao plot and Vickers hardness were found to be related to each other, and the relationship could be described by the equation, HV = 0.76H{sub 0}. Thus, the nanoindentation technique demonstrated in this study is valuable for measuring irradiation hardening in ion-irradiated materials.

  18. Schedule and status of irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    To provide an updated summary of the status of irradiation experiments for the neutron-interactive materials program. The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has two irradiation experiments in reactor; and 8 experiments in the planning or design stages. Postirradiation examination and testing is in progress on 18 experiments.

  19. Food irradiation: research and technology, preface

    Science.gov (United States)

    Many interesting and exciting developments have occurred in the field of food irradiation since the publication of the first edition of Food Irradiation: Research and Technology in 2006. The 2nd edition of the book reviews our latest knowledge on food irradiation, highlights the current developments...

  20. Development of data base on food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Kume, Tamikazu; Hashimoto, Shoji [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Izumi, Fumio

    1995-12-01

    For the exact understanding on food irradiation in Japan, it is important to provide information of food irradiation to consumers, industries and government offices. However, many of information on food irradiation are only restricted in a few experts or institutes relating to this field. For this reason, data base of food irradiation has been completed together with the systems necessary for input the data using computer. In this data base, about 630 data with full reports were inputted in computer in the field of wholesomeness studies, irradiation effects on food, radiation engineering, detection methods of irradiated food and Q and A of food irradiation for easy understanding. Many of these data are inputted by Japanese language. Some English reports on wholesomeness studies are also included which were mainly obtained from international projects of food irradiation. Many of data on food irradiation are responsible in the fields of food science, dietetics, microbiology, radiation biology, molecular biology, medical science, agricultural science, radiation chemistry, radiation engineering and so on. Data base of food irradiation contains many useful data which can apply to many other fields of radiation processing not only on food irradiation but also on sterilization of medical equipments, upgrading of agricultural wastes and others. (author).

  1. Spectrophotometric analysis of irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Josimovic, L.; Cudina, I.

    1987-01-01

    Seven different spices (thyme, cinnamon, coriander, caraway, pimento, paprika, black pepper) were treated by gamma radiation at an absorbed dose of 10 kGy, and the effect on chemical quality was determined. The effects of this dose were assessed by spectrophotometric analysis of some water-soluble constituents of spices (carbohydrates; carbonyl compounds) and on the content of water-insoluble steam-volatile oils. The colour of paprika and the content of piperine in pepper held in different packaging materials were measured in unirradiated and irradiated samples as a function of storage time. In all cases irradiation does not bring about any distinct qualitative or quantitative chemical changes based on spectrophotometric analysis of spice extracts.

  2. Study of rice. gamma. -irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lien, J.J.; Chau, R.S.; Chen, S.C.; Chu, S.L.; Fu, Y.K.; Fang, C.K.; Fu, Y.H.

    1981-03-01

    The purpose of this experiment was to investigate whether the /sup 60/Co gamma-irradiated milled rice packed in economic and practical sealed bags could be preserved in common granaries in Taiwan for more than one year rather than slightly over one month without quality deterioration. As a result of this experiment we found that during the preservation of over a period of 18 months, the contents, such as moisture, ash, protein and fiber, of Tainan-5 Bon-Lai (Japonica Type) rice irradiated with 20 and 40 krad doses were quite stable, whereas reducing sugar showed slight fluctuations but did not vary significantly either. The fat, vitamin B/sub 1/ and niacin contents were found being reduced, while the increase in fatty acid content was an inevitable phenomenon along with the proceeding of the preservation.

  3. Food irradiation development in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, I. (Nuclear Inst. for Food and Agriculture, Peshawar (Pakistan))

    1990-01-01

    Large scale trials were held to extend the storage life of potatoes, onions and dry fruits by gamma radiation. It was concluded that radiation preservation of potatoes and onions was much cheaper as compared to conventional methods. A dose of 1 kGy can control the insects in dry fruits and nuts. The consumers' acceptability and market testing performed during the last four years are also conducive to the commercialization of the technology in this country. The Government of Pakistan has accorded clearance for the irradiation of some food items like potatoes, onions, garlic and spices for human consumption. The Pakistan Radiation Services (PARAS), the commercial irradiator (200 Kci) at Lahore, has already started functioning in April 1987. It is planned to start large scale sterilization of spices by gamma radiation in PARAS shortly. (author).

  4. Food irradiation development in Pakistan

    Science.gov (United States)

    Khan, I.

    The large scale trials were held to extend the storage life of potatoes, onions and dry fruits by gamma radiation. It was concluded that radiation preservation of potatoes and onions was much cheaper as compared to conventional methods. A dose of 1 kGy can control the insects in dry fruits and nuts. The consumers' acceptability and market testing performed during the last four years are also conducive to the commercialization of the technology in this country. The Government of Pakistan has accorded clearance for the irradiation of some food items like potatoes, onions, garlic and spices for human consumption. The Pakistan Radiation Services (PARAS), the commercial irradiator (200 Kci) at Lahore, has already started functioning in April, 1987. It is planned to start large scale sterilization of spices by gamma radiation in PARAS shortly.

  5. Particular applications of food irradiation fresh produce

    Science.gov (United States)

    Prakash, Anuradha

    2016-12-01

    On fresh fruits and vegetables, irradiation at low and medium dose levels can effectively reduce microbial counts which can enhance safety, inhibit sprouting to extend shelf-life, and eliminate or sterilize insect pests which can serve to facilitate trade between countries. At the dose levels used for these purposes, the impact on quality is negligible. Despite the fact that regulations in many countries allow the use of irradiation for fresh produce, the technology remains under-utilized, even in the light of an increase in produce related disease outbreaks and the economic benefits of extended shelf life and reduced food waste. Putative concerns about consumer acceptance particularly for produce that is labeled as irradiated have deterred many companies from using irradiation and retailers to carry irradiated produce. This section highlights the commercial use of irradiation for fresh produce, other than phytosanitary irradiation which is covered in supplementary sections.

  6. Irradiation effects on hydrases for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu E-mail: mfuruta@riast.osakafu-u.ac.jp; Ohashi, Isao; Oka, Masahito; Hayashi, Toshio

    2000-03-01

    To apply an irradiation technique to sterilize 'Hybrid' biomedical materials including enzymes, we selected papain, a well-characterized plant endopeptidase as a model to examine durability of enzyme activity under the practical irradiation condition in which limited data were available for irradiation inactivation of enzymes. Dry powder and frozen aqueous solution of papain showed significant durability against {sup 60}Co-gamma irradiation suggesting that, the commercial irradiation sterilizing method is applicable without modification. Although irradiation of unfrozen aqueous papain solution showed an unusual change of the enzymatic activity with the increasing doses, and was totally inactivated at 15 kGy, we managed to keep the residual activity more than 50% of initial activity after 30-kGy irradiation, taking such optimum conditions as increasing enzyme concentration from 10 to 100 mg/ml and purging with N{sub 2} gas to suppress the formation of free radicals. (author)

  7. Stereotactic Irradiation of Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the best stereotactic irradiation (STI) technique in treatment of small lung tumors, using dose-volume statistics. Methods: Dose-volume histogram (DVH) of the study phantom consisting of CT using the software of FOCUS-3D planning system. The beam was a 6MV X-ray from a Varian 2300C. The analysis data of Dose-volume statistics was from the technique used for: (1) 2- 12 arcs; (2) 20° - 45° separation angle of arcs; (3) 80° - 160° of gantry rotation. Then we studied the difference of DVH with various irradiation techniques and the influence of target positions and field size by calculated to the distribution of dose from 20%- 90% of the six targets in the lung with 3×3 cm2, 4′ 4 cm2 and 5′ 5 cm2 field size. Results: The volume irradiated pulmonary tissue was the smallest using a six non-coplanar 120° arcs with 30° separation between arcs in the hypothetical set up, the non-coplanar SRI was superiority than conventional one's. The six targets were chosen in the right lung, the volume was the largest in geometric center and was decreased in hilus, bottom, anterior chest wall, lateral wall and apex of the lung in such an order. The DVH had significant change with an increasing field size. Conclusion: the irradiation damage of normal pulmonary tissue was the lowest using the six non-coplanar 120° arcs with a 30° separation between arcs by <5×5 cm2 field and the position of target was not a restricting factor.

  8. RERTR-8 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-8, was designed to test monolithic mini-fuel plates fabricated via hot isostatic pressing (HIP), the effect of molybdenum (Mo) content on the monolithic fuel behavior, and the efficiency of ternary additions to dispersion fuel particles on the interaction layer behavior at higher burnup. The following report summarizes the life of the RERTR-8 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.

  9. RERTR-6 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-6 was designed to evaluate several modified fuel designs that were proposed to address the possibility of breakaway swelling due to porosity within the (U. Mo) Al interaction product observed in the full-size plate tests performed in Russia and France1. The following report summarizes the life of the RERTR-6 experiment through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

  10. Irradiation history of meteoritic inclusions

    DEFF Research Database (Denmark)

    Wielandt, Daniel Kim Peel

    somewhat philosophical question. . . did our solar system form under special circumstances, and what are the implications for the occurrence of similar planetary systems and ultimately life around other stars? In this thesis, we present methods and measurements pertaining to the study of irradiation......K anomalies were formed during co-storage in the protoplanetary disc, providing constraints on the disc dynamics leading up to planet formation....

  11. Microstructural processes in irradiated materials

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald

    2016-04-01

    This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.

  12. Food Preservation by Irradiation (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Urrows, Grace M.

    1968-01-01

    Up to 30% of food harvests are lost in some parts of the world because of animal pests and microorganisms. Nuclear techniques can help reduce and extend the shelf life of these foods. Around 55 countries now have food irradiation programs. The use of radiation is the most recent step in man's attempts to preserve some of his harvest for the lean part of the year.

  13. Spectroscopic analysis of irradiated erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Nabila S. [Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo (Egypt); Desouky, Omar S., E-mail: omardesouky@yahoo.com [Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo (Egypt); Ismail, Nagla M.; Dakrory, Amira Z. [Physics Department, Faculty of Girls for Arts, Sciences and Education, Ain Shams University, Cairo (Egypt)

    2011-12-15

    The aim of the present work is to study the effect of gamma radiation on the lipid part of the erythrocyte membrane, and to test the efficiency of lipoic acid as a radioprotector. This effect was evaluated using electron paramagnetic resonance (EPR), and Fourier transform infrared (FT-IR) spectroscopy. The results showed an increase in the number of spin density by 14%, 22% and 65% after exposure to 25, 50 and 100 Gy respectively; whereas there was a decline in the obtained density after incubation with lipoic acid by a factor of approximately 32%. The FT-IR spectra of the irradiated erythrocytes samples showed a marked decrease in the intensity of all characteristic peaks, which increased as the irradiation dose increased. The second-derivative of these spectra, allow the conformationally sensitive membrane acyl chain methylene stretching modes to be separated from the protein (mostly hemoglobin) vibrations that dominate the spectra of intact cells. The 2850 cm{sup -1} band showed changes in the band shape and position after exposure to 50 and 100 Gy. Therefore it can be concluded that the band at 2850 cm{sup -1} only is useful in monitoring the radiation effect of the lipids cell membrane intact cells. - Highlights: > Effect of {gamma} radiation on erythrocyte membrane was studied using EPR and FT-IR. > Efficiency of {alpha}-lipoic acid as radioprotector was tested. > Lipoic acid diminished the free radicals number after gamma irradiation by 32%. > FT-IR spectra of the irradiated erythrocyte showed a decrease in their intensity. > Lipoic acid enhances the membrane to resist the action of gamma radiation.

  14. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)

    2016-09-29

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonable matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, To, in alloys irradiated to 7 dpa and higher.

  15. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)

    2016-09-29

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early generation powder-metallurgy (PM) oxide dispersion strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonable matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, To, in alloys irradiated to 7 dpa and higher.

  16. Effect of irradiation on the streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ki Dong; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan [Kyung Hee Univ., Seoul (Korea, Republic of)

    2007-03-15

    To observe direct effect of irradiation on cariogenic Streptococcus mutans. S. mutans GS5 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40 Gy. Viability and changes in antibiotic sensitivity, morphology, transcription of virulence factors, and protein profile of bacterium after irradiation were examined by pour plate, disc diffusion method, Transmission electron microscopy. RT-PCR, and SDS-PAGE, respectively. After irradiation with 10 and 20 Gy, viability of S. mutans was reduced. Further increase in irradiation dose, however, did not affect the viability of the remaining cells of S. mutans. Irradiated S. mutans was found to have become sensitive to antibiotics. In particular, the bacterium irradiated with 40 Gy increased its susceptibility to cefotaxime, penicillin, and tetracycline. Under the transmission electron microscope, number of morphologically abnormal cells was increased as the irradiation dose was increased. S. mutans irradiated with 10 Gy revealed a change in the cell wall and cell membrane. As irradiation dose was increased. a higher number of cells showed thickened cell wall and cell membrane and lysis, and appearance of ghost cells was noticeable. In RT-PCR, no difference was detected in expression of gtfB and spaP between cells with and without irradiation of 40 Gy. In SDS-PAGE, proteins with higher molecular masses were gradually diminished as irradiation dose was increased. These results suggest that irradiation affects the cell integrity of S. mutans, as observed by SDS-PAGE, and as manifested by the change in cell morphology, antibiotic sensitivity, and eventually viability of the bacterium.

  17. Development of detection methods for irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Seung; Kim, Chong Ki; Lee, Hae Jung [Korea Atomic Energy Research Insitiute, Taejon (Korea, Republic of); Kim, Kyong Su [Chosun University, Kwangju (Korea, Republic of)

    1999-04-01

    To identify irradiated foods, studies have been carried out with electron spin resonance (ESR) spectroscopy on bone containing foods, such as chicken, pork, and beef. The intensity of the signal induced in bones increased linearly with irradiation doses in the range of 1.0 kGy to 5.0 kGy, and it was possible to distinguish between samples given low and high doses of irradiation. The signal stability for 6 weeks made them ideal for the quick and easy identification of irradiated meats. The analysis of DNA damage made on single cells by agarose gel electrophoresis (DNA 'comet assay') can be used to detect irradiated food. All the samples irradiated with over 0.3 kGy were identified to detect post-irradiation by the tail length of their comets. Irradiated samples showed comets with long tails, and the tail length of the comets increased with the dose, while unirradiated samples showed no or very short tails. As a result of the above experiment, the DNA 'comet assay' might be applied to the detection of irradiated grains as a simple, low-cost and rapid screening test. When fats are irradiated, hydrocarbons contained one or two fewer carbon atoms are formed from the parent fatty acids. The major hydrocarbons in irradiated beef, pork and chicken were 1,7-hexadecadiene and 8-heptadecene originating from leic acid. 1,7 hexadecadiene was the highest amount in irradiated beef, pork and chicken. Eight kinds of hydrocarbons were identified from irradiated chicken, among which 1,7-hexadecadiene and 8-heptadecen were detected as major compounds. The concentration of radiation-induced hydrocarbons was relatively constant during 16 weeks.

  18. Development of detection methods for irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Seung; Kim, Chong Ki; Lee, Hae Jung [Korea Atomic Energy Research Insitiute, Taejon (Korea, Republic of); Kim, Kyong Su [Chosun University, Kwangju (Korea, Republic of)

    1999-04-01

    To identify irradiated foods, studies have been carried out with electron spin resonance (ESR) spectroscopy on bone containing foods, such as chicken, pork, and beef. The intensity of the signal induced in bones increased linearly with irradiation doses in the range of 1.0 kGy to 5.0 kGy, and it was possible to distinguish between samples given low and high doses of irradiation. The signal stability for 6 weeks made them ideal for the quick and easy identification of irradiated meats. The analysis of DNA damage made on single cells by agarose gel electrophoresis (DNA 'comet assay') can be used to detect irradiated food. All the samples irradiated with over 0.3 kGy were identified to detect post-irradiation by the tail length of their comets. Irradiated samples showed comets with long tails, and the tail length of the comets increased with the dose, while unirradiated samples showed no or very short tails. As a result of the above experiment, the DNA 'comet assay' might be applied to the detection of irradiated grains as a simple, low-cost and rapid screening test. When fats are irradiated, hydrocarbons contained one or two fewer carbon atoms are formed from the parent fatty acids. The major hydrocarbons in irradiated beef, pork and chicken were 1,7-hexadecadiene and 8-heptadecene originating from leic acid. 1,7 hexadecadiene was the highest amount in irradiated beef, pork and chicken. Eight kinds of hydrocarbons were identified from irradiated chicken, among which 1,7-hexadecadiene and 8-heptadecen were detected as major compounds. The concentration of radiation-induced hydrocarbons was relatively constant during 16 weeks.

  19. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  20. Irradiation preservation of seafood: Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.

    1987-10-01

    The application of gamma-irradiation for extending the shelf life of seafood has been of interest for many years. This report reviews a number of studies on seafood irradiation conducted over the past several years. Topics covered include seafood irradiation techniques and dosages, species applicability and differences, the effects of packaging on seafood preservation, and changes in organoleptic acceptability as a result of irradiation. Particular attention is given to radiation effects (likely and unlikely) of concern to the public. These include the potential for generation of toxic chemical products, botulinum toxin production, and other health concerns. No scientifically defensible evidence of any kind was found for any harmful effect of irradiation of seafoods at the doses being considered (less than 300 krad), and all indications are that irradiation is an acceptable and needed additional tool for seafood preservation. 49 refs., 14 figs., 14 tabs.

  1. Thermal analysis applied to irradiated propolis

    Science.gov (United States)

    Matsuda, Andrea Harumi; Machado, Luci Brocardo; del Mastro, Nélida Lucia

    2002-03-01

    Propolis is a resinous hive product, collected by bees. Raw propolis requires a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of propolis for food and pharmaceutical industries have led to increasing interest in its technological behavior. Thermal analysis is a chemical analysis that gives information about changes on heating of great importance for technological applications. Ground propolis samples were 60Co gamma irradiated with 0 and 10 kGy. Thermogravimetry curves shown a similar multi-stage decomposition pattern for both irradiated and unirradiated samples up to 600°C. Similarly, through differential scanning calorimetry , a coincidence of melting point of irradiated and unirradiated samples was found. The results suggest that the irradiation process do not interfere on the thermal properties of propolis when irradiated up to 10 kGy.

  2. Thermal analysis applied to irradiated propolis

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Andrea Harumi; Machado, Luci Brocardo; Mastro, N.L. del E-mail: nelida@usp.br

    2002-03-01

    Propolis is a resinous hive product, collected by bees. Raw propolis requires a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of propolis for food and pharmaceutical industries have led to increasing interest in its technological behavior. Thermal analysis is a chemical analysis that gives information about changes on heating of great importance for technological applications. Ground propolis samples were {sup 60}Co gamma irradiated with 0 and 10 kGy. Thermogravimetry curves shown a similar multi-stage decomposition pattern for both irradiated and unirradiated samples up to 600 deg. C. Similarly, through differential scanning calorimetry , a coincidence of melting point of irradiated and unirradiated samples was found. The results suggest that the irradiation process do not interfere on the thermal properties of propolis when irradiated up to 10 kGy.

  3. Renal graft irradiation in acute rejection

    Energy Technology Data Exchange (ETDEWEB)

    Pilepich, M.V.; Sicard, G.A.; Breaux, S.R.; Etheredge, E.E.; Blum, J.; Anderson, C.B.

    1983-03-01

    To evaluate the effect of graft irradiation in the treatment of acute rejection of renal transplants, a randomized study was conducted from 1978 to 1981. Patients with acute rejection were given standard medical management in the form of intravenous methylprednisolone, and were chosen randomly to receive either graft irradiation (175 rads every other day, to a total of 525 rads) or simulated (sham) irradiation. Eighty-three rejections occurring in 64 grafts were randomized to the protocol. Rejection reversal was recorded in 84.5% of control grafts and 75% of the irradiated grafts. Recurrent rejections were more frequent and graft survival was significantly lower in the irradiated group (22%) than in the control group (54%). Graft irradiation does not appear to be beneficial in the treatment of acute rejection of renal transplants when used in conjunction with high-dose steroids.

  4. (Irradiation embrittlement of reactor pressure vessels)

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, W.R.

    1990-09-24

    The traveler served as a member of the two-man US Nuclear Regulatory Commission sponsored team who visited the Prometey Complex in Leningrad to assess the potential for expanded cooperative research concerning integrity of the primary pressure boundary in commercial light-water reactors. The emphasis was on irradiation embrittlement, structural analysis, and fracture mechanics research for reactor pressure vessels. At the irradiation seminar in Cologne, presentations were made by German, French, Finnish, Russian, and US delegations concerning many aspects of irradiation of pressure vessel steels. The traveler made presentations on mechanisms of irradiation embrittlement and on important aspects of the Heavy-Section Steel Irradiation Program results of irradiated fracture mechanics tests.

  5. The IRMA gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Berger, L.; Raboin, M.; Corbiere, J. [IRSN, Fontenat-aux-roses (France)

    2011-07-01

    The IRMA cobalt-60 irradiation cell has been installed at the Saclay research centre (25 km from Paris) for 40 years. IRMA is a facility with a maximum authorized capacity of 1, 700 TBq (i.e. approx. 46, 000 Ci). It is a test facility intended primarily for research and development studies on how equipment and materials respond to dose or dose rate exposure. Cobalt-60 gamma photons are the reference in this field. Irradiation is panoramic and achieved using 4, independent, cylindrical sealed sources (11 mm in diameter and 452 mm in length). When not in use, the sources are stored in a lead cask with 0.30 m thick walls to allow safe access inside the cell (uncontaminated environment). With an internal volume of 24 m{sup 3}, it can accommodate a very wide variety of geometric configurations for exposure to gamma radiation. Available dose rates range from 5 {mu}Gy/h (which is the background radiation in the cell when the sources are enclosed in their lead cask) to 25 kGy/h (value obtained 10 cm from a source holder containing all four sources). The resulting doses can be used in experiments representing relatively extreme situations (reactor accidents, dose after x years for equipment in hot cells, reprocessing plants, and so on).The IRMA facility has performed several irradiation tests on new components for EPR and LWR. The IRMA facility is also adapted to check the performance of new biological shieldings and protections for reactors and reprocessing plants. In several other fields of nuclear applications, this facility is useful to characterize and calibrate radiation detectors for the nuclear, space, and military industries

  6. Irradiation Testing of Ultrasonic Transducers

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  7. Mandibulotomy in the irradiated patient

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J.; Freeman, J.; Birt, D.

    1989-04-01

    Though the mandibular swing, as an approach to certain upper aerodigestive tract malignancies, has been gaining popularity in recent years, there has been little reported as to the feasibility of this procedure in subjects who have received radical preoperative radiotherapy. We have recently reported the results of 23 such patients, and we now present an update. The results presented are of a retrospective analysis of 44 patients, 50% of whom received radical preoperative radiotherapy to fields including the osteotomy site. As in the previous study, there were no statistically significant differences between the complication rates in the irradiated and nonirradiated patient populations. All the patients were orally rehabilitated.

  8. Thymus irradiation for myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Currier, R.D.; Routh, A.; Hickman, B.T.; Douglas, M.A.

    1983-01-01

    Twenty-eight patients with progressive myasthenia gravis without thymoma received treatment of 3000 rads (30 Gy) to the anterior mediastinum, and a followup was conducted for five to 18 years. Twenty-four patients had generalized myasthenia, and four had ocular myasthenia gravis. Twenty patients with generalized myasthenia survived the several month post-treatment period and improved, but four died during that period. The improvement lasted a median of 1.5 years, and older patients had longer remissions than younger patients. The four patients who had ocular myasthenia did not change after treatment. Mediastinal irradiation produces a temporary remission in generalized myasthenia.

  9. AFIP-6 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-09-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-6 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a length prototypic to that of the ATR fuel plates (45 inches in length). The AFIP-6 test was the first test with plates in a swaged condition with longer fuel zones of approximately 22.5 inches in length1,2. The following report summarizes the life of the AFIP-6 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  10. Food irradiation: an unused weapon against hunger

    Energy Technology Data Exchange (ETDEWEB)

    Libby, W.F. (Univ. of California, Los Angeles); Black, E.F.

    1978-02-01

    The author urges use of food irradiation technology now to ease the world's food supply shortage. The holdup appears to relate to whether irradiation is an additive under the 1958 Food Additive Amendment to the Federal Food, Drug and Cosmetic Act, although the FAO-IAEA-World Health Organization in 1976 declared five foods unconditionally safe for human consumption after irradiation. Another delay is seen as lack of commercial feasibility data. (PCS)

  11. Models of Solar Irradiance Variations: Current Status

    Indian Academy of Sciences (India)

    Natalie A. Krivova; Sami K. Solanki

    2008-03-01

    Regular monitoring of solar irradiance has been carried out since 1978 to show that solar total and spectral irradiance varies at different time scales. Whereas variations on time scales of minutes to hours are due to solar oscillations and granulation, variations on longer time scales are driven by the evolution of the solar surface magnetic field. Here the most recent advances in modelling of solar irradiance variations on time scales longer than a day are briefly reviewed.

  12. Squamous cell carcinoma in situ after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kambara, Takeshi; Nishiyama, Takafumi; Yamada, Rie; Nagatani, Tetsuo; Nakajima, Hiroshi [Yokohama City Univ. (Japan). School of Medicine; Sugiyama, Asami

    1997-12-31

    We report two cases with Squamous Cell Carcinoma (SCC) in situ caused by irradiation to hand eczemas, resistant to any topical therapies. Both of our cases clinically show palmer sclerosis and flexor restriction of the fingers, compatible to chronic radiation dermatitis. Although SCC arising in chronic radiation dermatitis is usually developed ten to twenty years after irradiation, in our cases SCC were found more than forty years after irradiation. (author)

  13. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Lan, K.N. [Post-harvest Technology Institute, 4, Ngo Quyen-Ha Noi (Viet Nam); Lam, N.D. [Ha Noi Radiation Center, VAEC, 5T-160, Nghiado, Tuliem, Ha Noi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  14. The studies of irradiation hardening of stainless steel reactor internals under proton and xenon irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chaoliang; Zhang, Lu; Qian, Wangjie; Mei, Jinna; Liu, Xiang Bing [Suzhou Nuclear Power Research Institute, Suzuhou (China)

    2016-06-15

    Specimens of stainless steel reactor internals were irradiated with 240 keV protons and 6 MeV Xe ions at room temperature. Nanoindentation constant stiffness measurement tests were carried out to study the hardness variations. An irradiation hardening effect was observed in proton- and Xe-irradiated specimens and more irradiation damage causes a larger hardness increment. The Nix-Gao model was used to extract the bulk-equivalent hardness of irradiation-damaged region and critical indentation depth. A different hardening level under H and Xe irradiation was obtained and the discrepancies of displacement damage rate and ion species may be the probable reasons. It was observed that the hardness of Xe-irradiated specimens saturate at about 2 displacement/atom (dpa), whereas in the case of proton irradiation, the saturation hardness may be more than 7 dpa. This discrepancy may be due to the different damage distributions.

  15. Tolerance of edible flowers to gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Amanda C.R.; Araujo, Michel M.; Costa, Helbert S.F.; Almeida, Mariana C.; Villavicencio, Anna Lucia C.H., E-mail: ackoike@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil)

    2011-07-01

    People have been eating flowers and using them in culinary creations for hundreds of years. Edible flowers are increasingly being used in meals as an ingredient in salads or garnish, entrees, drinks and desserts. The irradiation process is an alternative method that can be used in disinfestation of food and flowers, using doses that do not damage the product. The sensitivity of flowers to irradiation varies from species to species. In the present research was irradiated with doses up to 1 kGy some edible flowers to examine their physical tolerance to gamma-rays. Furthermore, high doses gamma irradiation causes petal withering, browning process and injury in edible flowers. (author)

  16. The irradiation effects on zirconium alloys

    Science.gov (United States)

    Negut, Gh.; Ancuta, M.; Radu, V.; Ionescu, S.; Stefan, V.; Uta, O.; Prisecaru, I.; Danila, N.

    2007-05-01

    Pressure tube samples were irradiated under helium atmosphere in the TRIGA Steady State Research and Material Test Reactor of the Romanian Institute for Nuclear Research (INR). These samples are made of the Zr-2.5%Nb alloy used as structural material for the CANDU Romanian power reactors. After irradiation, mechanical tests were performed in the Post Irradiation Examination Laboratory (PIEL) to study the influence of irradiation on zirconium alloys mechanical behaviour. The tensile test results were used for structural integrity assessment. Results of the tests are presented. The paper presents, also, pressure tube structural integrity assessment.

  17. Food irradiation facilities: Requirements and technical aspects

    Science.gov (United States)

    Mittendorfer, Josef

    2016-12-01

    This survey presents some aspects and requirement for food irradiation facilities. Topics like radiation source, dose ranges and dose rate are discussed, together with logistics and operational considerations

  18. Study of irradiation creep of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  19. Detection of hydrocarbons in irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Maitani, Tamio [National Inst. of Health Sciences, Tokyo (Japan); Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Kobayashi, Yasuo; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Establishment

    2003-06-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  20. Fermentation of irradiated sugarcane must

    Energy Technology Data Exchange (ETDEWEB)

    Alcarde, Andre Ricardo; Horii, Jorge [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: aralcard@esalq.usp.br; Walder, Julio Marcos Melges [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia

    2003-12-01

    Bacillus and Lactobacillus are bacteria that usually contaminate the ethanolic fermentation by yeasts and my influence yeast viability. As microorganisms can be killed by ionizing radiation, the efficacy of gamma radiation in reducing the population of certain contaminating bacteria from sugarcane must was examined and, as a consequence, the beneficial effect of lethal doses of radiation on some parameters of yeast-based ethanolic fermentation was verified. Must from sugarcane juice was inoculated with bacteria of the general Bacillus and Lactobacillus. The contaminated must was irradiated with 2.0, 4.0, 6.0, 8.0 and 10.0 kGy of gamma radiation. After ethanolic fermentation by the yeast (Saccharomyces cerevisiae) the total and volatile acidity produced during the process were evaluated: yeast viability and ethanol yield were also recorded. Treatments of gamma radiation reduced the population of the contaminating bacteria in the sugarcane must. The acidity produced during the fermentation decreased as the dose rate of radiation increased. Conversely, the yeast viability increased as the dose rate of radiation increased. Gamma irradiation was an efficient treatment to decontaminate the must and improved its parameters related to ethanolic fermentation, including ethanol yield, which increased 1.9%. (author)

  1. Uranium briquettes for irradiation target

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Garcia, Rafael Henrique Lazzari; Martins, Ilson Carlos; Carvalho, Elita Fontenele Urano de; Durazzo, Michelangelo, E-mail: saliba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Direct irradiation on targets inside nuclear research or multiple purpose reactors is a common route to produce {sup 99}Mo-{sup 99m}Tc radioisotopes. Nevertheless, since the imposed limits to use LEU uranium to prevent nuclear armament production, the amount of uranium loaded in target meats has physically increased and new processes have been proposed for production. Routes using metallic uranium thin film and UAl{sub x} dispersion have been used for this purpose. Both routes have their own issues, either by bringing difficulties to disassemble the aluminum case inside hot cells or by generating great amount of alkaline radioactive liquid rejects. A potential route might be the dispersion of powders of LEU metallic uranium and nickel, which are pressed as a blend inside a die and followed by pulse electroplating of nickel. The electroplating provides more strength to the briquettes and creates a barrier for gas evolution during neutronic disintegration of {sup 235}U. A target briquette platted with nickel encapsulated in an aluminum case to be irradiated may be an alternative possibility to replace other proposed targets. This work uses pulse Ni-electroplating over iron powder briquette to simulate the covering of uranium by nickel. The following parameters were applied 10 times for each sample: 900Hz, -0.84A/square centimeters with duty cycle of 0.1 in Watts Bath. It also presented the optical microscopy analysis of plated microstructure section. (author)

  2. Contribution to the study of physico-chemical properties of surfaces modified by laser treatment. Application to the enhancement of localized corrosion resistance of stainless steels; Contribution a l'etude des proprietes physico-chimiques des surfaces modifiees par traitement laser. Application a l'amelioration de la resistance a la corrosion localisee des aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Pacquentin, W.

    2011-11-25

    integrite sur des periodes de plus en plus longues. L'objectif de ce travail de these est d'evaluer le potentiel d'un traitement de refusion laser pour ameliorer la resistance a la corrosion d'un acier inoxydable de type 304L; l'utilisation du laser dans le domaine des traitements de surface constituant un procede en pleine evolution a cause des changements recents dans la technologie des lasers. Dans le cadre de ce travail, le choix du laser s'est porte sur un laser nano-impulsionnel a fibre dopee ytterbium dont les caracteristiques permettent la fusion quasiinstantanee sur quelques microns de la surface traitee, immediatement suivie d'une solidification ultra-rapide avec des vitesses de refroidissement pouvant atteindre 1011 K/s. La combinaison de ces processus favorise l'elimination des defauts surfaciques, la formation de phases hors equilibre, la segregation d'elements chimiques et la formation d'une nouvelle couche d'oxyde dont les proprietes sont gouvernees par les parametres laser. Afin de les correler avec la reactivite electrochimique de la surface, l'influence de deux parametres laser sur les proprietes physicochimiques de la surface a ete etudiee: la puissance du laser et le taux de recouvrement des impacts laser. Pour clarifier ces relations, la resistance a la corrosion par piquration des surfaces traitees a ete determinee par des tests electrochimiques. Pour des parametres laser specifiques, le potentiel de piquration d'un acier inoxydable de type 304L augmente de plus de 500 mV traduisant ainsi une meilleure tenue a la corrosion localisee en milieu chlorure. L'interdependance des differents phenomenes resultant du traitement laser a rendu complexe la hierarchisation de leur effet sur la sensibilite de l'alliage teste. Cependant, il a ete montre que la nature de l'oxyde thermique forme au cours de la refusion laser et ses defauts sont du premier ordre pour l'amorcage des

  3. Hydrogen-plasticity in the austenitic alloys; Interactions hydrogene-plasticite dans les alliages austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    De lafosse, D. [Ecole Nationale Superieure des Mines, Lab. PECM-UMR CNRS 5146, 42 - Saint-Etienne (France)

    2007-07-01

    This presentation deals with the hydrogen effects under stresses corrosion, in austenitic alloys. The objective is to validate and characterize experimentally the potential and the limits of an approach based on an elastic theory of crystal defects. The first part is devoted to the macroscopic characterization of dynamic hydrogen-dislocations interactions by aging tests. then the hydrogen influence on the plasticity is evaluated, using analytical classic models of the elastic theory of dislocations. The hydrogen influence on the flow stress of bcc materials is analyzed experimentally with model materials. (A.L.B.)

  4. Hydrogen-plasticity interactions in austenitic alloys; Interactions hydrogene-plasticite dans les alliages austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Delafosse, D.; Girardin, G. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SMS, PECM-CNRS, 42 - Saint-Etienne (France)

    2007-07-01

    The aim of this work is to validate and to experimentally characterize the potential and limits of an approach based on an elastic theory of crystal defects. At first, is macroscopically characterized the dynamic interactions of hydrogen-dislocations by aging tests. Then, the hydrogen influence on plasticity mechanisms is estimated while being supported by classical analytical models of the elastic theory of dislocations. At last, is experimentally analyzed the hydrogen influence on the gliding stress of CFC materials with model materials. (O.M.)

  5. Infectivity of irradiated and non-irradiated metacestodes of Taenia saginata

    Energy Technology Data Exchange (ETDEWEB)

    Geerts, S.; Borchgrave, J. de; Brandt, J.R.A.; Kumar, V.; Deken, R. de; Falla, N.; Brabant, R. van (Institute of Tropical Medicine, Antwerp (Belgium). Veterinary Dept.)

    No data are available on the fate of irradiated cysticerci of T. saginata in the human intestine. Since there is no definitive host of T. saginata other than man, this experiment was set up to study the infectivity of irradiated cysticerci of T. saginata in human volunteers in order to determine the minimal effective irradiation dose to inhibit their development. (Author).

  6. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  7. Reprocessing technology development for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H.; Sakamoto, N. [Oarai Research Establishment, Ibaraki-ken (Japan); Tatenuma, K. [KAKEN Co., Ibaraki-ken (Japan)] [and others

    1995-09-01

    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  8. Brazilian Consumer views on food irradiation

    NARCIS (Netherlands)

    Behrens, J.H.; Barcellos, M.N.; Frewer, L.J.; Nunes, T.P.; Landgraf, M.

    2009-01-01

    This study investigated the consumer attitude to food irradiation in São Paulo, Brazil, through a qualitative research perspective. Three focus groups were conducted with 30 consumers, responsible for food choices and purchases. Both irradiated and nonirradiated food samples were served in the

  9. Embrittlement behavior of neutron irradiated RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Gaganidze, E. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)]. E-mail: ermile.gaganidze@imf.fzk.de; Schneider, H.-C. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Dafferner, B. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Aktaa, J. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung II, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2007-08-01

    The effects of neutron irradiation on the embrittlement behavior of reduced activation ferritic/martensitic (RAFM) steel EUROFER97 for different heat treatment conditions have been investigated. The irradiation to 16.3 dpa at different irradiation temperatures (250-450 {sup o}C) was carried out in the Petten High Flux Reactor in the framework of the HFR Phase-IIb (SPICE) irradiation project. Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X) and MANET-I were also irradiated at selected temperatures. The embrittlement behavior and hardening were investigated by instrumented Charpy-V tests with subsize specimens. The neutron irradiation induced embrittlement and hardening of as-delivered EUROFER97 are comparable to those of investigated reference steels, being mostly pronounced for 250 {sup o}C and 300 {sup o}C irradiation temperatures. Heat treatment of EUROFER97 at higher austenization temperature substantially improves the embrittlement behavior at irradiation temperatures of 250 {sup o}C and 350 {sup o}C.

  10. RBE of Cells Irradiated by Carbon Ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cells were mouse melanoma B16,human cervical squamous carcinoma HeLa,Chinese hamster pulmonary V79,and human hepatoma SMMC-7721.For~(12)C ion experiment,the cells of 1.55×10~5/ml were seeded in 35mm diameter petri dish and allowed to grow one day befbre irradiation.When immediately irradiated,the medium

  11. Food irradiation; Global aspects and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Akira (Tokyo Univ. of Agriculture (Japan). Nodai Research Institute)

    1990-07-01

    This paper reviews researches, commentaries, and conference and public records of food irradiation, published mainly during the period 1987-1989, focusing on the current conditions of food irradiation that may pose not only scientific or technologic problems but also political issues or consumerism. Approximately 50 kinds of food, although not enough to fill economic benefit, are now permitted for food irradiation in the world. Consumerism is pointed out as the major factor that precludes the feasibility of food irradiation in the world. In the United States, irradiation is feasible only for spices. Food irradiation has already been feasible in France, Hollands, Belgium, and the Soviet Union; has under consideration in the Great Britain, and has been rejected in the West Germany. Although the feasibility of food irradiation is projected to increase gradually in the future, commercial success or failure depends on the final selection of consumers. In this respect, the role of education and public information are stressed. Meat radicidation and recent progress in the method for detecting irradiated food are referred to. (N.K.) 128 refs.

  12. 10 CFR 36.33 - Irradiator pools.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Irradiator pools. 36.33 Section 36.33 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance... indicator must be provided in a clearly visible location to indicate if the pool water level is below the...

  13. Schedule and status of irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Grossbeck, M.L.; Robertson, J.P. [Oak Ridge National Lab., TN (United States)

    1998-03-01

    The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has four irradiation experiments in reactor, and five experiments in the design or construction stages. Postirradiation examination and testing is in progress on ten experiments.

  14. In situ ion irradiation of zirconium carbide

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  15. Electron irradiation of dry food products

    Science.gov (United States)

    Grünewald, Th.

    The interest of the industrial food producer is increasing in having the irradiation facility installed in the food processing chain. The throughput of the irradiator should be high and the residence time of the product in the facility should be short. These conditions can be accomplished by electron irradiators. To clarify the irradiation conditions spices taken out of the industrial process, food grade salt, sugar, and gums as models of dry food products were irradiated. With a radiation dose of 10 kGy microbial load can be reduced on 10∗∗4 microorganisms/g. The sensory properties of the spices were not changed in an atypical way. For food grade salt and sugar changes of colour were observed which are due to lattice defects or initiated browning. The irradiation of several gums led only in some cases to an improvement of the thickness properties in the application below 50°C, in most cases the thickness effect was reduced. The products were packaged before irradiation. But it would be possible also to irradiate the products without packaging moving the product through the iradiation field in a closed conveyor system.

  16. Passive SiC irradiation temperature monitor

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.

    1996-04-01

    A new, improved passive irradiation temperature monitoring method was examined after an irradiation test at 627{degrees}C. The method is based on the analysis of thermal diffusivity changes during postirradiation annealing of polycrystalline SiC. Based on results from this test, several advantages for using this new method rather than a method based on length or lattice parameter changes are given.

  17. Embrittlement behavior of neutron irradiated RAFM steels

    Science.gov (United States)

    Gaganidze, E.; Schneider, H.-C.; Dafferner, B.; Aktaa, J.

    2007-08-01

    The effects of neutron irradiation on the embrittlement behavior of reduced activation ferritic/martensitic (RAFM) steel EUROFER97 for different heat treatment conditions have been investigated. The irradiation to 16.3 dpa at different irradiation temperatures (250-450 °C) was carried out in the Petten High Flux Reactor in the framework of the HFR Phase-IIb (SPICE) irradiation project. Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X) and MANET-I were also irradiated at selected temperatures. The embrittlement behavior and hardening were investigated by instrumented Charpy-V tests with subsize specimens. The neutron irradiation induced embrittlement and hardening of as-delivered EUROFER97 are comparable to those of investigated reference steels, being mostly pronounced for 250 °C and 300 °C irradiation temperatures. Heat treatment of EUROFER97 at higher austenization temperature substantially improves the embrittlement behavior at irradiation temperatures of 250 °C and 350 °C.

  18. Mechanical response of proton beam irradiated nitinol

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Naveed [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Ghauri, I.M., E-mail: ijaz.phys@gmail.co [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Mubarik, F.E.; Amin, F. [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2011-01-01

    The present investigation deals with the study of mechanical behavior of proton beam irradiated nitinol at room temperature. The specimens in austenitic phase were irradiated over periods of 15, 30, 45 and 60 min at room temperature using 2 MeV proton beam obtained from Pelletron accelerator. The stress-strain curves of both unirradiated and irradiated specimens were obtained using a universal testing machine at room temperature. The results of the experiment show that an intermediate rhombohedral (R) phase has been introduced between austenite and martensite phase, which resulted in the suppression of direct transformation from austenite to martensite (A-M). Stresses required to start R-phase ({sigma}{sub RS}) and martensitic phase ({sigma}{sub MS}) were observed to decrease with increase in exposure time. The hardness tests of samples before and after irradiation were also carried out using Vickers hardness tester. The comparison reveals that the hardness is higher in irradiated specimens than that of the unirradiated one. The increase in hardness is quite sharp in specimens irradiated for 15 min, which then increases linearly as the exposure time is increased up to 60 min. The generation of R-phase, variations in the transformation stresses {sigma}{sub RS} and {sigma}{sub MS} and increase in hardness of irradiated nitinol may be attributed to lattice disorder and associated changes in crystal structure induced by proton beam irradiation.

  19. Status of food irradiation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, O.K. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1996-12-31

    Research on food irradiation in Brazil started in 1968 at the Center of Nuclear Energy for Agriculture (CENA), Piracicaba, Sao Paulo. At the Institute of Nuclear and Energy Research (IPEN-CNEN/SP), Sao Paulo, Sao Paulo, research on detection of irradiated foods is in progress. In 1973, the Brazilian government established a regulation about food irradiation. Nowadays, the products authorized to be irradiated are: rice, poultry, fish and fish products, potatoes, onions, avocados, persimmons, pineapples, wheat flour, maize, beans, spices, tomatoes, guavas, oranges, lemons, strawberries, mangoes, melons and papayas. The other recommended products to be approved in the future are: acerolas, apples, beans (dose > 1 kGy), beef, blueberries, cherries, cheeses, coffee, figs, fresh guaranas, garlics, grapefruits, grapes, mushrooms, nuts and pork. Today, there is only one commercial facility for irradiation services in the country, the Empresa Brasileira de Radiacoes Ltda. (EMBRARAD). This company operates a Nordion JS-7500 irradiator, with a present activity of about 1,000 kCi, designed for sterilizing medical devices. It also irradiates spices, dried foods, gemstones, cosmetics, wood and raw materials for pharmaceuticals. The plant operates 24 hours a day and the spices and dried foods represent 15% of the business. Powder of guarana seeds is irradiated also for exportation. There are two other commercial facilities for radiation sterilization in Brazil, operating exclusively for their own production. (J.P.N.)

  20. Schedule and status of irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Grossbeck, M.L.; Robertson, J.P. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    The current status of reactor irradiation experiments is presented in tables summarizing the experimental objectives, conditions, and schedule. Currently, the program has one irradiation experiment in reactor and five experiments in the design or construction stages. Postirradiation examination and testing is in progress on ten experiments.

  1. AGR-1 Post Irradiation Examination Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building

  2. Hypopituitarism after irradiation in children

    Energy Technology Data Exchange (ETDEWEB)

    Wara, W.M.; Richards, G.E.; Grumbach, M.M. Kaplan, S.L.; Sheline, G.E.; Conte, F.A.

    1977-01-01

    Nine children were referred to the University of California Medical Center, San Francisco, for growth evaluation. Each had received conventional radiation doses to the head for tumors not involving the hypothalamus or pituitary, and demonstrated clinical and laboratory evidence of hormonal deficiencies several years after treatment. Six had significant height retardation. Growth hormone deficiency was documented in all by lack of response to provocative insulin, arginine, and/or L-dopa stimulation. ACTH function was evaluated by plasma cortisol response to insulin hypoglycemia in 7; one had a subnormal response. Plasma gonadotropins were measured after lutenizing hormone releasing factor (LRF) in 7 patients; only one had an abnormal response for age and stage of sexual maturation. Foresight in treatment planning and careful follow-up of patients receiving irradiation to the head is critical, since hypothalamic-pituitary deficiencies which may occur insidiously over many years, can largely be compensated.

  3. RERTR-7 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

  4. AFIP-2 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danielle M Perez

    2011-04-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-2 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-2 experiment was fabricated by friction bond (FB) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-2 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results. The safety analyses performed for AFIP-2 are summarized in Table 5 of the following report.

  5. AFIP-2 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danielle M Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-05-01

    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-2 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-2 experiment was fabricated by friction bond (FB) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-2 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results. The safety analyses performed for AFIP-2 are summarized in Table 5 of the following report.

  6. Osteonecrosis of acetabulum after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Gintaro; Matuda, Tatsuo; Takeuchi, Norihiro; Itoh, Haruo [Tokyo Koseinenkin Hospital (Japan)

    1996-11-01

    A case of osteonecrosis 8 years post irradiation was reported. The 70 years old female patient who, 8 years ago, received abdominal hysterectomy due to cervical cancer and then radiotherapy of 92.1 Gy within about 1.5 mo, had a pain at the left hip joint with a slight elevation of ALP. The roentgenography showed the fracture and callus of the left acetabulum; bone scintigraphy, a high accumulation of {sup 99m}Tc at the site; CT, abnormal fracture; MRI, low bright T1-weighted image and equi-bright T2-image; and MRI with Gd-DTPA, enhanced image. The hip joint was surgically reconstructed with cement (THR). Surgical and histopathological findings confirmed osteonecrosis without tumoral finding and the lesion was considered radiogenic. (K.H.)

  7. Modeling of Irradiation Hardening of Polycrystalline Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  8. Cost effective alternative to low irradiance measurements

    Science.gov (United States)

    Oleary, Scott T.

    1988-01-01

    Martin Marietta's Space Simulation Laboratory (SSL) has a Thermal Environment Simulator (TES) with 56 individually controlled heater zones. The TES has a temperature range of approximately minus 129 C to plus 149 C. Because of the ability of TES to provide complex irradiance distributions, it is necessary to be able to measure a wide range of irradiance levels. SSL currently uses ambient temperature controlled radiometers with the capacity to measure sink irradiance levels of approximately 42.6 mw/sq cm, sink temperature equals 21 C and up. These radiometers could not be used to accurately measure the lower irradiance levels of the TES. Therefore, it was necessary to obtain a radiometer or develop techniques which could be used to measure lower irradiance levels.

  9. Significance of primary irradiation creep in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Erasmus, Christiaan, E-mail: christiaan.erasmus@gmail.com [Pebble Bed Modular Reactor (Proprietary) Limited, PO Box 9396, Centurion 0046 (South Africa); Kok, Schalk [Advanced Mathematical Modelling, CSIR Modelling and Digital Science, Pretoria 0001 (South Africa); Hindley, Michael P. [Pebble Bed Modular Reactor (Proprietary) Limited, PO Box 9396, Centurion 0046 (South Africa)

    2013-05-15

    Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux fields and constant stress fields, but it does not allow for the effect of movement of stress locations around a graphite component during life, nor does it allow primary creep to be applied rate-dependently to graphite components subject to lower fast neutron flux. This paper shows that a differential form of primary irradiation creep in graphite combined with the secondary creep formulation proposed by Kennedy et al. performs well when predicting creep behaviour in experimental samples. The significance of primary irradiation creep in particular in regions with lower flux is investigated. It is shown that in low flux regions with a realistic operating lifetime primary irradiation creep is significant and is larger than secondary irradiation creep.

  10. Identification of irradiated pepper with comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Prieto Miranda, Enrique Fco.; Moreno Alvarez, Damaris L.; Carro Palacio, Sandra [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear. (CEADEN), Ciudad de La Habana (Cuba)]. E-mail: efprieto@ceaden.edu.cu; damaris@ceaden.edu.cu; Iglesia Enriquez, Isora [Instituto de Investigacion para la Industria Alimenticia (IIIA), Ciudad de La Habana (Cuba)

    2007-07-01

    The treatment of foods with ionizing radiations is a technological process utilized in order to increase the hygienic quality and the storage time of the foods. Several methods of detection of irradiated foods have been recommended. The comet assay of DNA is one fast and economical technique for the qualitative identification of irradiated foods. The objective of the present paper was to identify with the comet assay technique the modifications of the DNA molecule of irradiated pepper storage at environment and refrigeration temperatures and different post-irradiation times for different absorbed dose values, (0.1, 0.3 and 0.5 kGy). It was demonstrated that for the high absorbed dose values was observed a greater break into fragments of the DNA molecule, which shows the application of this technique for the identification of irradiated foods. (author)

  11. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  12. AGC-1 Irradiation Experiment Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Bratton

    2006-05-01

    The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200°C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

  13. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  14. SORCE Level 3 Total Solar Irradiance Daily Average V016

    Data.gov (United States)

    National Aeronautics and Space Administration — The Total Solar Irradiance (TSI) data set SOR3TSID contains the total solar irradiance (a.k.a solar constant) data collected by the Total Irradiance Monitor (TIM)...

  15. Embrittlement of irradiated F82H in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)], E-mail: kluehrl@ornl.gov; Shiba, K. [Japan Atomic Energy Agency, Toki-Mura, Ibaraki (Japan); Sokolov, M.A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2009-04-30

    Neutron irradiation of 7-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects and precipitation that cause an increase in yield stress. This irradiation hardening causes embrittlement, which is observed in a Charpy impact or fracture toughness test as an increase in the ductile-brittle transition temperature. Based on observations that show little change in strength in steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study of F82H steel, significant embrittlement was observed after irradiation at 500 deg. C, but no hardening occurred. This embrittlement is apparently due to irradiation-accelerated Laves-phase precipitation. Observations of the embrittlement of F82H in the absence of irradiation hardening have been examined and analyzed with thermal-aging studies and computational thermodynamics calculations to illuminate and understand the embrittlement during irradiation.

  16. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  17. Saturation behavior of irradiation hardening in F82H irradiated in the HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Shiba, K.; Tanigawa, H.; Ando, M. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Klueh, R.L. [Oak Ridge National Laboratory, TN (United States); Stoller, R. [ORNL - Oak Ridge National Laboratory, Materials Science and Technology Div., Oak Ridge, AK TN (United States)

    2007-07-01

    Full text of publication follows: Post irradiation tensile tests on reduced activation ferritic/martensitic steel, F82H have been conducted over the past two decades using Japan Materials Testing Reactor (JMTR) of JAEA, and Fast Flux Testing Facility (FFTF) of PNNL and High Flux Isotope Reactor (HFIR) of ORNL, USA, under Japan/US collaboration programs. According to these results, F82H does not demonstrate irradiation hardening above 673 K up to 60 dpa. The current study has been concentrated on hardening behavior at temperature around 573 K. A series of low temperature irradiation experiment has been conducted at the HFIR under the international collaborative research between JAEA/US-DOE. In this collaboration, the irradiation condition is precisely controlled by the well matured capsule designing and instrumentation. This paper summarizes recent results of the irradiation experiments focused on F82H and its modified steels compared with the irradiation properties database on F82H. Post irradiation tensile tests have been conducted on the F82H and its modified steels irradiated at 573 K and the dose level was up to 25 dpa. According to these results, irradiation hardening of F82H is saturated by 9 dpa and the as-irradiated 0.2 % proof stress is less than 1 GPa at ambient temperature. The deterioration of total elongation was also saturated by 9 dpa irradiation. The ductility of some modified steels which showed larger total elongation than that of F82H before irradiation become the same level as that of standard F82H steel after irradiation, even though its magnitude of irradiation hardening is smaller than that of F82H. This suggests that the more ductile steel demonstrates the more ductility loss at this temperature, regardless to the hardening level. The difference in ductility loss behavior between various tensile specimens will be discussed as the ductility could depend on the specimen dimension. (authors)

  18. History and prospects of irradiation treatment of sewage sludge

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper presents a survey of irradiation treatment of sewage sludge in the world.Since the first sludge irradiation plant was built in Geiselbullach, West Germany in 1973 which used 60Co as irradiation source, many sludge irradiators were constructed in USA, India, Japan, Canada, Poland and so on, which used 60Co, 137Cs or electron beam as irradiation sources.Some basic researches on irradiation treatment of sewage sludge are, respectively, reviewed, including optimization of irradiation parameters, synergistic effect of radiation with heat, oxygenation, irradiation-composting and potential applications of treated sludge.Some proposals have been suggested for further development of this technology.

  19. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kieu N. Lan [Post Harvest Technology Inst. of Vietnam (Viet Nam)

    2000-09-01

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by {gamma}-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  20. Irradiation of onions on a large scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Koji; Hayashi, Toru; Uozumi, J.; Sugimoto, Toshio; Aoki, Shohei

    1984-03-01

    A large number of onions of var. Kitamiki and Ohotsuku were irradiated in September followed by storage at 0 deg C or 5 deg C. The onions were shifted from cold-storage facilities to room temperature in mid-March or in mid-April in the following year. Their sprouting, rooting, spoilage characteristics and sugar content were observed during storage at room temperature. Most of the unirradiated onions sprouted either outside or inside bulbs during storage at room temperature, and almost all of the irradiated ones showed small buds with browning inside the bulb in mid-April irrespective of the storage temperature. Rooting and/or expansion of bottom were observed in the unirradiated samples. Although the irradiated materials did not have root, they showed expansion of bottom to some extent. Both the irradiated and unirradiated onions spoiled slightly unless they sprouted, and sprouted onions were easily spoiled. There was no difference in the glucose content between the unirradiated and irradiated onions, but the irradiated ones yielded higher sucrose content when stored at room temperature. Irradiation treatment did not have an obvious effect on the quality of freeze-dried onion slices. (author).

  1. The Next Spaceflight Solar Irradiance Sensor: TSIS

    Science.gov (United States)

    Kopp, Greg; Pilewskie, Peter; Richard, Erik

    2016-05-01

    The Total and Spectral Solar Irradiance Sensor (TSIS) will continue measurements of the solar irradiance with improved accuracies and stabilities over extant spaceflight instruments. The two TSIS solar-observing instruments include the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) for measuring total- and spectral- solar-irradiance, respectively. The former provides the net energy powering the Earth’s climate system while the latter helps attribute where that energy is absorbed by the Earth’s atmosphere and surface. Both spaceflight instruments are assembled and being prepared for integration on the International Space Station. With operations commencing in late 2017, the TSIS is intended to overlap with NASA’s ongoing SOlar Radiation and Climate Experiment (SORCE) mission, which launched in 2003 and contains the first versions of both the TIM and SIM instruments, as well as with the TSI Calibration Transfer Experiment (TCTE), which began total solar irradiance measurements in 2013. We summarize the TSIS’s instrument improvements and intended solar-irradiance measurements.

  2. Irradiation Behavior in High Entropy Alloys

    Institute of Scientific and Technical Information of China (English)

    Song-qin XIA; Zhen WANG; Teng-fei YANG; Yong ZHANG

    2015-01-01

    As an increasing demand of advanced nuclear fission reactors and fusion facilities, the key requirements for the materials used in advanced nuclear systems should encompass superior high temperature property, good behavior in corrosive environment, and high irradiation resistance, etc. Recently, it was found that some selected high entropy alloys (HEAs) possess excellent mechanical properties at high temperature, high corrosion resistance, and no grain coarsening and self-healing abil-ity under irradiation, especially, the exceptional structural stability and lower irradiation-induced volume swelling, compared with other conventional materials. Thus, HEAs have been considered as the potential nuclear materials used for future ifssion or fusion reactors, which are designed to operate at higher temperatures and higher radiation doses up to several hundreds of displacement per atom (dpa). An insight into the irradiation behavior of HEAs was given, including fundamental researches to investigate the irradiation-induced phase crystal structure change and volume swelling in HEAs. In summary, a brief overview of the irradiation behavior in HEAs was made and the irradiation-induced structural change in HEAs may be relatively insensi-tive because of their special structures.

  3. AGC-1 Post Irradiation Examination Status

    Energy Technology Data Exchange (ETDEWEB)

    David Swank

    2011-09-01

    The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

  4. Oxygen delivery in irradiated normal tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, M.F.; Ansari, R. [Univ. of Tennessee Health Science Center, Memphis, TN (United States). School of Biomedical Engineering; Gaber, M.W. [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2003-03-01

    Ionizing radiation exposure significantly alters the structure and function of microvascular networks, which regulate delivery of oxygen to tissue. In this study we use a hamster cremaster muscle model to study changes in microvascular network parameters and use a mathematical model to study the effects of these observed structural and microhemodynamic changes in microvascular networks on oxygen delivery to the tissue. Our experimental observations indicate that in microvascular networks while some parameters are significantly affected by irradiation (e.g. red blood cell (RBC) transit time), others remain at the control level (e.g. RBC path length) up to 180 days post-irradiation. The results from our mathematical model indicate that tissue oxygenation patterns are significantly different in irradiated normal tissue as compared to age-matched controls and the differences are apparent as early as 3 days post irradiation. However, oxygen delivery to irradiated tissue was not found to be significantly different from age matched controls at any time between 7 days to 6 months post-irradiation. These findings indicate that microvascular late effects in irradiated normal tissue may be due to factors other than compromised tissue oxygenation. (author)

  5. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  6. Rheological changes in irradiated chicken eggs

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Lucia F. S.; Del Mastro, Nelida L

    1998-06-01

    Pathogenic bacteria may cause foodborne illnesses. Humans may introduce pathogens into foods during production, processing, distribution and or preparation. Some of these microorganisms are able to survive conventional preservation treatments. Heat pasteurization, which is a well established and satisfactory means of decontamination/disinfection of liquid foods, cannot efficiently achieve a similar objective for solid foods. Extensive work carried out worldwide has shown that irradiation is efficient in eradicating foodborne pathogens like Salmonella spp. that can contaminate poultry products. In this work Co-60 gamma irradiation was applied to samples of industrial powder white, yolk and whole egg at doses between 0 and 25 kGy. Samples were rehydrated and the viscosity measured in a Brookfield viscosimeter, model DV III at 5, 15 and 25 degree sign C. The rheological behaviour among the various kinds of samples were markedly different. Irradiation with doses up to 5 kGy, known to reduced bacterial contamination to non-detectable levels, showed almost no variation of viscosity of irradiated egg white samples. On the other hand, whole or yolk egg samples showed some changes in rheological properties depending on the dose level, showing the predominance of whether polimerization or degradation as a result of the irradiation. Additionally, irradiation of yolk egg powder reduced yolk color as a function of the irradiation exposure implemented. The importance of these results are discussed in terms of possible industrial applications.

  7. Spectroscopic investigation of UV irradiated enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Ware, D.L.; Hibbard, L.B. (Spelman College, Atlanta, GA (United States))

    1993-01-01

    Trptophan (Trp) undergoes photolysis when exposed to light in the near UV region. The enzyme systems horse liver alcohol dehydrogenase (HLAD) and glyceraldehyde 3-phosphate dehydrogenase (G3PDH), which contain two and three Trps respectively, were chosen for analysis of Trp photolysis. Aqueous solutions of HLAD and G3PDH were irradiated at either 295 or 335nm with a xenon lamp. Tryptophan fluorescence was monitored at half hour intervals for two hours in the case of HLAD and one hour in the case of G3PDH. The decrease in fluorescence from 295 irradiation was compared to the fluorescence decrease from 335 irradiation and was found to be similar for both the HLAD and G3PDH samples irradiated at 295nm and for both samples irradiated at 335nm. It was found that, for HLAD, the 295 irradiation caused a decrease in fluorescence of 90% as compared to a decrease of only 12% of 335nm. Enzymatic assays were then performed to determine the enzymatic activity before and after irradiation.

  8. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  9. Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells.

    Science.gov (United States)

    Jella, Kishore Kumar; Garcia, Amaya; McClean, Brendan; Byrne, Hugh J; Lyng, Fiona M

    2013-03-01

    The aim of this study was to compare levels of apoptosis, necrosis, mitotic cell death and senescence after treatment with both direct radiation and irradiated cell conditioned medium. Human keratinocytes (HaCaT cell line) were irradiated (0.005, 0.05 and 0.5 Gy) using a cobalt 60 teletherapy unit. For bystander experiments, the medium was harvested from donor HaCaT cells 1 hour after irradiation and transferred to recipient HaCaT cells. Clonogenic assay, apoptosis, necrosis, mitotic cell death, senescence and cell cycle analysis were measured in both directly irradiated cells and bystander cells A reduction in cell survival was observed for both directly irradiated cells and irradiated cell conditioned medium (ICCM)-treated cells. Early apoptosis and necrosis was observed predominantly after direct irradiation. An increase in the number of cells in G2/M phase was observed at 6 and 12 h which led to mitotic cell death after 72 h following direct irradiation and ICCM treatment. No senescence was observed in the HaCaT cell line following either direct irradiation or treatment with ICCM. This study has shown that directly irradiated cells undergo apoptosis, necrosis and mitotic cell death whereas ICCM-treated cells predominantly undergo mitotic cell death.

  10. Total body irradiation: current indications; L`irradiation corporelle totale: les indications actuelles

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.; Danhier, S.; Dubray, B.; Cosset, J.M. [Institut Curie, 75 - Paris (France)

    1998-05-01

    The choice of dose and fractionation for total body irradiation is made difficult by the large number of considerations to be taken into account. The outcome of bone marrow transplantation after total body irradiation can be understood in terms of tumor cell killing, engraftment, and normal tissue damage, each of these endpoints being influenced by irradiation-, disease-, transplant-, and patient- related factors. Interpretation of clinical data is further hampered by the overwhelming influence of logistic constraints, the small numbers of randomized studies, and the concomitant variations in total dose and fraction size or dose rate. So far, three cautious conclusions can be drawn in order to tentatively adapt the total body irradiation schedule to clinically-relevant situations. Firstly, the organs at risk for normal tissue damage (lung, liver, lens, kidney) are protected by delivering small doses per fraction at low dose rate. This suggests that, when toxicity is at stake (e.g. in children), fractionated irradiation should be preferred, provided that inter-fraction intervals are long enough. Secondly, fractionated irradiation should be avoided in case of T-cell depleted transplant, given the high risk of graft rejection in this setting. An alternative would be to increase total (or fractional) dose of fractionated total body irradiation, but this approach is likely to induce more normal tissue toxicity. Thirdly, clinical data have shown higher relapse rates in chronic myeloid leukemia after fractionated or low dose rate total body irradiation, suggesting that fractionated irradiation should not be recommended, unless total (or fractional) dose is increased. Total body irradiation-containing regimens, primarily cyclophosphamide / total body irradiation, are either equivalent to or better than the chemotherapy-only regimens, primarily busulfan / cyclophosphamide. Busulfan / cyclophosphamide certainly represents a reasonable alternative, especially in patients who

  11. Oxygen intake in ion irradiated fullerene films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit [Department of Nanosciences, Neel Institute, C.N.R.S., 25 rue des Martyrs, BP166 38042 Grenoble Cedex 9 (France); Materials Science Group, Inter University Accelerator Centre, P.O. Box 10502, New Delhi 110 067 (India)], E-mail: amit.kumar@grenoble.cnrs.fr; Khan, S.A. [Materials Science Group, Inter University Accelerator Centre, P.O. Box 10502, New Delhi 110 067 (India); Kumar, Manvendra [Physics Department, Allahabad University, P.O. Box 211002 (India); Agarwal, D.C. [RBS College, Agra (India); Singh, Fouran; Tripathi, A. [Materials Science Group, Inter University Accelerator Centre, P.O. Box 10502, New Delhi 110 067 (India); Govind; Shivaprasad, S.M. [Surface Physics and Nanostructures Group, NPL, New Delhi 110 060 (India); Salomon, J.; Pichon, L. [C2RMF, Palais du Louvre, 75001 Paris (France); Pivin, J.C. [CSNSM, 91405 Orsay Campus (France); Avasthi, D.K. [Department of Nanosciences, Neel Institute, C.N.R.S., 25 rue des Martyrs, BP166 38042 Grenoble Cedex 9 (France)

    2008-04-15

    The present work reports the change in the oxygen content in energetic ion irradiated fullerene films. The oxygen contents in irradiated films have been studied using on-line elastic recoil detection analysis (ERDA) and off-line X-ray photo electron emission (XPS) and nuclear reaction analysis (NRA) techniques. The XPS and NRA techniques show that the oxygen content increases with ion fluence, whereas on-line ERDA measurements reveal that the oxygen content decreases with ion fluence. These experiments give clear evidence that oxygen content in irradiated films increases after exposure to the atmospheric oxygen.

  12. Electromechanical engineering aspects of irradiator design

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, J.C.; Buyle, R.

    1984-01-01

    IRE, Institut National des Radioelements at Fleurus, has been irradiating foodstuffs since 1979. The steadily-increasing demands of the food industry led IRE to design and install a second, different type of irradiator. Selection criteria for choosing between the different alternatives or possibilities are given based on the primary consideration that a contract food irradiator must be able to provide a service in accordance with the requirements of his customers. The principal components - the radiation source geometry, the transport system and the control systems - are described. The choice of the major electromechanical components is discussed taking into account their susceptibility to radiation damage.

  13. Identification of irradiated crab using EPR

    Energy Technology Data Exchange (ETDEWEB)

    Maghraby, A. [Radiation Dosimetry Department, National Institute for Standards (NIS), Ministry of Scientific Research, Haram, 12211- Giza, P.O. Box: 136 (Egypt)]. E-mail: maghrabism@yahoo.com

    2007-02-15

    EPR spectroscopy is a fast and powerful technique for the identification of irradiated food. Crab exoskeleton was divided into six parts: dactyl, cheliped, carapace, apron, swimming legs, and walking legs. Samples of the exoskeleton were prepared and irradiated to Cs-137 gamma radiation in the range (1.156-5.365 kGy). EPR spectra of unirradiated as well as irradiated samples were recorded and analyzed. Response to gamma radiation was plotted for each part of the exoskeleton, dactyl was found to be the most sensitive part, followed by the apron (38%), cheliped (37%), walking legs (30%), swimming legs (24%), and carapace (21%) relative to the dactyl response.

  14. RERTR-12 Insertion 2 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Perez; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

    2012-09-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  15. Green coffee decontamination by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nemtanu, Monica R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania)]. E-mail: monica@infim.ro; Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, RO 77 125, Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania)

    2005-10-15

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties.

  16. Green coffee decontamination by electron beam irradiation

    Science.gov (United States)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-10-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties.

  17. Food irradiation - pros and cons

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The use of ionising radiation for food preservation is a much-disputed topic, both among experts and among consumers. Pros and cons of this issue were discussed in detail at the consumers' forum. Professor Dr. Johannes Friedrich Diehl, Director of the Institute for Biochemistry of the Food Research Centre, Karlsruhe, is a well-known supporter of the new method of food preservation; he sees advantages in the radiopreservation of food because, for example, losses due to inedibility are reduced, the danger of salmonellosis is decreased, just as the use of chemicals. He thinks this method to be without danger to health, shown by many years of experience. Opponents to food irradiation like Prof. Dr. Konrad Pfeilsticker, Professor for food science and food chemistry at the Bonn University deem the method to be unnecessary and raise the problem of qualitative changes caused in the food. In the course of the discussions, the pros and cons seemed to balance each other out.

  18. Target irradiation experiments. [Hydra accelerator

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Target irradiation experiments have been carried out on the Hydra accelerator, operating at powers between 0.15 and 0.3 TW. As listed in Table I, four types of spherical shell targets have been studied: 3 mm diameter, 200 ..mu..m and 50 ..mu..m wall thickness Au targets; 3 mm diameter, 300 ..mu..m wall thickness plastic targets; and 0.85 mm diameter, 10 ..mu..m wall thickness Ni targets. When compared to a practical range for 700 keV electrons, the ratio of shell thickness to electron range varied between 0.03 for the Ni targets to 1.5 for the thick walled Au targets. Multiple exposure optical holography was utilized to determine ablator velocity, and a one-dimensional hydrodynamical materials code CHARTD was utilized to model target response and infer beam deposition. Energy deposition varied from 1 TW/gm for thick Au targets up to 8 TW/gm for thin Ni targets, and pusher velocities ranged between 0.5 and 3.5 cm/..mu..sec. Neutron production from D/sub 2/ and DT filled Ni exploding pusher targets was measured using Ag and Li activation counters and gated scintillator photomultiplier time of flight detectors.

  19. [Irradiation in stereotactic conditions: prerequisites].

    Science.gov (United States)

    Maingon, P; Lisbona, A

    2014-10-01

    Indications of treatment by stereotactic body radiotherapy are dramatically increasing due to new potential indications. The conditions associated with the treatment delivery are multiple. The first step of the process is crucial. It is related to the validation of the indication proposed during the multidisciplinary meeting as regard the evidence-based proof of the concept. These emerging techniques mainly extracranial stereotactic body irradiation do not benefit from long-term evaluation in terms of efficiency as well as normal tissue late toxicities. Priority should be given to prospective independent clinical trials, validated by an independent scientific committee, performed under a relevant and well dedicated multicentric quality assurance program aiming to improve knowledge and selection of indications. The SFRO is still working with others professionals on the definition of the conditions for the implementation of such treatments and actively collaborates with the authorities to define the appropriate conditions to preserve the quality of the treatment delivery under these specific conditions. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  20. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    Directory of Open Access Journals (Sweden)

    Yang Seong Woo

    2016-01-01

    Full Text Available The High flux Advanced Neutron Application ReactOr (HANARO is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  1. Effect of irradiation temperature on microstructural changes in self-ion irradiated austenitic stainless steel

    Science.gov (United States)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeob; Kwon, Junhyun; Shin, Chansun

    2017-09-01

    We investigated the microstructural and hardness changes in austenitic stainless steel after Fe ion irradiation at 400, 300, and 200 °C using transmission electron microscopy (TEM) and nanoindentation. The size of the Frank loops increased and the density decreased with increasing irradiation temperature. Radiation-induced segregation (RIS) was detected across high-angle grain boundaries, and the degree of RIS increases with increasing irradiation temperature. Ni-Si clusters were observed using high-resolution TEM in the sample irradiated at 400 °C. The results of this work are compared with the literature data of self-ion and proton irradiation at comparable temperatures and damage levels on stainless steels with a similar material composition with this study. Despite the differences in dose rate, alloy composition and incident ion energy, the irradiation temperature dependence of RIS and the size and density of radiation defects followed the same trends, and were very comparable in magnitude.

  2. Irradiated foods: current trends and technologies

    Science.gov (United States)

    Additional demands on keeping food safe and palatable through longer distribution chains have led industry executives to reconsider irradiation and other technologies as viable processing alternatives for many foods. Other intervention technologies (precision thermal, UV, and novel sanitizer formula...

  3. Hydrogen release from reactor-irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Klepikov, A.Kh. [Kazakh State Univ., Alma-Ata (Kazakstan); Tazhibaeva, I.L. [Kazakh State Univ., Alma-Ata (Kazakstan); Shestakov, V.P. [Kazakh State Univ., Alma-Ata (Kazakstan); Romanenko, O.G. [Kazakh State Univ., Alma-Ata (Kazakstan); Chikhray, Y.V. [Kazakh State Univ., Alma-Ata (Kazakstan); Kenzhin, E.A. [IAE NNC RK, Semipalatinsk-21 (Russian Federation); Cherepnin, Yu.S. [IAE NNC RK, Semipalatinsk-21 (Russian Federation); Tikhomirov, L.N. [IAE NNC RK, Semipalatinsk-21 (Russian Federation)

    1996-10-01

    Experiments on gas release of reactor-irradiated beryllium samples were carried out and compared to control samples. The simultaneous influence of reactor irradiation and exposure to hydrogen results in more hydrogen retention in beryllium, than if beryllium is initially irradiated and then exposed to hydrogen. Appearance of low temperature peaks at 460 K and 540 K with 0.71 eV/atom and 0.84 eV/atom desorption activation energies, respectively, assessed in a frame of a second order desorption model, is mainly responsible for the increase in hydrogen content. These peaks can be attributed to chemical hydrogen bonds with surface oxide. The simultaneous influence of hydrogen and nuclear reactor irradiation at a temperature of 1150 K was assumed to increase significantly microcrack formation near the surface of beryllium samples, resulting in an increase in low temperature peak intensities. (orig.).

  4. An advanced irradiation facilities and its usage

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A carrier type gamma irradiator is an advanced device currently installed in Qingdao Irradiation Center (QIC) and has been put into operation for nine years in Qingdao, China. It utilizes Co-60 as the radiation source; the initial Co-60 loading is 1.48×1016Bq (0.4 million Curies). Rubber, natural and synthetic polymers, heat-shrinkable films and tubes, disposable medical supplies, some foods and drugs have been irradiated for test in the past. Especially a great success achieved on the radiation of compound food for young shrimp. The practice demonstrates that the bacteria in the compound food can be destroyed by the irradiation at optimum dosage between 5 000-6 000 Gy.

  5. Low cycle fatigue of irradiated LMFBR materials

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, L D

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data.

  6. Laser irradiation of carbon-tungsten materials

    Science.gov (United States)

    Marcu, A.; Avotina, L.; Marin, A.; Lungu, C. P.; Grigorescu, C. E. A.; Demitri, N.; Ursescu, D.; Porosnicu, C.; Osiceanu, P.; Kizane, G.; Grigoriu, C.

    2014-09-01

    Carbon-tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an increased percentage of sp3 carbon bonding in the areas irradiated with laser fluencies around the ablation threshold. In-depth x-ray photoelectron spectroscopy investigations suggested a weak cumulative effect on the percentage increase of the sp2-sp3 transitions with the number of laser pulses just for nanometric layer thicknesses.

  7. Purification of Carbon Nanotubes by Proton Irradiation

    Science.gov (United States)

    Kim, Euikwoun; Lee, Jeonggil; Lee, Younman; Jeon, Jaekyun; Kim, Jae-Yong; Kim, Jeongha; Shin, Kwanwoo; Youn, Sang-Pil; Kim, Kyeryung

    2007-10-01

    Carbon nanotubes (CNTs) exhibit variety of superior physical properties including well-defined nanodimensional structure, high electrical and thermal conductivity, and good mechanical stability against external irradiations. Further, a large specific surface area per unit weight suggests that carbon nanotubes could be excellent candidates for gas storage, purification, and separation. However, the practical application of CNTs is limited mainly due to the metallic impurities that were used as a catalyst during the fabrication process. Here, we irradiated CNTs by using high energy proton beams (35.7 MeV at the Bragg Peak). Interestingly, metallic impurities such as Fe, Ni, Co and chunk of amorphous carbon that were attached on the surface of CNTs were completely removed after the irradiation. The mechanism of such the purification process is not understood. The possible speculation will be demonstrated combined with the changes of physical properties including the appearance of the magnetism after the irradiation.

  8. Thermoluminescence properties of irradiated chickpea and corn

    Science.gov (United States)

    Necmeddin Yazici, A.; Bedir, Metin; Bozkurt, Halil; Bozkurt, Hüseyin

    2008-02-01

    A study was carried out to establish a detection method for irradiated chickpea and corn by thermoluminescence (TL) method. The leguminous were packed in polyethylene bags and then the packets were irradiated at room temperature at different doses by 60Co gamma source at 1, 4, 8 and 10 kGy. Minerals extracted from the leguminous were deposited onto a clean aluminum disc and TL intensities of the minerals were measured by TL. It was observed that the extracted samples from both leguminous exhibit good TL Intensity and the TL intensity of glow curves of them increased proportionally to irradiation doses. The TL glow curve of both irradiated leguminous presents a single broad peak below 400 °C. The TL trapping parameters glow peaks were estimated by the additive dose (AD), Tm(Ea)-Tstop and computerized glow curve deconvolution (CGCD) methods. The fading characteristics of glow curves were also recorded up to 6 months.

  9. Downscaling of global solar irradiation in R

    CERN Document Server

    Antonanzas-Torres, F; Antonanzas, J; Perpiñán, O

    2013-01-01

    A methodology for downscaling solar irradiation from satellite-derived databases is described using R software. Different packages such as raster, parallel, solaR, gstat, sp and rasterVis are considered in this study for improving solar resource estimation in areas with complex topography, in which downscaling is a very useful tool for reducing inherent deviations in satellite-derived irradiation databases, which lack of high global spatial resolution. A topographical analysis of horizon blocking and sky-view is developed with a digital elevation model to determine what fraction of hourly solar irradiation reaches the Earth's surface. Eventually, kriging with external drift is applied for a better estimation of solar irradiation throughout the region analyzed. This methodology has been implemented as an example within the region of La Rioja in northern Spain, and the mean absolute error found is a striking 25.5% lower than with the original database.

  10. Y-Irradiation Degradation of Methamidophos

    Institute of Scientific and Technical Information of China (English)

    ZHAO Renbang; BAO Huaying; XIA Lingyun

    2009-01-01

    The irradiation degradation of methamidophos in aqueous solutions by 60Co-γ rays was investigated.The effects of absorbed doses,saturated gas,and the additive of H2O2 on the degradation were also studied.The results showed that the increased with the increase of the irradiation dosage.At certain irradiation dosage,methamidophos could be degraded completely.The degradation rate of methamidophos in the solution saturated with oxygen was higher than those saturated with other gases,which reached 100% when the absorbed dose was 8 kGy.H2O2 degraded methamidophos slowly when it was used alone,but could accelerate the degradation obviously when it was used with irradiation together.

  11. Stability of γ-Irradiated Carmine

    Science.gov (United States)

    Cosentino, Hélio M.; Fontenele, Rinaldo S.; DelMastro, Nélida L.

    2005-01-01

    Carmine is a dye used mainly for coloring food products and galenicals but also in inks. As food irradiation is becoming a regular treatment for food preservation, it is desirable to have a proper knowledge about the radiation sensitivity of additives that can be included in the food formula. The aim of this work was to establish the radiation stability of carmine against Co-60 gamma radiation. Samples of 50% pure carmine powder as well as 50%, 10% and 5% aqueous solutions were irradiated in a Gammacell 220, dose rate of about 5.2 kGy/h, with doses of 0, 1, 2, 4, 8, 16 and 32 kGy. Spectrophotometric readings at 494 nm show a slight decrease of the absorbance as a function of dose: Samples irradiated with 4 and 32 kGy retained 95% and 90% of absorbance of the unirradiated samples respectively. These results indicate a rather good stability of carmine against γ-irradiation.

  12. Early Pulomonary Irradiation in Paraquat (Gramoxone) Poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Geol; Kim, Gwi Eon; Suh, Chang Ok [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1995-12-15

    Purpose : To evaluate whether the early pulmonary irradiation can prevent or decrease the pulmonary damage and contribute to improve ultimate survival in paraquat lung. Materials and Methods : From Jun. 1987 to Aug. 1993, thirty patients with paraquat poisoning were evaluated. Fourteen of these patients were received pulmonary irradiation(RT). All of the patients ere managed with aggressive supportive treatment such as gastric lavage, forced diuresis, antioxidant agents and antifibrosis agents. Ingested amounts of paraquat were estimated into three groups(A: minimal < about 5cc, B: mouthful 5-50 cc, C: Large > 50cc). Pulmonary irradiation was started within 24 hours after admission(from day 1 to day 11 after ingestion of paraquat). Both whole lungs were irradiated with AP/PA parallel opposing fields using C0-60 teletherapy machine. A total of 10Gy(2Gy/fr. X 5 days)was delivered without correction of lung density. Results : In group A, all patients were alive regardless of pulmonary irradiation and in group C, all of the patients were died due o multi-organ failure, especially pulmonary fibrosis regardless of pulmonary irradiation. However, in group B, six of 7 patients(86%) with no RT were died due to respiratory failure, but 4 of 8 patients with RT were alive and 4 of 5 patients who received pulmonary irradiation within 4 days after ingestion of paraquat were all alive though radiological pulmonary fibrosis. All 3 patients who were received pulmonary irradiation after 4 days after ingestion were died due to pulmonary fibrosis in spite of recovery from renal and hepatic toxicity. Conclusion : It is difficult to find out the effect of pulmonary irradiation on the course of the paraquat lung because the precise plasma and urine paraquat concentration were not available between control and irradiation groups. But early pulmonary irradiation within 4 days after paraquat poisoning with aggressive supportive treatment appears to decrease pulmonary toxicity and contribute

  13. Gamma irradiation effects in W films

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Luiz H. [Instituto de Estudos Avancados - IEAv, Rod. dos Tamoios, km 5,5, CEP: 12228-840, Sao Jose dos Campos, SP (Brazil) and Faculdade de Tecnologia Sao Francisco - FATESF, Av. Siqueira Campos, 1174, CEP: 12207-000, Jacarei (Brazil); Santos, Ingrid A. [Instituto de Estudos Avancados - IEAv, Rod. dos Tamoios, km 5,5, CEP: 12228-840, Sao Jose dos Campos, SP (Brazil); Silva, Cassia F. [Faculdade de Tecnologia Sao Francisco - FATESF, Av. Siqueira Campos, 1174, CEP: 12207-000, Jacarei, SP (Brazil)

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  14. Van de Graaff Irradiation of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    Through irradiations using our 3 MeV Van de Graaf accelerator, Argonne is testing the radiation stability of components of equipment that are being used to dispense molybdenum solutions for use as feeds to 99mTc generators and in the 99mTc generators themselves. Components have been irradiated by both a direct electron beam and photons generated from a tungsten convertor.

  15. Development of detection methods for irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Seung; Nam, Hye Seon; Oh, Kyong Nam; Woo, Si Ho; Kim, Kyeung Eun; Yi, Sang Duk; Park, Jun Young; Kim, Kyong Su; Hwang, Keum Taek

    2000-04-01

    In 1999, we have been studied (1) on the detection of irradiated foods by ESR spectroscopy, by thermoluminescence, and by viscometry for physical measurements, (2) on the detection of hydrocarbons and 2-alkylcyclobutanones derived from fatty foods by GC/MS for chemical measurements, (3) on the screening and detection of irradiated foods by Comet assay and immunochemical (ELISA) technique for biological or biochemical measurements.

  16. ESR investigations on ion beam irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I. (Institute for Physics and Technology of Materials, P.O. Box MG-7, Magurele, Bucharest, R-76900 (Romania)); Grecu, V.V. (University of Bucharest, Faculty of Physics, P.O. Box MG-11, Magurele, Bucharest, R-76900 (Romania)); Notingher, P.V. (University Politehnica of Bucharest, Electrotechnical Faculty, 313, Splaiul Independentei, Str., 77206 Bucharest (Romania)); Romero, J.R. (Universidad Central de Venezuela, Facultad de Ingineria, Dept. de Fisica Aplicada, Ciudad Universitaria, Chaguaramos, Caracas (Venezuela)); Chipara, M.D. (Research Institute for Electrotechnics, 45-47 Tudor Vladimirescu, Bd., Bucharest, R-79623 (Romania))

    1994-06-01

    Electron spin resonance (ESR) investigations with a polycarbonate solid state nuclear detector, irradiated with oxygen ions, are reported. The nature of the paramagnetic defects induced by irradiation is discussed. The temperature dependence of resonance line parameters is studied. From the experimental data, obtained by ESR, spectroscopy, the activation energy for defect recombination, the average isotropic exchange integral between paramagnetic defects as well as the average distance between defects, are estimated. Correlations with latent tracks structure are discussed. ((orig.))

  17. [Histological findings in an irradiated choroidal melanoma].

    Science.gov (United States)

    Koinzer, S; Hasselbach, H; Bräsen, J H; Leuschner, I; Roider, J

    2011-06-01

    Histological findings of choroidal melanomas after proton beam irradiation have been reported for complicated cases after enucleation. We present specimens of a tumor after transretinal probe excision. One year after irradiation, the biopsy was examined histologically. The specimens showed pigmented, spindle-shaped cells staining positively for Melan-A and HMB-45. Ki-67 showed low proliferation. Caspase-3 staining was normal. The melanoma still contained vital and even single proliferating cells, but regressed afterwards without additional therapy.

  18. Synthesis of Coronene Using Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Bing YANG; Ying LI; Ming Gui XIE

    2003-01-01

    Using microwave irradiation, perylene was obtained from 3,4,9,10-perylenetetracar- boxylic dianhydride with copper powder in boiling quinoline. With the same method, 1,12- benzoperylene was synthesized from 1, 12-benzoperylene-1', 2'-dicarboxylic anhydride, and coronene was prepared from coronene-1, 2- dicarboxylic anhydride with good yield. Through Dields-Alder reaction, 1, 12-benzoperylene-1', 2'-dicarboxylic anhydride and coronene-1,2- dicarboxylic anhydride were also prepared using microwave irradiation.

  19. Food-irradiation technology and reconsideration for the safety of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Aibara, Kageaki (National Inst. of Health, tokyo (Japan))

    1984-08-01

    In the first half of this paper, the definition of several basic concepts on radiation and the units of the quantities related to radiation are given to reconfirm them. In the second half of the paper, the general status of food irradiation technology and irradiated foods are reported. 25 years have elapsed since 1958 when the legal situation of food irradiation research was clarified in the U.S. as a part of the peaceful uses of atomic energy. The types of radiation authorized for use in food irradiation so far are ..gamma..-ray from /sup 60/Co and /sup 137/Cs, X-ray lower than 5 MeV, and electron beam lower than 10 MeV. Large scale irradiation plants operating in the world are listed. The biological effect of radiation includes sterilization, insecticide and growth control, and the sterilization effect further includes radappertization, radicidation and radurization. The insecticide and growth control are also divided into several categories. For these, respective examples of food concerned are listed. The trend of irradiated foods in the world shows that the irradiation treatment of foods is permitted over a wide range of foods. In 1980, the conclusion of the Joint Expert Committee on Integrity of Irradiated Foods of FAO/IAEA/WHO was issued. In the paper, the table of legally authorized irradiated foods in 20 countries in the world is given at the end.

  20. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Laboratory, Materials Science and Technology Division, P.O. 2008 MS6138, Oak Ridge, TN 37831-6138 (United States)], E-mail: kluehrl@ornl.gov; Shiba, K. [Japan Atomic Energy Agency, Toki-Mura, Ibaraki (Japan); Sokolov, M.A. [Oak Ridge National Laboratory, Materials Science and Technology Division, P.O. 2008 MS6138, Oak Ridge, TN 37831-6138 (United States)

    2008-07-15

    Irradiation damage caused by neutron irradiation below 425-450 deg. C of 9-12% Cr ferritic/martensitic steels produces microstructural defects that cause an increase in yield stress. This irradiation hardening causes embrittlement observed in a Charpy impact test as an increase in the ductile-brittle transition temperature. Little or no change in strength is observed in steels irradiated above 425-450 deg. C. Therefore, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study, significant embrittlement was observed in F82H steel irradiated at 500 deg. C to 5 and 20 dpa without any change in strength. Earlier studies on several conventional steels also showed embrittlement effects above the irradiation-hardening temperature regime. Indications are that this embrittlement is caused by irradiation-accelerated or irradiation-induced precipitation. Observations of embrittlement in the absence of irradiation hardening that were previously reported in the literature have been examined and analyzed with computational thermodynamics calculations to illuminate and understand the effect.

  1. Embrittlement of irradiated ferritic/martensitic steels in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge Noational Laboratory, TN (United States); Shiba, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Sokolov, M. [Oak Ridge National Laboratory, Materials Science and Technology Div., TN (United States)

    2007-07-01

    Full text of publication follows: Neutron irradiation of 9-12% Cr ferritic/martensitic steels below 425-450 deg. C produces microstructural defects that cause an increase in yield stress and ultimate tensile strength. This irradiation hardening causes embrittlement, which is observed in Charpy impact and toughness tests as an increase in ductile-brittle transition temperature (DBTT). Based on observations that show little change in strength in these steels irradiated above 425-450 deg. C, the general conclusion has been that no embrittlement occurs above this irradiation-hardening temperature regime. In a recent study of F82H steel irradiated at 300, 380, and 500 deg. C, irradiation hardening-an increase in yield stress-was observed in tensile specimens irradiated at the two lower temperatures, but no change was observed for the specimens irradiated at 500 deg. C. As expected, an increase in DBTT occurred for the Charpy specimens irradiated at 300 and 380 deg. C. However, there was an unexpected increase in the DBTT of the specimens irradiated at 500 deg. C. The observed embrittlement was attributed to the irradiation-accelerated precipitation of Laves phase. This conclusion was based on results from a detailed thermal aging study of F82H, in which tensile and Charpy specimens were aged at 500, 550, 600, and 650 deg. C to 30,000 h. These studies indicated that there was a decrease in yield stress at the two highest temperatures and essentially no change at the two lowest temperatures. Despite the strength decrease or no change, the DBTT increased for Charpy specimens irradiated at all four temperatures. Precipitates were extracted from thermally aged specimens, and the amount of precipitate was correlated with the increase in transition temperature. Laves phase was identified in the extracted precipitates by X-ray diffraction. Earlier studies on conventional elevated-temperature steels also showed embrittlement effects above the irradiation-hardening temperature

  2. a Study of Stress Relaxation Rate in Un-Irradiated and Neutron-Irradiated Stainless Steel

    Science.gov (United States)

    Ghauri, I. M.; Afzal, Naveed; Zyrek, N. A.

    Stress relaxation rate in un-irradiated and neutron-irradiated 303 stainless steel was investigated at room temperature. The specimens were exposed to 100 mC, Ra-Be neutron source of continuous energy 2-12 MeV for a period ranging from 4 to 16 days. The tensile deformation of the specimens was carried out using a Universal Testing Machine at 300 K. During the deformation, straining was frequently interrupted by arresting the cross head to observe stress relaxation at fixed load. Stress relaxation rate, s, was found to be stress dependent i.e. it increased with increasing stress levels σ0 both in un-irradiated and irradiated specimens, however the rate was lower in irradiated specimens than those of un-irradiated ones. A further decrease in s was observed with increase in exposure time. The experiential decrease in the relaxation rate in irradiated specimens is ascribed to strong interaction of glide dislocations with radiation induced defects. The activation energy for the movement of dislocations was found to be higher in irradiated specimens as compared with the un-irradiated ones.

  3. Development of detection methods for irradiated foods; development of immunological identification of irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong Ae; Lee, Yoon Jin; Choi, Yoon Jung; Han, Su Kyong [Soonchunhyang University, Asan (Korea)

    2002-04-01

    Enzyme-linked Immunosorbent assay systems for the identification of irradiated egg, pork and chicken was developed. Eggs were irradiated in their shells to 0.5{approx}7kGy. Pork was irradiated to 0.5{approx}3kGy and chicken irradiated to 0.5kGy{approx}5kGy. The most sensitive proteins to irradiation were screened by SDS-PAGE and purified. Ovalbumin from egg, salt soluble protein(p) from pork, and salt soluble protein(c) from chicken showed the most sensitivity to irradiation. To investigate for a practical use in identifying of irradiated egg, pork and chicken, competitive ELISA was performed. The binding activity of ovalbumin to anti-ovalbumin IgG was reduced in a dose-dependent manner by irradiating up to 7kGy, and considerably lowered after irradiating at 7kGy. The concentration of 50% inhibition of ovalbumin to IgG was increased to 1.5(0.5kGy){approx}3.7(7kGy) times in an dose-dependent relationship. The binding activity of salt soluble protein(p) to anti-salt soluble protein IgG (anti-SSPp IgG)was also reduced in a dose-dependent manner by irradiating up to 3kGy, and considerably lowered after irradiating at 3kGy. The concentration of 50% inhibition of salt soluble protein to IgG was increased to 1.1(0.5kGy){approx}5.2(3kGy) times in a dose-dependent relationship. On the other hand, the binding activity of salt soluble protein(c) to anti-salt soluble protein IgG(anti-SSPc IgG) was reduced in a dose-dependent manner by irradiating up to 5kGy, too, and considerably lowered after irradiating at 5kGy. The concentration of 50% inhibition of salt soluble protein to IgG was increased to 1.1{approx}2.3 times in a dose-dependent relationship. SDS-PAGE of the irradiation sensitive proteins showed the partial breakdown of it was induced by irradiation. So, the lowering of binding activity was probably due to the partial breakdown of ovalbumin by irradiation. 25 refs., 12 figs., 5 tabs. (Author)

  4. Food Irradiation | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    Using radiation to kill bacteria and other pathogens in food is called food irradiation. Irradiating food kills bacteria and molds that can make people sick. Irradiation does not remove toxins that are already in food. The high energy of the radiation breaks chemical bonds to stop bacteria and other pathogens from multiplying. Irradiation does not make food radioactive.

  5. Inhibition effect of ADSCs on thymomas induced by irradiation

    Institute of Scientific and Technical Information of China (English)

    Zhi Xiong; Zhi-Hua Kong; Jun Zhu; Yu-Lin Yuan; Guo-Xiang Wang; Gan-Qing Xia

    2015-01-01

    Objective:To evaluate that the effect of adipose-derived stem cells (ADSCs) on thymomas induced by irradiation.Methods: A total of 160 cleaning degree C57BL/6 mice were divided into four groups randomly: control group of 40 mice with non-irradiation; irradiation group of 40 mice with irradiation; irradiation+ADSCs group with 40 mice, thymoma model mice injected with 0.5 mL ADSCs via tail vein at one day after last irradiation; non-irradiation+ADSCs group of 40 mice with the same ADSCs injection as irradiation+ADSCs group. All mice were sacrificed on the 1st, 3rd, 7th and 14th day after last irradiation, localization of ADSCs in thymoma tissue was detected using fluorescence microscope. Four groups mice were sacrificed on the 1st, 3rd, 7th, 14th day and the 6th month after last irradiation, pathological changes of thymus gland tissue were observed by HE staining and immunohistochemistry assay.Results: The thymoma incidence of irradiation+ADSCs group was significantly lower in control group. The expression of CD31 and PCNA in irradiation group and irradiation+ADSCs group mice was significantly higher than that of control group, and the expression of PCNA in irradiation+ADSCs group mice was significantly lower than that of radiation group mice. Conclusios:ADSCs can reduce the degree of irradiation damage of thymus tissue and inhibit the growth of thymoma induced by irradiation.

  6. Total lymphoid irradiation and discordant cardiac xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, E.; Dresdale, A.R.; Diehl, J.T.; Katzen, N.A.; Aronovitz, M.J.; Konstam, M.A.; Payne, D.D.; Cleveland, R.J. (Tufts Univ. School of Medicine, Boston, MA (USA))

    1990-01-01

    Total lymphoid irradiation can prolong concordant cardiac xenografts. The effects of total lymphoid irradiation in a discordant xenograft model (guinea pig to rat) were studied with and without adjuvant pharmacologic immunosuppression. Inbred Lewis rats were randomly allocated to one of four groups. Group 1 (n = 6) served as a control group and rats received no immunosuppression. Group 2 (n = 5) received triple-drug therapy that consisted of intraperitoneal azathioprine (2 mg/kg), cyclosporine (20 mg/kg), and methylprednisolone (1 mg/kg) for 1 week before transplantation. Group 3 animals (n = 5) received 15 Gy of total lymphoid irradiation in 12 divided doses over a 3-week period. Group 4 (n = 6) received both triple-drug therapy and total lymphoid irradiation as described for groups 2 and 3. Complement-dependent cytotoxicity assay was performed to determine if a correlation between complement-dependent cytotoxicity and rejection-free interval existed. Rejection was defined as cessation of graft pulsation and was confirmed by histologic test results. Only groups 1 and 2 showed a difference in survival (group 1, 6.9 +/- 1.0 minutes; group 2, 14.2 +/- 2.7 minutes, p = 0.02). Although total lymphoid irradiation did decrease complement-dependent cytotoxicity, linear regression revealed no correlation between complement-dependent cytotoxicity and graft survival (coefficient of correlation, 0.30). Unlike concordant cardiac xenografts, total lymphoid irradiation with or without triple-drug therapy does not prolong graft survival.

  7. Development of a Stochastic Hourly Solar Irradiation Model

    Directory of Open Access Journals (Sweden)

    Kristijan Brecl

    2014-01-01

    Full Text Available We have developed a new solar irradiation model and implemented it in the SunIrradiance photovoltaic cell/module simulator. This model uses stochastic methods to generate the hourly distribution of solar irradiation on a horizontal or inclined surface from monthly irradiation values on the horizontal surface of a selected location and was verified with the measured irradiance data in Ljubljana, located in Central Europe. The new model shows better simulation results with regard to the share of the diffuse irradiation in the region than the other models. The simulation results show that the new solar irradiation model is excellent for photovoltaic system simulations of single junction PV technologies.

  8. Thermoluminescence method for detection of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Pinnioja, S

    1998-12-31

    A method of thermoluminescence (TL) analysis was developed for the detection of irradiated foods. The TL method is based on the determination of thermoluminescence of adhering or contaminating minerals separated from foods by wet sieving and treatment with high density liquid. Carbon tetrachloride provided a suitable alternative for foods that form gels with water. Thermoluminescence response of minerals in a first TL measurement is normalised with a second TL measurement of the same mineral sample after calibration irradiation to a dose of 5 kGy. The decision about irradiation is made on the basis of a comparison of the two TL spectra: if the two TL glow curves match in shape and intensity the sample has been irradiated, and if they are clearly different it has not been irradiated. An attractive feature of TL analysis is that the mineral material itself is used for calibration; no reference material is required. Foods of interest in the investigation were herbs, spices, berries and seafood. The presence of minerals in samples is a criterion for application of the method, and appropriate minerals were found in all herbs, spices and berries. The most common minerals in terrestrial food were tecto-silicates - quartz and feldspars - which with their intense and stable thermoluminescence were well suited for the analysis. Mica proved to be useless for detection purposes, whereas carbonate in the form of calcite separated from intestines of seafood was acceptable. Fading of the TL signal is considerable in the low temperature part of the glow curve during a storage of several months after irradiation. However, spices and herbs could easily be identified as irradiated even after two years storage. Conditions for seafood, which is stored in a freezer, are different, and only slight fading was observed after one year. The effect of mineral composition and structure on TL was studied for feldspars. Feldspars originating from subtropical and tropical regions exhibit lower TL

  9. Development of food irradiation technology and consumer attitude toward irradiated food in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong-Ho; Byun, Myung-Woo; Cho, Han-Ok (Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of))

    1992-12-01

    In Korea, the well-integrated research of biological effects of radiation has been launched from the late 1960s. As research activities, the following food items have been dealt with: sprouting foods, fruits, mushrooms, grains, spices or mixed condiments, fish or fishery products, meat or meat products, and fermented foods. The usage of gamma radiation from [sup 60]Co source is now authorized for food irradiation of the following items: potato, onion, garlic, chestnut, mushroom, dried mushroom, dried spices (including red pepper, garlic, black pepper, onion, ginger, and green onion), dried meat, powdered fish and shellfish, soybean paste powder, hot pepper paste powder, soybean sauce powder, and starch. Since the authorization of food irradiation in 1985, consumers' acceptance has been considered the most important. The survey evaluating the basic perception and attitule toward food irradiation revealed the following results. Consumers' awareness of food irradiation was 82%, with significantly higher in radiation workers than the general public (p<0.0001). Seventy-five percent distinguished the contaminated food by radionuclides from irradiated food. In purchasing irradiated foods, 50.9% required more information. The contribution of irradiated foods to wholesomeness was suspicious in 51%, acceptable in 33%, and uncertain in 16%. If information about the benefits of irradiation is provided to consumers, positive response was increased to 60%. The most critical impediment in the commercial application of food irradiation was found to have resulted from the general consumers' slow acceptance; however, consumers' attitude to irradiated food became positive if they understood the safety and advantages of this technology. The most important task is to overcome consumers' psychological resistance and transporting matters of the products to be irradiated. (N.K.).

  10. Do you know `food irradiation`?. A survey of consumer status toward food irradiation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu [Research Inst. for Advanced Science and Technology, Osaka Prefectural Univ., Sakai, Osaka (Japan)

    1998-12-31

    In Japan potatoes have been irradiated for the purpose of sprout inhibition for more than 20 years and more than ten thousand irradiated potatoes are circulated in Japanese market in recent years. Nevertheless, there are few surveys about the consumer status toward food irradiation in Japan. We have been held `Radiation Fair -- The relationship between daily life and radiation--` during summer vacation season in August for more than 10 years in Osaka, the largest city of western Japan, for the purpose of public education and information transfer of radiation and radiation-related technology especially to school kids. We displayed 200 kg of irradiated potatoes together with explanatory panels. We distributed questionnaires to the senior high school students (16 years old) and upward visitor for recent 3 years to inquire their status toward radiation and irradiated products including irradiated potatoes as well as impression toward the displays. According to the survey results in 1997, the ratio of respondents who had heard of irradiated potatoes was 51% of 228 answers. This value was smaller than those of the Gallop survey conducted in the United States (73%). After viewing the display and description of irradiated potatoes, almost half of the respondents indicated a positive feeling for tasting the irradiated potatoes. Most of the respondents chose one of the following issues, Freshness` (37%), `Open date` (13%), or `Food additives` (34%) as the major concerns about food safety. Interestingly, `Pesticide` and/or `Foodborne pathogen` highly were chosen by only 15% of the respondents in total even though these issue were highly ranked in the US surveys. These results indicate that original methodology is necessary for distributing the information related food irradiation related food irradiation efficiently. (J.P.N)

  11. The influence of late-stage pupal irradiation and increased irradiated: un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton.

    Science.gov (United States)

    Helinski, M E H; Knols, B G J

    2009-06-01

    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments with a higher ratio of irradiated versus un-irradiated males were performed. Second, pupae were irradiated just prior to emergence and male mating competitiveness was determined. Males were irradiated in the pupal stage with a partially or fully-sterilizing dose of 70 or 120 Gy, respectively. Pupae were irradiated aged 20-26 h (young) as routinely performed, or the pupal stage was artificially prolonged by cooling and pupae were irradiated aged 42-48 h (old). Irradiated males competed at a ratio of 3:1:1 to un-irradiated males for mates in a large cage design. At the 3:1 ratio, the number of females inseminated by males irradiated with 70 Gy as young pupae was similar to the number inseminated by un-irradiated males for the majority of the replicates. At 120 Gy, significantly fewer females were inseminated by irradiated than by un-irradiated males. The irradiation of older pupae did not result in a significantly improved male mating competitiveness compared to the irradiation of young pupae. Our findings indicate that the loss of competitiveness after pupal stage irradiation can be compensated for by a threefold increase of irradiated males, but only for the partially-sterilizing dose. In addition, cooling might be a useful tool to facilitate handling processes of large numbers of mosquitoes in genetic control programmes.

  12. Dosimetry Formalism and Implementation of a Homogenous Irradiation Protocol to Improve the Accuracy of Small Animal Whole-Body Irradiation Using a 137Cs Irradiator.

    Science.gov (United States)

    Brodin, N Patrik; Chen, Yong; Yaparpalvi, Ravindra; Guha, Chandan; Tomé, Wolfgang A

    2016-02-01

    Shielded Cs irradiators are routinely used in pre-clinical radiation research to perform in vitro or in vivo investigations. Without appropriate dosimetry and irradiation protocols in place, there can be large uncertainty in the delivered dose of radiation between irradiated subjects that could lead to inaccurate and possibly misleading results. Here, a dosimetric evaluation of the JL Shepard Mark I-68A Cs irradiator and an irradiation technique for whole-body irradiation of small animals that allows one to limit the between subject variation in delivered dose to ±3% are provided. Mathematical simulation techniques and Gafchromic EBT film were used to describe the region within the irradiation cavity with homogeneous dose distribution (100% ± 5%), the dosimetric impact of varying source-to-subject distance, and the variation in attenuation thickness due to turntable rotation. Furthermore, an irradiation protocol and dosimetry formalism that allows calculation of irradiation time for whole-body irradiation of small animals is proposed that is designed to ensure a more consistent dose delivery between irradiated subjects. To compare this protocol with the conventional irradiation protocol suggested by the vendor, high-resolution film dosimetry measurements evaluating the dose difference between irradiation subjects and the dose distribution throughout subjects was performed using phantoms resembling small animals. Based on these results, there can be considerable variation in the delivered dose of > ± 5% using the conventional irradiation protocol for whole-body irradiation doses below 5 Gy. Using the proposed irradiation protocol this variability can be reduced to within ±3% and the dosimetry formalism allows for more accurate calculation of the irradiation time in relation to the intended prescription dose.

  13. Removal of carbon-14 from irradiated graphite

    Science.gov (United States)

    Dunzik-Gougar, Mary Lou; Smith, Tara E.

    2014-08-01

    Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. On of the isotopes of great concern for long-term disposal of irradiated graphite is carbon-14 (14C), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates 14C is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented here is to develop a practical method by which 14C can be removed. In parallel with these efforts, the same irradiated graphite material is being characterized to identify the chemical form of 14C in irradiated graphite. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam®, were exposed to liquid nitrogen (to increase the quantity of 14C precursor) and neutron-irradiated (1013 neutrons/cm2/s). During post-irradiation thermal treatment, graphite samples were heated in the presence of an inert carrier gas (with or without the addition of an oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon only were performed at 900 °C and 1400 °C to evaluate the selective removal of 14C. Thermal treatment also was performed with the addition of 3 and 5 vol% oxygen at temperatures 700 °C and 1400 °C. Thermal treatment experiments were evaluated for the effective selective removal of 14C. Lower temperatures and oxygen levels correlated to more efficient 14C removal.

  14. A Solar Irradiance Climate Data Record

    Science.gov (United States)

    Coddington, O.; Lean, J. L.; Pilewskie, P.; Snow, M.; Lindholm, D.

    2016-08-01

    We present a new climate data record for total solar irradiance and solar spectral irradiance between 1610 and the present day with associated wavelength and time-dependent uncertainties and quarterly updates. The data record, which is part of the National Oceanic and Atmospheric Administration’s (NOAA) Climate Data Record (CDR) program, provides a robust, sustainable, and scientifically defensible record of solar irradiance that is of sufficient length, consistency, and continuity for use in studies of climate variability and climate change on multiple time scales and for user groups spanning climate modeling, remote sensing, and natural resource and renewable energy industries. The data record, jointly developed by the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes with respect to quiet sun conditions when facular brightening and sunspot darkening features are present on the solar disk where the magnitude of the changes in irradiance are determined from the linear regression of a proxy magnesium (Mg) II index and sunspot area indices against the approximately decade-long solar irradiance measurements of the Solar Radiation and Climate Experiment (SORCE). To promote long-term data usage and sharing for a broad range of users, the source code, the dataset itself, and supporting documentation are archived at NOAA's National Centers for Environmental Information (NCEI). In the future, the dataset will also be available through the LASP Interactive Solar Irradiance Data Center (LISIRD) for user-specified time periods and spectral ranges of interest.

  15. Differential androgenesis in gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihyang; Yoon, Yongdal [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2002-07-01

    The Leydig cells of the testis account for at least 75% of the total testosterone produced in the normal adult male. Whereas the production of estrogen from androgen is catalyzed by aromatase cytochrome P450, which is found in many tissues, including gonad, brain, adipose tissue, bone, and heart. The gamma-irradiation causes the impairment of spermatogenesis and steroidogenesis in male mice. The present study was performed to analyze changes in testosterone concentrations and expression of steroidogenic enzyme of mice after whole body gamma-irradiation. Eight-week-old male ICR mice were irradiated with 6.5 or 10 Gy. At days 1, 2, 3, 4, and 5 after irradiation, testes were removed and processed for paraffin sections and isolation of mRNA. We calculated the gonad index from body and testis weight, and checked the testis volume. Hormonal analysis was performed by means of radioimmunoassay (RIA) in serum and intratesticular fluid. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate the expression kinetics of the apoptotic gene and the cytochrome P450 aromatase gene after irradiation. In gamma-irradiated mice, the body weight reduced in comparison to that of the control group. Therefore, gonad indices increased. The testosterone concentrations in serum and intratesticular fluid were significantly reduced. RT- PCR data represented that the expression of Fas, Fas ligand, and aromatase cytochrome P450 showed the specific patterns against control groups. These results indicated that gamma- irradiation of adult mice induced the alteration of androgenesis and suggested that might counteract the spermatogenesis.

  16. Detection of low amount of irradiated ingredients in non-irradiated precooked meals

    NARCIS (Netherlands)

    Marchioni, E; Horvatovich, P; Ndiaye, B; Miesch, M; Hasselmann, C

    The application of the European Standards for the detection of irradiated food by thermo luminescence of silicates, electron-spin resonance spectroscopy of bones or gas chromatography-mass spectrometry of 2-alkylcyclobutanones does not allow the detection of irradiated ingredients included in small

  17. Short-term solar irradiance and irradiation forecasts via different time series techniques: A preliminary study

    CERN Document Server

    Join, Cédric; Fliess, Michel; Muselli, Marc; Nivet, Marie Laure; Paoli, Christophe; Chaxel, Frédéric

    2014-01-01

    This communication is devoted to solar irradiance and irradiation short-term forecasts, which are useful for electricity production. Several different time series approaches are employed. Our results and the corresponding numerical simulations show that techniques which do not need a large amount of historical data behave better than those which need them, especially when those data are quite noisy.

  18. Detection of low amount of irradiated ingredients in non-irradiated precooked meals

    NARCIS (Netherlands)

    Marchioni, E; Horvatovich, P; Ndiaye, B; Miesch, M; Hasselmann, C

    2002-01-01

    The application of the European Standards for the detection of irradiated food by thermo luminescence of silicates, electron-spin resonance spectroscopy of bones or gas chromatography-mass spectrometry of 2-alkylcyclobutanones does not allow the detection of irradiated ingredients included in small

  19. Dose measurement for systemic irradiation with a moving table specially designed for total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Makoto; Oida, Masatada; Nagumo, Junya; Fujita, Katsuhisa; Furuya, Teruo; Watanabe, Yoshiharu [Hokkaido Univ., Sapporo (Japan). Hospital

    2001-07-01

    Total body irradiation (TBI) is performed in combination with chemotherapy to kill malignant tumor cells in the body prior to bone marrow transplantation. This study reports the results of dose measurements required for clinical application of the moving table technique to TBI. Since irradiation is performed as the table moves, the authors gathered sufficient basic data for irradiation by measuring output dose, tissue peak dose ratio (TPR), and the relationship between dose rate and movement velocity. The output doses were varied according to dose rate, movement velocity, radiation field, and source-target distance (STD) under these conditions. The authors measured the relationship between the dose rate and the movement velocity with the irradiation field and STD set to fit clinical applications. TPR during irradiation while moving differs from TPR during stationary irradiation, and it was measured according to the method of irradiation. The effect of body thickness was easily corrected by changing the movement velocity during the measurements. The authors measured the dose with a thermoluminescent dosimeter (TLD) during clinical application and confirmed the accuracy of the measurements. TBI with the moving table, it makes possible to perform bilateral irradiation in both posterior-anterior and anterior-posterior directions with the patient in the supine position, to reduce treatment time, to shield the lung well with reproducibility of posture, and to treat with high accuracy. (K.H.)

  20. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; Morris, Robert N.

    2016-11-01

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of

  1. Assessing Nutrients Availability of Irradiated and Non-Irradiated Biosolids for the Agriculture Re-use

    Energy Technology Data Exchange (ETDEWEB)

    Magnavacca, Cecilia; Sanchez, Monica

    2003-07-01

    Irradiation provides a fast and reliable means to disinfect biosolids generated by municipal wastewater treatment processes. The chemical integrity of some substances may be altered thus change the availability of plant nutrients. Chemical analyses on the biosolids showed a release of mineral forms of Nitrogen while Phosphorus chemical forms were not altered. Higher amounts of mineralized N were indirectly demonstrated in soils with irradiated biosolids by a respiration experiment, and higher nitrate concentrations were measured in the irradiated biosolids amended soils at field experiments. Crop field experiments (lettuce and sugarcane) confirmed that irradiated biosolids have higher fertilizing capability than equal amounts of non-irradiated biosolids. Maximum dose rate had no additive effect but a depleted result, thus marking the importance of the use of moderate biosolids rates. (author)

  2. Embrittlernent of irradiated F82H in the absence of irradiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, Ronald L [ORNL; Shiba, Kiyoyuki [ORNL; Sokolov, Mikhail A [ORNL

    2009-01-01

    Neutron irradiation of 7-12% Cr ferritic/martensitic steels below 425-450 C produces microstructural defects and precipitation that cause an increase in yield stress. This irradiation hardening causes embrittlement, which is observed in a Charpy impact or fracture toughness test as an increase in the ductile-brittle transition temperature. Based on observations that show little change in strength in steels irradiated above 425-450 C, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study of F82H steel, significant embrittlement was observed after irradiation at 500 C. This embrittlement is apparently due to irradiation-accelerated Laves-phase precipitation. Observations of the embrittlement in the absence of hardening has been examined and analyzed with thermal-aging studies and computational thermodynamics calculations to illuminate and understand the effect.

  3. Light microscopic and autoradiographic study of non-irradiated and irradiated ocular wounds

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, U.; Gardiner, T.A.; Archer, D.B.; Maguire, C.J. (Queen' s Univ., Belfast, Northern Ireland (UK). Dept. of Opthalmology; Royal Victoria Hospital, Belfast, Northern Ireland (UK). Eye and Ear Clinic)

    1989-01-01

    Focal gamma irradiation was used to limit the intraocular extension of scar tissue which typically occurs after posterior perforating injury to the eye. Standard posterior perforating injuries were created in the right eye of forty-eight rabbits, half of which had the site of perforation focally irradiated using a Cobalt 60 ophthalmic plaque. Non-irradiated wounds healed with profuse formation of highly cellular and vascularised granulation tissue which invaded the vitreous to form contractile vitreo-retinal membranes. In irradiated eyes vitreo-retinal membrane formation was infrequent; the wounds showing only sparse granulation tissue with little or no extension into the vitreous cavity. Autoradiographic studies carried out in a second group of 40 animals showed that the episclera was the main source of the proliferating fibroblasts, and call counts confirmed that the inflammatory and repair responses in irradiated wounds were both delayed and attenuated. (author).

  4. Measurement of Diameter Changes during Irradiation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Knudson, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Crepeau, J. C. [Univ. of Idaho, Idaho Falls, ID (United States); Solstad, S. [Inst. for Energy Technologoy, Halden (Norway)

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  5. Total lymphoid irradiation of intractable rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, M.; Fritz, H.; Sauer, R.

    1986-12-01

    Eleven patients with intractable rheumatoid arthritis were treated with fractionated total lymphoid irradiation, (total dose 20 Gy). Lasting improvement in clinical symptoms was found in four patients during treatment and the remaining patients experienced similar benefit within 2 months of irradiation. There was marked reduction in exacerbations and number of joints involved. Morning stiffness, joint swelling and tenderness decreased. Complications included severe fatigue during treatment and acute bacterial arthritis in multiple joints in one patient. Four patients have since died, one of renal failure, another of cardiogenic shock following surgery 3 and 24 months after total lymphoid irradiation. Both had generalised amyloidosis. The third patient developed joint empyema and died of toxic cardiac failure. The fourth died 3 months after resection of a Kaposi's sarcoma complicated by wound infection which responded to treatment. Immunologically, total lymphoid irradiation resulted in suppression of the absolute lymphocyte count and reduction in T-helper cells, the number of T-suppressor cells remaining unchanged. These data provide evidence of T-cell involvement in the pathogenesis of rheumatoid arthritis. Total lymphoid irradiation can induce sustained improvement in clinical disease activity, but severe, possibly fatal, side-effects cannot be ignored.

  6. Dielectric relaxation of gamma irradiated muscovite mica

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjeet [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Singh, Mohan, E-mail: mohansinghphysics@gmail.com [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Singh, Lakhwant [Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India); Awasthi, A.M. [Thermodynamics Laboratory, UGC-DAE Consortium for Scientific Research, Indore 452001 (India); Lochab, S.P. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  7. Multiscale modeling of nanofoams under irradiation

    Science.gov (United States)

    Bringa, E. M.; Rodriguez-Nieva, J.; Monk, J. D.; Caro, J. A.; Loeffler, M. J.; Cassidy, T. A.; Johnson, R. E.; Baragiola, R. A.; Farkas, D.

    2012-02-01

    Nanoscale porosity appears in solids under a number of conditions: radiation damage in nuclear reactors, initial stages of ductile failure, in astro-materials, etc. Using molecular dynamics (MD) simulations, we analyze the radiation damage and surface modification of materials with various nanoscale porosities, where experimental techniques can be difficult to use and interpret. We consider (a) irradiation with ions with energies in the range 1-25 keV, of interest for fusion and fission energy applications; (b) swift heavy ion irradiation, with energies up to few GeV, relevant for track formation and interstellar grain evolution. We find that irradiation effects have larger spatial extent than for full-density solids and include the production of point-defects and twins which change the mechanical properties of the samples. We use our MD results as input for a Monte Carlo (MC) code to calculate sputtering yields from nanofoams of different geometries under different irradiation conditions. We also use our MD results to build models which predict possible radiation endurance under intense irradiation.

  8. Disinfestation of different cereal products by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, E.; Kiss, I.; Boros, A.; Horvath, Ny.; Toth, J.; Gyulai, P.; Szalma, A.

    1986-01-01

    The sensitivity of Tribolium confusum - small flour beetle -to radiation was studied in a dose range of 0-0.8 kGy. We found that the insect egg was the most sensitive to radiation, then larvae and pupae followed it. 0.2 kGy dose of irradiation kills these forms or their further development is inhibited. Imagoes do not immediately die after 0.8 kGy dose of irradiation; the young imagoes are more sensitive to radiation than the aged ones. 0.4 kGy average dose of irradiation is a suitable protection against Tribolium confusum. Disinfestation experiments were performed with wheat-germ and wheat-bran and the most important ingredients of the two products were analysed. The vitamin E content and the rate of lipid-oxidation of wheat germ were determined. The vitamin E content decreased after radiation treatment, however, during storage of at least 6 months, it remained at a level specified by food quality standards (higher than 10 mg%). Carbohydrate content of wheat-bran (water soluble carbohydrate content, crude-fibre and dietary fibre content) did not change at all. Storability of radiation disinfested wheat-germ was 8 months, wheat-bran 3-4 months. On the base of the results 2-2 tons of wheat-germ and wheat-bran were irradiated and trial marked in 1985. In 1986 the irradiation of 10 tons of wheat-germ is planned.

  9. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  10. RESTORATION INDUCED BY CATALASE IN IRRADIATED MICROORGANISMS

    Science.gov (United States)

    Latarjet, Raymond; Caldas, Luis Renato

    1952-01-01

    1. E. coli, strain K-12, and B. megatherium 899, irradiated in strict but still undefined physiological conditions with certain heavy doses of ultraviolet light, are efficiently restored by catalase, which acts on or fixes itself upon the bacteria in a few minutes. This restoration (C. R.), different from photorestoration, is aided by a little visible light. 2. At 37° the restorability lasts for about 2 hours after UV irradiation; the restored cells begin to divide at the same time as the normal survivors. 3. C. R. is not produced after x-irradiation. 4. B. megatherium Mox and E. coli, strain B/r show little C. R.; E. coli strain B shows none. None of these three strains is lysogenic, whereas the two preceding catalase-restorable strains are. 5. Phage production in the system "K-12 infected with T2 phage" is restored by catalase after UV irradiation, whereas phage production in the system "infected B" is not. 6. With K-12, catalase does not prevent the growth of phage and the lysis induced by UV irradiation (Lwoff's phenomenon). 7. Hypotheses are discussed concerning: (a) the chemical nature of this action of catalase; (b) a possible relation between C. R. and lysogenicity of the sensitive bacteria; (c) the consequences of such chemical restorations on the general problem of cell radiosensitivity. PMID:14898028

  11. Infrared Irradiation: Toward Green Chemistry, a Review.

    Science.gov (United States)

    Escobedo, René; Miranda, René; Martínez, Joel

    2016-03-26

    This review provides a comprehensive overview of where infrared irradiation has been employed, mainly as regards activating green mode for natural products extractions, as well as to favor a reaction, highlighting its actual importance. It is also underlined that infrared irradiation heating has been around for a long time; however, only in the last eighteen years have many of its advantages been applied to satisfy a wide range of chemical processes, natural products extractions, and for the promotion of many kinds of reactions. In addition, it is brought to light that near infrared irradiation is more efficient than middle and far infrared irradiations, being easily controllable and with the quality of a fast responding heat source. Thus, the main objective of this review is to offer infrared irradiation as an alternative clean energy source to activate reactions, in addition to favor the selective extraction of natural products, all of which is within the Green Chemistry protocol. Some recent results from our laboratory are also included.

  12. Low Irradiance Losses of Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Marion, William F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mavromatakis, F. [Technological Educational Institute of Crete; Vignola, F. [University of Oregon

    2017-09-01

    The efficiency of a photovoltaic cell/module changes, as the intensity of incident irradiance decreases, in a non linear way and these changes are referred to as low irradiance losses. In this study data from field experiments, developed and organized by the National Renewable Energy Laboratory, are used to evaluate the low irradiance losses for a variety of module technologies. The results demonstrate that the ratio of the normalized power divided by the normalized short circuit current provide a good measure of the module's low light efficiency losses after both the maximum power and the short circuit current are adjusted for temperature effects. The normalized efficiencies determined through the field data, spanning for several months, are in good agreement with those determined under controlled conditions in a solar simulator. An analytical relation for the normalized efficiency is proposed based on existing formulation for the fill factor. Despite the approximate nature of the fill factor relation, this approach produces reliable results. It will be shown that a normalized efficiency curve can be used to extract information on the series and shunt resistances of the PV module and that the shunt resistance as a function of solar irradiance can be studied. Alternately, this formulation can be used to study the low irradiance losses of a module when the internal resistances are known.

  13. Ion irradiation effects on metallic nanocrystals

    Science.gov (United States)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  14. Infrared Irradiation: Toward Green Chemistry, a Review

    Science.gov (United States)

    Escobedo, René; Miranda, René; Martínez, Joel

    2016-01-01

    This review provides a comprehensive overview of where infrared irradiation has been employed, mainly as regards activating green mode for natural products extractions, as well as to favor a reaction, highlighting its actual importance. It is also underlined that infrared irradiation heating has been around for a long time; however, only in the last eighteen years have many of its advantages been applied to satisfy a wide range of chemical processes, natural products extractions, and for the promotion of many kinds of reactions. In addition, it is brought to light that near infrared irradiation is more efficient than middle and far infrared irradiations, being easily controllable and with the quality of a fast responding heat source. Thus, the main objective of this review is to offer infrared irradiation as an alternative clean energy source to activate reactions, in addition to favor the selective extraction of natural products, all of which is within the Green Chemistry protocol. Some recent results from our laboratory are also included. PMID:27023535

  15. Effects of irradiation on platelet function

    Energy Technology Data Exchange (ETDEWEB)

    Rock, G.; Adams, G.A.; Labow, R.S.

    1988-09-01

    Current medical practice involves the irradiation of blood components, including platelet concentrates, before their administration to patients with severe immunosuppression. The authors studied the effect of irradiation on in vitro platelet function and the leaching of plasticizers from the bag, both immediately and after 5 days of storage. The platelet count, white cell count, pH, glucose, lactate, platelet aggregation and release reaction, and serotonin uptake were not altered by the irradiation of random-donor or apheresis units with 2000 rads carried out at 0 and 24 hours and 5 days after collection. The leaching of di(2-ethylhexyl)phthalate from the plastic bags followed by the conversion to mono(2-ethylhexyl)phthalate was not increased by irradiation. Therefore, it is possible to irradiate platelet concentrates on the day of collection and subsequently store them for at least 5 days while maintaining in vitro function. This procedure could have considerable benefit for blood banks involved in the provision of many platelet products.

  16. Local graft irradiation in renal transplant rejection

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Masashi; Kataoka, Masaaki; Itoh, Hisao (Ehime Univ., Matsuyama (Japan). School of Medicine)

    1990-04-01

    From 1977 to 1988, of 142 renal transplantations, seven recipients (4.9%) received local graft irradiation following rejective reaction refractory to antirejection medical managements. Concurrent with the administration of pulsed high dose methylprednisolone and other antirejection medical managements, the graft was irradiated with a total dose of 6.0 Gy-150 cGy per fraction every other day at the midplane of the graft using two opposing portals of 4MX Linac. The fields were defined by palpation and echography. All patients had improvements in serum creatinine on the 10th day after beginning the irradiation. Four patients with peripheral lymphocytosis during the irradiation combined with pulsed high dose methylprednisolone improved in renal functions. On the other hand, out of 3 patients with lymphcytopenic changes, in two the transplanted graft was removed due to deteriorations, and the other patient is currently suffering from chronic rejection. Local graft irradiation can be useful in maintaining a rejective graft and reversing its functions in some patients whose rejective reaction failed to respond to the antirejection medical managements. (author).

  17. Infrared Irradiation: Toward Green Chemistry, a Review

    Directory of Open Access Journals (Sweden)

    René Escobedo

    2016-03-01

    Full Text Available This review provides a comprehensive overview of where infrared irradiation has been employed, mainly as regards activating green mode for natural products extractions, as well as to favor a reaction, highlighting its actual importance. It is also underlined that infrared irradiation heating has been around for a long time; however, only in the last eighteen years have many of its advantages been applied to satisfy a wide range of chemical processes, natural products extractions, and for the promotion of many kinds of reactions. In addition, it is brought to light that near infrared irradiation is more efficient than middle and far infrared irradiations, being easily controllable and with the quality of a fast responding heat source. Thus, the main objective of this review is to offer infrared irradiation as an alternative clean energy source to activate reactions, in addition to favor the selective extraction of natural products, all of which is within the Green Chemistry protocol. Some recent results from our laboratory are also included.

  18. Electron irradiation effects on power MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Frisina, F.; Tavolo, N. (S.G.S. Thomson Microelectronics, Catania (Italy)); Gombia, E.; Mosca, R. (Consiglio Nazionale delle Ricerche, Parma (Italy). Ist. MASPEC); Chirco, P.; Fuochi, P.G. (Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. di Fotochimica e Radiazioni d' Alta Energia)

    1990-01-01

    Electron irradiation has been used to enhance the switching speed of the internal diode in high-voltage power MOS structures (BV{sub DSS} > 500 V). By using 12 MeV electron irradiation at room temperature it has been found that the reverse recovery time and the reverse recovery charge of power MOS internal diode can be reduced in a well controlled manner up to 70% and 90% of their initial value respectively increasing the radiation dose from 0 to 15 Mrads. Anyway an undesirable decrease of about 3V has been observed in the gate threshold voltage. This effect has been ascribed to the damage produced in the gate oxide of the device due to the electron irradiation. By annealing the device at temperature >315{sup 0}C it has been possible to restore the threshold voltage without heavily enhancing the carrier lifetime. DLTS measurements have been performed on electron-irradiated devices to identify the recombination centres introduced in the forbidden gap of the silicon. A comparison has been made with gold-diffused devices. The results obtained confirm that electron irradiation is feasible for power MOS transistors. (author).

  19. Irradiation effects in hydrated zirconium molybdate

    Science.gov (United States)

    Fourdrin, C.; Esnouf, S.; Dauvois, V.; Renault, J.-P.; Venault, L.; Tabarant, M.; Durand, D.; Chenière, A.; Lamouroux-Lucas, C.; Cochin, F.

    2012-07-01

    Hydrated zirconium molybdate is a precipitate formed during the process of spent nuclear fuel dissolution. In order to study the radiation stability of this material, we performed gamma and electron irradiation in a dose range of 10-100 kGy. XRD patterns showed that the crystalline structure is not affected by irradiation. However, the yellow original sample exhibits a blue-grey color after exposure. The resulting samples were analyzed by means of EPR and diffuse reflectance spectroscopy. Two sites for trapped electrons were evidenced leading to a d1 configuration responsible for the observed coloration. Moreover, a third defect corresponding to a hole trapped on oxygen was observed after electron irradiation at low temperature.

  20. Analysis and modeling of solar irradiance variations

    CERN Document Server

    Yeo, K L

    2014-01-01

    A prominent manifestation of the solar dynamo is the 11-year activity cycle, evident in indicators of solar activity, including solar irradiance. Although a relationship between solar activity and the brightness of the Sun had long been suspected, it was only directly observed after regular satellite measurements became available with the launch of Nimbus-7 in 1978. The measurement of solar irradiance from space is accompanied by the development of models aimed at describing the apparent variability by the intensity excess/deficit effected by magnetic structures in the photosphere. The more sophisticated models, termed semi-empirical, rely on the intensity spectra of photospheric magnetic structures generated with radiative transfer codes from semi-empirical model atmospheres. An established example of such models is SATIRE-S (Spectral And Total Irradiance REconstruction for the Satellite era). One key limitation of current semi-empirical models is the fact that the radiant properties of network and faculae a...

  1. Signal development in irradiated silicon detectors

    CERN Document Server

    Kramberger, Gregor; Mikuz, Marko

    2001-01-01

    This work provides a detailed study of signal formation in silicon detectors, with the emphasis on detectors with high concentration of irradiation induced defects in the lattice. These defects give rise to deep energy levels in the band gap. As a consequence, the current induced by charge motion in silicon detectors is signifcantly altered. Within the framework of the study a new experimental method, Charge correction method, based on transient current technique (TCT) was proposed for determination of effective electron and hole trapping times in irradiated silicon detectors. Effective carrier trapping times were determined in numerous silicon pad detectors irradiated with neutrons, pions and protons. Studied detectors were fabricated on oxygenated and non-oxygenated silicon wafers with different bulk resistivities. Measured effective carrier trapping times were found to be inversely proportional to fuence and increase with temperature. No dependence on silicon resistivity and oxygen concentration was observ...

  2. Proton irradiation effects in silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Simoen, E.; Vanhellemont, J.; Alaerts, A. [IMEC, Leuven (Belgium)] [and others

    1997-03-01

    Proton irradiation effects in silicon devices are studied for components fabricated in various substrates in order to reveal possible hardening effects. The degradation of p-n junction diodes increases in first order proportionally with the fluence, when submitted to 10 MeV proton irradiations in the range 5x10{sup 9} cm{sup -2} to 5x10{sup 11} cm{sup -2}. The damage coefficients for both p- and n-type Czochralski, Float-Zone and epitaxial wafers are reported. Charge-Coupled Devices fabricated in a 1.2 {mu}m CCD-CMOS technology are shown to be quite resistant to 59 MeV H{sup +} irradiations, irrespective of the substrate type. (author)

  3. Irradiation creep of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  4. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  5. Hybridizability of gamma-irradiated lactic dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.

    1976-03-01

    The hybridizabilities of the gamma-irradiated chicken heart and pig muscle lactic dehydrogenases were estimated by hybridizing the irradiated enzymes with the unirradiated pig heart lactic dehydrogenase. The disc gel electrophoretic patterns of the inter- and intraspecific hybrids showed that the LDH activity of the pig heart isozyme band increased as a function of dose. This observation was analyzed upon the binomial redistribution pattern of the recombined subunits. The result shows that the hybridizabilities of both the chicken heart and pig muscle isozymes decreased along with the loss of catalytic activity and the release from substrate inhibition. The titration of free SH groups of the irradiated chicken isozyme suggested that the unfolding of the peptide chain destroyed the specific tertiary structure needed for the binding of subunits. (auth)

  6. Growth-irradiance relationships in phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Dubinsky, Z.; Wyman, K.

    1985-03-01

    The steady state growth rates of three species of marine phytoplankton, Thalassiosira weisflogii, Isochrysis galbana, and Prorocentrum micans, were followed in turbidostat culture. At each growth irradiance, photosynthesis and respiration were measured by following changes in oxygen. Together with measurements of optical absorption cross sections, cellular chlorophyll, carbon and nitrogen, and excretion rates as well as knowledge of the quantum flux, the quantum requirement for growth and photosynthesis were calculated. Our results suggest that variations in growth rate caused by changes in irradiance may be related to changes in respiration rates relative to growth as well as changes in optical absorption cross sections for a given species. Interspecific differences in growth rate at a given irradiance are not related to changes in respiration however, but are primarily attributable to differences in optical absorption cross sections normalized to chlorophyll and differences in chlorophyll:carbon ratios.

  7. Neutrophil myeloperoxidase destruction by ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hanker, J.; Giammara, B.; Strauss, G.

    1988-01-01

    The peroxidase activity of enriched leukocyte preparations on coverslips was determined cytochemically with a newly developed method. The techniques utilizes diaminobenzidine medium and cupric nitrate intensification and is suitable for analysis with light microscopy, SEM, and TEM. Blood specimens from control individuals were studied with and without in vitro UV irradiation and compared with those from psoriasis patients exposed therapeutically to various types of UV in phototherapy. All UV irradiated samples showed diminished neutrophil myeloperoxidase (MP) activity although that of the principal eosinophil peroxidase was unaffected. The SEMs supported the contention that decreased neutrophil MP activity might be related to UV induced degranulation. It is believed to be possible, eventually, to equate the observed MP degranulation effect after UV irradiation with diminished ability to fight bacterial infections.

  8. Status of food irradiation in the world

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Furuta, Masakazu [Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Todoriki, Setsuko [National Food Research Institute, 2-1-12 Kannonndai, Tsukuba, Ibaraki 305-8642 (Japan); Uenoyama, Naoki [Department of International Cooperation and Industrial Infrastructure Development, Japan Atomic Industrial Forum, Inc., Shimbashi Fuji Bld., 2-1-3, Shimbashi, Minato-ku, Tokyo 105-8605 Japan (Japan); Kobayashi, Yasuhiko [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)], E-mail: kobayashi.yasuhiko@jaea.go.jp

    2009-03-15

    The status of food irradiation in the world in 2005 was investigated using published data, a questionnaire survey and direct visits. The results showed that the quantity of irradiated foods in the world in 2005 was 405,000 ton and comprised 1,86,000 ton (46%) for disinfection of spices and dry vegetables, 82,000 ton (20%) for disinfestation of grains and fruits, 32,000 ton (8%) for disinfection of meat and fish, 88,000 ton (22%) for sprout inhibition of garlic and potato, and 17,000 ton (4%) of other food items that included health foods, mushroom, honey, etc. Commercial food irradiation is increasing significantly in Asia, but decreasing in EU.

  9. Dosimetry procedures for an industrial irradiation plant

    Science.gov (United States)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  10. Histometric investigations of irradiated rat testes

    Energy Technology Data Exchange (ETDEWEB)

    Dulisch, B.

    1977-01-01

    Testes of 44 Wistar rats were locally exposed to hard 300 R X-rays. A histological examination was then carried out whose findings were compared with those of 13 control animals. The so-called hit method of Haug was employed. Evaluations of 100 sections of seminiferous tubules per animal showed that the ratio of germ cell area to tubule area decreased on irradiation. The area of basal cell nuclei decreased strongly and had been reduced to 1/5 of the original count on day 13 post irradiation. The area of spermatocyte nuclei was not reduced until day 13, that of spermatide nuclei not until day 26 post irradiation. The reduction of spermatocytes and spermatides is due to a lack of supply by the precurser cells which are irreversibly damaged by irradiation. Onset of repopulation of the germinal epithelium started on day 39 post irradiation. The reduction of the cross section of the seminiferous tubules, which was manifested as reduction of the total tubulus area , was accompanied by a decrease of cytoplasma area . The luminar area was strongly reduced on day 26. On this day, apart from Sertoli cells, almost only spermatides, which had taken over part of the luminar area , were found in the tubules. After transformation of these spermatides into spermatozoa, the luminar area increased again. The interstitial area increased on irradiation, but the author was unable to find out whether this was an absolute or a relative increase. These histometric investigations are a further proof of the existence of the hormone inhibin , which is assumed to control gonadotropin secretion.

  11. Changes in hypothalamus in continuously irradiated sheep

    Energy Technology Data Exchange (ETDEWEB)

    Arendarcik, J.; Stanikova, A.; Rajtova, V.; Molnarova, M. (Vysoka Skola Veterinarska, Kosice (Czechoslovakia))

    1983-09-01

    Neurosecretion, PAS-positive mucopolysaccharides and the Nissl substance were studied in the neurons of the rostral, medial and caudal hypothalamus of continuously irradiated ewes. The study was performed on 21 ewes of the Slovak Merino breed of a live weight of 34 kg. The animals were in the period of physiological anoestrus and their age was two to three years. The first group of six ewes was the control. The second group included 15 sheep irradiated with a total dose of 6.7 Gy (700 R) for seven days. Co/sup 60/ was used as the source of irradiation. The animals of this group were killed seven days following treatment. The ewes in the third group were left for the study of mortality. The brains were perfused with 2% buffered paraformaldehyde immediately after the bleeding of the sheep; then the brains were removed from the skulls and fixed in buffered picroformol. Paraffin slices were stained with haematoxylin-eosine, aldehyde-fuchsine and alcian blue for neurosecretion, by the PAS reaction for mucopolysaccharides and with cresyl violet for the Nissl substance. It was found that irradiation of the whole body inhibited the activity of neurosecretory cells in the rostral and medial hypothalamus, thus reducing neurosecretion. These regions also showed a reduced activity of the PAS reaction used for the demonstration of mucopolysaccharides. The observed changes also included damage of the endothelium of blood vessels with the occurrence of erythrocyte extravasates and with haemorrhages. In this way, the trophism of neurosecretory cells was affected, which is ascribed to the decrease in the amount of neurosecretory material. In the caudal hypothalamus, neurosecretion and PAS-positivity were slightly stimulated by irradiation. The Nissl substance disappeared as a result of irradiation.

  12. Hemipelvic irradiation for superficial bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Kazuya; Machida, Toyohei; Ooishi, Yukihiko; Ueda, Masataka; Kido, Akira; Wada, Tetsuro; Yoshigoe, Fukuo; Yamashita, Takashi; Mochizuki, Sachio

    1985-02-01

    In 15 patients with superficial bladder cancer hemipelvic irradiation was performed for prevention of relapse of cancer and decrease in side effects with following results. All patients received TUR-Bt at our department during the six years period from 1978 to 1983. As to stages, one was classified as Ta, 11 as T 1 and 3 as T 2, and pathologic diagnosis was transitional epithelial carcinoma of grade 1 in 1 case, grade 2 in 8 cases and grade 3 in 6 cases. Irradiation was started from the 7 th to 14 th day after TUR-Bt. At first, hemipelvic anterior and posterior field including the field from the affected pelvis to 1 to 2 cm beyond the midline toward the contralateral side and from the aortic bifurcation to the prostatic urethra were irradiated at a dose of 45 Gy. Then, whole bladder field was given an additional rotation irradiation of 20 Gy. The mean observation period was 43 months (ranging from 12 to 79 months) and relapse of cancer was observed in 6 cases out of 15 cases (40%). The site of relapse was in the irradiated site in 2 cases, contralateral site in 3 cases and both side in 1 cases. However, in all of the relapsed cases no aggravation in differential degree or progression in stage was observed. As the side effects, radiation cystitis developed as a delayed damage in 1 case. Thus, although no efficacy for prevention of relapse which we had expected was not seen, this irradiation method effectively inhibited the progression of lesion and development of delayed damage. (author).

  13. Enhancement of Irradiation Capability of the Experimental Fast Reactor Joyo

    Science.gov (United States)

    Maeda, Shigetaka; Serine, Takashi; Aoyama, Takafumi; Suzuki, Soju

    2009-08-01

    The experimental fast reactor Joyo is the first sodium-cooled fast reactor in Japan. One of its primary missions is to perform irradiation tests of fuel and structural materials to support the development of fast reactors. The MK-III high performance core upgrade to enhance the irradiation testing capabilities was completed in 2003. In order to expand Joyo's capabilities for innovative irradiation testing applications, neutron spectrum tailoring, lower irradiation temperature, movable sample devices and fast neutron beam holes are being considered. This program responds to existing irradiation needs and aims to further expand capabilities for a variety of irradiation tests.

  14. Microstructural change on electron irradiated oxide dispersion strengthened ferritic steels

    Science.gov (United States)

    Kinoshita, H.; Akasaka, N.; Takahashi, H.; Shibahara, I.; Onose, S.

    1992-09-01

    Oxide dispersion strengthened (ODS) ferritic steels were irradiated in a high voltage electron microscope (HVEM) to study their response to irradiation. Fe-13Cr with 0.25 wt% Y2O3 as dispersed particles and containing additions of either 0.45% Nb, 0.45% V and 0.67% Zr were irradiated at 673 and 723 K up to 15 dpa. The Y2O3 particles in all specimens were stable under these irradiation conditions. During irradiation, two types of dislocations were formed but observable voids were not formed. Furthermore, plate-like and granular-like precipitates formed in both the irradiated and nonirradiated regions.

  15. Investigation on radiation degradation of carboxymethylcellulose by ionizing irradiation.

    Science.gov (United States)

    Lee, Hee-Sub; Choi, Jong-Il; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Shin, Mee-Hye; Byun, Myung-Woo; Shin, Myung-Gon; Lee, Ju-Woon

    2009-01-01

    This study was done to compare the effects of irradiations with gamma-rays and electron beams, on the viscosity of the carboxymethylcellulose (CMC), on the functional groups of CMC, and on the production of radicals. It was observed that the relative viscosities decreased as the irradiation doses increased, but the decrease was more significant when irradiation with gamma rays. FT-IR spectra showed no significant difference between the gamma-ray and the electron beam irradiated samples. ESR spectra showed that the gamma-ray irradiation produced more radicals than electron beam irradiation in CMC.

  16. Hypopituitarism following pituitary irradiation for acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Aloia, J.F.; Archambeau, J.O.

    1978-01-01

    Endocrine evaluation is reported in 8 acromegalic patients who received 5500 rad to the pituitary from a linear accelerator. There was a mean decrease in hGH levels of 72%. Plasma testosterone levels were low in 1 of the 6 male patients prior to pituitary irradiation and were below normal in all male patients on the final evaluation (3.1 +- 0.2 SD years postirradiation). Deficiency of TSH secretion developed in 2 patients following irradiation. This rather high incidence of postirradiation partial hypopituitarism was not anticipated and is thought to be related to radiation necrosis of the normal pituitary tissue which surrounds the adenoma.

  17. Effects of gamma irradiation on deteriorated paper

    Science.gov (United States)

    Bicchieri, Marina; Monti, Michela; Piantanida, Giovanna; Sodo, Armida

    2016-08-01

    Even though gamma radiation application, also at the minimum dosage required for disinfection, causes depolymerization and degradation of the paper substrate, recently published papers seemed, instead, to suggest that γ-rays application could be envisaged in some conditions for Cultural Heritage original documents and books. In some of the published papers, the possible application of γ-rays was evaluated mainly by using mechanical tests that scarcely reflect the chemical modifications induced in the cellulosic support. In the present article the effect of low dosage γ-irradiation on cellulosic substrates was studied and monitored applying different techniques: colorimetry, spectroscopic measurements, carbonyl content and average viscometric degree of polymerization. Two different papers were investigated, a non-sized, non-filled cotton paper, and a commercial permanent paper. To simulate a real deteriorated document, which could need γ-rays irradiation, some samples were submitted to a hydrolysis treatment. We developed a treatment based on the exposition of paper to hydrochloric acid vapors, avoiding any contact of the samples with water. This method induces a degradation similar to that observed on original documents. The samples were then irradiated with 3 kGy γ-rays at a 5258 Gy/h rate. The aforementioned analyses were performed on the samples just irradiated and after artificial ageing. All tests showed negative effects of gamma irradiation on paper. Non-irradiated paper preserves better its appearance and chemical properties both in the short term and after ageing, while the irradiated samples show appreciable color change and higher oxidation extent. Since the Istituto centrale restauro e conservazione patrimonio archivistico e librario is responsible for the choice of all restoration treatments that could be applied on library and archival materials under the protection of the Italian State (http://www.icpal.beniculturali.it/allegati/DM-7

  18. Neutron Spectrum Measurements from Irradiations at NCERC

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Michelle A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutchens, Gregory Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  19. Vanadium irradiation at ATR - neutronics aspects

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, I.C.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)

    1995-04-01

    Calculations were performed to estimate damage and transmutation rates in vanadium irradiated in the ATR (Advanced Test Reactor) located in Idaho. The main focuses of the study are to evaluate the transmutation of vanadium to chromium and to explore ways to design the irradiation experiment to avoid excessive transmutation. It was found that the A-hole of ATR produces damage rate of {approximately} 0.2%/dpa of vanadium to chromium. A thermal neutron filter can be incorporated into the design to reduce the vanadium-to-chromium transmutation rate to low levels. A filter 1-2 mm thick of gadolinium or hafnium can be used.

  20. Synthesis of Novolacs under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Xia Chun; Li Yuancai; Zhang Yanfu

    2006-01-01

    Novolacs were successfully synthesized using oxalic acid as the catalyst in a self-designed device based on a domestic microwave oven. The fundamental characteristics of the synthesis of novolacs under microwave irradiation (MI) were investigated, and the properties of the resins polymerized and dehydrated under microwave irradiation and conventional heating (CH) were analyzed comparatively. The results show that MI reduced the polymerization and dehydration time greatly; and that the resins polymerized and dehydrated under MI presented longer flow distances (i. e. , higher flowability) and shorter cure time than those obtained under CH.

  1. ESR dose assessment in irradiated chicken legs

    Energy Technology Data Exchange (ETDEWEB)

    Bordi, F. [II Universita, Rome (Italy). Dipartimento di Medicina Interna; Fattibene, P.; Onori, S.; Pantaloni, M. [Istituto Superiore di Santia, Rome (Italy)]|[Istituto Nazionale di Fisica Nucleare, Rome (Italy). Sezione Sanita

    1994-05-01

    The electron spin resonance technique has received a wide consensus for dose assessment in irradiated chicken bone. Nevertheless, some practical problems are still open like the most suitable mathematical expression to be used for dose evaluation with the re-irradiation method. In the present paper the linear and exponential approximations were analyzed using 40 bone chicken samples and a reproducible readout procedure. The results suggested the use of the exponential dose-effect relationship and gave some indications on the procedure to be practically adopted. (author).

  2. Molecular dynamics for irradiation driven chemistry

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-01-01

    technologies such as focused electron beam deposition (FEBID). As an example, the new methodology is applied for studying the irradiation driven chemistry caused by FEBID of tungsten hexacarbonyl W(CO)6 precursor molecules on a hydroxylated SiO2 surface. It is demonstrated that knowing the interaction...... parameters for the fragments of the molecular system arising in the course of irradiation one can reproduce reasonably well experimental observations and make predictions about the morphology and molecular composition of nanostructures that emerge on the surface during the FEBID process....

  3. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  4. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review.

    Science.gov (United States)

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-02-06

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments.

  5. Key to steel. 22. ed.; Stahlschluessel. La cle des aciers

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, C.; Wegst, M.

    2010-07-01

    This trilingual ''Key to Steel'' in German, French and English is a cross reference book for decoding or deciphering steel designations and finding equivalent materials worldwide. This book contains the following informations: 1. Standard number arrangement in numerical order. 2. Who supplies which steel. 3. Table of suppliers. 4. Table of shape and condition of product. 5. Index of brand names in alphabetical order (Germany and foreign countries). 6. Categories containing several type of steels and welding filler materials. 7. Detailed compositions and cross referenced standards and designations. 8. Standards and designations from 24 countries.

  6. Effect of UV irradiation on cutaneous cicatrices

    DEFF Research Database (Denmark)

    Due, Eva; Rossen, Kristian; Sorensen, Lars Tue

    2007-01-01

    The aim of this study was to examine the effect of ultraviolet (UV) irradiation on human cutaneous cicatrices. In this randomized, controlled study, dermal punch biopsy wounds served as a wound healing model. Wounds healed by primary or second intention and were randomized to postoperative solar UV...

  7. Irradiation Processing Department monthly report, December 1964

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-15

    This document details activities of the irradiation processing department during the month of December, 1964. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; trips; and Financial Operation.

  8. Aspheric surface testing by irradiance transport equation

    Science.gov (United States)

    Shomali, Ramin; Darudi, Ahmad; Nasiri, Sadollah; Asgharsharghi Bonab, Armir

    2010-10-01

    In this paper a method for aspheric surface testing is presented. The method is based on solving the Irradiance Transport Equation (ITE).The accuracy of ITE normally depends on the amount of the pick to valley of the phase distribution. This subject is investigated by a simulation procedure.

  9. Irradiation Processing Department monthly report, March 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-04-15

    This document details activities of the irradiation processing department during the month of March, 1962. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and NPR Project.

  10. Irradiation Processing Department monthly report, November 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-12-14

    This document details activities of the irradiation processing department during the month of November, 1960. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operation; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; Financial Operation; and NPR Project.

  11. Irradiation Processing Department monthly report, July 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-08-12

    This document details activities of the irradiation processing department during the month of July, 1960. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  12. Irradiation Processing Department monthly report, October 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-11-14

    This document details activities of the Irradiation Processing Department during the month of August, 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  13. Irradiation Processing Department monthly report, May 1960

    Energy Technology Data Exchange (ETDEWEB)

    Greninger, A.B.

    1960-06-20

    This document details activities of the irradiation processing department during the month of May, 1960. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  14. Irradiation Processing Department monthly report, July 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-08-14

    This document details activities of the irradiation processing department during the month of July 1963. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations: Production and Reactor Operations; Facilities Engineering Operation; and Financial Operation.

  15. Irradiation Processing Department monthly report, September 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-10-12

    This document details activities of the irradiation processing department during the month of September, 1960. A general summary is included at the start of the report, after which the report is divided into the following sections: research and engineering operations; production and reactor operations; facilities engineering operation; employee relations operation; and financial operation.

  16. Irradiation Processing Department monthly report, May 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-06-15

    This document details activities of the irradiation processing department during the month of May, 1961. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and NPR Reactor.

  17. Irradiation Processing Department monthly report, June 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-07-15

    This document details activities of the Irradiation Processing Department during the month of June, 1964. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  18. Irradiation Processing Department monthly report, January 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-02-15

    This document details activities of the Irradiation Processing Department during the month of January, 1962. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and NPR Project.

  19. Irradiation Processing Department monthly report, January 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-02-15

    This document details activities of the irradiation processing department during the month of January, 1961. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; Financial Operation; and NPR Project.

  20. Irradiation: waiting for the green light

    Energy Technology Data Exchange (ETDEWEB)

    Kimber, A.

    1985-02-01

    Irradiation offers new possibilities for food storage and preservation and is now being used in some European countries on a commercial scale. This paper discusses the advantages of the process which in the UK is awaiting the findings of a Government report.

  1. Radappertization of pancreatin preparations by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Quehl, A.; Leuchtenberger, A.; Schalinatus, E. (Akademie der Wissenschaften der DDR, Bergholz-Rehbruecke. Zentralinstitut fuer Ernaehrung)

    1985-01-01

    The lipase preparation pancreatin was irradiated with doses from 5 to 15 kGy for radappertization. There was a dose-response relationship concerning the number of germs as well as the enzyme activity. As to the germ content a one year storage at 4/sup 0/ C proved to be favorable.

  2. Irradiation could help Irish food processors

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, E. (Institute for Industrial Research and Standards, Dublin (Ireland))

    1985-04-01

    The applications of irradiation processing in the food industry are reviewed, and the present situation in Ireland outlined. The caution of legislators, choice of product labelling and consumer acceptance are seen as major factors in the adoption of this technology by Irish industry, although at least two concerns are considering setting up a service facility near Dublin.

  3. Determinants of skin sensitivity to solar irradiation

    NARCIS (Netherlands)

    Broekmans, W.; Vink, A.A.; Boelsma, E.; Klöpping-Ketelaars, W.A.A.; Tijburg, L.B.M.; Veer, van 't P.; Poppel, van G.; Kardinaal, A.F.M.

    2003-01-01

    Background: Acute effects of UV irradiation include UV-induced erythema. Sunlight plays an important role in the development of skin cancer. Several predictive factors of UV-induced erythema could also be predictive for skin cancer. Objective: Our objective was to quantitatively assess phenotypical

  4. Irradiation Processing Department monthly report, August 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-09-14

    This document details activities of the Irradiation Processing Department during the month of August, 1962. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and NPR Project.

  5. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  6. Behavior of beryllium pebbles under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.

    1998-01-01

    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  7. Irradiation Processing Department monthly report, March 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-12

    This document details activities of the Irradiation Processing Department during the month of August, 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  8. MICROWAVE IRRADIATED ALKYLATION OF DIETHYL ACETAMIDOMALONATE

    Institute of Scientific and Technical Information of China (English)

    张雅文; 沈宗旋; 陆军

    1995-01-01

    Ethyl acetamidomalonate was alkylated using three alkylating agents, both by microtwave irradiation of a mixture of the malonate,the alkylating agent, potassium carbonate,TEBA,and DMF for 0.5 to 1.5 min and by heating a solution of the malonate, sodium ethoxide, and the alkylatlng agent in ethanol for several hours. The two metlmds gave comparable results.

  9. Irradiation Processing Department monthly report, September 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-10-09

    This document details activities of the irradiation processing department during the month of September, 1964. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; trips; and Financial Operation.

  10. Response of the canine esophagus to irradiation.

    Science.gov (United States)

    Gillette, S M; Poulson, J M; Deschesne, K M; Chaney, E L; Gillette, E L

    1998-09-01

    One hundred twenty-eight beagle dogs were randomized to receive thoracic irradiation with doses between 0 and 72 Gy in 1.5-Gy fractions over 6 weeks. Dogs were randomized to have either 33, 67 or 100% of their lung volume irradiated. The entire thoracic portion of the esophagus and variable portions of the fundus of the stomach were included in the treatment field at all volumes. Sixteen of the 128 dogs entered in the study developed clinical signs of esophagitis. These 16 dogs received doses between 45 and 72 Gy. Clinical signs of esophagitis/gastritis included dysphagia, anorexia, emesis, excessive salivation and weight loss that required force-feeding of a liquid diet. An ED50 of 67.2 Gy (95% CI 61.45-79.7 Gy) was calculated for the occurrence of clinical signs that required some supportive treatment. Three of the 16 dogs receiving 63 or 72 Gy failed to respond to treatment and were euthanized. Twenty-five other dogs were euthanized prior to 2 years due to other treatment-related complications. Two dogs died of causes not related to treatment. No late esophageal complications were observed in the remaining 98 dogs out to 2 years after irradiation. Esophageal specimens from 79 dogs were available for quantitative histological analysis 2 years after irradiation. Histological analysis showed a decrease in the percentage of glandular tissue with a corresponding increase in lamina propria and muscle.

  11. Irradiation Processing Department monthly report, August 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-09-12

    This document details activities of the irradiation processing department during the month of August, 1960. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor operations; Facilities Engineering operation; Employee Relations Operation; and Financial Operation.

  12. Minimizing material damage using low temperature irradiation

    Science.gov (United States)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  13. Irradiation Processing Department monthly report, January 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-02-15

    This document details activities of the irradiation processing department during the month of January, 1963. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and Financial Operation.

  14. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  15. Microwave Irradiation on Halloysite-Polypropylene Nanocomposites

    Science.gov (United States)

    Espino, Omar; Yust, Brian; Chipara, Dorina; Ajayan, Pullickel; Chipara, Alin; Chipara, Mircea; Utrgv Collaboration; Rice Collaboration

    Halloysite is an unique cyllindrical nanoclay characterized by poor electrical and thermal conductivity, which may become the filler of choice for the reinforcement of polymeric matrix, where electrical or thermal insulation are required. The main limits in the use of halloysite as replacement for carbon nanotube (CNT) are: 1. Smaller aspect ratio as halloysites are typically shorter than CNTs. 2. Smaller Young modulus of halloysites compared with CNTs. 3. Reduced thermal stability due to the loss of water upon heating. A research on halloysite dispersed within isotactic polypropylene is reported. To improve the interface between the halloysite and the polymeric matrix a microwave irradiation step has been considered. The local heating of the halloysite nanotubes is mediated by the absorbed/structural water content of the nanoclay. Nanocomposites loaded by various amounts of halloysite ranging from 0 % to 20 % wt. have been prepared by melt mixing by using a Haake RheoMixer. The as obtained nanocomposites have been subjected to microwave irradiation at 75 W in an Anton Paar Monowave 300 system and various irradiation times ranging from 5, 10, 15, 30, 45, and 60 minutes. The effect of microwave irradiation has been studied by Raman and FTIR spectroscopy

  16. Transference of genetic information through irradiated pollen

    Energy Technology Data Exchange (ETDEWEB)

    Dryanovska, O.A. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Genetika)

    1983-01-01

    Blossoms are used as mothers of two longistylous with male sterility varieties of Deva and Hera without anthocyan on the stem from L. esculentum (Mill.) (L.), which were pollinated with irradiated dallenform L. peruvianum (L.) with anthocyan on the stem, with 10 AND 200 Kr of gamma-rays, 5 and 10 min from a source of mixed (long and short) UV-rays, at a distance of 20 cm, while the control blossoms were pollinated with a mixture of other cultivated plants. Irradiation with gamma rays was carried out on a gamma device with a dose power of up to 1,500 R/m. The results show that irradiated pollen tube with the male chromatin induces gynogenesis and seconadary diploidization. It is assumed that some of the microfragments irradiated with high doses of radiation contain a functionally active gene or the genes responsible for anthocyan synthesis. These microfragments are capable of combining with the nonirradiated mother chromatin and they become involved and operate in the process of development of the mother sex cells and at the early embryogenesis, as a result of which anthocyan appears in the developing plants.

  17. Strain engineering in graphene by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Papasimakis, N.; Mailis, S.; Huang, C. C.; Al-Saab, F.; Hewak, D. W. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Luo, Z.; Shen, Z. X. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-02-09

    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer.

  18. Irradiation Processing Department monthly report, February 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-03-20

    This document details activities of the irradiation processing department during the month of February 1959. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  19. Amphytrion: Example of a high capacity irradiator

    Science.gov (United States)

    Keraron(SGN-France), Y.; Santos(Amphytrion-France), P. L.

    SGN recently built a pallet irradiator for the AMPHYTRION Company which incorporates new technological features. After a short review of the design criteria, the major mechanical equipment is described (source-holder, conveyor, automatic warehouse system), together with the ventilation/air conditioning system and the control/management architecture. Information is given on the new technical aspects and the performance of the facility.

  20. Nanoscale Morphology Evolution Under Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Michael J. [President & Fellows of Harvard College, Cambridge, MA (United States)

    2014-11-10

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, and upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.

  1. Mechanical performance of gamma irradiated surgical sutures

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Rela, Paulo P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    Surgical sutures are medical devices made of natural or synthetic polymeric materials that, due to its end-use, have to be sterilized. Historically, the sterilization by heat or using ethylene oxide had presented so numerous drawbacks that today the non-pollutant radiation sterilization has become a well established sterilization process, that brings, environmental, technical, and economical advantages. The amount of irradiation doses required for sterilization of health care products is 25 kGy in most instances to achieve the necessary sterility assurance level. As high energy radiation produces modifications in the molecular structure of organic materials with changes in its mechanical properties, the aim of this work was to evaluate the mechanical behavior of surgical sutures under irradiation. Silk, polyamide and catgut sutures were gamma irradiated up to doses of 50 kGy in an industrial irradiation sterilization plant. Afterwards, these sutures were mechanical tested for tensile strength under knot following the specifications of the NBR13904 draft standard, using the CTRD-INSTRON at IPEN. The mechanical lab results show that sutures made of Silk and Polyamide do not present any change in their mechanical performance up to the dose of 50 kGy. On the other hand, Catgut present mechanical stability up to 30 kGy and afterwards, a slight decrease in its tensile strength was detected. (author)

  2. The irradiation facility at the AGOR cyclotron

    NARCIS (Netherlands)

    Brandenburg, Sytze; Ostendorf, Reint; Hofstee, Mariet; Kiewiet, Harry; Beijers, Hans

    2007-01-01

    The KVI is conducting radiobiology research using protons up to 190 MeV from the superconducting AGOR cyclotron in collaboration with the University Medical Center Groningen (UMCG) since 1998. Using the same set-up, we have started irradiations for radiation hardness studies of detectors and compone

  3. Determinants of skin sensitivity to solar irradiation

    NARCIS (Netherlands)

    Broekmans, W.M.R.; Vink, A.A.; Boelsma, E.; Klöpping-Ketelaars, W.A.A.; Tijburg, L.B.M.; Veer, P. van 't; Poppel, G. van; Kardinaal, A.F.M.

    2003-01-01

    Background: Acute effects of UV irradiation include UV-induced erythema. Sunlight plays an important role in the development of skin cancer. Several predictive factors of UV-induced erythema could also be predictive for skin cancer. Objective: Our objective was to quantitatively assess phenotypical

  4. Thermoluminescence properties of irradiated chickpea and corn

    Energy Technology Data Exchange (ETDEWEB)

    Necmeddin Yazici, A. [University of Gaziantep, Department of Engineering, Physics, 27310 Gaziantep (Turkey)], E-mail: yazici@gantep.edu.tr; Bedir, Metin; Bozkurt, Halil [University of Gaziantep, Department of Engineering, Physics, 27310 Gaziantep (Turkey); Bozkurt, Hueseyin [University of Gaziantep, Department of Food Engineering, 27310 Gaziantep (Turkey)

    2008-02-15

    A study was carried out to establish a detection method for irradiated chickpea and corn by thermoluminescence (TL) method. The leguminous were packed in polyethylene bags and then the packets were irradiated at room temperature at different doses by {sup 60}Co gamma source at 1, 4, 8 and 10 kGy. Minerals extracted from the leguminous were deposited onto a clean aluminum disc and TL intensities of the minerals were measured by TL. It was observed that the extracted samples from both leguminous exhibit good TL Intensity and the TL intensity of glow curves of them increased proportionally to irradiation doses. The TL glow curve of both irradiated leguminous presents a single broad peak below 400 degC. The TL trapping parameters glow peaks were estimated by the additive dose (AD), T{sub m}(E{sub a})-T{sub stop} and computerized glow curve deconvolution (CGCD) methods. The fading characteristics of glow curves were also recorded up to 6 months.

  5. Migration and sensory evaluation of irradiated polymers

    NARCIS (Netherlands)

    Stoffers, N.H.; Linssen, J.P.H.; Franz, R.; Welle, F.

    2004-01-01

    The effects on ionising irradiation on polymer additives, monomers and polymers themselves have been investigated. Changes of initial concentrations of certain additives and monomers, a change in their specific migration as well as sensory changes of the polymers were examined. Polymer stabilizers s

  6. Irradiation Aging Testing of Fiber Cloth

    Institute of Scientific and Technical Information of China (English)

    LIN; Hu; BAI; Bing; LIU; Xin-peng; YU; Bin-tao; TONG; Zhen-feng; YANG; Wen

    2013-01-01

    Fiber cloth is a kind of insulation material which is widely used in nuclear power plants.In the NPP reactors,due to the effect of high temperature,neutron irradiation and other factors,the strength of material will reduce significantly.It results in pollution in NPP by the loss of fiber cloth.In order to

  7. Irradiation Processing Department monthly report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This document details activities of the Irradiation Processing Department during the month of August, 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  8. Irradiation Processing Department monthly report, December 1963

    Energy Technology Data Exchange (ETDEWEB)

    1964-01-14

    This document details activities of the irradiation processing department during the month of December, 1963. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and Financial Operation.

  9. Irradiation Processing Department monthly report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-11-15

    This document details activities of the irradiation processing department during the month of October, 1963. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; and Financial Operation.

  10. Irradiation Processing Department monthly report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-04-14

    This document details activities of the irradiation processing department during the month of March, 1961. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; Financial Operation; and NPR project.

  11. Continuous wave laser irradiation of explosives

    Energy Technology Data Exchange (ETDEWEB)

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  12. Irradiation Processing Department monthly report, October 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-11-17

    This document details activities of the irradiation processing department during the month of October, 1961. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  13. Radiation damage in heavy irradiated aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru [Naruto Univ. of education, Tokushima (Japan); Okada, Moritami; Nakagawa, Masuo

    1996-04-01

    AlN, one of candidate for ceramic materials used in nuclear fusion reactor, was irradiated by fast and thermal neutrons. The high concentration of irradiated defects and the nuclear transformation elements were detected by electron spin resonance (ESR) and x-ray photoelectron spectroscopy (XPS) method. The exposure of fast neutron and thermal neutron were 1.2x10{sup 20}n/cm{sup 2} and 1.2x10{sup 21}n/cm{sup 2}, respectively. The spreads of ESR spectra of ultra hyperfine structure depending on interaction between {sup 27}Al nuclear spin and electron trapped in tetrahedron consisted of Al atoms was found in the spectra of heavy irradiated AlN. F type defects was estimated 10{sup 19}n/cm{sup 3}. Photoelectrons from 2s and 2p in {sup 28}Si which produced in process of {beta}-decay of {sup 27}Al(n,{gamma}){sup 28}Al were observed in XPS spectra of irradiated samples. (S.Y.)

  14. Irradiation Processing Department monthly report, April 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-05-15

    This document details activities of the irradiation processing department during the month of April, 1961. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; Financial Operation; and NPR project.

  15. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    The distribution of 82Br among various products in neutron-irradiated isomers of tribromobenzene has been investigated, and the effect of thermal annealing examined. Reversed-phase partition chromatography was employed for the determination of radioactive organic products, and atomic bromine...

  16. Pregnancy complicating irradiation-induced constrictive pericarditis

    Energy Technology Data Exchange (ETDEWEB)

    Bakri, Younes N.; Martan, Ahmed; Amri, Aladin (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Obstetrics and Gynecology); Amri, M. (King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia). Dept. of Cardiovascular Diseases)

    1992-01-01

    A case is reported of a 24 year-old primigravida who had severe effusive constrictive pericarditis secondary to mediastinal irradiation following chemotherapy for Hodgkins disease. Pregnancy was threatened by serious maternal cardiovascular complications and a non-viable fetus was born spontaneously and prematurely. Patient was completely asymptomatic before pregnancy. (au).

  17. Stability of {gamma}-Irradiated Carmine

    Energy Technology Data Exchange (ETDEWEB)

    Cosentino, Helio M.; Del Mastro, Nelida L. [IPEN-CNEN/SP, Sao Paulo, SP (Brazil). Center of Radiation Technology; Fontenele, Rinaldo S. [Mackenzie Presbiterian Univ. Barueri, SP (Brazil)

    2005-07-01

    Carmine is a dye used mainly for coloring food products and galenicals but also in inks. As food irradiation is becoming a regular treatment for food preservation, it is desirable to have a proper knowledge about the radiation sensitivity of additives that can be included in the food formula. The aim of this work was to establish the radiation stability of carmine against Co-60 gamma radiation. Samples of 50% pure carmine powder as well as 50%, 10% and 5% aqueous solutions were irradiated in a Gammacell 220, dose rate of about 5.2kGy/h, with doses of 0, 1, 2, 4, 8, 16 and 32kGy. Spectrophotometric readings at 494{eta}m show a slight decrease of the absorbance as a function of dose: Samples irradiated with 4 and 32kGy retained 95% and 90% of absorbance of the unirradiated samples respectively. These results indicate a rather good stability of carmine against {gamma}-irradiation.

  18. Irradiation Processing Department monthly report, December 1958

    Energy Technology Data Exchange (ETDEWEB)

    1959-01-21

    This document details activities of the irradiation processing department during the month of December 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering operation; Employee Relations Operation; and Financial Operation.

  19. Coefficient of variation of underwater irradiance fluctuations

    Science.gov (United States)

    Weber, V. L.

    2010-06-01

    We consider underwater sunlight fluctuations in the case of a one-dimensional irregular sea surface. Several rigorous and approximate models are proposed, which make it possible to analytically treat and physically explain the dependence of the coefficient of variation of the underwater irradiance on the depth, the wind velocity, and optical parameters of the sea water.

  20. Irradiation Processing Department monthly report, April 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-05-19

    This document details activities of the irradiation processing department during the month of April, 1960. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  1. Irradiation Processing Department monthly report, April 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-05-13

    This document details activities of the Irradiation Processing Department during the month of August, 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  2. Irradiation Processing Department monthly report, February 1963

    Energy Technology Data Exchange (ETDEWEB)

    Greninger, A. B.

    1963-03-14

    This document details activities of the Irradiation Processing Department during the month of August, 1958. A general summary is included at the start of the report, after which the report is divided into the following sections: Research and Engineering Operations; Production and Reactor Operations; Facilities Engineering Operation; Employee Relations Operation; and Financial Operation.

  3. Effects of hadron irradiation on scintillating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

    1993-08-01

    Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

  4. Project on New Domestic Zirconium Alloy Fuel Assembly Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Pei-sheng; ZHANG; Ai-min

    2012-01-01

    <正>The objectives of the project is to conduct irradiation at research reactor for small fuel assembly with domestic new zirconium alloy, and then to carry out post irradiation examination, and finally to acquire

  5. Food irradiation: Standards, regulations and world-wide trade

    Science.gov (United States)

    Roberts, Peter B.

    2016-12-01

    There is an established framework of international standards for food irradiation covering human health, plant protection, labelling, dose delivery, quality assurance and facility management. Approximately 60 countries permit irradiation of one or more food or food classes. National regulations are briefly reviewed. Decontamination of spices, herbs and condiments remains the single largest application of irradiation. However, in recent years the market for irradiated fresh and processed meat has become firmly established in several countries including China and the USA. At least 10 countries have recently established bi-lateral agreements for trade in irradiated fresh fruits and vegetables using phytosanitary irradiation. Irradiated fresh produce volumes now exceed 20,000 t per year. Rationalization and greater consistency in labelling regulations would be advantageous to the future growth of applications of food irradiation.

  6. Renal effects of renal x irradiation and induced autoallergic glomerulonephritis

    Energy Technology Data Exchange (ETDEWEB)

    Rappaport, D.S.; Casarett, G.W.

    1979-09-01

    This study was conducted to determine what influence a single large x-ray exposure of kidney has on the development and course of an experimental autoallergic glomerulonephritis (EAG) in rats. EAG was induced in female Sprague-Dawley rats by immunization with Bordetella pertussis vaccine and homogenate of homologous kidney tissue and Freund's complete adjuvant. Progressive arteriolonephrosclerosis (ANS) was observed in right (irradiated) kidneys following unilateral renal irradiation (1500 rad). Rats were either immunized, sham-immunized, irradiated, sham-irradiated, or both immunized and irradiated. Light and immunofluorescent microscopic observation, urine protein content, and kidney weights were evaluated. In immunized-irradiated animals the effects of irradiation and immunization were largely additive. Immunization did not considerably influence the development and course of ANS and irradiation did not considerably influence the development and course of EAG.

  7. Immobilization of cobalt in collapsed non-irradiated and {gamma}-irradiated X zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Enrique [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D.F. (Mexico) and Universidad Autonoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, 09340 Mexico D.F. (Mexico)]. E-mail: lima@xanum.uam.mx; Bosch, Pedro [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Bulbulian, Silvia [Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Delegacion Miguel Hidalgo, 11801 Mexico D.F. (Mexico)

    2007-02-15

    Cobalt exchanged X zeolites were gamma irradiated and heated until the zeolite structure collapsed. Heating destroys the zeolite network as found by X-ray-diffraction and {sup 29}Si, {sup 27}Al MAS NMR spectroscopy. Gamma irradiation treatment diminished the collapsing temperature of zeolite. Cobalt leaching from crystalline and amorphized zeolites was verified by ion exchange with NaCl solution. Results show that cobalt is not released from the amorphous materials. Furthermore adsorption of xenon and {sup 129}Xe NMR spectroscopy reveal that cobalt ions are heterogeneously distributed in the non irradiated amorphous materials. Gamma irradiation causes the mobility of cobalt in the amorphous materials resulting then in a more homogeneous distribution. Cobalt is, thus, retained safely in the amorphous materials.

  8. Calibration of the Odyssey Photosynthetic Irradiance Recorder for Absolute Irradiance Measures

    Science.gov (United States)

    Researchers are increasingly interested in measuring hotosynthetically active radiation (PAR) because of its importance in determining the structure and function of lotic ecosystems. The Odyssey Photosynthetic Irradiance Recorder is an affordable PAR meter gaining popularity am...

  9. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  10. Optical imaging of irradiated and non-irradiated hearts (Conference Presentation)

    Science.gov (United States)

    Bolin, Stephanie; Chen, Guanchu; Medhora, Meetha M.; Camara, Amadou K. S.; Ranji, Mahsa

    2016-03-01

    Objective: In this study, the metabolic state of the heart tissue is studied in a rodent model of ischemia and reperfusion (IR) in rats exposed to irradiation injury using a cryofluorescence imaging technique. Mitochondrial metabolic state is evaluated by autofluorescence of mitochondrial metabolic coenzymes NADH and FAD. The redox ratio (NADH/FAD) is used as a biochemical/metabolic marker of oxidative stress, before, during and after IR. Materials and methods: Hearts were extracted from non-irradiated (control) and irradiated rats (Irr) given 15 Gy whole thorax irradiation rats (WTI). After 35 days, before the onset of radiation pneumonitis, these two groups of hearts were subjected to one of three treatments; Time control (TC; hearts perfused for the duration of the protocol without ischemia or IR), 25 minutes ischemia with no reperfusion and 25 minutes ischemia followed by 60 minutes reperfusion (IR). Hearts were removed from the Langendorff perfusion system and immediately snap frozen in liquid N2 to preserve the metabolic state after injury; 3-dimensional (3D) cryo-fluorescent imager was used to obtain in fixed time NADH and FAD fluorescence images and their distribution across the entire ventricles. In this study, a 30-μm axial resolution was used resulting in 550 cross-section images per heart. The 3D images of the redox ratio and their respective histograms were calculated in the six groups of hearts. Results: We compared the mean values of the redox ratio in each group, which demonstrate a reduced mitochondrial redox state in both irradiated and non-irradiated ischemic hearts and an oxidized mitochondrial redox state for both irradiated and non-irradiated ischemia-reperfusion hearts compared to control hearts. For non-irradiated hearts, ischemia and IR injuries resulted respectively in 61% increase and 54% decrease in redox ratio when compared with TC. For irradiated hearts, ischemia and IR injuries resulted respectively in 90% increase and 50% decrease

  11. Irradiation rigs in material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblum, F.; Gonnier, C.; Bignan, G. [CEA, Research Centers of Saclay and Cadarache (France)

    2011-07-01

    Osiris is a research reactor with a thermal power of 70 MW. It is a light-water reactor, open-core pool type, the principal aim of which is to carry out tests and irradiate structural materials and fuel elements of nuclear power plants under a high flux of neutrons, and to produce radioisotopes. Osiris operates around 200 days a year, in cycles of varying lengths from 3 to 4 weeks. A shutdown of about 10 days between two cycles allows reloading the core with fuel. Mainly 2 types of irradiation device are present: capsules for materials irradiation (CHOUCA and IRMA devices) and fuels irradiation loops (GRIFFONOS and ISABELLE). Although Osiris is still providing experiments of very good quality, it is facing obsolescence due to its ageing. Osiris is planned to be shut down during next decade. Consequently, it has been decided to launch the construction of the Jules Horowitz Reactor (JHR) in Cadarache. JHR is a water cooled reactor which provides the necessary flexibility and accessibility to manage several highly instrumented experiments, reproducing different reactor environments (water, gas or liquid metal loops), generating transient regimes (key for safety). The JHR facility includes the reactor building, including core, cooling system and the experimental bunkers connected to the core through pool wall penetrations and the auxiliary building, including pools and hot cells necessary for the experimental irradiation process. JHR core is optimised to produce high fast neutron flux to study structural material ageing and high thermal neutrons flux for fuel experiments. The conception of this first fleet of devices integrates the operational experience accumulated by the existing MTR and specifically the Osiris one

  12. Irradiation of mangoes as a quarantine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bustos R, M.E.; Enkerlin H, W.; Toledo A, J.; Reyes F, J.; Casimiro G, A

    1991-06-15

    This research project was conducted following guidelines of research protocols for post-harvest treatments developed by the United States Department of Agriculture CUSA. Laboratory bioassays included the irradiation of mangoes infested with third instar larvae of Anastrepha serpentina (Wied), A. ludens (Loew), A. obliqua (Macquart) and Ceratitis capitata (Wied) , at doses from 10 to 250 Gy. Irradiation doses were applied using a Co-60 AECL Model JS-7400 irradiator. The design was chosen to obtain a maximum to minimum ratio equal to, or less than, 1.025. C. capitata was the species most tolerant to irradiation. A dose of 60 Gy applied to third instar fruit fly larvae sterilized this species and prevented emergence of adults of the other three species. A dose of 250 Gy was required to prevent emergence of C. capitata. In fertility tests using emerged adults of A . Iudens, and A. obliqua a dose of 30 Gy gave 45 % and 27 % fertility, respectively. Adults of A. serpentina that emerged, died before reaching sexual maturity. The confirmatory tests, at probit-9 security level, were done at 100 Gy for the three species of Anastrepha and at 150 Gy for C. capitata. The quality of mangoes irradiated up to 1000 Gy was evaluated by chemical, physiological, and sensorial tests. The determination of vitamin C indicated that there was no loss of the nutritive value of the fruit. It also was observed that fruit metabolism was not accelerated since no significant increase in respiration or transpiration was registered and consumers accepted both treated and untreated fruit in the same way. (Author)

  13. Updated Results of Ultrasonic Transducer Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Daw, Joshua; Palmer, Joe [Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, 38415-3840 (United States); Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert [Pacific Northwest National Laboratory, 902 Battelle Blvd. Richland, WA, 99354 (United States); Chien, Hual-Te [Argonne National Laboratory, 9700 S. Cass Avenue Argonne, IL, 60439 (United States); Tittmann, Bernhard; Reinhardt, Brian [Pennsylvania State University, 212 Earth and Engr. Sciences Building, University Park, PA, 16802 (United States); Kohse, Gordon [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139 (United States); Rempe, Joy [Rempe and Associates, LLC, 360 Stillwater, Idaho Falls, ID 83404 (United States); Villard, J.F. [Commissariat a l' energie atomique et aux energies alternatives, Centre d' etudes de Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2015-07-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10{sup 21} n/cm{sup 2}. A multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET-ASI) program also provided initial support for this effort. This irradiation, which started in February 2014, is an instrumented lead test and real-time transducer performance data are collected along with temperature and neutron and gamma flux data. The irradiation is ongoing and will continue to approximately mid-2015. To date, very encouraging results have been attained as several transducers continue to operate under irradiation. (authors)

  14. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy

    OpenAIRE

    Zhang, Xiao-Dong; Guo, Mei-Li; Wu, Hong-Ying; Sun, Yuan-Ming; Ding, Yan-Qiu; Feng, Xin; Zhang, Liang-An

    2009-01-01

    Gold nanoparticles are promising as a kind of novel radiosensitizer in radiotherapy. If gold nanoparticles are shown to have good irradiation stability and biocompatibility, they would play an important role in radiotherapy. In this work, we investigated irradiation effects of gold nanoparticles under 2–10 kR gamma irradiation and cytotoxicity of gold nanoparticles with human K562 cells by using Cell Titre-Glo™ luminescent cell viability assay. The results revealed that gamma irradiation had ...

  15. Effect of proton irradiation on irradiation assisted stress corrosion cracking in PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Ok; Hwang, Mi Jin; Kim, Sung Woo; Hwang, Seong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Irradiation assisted stress corrosion cracking (IASCC) involves the cracking and failure of materials under irradiation environment in nuclear power plant water environment. The major factors and processes governing an IASCC are suggested by others. The IASCC of the reactor core internals due to the material degradation and the water chemistry change has been reported in high stress stainless steel components, such as fuel elements (Boiling Water Reactors) in the 1960s, a control rod in the 1970s, and a baffle former bolt in recent years of light water reactors (Pressurized Water Reactors). Many irradiated stainless steels that are resistant to inergranular cracking in 288 .deg. C argon are susceptible to IG cracking in the simulated BWR environment at the same temperature. Under the circumstances, a lot works have been performed on IASCC in BWR. Recent efforts have been devoted to investigate an IASCC in a PWR, but the mechanism in a PWR is not fully understood yet as compared with that in a BWR owing to a lack of data from laboratories and fields. Therefore, it is strongly necessary to review and analyze recent researches of an IASCC in both BWR and PWR for establishing a proactive management technology for the IASCC of core internals in Korean PWRs. The objective of this research to find IASCC behavior of proton irradiated 316 stainless steels in a high-temperature water chemistry environment. The IASCC initiation susceptibility on 1, 3, 5 DPA proton irradiated 316 austenite stainless steel was evaluated in PWR environment. SCC area ratio on the fracture surface was similar regardless of irradiation level. Total crack length on the irradiated surface increases in order of specimen 1, 3, 5 DPA. The total crack length at the side surface is a better measure in evaluating IASCC initiation susceptibility for proton-irradiated samples.

  16. Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    Lehto, Kirsi-Maarit; Puhakka, Jaakko A; Lemmetyinen, Helge

    2003-08-01

    Biodegradation of UV-irradiated anthracene, pyrene, benz[a]anthracene, and dibenz[a,h]anthracene was compared to that of the non-irradiated samples, individually and in synthetic mixtures with enrichment cultures. Combined treatment was repeated for individual anthracene and for the PAH mixture with Sphingomonas sp. strain EPA 505 and Sphingomonas yanoikuyae. Enrichment culture studies were performed on the PAH mixtures in the presence of the main photoproduct of anthracene, pure 9,10-anthracenedione. Photochemically pretreated creosote solutions were also subjected to biodegradation and the results were compared to those of the non-irradiated solutions. The primary interest was on 16 polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by European Union (EU) and the United States Environmental Protection Agency (USEPA). Irradiation accelerated the biodegradation onset for anthracene, pyrene, and benz[a]anthracene when they were treated individually. The biodegradation of irradiated pyrene started with no lag phase and was complete by 122 h whereas biodegradation of the non-irradiated sample had a lag of 280 h and resulted in complete degradation by 720 h. Biodegradation of PAHs was accelerated in synthetic mixtures, especially in the presence of pure 9,10-anthracenedione. In general, irradiation had no effect on the biodegradation of PAHs incubated in synthetic mixtures or with pure cultures. Under current experimental conditions, the UV-irradiation invariably reduced the biodegradation of PAHs in creosote. Based on the results of the present and previous photochemical-biological studies of PAHs, the influence of the photochemical pretreatment on the biodegradation is highly dependent on the compounds being treated and other process parameters.

  17. Comparison of Maxillary Implant-Supported Prosthesis in Irradiated and Non-Irradiated Patients

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Summary: In order to investigate the influence of radiation therapy after the treatment of maxillaryimplant-supported prostheses, 27 patients received a total of 131 implants in maxilla after oral cancertreatment and/or reconstructive surgery. Among them, 25 received maxillary implant-supportedprostheses. The cumulative survival rates of implants and prostheses were evaluated by the product-limit-estimates method according to Kaplan-Meier. The cumulative survival rate of implants andprostheses in irradiated patients was compared with that in non-irradiated patients by statistical Log-rank test. The results showed that 112 implants were observed after implant loading. The implantscumulative survival rate was approximately 65 % for overall patients. The cumulative prosthesis suc-cessful rate was approximately 88 % for all 25 patients. Log-rank test analysis revealed that therewas a significant difference in cumulative implants survival rates between non-irradiated and irradiat-ed maxillary bone (P<0. 01). It was concluded that the implants and prostheses in irradiated pa-tients have significantly lower survival rates than in non-irradiated patients.

  18. Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Matlack, K.H., E-mail: katie.matlack@gatech.edu [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kim, J.-Y. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Wall, J.J. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Electric Power Research Institute, Charlotte, NC 28262 (United States); Qu, J. [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208 (United States); Jacobs, L.J. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Sokolov, M.A. [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-05-01

    The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5–5 × 10{sup 19} n/cm{sup 2} (E > 1 MeV) at an irradiation temperature of 290 °C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

  19. Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels

    Energy Technology Data Exchange (ETDEWEB)

    Matlack, Katie [Georgia Institute of Technology, Atlanta; Kim, J-Y. [Georgia Institute of Technology, Atlanta; Wall, J.J. [Electric Power Research Institute (EPRI); Jacobs, L.J. [Georgia Institute of Technology, Atlanta; Sokolov, Mikhail A [ORNL

    2014-05-01

    The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

  20. Irradiation creep of various ferritic alloys irradiated {approximately}400 C in the PFR and FFTF reactors

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B. [Washington State Univ., WA (United States); Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Eiholzer, C.R. [Westinghouse Hanford Co., WA (United States)

    1998-03-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400 C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400 C. Depending on the alloy starting condition, these steels develop a variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 {times} 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.

  1. Damage Effects of Rat Thymus After Cranial Irradiation

    Institute of Scientific and Technical Information of China (English)

    YU; Ying-qi; WANG; Xiao; SUI; Li; KONG; Fu-quan; MA; Nan-ru

    2012-01-01

    <正>To study the damage effects of the thymus and investigate the interaction of hypothalamic- pituitary-adrenal axis (HPA axis) in neuroimmunological signaling pathway, the rat model of cranial irradiated by carbon ions was establish. By means of enzyme-linked immunoassay (Elisa), one day of post-irradiation with carbon ions, for the group of control, irradiated or drug (Longxuejie) treated,

  2. Effects of electron beam irradiation on bovine pericardium tissue

    Energy Technology Data Exchange (ETDEWEB)

    Polak, Roberta; Pitombo, Ronaldo N.M. [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica], e-mail: robertaplk@gmail.com, e-mail: pitombo@usp.br; Rodas, Andrea C.D.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia], e-mail: andrea.ipen@gmail.com, e-mail: ozhiga@ipen.br; Kodama, Yasko; Machado, Luci D.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: ykodama@ipen.br

    2009-07-01

    In this work, electron beam irradiation was studied as a way for bovine pericardium (BP) tissue crosslinking. BP samples were irradiated in an electron beam accelerator at different doses (12.5 and 25 kGy), at three different dose ratios (4.67, 9.34 kGy/s), in the presence and absence of oxygen. Irradiated samples were analyzed by Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Scanning Electron Microscopy (SEM) and swelling degree. DSC analysis showed a decrease in shrinkage temperature. However, for all irradiated samples, the energy required in the process was higher than the non irradiated BP. The TGA analysis showed that the thermal behavior, both the control and the irradiated samples, was characterized by three stages concerned in the loss of mass. The BP structure was characterized by swelling degree and SEM. The structure of the BP tissue suffered alteration, becoming looser, or more compact. By swelling degree, when the BP was irradiated in the presence of oxygen, the swelling degree value was higher than non irradiated BP, in the other hand the swelling degree value of BP irradiated in oxygen absence were lower than the non irradiated BP. Those results indicate that the BP irradiated in absence of oxygen could predominantly crosslinks. The BP degradation when it was irradiated in presence of oxygen was confirmed by SEM. (author)

  3. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    Zheng Jiao; Xiaojuan Wan; Bing Zhao; Huijiao Guo; Tiebing Liu; Minghong Wu

    2008-02-01

    In this paper, the effects of electron beam irradiation on the gas sensing performance of tin dioxide thin films toward H2 are studied. The tin dioxide thin films were prepared by ultrasonic spray pyrolysis. The results show that the sensitivity increased after electron beam irradiation. The electron beam irradiation effects on tin dioxide thin films were simulated and the mechanism was discussed.

  4. Internal Mammary and Medial Supraclavicular Irradiation in Breast Cancer

    NARCIS (Netherlands)

    Poortmans, P.M.P.; Collette, S.; Kirkove, C.; Limbergen, E. van; Budach, V.; Struikmans, H.; Collette, L.; Fourquet, A.; Maingon, P.; Valli, M.; Winter, K. De; Marnitz, S.; Barillot, I.; Scandolaro, L.; Vonk, E.; Rodenhuis, C.; Marsiglia, H.; Weidner, N.; Tienhoven, G. van; Glanzmann, C.; Kuten, A.; Arriagada, R.; Bartelink, H.; Bogaert, W. Van den

    2015-01-01

    BACKGROUND: The effect of internal mammary and medial supraclavicular lymph-node irradiation (regional nodal irradiation) added to whole-breast or thoracic-wall irradiation after surgery on survival among women with early-stage breast cancer is unknown. METHODS: We randomly assigned women who had a

  5. Explosive phenomena in heavily irradiated NaCl

    NARCIS (Netherlands)

    denHartog, HW; Vainshtein, DI; Matthews, GE; Williams, RT

    1997-01-01

    In heavily irradiated NaCl crystals explosive phenomena can be initiated during irradiation or afterwards when samples are heated to temperatures between 100 and 250 degrees C. During irradiation of NaCl Na and Cl-2 precipitates and void structures are produced along with the accumulation of stored

  6. Solar irradiance, total and spectral; Irradiancia solar, total e espectral

    Energy Technology Data Exchange (ETDEWEB)

    Fraidenraich, Naum [Pernambuco Univ., Recife, PE (Brazil). Centro de Energia Nuclear; Lyra, Francisco [Companhia Hidroeletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    1995-12-31

    In this chapter some important characteristics concerning solar irradiance are presented, such as: solar constant; spectral irradiance for a zeroed mass of air; solar constant variation according to Earth-Sun distance; solar energy variation on Earth`s surface; atmospheric attenuation of solar energy; and total radiation and spectral irradiation on Earth`s surface. 3 refs., 5 figs., 6 tabs.

  7. Mechanical Test on Irradiated Welding X80/X02 Steel

    Institute of Scientific and Technical Information of China (English)

    LIU; Xin-peng; ZHANG; Chang-yi; NING; Guang-sheng; TONG; Zhen-feng; YANG; Wen

    2015-01-01

    The dedicated X80base metal,welding metal and X80/X02HAZ metal are irradiated in experimental reactor in order to evaluate the mechanical properties on the special condition.The cumulative irradiate dose(E>1 MeV)is 4×1016 cm-2,and irradiating temperature is below

  8. Effects of neutron irradiation on microstructure and mechanical properties of pure iron

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, Andy; Toft, P.

    1999-01-01

    tensile tested at the irradiation temperatures. Microstructures of the as-irradiated and irradiated and tensile tested specimens were investigated by transmission electron microscopy. Fracture surfaces of tensile tested specimens in unirradiated and irradiated conditions were examined in a scanning...

  9. Advanced Numerical Model for Irradiated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  10. Detection of irradiated spices by different physical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chabane, S. [Laboratoire de Recherche sur la Qualite des Aliments, LARQUA, CEA/DSV/DEVM, Faculte de Saint-Jerome, Marseille (France); Pouliquen-Sonaglia, I. [Laboratoire de Methodologie de la Recherche Experimentale, LMRE, Faculte de Saint-Jerome, Marseille (France); Raffi, J. [Laboratoire de Recherche sur la Qualite des Aliments, LARQUA, CEA/DSV/DEVM, Faculte de Saint-Jerome, Marseille (France)

    2001-02-01

    We used thermoluminescence, electron spin resonance, and viscosimetric measurements to establish whether or not a spice had been irradiated. Thermoluminescence, using the 1788 EN official protocol with an alternative method for the extraction of mineral impurities, led to proof of irradiation or proof of no treatment. Electron spin resonance led to different spectrum shapes depending on the chemical composition of the spices; ESR could only be used as proof of irradiation up to several weeks after irradiation, and only for some spices. Viscosimetric measurements carried out on spice suspensions led to a presumption of treatment (or of no treatment) and possibly to of of irradiation. (author)

  11. Respiration rate of gamma irradiation carnation cut flowers

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Olivia Kimiko; Wiendl, Frederico Maximiliano [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Todoriki, Setsuko; Nakahara, Kazuhiko; Haysahi, Toru [National Food Research Inst., Ibaraki (Japan)

    1996-07-01

    The present paper presents the CO{sub 2} production of the carnation cut flowers gamma-irradiated with a single dose of 750 Gy. The cut flowers were soaked in preservative solutions, containing germicides or germicides plus 2% sucrose. The irradiation did not change the CO{sub 2} production and did not cause any visible flower damage. The sucrose exogenous supply extended the vase-life of both irradiated and non-irradiated carnations. These results indicated that Nora carnation cut flower can be irradiated with 750 Gy without commercial viability loss and that it is possible to use the radiation to disinfect this fresh product. (author)

  12. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Lambertin, D., E-mail: david.lambertin@cea.fr [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France); Boher, C. [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France); Dannoux-Papin, A. [CEA, DEN, DTCD/SPDE/LCFI, F-30207 Bagnols-sur-Cèze (France); Galliez, K.; Rooses, A.; Frizon, F. [CEA, DEN, DTCD/SPDE/LP2C, F-30207 Bagnols-sur-Cèze (France)

    2013-11-15

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with {sup 60}Co sources up to 1000 kGy. Various Na-geopolymer with three H{sub 2}O/Na{sub 2}O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation.

  13. Influence of gamma ray irradiation on metakaolin based sodium geopolymer

    Science.gov (United States)

    Lambertin, D.; Boher, C.; Dannoux-Papin, A.; Galliez, K.; Rooses, A.; Frizon, F.

    2013-11-01

    Effects of gamma irradiation on metakaolin based Na-geopolymer have been investigated by external irradiation. The experiments were carried out in a gamma irradiator with 60Co sources up to 1000 kGy. Various Na-geopolymer with three H2O/Na2O ratios have been studied in terms of hydrogen radiolytic yield. The results show that hydrogen production increases linearly with water content. Gamma irradiation effects on Na-geopolymer microstructure have been investigated with porosity measurements and X-ray pair distribution function analysis. A change of pore size distribution and a structural relaxation have been found after gamma ray irradiation.

  14. Mechanical properties of UV irradiated rat tail tendon (RTT) collagen.

    Science.gov (United States)

    Sionkowska, Alina; Wess, Tim

    2004-04-01

    The mechanical properties of RTT collagen tendon before and after UV irradiation have been investigated by mechanical testing (Instron). Air-dried tendon were submitted to treatment with UV irradiation (wavelength 254 nm) for different time intervals. The changes in such mechanical properties as breaking strength and percentage elongation have been investigated. The results have shown, that the mechanical properties of the tendon were greatly affected by time of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the tendon. Increasing UV irradiation leads to a decrease in Young's modulus of the tendon.

  15. Irradiation creep and swelling of various austenitic alloys irradiated in PFR and FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Toloczko, M.B. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-10-01

    In order to use data from surrogate neutron spectra for fusion applications, it is necessary to analyze the impact of environmental differences on property development. This is of particular importance in the study of irradiation creep and its interactions with void swelling, especially with respect to the difficulty of separation of creep strains from various non-creep strains. As part of an on-going creep data rescue and analysis effort, the current study focuses on comparative irradiations conducted on identical gas-pressurized tubes produced and constructed in the United States from austenitic steels (20% CW 316 and 20% CW D9), but irradiated in either the Prototype Fast Reactor (PFR) in the United Kingdom or the Fast Flux Test Facility in the United States. In PFR, Demountable Subassemblies (DMSA) serving as heat pipes were used without active temperature control. In FFTF the specimens were irradiated with active ({+-}{degrees}5C) temperature control. Whereas the FFTF irradiations involved a series of successive side-by-side irradiation, measurement and reinsertion of the same series of tubes, the PFR experiment utilized simultaneous irradiation at two axial positions in the heat pipe to achieve different fluences at different flux levels. The smaller size of the DMSA also necessitated a separation of the tubes at a given flux level into two groups (low-stress and high-stress) at slightly different axial positions, where the flux between the two groups varied {le}10%. Of particular interest in this study was the potential impact of the two types of separation on the derivation of creep coefficients.

  16. Gamma irradiation influence on physical properties of milk proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ciesla, K. E-mail: kciesla@orange.ichtj.waw.pl; Salmieri, S.; Lacroix, M.; Le Tien, C

    2004-10-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and {beta}-sheets, in particular from increase of {beta}-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling.

  17. Gamma irradiation influence on physical properties of milk proteins

    Science.gov (United States)

    Cieśla, K.; Salmieri, S.; Lacroix, M.; Tien, C. Le

    2004-09-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling.

  18. Irradiation in adulthood as a new model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Yasuhide Iwata

    Full Text Available BACKGROUND: Epidemiological studies suggest that radiation exposure may be a potential risk factor for schizophrenia in adult humans. Here, we investigated whether adult irradiation in rats caused behavioral abnormalities relevant to schizophrenia. METHODOLOGY/PRINCIPAL FINDINGS: A total dose of 15-Gy irradiation in six fractionations during 3 weeks was exposed to the forebrain including the subventricular zone (SVZ and subgranular zone (SGZ with male rats in the prone position. Behavioral, immunohistochemical, and neurochemical studies were performed three months after fractionated ionizing irradiation. Three months after fractionated ionizing irradiation, the total numbers of BrdU-positive cells in both the SVZ and SGZ zones of irradiated rats were significantly lower than those of control (sham-irradiated rats. Hyperactivity after administration of the dopaminergic agonist methamphetamine, but not the N-methyl-D-aspartate (NMDA receptor antagonist dizocilpine, was significantly enhanced in the irradiated rats although spontaneous locomotion in the irradiated rats was significantly lower than that of controls. Behavioral abnormalities including auditory sensory gating deficits, social interaction deficits, and working memory deficits were observed in the irradiated rats. CONCLUSION/SIGNIFICANCE: The present study suggests that irradiation in adulthood caused behavioral abnormalities relevant to schizophrenia, and that reduction of adult neurogenesis by irradiation may be associated with schizophrenia-like behaviors in rats.

  19. Mechanical properties for irradiated face-centred cubic nanocrystalline metals

    Science.gov (United States)

    Xiao, X. Z.; Song, D. K.; Chu, H. J.; Xue, J. M.; Duan, H. L.

    2015-01-01

    In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials. PMID:27547091

  20. Positron annihilation in neutron-irradiated germanium

    Energy Technology Data Exchange (ETDEWEB)

    Bartenev, G.M.; Bardyshev, I.I.; Erchak, D.P.; Stel' makh, V.F.; Tsyganov, A.D.

    1979-04-01

    The annealing of radiation defects in a germanium single crystal irradiated with 10/sup 18/ neutrons/cm/sup 2/ was studied by positron annihilation, ESR, and resistivity measurements. It was found that positrons are trapped by radiation defects. The intensity of the narrow component of the angular correlation of the annihilation radiation yielded the concentration of defect clusters in the irradiated sample n/sub d/approx. =3 x 10/sup 14/ cm/sup -3/. Three characteristic annealing stages were identified. At 160--200 /sup 0/C, point defects were annealed within the crystal. At 200--320 /sup 0/C, there was ''loosening'' of the clusters, and the charge state of the defects changed. At 320--550 /sup 0/C, the clusters were annealed.

  1. The application of high dose food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bruyn, I. De [Atomic Energy Corporation of South Africa LTD, Building 2000, P.O. Box 582, Pretoria 0001, (South Africa)

    1997-12-31

    During the 1950`s to end 1970`s the United States Army developed the basic methodology to produce shelf stable irradiated meat, seafood and poultry products. These products are normally packed without gravy, sauce or brine, as liquid is not required to sterilize the product as in the canning process. This leads to the distinctive `dried cooked` taste normally associated with roasts opposed to the casserole taste usually associated with tinned meats. The meats are cooked, chilled, portioned, vacuum packed and irradiated to the required minimum dose of 25 to 45 kGy (depending on the product) at a temperature of between -20 and -40 Centigrade to ensure absolute sterility even under tropical conditions. The product is packaged in a high quality four layer laminate pouch and will therefore not rust or burst even under adverse weather conditions. The product can be guaranteed for more than two years as long as the integrity of the packaging is maintained. (Author)

  2. Spatially Resolved Images and Solar Irradiance Variability

    Indian Academy of Sciences (India)

    R. Kariyappa

    2008-03-01

    The Sun is the primary source of energy that governs both the terrestrial climate and near-earth space environment. Variations in UV irradiances seen at earth are the sum of global (solar dynamo) to regional (active region, plage, network, bright points and background) solar magnetic activities that can be identified through spatially resolved photospheric, chromospheric and coronal features. In this research, the images of CaII K-line (NSO/Sac Peak) have been analysed to segregate the various chromospheric features.We derived the different indices and estimated their contribution from the time series data to total CaII K emission flux and UV irradiance variability. A part of the important results from this research is discussed in this paper.

  3. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  4. Prospects for Irradiation in Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Anita Saini

    2015-01-01

    Full Text Available Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol.

  5. Irradiation response of straw drift tubes

    CERN Document Server

    Dünnweber, W; Neumayr, J; Platzer, K

    2003-01-01

    Drift tubes filled with Ar/CF//4/CO//2 (74:20:6) were exposed to 26 MeV proton beams from the Munich Tandem accelerator to study the radiation effects and operation characteristics expected for the COMPASS experiment at CERN. Stable operation with no significant loss of gain and no significant Malter current was observed up to charge accumulations of 1.1 C/cm. For comparison, with Ar/CH//4 (90:10) the same detectors show a 23% loss of gain and large Malter currents under the same irradiation condition. For Ar/CF//4/CO//2 a thin ( less than 0.1 mum) surface layer is observed by means of SEM on the anode wire in the irradiated detector section. As revealed by an ERDA study, the prominent components of this layer are C, O and Si.

  6. Post-irradiation angiosarcoma of bone

    Directory of Open Access Journals (Sweden)

    Mittal Srabani

    2007-01-01

    Full Text Available Radiation therapy is extensively used for treatment of malignancies, but angiosarcomas occurring in an irradiated area are uncommon. We report a rare case of high-grade epithelioid angiosarcoma of upper end of right humerus in a 67-year-old male occurring ten years following irradiation for giant cell tumor of the same anatomical site. The patient presented with progressive painful swelling over right shoulder and his X-ray showed erosion of medial cortex with lytic areas at upper end of humerus. He underwent excision of affected part of humerus followed by cemented hemiarthroplasty and bone grafting. After initial histopathological diagnostic dilemma the final report was given as post-radiation angiosarcoma. Disease recurred at the end of one-year follow-up period where upon he underwent wide resection with prosthesis replacement. He received four cycles of combination chemotherapy with doxorubicin and ifosfamide and currently is free of recurrence after six months follow -up.

  7. Spectral measurements of asymmetrically irradiated capsule backlighters

    Science.gov (United States)

    Keiter, P. A.; Drake, R. P.

    2016-11-01

    Capsule backlighters provide a quasi-continuum x-ray spectrum over a wide range of photon energies [J. F. Hansen et al., Rev. Sci. Instrum. 79, 013504 (2008)]. Ideally one irradiates the capsule backlighter symmetrically, however, in complex experimental geometries, this is not always possible. In recent experiments we irradiated capsule backlighters asymmetrically and measured the x-ray spectrum from multiple directions. We will present time-integrated spectra over the photon energy range of 2-13 keV and time-resolved spectra over the photon energy range of 2-3 keV. We will compare the spectra from different lines of sight to determine if the laser asymmetry results in an angular dependence in the x-ray emission.

  8. Stochastic biophysical modeling of irradiated cells

    CERN Document Server

    Fornalski, Krzysztof Wojciech

    2014-01-01

    The paper presents a computational stochastic model of virtual cells irradiation, based on Quasi-Markov Chain Monte Carlo method and using biophysical input. The model is based on a stochastic tree of probabilities for each cell of the entire colony. Biophysics of the cells is described by probabilities and probability distributions provided as the input. The adaptation of nucleation and catastrophe theories, well known in physics, yields sigmoidal relationships for carcinogenic risk as a function of the irradiation. Adaptive response and bystander effect, incorporated into the model, improves its application. The results show that behavior of virtual cells can be successfully modeled, e.g. cancer transformation, creation of mutations, radioadaptation or radiotherapy. The used methodology makes the model universal and practical for simulations of general processes. Potential biophysical curves and relationships are also widely discussed in the paper. However, the presented theoretical model does not describe ...

  9. Physical properties of irradiation exposured food

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toru; Todoroki, Setsuko; Kono, Sumio; Kikuchi, Yuji; Otobe, Kazunori [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1997-02-01

    A distinguishing method of irradiation effects on white and black pepper was established by using measurement of viscosity. This method makes possible to distinguish the irradiated pepper independent on the place of production, period of storage and kinds of viscometer. The method is described as follows: Add 40 ml of water to 4 g of pepper powder which produces a suspension of pepper in water. 2 ml of 33% caustic solution is added to the suspension, immediatly heating it in boiling water for 30 min for gelatinization. Then, it is permitted to stand for 3.5 hours and measured its viscosity. Amount of starch in pepper sample is determined previously. The obtained viscosity divided by the amount of starch is used as a parameter. (S.Y.)

  10. Ion irradiation induced direct damage to DNA

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2008-01-01

    Ion beams have been widely applied in a few biological research fields such as radioactive breeding, health protection, and tumor therapy. Up to now many interesting and impressive achievements in biology and agriculture have been made. Over the past several decades, scientists in biology, physics, and chemistry have pursued investigations focused on understanding the mechanisms of these radiobiological effects of ion beams. From the chemical point of view, these effects are due to the ion irradiation induced biomolecular damage, direct or indirect. In this review, we will present a chemical overview of the direct effects of ion irradiation upon DNA and its components, based on a review of literature combined with recent experimental results. It is suggested that, under ion bombardment, a DNA molecule undergoes a variety of processes, including radical formation, atomic displacement, intramolecular bond-scissions, emission of fragments, fragment recombination and molecular crosslink, which may lead to genetic...

  11. Design, fabrication and installation of irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sung; Lee, C. Y.; Kim, J. Y.; Chi, D. Y.; Kim, S. H.; Ahn, S. H.; Kim, S. J.; Kim, J. K.; Yang, S. H.; Yang, S. Y.; Kim, H. R.; Kim, H.; Lee, K. H.; Lee, B. C.; Park, C.; Lee, C. T.; Cho, S. W.; Kwak, K. K.; Suk, H. C. [and others

    1997-07-01

    The principle contents of this project are to design, fabricate and install the steady-state fuel test loop and non-instrumented capsule in HANARO for nuclear technology development. This project will be completed in 1999, the basic and detail design, safety analysis, and procurement of main equipment for fuel test loop have been performed and also the piping in gallery and the support for IPS piping in reactor pool have been installed in 1994. In the area of non-instrumented capsule for material irradiation test, the fabrication of capsule has been completed. Procurement, fabrication and installation of the fuel test loop will be implemented continuously till 1999. As besides, as these irradiation facilities will be installed in HANARO, review of safety concern, discussion with KINS for licensing and safety analysis report has been submitted to KINS to get a license and review of HANARO interface have been performed respectively. (author). 39 refs., 28 tabs., 21 figs.

  12. Nanodot formation induced by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, C. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Rittman, D. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Phillips, J. D. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, B. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10–100 nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  13. Study of the conductivity of irradiated dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.V.; Ivanov, N.V.; Shelenin, A.V.

    1977-01-01

    The processes of ionization of air, metals and dielectrics arising from Gamma irradiation are analyzed. The effect of these processes on the measurement of the electrical conductivity of the dielectrics which are irradiated is evaluated. The maximum current which can be carried by an ionized gas is proportional to the radiation dose, gas pressure and reciprocal gas temperature. It is much more difficult to define the voltage developing between the two metal objects exposed to ionizing radiation due to such factors as the variation in resistance with dose, difficulty in defining the coefficient characterizing the accumulated charge, which depends on the nature of the metal, its shape, thickness and many other factors. Results of a simple calculation are presented in tabular form for aluminum. In some cases the voltage which develops is proportional to dose, in other cases--to the square root of dose, in still other cases--somewhere in between. 3 tables, 6 references.

  14. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  15. Irradiation and performance evaluation of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ki Kwang; Yang, M. S.; Song, K. C. [and others

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis.

  16. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  17. A Practical Irradiance Model for Bifacial PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-15

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.

  18. A Practical Irradiance Model for Bifacial PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-21

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.

  19. Identification of gamma-irradiated papaya, melon and watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Huachaca, N.S.; Mancini-Filho, Jorge E-mail: jmancini@usp.br; Delincee, Henry E-mail: henry.delincee@bfe.uni-karlsruhe.de; Villavicencio, A.L.C.H. E-mail: villavic@net.ipen.br

    2004-10-01

    Ionizing radiation can be used to control spoilage microorganisms and to increase the shelf life of fresh fruits and vegetables in replacement for the treatment with chemical fumigants. In order to enforce labelling regulations, methods for detecting the irradiation treatment directly in the produce are required. Recently, a number of detection methods for irradiated food have been adopted by the Codex Comission. A rapid screening method for qualitative detection of irradiation is the DNA Comet Assay. The applicability of the DNA Comet Assay for distinguishing irradiated papaya, melon, and watermelon was evaluated. The samples were treated in a {sup 60}Co facility at dose levels of 0.0, 0.5, 0.75, and 1.0 kGy. The irradiated samples showed typical DNA fragmentation whereas cells from non-irradiated ones appeared intact. In addition to the DNA Comet Assay also the half-embryo test was applied in melon and watermelon to detect the irradiation treatment.

  20. Identification of gamma-irradiated papaya, melon and watermelon

    Science.gov (United States)

    Marín-Huachaca, Nélida S.; Mancini-Filho, Jorge; Delincée, Henry; Villavicencio, Anna Lúcia C. H.

    2004-09-01

    Ionizing radiation can be used to control spoilage microorganisms and to increase the shelf life of fresh fruits and vegetables in replacement for the treatment with chemical fumigants. In order to enforce labelling regulations, methods for detecting the irradiation treatment directly in the produce are required. Recently, a number of detection methods for irradiated food have been adopted by the Codex Comission. A rapid screening method for qualitative detection of irradiation is the DNA Comet Assay. The applicability of the DNA Comet Assay for distinguishing irradiated papaya, melon, and watermelon was evaluated. The samples were treated in a 60Co facility at dose levels of 0.0, 0.5, 0.75, and 1.0kGy. The irradiated samples showed typical DNA fragmentation whereas cells from non-irradiated ones appeared intact. In addition to the DNA Comet Assay also the half-embryo test was applied in melon and watermelon to detect the irradiation treatment.

  1. Applicability of the Sunna dosimeter for food irradiation control

    Science.gov (United States)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.; Miller, S.; Murphy, M.; McLaughlin, W. L.; Slezsák, I.; Kovács, A. I.

    2002-03-01

    The quick development concerning the commercial application of food irradiation in the USA recently resulted in growing marketing of irradiated red meat as well as irradiated fresh and dried fruits. These gamma and electron irradiation technologies require specific dosimetry systems for process control. The new version of the Sunna dosimeter has been characterized in gamma, electron and bremsstrahlung radiation fields by measuring the optically stimulated luminescence (osl) at 530 nm both below and above 1 kGy, i.e. for disinfestation and for meat irradiation purposes. No humidity and no significant dose rate effect on the green osl signal was observed. The temperature coefficient was determined from 0°C up to about 40°C and to stabilize the osl signal after irradiation a heat treatment method was introduced. Based on these investigations the Sunna 'gamma' film is a suitable candidate for dose control below and above 1 kGy for food irradiation technologies.

  2. Present status of refurbishment and irradiation technologies in JMTR

    Science.gov (United States)

    Inaba, Yoshitomo; Ishihara, Masahiro; Niimi, Motoji; Kawamura, Hiroshi

    2011-10-01

    The Japan Materials Testing Reactor (JMTR) of the Japan Atomic Energy Agency is a testing reactor for various neutron irradiation tests on nuclear fuels and materials, as well as for radioisotope production. The operation of JMTR stopped temporarily in August 2006 for refurbishment and improvement. The renewed JMTR will resume operation in Japanese fiscal year 2011. The renewal of aged reactor components, the preparation of new irradiation facilities, and the development of irradiation technologies have been carried out for the resumption of the new JMTR. The new JMTR with the new irradiation facilities and the irradiation technologies will be utilized for the research and development of fission and fusion reactor fuels and materials. This paper describes the present status of the refurbishment and the irradiation technologies focused on instrumentation such as the multi-paired thermocouple which is applicable to irradiation temperature control and a ceramic oxygen sensor in JMTR.

  3. Heat Generation by Irradiated Complex Composite Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan; Tian, Pengfei; Pello, Josselin;

    2014-01-01

    Heating of irradiated metallic e-beam generated nanostructures was quantified through direct measurements paralleled by novel model-based numerical calculations. By comparing discs, triangles, and stars we showed how particle shape and composition determines the heating. Importantly, our results ...... revealed that substantial heat is generated in the titanium adhesive layer between gold and glass. Even when the Ti layer is as thin as 2 nm it absorbs as much as a 30 nm Au layer and hence should not be ignored....

  4. Late effects of thoracic irradiation in children

    Energy Technology Data Exchange (ETDEWEB)

    Boelling, T.; Koenemann, S.; Ernst, I.; Willich, N. [Dept. of Radiotherapy, Univ. Hospital of Muenster (Germany)

    2008-06-15

    Purpose: to summarize the literature regarding the late effects of radiotherapy to the thorax in childhood and adolescence with special emphasis on cardiac and pulmonary impairment. Material und methods: the literature was critically reviewed using the PubMed {sup registered} database with the key words 'late effects', 'late sequelae', 'child', 'childhood', 'adolescence', 'radiation', 'radiotherapy', 'thorax', 'lung', 'heart', and 'pulmonary'. Results: 17 publications dealing with radiation-induced pulmonary and cardiac late sequelae in children could be identified and were analyzed in detail. 29 further publications with additional information were also included in the analysis. Pulmonary function impairment after mediastinal irradiation arose in one third of all pediatric patients, even when treatment was performed with normofractionated lower doses (15-25 Gy). Whole lung irradiation was regularly followed by pulmonary function impairment with differing rates in several reports. However, clinically symptomatic function impairment like dyspnea was less frequent. Irradiation of up to 25 Gy (single doses {<=} 2 Gy) to the heart showed little or no cardiac toxicity in analyses of irradiated children (median follow-up 1.3-14.3 years). Doses of > 25 Gy (single doses {<=} 2-3.3 Gy) led to several cardiac dysfunctions. However, new data from adults with longer follow-up may indicate threshold doses as low as 1 Gy. Impairment of skeletal growth, breast hypoplasia, and secondary malignancy were further potential late sequelae. Conclusion: several retrospective reports described radiation-associated late sequelae in children. However, there is still a lack of sufficient data regarding the characterization of dose-volume effects. (orig.)

  5. Energy and Charge Localization in Irradiated DNA

    Science.gov (United States)

    1994-01-01

    dii We have conducted an extensive review of the procedures used for the neutron and proton eIeimn s 6 Inth eutron exper-ImeDoom two samples were...about .002OK between the thermal reservoir at 77? and the irradiated part of the sample. Such a small temperature difference, even if mated by a...duration of the thermal pulse. This siqie calculation demonstrates that, at least for low LET radiation, the induced transient increase in the local

  6. Food Irradiation Update and Cost Analysis

    Science.gov (United States)

    1991-11-01

    Applications of Ionizing Radiation in Post - harvest Handling of Fresh Fruits and Vegetables." Food Tehml~y, June 1986. 9 J.F. Diehl. Safety of Irradiated...1 CRC Press, Inc., Boca Raton, FL, 1983. 19 Adel A. Kader. "Potential Applications of Ionizing Radiation in Post - harvest Handling of Fresh Fruits and...shelf life by delaying mold growth. Grain, fruits 0.1-2 Kills insects or prevents them from reproducing. Bananas, avocados , mangoes, 1 Delays ripening

  7. Surface changes of implants after laser irradiation

    Science.gov (United States)

    Rechmann, Peter; Sadegh, Hamid M. M.; Goldin, Dan S.; Hennig, Thomas

    1999-05-01

    Periimplantitis is one of the major factors for the loss of dental implants. Due to the minor defense ability of the tissue surrounding the implant compared to natural teeth treatment of periimplantitis in the early stage is very important. Reducing bacteria with a laser might be the most successful step in therapy of periimplantitis. Aim of the study was to observe changes in surface morphology of seven different implants after irradiation with three different lasers. Two kinds of flat round samles were prepared by the manufacturers either identical to the body surface or to the cervical area of the corresponding implants. The samples were irradiated using different power settings. The lasers used were a CO2 laser (Uni Laser 450P, ASAH Medico Denmark; fiber guided, wavelength 10.6 μm, max. average power 8.3 W, "soft-pulse" and cw) an Er:YAG laser (KaVo Key Laser II, wavelength 2.94 μm, pulse duration 250-500μs, pulse energy 60-500 mJ, pulse repetition rate 1-15 Hz, focus diameter 620 μm, air-water cooling; Biberach, Germany; a frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 μs, pulse repetition rate 30 Hz, water cooling). After irradiation the implant surfaces were investigated with a Scanning Electron Microscope. Ablation thresholds were determined. After CO2 laser irradiation no changes in surface morphology were observed whereas using the pulsed Er:YAG laser or frequency doubled Alexandrite laser even at low energies loss of integrity or melting of the surface was observed. The changes in surface morphology seem to depend very strongly on the type of surface coating.

  8. Allylation of Aromatic Aldehyde under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu-Mei; JIA,Xue-Feng; WANG,Jin-Xian

    2004-01-01

    @@ Allylation of carbonyl compounds is one of the most interesting processes for the preparation of homoallylic alcohols. Over the past few decades, many reagents have been developed for such reactions[1~3]. In this paper, we first report allylic zinc reagent 1, which can be prepared from zinc dust and allyl bromide conveniently in THF, and reacted with aromatic aldehyde to give homo-allylic alcohols under microwave irradiation.

  9. Antitumor Immunity Induced after α Irradiation

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Gorin

    2014-04-01

    Full Text Available Radioimmunotherapy (RIT is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue, and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells.

  10. Low Dose Food Irradiation at Natick

    Science.gov (United States)

    1977-06-01

    activity, titratable acidity, pH, ash, protein, and moisture content), dough and baking characteristics (bread scores, rheological and alpha-amylase...on the vitamin content in the irradiated flour or in the bread made from the 1 3See footnote 5 15 flour (Tables 10,11). Farinographs, dough ...sometimes sour , replaced it. The appearance of the nonirradiated chicken showed no discoloration up to about 8 days in storage, after which a dull

  11. Post irradiation examination of thermal reactor fuels

    Science.gov (United States)

    Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.

    2008-12-01

    The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.

  12. Total lymphoid irradiation for multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  13. Transcriptional networks in response to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gidrol, X. [Evry Univ., Lab. of Functional Exploration of Genomes, Service de Genomique Fonctionnelle, CEA, 91 (France)

    2006-07-01

    The main objectives in the laboratory are to characterize human genes of unknown functions which are involved in cell differentiation and in responses to genotoxic compounds, to infer genetic networks of differentiation and response to ionizing radiation. Two topics are specially developed: the first one, cell /siRNA micro-arrays to characterize genes involved in phosphorylation of histone H2AX, the second one genetic networks in differentiation and in response to irradiation. (N.C.)

  14. Upgrade to the Birmingham Irradiation Facility

    Science.gov (United States)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  15. Polyethylene terephthalate degradation under reactor neutron irradiation

    Science.gov (United States)

    Chikaoui, K.; Izerrouken, M.; Djebara, M.; Abdesselam, M.

    2017-01-01

    This paper is devoted to study the defects generated by reactor neutron in polyethylene terephthalate (PET) films. The explored fast neutron fluence ranges from 2.02×1016 to 2.07×1018 n cm-2. The induced damages were investigated using ultraviolet-visible spectrophotometry (UV-vis), Fourier Transform Infrared spectrometry (FTIR) and X-ray diffraction (XRD). The UV-vis spectra show important changes indicating the degradation of the chemical structure and the creation of new chromophores. FTIR spectra reveal that the intensities of the different absorption bands decrease linearly under fast neutron irradiation. The internal reference band at 1410 cm-1 is used to follow the overall damage during irradiation. The 1342 cm-1 band corresponding to CH2 wagging of trans conformation of crystalline phase show a sharpe linear decrease as the fast neutrons fluence goes up. The creation of the monosubstituted benzene, investigated using the 1610 cm-1 band. It shows a linear increase with fast neutron fluence. It is found from XRD analysis that the diffraction peak (100) intensity is drastically reduced after irradiation at 2.02×1016 n cm-2.

  16. Recycling of irradiated high-density polyethylene

    Science.gov (United States)

    Navratil, J.; Manas, M.; Mizera, A.; Bednarik, M.; Stanek, M.; Danek, M.

    2015-01-01

    Radiation crosslinking of high-density polyethylene (HDPE) is a well-recognized modification of improving basic material characteristics. This research paper deals with the utilization of electron beam irradiated HDPE (HDPEx) after the end of its lifetime. Powder of recycled HDPEx (irradiation dose 165 kGy) was used as a filler into powder of virgin low-density polyethylene (LDPE) in concentrations ranging from 10% to 60%. The effect of the filler on processability and mechanical behavior of the resulting mixtures was investigated. The results indicate that the processability, as well as mechanical behavior, highly depends on the amount of the filler. Melt flow index dropped from 13.7 to 0.8 g/10 min comparing the lowest and the highest concentration; however, the higher shear rate the lower difference between each concentration. Toughness and hardness, on the other hand, grew with increasing addition of the recycled HDPEx. Elastic modulus increased from 254 to 450 MPa and material hardness increased from 53 to 59 ShD. These results indicate resolving the problem of further recycling of irradiated polymer materials while taking advantage of the improved mechanical properties.

  17. Upgrade to the Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin- Reyes; Parker, K; Wilson, J; Baca, M

    2015-01-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 10^15 (1 MeV neutron equivalent (neq)) cm^-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of 50 1C in 30 min and aims to maintain sub-0 1C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and perform...

  18. Protein Quality of Irradiated Brazilian Beans

    Energy Technology Data Exchange (ETDEWEB)

    Delincee, Henry; Villavicencio, Anna-Lucia C.H.; Mancini-Filho, Jorge

    1998-06-01

    Beans are a major source of dietary protein in Brazil. However, high losses due to insect infestation occur after each harvest. To combat these losses, radiation processing of beans offers promise as an alternative to chemical treatment, provided the nutritional quality of beans is not impaired by the radiation treatment. Conflicting results have been published about the effect of radiation on the biological value of legume proteins. Therefore, two varieties of Brazilian beans were studied: 1) Phaseolus vulgaris L., var. carioca and 2) Vigna unguiculata (L.) Walp, var. macacar. The beans were irradiated with doses of 0, 0.5, 1.0, 2.5, 5.0 and 10 kGy. Since irradiated beans will be consumed after appropriate storage, the beans under study were stored for 6 months at ambient temperature. Protein quality was measured by a biological assay employing the nitrogen balance approach in weanling rats. The animals were fed with optimally cooked beans, which were the only source of protein ({approx}10%). Nitrogen contents of legumes, diets, animal urine and faeces were determined by Kjeldahl analysis. The indices for apparent protein quality: net protein utilisation, digestibility and biological value were not influenced by irradiation. Thus, radiation treatment of Brazilian beans offers considerable promise as an effective insect disinfestation process, without impairing the biological quality of the valuable bean protein.

  19. Protein Quality of Irradiated Brazilian Beans

    Science.gov (United States)

    Delincée, Henry; Villavicencio, Anna-Lucia C. H.; Mancini-Filho, Jorge

    1998-06-01

    Beans are a major source of dietary protein in Brazil. However, high losses due to insect infestation occur after each harvest. To combat these losses, radiation processing of beans offers promise as an alternative to chemical treatment, provided the nutritional quality of beans is not impaired by the radiation treatment. Conflicting results have been published about the effect of radiation on the biological value of legume proteins. Therefore, two varieties of Brazilian beans were studied: 1) Phaseolus vulgaris L., var. carioca and 2) Vigna unguiculata (L.) Walp, var. macaçar. The beans were irradiated with doses of 0, 0.5, 1.0, 2.5, 5.0 and 10 kGy. Since irradiated beans will be consumed after appropriate storage, the beans under study were stored for 6 months at ambient temperature. Protein quality was measured by a biological assay employing the nitrogen balance approach in weanling rats. The animals were fed with optimally cooked beans, which were the only source of protein (˜10%). Nitrogen contents of legumes, diets, animal urine and faeces were determined by Kjeldahl analysis. The indices for apparent protein quality: net protein utilisation, digestibility and biological value were not influenced by irradiation. Thus, radiation treatment of Brazilian beans offers considerable promise as an effective insect disinfection process, without impairing the biological quality of the valuable bean protein.

  20. ESR identification of gamma-irradiated albendazole

    Science.gov (United States)

    Çolak, Seyda

    2010-01-01

    The use of ionizing radiation for sterilization of pharmaceuticals is a well-established technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma-irradiated solid albendazole samples is investigated at different temperatures in the dose range of 3-34 kGy by electron spin resonance (ESR) spectroscopy. Irradiation with gamma radiation produced two different radical species in albendazole. They were fairly stable at room temperature but relatively unstable above room temperature, giving rise to an unresolved ESR spectrum consisting of three resonance peaks centered at g=2.0057. Decay activation energies of the contributing radical species were calculated to be 47.8 (±13.5) and 50.5 (±9.7) kJ/mol using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to best describe the experimental dose-response data. Albendazole does not present the characteristics of good dosimetric materials. However, the discrimination of irradiated albendazole from its unirradiated form was possible even 6 months after storage in normal conditions. Based on these findings, it is concluded that albendazole and albendazole-containing drugs can be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  1. Smelting of Scandium by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2017-09-01

    Full Text Available Scandium is being explored as an alloying element for aluminum alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. A few years ago, Sc was also found to be suitable for use in electrical devices. High-Sc-content ScAlN thin films have attracted significant attention because of their strong piezoelectricity. The piezoelectric response of ScAlN suggests that ScAlN thin films formed on a hard substrate would be suitable surface acoustic wave wideband filters for next-generation wireless communication systems. However, it is often difficult to use ScAlN thin films in MEMS devices—including acoustic ones—because of the extremely high price of metallic Sc, given the difficulty associated with smelting it. Here, we propose a novel process for smelting Sc metal by microwave irradiation. Sc metal was able to be obtained successfully from ScF3 through a microwave-irradiation-based carbon reduction reaction. The reaction temperature for this reduction process was approximately 880°C, which is half of that for the conventional smelting process involving reduction with Ca. Thus, the proposed microwave irradiation process has significant potential for use in the smelting of Sc metal.

  2. Dosimetry of an animal irradiation system

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Nelson M.; Funari, Ana P.; Miranda, Jurandir T.; Napolitano, Celia M.; Goncalves, Josemary A.C.; Bueno, Carmen C.; Mathor, Monica B., E-mail: nelsonnininho@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Radiation therapy uses ionizing radiation for cancer treatment, but its effectiveness may be limited by the consequent appearance of radiodermatitis. This problem may present several degrees: the highest among them is radionecrosis. Therefore, a model of study for the animal irradiation system (AIS) was built, generating radionecrosis on rat backs. The AIS is comprised by: a) a shield between the {sup 60}Co irradiator metallic guide and the animal immobilizer (AI), with holes exposing the rat skin; b) a shield on the AI posterior part and (c) the AIS angle. The doses were measured with alanine pellets in seven positions (two external and five internal) and different heights, in axial planes along the AI, and irradiated with 85 Gy. The similarity in the geometry of the AIs made it possible to relate the doses of positions 1-7 with the same height among the AISs. The AISs equidistance to the source allowed simultaneous animal exposure. Minimizing the shielding and maximizing the angles among the AISs provided average doses almost identical in position 1. A small variation among the mean doses for each of the AISs enabled to replace them by the average doses of the three AISs at position 1. Shields allowed the attenuation of the uncertainties in the alanine pellet in the AI, reduction of the exposure time without compromising rat security and the rise of the dose in measurement positions 1 and 2. The maximization of the angles among the AISs reduced the shielding secondary radiation contribution. (author)

  3. Food irradiation--US regulatory considerations

    Energy Technology Data Exchange (ETDEWEB)

    Morehouse, Kim M. E-mail: kim.morehouse@cfsan.fda.gov

    2002-03-01

    The use of ionizing radiation in food processing has received increased interest as a means of reducing the level of foodborne pathogens. This overview discusses the regulatory issues connected with the use of this technology in the United States. Several recent changes in the FDA's review process are discussed. These include the current policy that utilizes an expedited review process for petitions seeking approval of additives and technologies intended to reduce pathogen levels in food, and the recent USDA rule that eliminates the need for a separate rulemaking process by USDA for irradiation of meat and poultry. Recently promulgated rules and pending petitions before the FDA associated with the use of ionizing radiation for the treatment of foods are also discussed along with the current FDA labeling requirements for irradiated foods and the 1999 advanced notice of proposed rule on labeling. Another issue that is presented is the current status of the approval of packaging materials intended for food contact during irradiation treatment of foods.

  4. Local brain heavy ion irradiation induced Immunosuppression

    Science.gov (United States)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  5. Industrial irradiator radiation safety program assessments

    Science.gov (United States)

    Smith, Mark A.

    2000-03-01

    Considerable attention is typically given to radiation safety in the design of irradiators and initially establishing the program. However, one component that may not receive enough attention is applying the continuous improvement philosophy to the radiation safety program. Periodic total program assessments of radiation safety can ensure that the design and implementation of the program continues to be applicable to the operations. The first step in the process must be to determine what is to be covered in the program assessment. While regulatory compliance audits are a component, the most useful evaluation will extend beyond looking only at compliance and determine whether the radiation safety program is the most appropriate for the particular operation. Several aspects of the irradiator operation, not all of which may routinely be considered "radiation safety", per se, should be included: Design aspects of the irradiator and operating system, system controls, and maintenance procedures, as well as the more traditional radiation safety program components such as surveys, measurements and training.

  6. Perspectives on treatment with irradiation in Slovenia

    Directory of Open Access Journals (Sweden)

    Primož Strojan

    2007-12-01

    Full Text Available Background: Radiotherapy is one of the three main modalities of cancer treatment. However, effective treatment with radiotherapy may only be assured by highly advanced irradiation facilities, including systems for planning, performing and quality control of irradiation. The second requirement assuring an effective treatment is proper capacities of treatment units and computer equipment to provide a timely access to treatment to > 50 % of all cancer patients and a proper structure and number of staff specialized in handling with radiotherapy equipment. In Slovenia, only 38 % of cancer patients are treated with radiotherapy. In general, the waiting times of patients referred to radiotherapy are too long. Therefore, further development and upgrading of irradiation facilities will remain a priority in oncology in Slovenia also in the future. At the same time, in our endeavors to meet the set goals, we have been facing unforeseen problems both with human resources and inadequate financial appreciation of radiotherapeutic services that, without significant national aid, do not yield sufficient funds for renewal and upgrading of equipment and its further expansion.

  7. Estimation of irradiated control rod worth

    Energy Technology Data Exchange (ETDEWEB)

    Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PO Box 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N. [NCSR ' DEMOKRITOS' , PO Box 60228, 15310 Aghia Paraskevi (Greece); Antonopoulos-Domis, M. [School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2009-11-15

    When depleted control rods are planned to be used in new core configurations, their worth has to be accurately predicted in order to deduce key design and safety parameters such as the available shutdown margin. In this work a methodology is suggested for the derivation of the distributed absorbing capacity of a depleted rod, useful in the case that the level of detail that is known about the irradiation history of the control rod does not allow an accurate calculation of the absorber's burnup. The suggested methodology is based on measurements of the rod's worth carried out in the former core configuration and on corresponding calculations based on the original (before first irradiation) absorber concentration. The methodology is formulated for the general case of the multi-group theory; it is successfully tested for the one-group approximation, for a depleted control rod of the Greek Research Reactor, containing five neutron absorbers. The computations reproduce satisfactorily the irradiated rod worth measurements, practically eliminating the discrepancy of the total rod worth, compared to the computations based on the nominal absorber densities.

  8. Electron beam irradiation of fluoropolymers containing polyethers

    Energy Technology Data Exchange (ETDEWEB)

    Bucio, E. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Burillo, G. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico)], E-mail: burillo@nucleares.unam.mx; Tapia, F. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Adem, E. [Departamento de Fisica Experimental, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Cedillo, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Cassidy, P.E. [Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666 (United States)

    2009-02-15

    A highly fluorinated monomer, 1,3-bis(1,1,1,3,3,3-hexafluoro-2-pentafluorophenyl methoxy-2-propyl)benzene (12F-FBE) was polymerized with some diphenols by polycondensation and then was electron beam irradiated between 100 and 1000 kGy to determine degradation radiochemistry yield (G{sub s}) by gel permeation chromatography (GPC). The samples were characterized after irradiation by DSC, FTIR, and nuclear magnetic resonance (NMR). The fluoropolymers show apparent degradation in mechanical properties at 300 kGy, except 12F-FBE polymerized with biphenol and bisphenol A, when they did not show any apparent physical change up to 300 kGy; and continue to be flexible and transparent, with a radiochemical yield scission (G{sub s}) of 0.75, 0.53, 0.88, and 0.38 for 12F-FBE/SDL aliphatic, 12F-FBE/biphenol, 12F-FBE/bisphenol A, and 12F-FBE/bisphenol O, respectively. The number average molecular weights for three of the polymers decrease upon 1000 kGy irradiation to 10% of their original values; however, the polymer from bisphenol A is much more stable and its M{sub n} decreases to only 24% of origin0008.

  9. Electron Irradiation of Interstellar Ice Analogues

    Science.gov (United States)

    Nair, B. G.; Mason, N. J.

    2011-05-01

    Molecular synthesis in the Universe primarily occurs in the icy mantles on dust grains in dense interstellar dust clouds. The interaction of photons, electrons and cosmic rays with these ice mantles triggers complex chemical synthesis leading to the formation of complex molecules. Such molecular reactions can only be understood by systematic laboratory studies. In our experiments astrophysical environments are recreated in the laboratory using an ultra high vacuum chamber (UHV) capable of reaching pressures of the order of 10 -10 mBar containing a liquid helium cryostat capable of attaining a temperature of 20 K. Ice films are deposited on a ZnSe substrate (cooled by cryostat) by background deposition and irradiated with electrons of 1KeV energy. Chemical changes induced by electron irradiation were monitored by an infrared spectrometer. By varying the temperature, we also investigate the temperature dependence on the kinetics of the reactions. In this poster we will present the first results of electron irradiation of simple organic molecules like formamide (HCONH2) and allyl alcohol (CH2CHCH2OH).

  10. Multivariate Analysis of Solar Spectral Irradiance Measurements

    Science.gov (United States)

    Pilewskie, P.; Rabbette, M.

    2001-01-01

    Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.

  11. Multidimensional chemical modelling, II. Irradiated outflow walls

    CERN Document Server

    Bruderer, Simon; Doty, Steven D; van Dishoeck, Ewine F; Bourke, Tyler L

    2009-01-01

    Observations of the high-mass star forming region AFGL 2591 reveal a large abundance of CO+, a molecule known to be enhanced by far UV (FUV) and X-ray irradiation. In chemical models assuming a spherically symmetric envelope, the volume of gas irradiated by protostellar FUV radiation is very small due to the high extinction by dust. The abundance of CO+ is thus underpredicted by orders of magnitude. In a more realistic model, FUV photons can escape through an outflow region and irradiate gas at the border to the envelope. Thus, we introduce the first 2D axi-symmetric chemical model of the envelope of a high-mass star forming region to explain the CO+ observations as a prototypical FUV tracer. The model assumes an axi-symmetric power-law density structure with a cavity due to the outflow. The local FUV flux is calculated by a Monte Carlo radiative transfer code taking scattering on dust into account. A grid of precalculated chemical abundances, introduced in the first part of this series of papers, is used to ...

  12. Irradiated homologous costal cartilage for augmentation rhinoplasty

    Energy Technology Data Exchange (ETDEWEB)

    Lefkovits, G. (Lenox Hill Hospital, New York, NY (USA))

    1990-10-01

    Although the ideal reconstructive material for augmentation rhinoplasty continues to challenge plastic surgeons, there exists no report in the literature that confines the use of irradiated homologous costal cartilage, first reported by Dingman and Grabb in 1961, to dorsal nasal augmentation. The purpose of this paper is to present a retrospective analysis of the author's experience using irradiated homologous costal cartilage in augmentation rhinoplasty. Twenty-seven dorsal nasal augmentations were performed in 24 patients between 16 and 49 years of age with a follow-up ranging from 1 to 27 months. Good-to-excellent results were achieved in 83.3% (20 of 24). Poor results requiring revision were found in 16.7% (4 of 24). Complication rates included 7.4% infection (2 of 27) and 14.8% warping (4 of 27). The resorption rate was zero. These results compare favorably with other forms of nasal augmentation. Advantages and disadvantages of irradiated homologous costal cartilage are discussed.

  13. Thermogravimetry of irradiated human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Martinho Junior, Antonio C.; Machado, Luci D.B.; Dias, Djalma B.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: antonio_carlos_martinho@msn.com; lmachado@ipen.br; dbdias@ipen.br; mathor@ipen.br; Herson, Marisa R. [Universidade de Sao Paulo, SP (Brazil). Hospital das Clinicas. Banco de Tecidos do Instituto Central]. E-mail: marisah@vifm.org; Meumann, Nilton F.; Pasqualucci, Carlos Augusto G. [Universidade de Sao Paulo, SP (Brazil). Faculdade de Medicina. Servico de Verificacao de Obitos]. E-mail: svoc@usp.br

    2007-07-01

    Costal cartilage has been sterilized with gamma radiation using {sup 60}Co sources at two different doses, 25 kGy and 50 kGy, for storage in tissue banks. Samples of costal cartilage were deep-freezing as method of preservation. Thermogravimetry (Shimadzu TGA-50) was used to verify the water release of costal cartilage before and after irradiation. The TG tests were carried out at heating rate of 10 deg C/min from room temperature to 600 deg C under a flow rate of 50 mL/min of compressed air. Samples of costal cartilage were divided in 2 parts. One part of them was kept as reference material; the other part was irradiated. This procedure assures better homogeneity of the sample and reproducibility of the experimental results. The obtained data have shown that the TG curves have the same pattern, independently of the sample. Non-irradiated samples showed great variability of thermogravimetric curves among different donors and for the same donor. Further experimental work is being carried out on human cartilage preserved in glycerol in high concentration (> 98%) to compare with those deep freezing. (author)

  14. Evaluation of irradiation assisted stress corrosion cracking (IASCC) of type 316 stainless steel irradiated in FBR

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, T. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Jitsukawa, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Shiba, K. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Sato, Y. (Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan)); Shibahara, I. (Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan)); Nakajima, H. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan))

    1993-12-01

    Type 316 stainless steel from the core of the experimental fast breeder reactor (FBR) JOYO was examined by the slow strain rate tensile (SSRT) test in pure, oxygenated-water and air and by the electrochemical potentiokinetic reactivation (EPR) test to evaluate a susceptibility to the irradiation assisted stress corrosion cracking (IASCC) and the radiation-induced segregation (RIS). The solution annealed and 20% cold-worked materials had been irradiated at 425 C to a neutron fluence of 8.3x10[sup 26] n/m[sup 2] (> 0.1 MeV) which is equivalent to 40 displacement per atom (dpa). Intergranular cracking was induced by the SSRT in water at 200 and 300 C, but was not observed on specimen tested in water at 60 C and in air at 300 C. This indicates that irradiation increased a susceptibility to stress corrosion cracking (SCC) in water. After the EPR test, grain boundary etching was observed in addition to grain face etching. This suggests Cr depletion may have occurred both at grain boundary and at defect clusters during the irradiation. The results are compared with the behavior of similar materials irradiated with different neutron spectrum. (orig.)

  15. Late effects of gamma irradiation: the muscular fibrosis. Irradiation gamma et effets tardifs: la fibrose musculaire

    Energy Technology Data Exchange (ETDEWEB)

    Lefaix, J.L.; Daburon, F.; Martin, M.; Remy, J. (Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (FR). Inst. de Protection et de Surete Nucleaire)

    1990-06-01

    This study was performed on an experimental porcine model of acute local gamma irradiation to simulate accidents which occurred among humans. It enabled us to determine the development and the physiopathological characteristics of the fibrous tissue which developed in skeletal muscle. In the first month after irradiation, the strong inflammatory reaction which initiated the radiation induced fibrosis was characterized by edema as visualized on MRI imaging and X rays computed tomography and by acute phase reactant proteins changes, associated with elevations of local and general temperatures in irradiated animals. At the margin of the irradiated tissue myofibroblasts isolated among collagen bundles or grouped in nodullary reinforcements, are seen associated with intense capillary neogenesis. Several months after irradiation normal skeletal muscle was replaced by atrophic fibrosis delimited by an inflammatory perifibrotic tissue. The muscular fibrosis was characterized by a high density of myofibroblasts and by an inflammatory distribution pattern of collagen types I, III, IV, laminin, fibronectin and fibrinogen as visualized by immunohistochemical methods. Biochemical results showed an increase in collagen content and synthesis in fibrotic tissue whereas the cells in the perifibrotic zone synthesized more non collagenous proteins as compared with the normal muscle. The contributions of granulation tissue, cellular mediators and inhibition of muscular regeneration in the persistence of the invasive character of the muscular radiation induced fibrosis are discussed.

  16. Temporal Variations in Solar Irradiance Since 1947

    Science.gov (United States)

    Tebabal, A.; Damtie, B.; Nigussie, M.; Yizengaw, E.

    2017-08-01

    The study of variations in total solar irradiance (TSI) and spectral irradiance is important for understanding how the Sun affects the Earth's climate. A data-driven approach is used in this article to analyze and model the temporal variation of the TSI and Mg ii index back to 1947. In both cases, observed data in the time interval of the satellite era, 1978 - 2013, were used for neural network (NN) model-design and testing. For this particular purpose, the evolution of the solar magnetic field is assumed to be the main driver for the day-to-day irradiance variability. First, we design a model for the Mg ii index data from F10.7 cm solar radio-flux using the NN approach in the time span of 1978 through 2013. Results of Mg ii index model were tested using various numbers of hidden nodes. The predicted values of the hidden layer with five nodes correspond well to the composite Mg ii values. The model reproduces 94% of the variability in the composite Mg ii index, including the secular decline between the 1996 and 2008 solar cycle minima. Finally, the extrapolation of the Mg ii index was performed using the developed model from F10.7 cm back to 1947. Similarly, the NN model was designed for TSI variability study over the time span of the satellite era using data from the Physikalisch-Meteorologisches Observatorium Davos (PMOD) as a target, and solar activity indices as model inputs. This model was able to reproduce the daily irradiance variations with a correlation coefficient of 0.937 from sunspot and facular measurements in the time span of 1978 - 2013. Finally, the temporal variation of the TSI was analyzed using the designed NN model back to 1947 from the Photometric Sunspot Index (PSI) and the extrapolated Mg ii index. The extrapolated TSI result indicates that the amplitudes of Solar Cycles 19 and 21 are closely comparable to each other, and Solar Cycle 20 appears to be of lower irradiance during its maximum.

  17. The spectral irradiance traceability chain at PTB

    Science.gov (United States)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-01

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Système international d'unités, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by

  18. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.

    2011-09-22

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer

  19. The spectral irradiance traceability chain at PTB

    Energy Technology Data Exchange (ETDEWEB)

    Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

    2013-05-10

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties

  20. Irradiation as an alternative post harvest treatment

    Energy Technology Data Exchange (ETDEWEB)

    Satin, M. [Agricultural Industries and Post-harvest Management Service, FAO, Rome (Italy); Loaharanu, P. [Head, Food Preservation Section, Joint FAO/ IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)

    1997-12-31

    This current world population has significantly added to the pressures placed upon our finite resources and our resulting ability to feed ourselves. In order to cope with current and future demands, the two established lines of action, that is, reduced population growth and expansion of agricultural production, must be supplemented with the parallel activity of reducing food losses during and after harvest. For developing countries in particular, enormous post-harvest losses result from spillage, contamination, pests and physiological deterioration during storage. Studies in these countries indicate that post-harvest losses are enormous and amount to tens of millions of tons per year valued at billions of dollars. Programs to reduce post-harvest losses, if applied properly, can result in realistic yield increases between 10 and 30%, which can be directly converted into increased consumption for humans. Post-harvest losses vary greatly and are a function of the crop variety, pest combinations in the environment, climate, the system of harvesting, storage, handling, marketing, and even the social and cultural environment. Pests are among the most criticals of these factors. Because of the disastrous potential consequences of such pests, quarantine regulations prohibit the entrance of plants or products which might hide the unwanted pest from countries where it is known to exist. Quarantine treatments are can be chemical, physical or ionizing radiation treatment. Numerous investigations on the use of ionizing radiation for the disinfestation of fresh plant materials indicate that rather low dosages will control fruit-fly problems, thus making it well suited for quarantine treatment. The effectiveness of the irradiation as a broad spectrum quarantine treatment of fresh fruits and vegetables was recognized by the several plant protection organizations around the world. Currently, some 40 countries have approved one or more irradiated food items or groups of food