WorldWideScience

Sample records for acids thermodynamic trends

  1. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2007-01-01

    A simple procedure is introduced to use periodic Density Functional Theory calculations to estimate trends in the thermodynamics of surface alloy dissolution in acidic media. With this approach, the dissolution potentials for solute metal atoms embedded in the surface layer of various host metals...

  2. Thermodynamics of dinonylnaphthalene sulfonic acid (HD)

    International Nuclear Information System (INIS)

    Raieh, M.A.; Aly, H.F.

    1980-01-01

    The effect of temperature on the extraction of the trivalent actinides Am 3+ , Cm 3+ and Cf 3+ with the liquid cation exchanger dinonylnaphtalenesulphonic acid (HD) in toluene is studied. The different thermodynamic functions of this system are determined from the experimental results. It is found that the free energy variation for the extraction of these metal ions by HD is mainly determined by the entropic terms arising from the hydration-dehydration process of the exchanged ions. (author)

  3. Thermodynamics of Molybdate Binding to Humic Acid

    Science.gov (United States)

    Thalhammer, K.; Gilbert, B.

    2016-12-01

    Molybdenum is an essential nutrient for diazotrophic bacteria that use nitrogenase I to fix atmospheric nitrogen in soils into bioavailable forms such as ammonia. This metalloid is released during rock weathering processes and at neutral pH it exists primarily as the soluble oxyanion molybdate, MoO42-. It has been established that molybdate mobility and bioavailability in soils is influenced by sorption to mineral surfaces and complexation by natural organic matter (NOM). The molybdate ion is readily bound by ortho dihydroxybenzene molecules such as catechol and catechol groups in siderophores. Humic acids (HA) found in NOM contain abundant phenolic groups and extended X-ray absorption fine structure (EXAFS) spectroscopy demonstrated that molybdate is bound by catechol-containing molecules in soil organic matter1. However, to our knowledge no quantitative determination of the affinity of molybdate to HA has been reported. We studied the interactions of molybdate with Suwannee River HA using ultraviolet-visible (UV-vis) absorption spectroscopy and isothermal titration calorimetry (ITC) to determine the conditional equilibrium constant for complexation at neutral pH. We further used ITC to investigate the thermodynamic contributions to complexation and the interaction kinetics. Addition of molybdate to HA caused the formation of complexes with UV-vis absorption spectra in good agreement with molybdate-catechol species indicating catechol groups to be the primary ligands in HA. ITC data revealed that binding enthalpies and kinetics were strongly influenced by ionic strength, suggesting a role for macromolecular reorganization driven by metalloid addition. 1. Wichard et al., Nature Geoscience 2, 625 - 629 (2009).

  4. Thermodynamic study of 9-anthracenecarboxylic acid

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Santos, Ana Filipa L.O.M.; Carneiro, Liliana P.T.; Mendes, Ricardo F.; Rodrigues, Ana Sofia M.C.; Ferreira, Paulo J.O.; Ramos, Rui M.C.

    2011-01-01

    The standard massic energy of combustion, in oxygen, of the crystalline 9-anthracenecarboxylic acid was measured, at T = 298.15 K, by static-bomb combustion calorimetry, from which the standard molar enthalpy of formation, in the condensed phase, was calculated as Δ f H m 0 (cr)=-(267.3±3.4)kJ.mol -1 . The standard molar enthalpy of sublimation of this acid, at T = 298.15 K, Δ cr g H m 0 =(139.4±0.9)kJ.mol -1 , was determined from the temperature-vapour pressure dependence, obtained by the Knudsen mass-loss effusion method. From the data presented above, the standard molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was derived, Δ f H m 0 (g)=-(127.9±3.5)kJ.mol -1 . The experimental result is interpreted in terms of enthalpic increments, molecular structure and compared with structurally similar compounds.

  5. Membrane extraction with thermodynamically unstable diphosphonic acid derivatives

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1997-10-14

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  6. Thermodynamic and Calorimetric Study of Acetylsalicylic Acid (Aspirin and Ibuprofen

    Directory of Open Access Journals (Sweden)

    Juan Carlos Moreno-Piraján

    2011-01-01

    Full Text Available Enthalpies of solution and dilution of aqueous solutions of sodium acetylsalicylic acid salt and ibuprofen salt were measured with an isoperibolic calorimeter at 293.15 K, 298.15 K, 303.15 K, 308.15 K and 318.15 K. The concentration of the electrolyte was restricted to the solubility of the salt at various temperatures and did not exceed 0.035–0.057 mol kg-1, depending on the temperature studied. The Virial coefficients were derived from Pitzer's model and the excess thermodynamic functions of both the solution and the components of the solution were calculated. An analysis of the thermodynamic characteristics of the solution in terms of concentration and temperature interval was carried out and discussed. Additionally, an analysis was performed by differential scanning calorimetry (DSC.

  7. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    International Nuclear Information System (INIS)

    Voll, Fernando A.P.; Silva, Camila da; Rossi, Carla C.R.S.; Guirardello, Reginaldo; Castilhos, Fernanda de; Oliveira, J. Vladimir; Cardozo-Filho, Lucio

    2011-01-01

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  8. Thermodynamic properties of an emerging chemical disinfectant, peracetic acid.

    Science.gov (United States)

    Zhang, Chiqian; Brown, Pamela J B; Hu, Zhiqiang

    2018-04-15

    Peracetic acid (PAA or CH 3 COOOH) is an emerging disinfectant with a low potential to form carcinogenic disinfection by-products (DBPs). Basic thermodynamic properties of PAA are, however, absent or inconsistently reported in the literature. This review aimed to summarize important thermodynamic properties of PAA, including standard Gibbs energy of formation and oxidation-reduction (redox) potential. The standard Gibbs energies of formation of CH 3 COOOH (aq) , CH 3 COOOH (g) , CH 3 COOOH (l) , and CH 3 COOO (aq) - are -299.41kJ·mol -1 , -283.02kJ·mol -1 , -276.10kJ·mol -1 , and -252.60kJ·mol -1 , respectively. The standard redox potentials of PAA are 1.748V and 1.005V vs. standard hydrogen electrode (SHE) at pH 0 and pH 14, respectively. Under biochemical standard state conditions (pH 7, 25°C, 101,325Pa), PAA has a redox potential of 1.385V vs. SHE, higher than many disinfectants. Finally, the environmental implications of the thermodynamic properties of PAA were systematically discussed. Those properties can be used to predict the physicochemical and biological behavior of aquatic systems exposed to PAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. (Amino acid + silica) adsorption thermodynamics: Effects of temperature

    International Nuclear Information System (INIS)

    Sebben, Damien; Pendleton, Phillip

    2015-01-01

    Highlights: • High resolution, low concentration Gly, Lys and Glu solution adsorption isotherms. • All isotherms fitted with Langmuir–Freundlich isotherm model. • Gly, Lys and Glu show exothermic adsorption processes. • Isosteric heat analyses reveal changes in interaction strength with surface coverage. - Abstract: A thorough understanding of amino acid adsorption by mineral and oxide surfaces has a major impact on a variety of industrial and biomedical applications. Little information currently exists regarding temperature effects on most of these adsorption processes. Deeper thermodynamic analyses of their multiple temperature adsorption isotherms would aid the interpretation of the interfacial interactions. Low solution concentration adsorption isotherms for glycine, lysine and glutamic acid on a silica adsorbent were generated for T = (291, 298 and 310) K. Data analysis via the Clausius–Clapeyron method yielded the isosteric heat of adsorption as a function of fractional monolayer coverage for each adsorptive. Each amino acid showed an exothermic adsorption response. Glycine and lysine experienced a greater negative effect of increased temperature compared with glutamic acid, indicating a greater number of adsorbed molecules than glutamic acid, with the former undergoing intermolecular clustering within the adsorbed phase. Isosteric heat analyses suggest ionic interactions for lysine and hydrogen bonding for glutamic acid, both weakening with increased coverage. In contrast, initial hydrogen bonding led to ionic bonding for glycine with increasing coverage

  10. D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence.

    Science.gov (United States)

    Xing, Su-Fang; Sun, Xue-Fei; Taylor, Alicia A; Walker, Sharon L; Wang, Yi-Fu; Wang, Shu-Guang

    2015-04-01

    Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid-base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems. © 2014 Wiley Periodicals, Inc.

  11. Thermodynamics

    CERN Document Server

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  12. Thermodynamic properties of citric acid and the system citric acid-water

    NARCIS (Netherlands)

    Kruif, C.G. de; Miltenburg, J.C. van; Sprenkels, A.J.J.; Stevens, G.; Graaf, W. de; Wit, H.G.M. de

    1982-01-01

    The binary system citric acid-water has been investigated with static vapour pressure measurements, adiabatic calorimetry, solution calorimetry, solubility measurements and powder X-ray measurements. The data are correlated by thermodynamics and a large part of the phase diagram is given. Molar heat

  13. Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.

    Science.gov (United States)

    Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P

    2009-03-01

    The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  14. What controls the hybridization thermodynamics of spherical nucleic acids?

    Science.gov (United States)

    Randeria, Pratik S; Jones, Matthew R; Kohlstedt, Kevin L; Banga, Resham J; Olvera de la Cruz, Monica; Schatz, George C; Mirkin, Chad A

    2015-03-18

    The hybridization of free oligonucleotides to densely packed, oriented arrays of DNA modifying the surfaces of spherical nucleic acid (SNA)-gold nanoparticle conjugates occurs with negative cooperativity; i.e., each binding event destabilizes subsequent binding events. DNA hybridization is thus an ever-changing function of the number of strands already hybridized to the particle. Thermodynamic quantification of this behavior reveals a 3 orders of magnitude decrease in the binding constant for the capture of a free oligonucleotide by an SNA conjugate as the fraction of pre-hybridized strands increases from 0 to ∼30%. Increasing the number of pre-hybridized strands imparts an increasing enthalpic penalty to hybridization that makes binding more difficult, while simultaneously decreasing the entropic penalty to hybridization, which makes binding more favorable. Hybridization of free DNA to an SNA is thus governed by both an electrostatic barrier as the SNA accumulates charge with additional binding events and an effect consistent with allostery, where hybridization at certain sites on an SNA modify the binding affinity at a distal site through conformational changes to the remaining single strands. Leveraging these insights allows for the design of conjugates that hybridize free strands with significantly higher efficiencies, some of which approach 100%.

  15. Thermodynamics

    International Nuclear Information System (INIS)

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  16. Quantitative thermodynamic predication of interactions between nucleic acid and non-nucleic acid species using Microsoft excel.

    Science.gov (United States)

    Zou, Jiaqi; Li, Na

    2013-09-01

    Proper design of nucleic acid sequences is crucial for many applications. We have previously established a thermodynamics-based quantitative model to help design aptamer-based nucleic acid probes by predicting equilibrium concentrations of all interacting species. To facilitate customization of this thermodynamic model for different applications, here we present a generic and easy-to-use platform to implement the algorithm of the model with Microsoft(®) Excel formulas and VBA (Visual Basic for Applications) macros. Two Excel spreadsheets have been developed: one for the applications involving only nucleic acid species, the other for the applications involving both nucleic acid and non-nucleic acid species. The spreadsheets take the nucleic acid sequences and the initial concentrations of all species as input, guide the user to retrieve the necessary thermodynamic constants, and finally calculate equilibrium concentrations for all species in various bound and unbound conformations. The validity of both spreadsheets has been verified by comparing the modeling results with the experimental results on nucleic acid sequences reported in the literature. This Excel-based platform described here will allow biomedical researchers to rationalize the sequence design of nucleic acid probes using the thermodynamics-based modeling even without relevant theoretical and computational skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Estimation of thermodynamic acidity constants of some penicillinase-resistant penicillins.

    Science.gov (United States)

    Demiralay, Ebru Çubuk; Üstün, Zehra; Daldal, Y Doğan

    2014-03-01

    In this work, thermodynamic acidity constants (pssKa) of methicillin, oxacillin, nafcillin, cloxacilin, dicloxacillin were determined with reverse phase liquid chromatographic method (RPLC) by taking into account the effect of the activity coefficients in hydro-organic water-acetonitrile binary mixtures. From these values, thermodynamic aqueous acidity constants of these drugs were calculated by different approaches. The linear relationships established between retention factors of the species and the polarity parameter of the mobile phase (ET(N)) was proved to predict accurately retention in LC as a function of the acetonitrile content (38%, 40% and 42%, v/v). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Modulation of i-motif thermodynamic stability by the introduction of UNA (unlocked nucleic acid) monomers

    DEFF Research Database (Denmark)

    Pasternak, Anna; Wengel, Jesper

    2011-01-01

    The influence of acyclic RNA derivatives, UNA (unlocked nucleic acid) monomers, on i-DNA thermodynamic stability has been investigated. The 22 nt human telomeric fragment was chosen as the model sequence for stability studies. UNA monomers modulate i-motif stability in a position-depending manner...

  19. Thermodynamics of uranium and nitric acid extraction from aqueous solution of TBP/diluent

    International Nuclear Information System (INIS)

    Souza Freitas, R.F. de.

    1982-06-01

    A thermodynamically consistent procedure for predicting distribution equilibria for uranyl nitrate and nitric acid between an aqueous solution and 30 vol % tributyl phosphate (TBP) in a hydrocarbon diluent is studied. Experimental work is developed in order to obtain equilibrium data for the system uranyl nitrate, nitric acid, water and 30 vol % TBP in n-dodecane, at 25 0 C and 40 0 C. The theoretical equilibrium data, obtained with the aid of a computer, are compared with the experimental results. (Author) [pt

  20. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    Energy Technology Data Exchange (ETDEWEB)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr [MINES ParisTech, PSL Research University, Centre de Géosciences, 35 Rue St-Honoré, 77305 Fontainebleau Cedex (France); Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles [University of Toulouse, UPS/INSA/LMDC, 135 Av. de Rangueil, 31077 Toulouse Cedex 04 (France)

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.

  1. Thermodynamic properties of aqueous solutions with citrate ions. Compressibility studies in aqueous solutions of citric acid

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli; Manzurola, Emanuel

    2013-01-01

    Highlights: • Over a wide range of concentrations and temperatures sound velocities were measured in aqueous solutions of citric acid. • Compressibility properties of citric acid solutions are thermodynamically characterized. • Changes in the structure of water when citric acid is dissolved are discussed. -- Abstract: Sound velocities in aqueous solutions of citric acid were measured from 15 °C to 50 °C in 5 °C intervals, within the 0.1 mol · kg −1 to 5.0 mol · kg −1 concentration range. These sound velocities served to evaluate the isentropic and isothermal compressibilities, the apparent molar compressibilities, the isochoric thermal pressure coefficients, changes of the cubic expansion coefficients with pressure at constant temperature, the changes of heat capacities with volume and hydration numbers of citric acid in aqueous solutions

  2. Thermodynamic modelling of acid gas removal from natural gas using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2017-01-01

    Thermodynamics of natural gas sweetening process needs to be known for proper design of natural gas treating plants. Absorption with aqueous N-Methyldiethanolamine is currently the most commonly used process for removal of acid gas (CO2 and H2S) impurities from natural gas. Model parameters...... for the Extended UNIQUAC model have already been determined by the same authors to calculate single acid gas solubility in aqueous MDEA. In this study, the model is further extended to estimate solubility of CO2 and H2S and their mixture in aqueous MDEA at high pressures with methane as a makeup gas....

  3. Thermodynamic properties of isomeric iso-butoxybenzoic acids: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Jakubczyk, Michał; Sporzyński, Andrzej; Emel’yanenko, Vladimir N.; Varfolomeev, Mikhail A.; Verevkin, Sergey P.

    2015-01-01

    Highlights: • Vapor pressures of butoxy benzoic acid derivatives were measured. • Vaporization, sublimation and fusion enthalpies were derived. • Molar enthalpies of formation were measured by calorimetry. • Thermochemical data tested for consistency using additivity rules and computations. • Simple additivity method suggested for prediction thermochemical properties. - Abstract: Standard (p° = 0.1 MPa) molar enthalpies of formation at the temperature T = 298.15 K of the 2-, 3-, and 4-iso-butoxybenzoic acids were measured using the combustion calorimetry. Standard molar enthalpies of vaporization and sublimation were derived from the vapor pressure temperature dependencies measured by the transpiration method. Molar enthalpies of the solid state phase transitions were measured by the DSC. Thermodynamic data on alkoxy substituted benzoic acids available in the literature were collected and combined with own experimental results. This data set on alkoxybenzoic acids was evaluated by using quantum-chemical and group-additivity methods

  4. Thermodynamic properties of isomeric iso-butoxybenzoic acids: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jakubczyk, Michał; Sporzyński, Andrzej [Faculty of Chemistry, Warsaw University of Technology, 00-664 Warszawa (Poland); Emel’yanenko, Vladimir N.; Varfolomeev, Mikhail A. [Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, Kazan Federal University, 420008 Kazan (Russian Federation); Department of Physical Chemistry and Department, Science and Technology of Life, Light and Matter, University of Rostock, D-18059 Rostock (Germany)

    2015-09-10

    Highlights: • Vapor pressures of butoxy benzoic acid derivatives were measured. • Vaporization, sublimation and fusion enthalpies were derived. • Molar enthalpies of formation were measured by calorimetry. • Thermochemical data tested for consistency using additivity rules and computations. • Simple additivity method suggested for prediction thermochemical properties. - Abstract: Standard (p° = 0.1 MPa) molar enthalpies of formation at the temperature T = 298.15 K of the 2-, 3-, and 4-iso-butoxybenzoic acids were measured using the combustion calorimetry. Standard molar enthalpies of vaporization and sublimation were derived from the vapor pressure temperature dependencies measured by the transpiration method. Molar enthalpies of the solid state phase transitions were measured by the DSC. Thermodynamic data on alkoxy substituted benzoic acids available in the literature were collected and combined with own experimental results. This data set on alkoxybenzoic acids was evaluated by using quantum-chemical and group-additivity methods.

  5. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    Science.gov (United States)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive

  7. Thermodynamic analysis of stability in iron removal from kaolin by using oxalic acid

    Directory of Open Access Journals (Sweden)

    C. Ocampo-López

    2013-06-01

    Full Text Available The graphical representation of global stability for a system, or Pourbaix diagram, was constructed to perform a thermodynamic study of iron removal from kaolin using oxalic acid as an oxidant. To do this the free energies of formation of the oxalate complex of the system were calculated, and it was found that the more stable specie is Fe(C2O43-3, with a calculated free energy of formation of -3753.88 kcal/mol. Thermodynamic stability functions were estimated for the system as a function of pH and Eh known as potential of oxide reduction. It was built a global stability diagram for the removal system; it showed that the specie trioxalate Fe(C2O43-3 is the only oxalate in equilibrium with other compounds associated with the removal of iron in kaolin.

  8. Morphology and thermodynamic characteristics of selenium-containing nanostructures based on polymethacrylic acid

    Science.gov (United States)

    Valueva, S. V.; Borovikova, L. N.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2010-09-01

    The morphology and thermodynamic characteristics of nanostructures formed as a result of the reduction of the selenium ion in a selenite-ascorbate redox system in water solutions of polymethacrylic acid were studied by molecular optics and atomic-force microscopy. The dependence of the morphology of the selenium-containing nanostructures on the mass selenium-to-polymer ratio (ν) in solution was determined. It was established that a large number of macromolecules (up to 4300) is adsorbed on the selenium nanoparticles, leading to the formation of nanostructures with super-high molecular mass and an almost spherical form. It was shown that the density of the nanostructures, as calculated on the basis of the experimental data on the size and molecular mass of the nanocomposite, depends substantially on the selenium concentrations in the solution. The thermodynamic state of the solutions of nanostructures is described.

  9. Some universal trends of the Mie(n,m) fluid thermodynamics

    International Nuclear Information System (INIS)

    Orea, Pedro; Reyes-Mercado, Yuri; Duda, Yurko

    2008-01-01

    By using canonical Monte Carlo simulation, the liquid-vapor phase diagram, surface tension, interface width, and pressure for the Mie(n,m) model fluids are calculated for six pairs of parameters m and n. It is shown that after certain re-scaling of fluid density the corresponding states rule can be applied for the calculations of the thermodynamic properties of the Mie model fluids, and for some real substances

  10. Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction

    Science.gov (United States)

    Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim

    2017-09-01

    Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.

  11. Thermodynamic properties and cloud droplet activation of a series of oxo-acids

    Directory of Open Access Journals (Sweden)

    M. Frosch

    2010-07-01

    Full Text Available We have investigated the thermodynamic properties of four aliphatic oxo-dicarboyxlic acids identified or thought to be present in atmospheric particulate matter: oxosuccinic acid, 2-oxoglutaric acid, 3-oxoglutaric acid, and 4-oxopimelic acid. The compounds were characterized in terms of their cloud condensation nuclei (CCN activity, vapor pressure, density, and tendency to decarboxylate in aqueous solution. We deployed a variety of experimental techniques and instruments: a CCN counter, a Tandem Differential Mobililty Analyzer (TDMA coupled with a laminar flow-tube, and liquid chromatography/mass spectrometry (LC/MS. The presence of the oxo functional group in the α-position causes the vapor pressure of the compounds to diminish by an order of magnitude with respect to the parent dicarboxylic acid, while the CCN activity is similar or increased. Dicarboxylic acids with an oxo-group in the β-position decarboxylate in aqueous solution. We studied the effects of this process on our measurements and findings.

  12. Thermodynamics of mixed-ligand complex formation of mercury (II) ethylenediaminetetraacetate with amino acids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Kozlovskii, Eugenii [Department of Inorganic and Analytic Chemistry, Ivanovo State University, Ermak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvei; Kumeev, Roman [Institute of Solution Chemistry, Ivanovo (Russian Federation)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer Stable mixed ligand complexes of HgEdta with amino acids at physiological pH value. Black-Right-Pointing-Pointer The thermodynamic and NMR data evident the ambidentate coordination mode of arginine. Black-Right-Pointing-Pointer Participation of the guanidinic group of Arg in coordination process. Black-Right-Pointing-Pointer Binuclear complexes (HgEdta){sub 2}L with the bridging function of amino acid. - Abstract: The mixed-ligand complex formation in the systems Hg{sup 2+} - Edta{sup 4-} - L{sup -}(L = Arg, Orn, Ser) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta){sub 2}L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes was discussed.

  13. Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects.

    Science.gov (United States)

    Sponton, Osvaldo E; Perez, Adrián A; Carrara, Carlos R; Santiago, Liliana G

    2016-11-15

    Stoichiometric, kinetic and thermodynamic aspects of complex formation between heat-induced aggregates of ovalbumin (ovalbumin nanoparticles, OVAn) and linoleic acid (LA) were evaluated. Extrinsic fluorescence data were fitted to modified Scatchard model yielding the following results: n: 49±2 LA molecules bound per OVA monomer unit and Ka: 9.80±2.53×10(5)M. Kinetic and thermodynamic properties were analyzed by turbidity measurements at different LA/OVA monomer molar ratios (21.5-172) and temperatures (20-40°C). An adsorption approach was used and a pseudo-second-order kinetics was found for LA-OVAn complex formation. This adsorption process took place within 1h. Thermodynamic parameters indicated that LA adsorption on OVAn was a spontaneous, endothermic and entropically-driven process, highlighting the hydrophobic nature of the LA and OVAn interaction. Finally, Atomic Force Microscopy imaging revealed that both OVAn and LA-OVAn complexes have a roughly rounded form with size lower than 100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Thermodynamic studies on the interaction of folic acid with bovine serum albumin

    International Nuclear Information System (INIS)

    Jha, Niki S.; Kishore, Nand

    2011-01-01

    Research highlights: → Thermodynamics of binding of folic acid with bovine serum albumin studied. → Effect of co-solutes on binding permitted detailed analysis of interactions. → Electrostatic interactions dominate with contribution from hydrogen bonding. → No significant conformational change in protein observed upon drug binding. - Abstract: Binding of the vitamin folic acid with bovine serum albumin (BSA) has been studied using isothermal titration calorimetry (ITC) in combination with fluorescence and circular dichroism spectroscopies. The thermodynamic parameters of binding have been evaluated as a function of temperature, ionic strength, in the presence of nonionic surfactants triton X-100, tetrabutylammonium bromide, and sucrose. The values of the van't Hoff enthalpy calculated from the temperature dependence of the binding constant agree with the calorimetric enthalpies indicating that the binding of folic acid to the BSA is a two state process without involving intermediates. These observations are supported by the intrinsic fluorescence and circular dichroism spectroscopic measurements. With increase in the ionic strength, reduction in the binding affinity of folic acid to BSA is observed suggesting predominance of electrostatic interactions in the binding. The contribution of hydrophobic interactions in the binding is also demonstrated by decrease in the binding affinity in the presence of tetrabutylammonium bromide (TBAB). The value of binding affinity in the presence of sucrose indicates that hydrogen bonding also plays a significant contribution in the complexation process. The calorimetric and spectroscopic results provide quantitative information on the binding of folic acid to BSA and suggest that the binding is dominated by electrostatic interactions with contribution from hydrogen bonding.

  15. Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit.

    Science.gov (United States)

    Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva C

    2012-03-19

    Perfluoroalkyl acids (PFAAs) have been detected in human blood, breast milk and umbilical cord blood across the globe. PFAAs do accumulate in the marine food chain in Arctic regions. In Greenland, increasing PFAA concentrations were observed during 1982-2006 in ringed seals and polar bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Cross-section and temporal time trend survey. Serum PFAA levels were determined in 284 Inuit from different Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 1998-2005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Serum PFAA levels were higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 1998-2005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs and legacy POPs was observed for Nuuk Inuit while for non-Nuuk Inuit this correlation was significant. No correlation between PFAAs and legacy POPs was found for male Inuit, whereas significant correlation was observed both for pooled female Inuit and for non-Nuuk Inuit females. We suggest that sources other than seafood intake might contribute to the observed higher PFAA levels in Nuuk Inuit compared to the pooled non-Nuuk Inuit.

  16. Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit

    Directory of Open Access Journals (Sweden)

    Manhai Long

    2012-03-01

    Full Text Available Objectives: Perfluoroalkyl acids (PFAAs have been detected in human blood, breast milk and umbilical cord blood across the globe. PFAAs do accumulate in the marine food chain in Arctic regions. In Greenland, increasing PFAA concentrations were observed during 1982–2006 in ringed seals and polar bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Study design: Cross-section and temporal time trend survey. Methods: Serum PFAA levels were determined in 284 Inuit from different Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 1998–2005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs were explored. Results: Serum PFAA levels were higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 1998–2005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs and legacy POPs was observed for Nuuk Inuit while for non-Nuuk Inuit this correlation was significant. No correlation between PFAAs and legacy POPs was found for male Inuit, whereas significant correlation was observed both for pooled female Inuit and for non-Nuuk Inuit females. Conclusions: We suggest that sources other than seafood intake might contribute to the observed higher PFAA levels in Nuuk Inuit compared to the pooled non-Nuuk Inuit.

  17. A combined experimental and computational thermodynamic study of fluorene-9-methanol and fluorene-9-carboxylic acid

    International Nuclear Information System (INIS)

    Oliveira, Juliana A.S.A.; Calvinho, Maria M.; Notario, R.; Monte, Manuel J.S.; Ribeiro da Silva, Maria D.M.C.

    2013-01-01

    Highlights: • A thermodynamic study of two fluorene derivatives is presented. • Vapour pressures and energies of combustion were measured. • Enthalpy, entropy and Gibbs energy of sublimation were derived. • Enthalpy and Gibbs energy of formation in crystal and gas phases were calculated. • Gas phase enthalpy of formation was also estimated by quantum chemical calculations. -- Abstract: This work reports an experimental and computational thermodynamic study performed on two 9-fluorene derivatives: fluorene-9-methanol and fluorene-9-carboxylic acid. The standard (p o = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. A static method, based on a capacitance diaphragm gauge, and a Knudsen effusion method were used to perform the vapour pressure study of the referred compounds, yielding accurate determination of the standard molar enthalpies and entropies of sublimation and vaporisation. For fluorene-9-carboxylic acid, the enthalpy of sublimation was also determined using Calvet microcalorimetry. The enthalpy of fusion of both compounds was derived indirectly from vapour pressure results and directly from DSC experiments. Combining the thermodynamic parameters of the compounds studied, the standard Gibbs energy of formation in crystalline and gaseous phases were derived as well as the standard molar enthalpy of formation in the gaseous phase. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared with the experimental values

  18. Solution thermodynamics of pyrazinamide, isoniazid, and p-aminobenzoic acid in buffers and octanol

    International Nuclear Information System (INIS)

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Volkova, Tatyana V.; Perlovich, German L.

    2015-01-01

    Highlights: • Solubility of pyrazinamide, isoniazid, p-aminobenzoic acid were measured. • The activity coefficients of the compounds at infinite dilution were determined. • Thermodynamic functions of dissolution and solvation were calculated. - Abstract: The solubility values of pyrazinamide, isoniazid, and p-aminobenzoic acid in buffers (pH 2.0 and 7.4) and octanol were measured in the temperature range of 293.15 to 313.15 K. The dissolution Gibbs energy, enthalpy, and entropy were calculated. The dissolving process was endothermic and enthalpy-determined. The activity coefficients of the compounds at infinite dilution were determined based on the solubility data and thermophysical parameters. A positive deviation from the ideality was observed in all the solutions. A common tendency of the solubility increase with a decrease in the activity coefficients at T = 298.15 K was revealed for the investigated solute-solvent systems. The excess thermodynamic solubility functions were calculated from the temperature dependences of the activity coefficients. The solvation processes were found to have a considerable influence on the solubility of the substances in solutions studied.

  19. Solid–liquid equilibrium and thermodynamic research of 3-Thiophenecarboxylic acid in (water + acetic acid) binary solvent mixtures

    International Nuclear Information System (INIS)

    Liu, Xiang; Liang, Mengmeng; Hu, Yonghong; Yang, Wenge; Shi, Ying; Yin, Jingjing; Liu, Yan

    2014-01-01

    Highlights: • The solubility was measured in (water + acetic acid) from 283.15 to 338.15 K. • The solubility increased with increasing temperature and water contents. • The modified Apelblat equation was more accurate than the λh equation. - Abstract: In this study, the solubility of 3-thiophenecarboxylic acid was measured in (water + acetic acid) binary solvent mixtures in the temperature ranging from 283.15 to 338.15 K by the analytical stirred-flask method under atmospheric pressure. The experimental data were well-correlated with the modified Apelblat equation and the λh equation. In addition, the calculated solubilities showed good agreement with the experimental results. It was found that the modified Apelblat equation could obtain the better correlation results than the λh equation. The experiment results indicated that the solubility of 3-thiophenecarboxylic acid in the binary solvents increased with increasing temperature, increases with increasing water contents, but the increments with temperature differed from different water contents. In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing the process of purification of 3-thiophenecarboxylic acid in industry

  20. Thermodynamic Study of the Interaction of Bovine Serum Albumin and Amino Acids with Cellulose Nanocrystals.

    Science.gov (United States)

    Lombardo, Salvatore; Eyley, Samuel; Schütz, Christina; van Gorp, Hans; Rosenfeldt, Sabine; Van den Mooter, Guy; Thielemans, Wim

    2017-06-06

    The interaction of bovine serum albumin (BSA) with sulfated, carboxylated, and pyridinium-grafted cellulose nanocrystals (CNCs) was studied as a function of the degree of substitution by determining the adsorption isotherm and by directly measuring the thermodynamics of interaction. The adsorption of BSA onto positively charged pyridinium-grafted cellulose nanocrystals followed Langmuirian adsorption with the maximum amount of adsorbed protein increasing linearly with increasing degree of substitution. The binding mechanism between the positively charged pyridinum-grafted cellulose nanocrystals and BSA was found to be endothermic and based on charge neutralization. A positive entropy of adsorption associated with an increase of the degree of disorder upon addition of BSA compensated for the unfavorable endothermic enthalpy and enabled formation of pyridinium-g-CNC-BSA complexes. The endothermic enthalpy of adsorption was further found to decrease as a function of increasing degree of substitution. Negatively charged cellulose nanocrystals bearing sulfate and/or carboxylic functionalities were found to not interact significantly with the BSA protein. To investigate in more detail the role of single amino acids in the adsorption of proteins onto cellulose nanocrystals, we also studied the interaction of different types of amino acids with CNCs, i.e., charged (lysine, aspartic acid), aromatic (tryptophan, tyrosine), and polar (serine) amino acids. We found that none of the single amino acids bound with CNCs irrespective of surface charge and that therefore the binding of proteins with CNCs appears to require larger amino acid sequences that induce a greater entropic contribution to stabilize binding. Single amino acids are thus not adsorbed onto cellulose nanocrystals.

  1. Thermodynamic Features of Benzene-1,2-Diphosphonic Acid Complexes with Several Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Syouhei Nishihama; Ryan P. Witty; Leigh R Martin; Kenneth L. Nash

    2013-08-01

    Among his many contributions to the advancement of f-element chemistry and separation science, Professor Gregory R. Choppin’s research group completed numerous investigations featuring the application of distribution techniques to the determination of metal complexation equilibrium quotients. Most of these studies focused on the chemistry of lanthanide and actinide complexes. In keeping with that tradition, this report discusses the complex formation equilibrium constants for complexes of trivalent europium (Eu3+) with benzene-1,2-diphosphonic acid (H4BzDP) determined using solvent extraction distribution experiments in 0.2 M (Na,H)ClO4 media in the temperature range of 5 – 45 degrees C. Protonation constants for HnBzDP4-n and stoichiometry and stability of BzDP4- complexes with Zn2+, Ni2+, and Cu2+ have also been determined using potentiometric titration (at I = 0.1 M) and 31P NMR spectroscopy. Heats of protonation of HnBzDPn-4 species have been determined by titration calorimetry. From the temperature dependence of the complex Eu3+-HnBzDPn-4 equilibrium constant, a composite enthalpy (?H = -15.1 (+/-1.0) kJ mol-1) of complexation has been computed. Comparing these thermodynamic parameters with literature reports on other diphosphonic acids and structurally similar carboxylic acids indicates that exothermic heats of complexation are unique to the Eu-BzDP system. Comparisons with thermodynamic data from the literature indicate that the fixed geometry imposed by the benzene ring enhances complex stability.

  2. Exploring the evolution of standard amino-acid alphabet: When genomics meets thermodynamics

    International Nuclear Information System (INIS)

    Zhang, Hong-Yu

    2007-01-01

    One of the most intriguing aspects of life is that despite the diversified apparent shapes, similar building blocks and infrastructures, such as standard amino acids and canonical genetic codes, are shared by most life on Earth. Thus, it is challenging to explore: why nature just selects these building blocks and strategies from numerous candidates to construct life? Was this deterministic or fortuitous? Thanks to the rapid progress in genomics, bioinformatics and synthetic biology, more and more basic principles underlying life design and construction were disclosed in the past decade. However, since the origin of early life is substantially a chemical process, to understand the enigma of life origin, chemists' efforts can not be neglected. In this paper, we focus on the evolution of standard amino-acid alphabet and indicate that chemistry, especially thermodynamics, is indeed critical to understanding the forming mechanisms of amino-acid alphabet. It is revealed that nature prefers low free energy and thus ubiquitous (cheap) small amino acids when beginning to build life, which is compatible with many recent findings from genomics and bioinformatics

  3. Solid phase extraction of uranium from phosphoric acid. Kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Magied, Ahmed Fawzy [Nuclear Materials Authority, Cairo (Egypt); Stockholm Univ. (Sweden). Dept. of Organic Chemistry

    2017-07-01

    There is a high interest to develop suitable solid phase extractants for uranium separation from aqueous solutions in order to reduce cost and enhance the efficiency. This paper describes solid phase extraction of uranium(VI) from aqueous phosphoric acid solution using MCM-41 based D2HEPA-TOPO organophosphorous extractants. The mixture of D2HEPA (di-2-ethyl-hexylphosphoric acid) and TOPO (tri-n-octylphosphine oxide) was impregnated into the pores of MCM-41 and the synthesized sorbent was fully characterized. The influences of different factors such as synergistic mixture ratio, phosphoric acid concentration, mixing time and temperature were investigated. The results showed that 90% of uranium(VI) extraction can be achieved within 5 min, using D2HEPA-TOPO rate at MCM-41 (mass ratio 2:1 w/w) from 1 M phosphoric acid containing 64 ppm of uranium at room temperature. High adsorption capacity of uranium(VI) have been achieved at the mentioned conditions. The rate constant for the chemical adsorption of uranium(VI) was 0.988 g mg{sup -1} min{sup -1} calculated by the pseudo-second order rate equation. The obtained thermodynamics parameters showed that uranium(VI) adsorption from H{sub 3}PO{sub 4} is an exothermic and spontaneous process.

  4. Thermodynamic studies on the interaction between some amino acids with some rare earth metal ions in aqueous solutions

    International Nuclear Information System (INIS)

    Mohamed, AbdAllah A.; Bakr, Moustafa F.; Abd El-Fattah, Khaled A.

    2003-01-01

    The interactions between the amino acids (glycine and L-threonine) with some rare earth metal ions (Pr 3+ , Nd 3+ , Eu 3+ , Gd 3+ , Dy 3+ , Ho 3+ and Yb 3+ ) were studied at a wide range from ionic strengths (0.07-0.32 M KNO 3 ) and temperatures (25-45 deg. C) in aqueous solutions by using Bjerrum potentiometric method. The stoichiometric and thermodynamic stability constants were calculated as well as the standard thermodynamic parameters (ΔG deg., ΔH deg. and ΔS deg. ) for all possible reactions that occur. The degree of formation (n-bar) for all studied systems was determined and discussed. The thermodynamic parameters differences (ΔΔG deg., ΔΔH deg. and ΔΔS deg. ) were calculated and discussed to determine the factors which control these complexation processes from the thermodynamic point of view

  5. Thermodynamic characteristics of the acid dissociation of dopamine hydrochloride in water-ethanol solutions

    Science.gov (United States)

    Ledenkov, S. F.; Vandyshev, V. N.; Molchanov, A. S.

    2012-06-01

    Enthalpies of the interaction of protonated dopamine with a hydroxide ion in water-ethanol mixtures in the concentration range of 0-0.8 EtOH mole fractions are measured calorimetrically. The neutralization process of dopamine hydrochloride is shown to occur endothermally in solvents with an ethanol concentration of ≥0.5 mole fractions. Standard thermodynamic characteristics (Δr H ○, Δr G ○, and Δr S ○) of the first-step acid dissociation of dopamine hydrochloride in solutions are calculated with regard to the autoprotolysis enthalpy of binary solvents. It is found that dissociation enthalpies vary within 9.1-64.8 kJ/mol, depending on the water-ethanol solvent composition.

  6. Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus.

    Science.gov (United States)

    Souza, Paula Monteiro; Aliakbarian, Bahar; Filho, Edivaldo Ximenes Ferreira; Magalhães, Pérola Oliveira; Junior, Adalberto Pessoa; Converti, Attilio; Perego, Patrizia

    2015-11-01

    The kinetics of a thermostable extracellular acid protease produced by an Aspergillus foetidus strain was investigated at different pH, temperatures and substrate concentrations. The enzyme exhibited maximal activity at pH 5.0 and 55°C, and its irreversible deactivation was well described by first-order kinetics. When temperature was raised from 55 to 70°C, the deactivation rate constant increased from 0.018 to 5.06h(-1), while the half-life decreased from 37.6 to 0.13h. The results of activity collected at different temperatures were then used to estimate, the activation energy of the hydrolysis reaction (E*=19.03kJ/mol) and the standard enthalpy variation of reversible enzyme unfolding (ΔH°U=19.03kJ/mol). The results of residual activity tests carried out in the temperature range 55-70°C allowed estimating the activation energy (E(*)d=314.12kJ/mol), enthalpy (311.27≤(ΔH°d≤311.39kJ/mol), entropy (599.59≤ΔS(*)d≤610.49kJ/mol K) and Gibbs free energy (103.18≤ΔG(*)d≤113.87kJ/mol) of the enzyme irreversible denaturation. These thermodynamic parameters suggest that this new protease is highly thermostable and could be important for industrial applications. To the best of our knowledge, this is the first report on thermodynamic parameters of an acid protease produced by A. foetidus. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Recovery of Acrylic Acid Using Calcium Peroxide Nanoparticles: Thermodynamics and Continuous Column Study

    Directory of Open Access Journals (Sweden)

    B. S. De

    2018-03-01

    Full Text Available The thermodynamic parameters (DGº, DHº, and DSº for adsorption of acrylic acid on CaO2 nanoparticle were estimated in the temperature range of 300.15 – 313.15 K, which helps to evaluate the feasibility of adsorption process, nature of adsorption process, and affinity of adsorbent toward solute molecule. A dynamic adsorption study in a fixed-bed column was performed using CaO2 nanoparticle for the recovery of acrylic acid from aqueous stream. The breakthrough curves of adsorption system were obtained for different process variables, such as initial acrylic acid concentration (2882–7206 mg L–1, flow rate (5–9 mL min–1, and bed height (10–20 cm. The bed-depth service time model, Thomas model, Yoon-Nelson model, and deactivation kinetic model were applied to the experimental data to predict the column performance. The data were in good agreement with the deactivation kinetic model. The presented results may be useful for the design of adsorption system using nanoparticles, which can be further extended to other systems.

  8. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Directory of Open Access Journals (Sweden)

    Ankur Bikash Pradhan

    Full Text Available Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride with single and double stranded form of polyriboadenylic acid (hereafter poly-A using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A with high affinity while it does not interact at all with the double stranded (ds form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  9. Thermodynamic and kinetic modelling of the reduction of concentrated nitric acid

    International Nuclear Information System (INIS)

    Sicsic, David

    2011-01-01

    This research thesis aimed at determining and quantifying the different stages of the reduction mechanism in the case of concentrated nitric acid. After having reported the results of a bibliographical study on the chemical and electrochemical behaviour of concentrated nitric media (generalities, chemical equilibriums, NOx reactivity, electrochemical reduction of nitric acid), the author reports the development and discusses the results of a thermodynamic simulation of a nitric environment at 25 C. This allowed the main species to be identified in the liquid and gaseous phases of nitric acid solutions. The author reports an experimental electrochemical investigation coupled with analytic techniques (infrared and UV-visible spectroscopy) and shows that the reduction process depends on the cathodic overvoltage, and identifies three potential areas. A kinetic modelling of the stationary state and of the impedance is then developed in order to better determine, discuss and quantify the reduction process. The application of this kinetic model to the preliminary results of an electrochemical study performed on 304 L steel is then discussed [fr

  10. Thermodynamic equilibrium of hydroxyacetic acid in pure and binary solvent systems

    International Nuclear Information System (INIS)

    Huang, Qiaoyin; Xie, Chuang; Li, Yang; Su, Nannan; Lou, Yajing; Hu, Xiaoxue; Wang, Yongli; Bao, Ying; Hou, Baohong

    2017-01-01

    Highlights: • Solubility of hydroxyacetic acid in mono-solvents and binary solvent mixtures was measured. • Modified Apelblat, NRTL and Wilson model were used to correlate the solubility data in pure solvents. • CNIBS/R-K and Jouyban-Acree model were used to correlate the solubility in binary solvent mixtures. • The mixing properties were calculated based on the NRTL model. - Abstract: The solubility of hydroxyacetic acid in five pure organic solvents and two binary solvent mixtures were experimentally measured from 273.15 K to 313.15 K at atmospheric pressure (p = 0.1 MPa) by using a dynamic method. The order of solubility in pure organic solvents is ethanol > isopropanol > n-butanol > acetonitrile > ethyl acetate within the investigated temperature range, except for temperature lower than 278 K where the solubility of HA in ethyl acetate is slightly larger than that in acetonitrile. Furthermore, the solubility data in pure solvents were correlated with the modified Apelblat model, NRTL model, and Wilson model and that in the binary solvents mixtures were fitted to the CNIBS/R-K model and Jouyban-Acree model. Finally, the mixing thermodynamic properties of hydroxyacetic acid in pure and binary solvent systems were calculated and discussed.

  11. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks

    DEFF Research Database (Denmark)

    Averesch, Nils J. H.; Martínez, Verónica S.; Nielsen, Lars K.

    2018-01-01

    Adipic acid, a nylon-6,6 precursor, has recently gained popularity in synthetic biology. Here, 16 different production routes to adipic acid were evaluated using a novel tool for network-embedded thermodynamic analysis of elementary flux modes. The tool distinguishes between thermodynamically...

  12. Thermodynamics and Structure of Actinide(IV) Complexes with Nitrilotriacetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, L.; Guillaumont, D.; Jeanson, A.; Den Auwer, C.; Moisy, Ph. [CEA Marcoule, DEN, DRCP, SCPS, F-30207 Bagnols Sur Ceze (France); Grigoriev, M. [RAS, AN Frumkin Inst Phys Chem and Electrochem, Moscow 119991 (Russian Federation); Berthet, J.C. [CEA Saclay, DSM, IRAMIS, URA 331, Serv Chim Mol, CNRS, F-91191 Gif Sur Yvette (France); Hennig, C.; Scheinost, A. [Forschungszentrum Dresden Rossendorf, Inst Radiochem, D-01314 Dresden (Germany)

    2009-05-15

    Nitrilotriacetic acid, commonly known as NITA (N(CH{sub 2}CO{sub 2}H){sub 3}), can be considered a representative of the polyamino-carboxylic family. The results presented in this paper describe the thermodynamical complexation and structural investigation of An(IV) complexes with NTA in aqueous solution. In the first part, the stability constants of the An(IV) complexes (An = Pu, Np, U, and Th) have been determined by spectrophotometry. In the second part, the coordination spheres of the actinide cation in these complexes have been described using extended X-ray absorption fine structure spectroscopy and compared to the solid-state structure of (Hpy){sub 2}[U(NTA){sub 2}].H{sub 2}O. These data are further compared to quantum chemical calculations, and their evolution across the actinide series is discussed. In particular, an interpretation of the role of the nitrogen atom in the coordination mode is proposed. These results are considered to be model behavior of polyamino-carboxylic ligands such as diethylenetriamine pentaacetic acid, which is nowadays the best candidate for a chelating agent in the framework of actinide decorporation for the human body. (authors)

  13. lncRNATargets: A platform for lncRNA target prediction based on nucleic acid thermodynamics.

    Science.gov (United States)

    Hu, Ruifeng; Sun, Xiaobo

    2016-08-01

    Many studies have supported that long noncoding RNAs (lncRNAs) perform various functions in various critical biological processes. Advanced experimental and computational technologies allow access to more information on lncRNAs. Determining the functions and action mechanisms of these RNAs on a large scale is urgently needed. We provided lncRNATargets, which is a web-based platform for lncRNA target prediction based on nucleic acid thermodynamics. The nearest-neighbor (NN) model was used to calculate binging-free energy. The main principle of NN model for nucleic acid assumes that identity and orientation of neighbor base pairs determine stability of a given base pair. lncRNATargets features the following options: setting of a specific temperature that allow use not only for human but also for other animals or plants; processing all lncRNAs in high throughput without RNA size limitation that is superior to any other existing tool; and web-based, user-friendly interface, and colored result displays that allow easy access for nonskilled computer operators and provide better understanding of results. This technique could provide accurate calculation on the binding-free energy of lncRNA-target dimers to predict if these structures are well targeted together. lncRNATargets provides high accuracy calculations, and this user-friendly program is available for free at http://www.herbbol.org:8001/lrt/ .

  14. Correlation of the corrosion rates of steels in a straw fired boiler with the thermodynamically predicted trend of KOH(g) in the flue gases

    International Nuclear Information System (INIS)

    Blomberg, Tom

    2012-01-01

    The thermodynamic stability of KOH(g) in flue gases without sulfur and chlorine compounds was studied. Relatively good correlation of the thermodynamically predicted trend of KOH(g) in the flue gases and the literature data of the corrosion rates of different steels in a straw fired boiler was found. A discussion on a possible, physically reasonable mechanism is also presented. However, the causality of the found correlation requires further studies. Highlights: ► Corrosion rates in a straw boiler correlate with the predicted trend of KOH(g). ► KOH(g) impinging the surface may be an important factor in corrosion in straw fired boilers. ► The proposed mechanism may be relevant also to other biomass fuels that release potassium hydroxide during combustion.

  15. Thermodynamic characteristics of the acid-base equilibria of ethylenediamine- N, N'-diglutaric acid in aqueous solutions using calorimetric data

    Science.gov (United States)

    Gridchin, S. N.; Nikol'skii, V. M.

    2017-10-01

    The enthalpies of reaction of betaine group neutralization of ethylenediamine- N, N'-diglutaric acid (H4L) at 298.15 K and at different values of ionic strength of 0.1, 0.5, 1.0 (KNO3) is measured by direct calorimetry. The standard thermodynamic characteristics of the protolytic equilibria of H4L are calculated.

  16. Redox thermodynamic data of plutonium in acidic and carbonate media. Pu(V) stability

    International Nuclear Information System (INIS)

    Capdevila, H.

    1992-01-01

    Pu redox equilibria are studied in acidic and carbonate media in this thesis, to build a thermodynamic data bank consistent with the TDB (NEA-OECD) one and in connection with radioactive waste disposal programs. Literature is discussed and reinterpreted. The experimental method is tested with Uranium preliminary measurements. The reversible redox potentials (PuO 2 + and Pu 4+ /Pu 3+ ) are measured using the cyclic voltametric technique in perchloric media at several ionic strengths (from 0.5 to 3M) and temperatures (from 0 to 70 deg C). The Specific Interaction Theory (SIT) is used to measured activity coefficients and to extrapolate data to the standard conditions. The potentials variations versus temperature are linear in first approximation: the entropy changes are found constant from 0 to 70 deg C and the heat capacity changes are within uncertainties. The standard constant of PuO 2 + disproportionation into PuO 2 2+ and Pu 3+ is deduced from spectrophotometric measurements performed in perchloric media around pH=1 where Pu 4+ hydrolysis is discussed. The Pu non-reversible standard potentials (PuO 2 2+ /Pu 4+ for instance) are then calculated and validated with a spectrophotometric study of Pu 4+ formation from PuO 2 2+ and Pu 3+ in a 1M perchloric acidic solution. The Pu(VI/V) redox potential, activity coefficients and entropies are measured using the same technique in concentrated carbonate media. The limiting complex standard formation constants and the redox potential shifts (between acidic and carbonate media) are then discussed among the U, Np, Pu and Am actinides. A spectrophotometric study of the equilibrium between the complexes with 5 and 4 carbonate ligands allowed to measure Pu(IV) limiting complex stability at several ionic strengths. (author). 26 tabs., 46 figs., 95 refs

  17. Thermodynamics of inclusion complexes of natural and modified cyclodextrins with acetylsalicylic acid and ibuprofen in aqueous solution at 298 K

    Energy Technology Data Exchange (ETDEWEB)

    Castronuovo, Giuseppina, E-mail: giuseppina.castronuovo@unina.it [Department of Chemistry, University Federico II of Naples, Complesso Universitario a Monte S. Angelo, via Cintia, 80126 Naples (Italy); Niccoli, Marcella [Department of Chemistry, University Federico II of Naples, Complesso Universitario a Monte S. Angelo, via Cintia, 80126 Naples (Italy)

    2013-04-10

    Graphical abstract: Complexation forces acting in the association between natural and modified α- and β-cyclodextrins and acetylsalicylic acid (aspirin) or ibuprofen are examined through the analysis of the thermodynamic parameters obtained by isothermal calorimetry. Highlights: ► A calorimetric method is reported to study the association of natural and substituted cyclodextrins with acetylsalicylic acid and ibuprofen. ► The study aims to propose a hypothesis about the forces involved in the interaction. That can be useful for designing new cyclodextrins having suitable characteristics to include specific drugs. ► Enthalpic and entropic contributions on the association are discussed. The differences in the cavity dimensions of the cyclodextrins determine the values of the thermodynamic properties to be very different. - Abstract: Thermodynamic parameters for the association of natural and substituted α-, β-, and γ-cyclodextrins with acetylsalicylic acid, salicylic acid and ibuprofen have been determined by isothermal titration calorimetry. Analysis of the data shows that complexes form, all having 1:1 stoichiometry. The shape-matching between the host and guest is the factor determining the values of the thermodynamic quantities. In the case of the smallest cyclodextrin interacting with acetylsalicylic acid and salicylic acid, the parameters indicate that hydrophobic interactions play the major role. Association occurs through the shallow inclusion of the benzene ring into the cavity. In the case of substituted β-cyclodextrins, instead, inclusion of the benzene ring is deeper and the tight fitting of the guest molecule to the cavity makes the enthalpy and entropy to be both negative. Ibuprofen interacts through its isobutyl group: the values of the association constants are very high for β-cyclodextrins as determined by the large and positive entropies due to the relaxation of water molecules from the cavity and the hydration spheres of the interacting

  18. Thermodynamics of inclusion complexes of natural and modified cyclodextrins with acetylsalicylic acid and ibuprofen in aqueous solution at 298 K

    International Nuclear Information System (INIS)

    Castronuovo, Giuseppina; Niccoli, Marcella

    2013-01-01

    Graphical abstract: Complexation forces acting in the association between natural and modified α- and β-cyclodextrins and acetylsalicylic acid (aspirin) or ibuprofen are examined through the analysis of the thermodynamic parameters obtained by isothermal calorimetry. Highlights: ► A calorimetric method is reported to study the association of natural and substituted cyclodextrins with acetylsalicylic acid and ibuprofen. ► The study aims to propose a hypothesis about the forces involved in the interaction. That can be useful for designing new cyclodextrins having suitable characteristics to include specific drugs. ► Enthalpic and entropic contributions on the association are discussed. The differences in the cavity dimensions of the cyclodextrins determine the values of the thermodynamic properties to be very different. - Abstract: Thermodynamic parameters for the association of natural and substituted α-, β-, and γ-cyclodextrins with acetylsalicylic acid, salicylic acid and ibuprofen have been determined by isothermal titration calorimetry. Analysis of the data shows that complexes form, all having 1:1 stoichiometry. The shape-matching between the host and guest is the factor determining the values of the thermodynamic quantities. In the case of the smallest cyclodextrin interacting with acetylsalicylic acid and salicylic acid, the parameters indicate that hydrophobic interactions play the major role. Association occurs through the shallow inclusion of the benzene ring into the cavity. In the case of substituted β-cyclodextrins, instead, inclusion of the benzene ring is deeper and the tight fitting of the guest molecule to the cavity makes the enthalpy and entropy to be both negative. Ibuprofen interacts through its isobutyl group: the values of the association constants are very high for β-cyclodextrins as determined by the large and positive entropies due to the relaxation of water molecules from the cavity and the hydration spheres of the interacting

  19. Thermodynamic Characterization of Humic Acid-surfactant Interaction: New Insights into the Characteristics and Structure of Humic Acids

    Directory of Open Access Journals (Sweden)

    Leonardus Vergütz

    2015-12-01

    Full Text Available ABSTRACT Humic acids (HA are a component of humic substances (HS, which are found in nearly all soils, sediments, and waters. They play a key role in many, if not most, chemical and physical properties in their environment. Despite the importance of HA, their high complexity makes them a poorly understood system. Therefore, understanding the physicochemical properties and interactions of HA is crucial for determining their fundamental role and obtaining structural details. Cationic surfactants are known to interact electrostatically and hydrophobically with HA. Because they are a very well-known and characterized system, they offer a good choice as molecular probes for studying HA. The objective of this study was to evaluate the interaction between cationic surfactants and HA through isothermal titration calorimetry in a thermodynamic manner, aiming to obtain information about the basic structure of HA, the nature of this interaction, and if HA from different origins show different basic structures. Contrary to what the supramolecular model asserts, HA structure is not loosely held, though it may separate depending on the conditions the HA are subjected to in their milieu. It did not show any division or conformational change when interacting with surfactants. The basic structure of the HA remains virtually the same regardless of the different sources and compositions of these HA.

  20. Stability range of MoC (hp2). II. Thermodynamic properties of generalized Lewis acid-base intermetallics

    International Nuclear Information System (INIS)

    Koukouvetakis, J.

    1988-01-01

    The γ-MoC phase with the hexagonal WC structure was prepared without the presence of metal stabilizers at temperatures below 1000 degree C. This phase was found to be thermodynamically stable at low temperatures and decomposed to Mo 2 C and graphite at 1400 K. Using equilibrium and thermodynamic data, the thermodynamic quantities of this phase were calculated. Oxide equilibration and solid-state galvanic cell experiments were used to study thermodynamic properties of binary Lewis acid-base stabilized transition-metal alloys. The activity of vanadium was determined in alloys of vanadium with platinum-group metals such as Rh, Pd, and Ir at 1000 degree C. The activities of titanium in titanium-iridium alloys and of niobium in Nb 3 Ir were determined at 1400 degree C. The ternary phase diagram of V-Pd-O at 1000 degree C was obtained. Based on the vanadium-palladium results, a partial titration curve of palladium by vanadium was constructed. The excess partial molar Gibbs free energy of vanadium at infinite dilution was found to be -36.4 kcal mol -1 at 1000 degree C. Results are in agreement with the predictions of Brewer's theory of transition-metal alloy acid-base behavior

  1. Kinetics and thermodynamics of aluminium dissolution in 1.0M sulphuric acid containing chloride ions

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Gaber, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt)]. E-mail: ashrafmoustafa@yahoo.com; Abd-El-Nabey, B.A. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt); Sidahmed, I.M. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt); El-Zayady, A.M. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt); Saadawy, M. [Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321 (Egypt)

    2006-08-01

    The dissolution of aluminium in 1M sulphuric acid solutions containing different chloride ion concentrations (0.01-0.06M) were studied at 25, 30, 35 and 40deg. C using electrochemical impedance spectroscopy (EIS) technique and polarization curves measurements. The kinetic rate equation, under the experimental condition described, was derived and found to verify the following relationship:V=k{sub obs}K{sub 2}C{sub Cl{sup -}}{sup n}1+K{sub 2}C{sub Cl{sup -}}{sup n}where V is the corrosion rate, k{sub obs} and K{sub 2} are the dissolution rate constant of aluminium oxide-chloride complex and the equilibrium constant of chloride ions adsorbed at aluminium oxide surface, respectively. The kinetic and thermodynamic energy parameters were calculated and their values indicate that chloride ions are chemisorbed onto the aluminium oxide surface and the formation of oxide-chloride complex is the rate-determining step.

  2. Investigation of mono/competitive adsorption of environmentally relevant ionized weak acids on graphite: impact of molecular properties and thermodynamics.

    Science.gov (United States)

    Moustafa, Ahmed M A; McPhedran, Kerry N; Moreira, Jesús; Gamal El-Din, Mohamed

    2014-12-16

    The thermodynamics of adsorption and competitive interactions of five weak acids on a graphite surface was assessed in alkaline solutions. Adsorption of the acids in mono- and multicompound solutions followed their Freundlich isotherms which suggest a diversity of graphite adsorption sites as confirmed by the presence of carboxylic and phenolic groups observed on graphite surfaces. Thermodynamic calculations assigned the formation of the negatively charged assisted hydrogen bond (-CAHB) between ionized solutes and adsorbent surface groups as the possible adsorption mechanism. However, the similar pKa values of current acids resulted in comparable free energies for -CAHB formation (ΔG(-CAHB)) being less than solvation free energies (ΔGSolv). Thus, additional ΔG is supplemented by increased hydrophobicity due to proton exchange of ionized acids with water (ΔΔG Hydrophobicity). Adsorption capacities and competition coefficients indicated that ΔΔG Hydrophobicity values depend on the neutral and ionized acid Kow. Competitive adsorption implies that multilayer adsorption may occur via hydrophobic bonding with the CH3 ends of the self-assembled layer which affects the acid adsorption capacities in mixtures as compared to monocompound solutions. The determination of adsorption mechanisms will assist in understanding of the fate and bioavailability of emerging and classical weak acids released into natural waters.

  3. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: Kinetic, isotherm and thermodynamic studies

    International Nuclear Information System (INIS)

    Kara, Ali; Demirbel, Emel; Tekin, Nalan; Osman, Bilgen; Beşirli, Necati

    2015-01-01

    Highlights: • Cr(VI) can oxidize biological molecules and be one of the most harmful substance. • Magnetic seperation techniques are used on different applications in many fields. • Magnetic systems can be used for rapid and selective removal as a magnetic processor. • We investigate properties of both new material and other magnetic adsorbents reported in the literatures on the adsorption of Cr(VI) ions. • No researchments were reported on adsorption of Cr(VI) with magnetic vinylphenyl boronic acid microparticles. - Abstract: Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)–vinylphenyl boronic acid(VPBA)) [m-poly(EG–VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG–VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG–VPBA) microparticles were characterized by N 2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG–VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin–Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG–VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic

  4. Level and Temporal Trend of Perfluoroalkyl Acids in Greenlandic Inuit

    DEFF Research Database (Denmark)

    Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva Cecilie

    bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Study design: Cross-section and temporal time trend survey. Methods: Serum PFAA levels were determined in 284 Inuit from different...... Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 19982005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Results: Serum PFAA levels were...... higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 19982005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs...

  5. Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit

    DEFF Research Database (Denmark)

    Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva Cecilie

    2012-01-01

    bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Study design: Cross-section and temporal time trend survey. Methods: Serum PFAA levels were determined in 284 Inuit from different...... Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 19982005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Results: Serum PFAA levels were...... higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 19982005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs...

  6. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    Science.gov (United States)

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  7. Exploring the Hybridization Thermodynamics of Spherical Nucleic Acids to Tailor Probes for Diagnostic and Therapeutic Applications

    Science.gov (United States)

    Randeria, Pratik Shailesh

    Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open

  8. Isotherm, kinetic and thermodynamics study of humic acid removal process from aquatic environment by chitosan nano particle

    Directory of Open Access Journals (Sweden)

    Maryam Ghafoori

    2016-09-01

    Full Text Available Background and Aim: Humic substances include natural organic polyelectrolyte materials that formed most of the dissolved organic carbon in aquatic environments. Reaction between humic substances and chlorine leading to formation of disinfection byproducts (DBPs those are toxic, carcinogenic and mutagenic. The aim of this study was investigation of isotherms, kinetics and thermodynamics of humic acid removal process by nano chitosan from aquatic environment. Materials and Methods: This practical research was an experimental study that performed in a batch system. The effect of various parameters such as pH, humic acid concentration, contact time, adsorbent dosage, isotherms, thermodynamics and Kinetics of humic acid adsorption process were investigated. Humic acid concentration measured using spectrophotometer at wave length of 254 nm. Results: The results of this research showed that maximum adsorption capacity of nanochitosan that fall out in concentration of 50 mg/l and contact time of 90 minutes was 52.34 mg/g. Also, the maximum adsorption was observed in pH = 4 and adsorbent dosage 0.02 g. Laboratory data show that adsorption of humic acid by nanochitosan follow the Langmuir isotherm model. According to result of thermodynamic study, entropy changes (ΔS was equal to 2.24 J/mol°k, enthalpy changes (ΔH was equal to 870 kJ/mol and Gibbs free energy (ΔG was negative that represent the adsorption process is spontaneous and endothermic. The kinetics of adsorption has a good compliant with pseudo second order model. Conclusion: Regarding to results of this study, nano chitosan can be suggested as a good adsorbent for the removal of humic acids from aqueous solutions.

  9. Study of thermodynamic and acoustic behaviour of nicotinic acid in binary aqueous mixtures of D-lactose

    Science.gov (United States)

    Sharma, Ravi; Thakur, R. C.

    2017-07-01

    In the present study, the thermodynamic properties such as partial molar volumes, partial molar expansibilities, partial molar compressibilities, partial molar heat capacities and isobaric thermal expansion coefficient of different solutions of nicotinic acid in binary aqueous mixtures of D-lactose have been determined at different temperatures (298.15, 303.15, 308.15, 313.15) K. Masson's equation is used to interpret the data in terms of solute-solute and solute-solvent interactions. In the present study it has been found that nicotinic acid behaves as structure maker in aqueous and binary aqueous mixtures of D-lactose.

  10. A study of diurnal variations of PM2.5 acidity and related chemical species using a new thermodynamic equilibrium model

    International Nuclear Information System (INIS)

    Behera, Sailesh N.; Betha, Raghu; Liu, Ping; Balasubramanian, Rajasekhar

    2013-01-01

    Aerosol acidity is one of the most important parameters that can influence atmospheric visibility, climate change and human health. Based on continuous field measurements of inorganic aerosol species and their thermodynamic modeling on a time resolution of 1 h, this study has investigated the acidic properties of PM 2.5 and their relation with the formation of secondary inorganic aerosols (SIA). The study was conducted by taking into account the prevailing ambient temperature (T) and relative humidity (RH) in a tropical urban atmosphere. The in-situ aerosol pH (pH IS ) on a 12 h basis ranged from − 0.20 to 1.46 during daytime with an average value of 0.48 and 0.23 to 1.53 during nighttime with an average value of 0.72. These diurnal variations suggest that the daytime aerosol was more acidic than that caused by the nighttime aerosol. The hourly values of pH IS showed a reverse trend as compared to that of in-situ aerosol acidity ([H + ] Ins ). The pH IS had its maximum values at 3:00 and at 20:00 and its minimum during 11:00 to 12:00. Correlation analyses revealed that the molar concentration ratio of ammonium to sulfate (R N/S ), equivalent concentration ratio of cations to anions (R C/A ), T and RH can be used as independent variables for prediction of pH IS . A multi-linear regression model consisting of R N/S , R C/A, T and RH was developed to estimate aerosol pH IS. - Highlights: • Fine aerosol acidic characteristics were evaluated on an hourly basis. • Diurnal variations of in-situ acidity, water content and pH of aerosols were investigated. • Aerosols were more acidic during daytime than during nighttime. • The molar ratio of ammonium to sulfate and equivalent ratio of cations to anions were good indicators of aerosol acidity. • Meteorology had a significant effect on the hygroscopic nature of aerosol

  11. Determination of the Thermodynamic Properties of Poly [2-(3-phenyl-3-methylcyclobutyl)-2-hydroxyethyl methacrylate-co-methacrylic acid] at Infinite Dilution by Inverse Gas Chromatography

    OpenAIRE

    KAYA, İsmet

    2014-01-01

    Some thermodynamic quantities were obtained for the interactions of poly [2-(3-phenyl -3- methylcyclobutyl)-2-hydroxyethyl methacrylate-co-methacrylic acid] Poly (PCHEMA-co-MA) with alcohols, ketones, acetates, aromatics and n-alkanes by inverse gas chromatography in the temperature range of 150-180oC. The specific retention volumes, Vgo, weight fraction activity coefficients of solute probes at infinite dilution, W1\\infty and Flory-Huggins thermodynamic interaction parameters, c12...

  12. Dielectric dispersion and thermodynamic behavior of stearic acid binary mixtures with alcohol as co-solvent using time domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Maria Sylvester

    2017-08-01

    Full Text Available Dielectric permittivity and relaxation dynamics of binary and ternary mixture of stearic acid on various concentration and their thermodynamic effects are studied. The static dielectric constant (ε0, dielectric permittivity (ε′ and dielectric loss (ε′′ are found by bilinear calibration. The relaxation time (τ, dielectric strength (Δε and the excess permittivity (εE are found. The thermodynamic parameters such as enthalpy (ΔH, entropy (ΔS and Gibb’s free energy (ΔG are evolved. The significant changes in dielectric parameters are due to the intramolecular and intermolecular interactions in response to the applied frequency. The permittivity spectra of stearic acid–alcohol in the frequency range of 10MHz to 30GHz have been measured using picoseconds Time Domain Reflectometry (TDR. The dielectric parameters (ε0, ε′, ε′′ are found by bilinear calibration method. Influence of temperature in intermolecular interaction and the relaxation process are also studied. The FT-IR spectral analysis reveals that the conformation of functional groups and formation for hydrogen bonding are present in both binary and ternary mixtures of stearic acid.

  13. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    International Nuclear Information System (INIS)

    Pyreu, Dmitrii; Gruzdev, Matvey; Kumeev, Roman; Gridchin, Sergei

    2014-01-01

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH 2 , CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH 2 , N − or NH2, N − , COO-coordination modes of GlyGly in the complex ZnNtaGGH −1 . - Abstract: The isothermal calorimetry, pH-potentiometric titration and 1 H and 13 C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn 2+ –Nta 3– –L − (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO 3 ). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed

  14. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State UniversityErmak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvey; Kumeev, Roman [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Gridchin, Sergei [Ivanovo State University of Chemistry and Technology, Ivanovo (Russian Federation)

    2014-10-20

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH{sub 2}, CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH{sub 2}, N{sup −} or NH2, N{sup −}, COO-coordination modes of GlyGly in the complex ZnNtaGGH{sub −1}. - Abstract: The isothermal calorimetry, pH-potentiometric titration and {sup 1}H and {sup 13}C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn{sup 2+}–Nta{sup 3–}–L{sup −} (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed.

  15. Determination of thermodynamic parameters for enolization reaction of malonic and metylmalonic acids by using quartz crystal microbalance

    Directory of Open Access Journals (Sweden)

    Minoru Yoshimoto

    2016-06-01

    Full Text Available We investigated the process of a bromination reaction of malonic acid and methylmalonic acid in the Belousov-Zhabotinsky reaction by using a quartz crystal microbalance (QCM. The process involves an enolization reaction as a rate-determining step. We found that, in the step, the variation of Br2 concentration induced an exactly quantitative shift of a resonant frequency of the QCM, based on the change of the surface mass on the QCM and the solution viscosity and density. This new finding enabled us to estimate the reaction rate constants and the thermodynamic parameters of the enolization reaction due to a QCM measurement. The values measured by the QCM were in good agreement with those measured by a UV-spectrophotometer. As a result, we succeeded to develop a new measurement method of a nonlinear chemical reaction.

  16. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis

    Science.gov (United States)

    Wang, Chunyan; Bae, Jin H.; Zhang, David Yu

    2016-01-01

    DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C. PMID:26782977

  17. Thermodynamic Study of the Interaction of Bovine Serum Albumin and Amino Acids with Cellulose Nanocrystals

    OpenAIRE

    Lombardo, Salvatore; Eyley, Sam; Schütz, Christina; Van Gorp, Hans; Rosenfeldt, Sabine; Van den Mooter, Guy; Thielemans, Wim

    2017-01-01

    The interaction of bovine serum albumin (BSA) with sulfated, carboxylated, and pyridinium-grafted cellulose nanocrystals (CNCs) was studied as a function of the degree of substitution by determining the adsorption isotherm and by directly measuring the thermodynamics of interaction. The adsorption of BSA onto positively charged pyridinium-grafted cellulose nanocrystals followed Langmuirian adsorption with the maximum amount of adsorbed protein increasing linearly with increasing degree of sub...

  18. Effect of backbone chemistry on hybridization thermodynamics of oligonucleic acids: a coarse-grained molecular dynamics simulation study.

    Science.gov (United States)

    Ghobadi, Ahmadreza F; Jayaraman, Arthi

    2016-02-28

    In this paper we study how varying oligonucleic acid backbone chemistry affects the hybridization/melting thermodynamics of oligonucleic acids. We first describe the coarse-grained (CG) model with tunable parameters that we developed to enable the study of both naturally occurring oligonucleic acids, such as DNA, and their chemically-modified analogues, such as peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). The DNA melting curves obtained using such a CG model and molecular dynamics simulations in an implicit solvent and with explicit ions match with the melting curves obtained using the empirical nearest-neighbor models. We use these CG simulations to then elucidate the effect of backbone flexibility, charge, and nucleobase spacing along the backbone on the melting curves, potential energy and conformational entropy change upon hybridization and base-pair hydrogen bond residence time. We find that increasing backbone flexibility decreases duplex thermal stability and melting temperature mainly due to increased conformational entropy loss upon hybridization. Removing charges from the backbone enhances duplex thermal stability due to the elimination of electrostatic repulsion and as a result a larger energetic gain upon hybridization. Lastly, increasing nucleobase spacing decreases duplex thermal stability due to decreasing stacking interactions that are important for duplex stability.

  19. Folic acid supplements to prevent neural tube defects: trends in East of Ireland 1996-2002.

    LENUS (Irish Health Repository)

    Ward, M

    2004-10-01

    Promotion of folic acid to prevent neural Tube Defects (NTD) has been ongoing for ten years in Ireland, without a concomitant reduction in the total birth prevalence of NTD. The effectiveness of folic acid promotion as the sole means of primary prevention of NTD is therefore questionable. We examined trends in folic acid knowledge and peri-conceptional use from 1996-2002 with the aim of assessing the value of this approach. From 1996-2002, 300 women attending ante-natal clinics in Dublin hospitals annually were surveyed regarding their knowledge and use of folic acid. During the period the proportion who had heard of folic acid rose from 54% to 94% between 1996 and 2002 (c2 test for trend: p<0.001). Knowledge that folic acid can prevent NTD also rose from 21% to 66% (c2 test for trend: p<0.001). Although the proportion who took folic acid during pregnancy increased from 14% to 83% from 1996 to 2002 (c2 test for trend: p<0.001), peri-conceptional intake did not rise above 24% in any year. There is a high awareness of folic acid and its relation to NTD, which is not matched by peri-conceptional uptake. The main barrier to peri-conceptional uptake is the lack of pregnancy planning. To date promotional campaigns appear to have been ineffective in reducing the prevalence of NTD in Ireland. Consequently, fortification of staple foodstuffs is the only practical and reliable means of primary prevention of NTD.

  20. Contemporary Trends in Research and Development of Lead-Acid Batteries

    Czech Academy of Sciences Publication Activity Database

    Micka, Karel

    2004-01-01

    Roč. 8, - (2004), s. 932-933 ISSN 1432-8488 R&D Projects: GA ČR GA102/02/0794 Institutional research plan: CEZ:AV0Z4040901 Keywords : lead-acid batteries * electrical system * trends Subject RIV: CG - Electrochemistry Impact factor: 0.984, year: 2004

  1. Trends and predictors of folic acid awareness and periconceptional use in pregnant women

    NARCIS (Netherlands)

    de Jong-van den Berg, LTW; Hernandez-Diaz, S; Werler, MM; Louik, C; Mitchell, AA

    Objective: The purpose of this study was to describe recent trends in folic acid awareness and use in the periconceptional period among pregnant women in relation to maternal sociodemographic and other relevant factors. Study design: From 1988 to 2002, 16,555 women from the Slone Epidemiology Center

  2. Thermodynamic versus non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems.

    Science.gov (United States)

    Wellen Rudd, Bethany A; Vidalis, Andrew S; Allen, Heather C

    2018-04-16

    Of the major cations in seawater (Na+, Mg2+, Ca2+, K+), Ca2+ is found to be the most enriched in fine sea spray aerosols (SSA). In this work, we investigate the binding of Ca2+ to the carboxylic acid headgroup of palmitic acid (PA), a marine-abundant fatty acid, and the impact such binding has on the stability of PA monolayers in both equilibrium and non-equilibrium systems. A range of Ca2+ conditions from 10 μM to 300 mM was utilized to represent the relative concentration of Ca2+ in high and low relative humidity aerosol environments. The CO2- stretching modes of PA detected by surface-sensitive infrared reflection-absorption spectroscopy (IRRAS) reveal ionic binding motifs of the Ca2+ ion to the carboxylate group with varying degrees of hydration. Surface tensiometry was used to determine the thermodynamic equilibrium spreading pressure (ESP) of PA on the various aqueous CaCl2 subphases. Up to concentrations of 1 mM Ca2+, each system reached equilibrium, and Ca2+:PA surface complexation gave rise to a lower energy state revealed by elevated surface pressures relative to water. We show that PA films are not thermodynamically stable at marine aerosol-relevant Ca2+ concentrations ([Ca2+] ≥ 10 mM). IRRAS and vibrational sum frequency generation (VSFG) spectroscopy were used to investigate the surface presence of PA on high concentration Ca2+ aqueous subphases. Non-equilibrium relaxation (NER) experiments were also conducted and monitored by Brewster angle microscopy (BAM) to determine the effect of the Ca2+ ions on PA stability. At high surface pressures, the relaxation mechanisms of PA varied among the systems and were dependent on Ca2+ concentration.

  3. Thermodynamic study on salt effects on complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid

    International Nuclear Information System (INIS)

    Chibunova, E.S.; Kumeev, R.S.; Terekhova, I.V.

    2015-01-01

    Highlights: • Thermodynamic study on salt effects in CD/pABA complex formation was performed. • Effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant and nonspecific. • Specific influence of KBr is caused by the ability of Br − to penetrate into CD cavity. • Coexistence of two complexation equilibria is accompanied by solvent reorganization. - Abstract: The aim of this work was to gain a deeper understanding of salt effects in the inclusion complex formation of cyclodextrins. For this purpose, thermodynamic study of complex formation of α-, β- and γ-cyclodextrins with p-aminobenzoic acid was carried out in water and solutions of KCl, KBr, KH 2 PO 4 and K 2 SO 4 (0.2 mol/kg). Stability constants were calculated from the binding isotherms obtained on the basis of 1 H NMR measurements. Enthalpy and entropy of complex formation were estimated from the van’t Hoff plots. It was found that effects of KCl, KH 2 PO 4 and K 2 SO 4 are insignificant, while the influence of KBr on complex formation of cyclodextrins with p-aminobenzoic acid is more pronounced and results in a decrease of the stability constants. Specific action of Br − is caused by the ability of these anions to penetrate into macrocyclic cavity. Coexistence of two complexation equilibria in KBr solution is accompanied by significant solvent reorganization originated from more intensive dehydration of the interacting species. This results in an increase of the enthalpy and entropy of complex formation. Manifestation of Br − effect was found to be the same in the binding of p-aminobenzoic acid with α-, β- and γ-cyclodextrins.

  4. Pyrene-modified unlocked nucleic acids: synthesis, thermodynamic studies, and fluorescent properties

    DEFF Research Database (Denmark)

    Karlsen, Kasper K; Pasternak, Anna; Jensen, Troels B

    2012-01-01

    -UNA modifications were studied. It was found that incorporation of pyrene-UNA monomers increased duplex stability relative to UNA monomers, and thermodynamic studies revealed significant mismatch discriminative capabilities of the pyrene-UNA modified oligonucleotides. Furthermore, the steady-state fluorescence...... emission intensities of pyrene-UNA modified oligonucleotides were increased upon hybridization to DNA, which to the best of our knowledge is unprecedented for an acyclic pyrene modification in DNA. Interestingly, pyrene excimer emission was observed for single-stranded oligonucleotides containing three...

  5. Evidence for acid-precipitation-induced trends in stream chemistry at hydrologic bench-mark stations

    Science.gov (United States)

    Smith, Richard A.; Alexander, Richard B.

    1983-01-01

    Ten- to 15-year water-quality records from a network of headwater sampling stations show small declines in stream sulfate concentrations at stations in the northeastern quarter of the Nation and small increases in sulfate at most southeastern and western sites. The regional pattern of stream sulfate trends is similar to that reported for trends in S02 emissions to the atmosphere during the same period. Trends in the ratio of alkalinity to total major cation concentrations at the stations follow an inverse pattern of small increases in the Northeast and small, but widespread decreases elsewhere. The undeveloped nature of the sampled basins and the magnitude and direction of observed changes in relation to SO2 emissions support the hypothesis that the observed patterns in water quality trends reflect regional changes in the rates of acid deposition.

  6. Thermodynamic functions for solubility of 3-nitro-o-toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions

    International Nuclear Information System (INIS)

    Li, Xinbao; Wang, Mingju; Du, Cunbin; Cong, Yang; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubilities of 3-nitro-o-toluic acid in nine organic solvents were determined. • The solubilities were correlated by using four thermodynamic models. • The mixing properties of solution were computed based on Wilson model. - Abstract: Separation of 3-nitro-o-toluic acid from its isomeric mixtures has essential significance in industry. In this work, by using isothermal saturation method, the solid-liquid equilibrium for 3-nitro-o-toluic acid in nine organic solvents (acetonitrile, methanol, ethanol, n-propanol, isopropanol, ethyl acetate, acetone, 1,4-dioxane and 2-butanone) were obtained experimentally within a temperature range from (283.15 to 318.15) K under atmosphere pressure of 101.2 kPa, and the solubility values of 3-nitro-o-toluic acid in these solvents were determined by a high-performance liquid chromatography. Within the studied temperature range, the mole fraction solubility of 3-nitro-o-toluic acid in selected organic solvents increased with increasing temperature. Except for ethyl acetate, the descending order of the mole fraction solubility values were as follow: 1,4-dioxane > acetone > 2-butanone > methanol > ethanol > isopropanol > n-propanol > acetonitrile. The solubility values determined for 3-nitro-o-toluic acid in the selected solvents were correlated and back calculated with the modified Apelblat equation, λh equation, Wilson model and NRTL model. The largest values of RAD and RMSD obtained with the four models were 0.67% and 4.02 × 10 −4 , respectively. In general, the four thermodynamic models were all acceptable for describing the solubility behaviour of 3-nitro-o-toluic acid in these solvents. In addition, the apparent mixing Gibbs energy, mixing enthalpy, mixing entropy, activity coefficient at infinitesimal concentration and reduced excess enthalpy were calculated. The acquired solubility data and thermodynamic studies would be very important in optimizing the separation process of 3-nitro-o-toluic acid from

  7. Thermodynamic studies of hydriodic acid in ethylene glycol-water mixtures from electromotive force measurements

    International Nuclear Information System (INIS)

    Elsemongy, M.M.; Abdel-Khalek, A.A.

    1983-01-01

    The standard potentials of the Ag-AgI electrode in twenty ethylene glycol-water mixtures covering the whole range of solvent composition have been determined from the e.m.f. measurements of the cell Pt|H 2 (g, 1atm)| HOAc(m 1 ), NaOAc(m 2 ), KI(m 3 ), solvent|AgI|Ag at nine different temperatures ranging from 15 to 55 0 C. The temperature variation of the standard e.m.f. has been utilized to compute the standard thermodynamic functions for the cell reaction, the primary medium effects of various solvents upon HI, and the standard thermodynamic quantities for the transfer of HI, from the standard state in water to the standard states in the respective solvent media. The chemical effects of solvents on the transfer process have been obtained by subtracting the electrostatic contributions from the total transfer quantities. The results have been discussed in the light of ion-solvent interactions as well as the structural changes of the solvents. (Author)

  8. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis

    International Nuclear Information System (INIS)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping

    2016-01-01

    Highlights: • HA would significantly affect the migration and transformation of SMZ. • Kinetics and thermodynamics of HA–SMZ interactions were studied using SPR and ITC. • The interaction is enhanced by increasing ionic strength and decreasing temperature. • Hydrogen bond and electrostatic interaction play important roles in the process. - Abstract: The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  9. Thermodynamic limits on the size and size distribution of nucleic acids synthesized in vitro: the role of pyrophosphate hydrolysis.

    Science.gov (United States)

    Peller, L

    1977-02-08

    The free-energy change of phosphodiester bond formation from nucleoside triphosphates is more favorable than with nucleoside diphosphates as substrates. Base-stacking interactions can make significant contributions to both delta G degrees ' values. Pyrophosphate hydrolysis when it accompanies the former reaction dominates all thermodynamic considerations. Three experimental situations are discussed in which high-molecular-weight polynucleotides are synthesized without a strong driving force for covalent bond formation. For one of these, a kinetic scheme is presented which encompasses an early narrow Poisson distribution of chain lengths with ultimate passage to a disperse equilibrium population of chain sizes. Hydrolytic removal of pyrophosphate expands the time scale for this undesirable process by a factor of 10(9), while it enormously elevates the thermodynamic ceiling for the average degrees of polymerization in the other two examples. The electron micrographically revealed broad size population from an early study of partial replication of a T7 DNA template is found to adhere (fortuitously) to a disperse most probable representation. Some possible origins are examined for the branched structures in this product, as well as in a later investigation of replication of this nucleic acid. The achievement of both very high molecular weights and sharply peaked size distributions in polynucleotides synthesized in vitro will require coupling to inorganic pyrophosphatase action as in vivo.

  10. Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids: Surface plasmon resonance and isothermal titration microcalorimetry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Juan; Yu, Han-Qing; Sheng, Guo-Ping, E-mail: gpsheng@ustc.edu.cn

    2016-01-25

    Highlights: • HA would significantly affect the migration and transformation of SMZ. • Kinetics and thermodynamics of HA–SMZ interactions were studied using SPR and ITC. • The interaction is enhanced by increasing ionic strength and decreasing temperature. • Hydrogen bond and electrostatic interaction play important roles in the process. - Abstract: The presence of sulfonamide antibiotics in the environments has been recognized as a crucial issue. Their migration and transformation in the environment is determined by natural organic matters that widely exist in natural water and soil. In this study, the kinetics and thermodynamics of interactions between humic acids (HA) and sulfamethazine (SMZ) were investigated by employing surface plasmon resonance (SPR) combined with isothermal titration microcalorimetry (ITC) technologies. Results show that SMZ could be effectively bound with HA. The binding strength could be enhanced by increasing ionic strength and decreasing temperature. High pH was not favorable for the interaction. Hydrogen bond and electrostatic interaction may play important roles in driving the binding process, with auxiliary contribution from hydrophobic interaction. The results implied that HA existed in the environment may have a significant influence on the migration and transformation of organic pollutants through the binding process.

  11. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China

    Science.gov (United States)

    Ren, Lihong; Wang, Wei; Wang, Qingyue; Yang, XiaoYang; Tang, Dagang

    2011-12-01

    The acidity of about 2000 particulate matter samples from aircraft and ground-based monitoring is analyzed by the method similar to soil acidity determination. The ground-based samples were collected at about 50 urban or background sites in northern and southern China. Moreover, the acidic buffering capacity of those samples is also analyzed by the method of micro acid-base titration. Results indicate that the acidity level is lower in most northern areas than those in the south, and the acidic buffering capacity showed inverse tendency, correspondingly. This is the most important reason why the pollution of acidic-precipitation is much more serious in Southern China than that in Northern China. The acidity increases and the acidic buffering capacity drops with the decreasing of the particle sizes, indicating that fine particle is the main influencing factor of the acidification. The ionic results show that Ca salt is the main alkaline substance in particulate matter, whereas the acidification of particulate matter is due to the SO 2 and NO x emitted from the fossil fuel burning. And among of them, coal burning is the main contributor of SO 2, however the contribution of NO x that emitted from fuel burning of motor vehicles has increased in recent years. By comparison of the experimental results during the past 20 years, it can be concluded that the acid precipitation of particulate matter has not been well controlled, and it even shows an increasing tendency in China lately. The acid precipitation of particulate matter has begun to frequently attack in part of the northern areas. Multiple regression analysis indicates that coefficient value of the ions is the lowest at the urban sites and the highest at the regional sites, whereas the aircraft measurement results are intermediate between those two kinds of sites.

  12. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    Science.gov (United States)

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals

    Science.gov (United States)

    Hemingway, Bruch S.; Seal, Robert R.; Chou, I-Ming

    2002-01-01

    Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.

  14. Swelling and thermodynamic studies of temperature responsive 2-hydroxyethyl methacrylate/itaconic acid copolymeric hydrogels prepared via gamma radiation

    International Nuclear Information System (INIS)

    Tomic, Simonida L.J.; Micic, Maja M.; Filipovic, Jovanka M.; Suljovrujic, Edin H.

    2007-01-01

    The copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were synthesized by gamma radiation induced radical polymerization. Swelling and thermodynamic properties of PHEMA and copolymeric P(HEMA/IA) hydrogels with different IA contents (2, 3.5 and 5 mol%) were studied in a wide pH and temperature range. Initial studies of so-prepared hydrogels show interesting pH and temperature sensitivity in swelling and drug release behavior. Special attention was devoted to temperature investigations around physiological temperature (37 deg. C), where small changes in temperature significantly influence swelling and drug release of these hydrogels. Due to maximum swelling of hydrogels around 40 deg. C, the P(HEMA/IA) hydrogel containing 5 mol% of IA without and with drug-antibiotic (gentamicin) were investigated at pH 7.40 and in the temperature range 25-42 deg. C, in order to evaluate their potential for medical applications

  15. Temporal trends (1999–2010) of perfluoroalkyl acids in commonly consumed food items

    International Nuclear Information System (INIS)

    Johansson, Jana H.; Berger, Urs; Vestergren, Robin; Cousins, Ian T.; Bignert, Anders; Glynn, Anders; Darnerud, Per Ola

    2014-01-01

    The aim of this study was to determine how dietary exposure to PFAAs has changed over the period when major production changes occurred. Archived samples (1999–2010) of eggs, milk and farmed rainbow trout were analyzed by ultra performance liquid chromatography coupled to tandem mass spectrometry. Statistically significant decreasing trends were observed for concentrations of perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) in fish (p < 0.002 and p < 0.032, respectively) and eggs (p < 0.001 for both compounds). Concentrations of PFOS in fish and eggs decreased by a factor of 10 and 40, respectively. In eggs there was also a statistically significant decreasing trend in concentrations of perfluorooctanoic acid (PFOA). The results of this study demonstrate that PFAA concentrations in food items from agricultural food chains and aquatic food chains close to sources respond rapidly to changes in environmental emissions. Implications for the overall understanding of human exposure are discussed. - Highlights: • Food items sampled yearly (1999–2010) were analyzed for perfluoroalkyl acids. • Significantly declining trends were observed for PFOS and PFHxS in farmed fish and eggs. • In eggs, an additional significant decreasing trend was found for PFOA. • A decrease in human dietary exposure to PFHxS, PFOS and PFOA is suggested. - Concentrations of PFOS in farmed fish and in hen's eggs decreased between 1999 and 2010. Furthermore, we observed decreasing trends of PFOA in eggs and PFHxS in fish

  16. Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: kinetic and thermodynamics studies

    Directory of Open Access Journals (Sweden)

    Shorouq I. Alghanmi

    2015-09-01

    Full Text Available Urban soils polluted with heavy metals are of increasing concern because it is greatly affecting human health and the ecological systems. Hence, it is mandatory to understand the reasons behind this pollution and remediate the contaminated solid. The removal of heavy metals from contaminated soil samples collected from the vicinity of the sewage lake in Jeddah, Saudi Arabia, was explored. The leaching process was studied kinetically and thermodynamically for better understanding of the remediation process. The results showed that the soil samples were slightly basic in nature, and tend to be more neutral away from the main contaminated sewage lake area. The total metal content in the soil samples was measured using the aqua regia extractions by ICP-OES and the results showed that many of the heavy metals present have significant concentrations above the tolerable limits. In general, the metal concentrations at different sites indicated that the heavy metal pollution is mainly due to the sewage discharge to the lake. The results showed excellent correlation between the concentrations of Co, As, and Hg with the distance from the main contaminated area. The leaching of Co, As, and Hg using 1.0 M hydrochloric acid from the soil was studied kinetically at different temperatures and the experimental results were fitted using different kinetics models. The experimental data were best described with two-constant rate and Elovich equation kinetic models. Also, the thermodynamic study showed that the leaching process was spontaneous, endothermic and accompanied with increase in the entropy. In general, the polluted soil could be remediated successfully from the heavy metals using the acid leaching procedure in a short period of time.

  17. Adsorption of Malachite Green Dye by Acid Activated Carbon - Kinetic, Thermodynamic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    P. K. Baskaran

    2011-01-01

    Full Text Available The ability of zea mays dust carbon to remove malachite green from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature, pH and shaking time. Thermodynamic parameters such as ΔH°,ΔS° and ΔG°, were calculated from the slope and intercept of the linear plots. Analysis of adsorption results obtained at 303, 313, 323 and 333 K showed that the adsorption pattern on zea mays dust carbon seems to follow the Langmuir and Freundlich. The numerical values of sorption free energy indicate physical adsorption. The kinetic data indicated an intra-particle diffusion process with sorption being first order. The concentration of malachite green oxalate was measured before and after adsorption by using UV-visible spectrophotometer.

  18. Experimental investigation of thermodynamic properties of binary mixture of acetic acid + n-butanol and acetic acid + water at temperature from 293.15 K to 343.15 K

    Science.gov (United States)

    Paul, M. Danish John; Shruthi, N.; Anantharaj, R.

    2018-04-01

    The derived thermodynamic properties like excess molar volume, partial molar volume, excess partial molar volume and apparent volume of binary mixture of acetic acid + n-butanolandacetic acid + water has been investigated using measured density of mixtures at temperatures from 293.15 K to 343.15.

  19. Thermodynamic study on the adsorption of strontium on polyantimonic acid exchanger

    International Nuclear Information System (INIS)

    Li Mingyu; Chen Jing; Wang Jianchen; Zhao Jing

    2007-01-01

    The adsorption of strontium on the polyantimonic acid adsorbent was studied. The equilibrium data for the adsorption of strontium on polyantimonic acid exchanger from aqueous solutions were obtained and correlated with Langmuir-type and Freundlich-type isotherm equation within the temperature range of 293-323 K and the experimental concentration range. Freundlich adsorption isotherms and the isosteric enthalpy indicate that the adsorption of strontium on polyantimonic acid is an endothermic process from aqueous solutions. The enthalpy, free energy, and entropy of adsorption were calculated. The results indicate that the adsorption process is a complex interaction of physical and chemical processes. The adsorption behaviors were reasonably explained. (authors)

  20. Steric structure and thermodynamic aspects of Dy3+ complexes with aminobenzoic acids in aqueous solutions

    International Nuclear Information System (INIS)

    Kondrashina, Yu.G.; Mustafina, A.R.; Vul'fson, S.G.

    1994-01-01

    Stability and structure of dysprosium(3) aminobenzoate complexes with molar ratios Dy:L 1:1 and 1:2 (HL-aminobenzoic acid) in aqueous solutions are determined on the basis of pH-metric and paramagnetic birefringence data. The increase of conjugation effect in the series of benzoic, meta- ortho-, and para-aminobenzoic acid results in the increase of stability of 1:1 and 1:2 complexes. Features of the structure and coordination of ligands in dysprosium complexes with meta-, ortho-, and para-aminobenzoic acid are considered. 11 refs.; 4 figs.; 2 tabs

  1. Acid-base equilibrium. A thermodynamic study of formation and stability of the Bi-2223 phase

    International Nuclear Information System (INIS)

    Xi, Z.; Zhou, L.

    1993-01-01

    A general acid-base equilibrium theory was proposed to explain the formation and stability of the Bi-2223 phase based on the Lewis acid base theory and principle of metallurgical physical chemistry. The acid-base nature of oxide was defined according to the electrostatic force between cation and oxygen anion. A series of experimental facts were systematically explained based on the theory: substitution of Bi for Ca in the Pb-free 2223 phase, and the effect of substitution of the high-valent cation for Bi 3+ ; oxygen-pressure atmosphere, and the heat-schocking technique on the formation and stability of the 2223 phase. 14 refs., 2 tabs

  2. Thermodynamics and kinetics of thermal decomposition of dibutylalkyl and dipentylalkyl phosphonate-nitric acid systems

    International Nuclear Information System (INIS)

    Chandran, K.; Brahmananda, C.V.S.; Anthonysamy, S.; Srinivasan, T.G.; Ganesan, V.

    2013-01-01

    Tributyl phosphate (TBP) is used in the reprocessing industry for the separation of uranium and plutonium from the spent nuclear fuels by PUREX process. A variety of dialkylalky/phosphonates were synthesised and their extraction behaviour on actinides was studied in this laboratory. The superior extraction characteristics of phosphonates make them useful for several metal recovery applications in the nuclear fuel cycle. However, higher solubility of phosphonates in aqueous phase as compared to TBP, introduces higher chances of the formation of thermally active 'red oil' like substances during the evaporation of aqueous streams. Thermal stability of neat and nitric acid solvated homologues of four dibutylalkyl phosphonates namely, dibutylpropyl phosphonate (DBPrP), dibutylbutyl phosphonate (DBBP), dibutylpentyl phosphonate (DBPP), dibutylhexyl phosphonate (DBHeP), and two dipentylalkyl phosphonates viz. dipentylbutyl phosphonate (DPBP), dipentylhexyl phosphonate (DPHeP) were studied. Experiments were conducted using an adiabatic calorimeter in heat-wait-search mode. Various stoichiometry of nitric acid-solvated DBalP and DPalP were prepared by equilibrating the respective organic with 4-15.6 M nitric acid followed by separation. Neat DBalP and DPalP are stable up to the temperature of ∼ 555 K while their acid-solvates decomposed in the temperature range 380-403 K. The results also indicated that the presence of nitric acid accelerated the decomposition of phosphonates. Decomposition of these acid solvated phosphonates is found to be exothermic and follows first order kinetics. The onset temperature, adiabatic temperature rise, pressure rise, decomposition enthalpy and activation energy were found to strongly depend on the nitric acid content of the acid-solvates. The studies also indicate that dibutylalkyl and dipentylalkyl phosphonates are also prone to form 'red oil' like substances under extreme conditions and can lead to run-away reactions

  3. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  4. Thermodynamics of the interactions of some amino acids and peptides with dodecyltrimethylammonium bromide and tetradecyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Talele, Paurnima; Kishore, Nand

    2014-01-01

    Highlights: • Interactions of amino acids and peptides were studied with two cationic surfactants. • Partial molar properties and hydration numbers did not change significantly. • Measured properties indicate balance of polar and non-polar interactions. • Peptide bonds did not strengthen the extent of polar interactions with surfactant. • Results provide quantitative fine details of cationic surfactant–amino acids/peptides interactions. -- Abstract: The values of apparent molar volume V 2,ϕ and apparent molar adiabatic compressibility K S,2,ϕ of amino acids glycine, L-alanine, DL-α-amino-n-butyric acid, L-valine, L-leucine and peptides glycyl-glycine, glycyl-glycyl-glycine and glycyl-leucine have been determined in aqueous solutions of cationic surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) by means of density and sound velocity measurements. The heat evolved or absorbed (q) during the course of interactions of amino acids and peptides with the aqueous solutions of surfactants were determined by isothermal titration calorimetry at T = 298.15 K. The values of standard partial molar volume V 2,m 0 and standard partial molar adiabatic compressibility K s,2,m 0 at infinite dilution were calculated from the values of V 2,ϕ and K S,2,ϕ . Similarly the values of limiting enthalpies of dilution (Δ dil H 0 ) of the amino acids/peptides were calculated from heat evolved or absorbed during calorimetric experiments. The standard partial molar quantities of transfer from water to aqueous surfactant solutions have been used to identify the interactions of amino acids and peptides with surfactants in terms of ionic–ionic, ionic–hydrophobic and hydrophobic–hydrophobic group interactions

  5. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    Science.gov (United States)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. submitter Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber

    CERN Document Server

    Ahlm, L; Schobesberger, S; Praplan, A P; Kim, J; Tikkanen, O -P; Lawler, M J; Smith, J N; Tröstl, J; Acosta Navarro, J C; Baltensperger, U; Bianchi, F; Donahue, N M; Duplissy, J; Franchin, A; Jokinen, T; Keskinen, H; Kirkby, J; Kürten, A; Laaksonen, A; Lehtipalo, K; Petäjä, T; Riccobono, F; Rissanen, M P; Rondo, L; Schallhart, S; Simon, M; Winkler, P M; Worsnop, D R; Virtanen, A; Riipinen, I

    2016-01-01

    Dimethylamine (DMA) has a stabilizing effect on sulfuric acid (SA) clusters, and the SA and DMA molecules and clusters likely play important roles in both aerosol particle formation and growth in the atmosphere. We use the monodisperse particle growth model for acid-base chemistry in nanoparticle growth (MABNAG) together with direct and indirect observations from the CLOUD4 and CLOUD7 experiments in the cosmics leaving outdoor droplets (CLOUD) chamber at CERN to investigate the size and composition evolution of freshly formed particles consisting of SA, DMA, and water as they grow to 20 nm in dry diameter. Hygroscopic growth factors are measured using a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA), which combined with simulations of particle water uptake using the thermodynamic extended-aerosol inorganics model (E-AIM) constrain the chemical composition. MABNAG predicts a particle-phase ratio between DMA and SA molecules of 1.1–1.3 for a 2 nm particle and DMA gas-phase mixing ratio...

  7. Thermodynamic and spectroscopic study of Al3+ interaction with glycine, l-cysteine and tranexamic acid in aqueous solution.

    Science.gov (United States)

    Cardiano, Paola; Giacobello, Fausta; Giuffrè, Ottavia; Sammartano, Silvio

    2017-11-01

    In this paper a thermodynamic and spectroscopic study on the interaction between Al 3+ and glycine (Gly), l-cysteine (Cys), tranexamic acid (Tranex) is reported. Speciation models have been obtained by processing potentiometric titration data to determine stability constants of the species formed in aqueous solution at T=298.15K, 0.15≤I/molL -1 ≤1 in NaCl. Thermodynamic formation parameters have been obtained from calorimetric titration data, at T=298.15K, I=0.15molL -1 using NaCl as ionic medium. Al 3+ -Cys system was also investigated by spectrophotometric and 1 H NMR measurements. 1 H NMR experiments were performed on Al 3+ -Tranex system as well. Different speciation models have been observed for the three systems. The results showed the formation of MLH, ML and M 2 L 2 (OH) 2 species for Gly, ML, M 2 L and MLOH for Cys, MLH and MLOH for Tranex. The formed species are quite stable, i.e. for ML, logβ=7.18, 11.91 for Gly and Cys, respectively, at I=0.15molL -1 and T=298.15K. For all the systems the dependence of formation constants on ionic strength over the range 0.1-1molL -1 is reported. The sequestering ability of the ligands under study was also evaluated by pL 0.5 empiric parameter. For Gly, Cys and Tranex, pL 0.5 =2.51, 3.74, 3.91 respectively, at pH=5, I=0.15molL -1 and T=298.15K. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Kinetics and thermodynamics of β-carotene and chlorophyll adsorption onto acid-activated bentonite from Xinjiang in xylene solution

    International Nuclear Information System (INIS)

    Wu Zhansheng; Li Chun

    2009-01-01

    The kinetics and thermodynamics of β-carotene and chlorophyll adsorption from xylene solution onto acid-activated bentonite (AAB) within the temperature range 65-95 deg. C were investigated. Adsorption of β-carotene was described well with the Langmuir isotherm, whereas chlorophyll adsorption was determined well with the Freundlich isotherm, and the experimental data on chlorophyll adsorption were also fitted by the Langmuir isotherm to a certain extent, as reflected by correlation coefficients (R 2 ) over 0.9865. In addition, the adsorption of β-carotene and chlorophyll onto AAB are favorable. The pseudo-second-order model was found to explain the kinetics of adsorption of both pigments more effectively. Increase of temperature enhanced the adsorption rate and equilibrium adsorption capacity of β-carotene and chlorophyll on AAB. The activation energy for the sorption of β-carotene and chlorophyll on AAB was 19.808 kJ/mol and 16.475 kJ/mol, respectively. The thermodynamic parameters ΔH θ , ΔS θ and ΔG θ , computed from K F of the adsorption isotherm constant, were 21.766 kJ/mol, 92.244 J/K mol and -9.554 kJ/mol respectively for the adsorption of β-carotene on AAB at 65 deg. C, and for adsorption of chlorophyll on AAB at 65 deg. C were 31.051 kJ/mol, 93.549 J/K mol and -0.729 kJ/mol, respectively. The adsorption of β-carotene and chlorophyll in xylene solution on AAB was a spontaneous and endothermic process with increasing in the randomness at the solid-solution interface.

  9. Equilibrium thermodynamics of the ternary membrane-forming system nylon, formic acid and water

    NARCIS (Netherlands)

    Bulte, A.M.W.; Bulte, A.M.W.; Naafs, E.M.; van Eeten, F.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.; Strathmann, H.

    1996-01-01

    The binary Flory-Huggins interaction parameters for the ternary membrane-forming system nylon, formic acid and water have been obtained from literature data, swelling values and melting point depression. Nylon 4,6 nylon 6 and a copolymer of nylon 4,6 and 6 were examined. The isothermal

  10. Thermodynamic parameters for binding of fatty acids to human serum albumin

    DEFF Research Database (Denmark)

    Pedersen, A O; Honoré, B; Brodersen, R

    1990-01-01

    Binding of laurate and myristate anions to human serum albumin has been studied over a range of temperatures, 5-37 degrees C, at pH 7.4. The binding curves indicate that the strength of binding of the first few molecules of fatty acid to albumin (r less than 5) decreases with increasing temperatu...

  11. Thermodynamic properties of acid gases in mixture with natural gas and water

    NARCIS (Netherlands)

    Tang, X.

    2011-01-01

    The reliable removal of acid gas components, such as carbon dioxide (CO2) and hydrogen sulfide (H2S) from natural gas is an important technical challenge. Crude oil and hydrocarbon gas streams may contain high levels of CO2 and/or H2S as contaminants. It is desirable to prevent any contaminant to

  12. Evolution of proteomes: fundamental signatures and global trends in amino acid compositions

    Directory of Open Access Journals (Sweden)

    Yeramian Edouard

    2006-12-01

    Full Text Available Abstract Background The evolutionary characterization of species and lifestyles at global levels is nowadays a subject of considerable interest, particularly with the availability of many complete genomes. Are there specific properties associated with lifestyles and phylogenies? What are the underlying evolutionary trends? One of the simplest analyses to address such questions concerns characterization of proteomes at the amino acids composition level. Results In this work, amino acid compositions of a large set of 208 proteomes, with significant number of representatives from the three phylogenetic domains and different lifestyles are analyzed, resorting to an appropriate multidimensional method: Correspondence analysis. The analysis reveals striking discrimination between eukaryotes, prokaryotic mesophiles and hyperthemophiles-themophiles, following amino acid usage. In sharp contrast, no similar discrimination is observed for psychrophiles. The observed distributional properties are compared with various inferred chronologies for the recruitment of amino acids into the genetic code. Such comparisons reveal correlations between the observed segregations of species following amino acid usage, and the separation of amino acids following early or late recruitment. Conclusion A simple description of proteomes according to amino acid compositions reveals striking signatures, with sharp segregations or on the contrary non-discriminations following phylogenies and lifestyles. The distribution of species, following amino acid usage, exhibits a discrimination between [high GC]-[high optimal growth temperatures] and [low GC]-[moderate temperatures] characteristics. This discrimination appears to coincide closely with the separation of amino acids following their inferred early or late recruitment into the genetic code. Taken together the various results provide a consistent picture for the evolution of proteomes, in terms of amino acid usage.

  13. Trends in Pinus ponderosa foliar pigment concentration due to chronic exposure of ozone and acid rain

    International Nuclear Information System (INIS)

    Neuman, L.; Houpis, J.; Anderson, P.

    1991-01-01

    To determine the effects of ozone and acid rain on mature Ponderosa pine trees, Lawrence Livermore National Lab. has collaborated with University of California Berkeley, University of California Davis, California State University Chico, and the US Forest Service at the latter's Chico Tree Improvement Center. Foliar tissue from mature grafted scions of Pinus ponderosa were exposed to two times ambient ozone for ten months and to acid rain (3.0 pH) weekly for 10 weeks using branch exposure chambers. Pigment extracts were analyzed spectrophotometrically for concentrations of chlorophylls a and b, and carotenoid pigments, at 662 nm, 644 nm, and 470 nm, respectively. Pigment concentrations were expressed on a surface area basis. Preliminary results revealed that chlorophyll a showed a downward trend due to the ozone treatment. Acid rain caused no effects on these three pigments, however, chlorophyll b showed an upward trend due to the interaction of ozone and acid rain. The carotenoid pigments showed no changes due to the treatments either singly, or in combination

  14. Thermodynamic study of phase transitions in methyl esters of ortho- meta- and para-aminobenzoic acids

    International Nuclear Information System (INIS)

    Almeida, Ana R.R.P.; Monte, Manuel J.S.

    2012-01-01

    Highlights: ► Vapor pressures of liquid and crystalline phases of methyl esters of the aminobenzoic acids were measured. ► Accurate values of enthalpies of sublimation, vaporization, and fusion were derived. ► The enthalpy of intermolecular NH–O hydrogen bonds in methyl p-aminobenzoate was determined. ► The volatility of the methyl benzoates was compared with the volatility of the parent acids. - Abstract: A static method based on capacitance gauges was used to measure the vapor pressures of the condensed phases of the methyl esters of the three aminobenzoic acids. For methyl o-aminobenzoate the vapor pressures of the liquid phase were measured in the range (285.4 to 369.5) K. For the meta and para isomers vapor pressures of both crystalline and liquid phases were measured in the ranges (308.9 to 376.6) K, and (332.9 to 428.0) K, respectively. Vapor pressures of the latter compound were also measured using the Knudsen effusion method in the temperature range (319.1 to 341.2) K. From the dependence of the vapor pressures on the temperature, the standard molar enthalpies and entropies of sublimation and of vaporization were derived. Differential scanning calorimetry was used to measure the temperatures and molar enthalpies of fusion of the three isomers. The results enabled the estimation of the enthalpy of the intermolecular (N−H … O) hydrogen bond in the crystalline methyl p-aminobenzoate. A correlation relating the temperature of fusion and the enthalpy and Gibbs energy of sublimation of benzene, methyl benzoates and benzoic acids was derived.

  15. Thermodynamic properties of the methyl esters of p-hydroxy and p-methoxy benzoic acids

    International Nuclear Information System (INIS)

    Almeida, Ana R.R.P.; Cunha, André F.G.; Matos, M. Agostinha R.; Morais, Victor M.F.

    2014-01-01

    Highlights: • Vapor pressures and energies of combustion of two methyl benzoates were measured. • Standard molar ΔH, ΔS and ΔG of sublimation and vaporization were derived. • Standard molar ΔH, ΔS and ΔG of formation in crystal and gas phases were calculated. • Gas phase ΔH of formation was also estimated by quantum chemical calculations. • ΔH of the intermolecular hydrogen bond O–H⋯O was estimated. - Abstract: The vapor pressures of crystalline and liquid phases of methyl p-hydroxybenzoate and of methyl p-methoxybenzoate were measured over the temperature ranges (338.9 to 423.7) K and (292.0 to 355.7) K respectively, using a static method based on diaphragm capacitance gauges. The vapor pressures of the crystalline phase of the former compound were also measured in the temperature range (323.1 to 345.2) K using a Knudsen mass-loss effusion technique. The results enabled the determination of the standard molar enthalpies, entropies and Gibbs free energies of sublimation and of vaporization, at T = 298.15 K, as well as phase diagram representations of the (p, T) experimental data, including the triple point. The temperatures and molar enthalpies of fusion of both compounds were determined using differential scanning calorimetry and were compared with the results indirectly derived from the vapor pressure measurements. The standard (p° = 10 5 Pa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental results, the standard molar enthalpies of formation, in the gaseous phase at T = 298.15 K, were calculated and compared with the values estimated by employing quantum chemical computational calculations. A good agreement between experimental and theoretical results is observed. To analyze the thermodynamic stability of the two compounds studied, the standard Gibbs free

  16. Molecular simulation of the water-triolein-oleic acid mixture: Local structure and thermodynamic properties

    Science.gov (United States)

    Couallier, E.; Riaublanc, A.; David Briand, E.; Rousseau, B.

    2018-05-01

    An artificial oil-in-water emulsion analogous to those found in bioresources or food matrices is simulated and studied experimentally. It is composed of one of the major natural free fatty acids (the oleic acid, OA) and the corresponding triacylglyceride (trioleic glyceride, or triolein, GTO). Because of the large time and length scales involved, the molecular simulations are done with the Martini force field, a coarse-grained model. This allowed us to study the water-OA-GTO system at different compositions with more than 20 000 molecules and up to 2 μs. Interfacial tension was measured using the pendant drop method and compared with molecular simulation results. We observe very good agreement at high OA concentrations and deviations up to 15% at low OA concentrations. The water solubility in the lipid phase is in fair agreement with experiments, between 0.03 and 0.32 mol/l, rising with the OA content. The area occupied by OA and GTO at the interface between water and the pure product fitted with experimental data (AOA = 36.6 Å2 and AGTO = 152.1 Å2). The consistency between simulation and experimental results allowed a structural analysis of the interface. A bilayer structure of the lipids at the water/oil interface is proposed, containing preferentially oleic acid but also triolein. Through all these results, the usefulness of coarse-grained simulation for the description of water-oil interfacial organization is demonstrated. This method will be used later to bring local information on the organization of target compounds, necessary in biomass fractionation processes or food additive formulations, for example.

  17. Adsorption of rhodamine B by acid activated carbon-Kinetic, thermodynamic and equilibrium studies

    Directory of Open Access Journals (Sweden)

    Shanmugam Arivoli

    2009-08-01

    Full Text Available A carbonaceous adsorbent prepared from an indigenous waste by acid treatment was tested for its efficiency in removing Rhodamine B (RDB. The parameters studied include agitation time, initial dye concentration, carbon dose, pH and temperature. The adsorption followed first order kinetics and the rate is mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm obtained from the Langmuir isotherm plots were 40.161, 35.700, 38.462 and 37.979 mg/g respectively at an initial pH of 7.0 at 30, 40, 50 and 60 0C. The temperature variation study showed that the RDB adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the RDB solutions. Almost 85% removal of RDB was observed at 60 0C. The Langmuir and Freundlich isotherms obtained, positive ?H0 value, pH dependent results and desorption of dye in mineral acid suggest that the adsorption of RDB by Banana bark carbon involves physisorption mechanism.

  18. The thermodynamic characteristics of the reaction between vanadium(5) and hydrogen peroxide in concentrated solutions of perchloric acid

    International Nuclear Information System (INIS)

    Vorob'ev, P.N.; Dmitrieva, N.G.; Poteshonkova, T.A.

    2001-01-01

    Stability constants of vanadium(5) complex with hydrogen peroxide and enthalpy of vanadium(5) complexing with hydrogen peroxide are determined at acidity of solution c(H + ) = 5.00 mol/l, temperature T = 298.15 K and values of ionic force: I = 5, 6 and 7. Standard thermodynamic characteristics of vanadium(5) peroxide complex formation were calculated. At zeroth ionic force the value of complexing enthalpy Δ r H 298.15 deg is equal to -48.59 ± 0.33 kJ/mol, standard enthalpy of peroxide vanadium(5) complex formation Δ f H 298.15 deg is equal to -895.49 ± 1.51 kJ/mol; Δ r G 298.15 deg = -36.51 kJ/mol, Δ r S 298.15 deg -40.51 J/(mol K). As it is shown by calculations, standard change in entropy of the reaction has a minus sign, that is unique to complexation with neutral ligand [ru

  19. Trends of selected malformations in relation to folic acid recommendations and fortification: an international assessment.

    LENUS (Irish Health Repository)

    Botto, Lorenzo D

    2006-10-01

    Two crucial issues relative to the benefits and impact of folic acid in the prevention of birth defects are whether supplementation recommendations alone, without fortification, are effective in reducing the population-wide rates of neural tube defects (NTDs), and whether such policies can reduce the occurrence of other birth defects. Using data from 15 registries, we assessed rates and trends of 14 major defects, including NTDs, in areas with official recommendations or fortification to assess the effectiveness of recommendations and fortification on a wide range of major birth defects.

  20. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  1. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  2. Volumetric studies and thermodynamics of viscous flow of hydroxamic acids in acetone + water solvent at temperatures 303.15 and 313.15 K

    International Nuclear Information System (INIS)

    Tiwari, Vaishali; Pande, Rama

    2006-01-01

    Densities ρ and viscosities η of two hydroxamic acids, N-phenyl-2-chlorobenzo- and N-o-tolyl-4-chlorobenzo-, have been determined as a function of their concentration in aqueous acetone solution at temperatures 303.15 and 313.15 K. Apparent molar volumes, standard-state partial molar volumes and relative viscosities have been calculated. The viscosity data have been analyzed using Jones-Dole equation. The activation thermodynamic parameters of viscous flow have been evaluated using Feakins equation. These were obtained to throw light on the mechanism of viscous flow. Thermodynamic interactions in solutions have been studied in terms of a number of excess functions calculated from the experimental data. The effect of hydroxamic acid concentration and temperature on these parameters has been discussed. The results were interpreted in the light of solute-solvent interactions in aquo-organic media

  3. Effect of medium acidity on the thermodynamics and kinetics of the reaction of pyridoxal 5'-phosphate with isoniazid in an aqueous solution

    Science.gov (United States)

    Gamov, G. A.; Zavalishin, M. N.; Usacheva, T. R.; Sharnin, V. A.

    2017-05-01

    Thermodynamic characteristics of the formation of the Schiff base between isoniazid and pyridoxal 5'-phosphate in an aqueous solution at different pH values of a medium are determined by means of spectrophotometry and calorimetric titration. The process kinetics is studied spectrophotometrically, and the reaction rate constants for the formation of the imine at different acidities of a medium are determined. Biochemical aspects of the binding of pyridoxal 5'-phosphate into stable compounds are discussed.

  4. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  5. Acid emissions monitoring needs in ceramic tile industry: challenges derived from new policy trends

    Science.gov (United States)

    Celades, Irina; Gomar, Salvador; Romero, Fernando; Chauhan, Amisha; Delpech, Bertrand; Jouhara, Hussam

    2017-11-01

    The emission of acid compounds during the manufacture of ceramic tiles is strongly related to the presence of precursors in the raw materials and/or fuels used, with some exceptions such as the production of thermal NOX. The stages with the potential to produce significant emissions of these compounds have been identified as the suspension spray drying and tile firing stages. The monitoring of emission levels of acid pollutants in these stages has turned in a great importance issue from a regulatory and industrial aspect. The DREAM project (https://www.spire2030.eu/dream) will tackle the regulation of acidic emissions focusing in the firing stage. The initial stages of the project have made it possible to identify the design requirements for the monitoring system. This will allow the control of acid pollutants emissions and other key parameters such as pressure, flow, temperature and humidity. One of the tasks developed has been the review and compilation of current emissions monitoring systems detailing technical specifications such as: position (in situ or extractive), measurement principle and frequency. The future policy trends in air pollution are encouraging the continuous monitoring across the European industry. The present document assesses the advantages regarding environmental impact control, highlighting the main challenges for the ceramic tile industry.

  6. Heat capacity and thermodynamics of solid and liquid pyridine-3-carboxylic acid (nicotinic acid) over the temperature range 296 K to 531 K

    International Nuclear Information System (INIS)

    Joseph, Abhinav; Bernardes, Carlos E.S.; Minas da Piedade, Manuel E.

    2012-01-01

    Highlights: ► We determined the heat capacity of solid and liquid nicotinic acid by DSC. ► We determined Δ 357.8K 305.6K H m o (NA,crII) by Calvet microcalorimetry. ► We studied the thermodynamics of the cr II → cr I phase transition. ► We determined the Δ f G m o –T diagram of nicotinic acid for T = (296 to 531) K. - Abstract: The molar heat capacity of pyridine-3-carboxylic acid (nicotinic acid) for T = (296 to 531) K was investigated by differential scanning calorimetry (DSC) and Calvet-drop microcalorimetry. The measurements extended up to the liquid range and also covered the interval where a reversible and fast solid-solid (cr II → cr I) phase transition occurs. The molar enthalpies and entropies of that phase transition and of fusion were obtained as T trs = (455.0 ± 0.2) K, Δ trs H m o = (0.90 ± 0.10) kJ ⋅ mol −1 , Δ trs S m o = (1.98 ± 0.22) J ⋅ K −1 ⋅ mol −1 , T fus = (509.91 ± 0.04) K, Δ fus H m o = (28.2 ± 0.1) kJ ⋅ mol −1 , and Δ fus S m o = (55.30 ± 0.16) J ⋅ K −1 ⋅ mol −1 . By combining these experimental results with the previously reported Δ sub H m (NA,cr II) at T = 366.5 K, the corresponding entropy in the gaseous state calculated at the B3LYP/6-31+G(d,p) level of theory, and Δ f H m o (NA),cr II) at T = 298.15 K, it was possible to estimate the standard molar Gibbs energy of formation functions necessary for the construction of the Δ f G m ∘ vs. T diagram illustrating the enantiotropic nature of this system.

  7. Thermodynamics of ion binding to phosphatidic acid bilayers. Titration calorimetry of the heat of dissociation of DMPA.

    Science.gov (United States)

    Blume, A; Tuchtenhagen, J

    1992-05-19

    The heat of dissociation of the second proton of 1,2-dimyristoylphosphatidic acid (DMPA) was studied as a function of temperature using titration calorimetry. The dissociation of the second proton of DMPA was induced by addition of NaOH. From the calorimetric titration experiment, the intrinsic pK0 for the dissociation reaction could be determined by applying the Gouy-Chapman theory. pK0 decreases with temperature from ca. 6.2 at 11 degrees C to 5.4 at 54 degrees C. From the total heat of reaction, the dissociation enthalpy, delta Hdiss, was determined by subtracting the heat of neutralization of water and the heat of dilution of NaOH. In the temperature range between 2 and 23 degrees C, delta Hdiss is endothermic with an average value of ca. 2.5 kcal.mol-1 and shows no clear-cut temperature dependence. In the temperature range between 23 and 52 degrees C, delta Hdiss calculated after subtraction of the heat of neutralization and dilution is not the true dissociation enthalpy but includes contributions from the phase transition enthalpy, delta Htrans, as the pH jump induces a transition from the gel to the liquid-crystalline phase. The delta Cp for the reaction enthalpy observed in this temperature range is positive. Above 53 degrees C, the pH jump induces again only the dissociation of the second proton, and the bilayers stay in the liquid-crystalline phase. In this temperature range, delta Hdiss seems to decrease with temperature. The thermodynamic data from titration calorimetry and differential scanning calorimetry as a function of pH can be combined to construct a complete enthalpy-temperature diagram of DMPA in its two ionization states.

  8. Synthesis, thermodynamic properties and antibacterial activities of lanthanide complexes with 3,5-dimethoxybenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jun-Ru [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Shu-Xia [Material Science and Engineering School, Shijiazhuang Tiedao University, Shijiazhaung 050043 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Da-Hai [Department of Chemistry, Handan College, Handan 056005 (China); Wang, Shu-Ping [College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China)

    2013-11-20

    Graphical abstract: Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline))were synthesized and characterized by elemental analysis, IR and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and Candida albicans were studied by filter paper approach. - Highlights: • Four novel complexes ([Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} were synthesized and characterized. • The thermal decomposition processes of the title complexes were studied using the TG/DSC–FTIR coupling techniques. • The heat capacities of the complexes were measured by (DSC). • The antibacterial action of the four complexes on Escherichia coli, Staphylococcus aureus and Candida albicans were studied. - Abstract: Four lanthanide complexes with a general formula [Ln(3,5-DmeoxBA){sub 3}(phen)]{sub 2} (Ln = Tb(1), Dy(2), Er(3), Yb(4); 3,5-DmeoxBA = 3,5-dimethoxybenzoic acid; phen = 1,10-phenanthroline) were synthesized and characterized by elemental analysis, infrared spectra (IR), and thermogravimetric, differential scanning calorimetry techniques, combined with Fourier transform infrared (TG/DSC–FTIR) technology. The thermal decomposition processes of the four complexes were investigated by TG/DSC–FTIR techniques. Heat capacities were measured by DSC. The values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions (H{sub T} − H{sub 298.15} {sub K}), (S{sub T} − S{sub 298.15} {sub K}), and (G{sub T} − G{sub 298.15} {sub K}) were calculated. The antibacterial action of the four complexes on bacteria and fungus such as Escherichia coli, Staphylococcus aureus and

  9. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  10. Thermodynamics of the second-stage dissociation of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) in water at different ionic strength and different solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohamed [Department of Chemistry, Faculty of Science, Cairo University, Beni-Suef Branch, Beni-Suef (Egypt)]. E-mail: mtaha978@yahoo.com; Fazary, Ahmed E. [Department of Chemistry, Faculty of Science, Cairo University, Beni-Suef Branch, Beni-Suef (Egypt)

    2005-01-01

    The second stage dissociation constant pK{sub 2} of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) has been determined in aqueous solution at different ionic strengths and different temperatures, using pH-metric technique. The thermodynamic quantities ({delta}G{sup 0}, {delta}H{sup 0}, and {delta}S{sup 0}) have been studied and discussed. Evaluation of the effect of organic solvent of the medium on the dissociation processes have also been reported and discussed. The organic solvents used were methanol, dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone and dioxane. The pK{sub 2} for the ionization in water +10, +20, +30, +40 and +50 wt% dioxane has been determined at five different temperatures from T = (288.15 to 308.15) K at intervals of 5 K. The thermodynamic quantities were calculated. The implications of the results with regard to specific (solute + solvent) interactions (particularly stabilization of zwitterionic species) are also discussed.

  11. Thermodynamics of the second-stage dissociation of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) in water at different ionic strength and different solvent mixtures

    International Nuclear Information System (INIS)

    Taha, Mohamed; Fazary, Ahmed E.

    2005-01-01

    The second stage dissociation constant pK 2 of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) has been determined in aqueous solution at different ionic strengths and different temperatures, using pH-metric technique. The thermodynamic quantities (ΔG 0 , ΔH 0 , and ΔS 0 ) have been studied and discussed. Evaluation of the effect of organic solvent of the medium on the dissociation processes have also been reported and discussed. The organic solvents used were methanol, dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone and dioxane. The pK 2 for the ionization in water +10, +20, +30, +40 and +50 wt% dioxane has been determined at five different temperatures from T = (288.15 to 308.15) K at intervals of 5 K. The thermodynamic quantities were calculated. The implications of the results with regard to specific (solute + solvent) interactions (particularly stabilization of zwitterionic species) are also discussed

  12. Steric and thermodynamic limits of design for the incorporation of large unnatural amino acids in aminoacyl-tRNA synthetase enzymes.

    Science.gov (United States)

    Armen, Roger S; Schiller, Stefan M; Brooks, Charles L

    2010-06-01

    Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-alpha-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable.

  13. Thermodynamics of axial substitution and kinetics of reactions with amino acids for the paddlewheel complex tetrakis(acetato)chloridodiruthenium(II,III).

    Science.gov (United States)

    Santos, Rodrigo L S R; van Eldik, Rudi; de Oliveira Silva, Denise

    2012-06-18

    The known paddlewheel, tetrakis(acetato)chloridodiruthenium(II,III), offers a versatile synthetic route to a novel class of antitumor diruthenium(II,III) metallo drugs, where the equatorial ligands are nonsteroidal anti-inflammatory carboxylates. This complex was studied here as a soluble starting prototype model for antitumor analogues to elucidate the reactivity of the [Ru(2)(CH(3)COO)(4)](+) framework. Thermodynamic studies on equilibration reactions for axial substitution of water by chloride and kinetic studies on reactions of the diaqua complexes with the amino acids glycine, cysteine, histidine, and tryptophan were performed. The standard thermodynamic reaction parameters ΔH°, ΔS°, and ΔV° were determined and showed that both of the sequential axial substitution reactions are enthalpy driven. Kinetic rate laws and rate constants were determined for the axial substitution reactions of coordinated water by the amino acids that gave the corresponding aqua(amino acid)-Ru(2) substituted species. The results revealed that the [Ru(2)(CH(3)COO)(4)](+) paddlewheel framework remained stable during the axial ligand substitution reactions and was also mostly preserved in the presence of the amino acids.

  14. Copper(II) 12-metallacrown-4 complexes of alpha-, beta- and gamma-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution.

    Science.gov (United States)

    Tegoni, Matteo; Remelli, Maurizio; Bacco, Dimitri; Marchiò, Luciano; Dallavalle, Francesco

    2008-05-28

    A complete thermodynamic study of the protonation and Cu(II) complex formation equilibria of a series of alpha- and beta-aminohydroxamic acids in aqueous solution was performed. The thermodynamic parameters obtained for the protonation of glycine-, (S)-alpha-alanine-, (R,S)-valine-, (S)-leucine-, beta-alanine- and (R)-aspartic-beta-hydroxamic acids were compared with those previously reported for gamma-amino- and (S)-glutamic-gamma-hydroxamic acids. The enthalpy/entropy parameters calculated for the protonation microequilibria of these three types of ligands are in very good agreement with the literature values for simple amines and hydroxamic acids. The pentanuclear complexes [Cu5L4H(-4)]2+ contain the ligands acting as (NH2,N-)-(O,O-) bridging bis-chelating and correspond to 12-metallacrown-4 (12-MC-4) which are formed by self-assembly between pH 4 and 6 with alpha-aminohydroxamates (HL), while those with beta- and gamma-derivatives exist in a wider pH range (4-11). The stability order of these metallomacrocycles is beta- > alpha- > gamma-aminohydroxamates. The formation of 12-MC-4 with alpha-aminohydroxamates is entropy-driven, and that with beta-derivatives is enthalpy-driven, while with gamma-GABAhydroxamate both effects occur. These results are interpreted on the basis of specific enthalpies or entropy contributions related to chelate ring dimensions, charge neutralization and solvation-desolvation effects. The enthalpy/entropy parameters of 12-MC-4 with alpha-aminohydroxamic acids considered are also dependent on the optical purity of the ligands. Actually, that with (R,S)-valinehydroxamic acid presents an higher entropy and a lower enthalpy value than those of enantiopure ligands, although the corresponding stabilities are almost equivalent. Moreover, DFT calculations are in agreement with a more exothermic enthalpy found for metallacrowns with enantiomerically pure ligands.

  15. THERMODYNAMIC STUDIES ON THE CHARGE-TRANSFER ...

    African Journals Online (AJOL)

    ... technique was employed to investigate thermodynamic parameters associated with the interaction ... KEY WORDS: Amitriptyline , chloranilic acid, thermodynamic parameters. Global Jnl Pure & Applied Sciences Vol.10(1) 2004: 147-153 ...

  16. Calculation of the Aqueous Thermodynamic Properties of Citric Acid Cycle Intermediates and Precursors and the Estimation of High Temperature and Pressure Equation of State Parameters

    Directory of Open Access Journals (Sweden)

    Mitchell Schulte

    2009-06-01

    Full Text Available The citric acid cycle (CAC is the central pathway of energy transfer for many organisms, and understanding the origin of this pathway may provide insight into the origins of metabolism. In order to assess the thermodynamics of this key pathway for microorganisms that inhabit a wide variety of environments, especially those found in high temperature environments, we have calculated the properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for the major components of the CAC. While a significant amount of data is not available for many of the constituents of this fundamental pathway, methods exist that allow estimation of these missing data.

  17. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria.

    Science.gov (United States)

    Thomas, Dennis G; Jaramillo-Riveri, Sebastian; Baxter, Douglas J; Cannon, William R

    2014-12-26

    We have applied a new stochastic simulation approach to predict the metabolite levels, material flux, and thermodynamic profiles of the oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on modeling states using statistical thermodynamics and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the self-organization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow, and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals.

  18. Thermodynamic characteristics of the acid-base equilibria of taurine in aqueous solutions, according to calorimetry data

    Science.gov (United States)

    Gridchin, S. N.; Shekhanov, R. F.; Pyreu, D. F.

    2015-02-01

    Enthalpies of the neutralization and protonation of taurine (HL) are measured by direct calorimetry at 298.15 K and ionic strengths of 0.3, 0.5, and 1.0 (KNO3). The standard thermodynamic characteristics of HL protolytic equilibria are calculated.

  19. Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant

    Czech Academy of Sciences Publication Activity Database

    Bogomolova, Anna; Keller, S.; Klingler, J.; Sedlak, M.; Rak, D.; Šturcová, Adriana; Hrubý, Martin; Štěpánek, Petr; Filippov, Sergey K.

    2014-01-01

    Roč. 30, č. 38 (2014), s. 11307-11318 ISSN 0743-7463 R&D Projects: GA MŠk(CZ) LH14292 Grant - others:AV ČR(CZ) M200501201 Program:M Institutional support: RVO:61389013 Keywords : polymer * surfactant * thermodynamics Subject RIV: CC - Organic Chemistry Impact factor: 4.457, year: 2014

  20. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  1. Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K

    NARCIS (Netherlands)

    Hamborg, E. S.; Niederer, J. P. M.; Versteeg, G. F.

    2007-01-01

    The second dissociation constants of the amino acids βalanine, taurine, sarcosine, 6-aminohexanoic acid, DL-methionine, glycine, L-phenylalanine, and L-proline and the third dissociation constants of L-glutamic acid and L-aspartic acid have been determined from electromotive force measurements at

  2. Dissociation Constants and Thermodynamic Properties of Amino Acids Used in CO2 Absorption from (293 to 353) K

    NARCIS (Netherlands)

    Hamborg, Espen; Niederer, John; Versteeg, Geert

    2007-01-01

    The second dissociation constants of the amino acids β-alanine, taurine, sarcosine, 6-aminohexanoic acid, dl-methionine, glycine, l-phenylalanine, and l-proline and the third dissociation constants of l-glutamic acid and l-aspartic acid have been determined from electromotive force measurements at

  3. Thermodynamics of acid-base dissociation of several cathinones and 1-phenylethylamine, studied by an accurate capillary electrophoresis method free from the Joule heating impact.

    Science.gov (United States)

    Nowak, Paweł Mateusz; Woźniakiewicz, Michał; Mitoraj, Mariusz; Sagan, Filip; Kościelniak, Paweł

    2018-03-02

    Capillary electrophoresis is often used to the determination of the acid-base dissociation/deprotonation constant (pK a ), and the more advanced thermodynamic quantities describing this process (ΔH°, -TΔS°). Remarkably, it is commonly overlooked that due to insufficient dissipation of Joule heating the accuracy of parameters determined using a standard approach may be questionable. In this work we show an effective method allowing to enhance reliability of these parameters, and to estimate the magnitude of errors. It relies on finding a relationship between electrophoretic mobility and actual temperature, and performing pK a determination with the corrected mobility values. It has been employed to accurately examine the thermodynamics of acid-base dissociation of several amine compounds - known for their strong dependency of pK a on temperature: six cathinones (2-methylmethcathinone, 3-methylmethcathinone, 4-methylmethcathinone, α-pyrrolidinovalerophenone, methylenedioxypyrovalerone, and ephedrone); and structurally similar 1-phenylethylamine. The average pK a error caused by Joule heating noted at 25 °C was relatively small - 0.04-0.05 pH unit, however, a more significant inaccuracy was observed in the enthalpic and, in particular, entropic terms. An alternative correction method has also been proposed, simpler and faster, but not such effective in correcting ΔH°/-TΔS° terms. The corrected thermodynamic data have been interpreted with the aid of theoretical calculations, on a ground of the enthalpy-entropy relationships and the most probable structural effects accounting for them. Finally, we have demonstrated that the thermal dependencies of electrophoretic mobility, modelled during the correction procedure, may be directly used to find optimal temperature providing a maximal separation efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Thermodynamics of the extraction of scandium(III) by the liquid cation exchangers dinonylnaphthalenesulfonic acid and bis(2-ethylhexyl) phosphoric acid

    International Nuclear Information System (INIS)

    Raieh, M.A.; Zakareia, N.; Aly, H.F.

    1979-01-01

    The thermodynamic functions for the extraction of Sc 3+ by liquid cation exchangers HD and HDEHP are determined radiometrically by the temperature coefficient method. The role of the diluent dielectric constant on the extraction of Sc 3+ by HD is also studied. The thermodynamic parameters determined indicated that the free energy variation for the extraction of Sc 3+ by HD is mainly determined by the entropic terms arising from the hydration-dehydration process of the exchanged ions. In the case of HDEHP as extractant, the free energy variations are determined mainly by the entalpic terms of the system. (author)

  5. General thermodynamics

    CERN Document Server

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  6. Thermodynamics of the interactions of a homologous series of some amino acids with trimethylamine N-oxide: Volumetric, compressibility, and calorimetric studies

    International Nuclear Information System (INIS)

    Choudhary, Sinjan; Kishore, Nand

    2011-01-01

    Highlights: → Thermodynamics of interaction of amino acids with trimethy N-oxide (TMAO) studied. → Partial molar properties in aqueous osmolyte provide interaction details. → Volumes, compressibilites, enthalpies indicate predominant hydrophobic interactions. → TMAO exerts its effect both by preferential hydration and hydrophobic interactions. → Results suggest hydrophobic interactions lead to destabilization of the protein. - Abstract: The values of apparent molar volume V 2,φ and apparent molar compressibility K S,2,φ of glycine, L-alanine, DL-α-amino-n-butyric acid, L-valine, and L-leucine have been determined in the aqueous solution of 1 mol . kg -1 and 2 mol . kg -1 trimethylamine N-oxide (TMAO) solutions by density and sound velocity measurements. Isothermal titration calorimetry has been employed to determine the values of heats of dilution q of the aqueous solutions of these amino acids in TMAO at temperatures from T = 288.15 K to T = 308.15 K. These data have been used to calculate values of the infinite dilution standard partial molar volume (V 2,m 0 ), standard partial molar isentropic compressibility (K S,2,m 0 ) and limiting enthalpy of dilution (Δ dil H o ) of the amino acids in aqueous TMAO solutions. The standard partial molar volumes of transfer (Δ tr V 2,m 0 ), isentropic compressibility of transfer (Δ tr K S,2,m 0 ), and enthalpy of dilution of transfer (Δ tr Δ dil H o ) of amino acids from water to aqueous TMAO solutions have been calculated from the measured quantities for these thermodynamic quantities. The linear correlation of V 2,m 0 for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH 3 + , COO - ), CH 2 groups, and the other alkyl chains of the amino acids to V 2,m 0 . The results for the partial molar properties of transfer from water to aqueous TMAO solutions have been interpreted in terms of ion-ion, ion-polar, hydrophilic-hydrophobic, and hydrophobic

  7. Thermodynamic studies on corrosion inhibition of aqueous solutions of amino/carboxylic acids toward copper by EMF measurement

    International Nuclear Information System (INIS)

    Spah, Manjula; Spah, Dal Chand; Deshwal, Balraj; Lee, Seungmoon; Chae, Yoon-Keun; Park, Jin Won

    2009-01-01

    Electromotive force (E) measurements were made on an electrochemical cell [Cu x Hg|CuCl 2 (m) in a solvent S|AgCl-Ag] (where S is a dilute aqueous solution (0.01 m) of amino acid (glycine, alanine, methionine and glutamic acid) or aliphatic carboxylic acid (formic acid, acetic acid, n-butyric acid and glutaric acid)) at 30 deg. C. These measured E values were used to compute the dissociation constants (K 1 and K 2 ) and the degree of dissociation (α 1 and α 2 ) by iterative procedures. The standard cell potential (E o ) and the mean activity coefficient (γ ± ) of CuCl 2 were also determined. The E o data were next used to evaluate the Gibbs energy of transfer (ΔG tr 0 ) of CuCl 2 from water to dilute aqueous solutions of the amino/carboxylic acids. The negative ΔG tr 0 values suggested that these acids act as potential corrosion inhibitors. The magnitudes of ΔG tr 0 values show that the amino acids act as better corrosion inhibitors towards copper than the aliphatic carboxylic acids.

  8. Highly efficient micellar extraction of toxic picric acid into novel ionic liquid: Effect of parameters, solubilization isotherm, evaluation of thermodynamics and design parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Darshak R.; Maheria, Kalpana C. [Applied Chemistry Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat (India); Parikh, Jigisha K., E-mail: jk_parikh@yahoo.co.in [Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat (India)

    2015-12-30

    Highlights: • Picric acid is a toxic compound. • DIL significantly improves CPE efficiency of PA. • Higher extraction efficiency obtained in both nearly neutral and acidic condition. • The extraction process – spontaneous and endothermic in nature. - Abstract: A simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N’,N’,N’-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established. The extraction mechanism was also proposed. A developed Langmuir isotherm was used to compute the feed surfactant concentration required for the removal of PA up to an extraction efficiency of 90%. The effects of temperature and concentration of surfactant on various thermodynamic parameters were examined. It was found that the values of ΔG° increased with temperature and decreased with surfactant concentration. The values of ΔH° and ΔS° increased with surfactant concentration. The developed approach for DIL mediated CPE has proved to be an efficient and green route for extraction of PA from water sample.

  9. The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models-A theoretical study

    International Nuclear Information System (INIS)

    Aquino, Adelia J.A.; Tunega, Daniel; Pasalic, Hasan; Haberhauer, Georg; Gerzabek, Martin H.; Lischka, Hans

    2008-01-01

    Hydrogen bonded and cation bridged complexation of poly(acrylic acid) oligomers, representing a model compound for humic acids, with acetic acid and the herbicide (4-chloro-2-methylphenoxy) acetic acid (MCPA) have been studied by means of density functional theory. Solvation effects were computed by means of a combination of microsolvation (explicit insertion of water molecules) and global solvation (polarizable continuum approach). The stability of hydrogen bonded complexes in solution is characterized by a strong competition between solute and solvent molecules. The cation bridged complexes of the negatively charged (deprotonated) ligands were found to be strongly favored explaining the capability of humic acids to fixate anionic species from soil solutions and the ability to form cross-linking structures within the humic acid macromolecules

  10. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  11. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    Science.gov (United States)

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  12. Development of the high-temperature, solid-state, electromotive force technique to study the thermodynamics of Lewis-acid-base transition metal alloys

    International Nuclear Information System (INIS)

    Bullard, G.L.

    1978-05-01

    The basic principles of the Engel-Brewer theory of metals are summarized and illustrated. Definitions of words used to describe its fundamentals are clarified. The theory predicts the extreme stability of the Lewis-acid-base alloys. The thermodynamics of such alloys may be obtained through the use of oxide-electrolyte, electrochemical cells. Experimental techniques associated with the use of these cells are explained in detail. Much attention is given to the preparation and processing of the materials required. A selective review of the cell literature demonstrates frequent difficulty in obtaining accurate thermodynamic data. In an attempt to correct this situation, as well as to correct problems discovered in this work, the physical processes which create the cell emf are clearly identified. The fundamental understanding afforded by the resulting cell model implies the procedures used to both discover and eliminate errors. Those due to concentration overpotentials, reactive impurities in the gas phase, and interfacial reactions are carefully analyzed. The procedures used to test for and attain equilibrium in an alloy-oxide, powder compact are supported through identification of the transport processes that mediate equilibration

  13. Thermodynamic constants of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) from the temperatures 278.15 K to 328.15 K

    International Nuclear Information System (INIS)

    Roy, Rabindra N.; Roy, Lakshmi N.; LeNoue, Sean R.; Denton, Cole E.; Simon, Ashley N.; Richards, Sarah J.; Moore, Andrew C.; Roy, Chandra N.; Redmond, R. Ryan; Bryant, Paul A.

    2006-01-01

    Values of the second thermodynamic dissociation constant pK 2 of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) have been determined at twelve temperatures from 278.15 K to 328.15 K including 310.15 K by measurements of the electromotive-force for cells without liquid junction of the type: Pt|H 2 (g, p - bar =101.325 kPa)|Taps (m 1 ), NaTapsate (m 2 ), NaCl (m 3 )|AgCl|Ag, where m denotes molality. The pK 2 values for the dissociation of Taps are represented by the equation: pK 2 =2969.61.(K/T) - 17.05052+2.73697.ln(T/K). The values of pK 2 for Taps were found to be (8.502+/-0.0007) at T=298.15 K and (8.225+/-0.0009) at T=310.15 K, respectively, indicating thereby to be useful as buffer solutions for pH control in the region 7.4 to 8.5. The thermodynamic quantities, ΔG - bar , ΔH - bar , ΔS - bar , and ΔC p - bar dissociation process of Taps have been derived from the temperature coefficients of the pK 2

  14. Development of the high-temperature, solid-state, electromotive force technique to study the thermodynamics of Lewis-acid-base transition metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, G.L.

    1978-05-01

    The basic principles of the Engel-Brewer theory of metals are summarized and illustrated. Definitions of words used to describe its fundamentals are clarified. The theory predicts the extreme stability of the Lewis-acid-base alloys. The thermodynamics of such alloys may be obtained through the use of oxide-electrolyte, electrochemical cells. Experimental techniques associated with the use of these cells are explained in detail. Much attention is given to the preparation and processing of the materials required. A selective review of the cell literature demonstrates frequent difficulty in obtaining accurate thermodynamic data. In an attempt to correct this situation, as well as to correct problems discovered in this work, the physical processes which create the cell emf are clearly identified. The fundamental understanding afforded by the resulting cell model implies the procedures used to both discover and eliminate errors. Those due to concentration overpotentials, reactive impurities in the gas phase, and interfacial reactions are carefully analyzed. The procedures used to test for and attain equilibrium in an alloy-oxide, powder compact are supported through identification of the transport processes that mediate equilibration.

  15. Thermodynamic constants of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) from the temperatures 278.15 K to 328.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Rabindra N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States)]. E-mail: rroy@drury.edu; Roy, Lakshmi N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); LeNoue, Sean R. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Denton, Cole E. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Simon, Ashley N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Richards, Sarah J. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Moore, Andrew C. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Roy, Chandra N. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Redmond, R. Ryan [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States); Bryant, Paul A. [Walter H. Hoffman Department of Chemistry, Drury University, 900 N. Benton Avenue, Springfield, MO 65802 (United States)

    2006-04-15

    Values of the second thermodynamic dissociation constant pK{sub 2} of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (Taps) have been determined at twelve temperatures from 278.15 K to 328.15 K including 310.15 K by measurements of the electromotive-force for cells without liquid junction of the type: Pt|H{sub 2} (g, p{sup -}bar =101.325 kPa)|Taps (m{sub 1}), NaTapsate (m{sub 2}), NaCl (m{sub 3})|AgCl|Ag, where m denotes molality. The pK{sub 2} values for the dissociation of Taps are represented by the equation: pK{sub 2}=2969.61.(K/T) - 17.05052+2.73697.ln(T/K). The values of pK{sub 2} for Taps were found to be (8.502+/-0.0007) at T=298.15 K and (8.225+/-0.0009) at T=310.15 K, respectively, indicating thereby to be useful as buffer solutions for pH control in the region 7.4 to 8.5. The thermodynamic quantities, {delta}G{sup -}bar , {delta}H{sup -}bar , {delta}S{sup -}bar , and {delta}C{sub p}{sup -}bar dissociation process of Taps have been derived from the temperature coefficients of the pK{sub 2}.

  16. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  17. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  18. The thermodynamics of extraction of U(VI) and Th(IV) from nitric acid by neutral phosphorus-based organic compounds

    International Nuclear Information System (INIS)

    Kalina, D.G.; Mason, G.W.; Horwitz, E.P.

    1981-01-01

    The extraction of Th(IV) and U(VI) from dilute nitric acid solution by several neutral phosphorus-based extractants has been studied as a function of temperature in the range of 0 to 50 0 C. From the variation of the distribution ratio (Ksub(d)) with temperature the thermodynamic quantities ΔG, ΔH and ΔS have been calculated for these extractions. The results of this study indicate that the steric bulk of the extractant plays a major role in determining how well Th(IV) is extracted. The size of the extractant appears to be of little or no importance in the extraction of U(VI). Similarly, the basicity of the extractant is of lesser importance in the extraction of uranyl ion relative to thorium ion. (author)

  19. Trends in linoleic acid intake in the United States adult population: NHANES 1999-2014

    Science.gov (United States)

    Linoleic acid (LA), the primary polyunsaturated fatty acid (PUFA) in the US diet, is an essential fatty acid. LA is available from a wide variety of foods, although it is primarily sourced from plant seed oils. Individual-level data on demography and food and nutrient intake were acquired from the N...

  20. Glucose and Fructose to Platform Chemicals: Understanding the Thermodynamic Landscapes of Acid-Catalysed Reactions Using High-Level ab Initio Methods

    Energy Technology Data Exchange (ETDEWEB)

    Assary, Rajeev S.; Kim, Taijin; Low, John; Greeley, Jeffrey P.; Curtiss, Larry A.

    2012-12-28

    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.

  1. Recent trends in the surgical management of primary vesicoureteral reflux in the era of dextranomer/hyaluronic acid.

    Science.gov (United States)

    Herbst, Katherine W; Corbett, Sean T; Lendvay, Thomas S; Caldamone, Anthony A

    2014-05-01

    Since its inception as a technology in the United States, endoscopic correction of vesicoureteral reflux has become a popular treatment option in children with vesicoureteral reflux with reported wide use. We determined whether the increasing trend in use in the United States after the introduction of dextranomer/hyaluronic acid has been sustained. We abstracted data on pediatric patients treated with ureteral reimplantation or dextranomer/hyaluronic acid intervention for vesicoureteral reflux from 2004 to 2011 from the PHIS (Pediatric Health Information System) database. Patients with coding data indicating diagnoses other than primary vesicoureteral reflux and hospitals reporting less than 80% of ambulatory surgery cases by CPT code were excluded from study. We identified 14,430 patients (17,826 procedures), of whom 49% underwent reimplantation and 51% underwent dextranomer/hyaluronic acid injection. Of the patients 83% were female with a median age at surgery of 4.7 years (IQR 2.5-7.2). Linear regression showed a significant downward trend in the average total number of antireflux operations per institution during the study period. This was attributable to a decrease in the average rate of dextranomer/hyaluronic acid interventions because the average reimplantation rate remained stable during this time. At freestanding pediatric hospitals enrolled in the PHIS database there is a trend toward decreasing intervention for primary vesicoureteral reflux, which appears to be due to decreased use of injection therapy. This may reflect a philosophical change in reflux management by injection therapy. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  3. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  4. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    International Nuclear Information System (INIS)

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-01-01

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions

  5. Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA-MDEA blends

    DEFF Research Database (Denmark)

    Vrachnos, Ath.; Kontogeorgis, Georgios; Voutsas, EC

    2006-01-01

    and extended in this study to the absorption of carbon dioxide into aqueous monoethanolamine (MEA) solutions and aqueous MDEA-MEA blends. The results of the model are compared with experimental data taken from the literature. Very satisfactory predictions of acidic gas vapor-liquid equilibrium over MDEA, MEA...

  6. Incorporating Pitzer equations in a new thermodynamic model for the prediction of acid gases solubility in aqueous alkanolamine solutions

    NARCIS (Netherlands)

    Alhseinat, E.; Mota Martinez, M.; Peters, C.J.; Banat, F.

    2014-01-01

    In gas sweetening, acid gases such as CO2 and/or H2S are usually removed by "chemical" absorption through aqueous amine solutions such as N-Methyldiethanolamine (MDEA) solution. Reliable prediction of equilibrium properties (vapor–liquid equilibrium and species distribution) is needed for a rigorous

  7. Time trends of perfluorinated alkyl acids in serum from Danish pregnant women 2008-2013

    DEFF Research Database (Denmark)

    Bjerregaard-Olesen, Christian; Bach, Cathrine C; Long, Manhai

    2016-01-01

    for sixteen PFAAs using solid phase extraction and liquid chromatography tandem mass spectrometry (LC-MS/MS). We investigated the time trends for seven PFAAs, which were detected in more than 50% of the samples: perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS), perfluorooctane sulfonate...

  8. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways.

    Science.gov (United States)

    Surov, Artem O; Churakov, Andrei V; Proshin, Alexey N; Dai, Xia-Lin; Lu, Tongbu; Perlovich, German L

    2018-05-30

    Three distinct solid forms, namely anhydrous cocrystals with 2 : 1 and 1 : 1 drug/acid ratios ([TDZ : GA] (2 : 1), [TDZ : GA] (1 : 1)), and a hydrated one having 1 : 1 : 1 drug/acid/water stoichiometry ([TDZ : GA : H2O] (1 : 1 : 1)), have been formed by cocrystallization of the biologically active 1,2,4-thiadiazole derivative (TDZ) with gallic acid (GA). The thermodynamic stability relationships between the cocrystals were rationalized in terms of Gibbs energies of the formation reactions and further verified by performing a set of competitive and exchange mechanochemical reactions. Interestingly, competitive grinding in the presence of the structurally related vanillic acid led to the formation of a new polymorphic form of the [TDZ : Vanillic acid] (1 : 1) cocrystal, which was promoted by gallic acid. The mechanochemical method was also applied to elucidate the alternative pathways of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal formation. Direct cocrystallization of TDZ with GA monohydrate was found to proceed much faster than the reaction of TDZ and anhydrous GA in the presence of an acetonitrile/water mixture, which may indicate the presence of a transitional stage. According to dissolution studies, the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal was ca. 6.6 times more soluble than the parent 1,2,4-thiadiazole at pH 2.0 and 25.0 °C. The apparent two-step dehydration behavior of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal monohydrate was clarified by analyzing the intermolecular interactions of water molecules with the crystalline environment derived from solid state DFT calculations.

  9. Statistical thermodynamics

    CERN Document Server

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  10. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  11. Response of surface water chemistry to reduced levels of acid precipitation: Comparison of trends in two regions of New York, USA

    Science.gov (United States)

    Burns, Douglas A.; McHale, M.R.; Driscoll, C.T.; Roy, K.M.

    2006-01-01

    In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984-2001 and 1992-2001) and surface water chemistry (1992-2001) were determined in two of the most acid-sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42-), nitrate (NO3-), and base cation (CB) concentrations and increasing pH during 1984-2001, but few significant trends during 1992-2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42- concentrations at all sites, and decreasing trends in NO3-, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid-neutralizing capacity (ANC increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42- trends, but it caused several significant non-flow-corrected trends in NO3- and ANC to become non-significant, suggesting that trend results for flow-sensitive constituents are affected by flow-related climate variation. SO42- concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation-surface water comparisons, reflecting a strong link between S emissions, precipitation SO42- concentrations, and the processes that affect S cycling within these regions. NO3- and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation-surface water comparisons, indicating that variation in local-scale processes driven by factors such as climate are affecting trends in acid-base chemistry in these two regions. Copyright ?? 2005 John Wiley & Sons, Ltd.

  12. Interactions of methylamine and ammonia with atmospheric nucleation precursor H{sub 2}SO{sub 4} and common organic acids: Thermodynamics and atmospheric implications

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Jiang, L.; Bai, Z. [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Nadykto, A. B., E-mail: anadykto@gmail.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Department of Applied Mathematics, Moscow State University of Technology “STANKIN”, Vadkovsky per. 1, Moscow 127055 (Russian Federation); Atmospheric Science Research Center, State University of New York at Albany, 251 Fuller Road, Albany, NY 12203 (United States)

    2016-06-08

    Interactions of the two common atmospheric bases, ammonia (NH{sub 3}) and methylamine MA (CH{sub 3}NH{sub 2}), which are considered to be important stabilizers of binary clusters in the Earth’s atmosphere, with H{sub 2}SO{sub 4}, the key atmospheric precursor, and 14 common atmospheric organic acids (COA) (formic (CH{sub 2}O{sub 2}), acetic (C{sub 2}H{sub 4}O{sub 2}), oxalic (C{sub 2}H{sub 2}O{sub 4}), malonic (C{sub 3}H{sub 4}O{sub 4}), succinic (C{sub 4}H{sub 6}O{sub 4}), glutaric acid (C{sub 5}H{sub 8}O{sub 4}), adipic (C{sub 6}H{sub 10}O{sub 4}), benzoic (C{sub 6}H{sub 5}COOH), phenylacetic (C{sub 6}H{sub 5}CH{sub 2}COOH), pyruvic (C{sub 3}H{sub 4}O{sub 3}), maleic acid (C{sub 4}H{sub 4}O{sub 4}), malic (C{sub 4}H{sub 6}O{sub 5}), tartaric (C{sub 4}H{sub 6}O{sub 6}) and pinonic acid (C{sub 10}H{sub 16}O{sub 3})) have been studied using the composite high-accuracy G3MP2 method. The thermodynamic stability of mixed (COA) (H{sub 2}SO{sub 4}), (COA)(B1) and (COA)(B2) dimers and (COA) (H{sub 2}SO{sub 4}) (B1) and (COA) (H{sub 2}SO{sub 4}) (B1) trimers, where B1 and B2 represent methylamine (CH{sub 3}NH{sub 2}) and ammonia (NH{sub 3}), respectively, have been investigated and their impacts on the thermodynamic stability of clusters containing H{sub 2}SO{sub 4} have been analyzed. It has been shown that in many cases the interactions of H{sub 2}SO{sub 4} with COA, ammonia and methylamine lead to the formation of heteromolecular dimers and trimers, which are certainly more stable than (H{sub 2}SO{sub 4}){sub 2} and (H{sub 2}SO{sub 4}){sub 3}. It has also been found that free energies of (COA) (H{sub 2}SO{sub 4})+ CH{sub 3}NH{sub 2}⇔(COA) (H{sub 2}SO{sub 4})(CH{sub 3}NH{sub 2}) reactions exceed 10-15 kcal mol{sup −1}. This is a clear indication that mixed trimers composed of COA, H{sub 2}SO{sub 4} and methylamine are very stable and can thus serve as possible nucleation sites. The present study leads us to conclude that the interactions of COA coexisting with H

  13. Thermodynamic and structural of the water - dodecane - bis(ethyl-2-hexyl) phosphoric acid and its sodium salt

    International Nuclear Information System (INIS)

    Lovera, Jacqueline

    1985-01-01

    This research thesis reports the study of the appearance and disappearance of the 'third phase' obtained during the salification of the bis(ethyl-2 hexyl) phosphoric acid (HDEHP) diluted in dodecane, by sodium aqueous solutions. After a large bibliographical study on the properties of the intervening compounds (extraction of metallic cation by the acid, parameters influencing the 'third phase' appearance, surfactant properties, direct and inverse micelles, formation of para-crystalline phases), the author presents chemical experimental methods: liquid-liquid extraction tests, tests by the synthetic way, preparation of reactants, dosing method, methods of chemical analysis). Then, she reports and discusses experimental results in terms of determination of phase diagrams at 25 C, of composition by weight of the third phase, of influence of the apolar diluent, and of influence of the electrolyte. Physical experimental methods are then presented (differential calorimetric analysis, NMR, small angle X-ray scattering, light scattering, polarised light microscopy, constrained phase microscopy, photography, infrared spectroscopy, conductometry, transmission electron micrography, volumetric mass measurements, surface and interface tension measurements, viscoelasticity measurements) and their results are discussed and interpreted [fr

  14. New trends and challenges in lactic acid production on renewable biomass

    Directory of Open Access Journals (Sweden)

    Đukić-Vuković Aleksandra J.

    2011-01-01

    Full Text Available Lactic acid is a relatively cheap chemical with a wide range of applications: as a preservative and acidifying agent in food and dairy industry, a monomer for biodegradable poly-lactide polymers (PLA in pharmaceutical industry, precursor and chemical feedstock for chemical, textile and leather industries. Traditional raw materials for fermentative production of lactic acid, refined sugars, are now being replaced with starch from corn, rice and other crops for industrial production, with a tendency for utilization of agro industrial wastes. Processes based on renewable waste sources have ecological (zero CO2 emission, eco-friendly by-products and economical (cheap raw materials, reduction of storage costs advantages. An intensive research interest has been recently devoted to develop and improve the lactic acid production on more complex industrial by-products, like thin stillage from bioethanol production, corncobs, paper waste, straw etc. Complex and variable chemical composition and purity of these raw materials and high nutritional requirements of Lare the main obstacles in these production processes. Media supplementation to improve the fermentation is an important factor, especially from an economic point of view. Today, a particular challenge is to increase the productivity of lactic acid production on complex renewable biomass. Several strategies are currently being explored for this purpose such as process integration, use of Lwith amylolytic activity, employment of mixed cultures of Land/or utilization of genetically engineered microorganisms. Modern techniques of genetic engineering enable construction of microorganisms with desired characteristics and implementation of single step processes without or with minimal pre-treatment. In addition, new bioreactor constructions (such as membrane bioreactors, utilization of immobilized systems are also being explored. Electrodialysis, bipolar membrane separation process, enhanced filtration

  15. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    Science.gov (United States)

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermodynamics of R-(+)-2-(4-Hydroxyphenoxy)propanoic Acid Dissolution in Methanol, Ethanol, and Methanol-Ethanol Mixture

    Science.gov (United States)

    Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang

    2018-05-01

    The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.

  17. Solvation thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  18. Thermodynamic and Kinetic Study of Zinc bis-(Dipalmithyl Dithiophosphate Activity as Anti-Corrosion Additive-Fatty Acid Based Through Potentiodynamic Polarization Technique

    Directory of Open Access Journals (Sweden)

    Komar Sutriah

    2016-08-01

    Full Text Available Zinc bis-(dipalmithyl dithiophosphate (ZDTP16 is one product variant of zinc dialkyl dithiophosphate (ZDTP-fatty acid based having function as corrosion inhibitor. By using 3% of effective dose for the application, its effectiveness of ZDTP16 corrosion inhibition will achieve 97% and it will be able to decrease Cu metal corrosion rate from 0.152 to 0.004 mm per year. Thermodynamic and kinetic parameter verification indicates the decreasing of spontaneity and corrosion rate by existence of ZDTP16 inhibitor. Gibbs free energy transition corrosion of Cu metal in electrolyte medium is measured in corrosion simulator increased from +85.22 to +91.77 kJ mol-1, while its activation energy increased from +16.66 to +33.68 kJ mol-1. Morphology observation of Cu metal substrate surface using SEM-EDX shows that the adsorption of ZDTP16 at substrate surface is able to protect surface from corrosion indicated by the existence of Zn, P, S, and C constituents representing composer atoms of ZDTP16, and the decreasing of Cl- corrosive constituent at substrate surface.

  19. Features of the Thermodynamics of Trivalent Lanthanide/Actinide Distribution Reactions by Tri-n-Octylphosphine Oxide and Bis(2-EthylHexyl) Phosphoric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Travis S. Grimes; Peter R. Zalupski

    2014-11-01

    A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a mono-functional solvating ligand (tri-n-octyl phosphine oxide - TOPO). Stability constants for successive nitrato complexes (M(NO3)x3-x (aq) where M is Eu3+, Am3+ or Cm3+) were determined to assist in the calculation of the extraction constant, Kex, for the metal ions under study. Enthalpies of extraction (?Hextr) for the lanthanide series (excluding Pm3+) and Am3+ by TOPO have been measured using isothermal titration calorimetry. The observed ?Hextr were found to be constant at ~29 kJ mol-1across the series from La3+-Er3+, with a slight decrease observed from Tm3+-Lu3+. These heats were found to be consistent with enthalpies determined using van ’t Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (?G, ?H, ?S) was calculated for Eu(NO3)3, Am(NO3)3 and Cm(NO3)3 extraction by TOPO and Am3+ and Cm3+ extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ?Hextr, presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques.

  20. REMOVAL OF AN ACID DYE FROM AQUEOUS SOLUTIONS BY ADSORPTION ON A COMMERCIAL GRANULAR ACTIVATED CARBON: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    Marius Sebastian Secula

    2011-12-01

    Full Text Available The present paper approaches the study of the adsorption of an acid dye on a commercial granular activated carbon (GAC. Batch experiments were conducted to study the equilibrium isotherms and kinetics of Indigo Carmine on GAC. The kinetic data were analyzed using the Lagargren, Ho, Elovich, Weber-Morris and Bangham models in order to establish the most adequate model that describes this process, and to investigate the rate of IC adsorption. Equilibrium data were fitted to Langmuir and Freundlich isotherms. Langmuir isotherm equilibrium model and Ho kinetic model fitted best the experimental data.The effects of temperature (25 – 45 °C, initial concentration of dye (7.5 – 150 mg•L−1, GAC dose (0.02 – 1 g•L-1, particle size (2 – 7 mm in diameter, solution pH (3 – 11 on GAC adsorption capacity were established. The adsorption process is found to be favored by a neutral pH, high values of temperature and small particle sizes. The highest adsorption capacity (133.8 mg•g-1 of the GAC is obtained at 45 °C. The removal efficiency increases with GAC dose at relatively low initial concentrations of dye. Thermodynamic parameters such as standard enthalpy (H, standard entropy (S and standard free energy (G were evaluated. The adsorption of Indigo Carmine onto GAC is an endothermic process.

  1. Thermodynamic Analysis of the Conformational Transition in Aqueous Solutions of Isotactic and Atactic Poly(Methacrylic Acid and the Hydrophobic Effect

    Directory of Open Access Journals (Sweden)

    Ksenija Kogej

    2016-04-01

    Full Text Available The affinity of amphiphilic compounds for water is important in various processes, e.g., in conformational transitions of biopolymers, protein folding/unfolding, partitioning of drugs in the living systems, and many others. Herein, we study the conformational transition of two isomer forms of poly(methacrylic acid (PMA, isotactic (iPMA and atactic (aPMA, in water. These isomers are chemically equivalent and differ only in the arrangement of functional groups along the chain. A complete thermodynamic analysis of the transition of the PMA chains from the compact to the extended form (comprising the conformational transition in water in the presence of three alkali chlorides is conducted by determining the free energy, enthalpy, and entropy changes of the process as a function of temperature, and therefrom also the heat capacity change. The heat capacity change of the transition is positive (+20 J/K mol for aPMA and negative (−50 J/K mol for iPMA. This result suggests a different affinity of PMA isomers for water. The conformational transition of iPMA is parallel to the transfer of polar solutes into water, whereas that of aPMA agrees with the transfer of nonpolar solutes into water.

  2. Adsorption kinetics, isotherm, and thermodynamics studies of acetyl-11-keto-β-boswellic acids (AKBA) from Boswellia serrata extract using macroporous resin.

    Science.gov (United States)

    Niphadkar, Sonali S; Rathod, Virendra K

    2017-09-14

    An acetyl-11-keto-β-boswellic acid (AKBA) is potent anti-inflammatory agent found in Boswellia serrata oleogum resin. Adsorption characteristics of AKBA from B. serrata were studied using macroporous adsorbent resin to understand separation and adsorption mechanism of targeted molecules. Different macroporous resins were screened for adsorption and desorption of AKBA and Indion 830 was screened as it showed higher adsorption capacity. The kinetic equations were studied and results showed that the adsorption of AKBA on Indion 830 was well fitted to the pseudo first-order kinetic model. The influence of two parameters such as temperature (298, 303, and 308 K) and pH (5-8) on the adsorption process was also studied. The experimental data was further investigated using Langmuir, Freundlich, and Temkin isotherm models. It was observed that Langmuir isotherm model was found to be the best fit for AKBA adsorption by Indion 830 and highest adsorption capacity (50.34 mg/g) was obtained at temperature of 303 K. The values of thermodynamic parameters such as the change of Gibbs free energy (ΔG*), entropy (ΔS*), and enthalpy (ΔH*), indicated that the process of adsorption was spontaneous, favourable, and exothermic.

  3. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid

    DEFF Research Database (Denmark)

    Yoo, J.S.; Christensen, Rune; Vegge, Tejs

    2016-01-01

    The electrochemical reduction (electroreduction) of CO2 to formic acid (HCOOH) and its competing reactions, that is, the electroreduction of CO2 to CO and the hydrogen evolution reaction (HER), on twenty-seven different metal surfaces have been investigated using density functional theory (DFT) c...

  4. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides.

    Science.gov (United States)

    Abdualrahman, Mohammed Adam Y; Ma, Haile; Zhou, Cunshan; Yagoub, Abu ElGasim A; Hu, Jiali; Yang, Xue

    2016-12-01

    Due to the disadvantages of traditional enzymolysis, pretreatments are crucial to enhance protein enzymolysis. Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution, fluorescence spectroscopy and antioxidant activity of thermal (HT) and single frequency counter-current ultrasound (SCFU) pretreated sodium caseinate (NaCas) were studied. Enzymolysis of untreated NaCas (control) improved significantly (P < 0.05) by SFCU and followed by HT. Values of the Michaelis-Menten constant (K M ) of SFCU and HT were 0.0212 and 0.0250, respectively. HT and SFCU increased (P < 0.05) the reaction rate constant (k) by 38.64 and 90.91%, respectively at 298 K. k values decreased with increasing temperature. The initial activation energy (46.39 kJ mol -1 ) reduced (P < 0.05) by HT (39.66 kJ mol -1 ) and further by SFCU (33.42 kJ mol -1 ). SFCU-pretreated NaCas hydrolysates had the highest contents of hydrophobic, aromatic, positively and negatively charged amino acids. Medium-sized peptides (5000-1000 Da) are higher in SFCU (78.11%) than HT and the control. SFCU induced molecular unfolding of NaCas proteins. Accordingly, SFCU-pretreated NaCas hydrolysate exhibited the highest scavenging activity on DPPH and hydroxyl radicals, reducing power, and iron chelating ability. SFCU pretreatment would be a useful tool for production of bioactive peptides from NaCas hydrolysate. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Observing trends in the functionalization of cnts using same oxidizing acids under two different conditions

    International Nuclear Information System (INIS)

    Aftab, S.

    2013-01-01

    Excellent electrical, mechanical, optical and thermal properties are attributed to carbon nanotubes. Carbon nanotubes need to be functionalized to form a homogeneous dispersion. In this work, catalytically produced carbon nanotubes have been functionalized under two different conditions using the same acid medium. The effect of the two reaction routes on the carbon nanotubes, in terms of the extent of covalent functionalization has been determined by several techniques. Scanning electron microscopy aided in the observation of their morphology and X-ray diffraction was used to ascertain their structure. Other analytical characterization tools employed were Fourier transform infrared spectroscopy, Zeta potential measurement, UV spectroscopy, Oxygen percentage analysis, Boehm's titration and visual dispersion. Results show that carbon nanotubes functionalized by refluxing in the acids are much better dispersed. (author)

  6. Ecosystem thermodynamics

    International Nuclear Information System (INIS)

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  7. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    Science.gov (United States)

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P level of P level of P level of P level of P level of P chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in NO 3- concentrations resulting from the increased productivity. ?? 2007 Springer Science+Business Media, Inc.

  8. Features of the thermodynamics of trivalent lanthanide/actinide distribution reactions by tri-n-octylphosphine oxide and bis(2-ethylhexyl) phosphoric acid.

    Science.gov (United States)

    Grimes, Travis S; Zalupski, Peter R; Martin, Leigh R

    2014-11-06

    A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a monofunctional solvating ligand (tri-n-octylphosphine oxide, TOPO). Stability constants for successive nitrato complexes (M(NO3)x(3-x)(aq) where M is Eu(3+), Am(3+), or Cm(3+)) were determined to assist in the calculation of the extraction constant, K(ex), for the metal ions under study. Enthalpies of extraction (ΔH(extr)) for the lanthanide series (excluding Pm(3+)) and Am(3+) by TOPO have been measured using isothermal titration calorimetry. The observed ΔH(extr) were found to be constant at ~29 kJ mol(-1) across the series from La(3+) to Er(3+), with a slight decrease observed from Tm(3+) to Lu(3+). These heats were found to be consistent with enthalpies determined using van't Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (ΔG, ΔH, ΔS) was calculated for Eu(NO3)3, Am(NO3)3, and Cm(NO3)3 extraction by TOPO and Am(3+) and Cm(3+) extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ΔH(extr), presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques.

  9. Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study.

    Science.gov (United States)

    2008-12-01

    To determine whether ethyl-eicosapentaenoic acid (ethyl-EPA), an omega-3 fatty acid, improves the motor features of Huntington disease. Six-month multicenter, randomized, double-blind, placebo-controlled trial followed by a 6-month open-label phase without disclosing initial treatment assignments. Forty-one research sites in the United States and Canada. Three hundred sixteen adults with Huntington disease, enriched for a population with shorter trinucleotide (cytosine-adenine-guanine) repeat length expansions. Random assignment to placebo or ethyl-EPA, 1 g twice a day, followed by open-label treatment with ethyl-EPA. Six-month change in the Total Motor Score 4 component of the Unified Huntington's Disease Rating Scale analyzed for all research participants and those with shorter cytosine-adenine-guanine repeat length expansions (<45). At 6 months, the Total Motor Score 4 point change for patients receiving ethyl-EPA did not differ from that for those receiving placebo. No differences were found in measures of function, cognition, or global impression. Before public disclosure of the 6-month placebo-controlled results, 192 individuals completed the open-label phase. The Total Motor Score 4 change did not worsen for those who received active treatment for 12 continuous months compared with those who received active treatment for only 6 months (2.0-point worsening; P=.02). Ethyl-EPA was not beneficial in patients with Huntington disease during 6 months of placebo-controlled evaluation. Clinical Trial Registry clinicaltrials.gov Identifier: NCT00146211.

  10. Complexation thermodynamics of modified cyclodextrins

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Holm, Rene

    2014-01-01

    Inclusion complexes between two bile salts and a range of differently methylated β-cyclodextrins were studied in an attempt to rationalize the complexation thermodynamics of modified cyclodextrins. Calorimetric titrations at a range of temperatures provided precise values of the enthalpies (ΔH......°), entropies (ΔS°), and heat capacities (ΔCp) of complexation, while molecular dynamics simulations assisted the interpretation of the obtained thermodynamic parameters. As previously observed for several types of modified cyclodextrins, the substituents at the rims of the cyclodextrin induced large changes......° and then a strong decrease when the degree of substitution exceeded some threshold. Exactly the same trend was observed for ΔCp. The dehydration of nonpolar surface, as quantified by the simulations, can to a large extent explain the variation in the thermodynamic parameters. The methyl substituents form additional...

  11. Thermodynamics and crystal chemistry of rhomboclase, (H5O2)Fe(SO4)2·2H2O, and the phase (H3O)Fe(SO4)2 and implications for acid mine drainage

    DEFF Research Database (Denmark)

    Majzlan, Juraj; Grevel, Klaus Dieter; Kiefer, Boris

    2017-01-01

    The system Fe2O3-SO3-H2O contains the most important minerals of acid mine drainage (AMD), iron oxides, and iron sulfates. For geochemical modeling of the AMD systems, reliable thermodynamic data for these phases are needed. In this work, we have determined thermodynamic data for the most acidic...... for both phases were estimated from a Kopp-rule algorithm. The enthalpies of formation and entropies were combined with previously published temperature-relative humidity brackets to generate an internally consistent thermodynamic data set for rhomboclase: ΔfH° = -3202.03 kJ/mol, S° = 378.7 J...

  12. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  13. Compositional Trends in Acid Fluids of Copahue Volcano, Argentina: Evidence for a failed eruption in 2004?

    Science.gov (United States)

    Kading, T. J.; Brophy, M.; Varekamp, J. C.

    2008-12-01

    The concentrations and fluxes of major, minor, and trace elements in the crater lake, volcanic spring, and acidified watershed of Copahue Volcano, Neuquen province, Argentina, have been monitored over the last decade. The 2000 Copahue eruption resulted in enhanced S/Cl, increased concentrations and fluxes of rock forming elements (especially Mg and Na) with strongly raised Mg/Cl and Mg/K values. The degree of LREE enrichment decreased and a pronounced Eu anomaly developed in the fluids (Eu/Eu*> rock values). These patterns are explained as the result of hot acid fluid attack on newly intruded magma, with early dissolution of olivine (Mg spike) and plagioclase (Na spike, Eu anomaly). Similar compositional changes were observed in water samples taken in November, 2004, but no eruption occurred. These may be the signals of a small magmatic intrusion into the hydrothermal system, which failed to continue into an eruption. The compositional changes of Copahue volcanic fluids over the last decade will be discussed in the context of chemical signals of an actual and a suspected 'failed eruption'.

  14. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid.

    Science.gov (United States)

    Yoo, Jong Suk; Christensen, Rune; Vegge, Tejs; Nørskov, Jens K; Studt, Felix

    2016-02-19

    The electrochemical reduction (electroreduction) of CO2 to formic acid (HCOOH) and its competing reactions, that is, the electroreduction of CO2 to CO and the hydrogen evolution reaction (HER), on twenty-seven different metal surfaces have been investigated using density functional theory (DFT) calculations. Owing to a strong linear correlation between the free energies of COOH* and H*, it seems highly unlikely that the electroreduction of CO2 to HCOOH via the COOH* intermediate occurs without a large fraction of the current going to HER. On the other hand, the selective electroreduction of CO2 to HCOOH seems plausible if the reaction occurs via the HCOO* intermediate, as there is little correlation between the free energies of HCOO* and H*. Lead and silver surfaces are found to be the most promising monometallic catalysts showing high faradaic efficiencies for the electroreduction of CO2 to HCOOH with small overpotentials. Our methodology is widely applicable, not only to metal surfaces, but also to other classes of materials enabling the computational search for electrocatalysts for CO2 reduction to HCOOH. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Current trends in dextranomer hyaluronic acid copolymer (Deflux) injection technique for endoscopic treatment of vesicoureteral reflux.

    Science.gov (United States)

    Kirsch, Andrew J; Arlen, Angela M; Lackgren, Goran

    2014-08-01

    To determine the current preferred injection technique(s) for endoscopic management of pediatric vesicoureteral reflux (VUR). Since the approval of dextranomer hyaluronic acid copolymer (Dx/HA) in 2001, injection methods have evolved and now include the hydrodistention implantation technique (HIT) and double HIT as well as subureteral transurethral injection (STING) method. In July 2012, 278 pediatric urologists in the United States were contacted to complete a 15-question survey regarding Dx/HA injection technique(s) currently used in their practice. Fifty board-certified pediatric urologists completed the survey for a response rate of 18%. Most respondents (60%) were in a single-specialty group practice, and 12% were affiliated with an academic- or university-based practice. Respondents reported seeing a mean of 159 pediatric patients (range, 40-400 patients) with VUR annually, and 94% used Dx/HA ≥4 times in the past year. Forty-seven respondents (94%) reported using double HIT over the course of their career compared with 36 (72%) for STING and 30 (60%) for HIT (P injection techniques. A significantly higher percentage currently perform double HIT (92%) compared with either STING (24%) or HIT (34%; P <.001). Respondents reported the use of double HIT 15 times more often than STING technique and 5 times more often than HIT during the past 12 months (P <.001). The double HIT method is currently the most commonly performed technique for endoscopic correction of VUR by pediatric urologists in the United States. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Thermodynamic studies of nicotinic acid

    OpenAIRE

    Gonçalves, Elsa Marisa Duarte Rodrigues, 1978-

    2011-01-01

    Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2011 The work presented in this thesis was carried out at the Molecular Energetics group from “Centro de Química e Bioquímica” of “Faculdade de Ciências da Universidade de Lisboa”. The general research goal of the group is the study of the relationship between the energetics of molecules or groups of molecules and their structure and reactivity. In the recent years, the laboratory where I work...

  17. pKa values of hyodeoxycholic and cholic acids in the binary mixed micelles sodium-hyodeoxycholate-Tween 40 and sodium-cholate-Tween 40: Thermodynamic stability of the micelle and the cooperative hydrogen bond formation with the steroid skeleton.

    Science.gov (United States)

    Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita

    2017-01-01

    Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary

  18. Kinetics of reaction dimer fatty acid C_36 with 1,9 diamino nonane and determination of thermodynamic constants by use of thermogravimetric analysis tga, and rheological constants for the resulted polyamide

    International Nuclear Information System (INIS)

    Mohammad, H.; Falah, Al; Hammoy, M.

    2014-01-01

    Study the kinetics degradation of poly (dimeric acid C_36 with 1.9 – diamino nonane) was carried out by thermal analysis (TGA), and thermodynamic and equilibrium constants have been defined, moreover, study the kinetics of reaction between 1.9 – diamino nonane and dimer fatty acid C_36 was carried out in molten state, the reaction was performed at 160°, the acid value, and percentage of carboxylic functions of the product were determined. The polyamidation reaction was found to be of overall second order until conversion of 97% at 160°, then the order of reaction changes. The degree of dispersion, number molecular weight, weight molecular weight ,and viscosity molecular weight have been calculated during different times.The relationships between degree of dispersion, number Average molecular weight, weight average molecular weight, and viscosity molecular weight with time is linear at160°. Spectroscopy studies were carried out by infra-red and ultraviolet spectroscopy (author).

  19. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  20. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  1. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations

    International Nuclear Information System (INIS)

    Aury, S.

    2002-12-01

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  2. Thermodynamic tables to accompany Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  3. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  4. Thermodynamics in Einstein's thought

    International Nuclear Information System (INIS)

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  5. The impact of quark masses on pQCD thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Thorben; Schaffner-Bielich, Juergen [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil)

    2016-07-15

    We present results for several thermodynamic quantities within the next-to-leading order calculation of the thermodynamic potential in perturbative QCD at finite temperature and chemical potential including non-vanishing quark masses. These results are compared to lattice data and to higher-order optimized perturbative calculations to investigate the trend brought about by mass corrections. (orig.)

  6. Heat and thermodynamics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  7. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  8. Simulating metabolism with statistical thermodynamics.

    Science.gov (United States)

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  9. Synthesis, crystal structures and thermodynamic properties of two novel lanthanide complexes based on 3,4-diethoxybenzoic acid and 2,2′-bipyridine

    International Nuclear Information System (INIS)

    Jin, Cheng-Wei; Wang, Ye; Ren, Ning; Geng, Li-Na; Zhang, Jian-Jun

    2016-01-01

    Highlights: • Two novel complexes crystal structures are obtained. • The 1-D chain and 2D layer structures were formed via π–π stacking interactions. • The pathway of thermal decomposition for title complexes were investigated. • The molar heat capacities and thermodynamic functions were calculated. - Abstract: Two binuclear lanthanide complexes [Ln(3,4,-DEOBA) 3 DIPY] 2 DIPY (Ln = Tb (1), Dy (2); 3,4,-DEOBA = 3,4-diethoxybenzoate; DIPY = 2,2′-bipyridine) have been synthesized and characterized. The single crystals of complexes 1 and 2 were obtained. And the two complexes are isostructural with a coordination number of eight to form a distorted square antiprism. Carboxylic groups adopt two modes coordinating with Ln(III) ions: bidentate chelate, and bridging bidentate. Binuclear complexes 1 and 2 are stitched together via π–π stacking interactions to form 1D chain and 2D layer supramolecular structures. The two complexes were characterized by elemental analysis, IR spectra, and powder X-ray diffraction. The luminescence spectra of complexes 1 and 2 show the characteristic emissions of Tb 3+ ( 5 D 4 → 7 F 6-3 ) and Dy 3+ ( 4 F 9/2 → 6 H 15/2 , 6 H 13/2 ). The thermal decomposition mechanisms for title complexes were studied by the technology of TG-FTIR. And the heat capacities of two complexes were measured by DSC in the temperature range from 258.15 to 343.15 K. The smoothed heat capacities and thermodynamic functions for complexes 1 and 2 were calculated by fitted polynomial and thermodynamic equations.

  10. Introduction to applied thermodynamics

    CERN Document Server

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  11. Twenty lectures on thermodynamics

    CERN Document Server

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  12. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  13. A new general model for predicting melting thermodynamics of complementary and mismatched B-form duplexes containing locked nucleic acids: application to probe design for digital PCR detection of somatic mutations.

    Science.gov (United States)

    Hughesman, Curtis; Fakhfakh, Kareem; Bidshahri, Roza; Lund, H Louise; Haynes, Charles

    2015-02-17

    Advances in real-time polymerase chain reaction (PCR), as well as the emergence of digital PCR (dPCR) and useful modified nucleotide chemistries, including locked nucleic acids (LNAs), have created the potential to improve and expand clinical applications of PCR through their ability to better quantify and differentiate amplification products, but fully realizing this potential will require robust methods for designing dual-labeled hydrolysis probes and predicting their hybridization thermodynamics as a function of their sequence, chemistry, and template complementarity. We present here a nearest-neighbor thermodynamic model that accurately predicts the melting thermodynamics of a short oligonucleotide duplexed either to its perfect complement or to a template containing mismatched base pairs. The model may be applied to pure-DNA duplexes or to duplexes for which one strand contains any number and pattern of LNA substitutions. Perturbations to duplex stability arising from mismatched DNA:DNA or LNA:DNA base pairs are treated at the Gibbs energy level to maintain statistical significance in the regressed model parameters. This approach, when combined with the model's accounting of the temperature dependencies of the melting enthalpy and entropy, permits accurate prediction of T(m) values for pure-DNA homoduplexes or LNA-substituted heteroduplexes containing one or two independent mismatched base pairs. Terms accounting for changes in solution conditions and terminal addition of fluorescent dyes and quenchers are then introduced so that the model may be used to accurately predict and thereby tailor the T(m) of a pure-DNA or LNA-substituted hydrolysis probe when duplexed either to its perfect-match template or to a template harboring a noncomplementary base. The model, which builds on classic nearest-neighbor thermodynamics, should therefore be of use to clinicians and biologists who require probes that distinguish and quantify two closely related alleles in either a

  14. Phase equilibria and the thermodynamic properties of methyl and ethyl esters of carboxylic acids. 1. Methyl n-butanoate and ethyl propanoate

    International Nuclear Information System (INIS)

    Agafonova, Luba E.; Varushchenko, Raisa M.; Druzhinina, Anna I.; Polyakova, Olga V.

    2012-01-01

    Highlights: ► Heat capacities, fusion properties of CH 3 OC(O)C 3 H 7 measured by adiabatic calorimetry. ► The temperature dependence of vapour pressure determined by comparative ebulliometry. ► The thermodynamic functions derived from experiment and calculated by DFT method. ► Extending vapour pressure of moderate interval to entire region of liquid. ► An increment of the entropy of carbonyl group was defined from experimental data. - Abstract: The heat capacity of methyl n-butanoate in crystalline and liquid states was measured by vacuum adiabatic calorimetry over the temperature range from (8 to 372) K. The triple point temperature, the enthalpy and entropy of fusion, and the purity of the sample were determined. The saturated vapour pressure and the boiling temperatures were determined by comparative ebulliometry in the “atmospheric” pressure range 10.8 ⩽ (p/kPa) ⩽ 99.6. The normal boiling temperature, T n.b , and the enthalpy of vaporization at T = 298.15 K and T n.b were derived. The thermodynamic functions (absolute entropy and changes of the enthalpy, and Gibbs free energy) were derived for the solid and liquid states in the temperature range studied and for the ideal gas state at T = 298.15 K. The ideal gas heat capacities and the absolute entropies of methyl n-butanoate (MeBu) and ethyl propanoate (EtPr) were calculated by statistical thermodynamics on the basis of the molecular constants determined by the use of density functional theory on the B3LYP level. The experimental vapour pressure of MeBu and EtPr of moderate temperature intervals, Δ exp T = (59/65) K, were extended to the entire range of the liquids, Δ liq T = (364.7/345.7) K by the methods of the corresponding states law and simultaneous treatment of the pT-parameters and low-temperature heat capacities of the ideal gas and liquid, respectively. An additive contribution of the carbonyl group CO–(C, O) connected with C and O atoms was determined for calculation of the

  15. Nucleic acid helices: I. Structure of M1 RNA from E. coli as determined bypsoralen crosslinking. II. Thermodynamics of the helix-coil transition of DNA oligonucleotides in solutions containing 3.0 M tetramethylammonium chloride

    International Nuclear Information System (INIS)

    Lipson, S.E.

    1987-01-01

    This work includes two different investigations examining nucleic acid helices. The first study discusses secondary and tertiary interactions in the RNA moiety of ribonuclease P from Escherichia coli. The second study discusses the thermodynamics of the helix-coil transition of DNA oligonucleotides in solutions containing tetramethylammonium chloride. The RNA moiety of ribonuclease P from Escherichia coli (M1 RNA) has been photoreacted with 4'-hydroxymethyl-4,5'8-trimethylpsoralen and long wave UV light (320-380 nm) in a buffer in which the M1 RNA alone acts as a true catalyst of tRNA processing. Limited specific digestion followed by two dimensional gel electrophoresis yields fragments crosslinked by HMT. The positions of the crosslinks have been determined to within ±15 nucleotides by photoreversal of the isolated crosslinked fragments and enzymatic sequencing of the resulting RNA. Further assignments of the exact locations of the crosslinks have been made on the known photoreactivity of the psoralen with different bases

  16. Thermodynamic Modeling of Several Aqueous Alkanol Solutions Containing Amino Acids with the Perturbed-Chain Statistical Associated Fluid Theory Equation of State

    DEFF Research Database (Denmark)

    Ferreira, Luisa; Breil, Martin Peter; Pinho, S. P.

    2009-01-01

    parameters for the amino acids were fitted to the densities, activity and osmotic coefficients, vapor pressures, and water activity of their aqueous solutions. The solubilities of amino acids in pure and mixed solvent systems were calculated on the basis of the phase equilibrium conditions for a pure solid...... and a fluid phase. The hypothetical melting properties of each amino acid were fitted, to accurately correlate the solubilities in pure water. Only one temperature independent binary parameter is required for each amino acid/solvent pair. The model can accurately describe the solubility of the amino acids...... in water, but the correlation for the solubility in pure alcohols was not so satisfactory. The solubility in mixed solvents (ternary systems) was predicted on the basis of the modeling of the solubility in pure solvents, without any additional fitting of the parameters, and the results achieved were...

  17. Trend analysis of the correlation of amino acid plasma profile with glycemic status in Saudi diabetic patients

    Directory of Open Access Journals (Sweden)

    Fahad A. Al-Abbasi

    2012-10-01

    Full Text Available The role of amino acids in diabetes mellitus and its metabolic traits have been suggested previously; however, studied to a very limited scale in the Saudi patient population. Patients diagnosed with diabetes mellitus were included in the current clinical study. Sample was representative and in accordance with the national population distribution. Blood samples were drawn and assayed for glucose, total cholesterol, triglyceride, high density lipoprotein and low density lipoprotein. General biochemical markers, such as alkaline phosphatase (ALP, creatinine kinase (CK, aspartate transaminase (AST, alanine transaminase (ALT and blood urea nitrogen (BUN were assessed. Serum amino acids of different categories (essential, semi-essential and metabolic indicator amino acids were assessed. Correlation co-efficient between each amino acid and serum glucose level was calculated. The current study showed positive correlation between amino acid level and glucose serum concentration in male while it showed negative correlation in female Saudi diabetic patients. Male patients had significantly higher methionine concentration parallel to their glycemic status. Metabolic indicator amino acids significantly changed in concordance with the glycemic status of female patients more than in male patients. In conclusion, serum amino acid is positively correlated with glycemic status in Saudi male diabetic patients while negatively correlated in female patients. Yet, further study would be recommended to utilize serum amino acid profile as surrogate parameter for the metabolic complications of diabetes mellitus.

  18. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  19. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  20. Simulated pressure denaturation thermodynamics of ubiquitin.

    Science.gov (United States)

    Ploetz, Elizabeth A; Smith, Paul E

    2017-12-01

    Simulations of protein thermodynamics are generally difficult to perform and provide limited information. It is desirable to increase the degree of detail provided by simulation and thereby the potential insight into the thermodynamic properties of proteins. In this study, we outline how to analyze simulation trajectories to decompose conformation-specific, parameter free, thermodynamically defined protein volumes into residue-based contributions. The total volumes are obtained using established methods from Fluctuation Solution Theory, while the volume decomposition is new and is performed using a simple proximity method. Native and fully extended ubiquitin are used as the test conformations. Changes in the protein volumes are then followed as a function of pressure, allowing for conformation-specific protein compressibility values to also be obtained. Residue volume and compressibility values indicate significant contributions to protein denaturation thermodynamics from nonpolar and coil residues, together with a general negative compressibility exhibited by acidic residues. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Thermodynamics of Bioreactions.

    Science.gov (United States)

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  2. Thermodynamically efficient solar concentrators

    Science.gov (United States)

    Winston, Roland

    2012-10-01

    Non-imaging Optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for design of thermal and even photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory while "optics" in the conventional sense recedes into the background.

  3. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  4. Thermodynamics of Dissolution for Crystalline Racemic Tartaric and Glutaric Acids and Isatin in KOH Aqueous Solutions at 298.15 K

    Science.gov (United States)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Litvinenko, V. E.; Volkov, A. V.; Bychkova, S. A.; Skvortsov, I. A.

    2018-01-01

    Enthalpies of dissolution are found for crystalline racemic tartaric and glutaric acids and isatin in water and in potassium hydroxide solutions at 298.15 K via direct calorimetry. The protolytic equilibria in isatin aqueous solutions are studied at 298.15 K and ionic strengths of 0.5 (relative to potassium nitrate) by potentiometric means. Standard enthalpies of formation are calculated for racemic tartaric and glutaric acids, isatin, and the products of their dissociation in aqueous solutions.

  5. Methods of thermodynamics

    CERN Document Server

    Reiss, Howard

    1997-01-01

    Since there is no shortage of excellent general books on elementary thermodynamics, this book takes a different approach, focusing attention on the problem areas of understanding of concept and especially on the overwhelming but usually hidden role of ""constraints"" in thermodynamics, as well as on the lucid exposition of the significance, construction, and use (in the case of arbitrary systems) of the thermodynamic potential. It will be especially useful as an auxiliary text to be used along with any standard treatment.Unlike some texts, Methods of Thermodynamics does not use statistical m

  6. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    Rand, M.H.

    1975-01-01

    A report is presented of the Fourth International Symposium on Thermodynamics of Nuclear Materials held in Vienna, 21-25 October 1974. The technological theme of the Symposium was the application of thermodynamics to the understanding of the chemistry of irradiated nuclear fuels and to safety assessments for hypothetical accident conditions in reactors. The first four sessions were devoted to these topics and they were followed by four more sessions on the more basic thermodynamics, phase diagrams and the thermodynamic properties of a wide range of nuclear materials. Sixty-seven papers were presented

  7. Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Yu [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Ren, Ning [Department of Chemistry, Handan College, Handan 056005 (China); Zhang, Jian-Jun, E-mail: jjzhang6@126.com [Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024 (China); College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Cun-Ying [No.1 High School of Shijiazhuang, Shijiazhuang 050011 (China)

    2013-10-20

    Graphical abstract: Four new rare-earth complexes of general formula [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} [Ln = Er (1), Tb (2), Dy (3) and Ho (4); 3-Br-5-IBA = 3-bromo-5-iodobenzoate; phen = 1,10-phenanthroline] were synthesized and characterized by elemental analysis, IR, UV and TG/DSC-FTIR technology. Heat capacities of the four complexes were measured by differential scanning calorimetry (DSC). The antimicrobial activity against Escherichia coli, Staphylococcus aureus and Candida albicans were tested using disc diffusion method. - Highlights: • Four new complexes [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} were synthesized and characterized. • The non-isothermal kinetics of the first stage for the complexes was studied. • The heat capacities of the complexes were measured by differential scanning calorimeter. • The antimicrobial activities for these complexes were tested. • The fluorescence properties of the complexes 2 and 3 were studied. - Abstract: Four new rare-earth complexes of general formula [Ln(3-Br-5-IBA){sub 3}phen]{sub 2} (Ln(III) = Er (1), Tb (2), Dy (3) and Ho (4); 3-Br-5-IBA = 3-bromo-5-iodobenzoate; phen = 1,10-phenanthroline) were synthesized by solution-precipitation method, and investigated using elemental analysis, infrared spectra, ultraviolet spectra and TG/DSC-FTIR technology. The non-isothermal kinetics of the first stage for the complexes was studied by using non-linear integral isoconversional method and double equal-double steps method. The heat capacities of the complexes were measured between 263.15 and 485.55 K by means of differential scanning calorimeter, and the values of the experimental heat capacities were fitted to a polynomial equation with the least-squares method. And the thermodynamic functions [H{sub T} − H{sub 298.15}], [S{sub T} − S{sub 298.15}] and [G{sub T} − G{sub 298.15}] were also derived based on the fitted polynomials and thermodynamic relationships with temperature interval of 10 K. Moreover, the

  8. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  9. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: The science of chemical thermodynamics has substantially contributed to the understanding of the many problems encountered in nuclear and reactor technology. These problems include reaction of materials with their surroundings and chemical and physical changes of fuels. Modern reactor technology, by its very nature, has offered new fields of investigations for the scientists and engineers concerned with the design of nuclear fuel elements. Moreover, thermodynamics has been vital in predicting the behaviour of new materials for fission as well as fusion reactors. In this regard, the Symposium was organized to provide a mechanism for review and discussion of recent thermodynamic investigations of nuclear materials. The Symposium was held in the Juelich Nuclear Research Centre, at the invitation of the Government of the Federal Republic of Germany. The International Atomic Energy Agency has given much attention to the thermodynamics of nuclear materials, as is evidenced by its sponsorship of four international symposia in 1962, 1965, 1967, and 1974. The first three meetings were primarily concerned with the fundamental thermodynamics of nuclear materials; as with the 1974 meeting, this last Symposium was primarily aimed at the thermodynamic behaviour of nuclear materials in actual practice, i.e., applied thermodynamics. Many advances have been made since the 1974 meeting, both in fundamental and applied thermodynamics of nuclear materials, and this meeting provided opportunities for an exchange of new information on this topic. The Symposium dealt in part with the thermodynamic analysis of nuclear materials under conditions of high temperatures and a severe radiation environment. Several sessions were devoted to the thermodynamic studies of nuclear fuels and fission and fusion reactor materials under adverse conditions. These papers and ensuing discussions provided a better understanding of the chemical behaviour of fuels and materials under these

  10. Contributions of the Histidine Side Chain and the N-terminal α-Amino Group to the Binding Thermodynamics of Oligopeptides to Nucleic Acids as a Function of pH

    Science.gov (United States)

    Ballin, Jeff D.; Prevas, James P.; Ross, Christina R.; Toth, Eric A.; Wilson, Gerald M.; Record, M. Thomas

    2010-01-01

    Interactions of histidine with nucleic acid phosphates and histidine pKa shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK (+NH3-His-Trp-Lys-Lys-NH2) and its lysine analog KWKK (+NH3-Lys-Trp-Lys-Lys-NH2) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, Kobs, and magnitudes of log-log salt derivatives SKobs ≡ (∂logKobs/∂log[Na+]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and α-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same Kobs and SKobs within uncertainty, and these SKobs values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pKa shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pKa shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the α-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific versus nonspecific nucleic acid binding. PMID:20108951

  11. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [acid-base properties of titanium 6-4 surfaces

    Science.gov (United States)

    Siriwardane, R.; Wightman, J. P.

    1980-01-01

    The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.

  12. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  13. The thermodynamic solar energy

    International Nuclear Information System (INIS)

    Rivoire, B.

    2002-04-01

    The thermodynamic solar energy is the technic in the whole aiming to transform the solar radiation energy in high temperature heat and then in mechanical energy by a thermodynamic cycle. These technic are most often at an experimental scale. This paper describes and analyzes the research programs developed in the advanced countries, since 1980. (A.L.B.)

  14. Quasiparticles and thermodynamical consistency

    International Nuclear Information System (INIS)

    Shanenko, A.A.; Biro, T.S.; Toneev, V.D.

    2003-01-01

    A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)

  15. submitter Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4–H2O) and ternary (H2SO4–H2O–NH3) system

    CERN Document Server

    Kürten, A; Rondo, L; Bianchi, F; Duplissy, J; Jokinen, T; Junninen, H; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Almeida, J; Amorim, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Franchin, A; Kirkby, J; Kupc, A; Makhmutov, V; Petäjä, T; Praplan, A P; Riccobono, F; Steiner, G; Tomé, A; Tsagkogeorgas, G; Wagner, P E; Wimmer, D; Baltensperger, U; Kulmala, M; Worsnop, D R; Curtius, J

    2015-01-01

    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary $(H_2SO_4–H_2O)$ system and the ternary system involving ammonia $(H_2SO_4–H_2O–NH_3)$ may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary sys...

  16. Extraction of Eu(III) and Th(IV) with TBP in n-dodecane in the presence of nitric acid and the thermodynamic activity of the TBP in the system

    International Nuclear Information System (INIS)

    Santos, F.S.M. dos.

    1983-02-01

    A qualitative description of the behavior of distribution coefficients of nitric acid, Th(IV) and Eu(III) separately in the system HNO 3 -H 2 O-TBP-n-dodecane and the effect of the temperature in the distribution coefficient of Th(IV) are presented. The distribution coefficient of Eu(III) between aqueous solutions nitric acid and solutions of TBP in n-dodecane are measured. Since the composition of the extracted Eu(III) complex is known, the theoretical course of the dependency of the distribution coefficient on the TBP concentration can be predicted. Deviations of experimental dependencies from theoretical ones give them information about the thermodynamic activity of TBP in the organic phase. A mathematical description for the distribution coefficients of Eu(III) and HNO 3 in the mentioned system was sugested. This description will make possible an avaliation of the behavior of the activity coefficients of TBP in the organic phase. (A.R.H.) [pt

  17. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  18. Applied chemical engineering thermodynamics

    CERN Document Server

    Tassios, Dimitrios P

    1993-01-01

    Applied Chemical Engineering Thermodynamics provides the undergraduate and graduate student of chemical engineering with the basic knowledge, the methodology and the references he needs to apply it in industrial practice. Thus, in addition to the classical topics of the laws of thermodynamics,pure component and mixture thermodynamic properties as well as phase and chemical equilibria the reader will find: - history of thermodynamics - energy conservation - internmolecular forces and molecular thermodynamics - cubic equations of state - statistical mechanics. A great number of calculated problems with solutions and an appendix with numerous tables of numbers of practical importance are extremely helpful for applied calculations. The computer programs on the included disk help the student to become familiar with the typical methods used in industry for volumetric and vapor-liquid equilibria calculations.

  19. Thermodynamics an engineering approach

    CERN Document Server

    Cengel, Yunus A

    2014-01-01

    Thermodynamics, An Engineering Approach, eighth edition, covers the basic principles of thermodynamics while presenting a wealth of real-world engineering examples so students get a feel for how thermodynamics is applied in engineering practice. This text helps students develop an intuitive understanding by emphasizing the physics and physical arguments. Cengel and Boles explore the various facets of thermodynamics through careful explanations of concepts and use of numerous practical examples and figures, having students develop necessary skills to bridge the gap between knowledge and the confidence to properly apply their knowledge. McGraw-Hill is proud to offer Connect with the eighth edition of Cengel/Boles, Thermodynamics, An Engineering Approach. This innovative and powerful new system helps your students learn more efficiently and gives you the ability to assign homework problems simply and easily. Problems are graded automatically, and the results are recorded immediately. Track individual stude...

  20. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  1. Isothermal, kinetic and thermodynamic studies on basic dye sorption ...

    African Journals Online (AJOL)

    Isothermal, kinetic and thermodynamic studies on basic dye sorption onto tartaric acid esterified wheat straw. ... African Journal of Biotechnology ... esterified wheat straw (EWS), was originally prepared by solid phase thermochemistry method.

  2. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Samarghandi Mohammad

    2012-11-01

    Full Text Available Abstract Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively.

  3. Constants and thermodynamics of the acid-base equilibria of triglycine in water-ethanol solutions containing sodium perchlorate at 298 K

    Science.gov (United States)

    Pham Tkhi, L.; Usacheva, T. R.; Tukumova, N. V.; Koryshev, N. E.; Khrenova, T. M.; Sharnin, V. A.

    2016-02-01

    The acid-base equilibrium constants for glycyl-glycyl-glycine (triglycine) in water-ethanol solvents containing 0.0, 0.1, 0.3, and 0.5 mole fractions of ethanol are determined by potentiometric titration at 298.15 K and an ionic strength of 0.1, maintained with sodium perchlorate. It is established that an increase in the ethanol content in the solvent reduces the dissociation constant of the carboxyl group of triglycine (increases p K 1) and increases the dissociation constant of the amino group of triglycine (decreases p K 2). It is noted that the weakening of the acidic properties of a triglycinium ion upon an increase of the ethanol content in the solvent is due to the attenuation of the solvation shell of the zwitterionic form of triglycine, and to the increased solvation of triglycinium ions. It is concluded that the acid strength of triglycine increases along with a rise in the EtOH content in the solvent, due to the desolvation of the tripeptide zwitterion and the enhanced solvation of protons.

  4. Application of Acidic Treated Pumice as an Adsorbent for the Removal of Azo Dye from Aqueous Solutions:kinetic, Equilibrium and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Saied Bashiri

    2012-11-01

    Full Text Available Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as anefficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal ofAR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models.Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer.Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89 % regeneration for AR14 and AR18,respectively.

  5. Thermodynamic properties of α-uranium

    International Nuclear Information System (INIS)

    Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao

    2016-01-01

    The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0–100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T"3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit. - Highlights: • Thermodynamic properties of α-U were predicted systematically with quasi-harmonic Debye model. • Summarizations of the corresponding experimental and theoretical results have been made for the EOS and other thermodynamic parameters. • The calculated thermodynamic properties show good agreement with the experimental results in general trends.

  6. Thermodynamic properties of α-uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao, E-mail: luochaoboss@sohu.com

    2016-11-15

    The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0–100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T{sup 3} power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit. - Highlights: • Thermodynamic properties of α-U were predicted systematically with quasi-harmonic Debye model. • Summarizations of the corresponding experimental and theoretical results have been made for the EOS and other thermodynamic parameters. • The calculated thermodynamic properties show good agreement with the experimental results in general trends.

  7. Healthy food trends -- flaxseeds

    Science.gov (United States)

    ... seeds; Healthy food trends - linseeds; Healthy snacks - flaxseeds; Healthy diet - flaxseeds; Wellness - flaxseeds ... of nutrition and dietetics: dietary fatty acids for healthy adults. J Acad Nutr Diet . 2014;114(1):136-153. PMID: 24342605 www. ...

  8. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  9. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  10. Thermodynamics I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics I includes review of properties and states of a pure substance, work and heat, energy and the first law of thermodynamics, entropy and the second law of thermodynamics

  11. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  12. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  13. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  14. Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements.

    Science.gov (United States)

    Jacobs, Miriam N; Covaci, Adrian; Gheorghe, Adriana; Schepens, Paul

    2004-03-24

    In addition to being used in the food and animal feed industry, fish oils have also been used traditionally as dietary supplements. Due to the presence of long-chain n-3 fatty acids, fish oils have therapeutic benefits in the prevention and treatment of cardiovascular, immunological, and arthritic diseases, as well as childhood deficiency diseases such as rickets, because of a high content of vitamin D. However, fish oils are also susceptible to contamination with lipophilic organic chemicals that are now ubiquitous contaminants of marine ecosystems. Many vegetable oils are sources of the shorter chain precursor forms of n-3 fatty acids, and in recent years the specialist dietary supplement market has expanded to include these oils in a variety of different formulations. This paper reports analytical results of selected contaminants, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers, for a range of commercially available n-3 fatty acid rich fish and vegetable oil dietary supplements. Using principal component analysis, the values are compared with historic samples to elucidate time trends in contamination profiles. Levels of contaminants are discussed in relation to the nutritional benefits to the consumer of long- and short-chain forms of n-3 fatty acids.

  15. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  16. Elements of chemical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2005-01-01

    This survey of purely thermal data in calculating the position of equilibrium in a chemical reaction highlights the physical content of thermodynamics, as distinct from purely mathematical aspects. 1970 edition.

  17. Elements of statistical thermodynamics

    CERN Document Server

    Nash, Leonard K

    2006-01-01

    Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.

  18. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  19. Workshop on Teaching Thermodynamics

    CERN Document Server

    1985-01-01

    It seemed appropriate to arrange a meeting of teachers of thermodynamics in the United Kingdom, a meeting held in the pleasant surroundings of Emmanuel College, Cambridge, in Sept~mber, 1984. This volume records the ideas put forward by authors, the discussion generated and an account of the action that discussion has initiated. Emphasis was placed on the Teaching of Thermodynamics to degree-level students in their first and second years. The meeting, a workshop for practitioners in which all were expected to take part, was remarkably well supported. This was notable in the representation of essentially every UK university and polytechnic engaged in teaching engineering thermodynamics and has led to a stimulating spread of ideas. By intention, the emphasis for attendance was put on teachers of engineering concerned with thermodynamics, both mechanical and chemical engineering disciplines. Attendance from others was encouraged but limited as follows: non-engineering acad­ emics, 10%, industrialists, 10%. The ...

  20. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  1. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  2. Nucleic acid helices: I. Structure of M1 RNA from E. coli as determined bypsoralen crosslinking. II. Thermodynamics of the helix-coil transition of DNA oligonucleotides in solutions containing 3. 0 M tetramethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, S.E.

    1987-01-01

    This work includes two different investigations examining nucleic acid helices. The first study discusses secondary and tertiary interactions in the RNA moiety of ribonuclease P from Escherichia coli. The second study discusses the thermodynamics of the helix-coil transition of DNA oligonucleotides in solutions containing tetramethylammonium chloride. The RNA moiety of ribonuclease P from Escherichia coli (M1 RNA) has been photoreacted with 4{prime}-hydroxymethyl-4,5{prime}8-trimethylpsoralen and long wave UV light (320-380 nm) in a buffer in which the M1 RNA alone acts as a true catalyst of tRNA processing. Limited specific digestion followed by two dimensional gel electrophoresis yields fragments crosslinked by HMT. The positions of the crosslinks have been determined to within {plus minus}15 nucleotides by photoreversal of the isolated crosslinked fragments and enzymatic sequencing of the resulting RNA. Further assignments of the exact locations of the crosslinks have been made on the known photoreactivity of the psoralen with different bases.

  3. A New Perspective on Thermodynamics

    CERN Document Server

    Lavenda, Bernard H

    2010-01-01

    Dr. Bernard H. Lavenda has written A New Perspective on Thermodynamics to combine an old look at thermodynamics with a new foundation. The book presents a historical perspective, which unravels the current presentation of thermodynamics found in standard texts, and which emphasizes the fundamental role that Carnot played in the development of thermodynamics. A New Perspective on Thermodynamics will: Chronologically unravel the development of the principles of thermodynamics and how they were conceived by their discoverers Bring the theory of thermodynamics up to the present time and indicate areas of further development with the union of information theory and the theory of means and their inequalities. New areas include nonextensive thermodynamics, the thermodynamics of coding theory, multifractals, and strange attractors. Reintroduce important, yet nearly forgotten, teachings of N.L. Sardi Carnot Highlight conceptual flaws in timely topics such as endoreversible engines, finite-time thermodynamics, geometri...

  4. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides

    International Nuclear Information System (INIS)

    Belair, S.

    2003-01-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO 3 ) 3 -HNO 3 -H 2 O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  5. Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, as a Dermal Filler, and in Osteoarthritis Treatment

    Science.gov (United States)

    Fakhari, Amir; Berkland, Cory

    2013-01-01

    Hyaluronic acid (HA) is a naturally occurring biodegradable polymer with a variety of applications in medicine including scaffolding for tissue engineering, dermatological fillers, and viscosupplementation for osteoarthritis treatment. HA is available in most connective tissues in body fluids such as synovial fluid and the vitreous humor of the eye. HA is responsible for several structural properties of tissues as a component of extracellular matrix (ECM) and is involved in cellular signaling. Degradation of HA is a step-wise process that can occur via enzymatic or non-enzymatic reactions. A reduction in HA mass or molecular weight via degradation or slowing of synthesis affects physical and chemical properties such as tissue volume, viscosity, and elasticity. This review addresses the distribution, turnover, and tissue-specific properties of HA. This information is used as context for considering recent products and strategies for modifying the viscoelastic properties of HA in tissue engineering, as a dermal filler, and in osteoarthritis treatment. PMID:23507088

  6. Gravity as a thermodynamic phenomenon

    OpenAIRE

    Moustos, Dimitris

    2017-01-01

    The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.

  7. Thermodynamic and microscopic equilibrium constants of molecular species formed from pyridoxal 5'-phosphate and 2-amino-3-phosphonopropionic acid in aqueous and D2O solution

    International Nuclear Information System (INIS)

    Szpoganicz, B.; Martell, A.E.

    1984-01-01

    Schiff base formation between pyridoxal 5'-phosphate (PLP) and 2-amino-3-phosphonopropionic acid (APP) has been investigated by measurement of the corresponding NMR and electronic absorption spectra. A value of 0.26 was found for the formation constant of the completely deprotonated Schiff base species, and is much smaller than the values reported for pyridoxal-β-chloroalanine and pyridoxal-O-phosphoserine. The protonation constants for the aldehyde and hydrate forms of PLP were determined in D 2 O by measurement of the variation of chemical shifts with pD (pH in D 2 O). The hydration constants of PLP were determined in a pD range 2-12, and species distributions were calculated. The protonation constants of the APP-PLP Schiff base determined by NMR in D 2 O were found to have the log values 12.54, 8.10, 6.70, and 5.95, and the species distributions were calculated for a range of pD values. Evidence is reported for hydrogen bonding involving the phosphate and phosphonate groups of the diprotonated Schiff base. The cis and trans forms of the Schiff bases were distinguished with the aid of the nuclear Overhauser effect. 43 references, 9 figures, 3 tables

  8. Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with β-lactoglobulin

    DEFF Research Database (Denmark)

    Stender, Emil G.P.; Khan, Sanaullah; Ipsen, Richard

    2018-01-01

    to be fully explored. Particle formation of a high and a low molar mass alginate (ALG) with β-lactoglobulin (BLG) at pH 2-8 depends on the average DPn (HMW-ALG: 1.59·103; LMW-ALG: 0.23·103) and the mannuronic/guluronic acid ratio (1.0; 0.6) as supported by using ManA6 and GulA6 as models. Dynamic light...... scattering (DLS) showed that particles of BLG with either of the two ALGs have essentially the same hydrodynamic diameter (D H) at pH 3 and 2, while at pH 4 particles of LMW-ALG/BLG have larger D H than of HMW-ALG/BLG. At pH 5-8 no significant particle formation was observed. ManA6 did not form insoluble...... particles at pH 2-8, while GulA6 formed insoluble particles, albeit only at pH 4. K d was approximately 10-fold higher for LMW-ALG/BLG than HMW-ALG/BLG and 3 orders of magnitude higher for an alginate trisaccharide/BLG complexation as determined by isothermal titration calorimetry (ITC). The alginate...

  9. Thermodynamics of nuclear materials

    International Nuclear Information System (INIS)

    1962-01-01

    The first session of the symposium discussed in general the thermodynamic properties of actinides, including thorium, uranium and Plutonium which provide reactor fuel. The second session was devoted to applications of thermodynamic theory to the study of nuclear materials, while the experimental techniques for the determination of thermodynamic data were examined at the next session. The thermodynamic properties of alloys were considered at a separate session, and another session was concerned with solids other than alloys. Vaporization processes, which are of special interest in the development of high-temperature reactors, were discussed at a separate session. The discussions on the methods of developing the data and ascertaining their accuracy were especially useful in highlighting the importance of determining whether any given data are reliable before they can be put to practical application. Many alloys and refractory materials (i. e. materials which evaporate only at very high temperatures) are of great importance in nuclear technology, and some of these substances are extremely complex in their chemical composition. For example, until recently the phase composition of the oxides of thorium, uranium and plutonium had been only very imperfectly understood, and the same was true of the carbides of these elements. Recent developments in experimental techniques have made it possible to investigate the phase composition of these complex materials as well as the chemical species of these materials in the gaseous phase. Recent developments in measuring techniques, such as fluorine bomb calorimetry and Knudsen effusion technique, have greatly increased the accuracy of thermodynamic data

  10. Thermodynamics of complexity

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    -called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... that the behaviour of two functionally interacting biological components (molecules, protein domains, pathways, organelles) differs from the behaviour these components would exhibit in isolation from one another, where the difference should be essential for the maintenance and growth of the living state, For a true...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...

  11. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  12. Statistical thermodynamics of alloys

    CERN Document Server

    Gokcen, N A

    1986-01-01

    This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo­ dynamic Background." The contents of the book are limited to the solutions of metals + metals, and metals + metalloids, but the results are also appli­ cable to numerous other types of solutions encountered by metallurgists, materials scientists, geologists, ceramists, and chemists. Attempts have been made to cover each topic in depth with numerical examples whenever necessary. Chapter 2 presents phase equilibria and phase diagrams as related to the thermodynamics of solutions. The emphasis is on the binary diagrams since the ternary diagrams can be understood in terms of the binary diagrams coupled with the phase rule, and the Gibbs energies of mixing. The cal­ culation of thermodynamic properties from the phase diagrams is ...

  13. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  14. Comparative Amino Acids Studies on Phac Synthases and Proteases as Well as Establishing a New Trend in Experimental Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2012-04-01

    Full Text Available ABSTRACT: A question addressed in this study is: why similar enzymes are classified into different subclasses? As an example, PhaC synthases are classified according to four different classes (I, II, III and IV. To answer this question we proposed that besides the catalytic residues, the overall amino acids (AAs present are responsible for the differences observed. The AAs’ composition affects the structure/function/substrate specificity (SFS of these enzymes. The differences between the classes in various PhaC synthases and proteases were analysed to support our argument. Homology and phylogenic tree of some selected PhaC synthases of different strains (representing the four classes were demonstrated. The properties of a specific class of enzyme could not be changed into those of another by changing the catalytic residues. Moreover, these differences could not be detected from the proteins’ 3D structures, despite clear differences at the AAs level. Another question was also addressed: could we benefit from the various existing protein databases in the field of biotechnology? To answer this, we introduced a model for an Experimental Design based on the information in the protein database (for strains available in our lab regarding their ability to degrade castor oil. Two enzymes in the phenol degradation pathway, phenol 2-monooxygenase and catechol 1,2-dioxygenase, and a lipase enzyme were analysed. These enzymes were screened and analysed according to the BLAST-protein database and BRENDA. The comprehensive enzyme information system compared six strains against each other, including: Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Bacillus thuringiensis, Bacillus licheniformis, and Geobacillus stearothermophilus. Only P. aeruginosa proved to have the three required enzymes and was suitable for the production of lipases from castor oil (crude castor oil is usually contaminated with phenol as indicated by the databases. In

  15. Structural and thermodynamic aspects of aqueous solution of trivalent lanthanides complexation by hydrophobic compounds of tartaric acid, by gluconic acid and related molecules. Outlook for liquid-liquid extraction of these cations

    International Nuclear Information System (INIS)

    Giroux, Sebastien

    1999-01-01

    This work deals with the complexation of lanthanide(III) ions by different molecules and with the synthesis of hydrophobic molecules able to extract them of an aqueous solution. Its aim is to describe the systems obtained by the determination of the formation constants of the species and by the description of their structure. The aim of this work is also to obtain a selective complexation of lanthanides(III) towards actinides(III), because this aim presents a great interest in the reprocessing of radioactive wastes. The complexation studies have been followed by potentiometry, NMR, UV-visible spectroscopy and circular dichroism. The first mixtures studied are the couples: lanthanide(III)-gluconic acid (LH). The complexes system they formed has been described and the structures have been specified; a strong complexation has been revealed. The MLH -2 specie induces a selectivity between the lanthanides(III) equivalent to those obtained with EDTA and its uncharged character allows to consider the use of gluconic acid as extractant. The use of ligands as glucosaminic acid or glucamine slows the beginning of the complexation until pH= 6-7. The neutral specie MLH -2 is formed too. In order to use the complexing properties of gluconic acid and its selective character towards lanthanides(III), the synthesis of molecules derived containing a long alkyl chain with a hydrophobic character has been carried out for using them as extracting agents. An original method of the preparation of tartramides is presented. This preparation consists of an amidation of one of the carboxylic functions of the tartaric acid by a fatty amine. These molecules, surface-active, complex the lanthanides(III) and extract them in an organic phase using the tri-n-butyl phosphate as co-extractant. (O.M.)

  16. Concise chemical thermodynamics

    CERN Document Server

    Peters, APH

    2010-01-01

    EnergyThe Realm of ThermodynamicsEnergy BookkeepingNature's Driving ForcesSetting the Scene: Basic IdeasSystem and SurroundingsFunctions of StateMechanical Work and Expanding GasesThe Absolute Temperature Scale Forms of Energy and Their Interconversion Forms of Renewable Energy Solar Energy Wind Energy Hydroelectric Power Geothermal Energy Biomass Energy References ProblemsThe First Law of Thermodynamics Statement of the First Law Reversible Expansion of an Ideal GasConstant-Volume ProcessesConstant-Pressure ProcessesA New Function: EnthalpyRelationship between ?H and ?UUses and Conventions of

  17. Thermodynamics II essentials

    CERN Document Server

    REA, The Editors of

    2013-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Thermodynamics II includes review of thermodynamic relations, power and refrigeration cycles, mixtures and solutions, chemical reactions, chemical equilibrium, and flow through nozzl

  18. Thermodynamics for engineers

    CERN Document Server

    Wong, Kaufui Vincent

    2011-01-01

    Praise for the First Edition from Students: "It is a great thermodynamics text…I loved it!-Mathew Walters "The book is comprehensive and easy to understand. I love the real world examples and problems, they make you feel like you are learning something very practical."-Craig Paxton"I would recommend the book to friends."-Faure J. Malo-Molina"The clear diction, as well as informative illustrations and diagrams, help convey the material clearly to the reader."-Paul C. Start"An inspiring and effective tool for any aspiring scientist or engineer. Definitely the best book on Classical Thermodynamics out."-Seth Marini.

  19. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  20. Statistical thermodynamics of alloys

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1986-01-01

    This book presents information on the following topics: consequences of laws of thermodynamics; Helmholtz and Gibbs energies; analytical forms of excess partial molar properties; single-component and multicomponent equilibria; phase rules and diagrams; lever rule; fermions, bosons, and Boltzons; approximate equations; enthalpy and heat capacity; Pd-H system; hydrogen-metal systems; limitations of Wagner model; energy of electrons and hols; dopants in semiconductors; derived thermodynamic properties; simple equivalent circuit; calculation procedure; multicompoent diagrams re; Engel-Brewer theories; p-n junctions; and solar cells

  1. Probing the General Time Scale Question of Boronic Acid Binding with Sugars in Aqueous Solution at Physiological pH

    Science.gov (United States)

    Ni, Nanting; Laughlin, Sarah; Wang, Yingji; Feng, You; Zheng, Yujun

    2012-01-01

    The boronic acid group is widely used in chemosensor design due to its ability to reversibly bind diol-containing compounds. The thermodynamic properties of the boronic acid-diol binding process have been investigated extensively. However, there are few studies of the kinetic properties of such binding processes. In this report, stopped-flow method was used for the first time to study the kinetic properties of the binding between three model arylboronic acids, 4-, 5-, and 8-isoquinolinylboronic acids, and various sugars. With all the boronic acid-diol pair sexamined, reactions were complete within seconds. The kon values with various sugars follow the order of D-fructose >D-tagatose>D-mannose >D-glucose. This trend tracks the thermodynamic binding affinities for these sugars and demonstrates that the “on” rate is the key factor determining the binding constant. PMID:22464680

  2. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  3. Understanding the effect of locked nucleic acid and 2'-O-methyl modification on the hybridization thermodynamics of a miRNA-mRNA pair in the presence and absence of AfPiwi protein.

    Science.gov (United States)

    Kumar, Santosh; Mapa, Koyeli; Maiti, Souvik

    2014-03-18

    miRNAs are some of the key epigenetic regulators of gene expression. They act through hybridization with their target mRNA and modulate the level of respective proteins via different mechanisms. Various cancer conditions are known to be associated with up- and downregulation of the oncogenic and tumor suppressor miRNAs, respectively. The levels of aberrantly expressed oncogenic miRNAs can be downregulated in different ways. Similarly, restoration of tumor suppressor miRNAs to their normal levels can be achieved using miRNA mimics. However, the use of miRNA mimics is limited by their reduced biostability and function. We have studied the hybridization thermodynamics of the miRNA 26a (11-mer, including the seed sequence) guide strand with the mRNA (11-mer) target strand in the absence and presence of AfPiwi protein. We have also inserted locked nucleic acids (LNAs) and 2'-O-methyl-modified nucleotides into the guide strand, in a walk-through manner, to assess their effect on the binding efficiency between guide and target RNA. Insertion of LNA and 2'-O-methyl-modified nucleotides into the guide strand helped to strengthen the binding affinity irrespective of the position of insertion. However, in the presence of AfPiwi protein, these modifications reduced the binding affinity to different extents depending on the position of insertion. Insertion of a modification leads to an increase in the enthalpic contribution with an increased unfavorable entropic contribution, which negatively compensates for the higher favorable enthalpy.

  4. Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.

    Science.gov (United States)

    Parker, Barry R.; McLeod, Robert J.

    1980-01-01

    An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)

  5. Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics

    International Nuclear Information System (INIS)

    Garcia-Morales, Vladimir; Cervera, Javier; Pellicer, Julio

    2005-01-01

    The equivalence between Tsallis thermodynamics and Hill's nanothermodynamics is established. The correct thermodynamic forces in Tsallis thermodynamics are pointed out. Through this connection we also find a general expression for the entropic index q which we illustrate with two physical examples, allowing in both cases to relate q to the underlying dynamics of the Hamiltonian systems

  6. Fluctuating Thermodynamics for Biological Processes

    Science.gov (United States)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  7. A Hamiltonian approach to Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)

    2016-10-15

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  8. A Hamiltonian approach to Thermodynamics

    International Nuclear Information System (INIS)

    Baldiotti, M.C.; Fresneda, R.; Molina, C.

    2016-01-01

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.

  9. New perspectives in thermodynamics

    International Nuclear Information System (INIS)

    Serrin, J.

    1986-01-01

    The last decade has seen a unity of method and approach in the foundations of thermodynamics and continuum mechanics, in which rigorous laws of thermodynamics have been combined with invariance notions of mechanics to produce new and deep understanding. Real progress has been made in finding a set of appropriate concepts for classical thermodynamics, by which energy conservation and the Clausius inequality can be given well-defined meanings for arbitrary processes and which allow an approach to the entropy concept which is free of traditional ambiguities. There has been, moreover, a careful scrutiny of long established but nevertheless not sharply defined concepts such as the Maxwell equal-area rule, the famous Gibbs phase rule, and the equivalence of work and heat. The thirteen papers in this volume accordingly gather together for the first time the many ideas and concepts which have raised classical thermodynamics from a heuristic and intuitive science to the level of precision presently demanded of other branches of mathematical physics

  10. Thermodynamics and statistical mechanics

    CERN Document Server

    Landsberg, Peter T

    1990-01-01

    Exceptionally articulate treatment combines precise mathematical style with strong physical intuition. Wide range of applications includes negative temperatures, negative heat capacities, special and general relativistic effects, black hole thermodynamics, gravitational collapse, more. Over 100 problems with worked solutions. Advanced undergraduate, graduate level. Table of applications. Useful formulas and other data.

  11. Thermodynamic stabilization of colloids

    NARCIS (Netherlands)

    Stol, R.J.; Bruyn, P.L. de

    An analysis is given of the conditions necessary for obtaining a thermodynamically stable dispersion (TSD) of solid particles in a continuous aqueous solution phase. The role of the adsorption of potential-determining ions at the planar interface in lowering the interfacial free energy (γ) to

  12. Chemical thermodynamics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Keszei, Ernoe [Budapest Univ. (Hungary). Dept. of Physical Chemistry

    2012-07-01

    Eminently suitable as a required textbook comprising complete material for or an undergraduate chemistry major course in chemical thermodynamics. Clearly explains details of formal derivations that students can easily follow and so master applied mathematical operations. Offers problems and solutions at the end of each chapter for self-test and self- or group study. This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual 'classical' introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students' understanding, Chemical Thermodynamics: - Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. - Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. - Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.

  13. Thermodynamics applied. Where? Why?

    NARCIS (Netherlands)

    Hirs, Gerard

    2003-01-01

    In recent years, thermodynamics has been applied in a number of new fields leading to a greater societal impact. This paper gives a survey of these new fields and the reasons why these applications are important. In addition, it is shown that the number of fields could be even greater in the future

  14. Thermodynamics, applied. : Where? why?

    NARCIS (Netherlands)

    Hirs, Gerard

    1999-01-01

    In recent years thermodynamics has been applied in a number of new fields leading to a greater societal impact. The paper gives a survey of these new fields and the reasons why these applications are important. In addition it is shown that the number of fields could be even greater in the future and

  15. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  16. On Teaching Thermodynamics

    Science.gov (United States)

    Debbasch, F.

    2011-01-01

    The logical structure of classical thermodynamics is presented in a modern, geometrical manner. The first and second law receive clear, operatively oriented statements and the Gibbs free energy extremum principle is fully discussed. Applications relevant to chemistry, such as phase transitions, dilute solutions theory and, in particular, the law…

  17. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  18. Thermodynamics Far from the Thermodynamic Limit.

    Science.gov (United States)

    de Miguel, Rodrigo; Rubí, J Miguel

    2017-11-16

    Understanding how small systems exchange energy with a heat bath is important to describe how their unique properties can be affected by the environment. In this contribution, we apply Landsberg's theory of temperature-dependent energy levels to describe the progressive thermalization of small systems as their spectrum is perturbed by a heat bath. We propose a mechanism whereby the small system undergoes a discrete series of excitations and isentropic spectrum adjustments leading to a final state of thermal equilibrium. This produces standard thermodynamic results without invoking system size. The thermal relaxation of a single harmonic oscillator is analyzed as a model example of a system with a quantized spectrum than can be embedded in a thermal environment. A description of how the thermal environment affects the spectrum of a small system can be the first step in using environmental factors, such as temperature, as parameters in the design and operation of nanosystem properties.

  19. Thermodynamics for the practicing engineer

    CERN Document Server

    Theodore, Louis; Vanvliet, Timothy

    2009-01-01

    This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

  20. Thermodynamic database development: Al-Am-Ga-Pu-U

    Energy Technology Data Exchange (ETDEWEB)

    Perron, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences; Turchi, P. E. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences; Landa, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences; Soderlind, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences

    2014-03-17

    The goal of this study is about the thermodynamic re-assessment of the Plutonium- Uranium (Pu-U) system as a first step leading to the development of a plutonium-based thermodynamic database (i.e., Pu with Al, Am, Ga, Mo, U…) with resulting phase diagrams and associated thermodynamic data. Indeed, phase stability trends and phase diagrams of multi-component nuclear materials are crucial for predicting properties and performance under normal, hypothetical or even accidental conditions. This work is based on a coupling between ab initio energetics, phenomenological thermodynamics models - based on the CALPHAD (CALculation of PHAse Diagrams) approach - and the use of the Thermo-Calc software, together with experimental data (whenever available). The present report summarizes results obtained (quarter period: 10/07/2013-01/07/2014) under the auspices of an agreement between CEA/DAM and NNSA/DP on cooperation in fundamental science supporting stockpile stewardship (P182).

  1. Choice of the thermodynamic variables

    International Nuclear Information System (INIS)

    Balian, R.

    1985-09-01

    Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr

  2. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.

    Science.gov (United States)

    Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung

    2016-01-01

    Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.

  3. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  4. Statistical Thermodynamics and Microscale Thermophysics

    Science.gov (United States)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  5. Fragile Thermodynamic Order

    International Nuclear Information System (INIS)

    Bernhoeft, N.; Lander, G.H.; Colineau, E.

    2003-01-01

    An asymmetric shift in the position of the magnetic Bragg peak with respect to the fiducial lattice has been observed by resonant X-ray scattering in a diverse series of antiferromagnetic compounds. This apparent violation of Bragg's law is interpreted in terms of a dynamically phased order parameter. We demonstrate the use of this effect as a novel probe of fragile or dynamic thermodynamic order in strongly correlated electronic systems. In particular, fresh light is shed on the paradoxical situation encountered in URu 2 Si 2 where the measured entropy gain on passing through T Neel is incompatible with the ground state moment estimated by neutron diffraction. The intrinsic space-time averaging of the probe used to characterise the thermodynamic macroscopic state may play a crucial and previously neglected role. In turn, this suggests the further use of resonant X-ray scattering in investigations of systems dominated by quantum fluctuations. (author)

  6. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  7. Thermodynamical quantum information sharing

    International Nuclear Information System (INIS)

    Wiesniak, M.; Vedral, V.; Brukner, C.

    2005-01-01

    Full text: Thermodynamical properties fully originate from classical physics and can be easily measured for macroscopic systems. On the other hand, entanglement is a widely spoken feature of quantum physics, which allows to perform certain task with efficiency unavailable with any classical resource. Therefore an interesting question is whether we can witness entanglement in a state of a macroscopic sample. We show, that some macroscopic properties, in particular magnetic susceptibility, can serve as an entanglement witnesses. We also study a mutual relation between magnetic susceptibility and magnetisation. Such a complementarity exhibits quantum information sharing between these two thermodynamical quantities. Magnetization expresses properties of individual spins, while susceptibility might reveal non-classical correlations as a witness. Therefore, a rapid change of one of these two quantities may mean a phase transition also in terms of entanglement. The complementarity relation is demonstrated by an analytical solution of an exemplary model. (author)

  8. A commentary on thermodynamics

    CERN Document Server

    Day, William Alan

    1988-01-01

    The aim of this book is to comment on, and clarify, the mathematical aspects of the theory of thermodynamics. The standard presentations of the subject are often beset by a number of obscurities associated with the words "state", "reversible", "irreversible", and "quasi-static". This book is written in the belief that such obscurities are best removed not by the formal axiomatization of thermodynamics, but by setting the theory in the wider context of a genuine field theory which incorporates the effects of heat conduction and intertia, and proving appropriate results about the governing differential equations of this field theory. Even in the simplest one-dimensional case it is a nontrivial task to carry through the details of this program, and many challenging problems remain open.

  9. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  10. Thermodynamics of clan production

    International Nuclear Information System (INIS)

    Giovannini, Alberto; Lupia, Sergio; Ugoccioni, Roberto

    2002-01-01

    Scenarios for particle production in the GeV and TeV regions are reviewed. The expected increase with the c.m. energy of the average number of clans for the soft component and the decrease for the semihard one indicate possible classical and quantum behavior of gluons, respectively. Clan thermodynamics, discussed in the paper, appears as the natural framework to deal with such phenomena

  11. Work reservoirs in thermodynamics

    International Nuclear Information System (INIS)

    Anacleto, Joaquim

    2010-01-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  12. Work reservoirs in thermodynamics

    Science.gov (United States)

    Anacleto, Joaquim

    2010-05-01

    We stress the usefulness of the work reservoir in the formalism of thermodynamics, in particular in the context of the first law. To elucidate its usefulness, the formalism is then applied to the Joule expansion and other peculiar and instructive experimental situations, clarifying the concepts of configuration and dissipative work. The ideas and discussions presented in this study are primarily intended for undergraduate students, but they might also be useful to graduate students, researchers and teachers.

  13. Thermodynamics of chaos

    International Nuclear Information System (INIS)

    Bonasera, A.; Latora, V.; Ploszajczak, M.

    1996-07-01

    The maximal Lyapunov exponents (LE) are calculated, starting from concepts of hydrodynamics. Analytical expressions for the LE can be found in ergodic limit by using results of the classical thermodynamics for a Boltzmann gas and for systems undergoing a second order phase transition. A recipe is given to measure LE in systems which might have a critical behavior, such as a Bose-Einstein condensation or a transition to a quark-gluon plasma. (author)

  14. Advanced thermodynamic (exergetic) analysis

    International Nuclear Information System (INIS)

    Tsatsaronis, G; Morosuk, T

    2012-01-01

    Exergy analysis is a powerful tool for developing, evaluating and improving an energy conversion system. However, the lack of a formal procedure in using the results obtained by an exergy analysis is one of the reasons for exergy analysis not being very popular among energy practitioners. Such a formal procedure cannot be developed as long as the interactions among components of the overall system are not being taken properly into account. Splitting the exergy destruction into unavoidable and avoidable parts in a component provides a realistic measure of the potential for improving the thermodynamic efficiency of this component. Alternatively splitting the exergy destruction into endogenous and exogenous parts provides information on the interactions among system components. Distinctions between avoidable and unavoidable exergy destruction on one side and endogenous and exogenous exergy destruction on the other side allow the engineer to focus on the thermodynamic inefficiencies that can be avoided and to consider the interactions among system components. The avoidable endogenous and the avoidable exogenous exergy destruction provide the best guidance for improving the thermodynamic performance of energy conversion systems.

  15. The discovery of thermodynamics

    Science.gov (United States)

    Weinberger, Peter

    2013-07-01

    Based on the idea that a scientific journal is also an "agora" (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clausius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like "heat", to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. Thermodynamics was the driving intellectual force behind the industrial revolution, behind the enormous social changes caused by this revolution. The history of thermodynamics is a fascinating story, which also gives insights into the mechanism that seem to govern science.

  16. Thermodynamic and structural of the water - dodecane - bis(ethyl-2-hexyl) phosphoric acid and its sodium salt; Etude thermodynamique et structurale du systeme: eau - dodecane - acide bis(ethyl-2 hexyl) phosphorique et de son sel de sodium

    Energy Technology Data Exchange (ETDEWEB)

    Lovera, Jacqueline

    1985-12-20

    This research thesis reports the study of the appearance and disappearance of the 'third phase' obtained during the salification of the bis(ethyl-2 hexyl) phosphoric acid (HDEHP) diluted in dodecane, by sodium aqueous solutions. After a large bibliographical study on the properties of the intervening compounds (extraction of metallic cation by the acid, parameters influencing the 'third phase' appearance, surfactant properties, direct and inverse micelles, formation of para-crystalline phases), the author presents chemical experimental methods: liquid-liquid extraction tests, tests by the synthetic way, preparation of reactants, dosing method, methods of chemical analysis). Then, she reports and discusses experimental results in terms of determination of phase diagrams at 25 C, of composition by weight of the third phase, of influence of the apolar diluent, and of influence of the electrolyte. Physical experimental methods are then presented (differential calorimetric analysis, NMR, small angle X-ray scattering, light scattering, polarised light microscopy, constrained phase microscopy, photography, infrared spectroscopy, conductometry, transmission electron micrography, volumetric mass measurements, surface and interface tension measurements, viscoelasticity measurements) and their results are discussed and interpreted [French] Nous etudions l'apparition et la disparition de la 'troisieme phase' obtenue lors de la salification de l'acide bis(ethyl-2 hexyl) phosphorique - HDEHP - dilue dans le dodecane, par des solutions aqueuses de soude. Nous obtenons cinq resultats experimentaux essentiels: a - dans le systeme etudie, la troisieme phase n'apparait qu'au dela de la salification. La phase qui apparait est une phase aqueuse de soude diluee, se separant de la phase organique en equilibre avec le dodecane presente a la salification exacte. b - la disparition de la troisieme phase s'effectue par recombinaison des deux phases organiques: la 'phase organique lourde

  17. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    Science.gov (United States)

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  18. Thermodynamical motivation of the Polish energy policy

    Directory of Open Access Journals (Sweden)

    Ziębik Andrzej

    2013-02-01

    Full Text Available Basing on the first and second law of thermodynamics the fundamental trends in the Polish energy policy are analysed, including the aspects of environmental protection. The thermodynamical improvement of real processes (reduction of exergy losses is the main way leading to an improvement of the effectivity of energy consumption. If the exergy loss is economically not justified, we have to do with an error from the viewpoint of the second law analysis. The paper contains a thermodynamical analysis of the ratio of final and primary energy, as well as the analysis of the thermo-ecological cost and index of sustainable development concerning primary energy. Analyses of thermo-ecological costs concerning electricity and centralized heat production have been also carried out. The effect of increasing the share of high-efficiency cogeneration has been analyzed, too. Attention has been paid to an improved efficiency of the transmission and distribution of electricity, which is of special importance from the viewpoint of the second law analysis. The improvement of the energy effectivity in industry was analyzed on the example of physical recuperation, being of special importance from the point of view of exergy analysis.

  19. Thermodynamics of sequence-specific binding of PNA to DNA

    DEFF Research Database (Denmark)

    Ratilainen, T; Holmén, A; Tuite, E

    2000-01-01

    For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and seq......For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes...

  20. Towards a common thermodynamic database for speciation models

    International Nuclear Information System (INIS)

    Lee, J. van der; Lomenech, C.

    2004-01-01

    Bio-geochemical speciation models and reactive transport models are reaching an operational stage, allowing simulation of complex dynamic experiments and description of field observations. For decades, the main focus has been on model performance but at present, the availability and reliability of thermodynamic data is the limiting factor of the models. Thermodynamic models applied to real and complex geochemical systems require much more extended thermodynamic databases with many minerals, colloidal phases, humic and fulvic acids, cementitious phases and (dissolved) organic complexing agents. Here we propose a methodological approach to achieve, ultimately, a common, operational database including the reactions and constants of these phases. Provided they are coherent with the general thermodynamic laws, sorption reactions are included as well. We therefore focus on sorption reactions and parameter values associated with specific sorption models. The case of sorption on goethite has been used to illustrate the way the methodology handles the problem of inconsistency and data quality. (orig.)

  1. Thermodynamics: The Unique Universal Science

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2017-11-01

    Full Text Available Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt, two of the most useful and general laws in all sciences. The first law of thermodynamics, according to which energy cannot be created or destroyed, merely transformed from one form to another, and the second law of thermodynamics, according to which the usable energy in an adiabatically isolated dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact far beyond science and engineering. In this paper, we trace the history of thermodynamics from its classical to its postmodern forms, and present a tutorial and didactic exposition of thermodynamics as it pertains to some of the deepest secrets of the universe.

  2. Thermodynamics of adaptive molecular resolution.

    Science.gov (United States)

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  3. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  4. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  5. Chemical thermodynamics of uranium

    International Nuclear Information System (INIS)

    Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.

    1992-01-01

    A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes

  6. Thermodynamics of phase transitions

    International Nuclear Information System (INIS)

    Cofta, H.

    1972-01-01

    The phenomenology of the phase transitions has been considered. The definitions of thermodynamic functions and parameters, as well as those of the phase transitions, are given and some of the relations between those quantities are discussed. The phase transitions classification proposed by Ehrenfest has been described. The most important features of phase transitions are discussed using the selected physical examples including the critical behaviour of ferromagnetic materials at the Curie temperature and antiferromagnetic materials at the Neel temperature. Some aspects of the Ehrenfest's equations, that have been derived, for the interfacial lines and surfaces are considered as well as the role the notion of interfaces. (S.B.)

  7. Thermodynamics of quark gas

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, S. N.

    1980-07-01

    The application of quantum statistical mechanics to a system of particles consisting of quarks is considered. Realistic theoretical investigations have been underway to understand highly dense objects such as white dwarfs and neutron stars. The various possibilities in the case of very high densities such as 10/sup 15/ or 10/sup 16/ g/cm/sup 3/ are enumerated. The thermodynamics of a phase transition from neutron matter phase to quark matter phase is analysed. Preliminary results based on quantum chromodynamics and other phenomenological models are reported.

  8. Time and Thermodynamics

    CERN Document Server

    Kirkland, Kyle

    2007-01-01

    Temperature is vital to the health and welfare of all living beings, and Earth's temperature varies considerably from place to place. Early humans could only live in warm areas such as the tropics. Although modern humans have the technology to keep their houses and offices warm even in cold environments, the growth and development of civilization has created unintentional effects. Cities are warmer than their surrounding regions, and on a global scale, Earth is experiencing rising temperatures. Thus, the science of thermodynamics offers an important tool to study these effects. "Time and

  9. Thermodynamics of Crystals

    Science.gov (United States)

    Navrotsky, Alexandra

    Thermodynamics of Crystals is a gold mine of a references bargain with more derivations of useful equations per dollar, or per page, than almost any other book I know. Useful to whom? To the solid state physicist, the solid state chemist working the geophysicist, the rock mechanic, the mineral physicist. Useful for what? For lattice dynamics, crystal potentials, band structure. For elegant, rigorous, and concise derivations of fundamental equations. For comparison of levels of approximation. For some data and physical insights, especially for metals and simple halides. This book is a reissue, with some changes and additions, of a 1970 treatise. It ages well, since the fundamentals do not change.

  10. Interfacial solvation thermodynamics

    International Nuclear Information System (INIS)

    Ben-Amotz, Dor

    2016-01-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air–water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute–solvent) and indirect (solvent–solvent) contributions to adsorption thermodynamics, of relevance to solvation at air–water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. (paper)

  11. Principles of thermodynamics

    CERN Document Server

    Kaufman, Myron

    2002-01-01

    Ideal for one- or two-semester courses that assume elementary knowledge of calculus, This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces. The author utilizes principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. The book provides end-of-chapter question and problem sets, some using Mathcad™ and Mathematica™; a useful glossary containing important symbols, definitions, and units; and appendices covering multivariable calculus and valuable numerical methods.

  12. Gravitation, Thermodynamics, and Quantum Theory

    OpenAIRE

    Wald, Robert M.

    1999-01-01

    During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...

  13. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  14. Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations

    Directory of Open Access Journals (Sweden)

    Jen-Tsung Hsiang

    2018-05-01

    Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for

  15. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measurements...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...

  16. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  17. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  18. Thermodynamics of geothermal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, P.S.Z.

    1981-03-01

    A model to predict the thermodynamic properties of geothermal brines, based on a minimum amount of experimental data on a few key systems, is tested. Volumetric properties of aqueous sodium chloride, taken from the literature, are represented by a parametric equation over the range 0 to 300{sup 0}C and 1 bar to 1 kbar. Density measurements at 20 bar needed to complete the volumetric description also are presented. The pressure dependence of activity and thermal properties, derived from the volumetric equation, can be used to complete an equation of state for sodium chloride solutions. A flow calorimeter, used to obtain heat capacity data at high temperatures and pressures, is described. Heat capacity measurements, from 30 to 200{sup 0}C and 1 bar to 200 bar, are used to derive values for the activity coefficient and other thermodynamic properties of sodium sulfate solutions as a function of temperature. Literature data on the solubility of gypsum in mixed electrolyte solutions have been used to evaluate model parameters for calculating gypsum solubility in seawater and natural brines. Predictions of strontium and barium sulfate solubility in seawater also are given.

  19. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  20. Chemical thermodynamic representation of

    International Nuclear Information System (INIS)

    Lindemer, T.B.; Besmann, T.M.

    1984-01-01

    The entire data base for the dependence of the nonstoichiometry, x, on temperature and chemical potential of oxygen (oxygen potential) was retrieved from the literature and represented. This data base was interpreted by least-squares analysis using equations derived from the classical thermodynamic theory for the solid solution of a solute in a solvent. For hyperstoichiometric oxide at oxygen potentials more positive than -266700 + 16.5T kJ/mol, the data were best represented by a [UO 2 ]-[U 3 O 7 ] solution. For O/U ratios above 2 and oxygen potentials below this boundary, a [UO 2 ]-[U 2 O 4 . 5 ] solution represented the data. The data were represented by a [UO 2 ]-[U 1 / 3 ] solution. The resulting equations represent the experimental ln(PO 2 ) - ln(x) behavior and can be used in thermodynamic calculations to predict phase boundary compositions consistent with the literature. Collectively, the present analysis permits a mathematical representation of the behavior of the total data base

  1. Light cone thermodynamics

    Science.gov (United States)

    De Lorenzo, Tommaso; Perez, Alejandro

    2018-02-01

    We show that null surfaces defined by the outgoing and infalling wave fronts emanating from and arriving at a sphere in Minkowski spacetime have thermodynamical properties that are in strict formal correspondence with those of black hole horizons in curved spacetimes. Such null surfaces, made of pieces of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They can be extremal and nonextremal depending on the radius of the shining sphere. Such conformal Killing horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of the generalization of surface gravity for conformal Killing horizons. Exchanges of conformally invariant energy across the horizon are described by a first law where entropy changes are given by 1 /(4 ℓp2) of the changes of a geometric quantity with the meaning of horizon area in a suitable conformal frame. These conformal horizons satisfy the zeroth to the third laws of thermodynamics in an appropriate way. In the extremal case they become light cones associated with a single event; these have vanishing temperature as well as vanishing entropy.

  2. Thermodynamics and statistical physics. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schnakenberg, J.

    2002-01-01

    This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas

  3. Thermodynamic Properties and Thermodynamic Geometries of Black p-Branes

    International Nuclear Information System (INIS)

    Yi-Huan Wei; Xiao Cui; Jia-Xin Zhao

    2016-01-01

    The heat capacity and the electric capacitance of the black p-branes (BPB) are generally defined, then they are calculated for some special processes. It is found that the Ruppeiner thermodynamic geometry of BPB is flat. Finally, we give some discussions for the flatness of the Ruppeiner thermodynamic geometry of BPB and some black holes. (paper)

  4. Thermodynamic properties of trizirconium tetraphosphate

    International Nuclear Information System (INIS)

    Pet'kov, V.I.; Asabina, E.A.; Kir'yanov, K.V.; Markin, A.V.; Smirnova, N.N.; Kitaev, D.B.; Kovalsky, A.M.

    2005-01-01

    The heat capacity measurements of the crystalline trizirconium tetraphosphate were carried out in a low-temperature adiabatic vacuum calorimeter between T=(7 and 350) K and in dynamic calorimeter between T=(330 and 640) K. The experimental data were used to calculate the standard (p 0 =0.1 MPa) thermodynamic functions Cp,m-bar /R,Δ0THm-bar /RT,Δ0TSm-bar /R,andΦm-bar =Δ0TSm-bar -Δ0THm-bar /T (where R is the universal gas constant) in the range T->(0 to 640) K. The fractal dimension D fr for the crystalline phosphate Zr 3 (PO 4 ) 4 between T=(20 and 40) K was evaluated. From hydrofluoric acid solution microcalorimetry, the enthalpy of solution of Zr 3 (PO 4 ) 4 at T=298.15 K was determined and the standard molar enthalpy of formation was derived. By combining the data obtained by the two techniques, the standard molar Gibbs function of formation of Zr 3 (PO 4 ) 4 at T=298.15 K was calculated

  5. Trend analysis

    International Nuclear Information System (INIS)

    Smith, M.; Jones, D.R.

    1991-01-01

    The goal of exploration is to find reserves that will earn an adequate rate of return on the capital invested. Neither exploration nor economics is an exact science. The authors must therefore explore in those trends (plays) that have the highest probability of achieving this goal. Trend analysis is a technique for organizing the available data to make these strategic exploration decisions objectively and is in conformance with their goals and risk attitudes. Trend analysis differs from resource estimation in its purpose. It seeks to determine the probability of economic success for an exploration program, not the ultimate results of the total industry effort. Thus the recent past is assumed to be the best estimate of the exploration probabilities for the near future. This information is combined with economic forecasts. The computer software tools necessary for trend analysis are (1) Information data base - requirements and sources. (2) Data conditioning program - assignment to trends, correction of errors, and conversion into usable form. (3) Statistical processing program - calculation of probability of success and discovery size probability distribution. (4) Analytical processing - Monte Carlo simulation to develop the probability distribution of the economic return/investment ratio for a trend. Limited capital (short-run) effects are analyzed using the Gambler's Ruin concept in the Monte Carlo simulation and by a short-cut method. Multiple trend analysis is concerned with comparing and ranking trends, allocating funds among acceptable trends, and characterizing program risk by using risk profiles. In summary, trend analysis is a reality check for long-range exploration planning

  6. Thermodynamic database for proteins: features and applications.

    Science.gov (United States)

    Gromiha, M Michael; Sarai, Akinori

    2010-01-01

    We have developed a thermodynamic database for proteins and mutants, ProTherm, which is a collection of a large number of thermodynamic data on protein stability along with the sequence and structure information, experimental methods and conditions, and literature information. This is a valuable resource for understanding/predicting the stability of proteins, and it can be accessible at http://www.gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html . ProTherm has several features including various search, display, and sorting options and visualization tools. We have analyzed the data in ProTherm to examine the relationship among thermodynamics, structure, and function of proteins. We describe the progress on the development of methods for understanding/predicting protein stability, such as (i) relationship between the stability of protein mutants and amino acid properties, (ii) average assignment method, (iii) empirical energy functions, (iv) torsion, distance, and contact potentials, and (v) machine learning techniques. The list of online resources for predicting protein stability has also been provided.

  7. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  8. Fundamental functions in equilibrium thermodynamics

    NARCIS (Netherlands)

    Horst, H.J. ter

    In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using

  9. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  10. Thermodynamic study of selected monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Schröder, B.

    2013-01-01

    Roč. 60, MAY (2013), 117-125 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * pinene * vapor pressure * heat capacity * vaporization and sublimation enthalpy * ideal - gas thermodynamic Subject RIV: BJ - Thermodynamics Impact factor: 2.423, year: 2013

  11. Thermodynamic optimization of power plants

    NARCIS (Netherlands)

    Haseli, Y.

    2011-01-01

    Thermodynamic Optimization of Power Plants aims to establish and illustrate comparative multi-criteria optimization of various models and configurations of power plants. It intends to show what optimization objectives one may define on the basis of the thermodynamic laws, and how they can be applied

  12. Ch. 33 Modeling: Computational Thermodynamics

    International Nuclear Information System (INIS)

    Besmann, Theodore M.

    2012-01-01

    This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

  13. Thermodynamics of urban population flows.

    Science.gov (United States)

    Hernando, A; Plastino, A

    2012-12-01

    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics.

  14. Thermodynamics from Car to Kitchen

    Science.gov (United States)

    Auty, Geoff

    2014-01-01

    The historical background to the laws of thermodynamics is explained using examples we can all observe in the world around us, focusing on motorised transport, refrigeration and solar heating. This is not to be considered as an academic article. The purpose is to improve understanding of thermodynamics rather than impart new knowledge, and for…

  15. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  16. Thermodynamics in Loop Quantum Cosmology

    International Nuclear Information System (INIS)

    Li, L.F.; Zhu, J.Y.

    2009-01-01

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  17. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  18. Applied statistical thermodynamics

    CERN Document Server

    Lucas, Klaus

    1991-01-01

    The book guides the reader from the foundations of statisti- cal thermodynamics including the theory of intermolecular forces to modern computer-aided applications in chemical en- gineering and physical chemistry. The approach is new. The foundations of quantum and statistical mechanics are presen- ted in a simple way and their applications to the prediction of fluid phase behavior of real systems are demonstrated. A particular effort is made to introduce the reader to expli- cit formulations of intermolecular interaction models and to show how these models influence the properties of fluid sy- stems. The established methods of statistical mechanics - computer simulation, perturbation theory, and numerical in- tegration - are discussed in a style appropriate for newcom- ers and are extensively applied. Numerous worked examples illustrate how practical calculations should be carried out.

  19. Thermodynamic properties of vanadium

    International Nuclear Information System (INIS)

    Desai, P.D.

    1986-01-01

    This work reviews and discusses the data and information on the various thermodynamic properties of vanadium available through March 1985. These include the heat capacity and enthalpy, enthalpy of melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed, and the recommended values for heat capacity, enthalpy, entropy, and Gibbs energy function covering the temperature range from 1 to 3800 K have been generated. These values are referred to tempertures based on IPTS-1968. The units used for various properties are joules per mole (J. mol - 1 ). The estimated uncertainties in the heat capacity are +/-3% below 15 K, +/-10% from 15 to 150 K, +/-3% from 150 to 298.15 K, +/-2% from 298.15 to 1000 K, +/-3% from 1000 to the melting point (2202 K), and +/-5% in the liquid region

  20. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  1. THERMODYNAMICS OF ETHANOLAMMONIUM CATIONES DISSOCIATION IN AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    R. E. Khoma

    2017-03-01

    Full Text Available The literature data on the thermodynamics of ethanolamines onium cations dissociation have been systematized and generalized. The correlation between these cations dissociation thermodynamic functions (DH and DS and physicochemical properties (Tmp., Tbp, Pp, lgPow et al. has been revealed. There was a correlation between lipophilicity determined experimentally and calculated by QSAR. For monoethanolammonium, diethanolammonium, and their N-methyl and N-ethyl derivatives it was found dissociation thermodynamic functions to depend on bases lgPow. Acid-base dissociation of TRIS and triethanolamine onium cations does not correspond to said relationship because TRIS (primary amine, TEA (tertiary amine act differently on aqueous solutions of SO2. TEA, unlike MEA, DEA and MMEA, has a salting out effect towards sulfur dioxide because of competing hydration that promotes sulfite «onium» salts hydrolysis. TRIS promotes S(IV → S(VI sulphooxidation, in contrast to another ethanolamines. Enthalpy–enthropy compensation with isothermodynamic temperature 303 K has been recorded. The revealed correlations may be useful in developing of procedures for air sanitary cleaning from acidic gases; chemisorbents immobilized for gas and ion exchange chromatography; potentiometric methods for fluorocomplex acids determinations. The use of monoethanolamine is most promising to obtain chemisorbents because the thermodynamic functions of its onium cation acid-base dissociation are least dependent on temperature compared to other etanolammonium cations.

  2. Thermodynamics of Fluid Polyamorphism

    Directory of Open Access Journals (Sweden)

    Mikhail A. Anisimov

    2018-01-01

    Full Text Available Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

  3. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    Science.gov (United States)

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society

  4. Development of a thermodynamic data base for selected heavy metals

    International Nuclear Information System (INIS)

    Hageman, Sven; Scharge, Tina; Willms, Thomas

    2015-07-01

    The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.

  5. Discriminating Properties of Alkali Metal Ions Towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies.

    Science.gov (United States)

    Rodgers, Mary T; Armentrout, Peter B

    2016-01-01

    Quantitative insight into the structures and thermodynamics of alkali metal cations interacting with biological molecules can be obtained from studies in the gas phase combined with theoretical work. In this chapter, the fundamentals of the experimental and theoretical techniques are first summarized and results for such work on complexes of alkali metal cations with amino acids, small peptides, and nucleobases are reviewed. Periodic trends in how these interactions vary as the alkali metal cations get heavier are highlighted.

  6. Thermodynamic properties of vitamin B_9

    International Nuclear Information System (INIS)

    Knyazev, A.V.; Emel’yanenko, V.N.; Shipilova, A.S.; Lelet, M.I.; Gusarova, E.V.; Knyazeva, S.S.; Verevkin, S.P.

    2016-01-01

    Highlights: • Temperature dependence of heat capacity of vitamin B_9 has been measured by precision adiabatic vacuum calorimetry. • The thermodynamic functions of the vitamin B_9 have been determined for the range from T → 0 to 333 K. • The character of heterodynamics of structure was detected. • Enthalpy of combustion of the vitamin B_9 was measured using high-precision combustion calorimeter. - Abstract: In the present work temperature dependence of heat capacity of vitamin B_9 (folic acid dihydrate) has been measured for the first time in the range from (6 to 333) K by precision adiabatic vacuum calorimetry. Based on the experimental values, the thermodynamic functions of the vitamin B_9, namely, the heat capacity, enthalpy H°(T) − H°(0), entropy S°(T) − S°(0) and Gibbs function G°(T) − H°(0) have been determined for the range from T → (0 to 333) K. The value of the fractal dimension D in the function of multifractal generalization of Debye’s theory of the heat capacity of solids was estimated and the character of heterodynamics of structure was detected. Enthalpy of combustion (−8942.8 ± 7.5) kJ·mol"−"1 of the vitamin B_9 was measured for the first time using a high-precision combustion calorimeter. The standard molar enthalpy of formation in the crystalline state (−1821.0 ± 7.9) kJ·mol"−"1 of B_9 at 298.15 K was derived from the combustion experiments. Using a combination of the adiabatic and combustion calorimetry results, the thermodynamic functions of formation of the folic acid dihydrate at T = 298.15 K and p = 0.1 MPa have been calculated. The low-temperature X-ray diffraction was used for the determination of coefficients of thermal expansion.

  7. Statistical Thermodynamics of Disperse Systems

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    1996-01-01

    Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...

  8. Thermodynamic light on black holes

    International Nuclear Information System (INIS)

    Davies, P.

    1977-01-01

    The existence of black holes and their relevance to our understanding of the nature of space and time are considered, with especial reference to the application of thermodynamic arguments which can reveal their energy-transfer processes in a new light. The application of thermodynamics to strongly gravitating systems promises some fascinating new insights into the nature of gravity. Situations can occur during gravitational collapse in which existing physics breaks down. Under these circumstances, the application of universal thermodynamical principles might be our only guide. (U.K.)

  9. Thermodynamic metrics and optimal paths.

    Science.gov (United States)

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  10. Some aspects of plasma thermodynamics

    International Nuclear Information System (INIS)

    Gorgoraki, V.I.

    1986-01-01

    The objective reasons which have inhibited the development of a plasma-thermodynamics theory are discussed and the authors formulate the fundamental principles which can be the basis of a common plasma-thermodynamics theory. Two kinds of thermodynamic equilibrium plasmas are discussed, an isothermal plasma and a nonisothermal plasma. An isothermal plasma is a high-temperature plasma; the Saha-Eggert equation describes its behavior. A nonisothermal plasma is a low-temperature plasma, and the reactions taking place therein are purely plasma-chemical. The ionization equilibrium and the composition of such a plasma can be found with the aid of the equations presented in this paper

  11. Practical chemical thermodynamics for geoscientists

    CERN Document Server

    Fegley, Bruce, Jr

    2012-01-01

    Practical Chemical Thermodynamics for Geoscientists covers classical chemical thermodynamics and focuses on applications to practical problems in the geosciences, environmental sciences, and planetary sciences. This book will provide a strong theoretical foundation for students, while also proving beneficial for earth and planetary scientists seeking a review of thermodynamic principles and their application to a specific problem. Strong theoretical foundation and emphasis on applications Numerous worked examples in each chapter Brief historical summaries and biographies of key thermodynamicists-including their fundamental research and discoveries Extensive references to relevant literature.

  12. Thermodynamic analysis of biochemical systems

    International Nuclear Information System (INIS)

    Yuan, Y.; Fan, L.T.; Shieh, J.H.

    1989-01-01

    Introduction of the concepts of the availability (or exergy), datum level materials, and the dead state has been regarded as some of the most significant recent developments in classical thermodynamics. Not only the available energy balance but also the material and energy balances of a biological system may be established in reference to the datum level materials in the dead state or environment. In this paper these concepts are illustrated with two examples of fermentation and are shown to be useful in identifying sources of thermodynamic inefficiency, thereby leading naturally to the rational definition of thermodynamic efficiency of a biochemical process

  13. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Directory of Open Access Journals (Sweden)

    Fine Eugene J

    2007-07-01

    Full Text Available Abstract Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models, but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie". Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1 dietary carbohydrate, via its

  14. Thermodynamical string fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden); School of Physics and Astronomy, Monash University,Wellington Road, Clayton, VIC-3800 (Australia); Sjöstrand, Torbjörn [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden)

    2017-01-31

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  15. Thermodynamic Calculations for Systems Biocatalysis

    DEFF Research Database (Denmark)

    Abu, Rohana; Gundersen, Maria T.; Woodley, John M.

    2015-01-01

    the transamination of a pro-chiral ketone into a chiral amine (interesting in many pharmaceutical applications). Here, the products are often less energetically stable than the reactants, meaning that the reaction may be thermodynamically unfavourable. As in nature, such thermodynamically-challenged reactions can...... on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...

  16. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  17. Thermodynamic analysis of PBMR plant

    International Nuclear Information System (INIS)

    Sen, S.; Kadiroglu, O.K.

    2002-01-01

    The thermodynamic analysis of a PBMR is presented for various pressures and temperatures values. The design parameters of the components of the power plant are calculated and an optimum cycle for the maximum thermal efficiency is sought for. (author)

  18. Thermodynamic efficiency of solar concentrators.

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2010-04-26

    The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. We discuss consequences of Fermat's principle of geometrical optics and review étendue dilution and optical loss mechanisms associated with nonimaging concentrators. We develop an expression for the optical thermodynamic efficiency which combines the first and second laws of thermodynamics. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. We provide examples illustrating the use of this new metric for concentrating photovoltaic systems for solar power applications, and in particular show how skewness mismatch limits the attainable optical thermodynamic efficiency.

  19. Thermodynamic origin of nonimaging optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2016-10-01

    Nonimaging optics is the theory of thermodynamically efficient optics and as such depends more on thermodynamics than on optics. Hence, in this paper, a condition for the "best" design is proposed based on purely thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems. This way of looking at the problem of efficient concentration depends on probabilities, the ingredients of entropy and information theory, while "optics" in the conventional sense recedes into the background. Much of the paper is pedagogical and retrospective. Some of the development of flowline designs will be introduced at the end and the connection between the thermodynamics and flowline design will be graphically presented. We will conclude with some speculative directions of where the ideas might lead.

  20. First principles thermodynamics of alloys

    International Nuclear Information System (INIS)

    Ducastelle, F.

    1993-01-01

    We present a brief report on the methods of solid state physics (electronic structure, statistical thermodynamics) that allow us to discuss the phase stability of alloys and to determine their phase diagrams. (orig.)

  1. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    Boissonnet, G.; Seiler, J.M.

    2003-01-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H 2 . The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H 2 . An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  2. Thermodynamics from concepts to applications

    CERN Document Server

    Shavit, Arthur

    2008-01-01

    The book presents a logical methodology for solving problems in the context of conservation laws and property tables or equations. The authors elucidate the terms around which thermodynamics has historically developed, such as work, heat, temperature, energy, and entropy. Using a pedagogical approach that builds from basic principles to laws and eventually corollaries of the laws, the text enables students to think in clear and correct thermodynamic terms as well as solve real engineering problems.

  3. Generalization of Gibbs Entropy and Thermodynamic Relation

    OpenAIRE

    Park, Jun Chul

    2010-01-01

    In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.

  4. Thermodynamics of firms' growth

    Science.gov (United States)

    Zambrano, Eduardo; Hernando, Alberto; Hernando, Ricardo; Plastino, Angelo

    2015-01-01

    The distribution of firms' growth and firms' sizes is a topic under intense scrutiny. In this paper, we show that a thermodynamic model based on the maximum entropy principle, with dynamical prior information, can be constructed that adequately describes the dynamics and distribution of firms' growth. Our theoretical framework is tested against a comprehensive database of Spanish firms, which covers, to a very large extent, Spain's economic activity, with a total of 1 155 142 firms evolving along a full decade. We show that the empirical exponent of Pareto's law, a rule often observed in the rank distribution of large-size firms, is explained by the capacity of economic system for creating/destroying firms, and that can be used to measure the health of a capitalist-based economy. Indeed, our model predicts that when the exponent is larger than 1, creation of firms is favoured; when it is smaller than 1, destruction of firms is favoured instead; and when it equals 1 (matching Zipf's law), the system is in a full macroeconomic equilibrium, entailing ‘free’ creation and/or destruction of firms. For medium and smaller firm sizes, the dynamical regime changes, the whole distribution can no longer be fitted to a single simple analytical form and numerical prediction is required. Our model constitutes the basis for a full predictive framework regarding the economic evolution of an ensemble of firms. Such a structure can be potentially used to develop simulations and test hypothetical scenarios, such as economic crisis or the response to specific policy measures. PMID:26510828

  5. The acidic functional groups of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  6. Skiing trends

    Science.gov (United States)

    Charles R. Goeldner; Stacy Standley

    1980-01-01

    A brief historical overview of skiing is presented, followed by a review of factors such as energy, population trends, income, sex, occupation and attitudes which affect the future of skiing. A. C. Neilson's Sports Participation Surveys show that skiing is the second fastest growing sport in the country. Skiing Magazine's study indicates there are...

  7. Billing Trends

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Billing Trends. Internet access: Bandwidth becoming analogous to electric power. Only maximum capacity (load) is fixed; Charges based on usage (units). Leased line bandwidth: Billing analogous to phone calls. But bandwidth is variable.

  8. Food Trends.

    Science.gov (United States)

    Schwenk, Nancy E.

    1991-01-01

    An overall perspective on trends in food consumption is presented. Nutrition awareness is at an all-time high; consumption is influenced by changes in disposable income, availability of convenience foods, smaller household size, and an increasing proportion of ethnic minorities in the population. (18 references) (LB)

  9. Design of thermodynamic experiments and analyses of thermodynamic relationships

    International Nuclear Information System (INIS)

    Oezer Arnas, A.

    2009-01-01

    In teaching of thermodynamics, a certain textbook is followed internationally whatever language it is written in. However, although some do a very good job, most are not correct and precise and furthermore NONE discuss at all the need for and importance of designing thermodynamic experiments although experimentation in engineering is considered to be the back bone of analyses, not pursued much these days, or numerical studies, so very predominant these days. Here some thermodynamic experiments along with physical interpretation of phenomena through simple mathematics will be discussed that are straightforward, meaningful and which can be performed by any undergraduate/graduate student. Another important topic for discussion is the fact that the thermodynamic state principle demands uniqueness of results. It has been found in literature that this fact is not well understood by those who attempt to apply it loosely and end up with questionable results. Thermodynamics is the fundamental science that clarifies all these issues if well understood, applied and interpreted. The attempt of this paper is to clarify these situations and offer alternative methods for analyses. (author)

  10. Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation

    DEFF Research Database (Denmark)

    Pissarra, P.D.; Nielsen, Jens Bredal

    1997-01-01

    This paper describes the thermodynamic analysis of pathways related to penicillin production in Penicillium chrysogenum. First a thermodynamic feasibility analysis is performed of the L-lysine pathway of which one of the precursors for penicillin biosynthesis (alpha-aminoadipic acid......) is an intermediate. It is found that the L-lysine pathway in P. chrysogenum is thermodynamically feasible and that the calculated standard Gibbs free energy values of the two enzymes controlling the pathway flux indicate that they operate far from equilibrium. It is therefore proposed that the regulation of alpha......-aminoadipate reductase by lysine is important to maintain a high concentration of alpha-aminoadipate in order to direct the carbon flux to penicillin production. Secondly the changes in Gibbs free energy in the penicillin biosynthetic pathway during fed-batch cultivation were studied. The analysis showed that all...

  11. Chemical Thermodynamics Vol. 12 - Chemical Thermodynamics of tin

    International Nuclear Information System (INIS)

    Gamsjaeger, Heinz; GAJDA, Tamas; Sangster, James; Saxena, Surendra K.; Voigt, Wolfgang; Perrone, Jane

    2012-01-01

    This is the 12th volume of a series of expert reviews of the chemical thermodynamics of key chemical elements in nuclear technology and waste management. This volume is devoted to the inorganic species and compounds of tin. The tables contained in Chapters III and IV list the currently selected thermodynamic values within the NEA TDB Project. The database system developed at the NEA Data Bank, see Section II.6, assures consistency among all the selected and auxiliary data sets. The recommended thermodynamic data are the result of a critical assessment of published information. The values in the auxiliary data set, see Tables IV-1 and IV-2, have been adopted from CODATA key values or have been critically reviewed in this or earlier volumes of the series

  12. Industry trends

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This section discusses the US energy supply and demand situation including projections for energy use, the clean coal industry (constraints of regulation on investment in new technologies, technology trends, and current pollution control efficiency), opportunities in clean coal technology (Phase 2 requirements of Title 4 of the Clean Air Act, scrubber demand for lime and limestone, and demand for low sulfur coal), and the international market of clean coal technologies

  13. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  14. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  15. Thermodynamic consideration on chlorination of uraniferous phosphorite

    International Nuclear Information System (INIS)

    Itagaki, Kimio; Tozawa, Kazuteru; Taki, Tomihiro; Hirono, Shuichiro.

    1989-01-01

    The uranium ore of low grade which has apatite as a main mineral, but is different from the phosphorite used as the raw material for phosphoric acid production, exists in large amount in South America and Africa continents, and the importance of its effective utilization as future uranium resources is recognized. The Power Reactor and Nuclear Fuel Development Corp. took up the establishment of the treatment techniques to make this ore into resources as the subject of a project, and proposed the process of volatilizing the uranium in the ore as the chloride and recovering it, and at present, it attempts the experiment on the chlorination treatment. In this paper, the thermodynamic examination on the feasibility of this process, the optimum condition for leaving calcium existing in a large amount in the ore as the phosphate without chlorination and recovering only uranium by chlorination and volatilization, the phase reaction equilibrium chart and the calculation method according to thermodynamics concerning the behavior of chlorination of accompanying elements such as iron, silicon and aluminum and the effect of moisture in the ore are reported. (K.I.)

  16. The Thermodynamic Machinery of Life

    CERN Document Server

    Kurzynski, Michal

    2006-01-01

    Living organisms are open thermodynamic systems whose functional structure has developed and been kinetically frozen during the historical process of biological evolution. A thermodynamics of both nonequilibrium and complex systems is needed for their description. In this book, the foundations of such a thermodynamics are presented. Biological processes at the cellular level are considered as coupled chemical reactions and transport processes across internal and the cytoplasmic membrane. All these processes are catalyzed by specific enzymes hence the kinetics of enzymatic catalysis and its control are described here in detail. The coupling of several processes through a common enzyme is considered in the context of free energy or signal transduction. Special attention is paid to evidence for a rich stochastic internal dynamics of native proteins and its possible role in the control of enzyme activity and in the action of biological molecular machines.

  17. Thermodynamics a complete undergraduate course

    CERN Document Server

    Steane, Andrew M

    2016-01-01

    This is an undergraduate textbook in thermodynamics—the science of heat, work, temperature, and entropy. The text presents thermodynamics in and of itself, as an elegant and powerful set of ideas and methods. These methods open the way to understanding a very wide range of phenomena in physics, chemistry, engineering, and biology. Starting out from an introduction of concepts at first year undergraduate level, the roles of temperature, internal energy, and entropy are explained via the laws of thermodynamics. The text employs a combination of examples, exercises, and careful discussion, with a view to conveying the feel of the subject as well as avoiding common misunderstandings. The Feynman–Smuluchowski ratchet, Szilard’s engine, and Maxwell’s daemon are used to elucidate entropy and the second law. Free energy and thermodynamic potentials are discussed at length, with applications to solids as well as fluids and flow processes. Thermal radiation is discussed, and the main ideas significant to global...

  18. Nanofluidics thermodynamic and transport properties

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  19. Development of Thermodynamic Conceptual Evaluation

    Science.gov (United States)

    Talaeb, P.; Wattanakasiwich, P.

    2010-07-01

    This research aims to develop a test for assessing student understanding of fundamental principles in thermodynamics. Misconceptions found from previous physics education research were used to develop the test. Its topics include heat and temperature, the zeroth and the first law of thermodynamics, and the thermodynamics processes. The content validity was analyzed by three physics experts. Then the test was administered to freshmen, sophomores and juniors majored in physics in order to determine item difficulties and item discrimination of the test. A few items were eliminated from the test. Finally, the test will be administered to students taking Physics I course in order to evaluate the effectiveness of Interactive Lecture Demonstrations that will be used for the first time at Chiang Mai University.

  20. Statistical thermodynamics of clustered populations.

    Science.gov (United States)

    Matsoukas, Themis

    2014-08-01

    We present a thermodynamic theory for a generic population of M individuals distributed into N groups (clusters). We construct the ensemble of all distributions with fixed M and N, introduce a selection functional that embodies the physics that governs the population, and obtain the distribution that emerges in the scaling limit as the most probable among all distributions consistent with the given physics. We develop the thermodynamics of the ensemble and establish a rigorous mapping to regular thermodynamics. We treat the emergence of a so-called giant component as a formal phase transition and show that the criteria for its emergence are entirely analogous to the equilibrium conditions in molecular systems. We demonstrate the theory by an analytic model and confirm the predictions by Monte Carlo simulation.

  1. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1983-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. In this chapter the authors briefly examine the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants

  2. Thermodynamics of nuclear power systems

    International Nuclear Information System (INIS)

    Anno, J.

    1977-01-01

    The conversion of nuclear energy to useful work follows essentially the same course as the conversion of thermal energy from fossil fuel to work. The thermal energy released in the reactor core is first transferred to the primary coolant which then generally transfers its heat to a secondary fluid. The secondary fluid serves as the working fluid in a heat engine. The author briefly examines the thermodynamic principles governing the operation of such engines, the major thermodynamic cycles used, and their application to nuclear power plants. (Auth.)

  3. Placement by thermodynamic simulated annealing

    International Nuclear Information System (INIS)

    Vicente, Juan de; Lanchares, Juan; Hermida, Roman

    2003-01-01

    Combinatorial optimization problems arise in different fields of science and engineering. There exist some general techniques coping with these problems such as simulated annealing (SA). In spite of SA success, it usually requires costly experimental studies in fine tuning the most suitable annealing schedule. In this Letter, the classical integrated circuit placement problem is faced by Thermodynamic Simulated Annealing (TSA). TSA provides a new annealing schedule derived from thermodynamic laws. Unlike SA, temperature in TSA is free to evolve and its value is continuously updated from the variation of state functions as the internal energy and entropy. Thereby, TSA achieves the high quality results of SA while providing interesting adaptive features

  4. Thermodynamics of Dipolar Chain Systems

    DEFF Research Database (Denmark)

    R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.

    2012-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects...... numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments....

  5. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  6. Thermodynamics of de Sitter universes

    International Nuclear Information System (INIS)

    Huang Chaoguang; Liu Liao; Wang Bobo

    2002-01-01

    It is shown that the first law of thermodynamics can be applied to the de Sitter universe to relate its vacuum energy, pressure, entropy of horizon, chemical potential, etc., when the cosmological constant changes due to the fluctuation of the vacuum or other reasons. The second law should be reformulated in the form that the spontaneous decay of the vacuum never makes the entropy of the de Sitter universe decrease. The third law of thermodynamics, applying to the de Sitter universe, implies that the cosmological constant cannot reach zero by finite physical processes. The relation to the holographic principle is also briefly discussed

  7. Nuclear thermodynamics below particle threshold

    International Nuclear Information System (INIS)

    Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.

    2005-01-01

    From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems

  8. Peaceful nuclear explosions and thermodynamics

    International Nuclear Information System (INIS)

    Prieto, F.E.

    1975-01-01

    Some theoretical advances in the thermodynamics of very high pressures are reviewed. A universal (system-independent) formulation of the thermodynamics is sketched, and some of the equations more frequently used are written in system-independent form. Among these equations are: Hugoniot pressure and temperature as functions of volume; the Mie-Gruneisen equation; and an explicit form for the equation of state. It is also shown that this formalism can be used to interpret and predict results from peaceful nuclear explosions. (author)

  9. Multi-pressure boiler thermodynamics analysis code

    International Nuclear Information System (INIS)

    Lorenzoni, G.

    1992-01-01

    A new method and the relative FORTRAN program for the thermodynamics design analysis of a multipressure boiler are reported. This method permits the thermodynamics design optimization with regard to total exergy production and a preliminary costs

  10. On thermodynamic limits of entropy densities

    NARCIS (Netherlands)

    Moriya, H; Van Enter, A

    We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.

  11. Quantum and thermodynamic aspects of Black Holes

    International Nuclear Information System (INIS)

    Sande e Lemos, J.P. de; Videira, A.L.L.

    1983-01-01

    The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author) [pt

  12. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  13. Thermodynamic efficiency of nonimaging concentrators

    Science.gov (United States)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  14. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...

  15. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  16. Thermodynamical aspects of pulse tubes

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Steijaert, P.P.; Gijzen, J.

    1997-01-01

    The cooling power of cryocoolers is determined by the work done by the compressor and the entropy produced by the irreversible processes in the various components of the system. In this paper we discuss the thermodynamics of pulse tubes, but many of the relationships are equally valid for other

  17. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  18. Thermodynamic theory of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The thermodynamic theory underlying black hole processes is developed in detail and applied to model systems. It is found that Kerr-Newman black holes undergo a phase transition at a = 0.68M or Q = 0.86M, where the heat capacity has an infinite discontinuity. Above the transition values the specific heat is positive, permitting isothermal equilibrium with a surrounding heat bath. Simple processes and stability criteria for various black hole situations are investigated. The limits for entropically favoured black hole formation are found. The Nernst conditions for the third law of thermodynamics are not satisfied fully for black holes. There is no obvious thermodynamic reason why a black hole may not be cooled down below absolute zero and converted into a naked singularity. Quantum energy-momentum tensor calculations for uncharged black holes are extended to the Reissner-Nordstrom case, and found to be fully consistent with the thermodynamic picture for Q < M. For Q < M the model predicts that 'naked' collapse also produces radiation, with such intensity that the collapsing matter is entirely evaporated away before a naked singularity can form.

  19. One Antimatter— Two Possible Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alexander Y. Klimenko

    2014-02-01

    Full Text Available Conventional thermodynamics, which is formulated for our world populated by radiation and matter, can be extended to describe physical properties of antimatter in two mutually exclusive ways: CP-invariant or CPT-invariant. Here we refer to invariance of physical laws under charge (C, parity (P and time reversal (T transformations. While in quantum field theory CPT invariance is a theorem confirmed by experiments, the symmetry principles applied to macroscopic phenomena or to the whole of the Universe represent only hypotheses. Since both versions of thermodynamics are different only in their treatment of antimatter, but are the same in describing our world dominated by matter, making a clear experimentally justified choice between CP invariance and CPT invariance in context of thermodynamics is not possible at present. This work investigates the comparative properties of the CP- and CPT-invariant extensions of thermodynamics (focusing on the latter, which is less conventional than the former and examines conditions under which these extensions can be experimentally tested.

  20. THERMODYNAMICS USED IN ENVIRONMENTAL ENGINEERING

    Science.gov (United States)

    Thermodynamics is a science in which energy transformations are studied as well as their relationships to the changes in the chemical properties of a system. It is the fundamental basis of many engineering fields. The profession of environmental engineering is no exception. In pa...

  1. Thermodynamics on the Molality Scale

    Science.gov (United States)

    Canagaratna, Sebastian G.; Maheswaran, M.

    2013-01-01

    For physical measurements, the compositions of solutions, especially electrolyte solutions, are expressed in terms of molality rather than mole fractions. The development of the necessary thermodynamic equations directly in terms of molality is not common in textbooks, and the treatment in the literature is not very systematic. We develop a…

  2. A Simple Statistical Thermodynamics Experiment

    Science.gov (United States)

    LoPresto, Michael C.

    2010-01-01

    Comparing the predicted and actual rolls of combinations of both two and three dice can help to introduce many of the basic concepts of statistical thermodynamics, including multiplicity, probability, microstates, and macrostates, and demonstrate that entropy is indeed a measure of randomness, that disordered states (those of higher entropy) are…

  3. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations; Etude structurale et thermodynamique de la complexation de lanthanides (III) par des acides carboxyliques polyhydroxyles: synthese de nouveaux extractants et perspectives pour l'extraction de ces cations

    Energy Technology Data Exchange (ETDEWEB)

    Aury, S

    2002-12-15

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  4. Possible extended forms of thermodynamic entropy

    International Nuclear Information System (INIS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy. (paper)

  5. Chemical Thermodynamics and Information Theory with Applications

    CERN Document Server

    Graham, Daniel J

    2011-01-01

    Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory--two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The

  6. Contact Geometry of Mesoscopic Thermodynamics and Dynamics

    Directory of Open Access Journals (Sweden)

    Miroslav Grmela

    2014-03-01

    Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.

  7. Thermodynamics of statistical inference by cells.

    Science.gov (United States)

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  8. Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: An theoretical and experimental study

    International Nuclear Information System (INIS)

    Du, Jianping; Zhao, Ruihua; Xue, Yongqiang

    2012-01-01

    Highlights: ► There is an obvious influence of the size on thermodynamic properties for the reaction referring nano-reactants. ► Gibbs function, enthalpy, entropy and equilibrium constant are dependent on the reactant size. ► There is an approximate linear relation between them. - Abstract: The theoretical relations of thermodynamic properties, the equilibrium constant and reactant size in nanosystem are described. The effects of size on thermodynamic properties and the equilibrium constant were studied using nanosize zinc oxide and sodium bisulfate solution as a reaction system. The experimental results indicated that the molar Gibbs free energy, the molar enthalpy and the molar entropy of the reaction decrease, but the equilibrium constant increases with decreasing reactant size. Linear trends were observed between the reciprocal of size for nano-reactant and thermodynamic variable, which are consistent with the theoretical relations.

  9. Casimir effect and thermodynamics of horizon instabilities

    International Nuclear Information System (INIS)

    Hartnoll, Sean A.

    2004-01-01

    We propose a dual thermodynamic description of a classical instability of generalized black hole spacetimes. From a thermodynamic perspective, the instability is due to negative compressibility in regions where the Casimir pressure is large. The argument indicates how the correspondence between thermodynamic and classical instability for horizons may be extended to cases without translational invariance

  10. Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions.

    Science.gov (United States)

    Akiba, Hiroki; Tsumoto, Kouhei

    2015-07-01

    Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    Science.gov (United States)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  12. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  13. Liquid–liquid equilibria study of the (water + phosphoric acid + hexyl or cyclohexyl acetate) systems at T = (298.15, 308.15, and 318.15) K: Measurement and thermodynamic modelling

    International Nuclear Information System (INIS)

    Ghanadzadeh Gilani, A.; Ghanadzadeh Gilani, H.; Shekarsaraee, S.; Nasiri-Touli, E.; Seyed Saadat, S.L.

    2016-01-01

    Highlights: • Tie line data for aqueous solutions of phosphoric acid with esters were obtained. • The LLE data were correlated using the UNIQUAC and NRTL models. • The quality of the LLE data was validated using the appropriate equations. • Separation factors were calculated for the chosen solvents. - Abstract: Liquid–liquid equilibrium (LLE) data for the (water + phosphoric acid + n-hexyl acetate or cyclohexyl acetate) ternary systems were determined at T = (298.15, 308.15 and 318.15) K and p = 101.3 kPa. The cloud point method was used to obtain the solubility and the Karl-Fischer, acidimetric titration, and refractive index methods were used to determine the tie-line values. Both the ternary systems exhibit type-1 behavior of LLE. The experimental values were regressed and acceptably correlated using the UNIQUAC and NRTL models. The reliability of the experimental tie lines was confirmed using the Othmer–Tobias plot. Experimental distribution coefficients and separation factors were fitted using the Kamlet–Taft LSER model. The influence of temperature on the biphasic area and separation factor was found to be minor. As a result, both the esters are suitable separating agents for aqueous phosphoric acid mixtures.

  14. The thermodynamic-buffer enzymes.

    Science.gov (United States)

    Stucki, J W

    1980-08-01

    Oxidative phosphorylation operates at optimal efficiency if and only if the condition of conductance matching L33/L11 = square root 1-q2 is fulfilled. In this relation L11 is the phenomenological conductance of phosphorylation, L33 the phenomenological conductance of the load, i.e. the irreversible ATP-utilizing processes in the cell, and q the degree of coupling of oxidative phosphorylation driven by respiration. Since during short time intervals L11 and q are constant whereas L33 fluctuates in the cell, oxidative phosphorylation would only rarely operate at optimal efficiency due to violation of conductance matching. This paper demonstrates that the reversible ATP-utilizing reaction catalyzed by adenylate kinase can effectively compensate deviations from conductance matching in the presence of a fluctuating L33 and hence allows oxidative phosphorylation to operate at optimal efficiency in the cell. Since the adenylate kinase reaction was found to buffer a thermodynamic potential, i.e. the phosphate potential, this finding was generalized to the concept of thermodynamic buffering. The thermodynamic buffering ability of the adenylate kinase reaction was demonstrated by experiments with incubated rat-liver mitochondria. Considerations of changes introduced in the entropy production by the adenylate kinase reaction allowed to establish the theoretical framework for thermodynamic buffering. The ability of thermodynamic buffering to compensate deviations from conductance matching in the presence of fluctuating loads was demonstrated by computer simulations. The possibility of other reversible ATP-utilizing reactions, like the ones catalyzed by creatine kinase and arginine kinase, to contribute to thermodynamic buffering is discussed. Finally, the comparison of the theoretically calculated steady-stae cytosolic adenine nucleotide concentrations with experimental data from perfused livers demonstrated that in livers from fed rats conductance matching is fulfilled on a

  15. Stability constants and thermodynamic parameters of trivalent gadolinium, yttrium, terbium, dysprosium and holmium complexes with 2-(p-sulphophenylazo) 1,8-dihydroxynaphthalene 3,6 disulphonic acid (trisodium salt)[SPADNS

    International Nuclear Information System (INIS)

    Dubey, S.N.; Nagpal, S.; Kalra, H.L.; Puri, D.M.

    1980-01-01

    The stepwise stability constants of Gd(III), Y(III), Tb(III), Dy(III) and Ho(III) complexes with SPADNS have been determined potentiometrically in aqueous solution using Bjerrum-Calvin technique as modified by Irving and Rossotti at different temperatures (20deg and 40deg) and 0.1 M ionic strength (NaClO 4 ). The trend in the stability of these metal complexes has been found to be: Ho(III) > Dy(III) > Tb(III) > Y(III) > Gd(III). The overall changes in ΔGdeg, ΔHdeg and ΔSdeg accompanying the complex formation have also been determined. (author)

  16. Stability constants and thermodynamic parameters of trivalent gadolinium, yttrium, terbium, dysprosium and holmium complexes with 2-(p-sulphophenylazo) 1,8-dihydroxynaphthalene 3,6 disulphonic acid (trisodium salt)(SPADNS)

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, S.N.; Nagpal, S.; Kalra, H.L.; Puri, D.M. (Kurukshetra Univ. (India). Dept. of Chemistry)

    1980-10-01

    The stepwise stability constants of Gd(III), Y(III), Tb(III), Dy(III) and Ho(III) complexes with SPADNS have been determined potentiometrically in aqueous solution using Bjerrum-Calvin technique as modified by Irving and Rossotti at different temperatures (20deg and 40deg) and 0.1 M ionic strength (NaClO/sub 4/). The trend in the stability of these metal complexes has been found to be: Ho(III) > Dy(III) > Tb(III) > Y(III) > Gd(III). The overall changes in ..delta..Gdeg, ..delta..Hdeg and ..delta..Sdeg accompanying the complex formation have also been determined.

  17. CIME Summer School on Mathematical Thermodynamics of Complex Fluids

    CERN Document Server

    Rocca, Elisabetta

    2017-01-01

    The main goal of this book is to provide an overview of the state of the art in the mathematical modeling of complex fluids, with particular emphasis on its thermodynamical aspects. The central topics of the text, the modeling, analysis and numerical simulation of complex fluids, are of great interest and importance both for the understanding of various aspects of fluid dynamics and for its applications to special real-world problems.  New emerging trends in the subject are highlighted with the intent to inspire and motivate young researchers and PhD students.

  18. The OpenCalphad thermodynamic software interface

    Science.gov (United States)

    Sundman, Bo; Kattner, Ursula R; Sigli, Christophe; Stratmann, Matthias; Le Tellier, Romain; Palumbo, Mauro; Fries, Suzana G

    2017-01-01

    Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into “lookup tables” to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility. PMID:28260838

  19. Thermodynamic Model of Spatial Memory

    Science.gov (United States)

    Kaufman, Miron; Allen, P.

    1998-03-01

    We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.

  20. The 4th Thermodynamic Principle?

    International Nuclear Information System (INIS)

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-01-01

    It should be emphasized that the 4th Principle above formulated is a thermodynamic principle and, at the same time, is mechanical-quantum and relativist, as it should inevitably be and its absence has been one of main the theoretical limitations of the physical theory until today.We show that the theoretical discovery of Dimensional Primitive Octet of Matter, the 4th Thermodynamic Principle, the Quantum Hexet of Matter, the Global Hexagonal Subsystem of Fundamental Constants of Energy and the Measurement or Connected Global Scale or Universal Existential Interval of the Matter is that it is possible to be arrived at a global formulation of the four 'forces' or fundamental interactions of nature. The Einstein's golden dream is possible

  1. Thermodynamic Geometry and Hawking Radiation

    CERN Document Server

    Bellucci, S

    2010-01-01

    This work explores the role of thermodynamic fluctuations in the two parameter Hawking radiating black hole configurations. The system is characterized by an ensemble of arbitrary mass and radiation frequency of the black holes. In the due course of the Hawking radiations, we find that the intrinsic geometric description exhibits an intriguing set of exact pair correction functions and global correlation lengths. We investigate the nature of the constant amplitude radiation and find that it's not stable under fluctuations of the mass and frequency. Subsequently, the consideration of the York model decreasing amplitude radiation demonstrates that thermodynamic fluctuations are globally stable in the small frequency region. In connection with quantum gravity refinements, we take an account of the logarithmic correction into the constant amplitude and York amplitude over the Hawking radiation. In both considerations, we notice that the nature of the possible parametric fluctuations may precisely be ascertained w...

  2. Statistical thermodynamics of nonequilibrium processes

    CERN Document Server

    Keizer, Joel

    1987-01-01

    The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo­ dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com­ bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...

  3. Thermodynamical properties of dark energy

    International Nuclear Information System (INIS)

    Gong Yungui; Wang Bin; Wang Anzhong

    2007-01-01

    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a -n and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously

  4. Modern Thermodynamics with Statistical Mechanics

    CERN Document Server

    Helrich, Carl S

    2009-01-01

    With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...

  5. Thermodynamics of Dipolar Chain Systems

    International Nuclear Information System (INIS)

    Armstrong, J.R.; Zinner, N.T.; Fedorov, D.V.; Jensen, A.S.

    2013-01-01

    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments. (author)

  6. Association theories for complex thermodynamics

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Rafiqul Gani

    2013-01-01

    of this review is two-fold: first to illustrate some of the significant capabilities of these association theories and why indeed they have already been extensively used and are expected to find even more applications in the future. The second and most important aspect of this review is to outline many...... applications. While specialized models can handle different cases, even complex ones, with the advent of powerful theories and computers there is the hope that a single or a few models could be suitable for a general modeling of complex thermodynamics. After more than 100 years with active use of thermodynamic...... models, we have now come to the understanding that simple one-fluid theories like the cubic equations of state or the various forms of local composition models will never be able to model a wide range of complex systems with sufficient accuracy. While various modern approaches have appeared, one very...

  7. Thermodynamic and structural properties in complexing media

    International Nuclear Information System (INIS)

    Di Giandomenico, M.V.

    2007-10-01

    Protactinium is experiencing a renewal of interest in the frame of long-term energy production. Modelling the behaviour of this element in the geosphere requires thermodynamic and structural data relevant to environmental conditions. Now deep clayey formation are considered for the disposal of radioactive waste and high values of natural sulphate contents have been determined in pore water in equilibrium with clay surface. Because of its tendency to polymerisation, hydrolysis and sorption on all solid supports, the equilibria constants relative to monomer species were determined at tracer scale (ca. 10 - 12 M) with 233 Pa. The complexation constants of Pa(V) and sulphate ions were calculated starting from a systematic study of the apparent distribution coefficient D in the system TTA/Toluene/H 2 O/Na 2 SO 4 /HClO 4 /NaClO 4 and as a function of ionic strength, temperature, free sulphate, protons and chelatant concentration. First of all, the interaction between free species H + , SO 4 - , Na + leads to the formation of HSO 4 - and NaSO 4 - , for which concentrations depend upon the related thermodynamic constants. For this purpose a computer code was developed in order to determine all free species concentration. This iterative code takes into account the influence of temperature and ionic strength (SIT modelling) on thermodynamic constants. The direct measure of Pa(V) in the organic and aqueous phase by g-spectrometry had conducted to estimate the apparent distribution coefficient D as function of free sulphate ions. Complexation constants have been determined after a mathematical treatment of D. The extrapolation of these constants at zero ionic strength have been realized by SIT modelling at different temperatures. Besides, enthalpy and entropy values were calculated. Parallelly, the structural study of Pa(V) was performed using 231 Pa. XANES and EXAFS spectra show unambiguously the absence of the trans di-oxo bond that characterizes the other early actinide

  8. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  9. Thermodynamic properties of sea air

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-02-01

    Full Text Available Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS, and have been adopted in 2009 for oceanography by IOC/UNESCO.

    In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well.

    The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  10. Improved Estimates of Thermodynamic Parameters

    Science.gov (United States)

    Lawson, D. D.

    1982-01-01

    Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.

  11. Statistics and thermodynamics of fracture

    Science.gov (United States)

    Chudnovsky, A.

    1984-01-01

    A probabilistic model of the fracture processes unifying the phenomenological study of long term strength of materials, fracture mechanics and statistical approaches to fracture is briefly outlined. The general framework of irreversible thermodynamics is employed to model the deterministic side of the failure phenomenon. The stochastic calculus is used to account for thg failure mechanisms controlled by chance; particularly, the random roughness of fracture surfaces.

  12. Thermodynamic data for uranium fluorides

    International Nuclear Information System (INIS)

    Leitnaker, J.M.

    1983-03-01

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF 4 and UF 6 , including UF 4 (solid and gas), U 4 F 17 (solid), U 2 F 9 (solid), UF 5 (solid and gas), U 2 F 10 (gas), and UF 6 (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior

  13. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  14. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  15. Thermodynamic evolution far from equilibrium

    Science.gov (United States)

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  16. Assessment, water-quality trends, and options for remediation of acidic drainage from abandoned coal mines near Huntsville, Missouri, 2003-2004

    Science.gov (United States)

    Christensen, Eric D.

    2005-01-01

    Water from abandoned underground coal mines acidifies receiving streams in the Sugar Creek Basin and Mitchell Mine Basin near Huntsville, Missouri. A 4.35-kilometer (2.7-mile) reach of Sugar Creek has been classified as impaired based on Missouri's Water Quality Standards because of small pH values [mine drainage (AMD) from two mine springs as well as small and diffuse seeps were observed to have an effect on water quality in Sugar Creek. Metal and sulfate loads increased and pH decreased immediately downstream from Sugar Creek's confluence with the Calfee Slope and Huntsville Gob drainages that discharge AMD into Sugar Creek. Similar effects were observed in the Mitchell Mine drainage that receives AMD from a large mine spring. Comparisons of water-quality samples from this study and two previous studies by the U.S. Geological Survey in 1987-1988 and the Missouri Department of Natural Resources in 2000-2002 indicate that AMD generation in the Sugar Creek Basin and Mitchell Mine Basin is declining, but the data are insufficient to quantify any trends or time frame. AMD samples from the largest mine spring in the Calfee Slope subbasin indicated a modest but significant increase in median pH from 4.8 to 5.2 using the Wilcoxan rank-sum test (p mine spring in the Mitchell Mine Basin indicated an increase in median pH values from 5.6 to 6.0 and a decrease in median specific conductance from 3,050 to 2,450 ?S/cm during the same period. Remediation of AMD at or near the sites of the three largest mine springs is geochemically feasible based on alkalinity addition rates and increased pH determined by cubitainer experiments and geochemical mixing experiments using the computer model PHREEQCI. Alkalinity values for seven cubitainer experiments conducted to simulate anoxic treatment options exceeded the targeted value for alkalinity [90 mg/L as calcium carbonate (CaCO3)] specified in Missouri's Total Maximum Daily Load program by 18 percent or more, but maximum pH values were

  17. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    Science.gov (United States)

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  18. Biochemical thermodynamics: applications of Mathematica.

    Science.gov (United States)

    Alberty, Robert A

    2006-01-01

    The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94

  19. Thermodynamic basis for evolution of apatite in calcified tissues (Invited)

    Science.gov (United States)

    Navrotsky, A.; Drouet, C.; Rollin-Martinet, S.; Champion, E.; Grossin, D.

    2013-12-01

    Bone remodeling and tooth enamel maturation are biological processes which alter the physico-chemical features of biominerals with time. However, although the ubiquity of bone remodeling is clear, why is well crystallized bone mineral systematically replaced by immature nanocrystalline inorganic material? In enamel, a clear evolution is also seen from the first mineral formed during the secretory stage to its mature well crystalline form, which then changes little in the adult tooth. This contribution provides the thermodynamic basis underlying these biological processes. We determined the energetics of biomimetic apatites corresponding to an increasing degree of maturation. Our data point out the progressive evolution of the enthalpy (ΔHf°) and free energy (ΔGf°) of formation toward more negative values upon maturation. Entropy contributions to ΔGf° values are small compared to enthalpy contributions. ΔHf° varies from -12058.9 × 12.2 to -12771.0 × 21.4 kJ/mol for maturation times increasing from 20 min to 3 weeks, approaching the value for stoichiometric hydroxyapatite, -13431.0 × 22.7 kJ/mol. Apatite thermodynamic stability increases as its composition moved toward stoichiometry. These findings imply diminishing aqueous solubility of calcium and phosphate ions as well as decreased surface reactivity. Such thermodynamically-driven maturation is favorable for enamel maturation since this biomineral must resist external aggressions such as contact with acids. In contrast, maintaining a metastable highly reactive and soluble form of apatite is essential to the effective participation of bone as a source of calcium and phosphate for homeostasis. Therefore our data strongly suggest that, far from being trivial, the intrinsic thermodynamic properties of apatite represent a critical driving force for continuous bone remodeling, in contrast to current views favoring a purely biologically driven cycle. These thermodynamic data may prove helpful in other domains

  20. Thermodynamic Studies for Drug Design and Screening

    Science.gov (United States)

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  1. Thermodynamic studies for drug design and screening.

    Science.gov (United States)

    Garbett, Nichola C; Chaires, Jonathan B

    2012-04-01

    A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 - 2011 using the Science Citation Index and PUBMED and the keywords listed below. The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development toward an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in the design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. © 2012 Informa UK, Ltd.

  2. Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t = (298.15 and 308.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Wisniak, Jaime [Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)]. E-mail: wisniak@bgumail.bgu.ac.il; Peralta, Rene D. [Centro de Investigacion en Quimica Aplicada, Saltillo 25100, Coahuila (Mexico); Infante, Ramiro [Centro de Investigacion en Quimica Aplicada, Saltillo 25100, Coahuila (Mexico); Cortez, Gladis [Centro de Investigacion en Quimica Aplicada, Saltillo 25100, Coahuila (Mexico); Lopez, R.G. [Centro de Investigacion en Quimica Aplicada, Saltillo 25100, Coahuila (Mexico)

    2005-10-15

    Densities of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate have been measured as a function of the composition, at 298.15 and 308.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The calculated excess molar volumes were correlated with the Redlich-Kister equation and with a series of Legendre polynomials. The excess molar volumes are positive for the four binaries studied. Within the short temperature range considered here the coefficient of thermal expansion is positive for all the systems studied; it varies only slightly with the nature of the acrylate except for the system cyclohexane + vinyl acetate.

  3. Densities and derived thermodynamic properties of the binary systems of 1,1-dimethylethyl methyl ether with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at T = (298.15 and 308.15) K

    International Nuclear Information System (INIS)

    Wisniak, Jaime; Peralta, Rene D.; Infante, Ramiro; Cortez, Gladis

    2005-01-01

    Densities of the binary systems of 1,1-dimethylethyl methyl ether (MTBE) with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate have been measured as a function of the composition, at 298.15 and 308.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The calculated excess molar volumes were correlated with the Redlich-Kister equation and with a series of Legendre polynomials. The excess molar volumes are negative for the binaries of MTBE + methacrylates; the system MTBE with vinyl acetate presents near ideal behavior. The excess coefficient of thermal expansion is positive for all the systems studied here; the value of the coefficient for the system MTBE + allyl methacrylate is at least three times larger than that for the other systems

  4. Surface Aggregation of Candida albicans on Glass in the Absence and Presence of Adhering Streptococcus gordonii in a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid-Base Interactions.

    Science.gov (United States)

    Millsap; Bos; Busscher; van der Mei HC

    1999-04-15

    Adhesive interactions between yeasts and bacteria are important in the maintenance of infectious mixed biofilms on natural and biomaterial surfaces in the human body. In this study, the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) approach has been applied to explain adhesive interactions between C. albicans ATCC 10261 and S. gordonii NCTC 7869 adhering on glass. Contact angles with different liquids and the zeta potentials of both the yeasts and bacteria were determined and their adhesive interactions were measured in a parallel-plate flow chamber.Streptococci were first allowed to adhere to the bottom glass plate of the flow chamber to different seeding densities, and subsequently deposition of yeasts was monitored with an image analysis system, yielding the degree of initial surface aggregation of the adhering yeasts and their spatial arrangement in a stationary end point. Irrespective of growth temperature, the yeast cells appeared uncharged in TNMC buffer, but yeasts grown at 37 degrees C were intrinsically more hydrophilic and had an increased electron-donating character than cells grown at 30 degrees C. All yeasts showed surface aggregation due to attractive Lifshitz-van der Waals forces. In addition, acid-base interactions between yeasts, yeasts and the glass substratum, and yeasts and the streptococci were attractive for yeasts grown at 30 degrees C, but yeasts grown at 37 degrees C only had favorable acid-base interactions with the bacteria, explaining the positive relationship between the surface coverage of the glass by streptococci and the surface aggregation of the yeasts. Copyright 1999 Academic Press.

  5. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides; Modelisation thermodynamique de l'extraction de nitrates de lanthanides par le CMPO et par un calixarene-CMPO en milieu acide nitrique concentre. Application a l'optimisation de la separation des lanthanides et des actinides/lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Belair, S

    2003-07-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO{sub 3}){sub 3}-HNO{sub 3}-H{sub 2}O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  6. Thermodynamics for Chemists, Physicists and Engineers

    CERN Document Server

    Hołyst, Robert

    2012-01-01

    Thermodynamics is an essential part of chemical physics and is of fundamental importance in physics, chemistry and engineering courses. This textbook takes an interdisciplinary approach to the subject and is therefore suitable for undergraduates in all those courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variabl...

  7. Geometric description of BTZ black hole thermodynamics

    International Nuclear Information System (INIS)

    Quevedo, Hernando; Sanchez, Alberto

    2009-01-01

    We study the properties of the space of thermodynamic equilibrium states of the Banados-Teitelboim-Zanelli (BTZ) black hole in (2+1) gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

  8. Microbial diversity arising from thermodynamic constraints

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  9. Microbial diversity arising from thermodynamic constraints.

    Science.gov (United States)

    Großkopf, Tobias; Soyer, Orkun S

    2016-11-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.

  10. Thermodynamic study of selected monoterpenes III

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  11. Thermodynamics of random reaction networks.

    Directory of Open Access Journals (Sweden)

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  12. Thermodynamics of random reaction networks.

    Science.gov (United States)

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  13. Thermodynamics and life span estimation

    International Nuclear Information System (INIS)

    Kuddusi, Lütfullah

    2015-01-01

    In this study, the life span of people living in seven regions of Turkey is estimated by applying the first and second laws of thermodynamics to the human body. The people living in different regions of Turkey have different food habits. The first and second laws of thermodynamics are used to calculate the entropy generation rate per unit mass of a human due to the food habits. The lifetime entropy generation per unit mass of a human was previously found statistically. The two entropy generations, lifetime entropy generation and entropy generation rate, enable one to determine the life span of people living in seven regions of Turkey with different food habits. In order to estimate the life span, some statistics of Turkish Statistical Institute regarding the food habits of the people living in seven regions of Turkey are used. The life spans of people that live in Central Anatolia and Eastern Anatolia regions are the longest and shortest, respectively. Generally, the following inequality regarding the life span of people living in seven regions of Turkey is found: Eastern Anatolia < Southeast Anatolia < Black Sea < Mediterranean < Marmara < Aegean < Central Anatolia. - Highlights: • The first and second laws of thermodynamics are applied to the human body. • The entropy generation of a human due to his food habits is determined. • The life span of Turks is estimated by using the entropy generation method. • Food habits of a human have effect on his life span

  14. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  15. Thermodynamics of open, nonisothermal chemical systems far from equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    1992-01-01

    The thermodynamic behavior of kinetic models based on a continuously stirred tank reactor (CSTR) is studied in an attempt to seek general trends in the thermodynamic properties of open nonlinear systems. The models consist of two reversible reactions, A + nB rightleftharpoons (n + 1) B (n = 0,1,or 2) and B rightleftharpoons C, taking place in an adiabatic CSTR. The heat of reaction is incorporated, and the rate constants are assumed to follow an Arrhenius temperature dependence. The models give rise to multiple stationary states and sustained oscillations (limit cycles). The entropy difference between stationary or oscillatory states and equilibrium and the rate of entropy production in the these states are calculated as a function of the residence time in the reactor. The entropy difference and entropy production may be taken, to some extent, as indicative of the influence of irreversible processes, which disappears at equilibrium. The results of the calculations reveal the following systematic trends: (I) The entropy difference or entropy production for stable states or both always increase as the residence time is shortened, namely, as the system is displaced further from equilibrium. (II) If stable and unstable states (stationary or oscillatory) coexist under identical conditions, then the stable state invariably has a smaller value of the entropy difference or entropy production or both than the corresponding unstable state. 26 refs., 3 figs

  16. An introduction to statistical thermodynamics

    CERN Document Server

    Hill, Terrell L

    1987-01-01

    ""A large number of exercises of a broad range of difficulty make this book even more useful…a good addition to the literature on thermodynamics at the undergraduate level."" - Philosophical MagazineAlthough written on an introductory level, this wide-ranging text provides extensive coverage of topics of current interest in equilibrium statistical mechanics. Indeed, certain traditional topics are given somewhat condensed treatment to allow room for a survey of more recent advances.The book is divided into four major sections. Part I deals with the principles of quantum statistical mechanics a

  17. Thermodynamic basis for cluster kinetics

    DEFF Research Database (Denmark)

    Hu, Lina; Bian, Xiufang; Qin, Xubo

    2006-01-01

    Due to the inaccessibility of the supercooled region of marginal metallic glasses (MMGs) within the experimental time window, we study the cluster kinetics above the liquidus temperature, Tl, to acquire information on the fragility of the MMG systems. Thermodynamic basis for the stability...... of locally ordered structure in the MMG liquids is discussed in terms of the two-order-parameter model. It is found that the Arrhenius activation energy of clusters, h, is proportional to the chemical mixing enthalpy of alloys, Hchem. Fragility of the MMG forming liquids can be described by the ratio...

  18. Thermodynamics of the hot BIon

    DEFF Research Database (Denmark)

    Grignani, Gianluca; Harmark, Troels; Marini, Andrea

    2011-01-01

    We investigate the thermodynamics of the recently obtained nite temperature BIon solution of arXiv:1012.1494, focusing on two aspects. The first concerns comparison of the free energy of the three available phases for the finite temperature brane-antibrane wormhole configuration. Based on this we...... propose a heuristic picture for the dynamics of the phases that involves a critical temperature below which a stable phase exists. This stable phase is the finite temperature analogue of the thin throat branch of the extremal brane anti-brane wormhole configuration. The second aspect that we consider...

  19. Thermodynamic data for uranium fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leitnaker, J.M.

    1983-03-01

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.

  20. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  1. Thermodynamic laws in isolated systems.

    Science.gov (United States)

    Hilbert, Stefan; Hänggi, Peter; Dunkel, Jörn

    2014-12-01

    The recent experimental realization of exotic matter states in isolated quantum systems and the ensuing controversy about the existence of negative absolute temperatures demand a careful analysis of the conceptual foundations underlying microcanonical thermostatistics. Here we provide a detailed comparison of the most commonly considered microcanonical entropy definitions, focusing specifically on whether they satisfy or violate the zeroth, first, and second laws of thermodynamics. Our analysis shows that, for a broad class of systems that includes all standard classical Hamiltonian systems, only the Gibbs volume entropy fulfills all three laws simultaneously. To avoid ambiguities, the discussion is restricted to exact results and analytically tractable examples.

  2. Thermal physics kinetic theory and thermodynamics

    CERN Document Server

    Singh, Devraj; Yadav, Raja Ram

    2016-01-01

    THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions

  3. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  4. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  5. Irreversible thermodynamics of Poisson processes with reaction.

    Science.gov (United States)

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  6. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  7. Thermodynamically consistent model calibration in chemical kinetics

    Directory of Open Access Journals (Sweden)

    Goutsias John

    2011-05-01

    Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new

  8. Quantum thermodynamics: a nonequilibrium Green's function approach.

    Science.gov (United States)

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  9. Comparison of the thermodynamic properties and high temperature chemical behavior of lanthanide and actinide oxides

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Rauh, E.G.

    1977-01-01

    The thermodynamic properties of the lanthanide and actinide oxides are examined, compared, and associated with a variety of high temperature chemical behavior. Trends are cited resulting from a number of thermodynamic and spectroscopic correlations involving solid phases, species in aqueous solution, and molecules and ions in the vapor phase. Inadequacies in the data and alternative approaches are discussed. The characterization of nonstoichiometric phases stable only at high temperatures is related to a network of heterogeneous and homogeneous equilibria. A broad perspective of similarity and dissimilarity between the lanthanides and actinides emerges and forms the basis of the projected needs for further study

  10. Treatise on irreversible and statistical thermodynamics an introduction to nonclassical thermodynamics

    CERN Document Server

    Yourgrau, Wolfgang; Raw, Gough

    2002-01-01

    Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

  11. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  12. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  13. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.

    Science.gov (United States)

    van Lingen, Henk J; Plugge, Caroline M; Fadel, James G; Kebreab, Ermias; Bannink, André; Dijkstra, Jan

    2016-01-01

    Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH

  14. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation.

    Directory of Open Access Journals (Sweden)

    Henk J van Lingen

    Full Text Available Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA. Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2, has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT, which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without

  15. Online Marketing Trends

    OpenAIRE

    Horecká, Ivana

    2015-01-01

    This thesis deals with online marketing trends. Its main goal is to define the latest online marketing trends, create a website with the free online marketing trends, and analyse their effectiveness. The theoretical part brings a thorough description of the latest online marketing trends. Moreover, it provides an insight into the latest trends in the website development. The chosen online marketing trends defined in the theoretical part are subsequently applied on a newly created website. All...

  16. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  17. Thermodynamic features of dioxins’ adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Prisciandaro, Marina [Department of Industrial and Information Engineering and of Economics, University of L’Aquila, Viale Giovanni Gronchi 18, L’Aquila 67100 (Italy); Piemonte, Vincenzo, E-mail: v.piemonte@unicampus.it [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy); Mazziotti di Celso, Giuseppe [Faculty of Bioscience, University of Teramo, Via R. Balzarini, 1, 64100 Teramo (Italy); Ronconi, Silvia [Arta Abruzzo, Department of L’Aquila, Bazzano (AQ), 67100 L’Aquila (Italy); Capocelli, Mauro [Faculty of Engineering, University Campus Biomedico of Rome, Via Alvaro del Portillo 21, Rome 00128 (Italy)

    2017-02-15

    Highlights: • We develop the P-T diagram for six PCDD. • We derive theoretical adsorption isotherms according to the Langmuir’s model. • We calculate K and w{sub max} values for several temperatures. • We estimate the adsorption heat with a good agreement with literature data. - Abstract: In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir’s model. In particular, the Langmuir isotherm parameters (K and w{sub max}) have been validated through the estimation of the adsorption heat (ΔH{sub ads}), which varies in the range 20–24 kJ/mol, in agreement with literature values. This result will allow to put the thermodynamical basis for a rational design of different process units devoted to dioxins removal.

  18. Bioengineering thermodynamics of biological cells.

    Science.gov (United States)

    Lucia, Umberto

    2015-12-01

    Cells are open complex thermodynamic systems. They can be also regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes. Moreover, cells can also actively modify their behaviours in relation to changes in their environment. Different thermo-electro-biochemical behaviours occur between health and disease states. But, all the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into the environment. But, this wasted heat represent also a sort of information, which outflows from the cell toward its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new approach to study the behaviour of the cells themselves and to control their behaviours. So, this approach allows us to consider the living systems as black boxes and analyze only the inflows and outflows and their changes in relation to the modification of the environment. Therefore, information on the systems can be obtained by analyzing the changes in the cell heat wasted in relation to external perturbations. The bioengineering thermodynamics bases are summarized and used to analyse possible controls of the calls behaviours based on the control of the ions fluxes across the cells membranes.

  19. Thermodynamical description of excited nuclei

    International Nuclear Information System (INIS)

    Bonche, P.

    1989-01-01

    In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core

  20. Thermodynamics of Indomethacin Adsorption to Phospholipid Membranes.

    Science.gov (United States)

    Fearon, Amanda D; Stokes, Grace Y

    2017-11-22

    Using second-harmonic generation, we directly monitored adsorption of indomethacin, a nonsteroidal anti-inflammatory drug, to supported lipid bilayers composed of phospholipids of varying phase, cholesterol content, and head group charge without the use of extrinsic labels at therapeutically relevant aqueous concentrations. Indomethacin adsorbed to gel-phase lipids with a high binding affinity, suggesting that like other arylacetic acid-containing drugs, it preferentially interacts with ordered lipid domains. We discovered that adsorption of indomethacin to gel-phase phospholipids was endothermic and entropically driven, whereas adsorption to fluid-phase phospholipids was exothermic and enthalpically driven. As temperature increased from 19 to 34 °C, binding affinities to gel-phase lipids increased by 7-fold but relative surface concentration decreased to one-fifth of the original value. We also compared our results to the entropies reported for indomethacin adsorbed to surfactant micelles, which are used in drug delivery systems, and assert that adsorbed water molecules in the phospholipid bilayer may be buried deeper into the acyl chains and less accessible for disruption. The thermodynamic studies reported here provide mechanistic insight into indomethacin interactions with mammalian plasma membranes in the gastrointestinal tract and inform studies of drug delivery, where indomethacin is commonly used as a prototypical, hydrophobic small-molecule drug.