WorldWideScience

Sample records for acids soils ph

  1. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    Science.gov (United States)

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  2. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    Science.gov (United States)

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  3. pH effects of the addition of three biochars to acidic Indonesian mineral soils

    DEFF Research Database (Denmark)

    Martinsen, V; Alling, V; Nurida, N L

    2015-01-01

    of increasing amounts (0–30%; weight:weight) of three types of field-produced BCs (from cacao (Theobroma cacao. L.) shell, oil palm (Elaeis guineensis. Jacq.) shell and rice (Oryza sativa. L.) husk) on soil pH and CEC. Soils were sampled from croplands at Java, Sumatra and Kalimantan, Indonesia. All BCs caused...... a significant increase in mean soil pH with a stronger response and a greater maximum increase for the cacao shell BC addition, due to a greater acid neutralizing capacity (ANC) and larger amounts of extractable base cations. At 1% BC addition, corresponding to about 30 tons ha−1, the estimated increase in soil...... pH from the initial mean pH of 4.7 was about 0.5 units for the cacao shell BC, whereas this was only 0.05 and 0.04 units for the oil palm shell and rice husk BC, respectively. Besides depending on BC type, the increase in soil pH upon the addition of each of the three BCs was mainly dependent...

  4. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    Science.gov (United States)

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  5. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].

    Science.gov (United States)

    Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan

    2017-07-18

    Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.

  6. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    Science.gov (United States)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  7. Removal of Radium-226 from Radium-Contaminated Soil using Distilled Water and Humic Acid: Effect of pH

    International Nuclear Information System (INIS)

    Phillips, E.; Muhammad Samudi Yasir; Muhamat Omar

    2011-01-01

    Effect of washing solutions' pH removal of radium-226 from radium-contaminated soil using distilled water and humic acid extracted from Malaysian peat soil was studied by batch washing method. The study encompassed the extraction of humic acid and the washing of radium-contaminated soil using distilled water and humic acid solutions of 100 ppm, both with varying pHs in the range of 3 to 11. The radioactivity concentration of radium-226 was determined by gamma spectrometer.The removal of radium-226 was greater when humic acid solutions were used compared to distilled water at the pH range studied and both washing solutions showed greater removal of radium-226 when basic solutions were used. Nevertheless, comparable removal efficiencies were observed when neutral and highly basic humic acid solutions were used. (author)

  8. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    Science.gov (United States)

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Influence of pH of acid irrigation water on the transfer of elements into rice plant from soils

    International Nuclear Information System (INIS)

    Maeno, Tomokazu; Tanizaki, Yoshiyuki

    1996-01-01

    Rice plant samples were grown in 14 cultivative pots under six different pH conditions of acid irrigation water (pH: 6.5, 6.0, 4.5, 3.5, 3.0. 2.5) and ion exchange water (pH: 7.5), in order to study an influence of pH of irrigation water on the transfer of elements into rice plant from soils. The acid irrigation water was prepared by adding mixed solution of 1N H 2 SO 4 and 1N HNO 3 (1:1) to ion exchange water. The rice grain yielded was separated into three parts, i.e., polished rice, bran and chaff and they were powdered one by one. The contents of twenty five elements in the three parts of grain (14 samples each) were determined by a neutron activation analysis. It was clarified that the contents of Cu, Zn, Fe, Cr, Mg, Rb, Mo, Ni, and Cs in the polished rice increased with decreasing pH of the acid irrigation water. The contents of Se and Br, on the contrary, decreased. Significant changes of the contents were not observed for Na, Al, Sc, Mn, Cl, Ca, V and Co. The relationships between the contents of elements in the bran or chaff and pH of the acid irrigation water were not so clear as the case of polished rice. The enrichment factor of trace elements from soils was calculated for the polished rice, bran and chaff The high enrichment of Cl, Mo, Zn, Se and Cu was observed in the polished rice. Manganese and Cr were concentrated more in the bran than in the polished rice. (author)

  11. The geochemistry during management of lake acidification caused by the rewetting of sulfuric (pH < 4) acid sulfate soils

    International Nuclear Information System (INIS)

    Mosley, Luke M.; Shand, Paul; Self, Peter; Fitzpatrick, Rob

    2014-01-01

    Highlights: • The dynamic geochemistry of a lake acidification event and its management was assessed. • Sulfate complexes dominated the aqueous metal speciation at low pH. • Iron oxydroxysulfate minerals (schwertmannite, jarosite) were identified. • Aerial additions of limestone to the acidic water slowly returned the pH to near neutral. • Coating of the limestone with gypsum and metal precipitates limited its neutralisation efficiency. - Abstract: Understanding the geochemistry and kinetics of acidification events arising from acid sulfate soils is important to enable effective management and risk assessment. Large-scale exposure and oxidation of acid sulfate soils occurred during a drought in the Lower Lakes (Murray–Darling Basin) of South Australia. We examined the geochemical changes that occurred in one region (Boggy Lake) that experienced surface water acidification and was subsequently neutralised via aerial limestone (CaCO 3 ) dosing and dilution via natural lake refill. Very low pH (< 3) and high concentrations (≈10–1000 mg/L Fe, Al, Mn) of dissolved metals were initially found in surface water. The water chemistry exhibited pH-dependent enhancement of constituents typically associated with acid sulfate soils (SO 4 , Al and Fe). Geochemical speciation calculations indicated that most (60–80%) of the acidity was present as dissolved metal-sulfate complexes at low pH. X-ray diffraction (XRD) analyses showed that the orange-brown precipitates present after an initial limestone dosing were secondary oxyhydroxysulfate minerals (schwertmannite, jarosite). Further limestone dosing resulted in neutralisation of the pH, reduction in dissolved metal concentrations, dissolution of jarosite and schwertmannite precipitates, and formation of other metal oxyhydroxide phases. The results were consistent with a pE-pH diagram constructed for metal-sulfur geochemistry. Assessment of the measured and simulated (using PHREEQC) pH and Ca/Cl ratio during

  12. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Chaignon, Valerie; Quesnoit, Marie [INRA, UMR 1222 Eco and Sols Ecologie fonctionnelle and Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Hinsinger, Philippe, E-mail: philippe.hinsinger@supagro.inra.f [INRA, UMR 1222 Eco and Sols Ecologie fonctionnelle and Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France)

    2009-12-15

    We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl{sub 2}-extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH < 4.4, CaCl{sub 2}-Cu contents were smaller in rhizosphere than uncropped soil. Rhizosphere alkalisation occurred at pH < 4.8, while acidification occurred at greater pH. This explained the changes of CaCl{sub 2}-Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu. - Root-induced increase in pH reduces Cu availability in the rhizosphere and Cu bioavailability to rape.

  13. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren-kou; Zhao, An-zhen; Yuan, Jin-hua; Jiang, Jun [Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture

    2012-04-15

    Purpose: The key factors influencing pH buffering capacity of acid soils from tropical and subtropical regions, and effects of soil evolution and incorporation of biochars on pH buffering capacity were investigated to develop suitable methods to increase pH buffering capacity of acid soils. Materials and methods: A total of 24 acid soils collected from southern China were used. The pH buffering capacity was determined using acid-base titration. The values of pH buffering capacity were obtained from the slope of titration curves of acid or alkali additions plotted against pH in the pH range 4.0-7.0. Two biochars were prepared from straws of peanut and canola using a low temperature pyrolysis method. After incubation of three acid soils, pH buffering capacity was then determined. Results and discussion: pH buffering capacity had a range of 9.1-32.1 mmol kg{sup -1} pH{sup -1} for 18 acid soils from tropical and subtropical regions of China. The pH buffering capacity was highly correlated (R{sup 2} = 0.707) with soil cation exchange capacity (CEC) measured with ammonium acetate method at pH 7.0 and decreased with soil evolution due to the decreased CEC. Incorporation of biochars at rates equivalent to 72 and 120 t ha{sup -1} increased soil pH buffering capacity due to the CEC contained in the biochars. Incorporation of peanut straw char which itself contained more CEC and alkalinity induced more increase in soil CEC, and thus greater increase in pH buffering capacity compared with canola straw char. At 5% of peanut straw char added, soil CEC increased by 80.2%, 51.3%, and 82.8% for Ultisol from Liuzhou, Oxisol from Chengmai and Ultisol from Kunlun, respectively, and by 19.8%, 19.6%, and 32.8% with 5% of canola straw char added, respectively; and correspondingly for these soils, the pH buffering capacity increased by 73.6%, 92.0%, and 123.2% with peanut straw char added; and by 31.3%, 25.6%, and 52.3% with canola straw char added, respectively. Protonation

  14. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  15. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    Full Text Available Biochar (BC application to soil suppresses emission of nitrous- (N2O and nitric oxide (NO, but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2 were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  16. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil

    International Nuclear Information System (INIS)

    Chaignon, Valerie; Quesnoit, Marie; Hinsinger, Philippe

    2009-01-01

    We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl 2 -extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH 2 -Cu contents were smaller in rhizosphere than uncropped soil. Rhizosphere alkalisation occurred at pH 2 -Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu. - Root-induced increase in pH reduces Cu availability in the rhizosphere and Cu bioavailability to rape.

  17. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  18. Novel Technique to improve the pH of Acidic Barren Soil using Electrokinetic-bioremediation with the application of Vetiver Grass

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Zahin, A. M. F.

    2016-11-01

    Residual acidic slopes which are not covered by vegetation greatly increases the risk of soil erosion. In addition, low soil pH can bring numerous problems such as Al and Fe toxicity, land degradation issues and some problems related to vegetation. In this research, a series of electrokinetic bioremediation (EK-Bio) treatments using Bacillus sphaericus, Bacillus subtilis and Pseudomonas putida with a combination of Vetiver grass were performed in the laboratory. Investigations were conducted for 14 days and included the observation of changes in the soil pH and the mobilization of microorganism cells through an electrical gradient of 50 V/m under low pH. Based on the results obtained, this study has successfully proven that the pH of soil increases after going through electrokinetic bioremediation (EK-Bio). The treatment using Bacillus sphaericus increases the pH from 2.95 up to 4.80, followed by Bacillus subtilis with a value of 4.66. Based on the overall performance, Bacillus sphaericus show the highest number of bacterial cells in acidic soil with a value of 6.6 × 102 cfu/g, followed by Bacillus subtilis with a value of 5.7 × 102 cfu/g. In conclusion, Bacillus sphaericus and Bacillus subtilis show high survivability and is suitable to be used in the remediation of acidic soil.

  19. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  20. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  1. Effect of elevated Al and pH on the growth and root morphology of Al-tolerant and Al-sensitive wheat seedlings in an acid soil

    Directory of Open Access Journals (Sweden)

    Md. Toufiq Iqbal

    2014-03-01

    Full Text Available Aluminium ion (Al3+ toxicity and hydrogen ion (H+ activity are the major constraints for plant growth in acid soil. This study was undertaken to determine the effect of pH and Al on the growth response and changes in root morphology of Al-tolerant (ET8 and Al-sensitive (ES8 wheat seedlings. Different levels of AlCl3 and CaCO3 were added to the soils to manipulate soil pH and extractable Al. The results showed that the bulk soil pH remained constant at pH 4.1 with further applications of AlCl3, and that the seedlings died at the 200 mg AlCl3/kg treatments. The ET8 seedlings responded better than the ES8 seedlings in both low and high Al and pH. The ET8 seedlings had higher root surface areas and root tip numbers than the ES8 seedlings in the Al treatment. In contrast, the ES8 had higher root diameters than the ET8 seedlings due to the elevated Al supply. Apoplast Al increased with the increase of soil available extractable Al, and declined with the decrease of soil extractable Al. The ET8 seedlings accumulated more Al in their apoplast than the ES8 seedlings. This study concluded that accumulation of Al in the apoplast is also involved in Al tolerance mechanism with the addition of organic acid exudation.

  2. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.

    Directory of Open Access Journals (Sweden)

    Stanislava Vondráčková

    Full Text Available High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8 and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism.We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs.Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions.In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.

  3. Aluminium Uptake and Translocation in Al Hyperaccumulator Rumex obtusifolius Is Affected by Low-Molecular-Weight Organic Acids Content and Soil pH

    Science.gov (United States)

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431

  4. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  5. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    Science.gov (United States)

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  6. pH dependence and unsuitability of fluorescein dye as a tracer for pesticide mobility studies in acid soil

    Science.gov (United States)

    Chris Peterson

    2009-01-01

    The mobility of fluorescein and bromide used as tracers in packed soil columns was investigated.Five different soils were used in two application methods: soil surface application and soil incorporation, both of which simulate accepted methods of soil application of termiticides to prevent structural infestation. The...

  7. Acid loading test (pH)

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  8. Observation of pH Value in Electrokinetic Remediation using various electrolyte (MgSO4, KH2PO4 and Na(NO3)) for Barren Acidic Soil at Ayer Hitam, Johor, Malaysia

    Science.gov (United States)

    Norashira, J.; Zaidi, E.; Aziman, M.; Saiful Azhar, A. T.

    2016-07-01

    Barren acidic soil collected at Ayer Hitam, Johor Malaysia was recorded at pH value of 2.36 with relative humidity of 86%. This pH value is not suitable for the growth of any plants especially for the soil stabilization purposes. Gradation weathering within the range of 4 to 6 indicates an incomplete/partial weathering process. The soil grade in this range is known as a black shale mudstone. Beside, this also influences to a factor of the high surface water runoff at this particular soil species. As the acidic pH become a major problem for soil fertilizing hence an appropriate technique was implemented known as using ‘Electrokinetic Remediation’, EKR. This technique has a great potential in changing the soil pH value from acidic to less acidic and also kept maintain the pH at the saturated rate of electrochemical process. This research study presents the monitoring data of pH value due to the effect of various electrolyte consist of 0.5M of MgSO4, KH2PO4, and Na(NO3). Here, the distilled water (DW) was used as reference solution. The electric field was provided by dipping two pieces of identical rectangular aluminum foil as anode and cathode. The EKR was conducted under a constant voltage gradient of 50 V/m across the sample bulk at 0.14 m length measured between both electrodes. The data collection was conducted during the total period of 7 days surveillance. The variation of pH values at the remediation area between anode and cathode for various type of electrolyte indicates that there are a significant saturated value as it reaches 7 days of treatment. During the analysis, it is found that the highest pH value at the remediation area after 7 days treatment using Na(NO3), KH2PO4 and MgSO4 was 3.93, 3.33 and 3.39 respectively. Hence from the last stage of pH value observation, it can be conclude that the best electrolyte for barren soil treatment is Na(NO3) whereby it contribute to highest pH value and turn the soil to be less acidic.

  9. Data on soil PH of Barddhaman district, India

    Directory of Open Access Journals (Sweden)

    Sumanta Bid

    2017-06-01

    Full Text Available PH (Puissance de Hydrogen is an essential ingredient of soil that effects on fertility and productivity of dirt. Barddhaman district is a part of Lower Gangetic Plain fully covered by alluvial soil and popularly known as ‘rice bowl of West Bengal’ owing to its lofty production. This data article provides a block level data on soil PH that is essential for further investigation of the relationship among soil ph, plant growth, plant health and productivity. This data is valuable in the field of soil geography and soil science. Soil PH data is more relevant in the ground of plant biology, agricultural geography and agricultural science. It helps to explain the acidic and alkaline nature of alluvial soil. The data consist of 195 samples (n=195 taken from the entire district. Samples have been collected from March, 2014 to March, 2015 and experimented in the laboratory. Theoretically PH value is limited within 0–14. Experiment result exemplifies the highest value 8.5 found in Khandaghosh block whereas lowest value is 4.5 and the samples which result in lowest value are gathered from 4 different blocks like Manteswar, Burdwan - II, Barabani and Salanpur.

  10. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  11. Biochar contribution to soil pH buffer capacity

    Science.gov (United States)

    Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type

  12. [Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years].

    Science.gov (United States)

    Guo, Zhi-Xing; Wang, Jing; Chai, Min; Chen, Ze-Peng; Zhan, Zhen-Shou; Zheng, Wu-Ping; Wei, Xiu-Guo

    2011-02-01

    Based on the 1980s' soil inventory data and the 2002-2007 soil pH data of Guangdong Province, the spatiotemporal variation of soil pH in the Province in past 30 years was studied. In the study period, the spatial distribution pattern of soil pH in the Province had less change (mainly acidic), except that in Pearl River Delta and parts of Qingyuan and Shaoguan (weak alkaline). The overall variation of soil pH was represented as acidification, with the average pH value changed from 5.70 to 5.44. Among the soil types in the Province, alluvial soil had an increased pH, lateritic red soil, paddy soil, and red soil had a large decrement of pH value, and lime soil was most obvious in the decrease of pH value and its area percentage. The soil acidification was mainly induced by soil characteristics, some natural factors such as acid rain, and human factors such as unreasonable fertilization and urbanization. In addition, industrialization and mining increased the soil pH in some areas.

  13. Water balance creates a threshold in soil pH at the global scale

    Science.gov (United States)

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  14. Degradation of [14C]isofenphos in soil in the laboratory under different soil pH's, temperatures, and moistures

    International Nuclear Information System (INIS)

    Abou-Assaf, N.; Coats, J.R.

    1987-01-01

    The effects of three soil pH's, three soil temperatures, and three soil moistures on [ 14 C]isofenphos degradation were investigated. All three factors interacted strongly and significantly affected the persistence of isofenphos as well as the formation of the degradation products (p less than 1%). Isofenphos degradation was greatest at the higher temperatures 35 0 C greater than 25 0 C greater than 15 0 C (except under alkaline pH's), medium moisture 25% greater than 30% greater than 15%, and in both alkaline (pH = 8) and acidic soils (pH = 6) compared with neutral soil (pH = 7). Isofenphos oxon formation was greatest at higher temperatures 35 0 C compared with 25 0 C and 15 0 C, in acidic soil greater than neutral soil greater than alkaline soil, and under high moisture (30%) compared with the 15% and 22.5% moistures. The formation of soil-bound residues was greatest at higher temperatures 35 0 C greater than 25 0 C greater than 15 0 C, higher moisture 30% compared with 15% and 22.5%, and in alkaline soil compared with neutral and acidic soils

  15. Decreased Soil Nitrification Rate with Addition of Biochar to Acid Soils

    Institute of Scientific and Technical Information of China (English)

    Shiyu LI; Xiangshu DONG; Dandan LIU; Li LIU; Feifei HE

    2017-01-01

    This study was conducted to investigate the effects of mixed biochar on the nitrification rate in acidic soils. A 15N tracer experiment with (15NH4)2SO4 was conducted to determine the nitrification rates of 4 acidic agricultural soils with pH 4.03-6.02in Yunnan Province, Southern China. The accumulation of 15N-NO3 - and nitrification rates decreased with the addition of biochar at the end of incubation, suggesting that biochar could be a nitrification inhibitor in acidic fertilized soil. Nitrification rates in soil with pH 4.03 were evidently lower than those in soil with pH 4.81 -6.02 with or without biochar. Decreased nitrification rates were detected in the acidic soils with biochar. Soil pH controlled nitrification more than biochar in certain strongly acidic soils.

  16. Aluminium, extractable from soil samples by the acid ammonium acetate soil-testing method

    Directory of Open Access Journals (Sweden)

    Osmo Mäkitie

    1968-05-01

    Full Text Available The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction, 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2. Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65 aluminium in our soils.

  17. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH

    Directory of Open Access Journals (Sweden)

    Yuting Zhang

    2017-07-01

    Full Text Available Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007–2014 of applying chemical nitrogen, phosphorus and potassium (NPK fertilizers, composted manure or their combination to acidic (pH 5.8, near-neutral (pH 6.8 or alkaline (pH 8.4 Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (% of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%, Actinobacteria (19.7%, Chloroflexi (15.3% and Acidobacteria (12.6%; the medium dominant phyla were Bacterioidetes (5.3%, Planctomycetes (4.8%, Gemmatimonadetes (4.5%, Firmicutes (3.4%, Cyanobacteria (2.1%, Nitrospirae (1.8%, and candidate division TM7 (1

  18. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    Science.gov (United States)

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  19. Influence of soil pH on the sorption of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-01-01

    , the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of p......The soil-water distribution coefficient of ionizable chemicals (K-d) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K-d values normalized to organic carbon (K-OC) from the literature, a method was developed to estimate the K-OC of monovalent organic acids...

  20. pH dominates variation in tropical soil archaeal diversity and community structure.

    Science.gov (United States)

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    Science.gov (United States)

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  2. Long-term changes in soil pH across major forest ecosystems in China

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  3. Estimativa da acidez potencial pelo método do pH SMP em solos com elevado teor de matéria orgânica Estimation of potencial acidity by the pH SMP method in soils with higher organic matter content in Brazil

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2006-01-01

    Full Text Available Apesar do potencial para uso agrícola e das características edáficas peculiares, poucos são os métodos desenvolvidos para a recomendação de adubação e calagem para os solos com elevado teor de matéria orgânica. O objetivo deste estudo foi definir um modelo matemático que estime a acidez potencial (H+Al a partir do pH SMP medido em água e em solução de CaCl2 0,01 mol L-1 em solos com elevado teor de matéria orgânica. Foram utilizadas 41 amostras de horizontes superficiais de solos com elevado teor de matéria orgânica de vários Estados do Brasil. Os resultados demonstraram que a acidez potencial pode ser estimada por meio da regressão da solução-tampão SMP (r =0,85**. Também foi observada correlação significativa (r = 0,65** entre o pH em CaCl2 0,01 mol L-1 e o pH SMP.In spite of agricultural potential for use and the peculiar edaphic characteristics, there are few methods developed for manuring and liming recommendation for soils with high organic matter contents. The objective of this study was to determine a mathematical model that estimates the potencial acidity with pH SMP measured in water and in solution of CaCl2 0.01 mol L-1 in soil with high organic matter content. Forty one surface soil samples of Histosols and other soils whith higher organic matter content of different states of Brazil were utilized. The results showed that potential acidity can be estimated by pH SMP buffer suspension regression ( R=0.85** and that in pH determined in CaCl2 0.01 mol L-1 was significantly correlated (R= 0.65** to pH determined in SMP.

  4. Reduced carbon sequestration potential of biochar in acidic soil.

    Science.gov (United States)

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bromine accumulation in acidic black colluvial soils

    Science.gov (United States)

    Martínez Cortizas, Antonio; Ferro Vázquez, Cruz; Kaal, Joeri; Biester, Harald; Costa Casais, Manuela; Taboada Rodríguez, Teresa; Rodríguez Lado, Luis

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  6. pH controls over methanogenesis and iron reduction along soil depth profile in Arctic tundra

    Science.gov (United States)

    Zheng, J.; Gu, B.; Wullschleger, S. D.; Graham, D. E.

    2017-12-01

    Increasing soil temperature in the Arctic is expected to accelerate rates of soil organic matter decomposition. However, the magnitude of this impact is uncertain due to the many physical, chemical, and biological processes that control the decomposition pathways. Varying soil redox conditions present a key control over pathways of organic matter decomposition by diverting the flow of reductants among different electron accepting processes and further driving acid-base reactions that alter soil pH. In this study we investigated the pH controls over anaerobic carbon mineralization, methanogenesis, Fe(III) reduction and the interplay between these processes across a range of pH and redox conditions. pH manipulation experiments were conducted by incubating soils representing organic, mineral, cryoturbated transitional layers and permafrost. In the experiments we sought to understand (1) if methanogenesis or Fe(III) reduction had similar pH optima; (2) if this pH response also occurs at `upstream' fermentation process; and (3) if pH alters organo-mineral association or organic matter sorption and desorption and its availability for microbial degradation. Our preliminary results suggest that the common bell-shaped pH response curve provides a good fit for both Fe(III) reduction and methanogenesis, with optimum pH at 6.0-7.0. Exceptions to this were found in transitional layer where methanogenesis rates positively correlated with increasing pH, with maximum rates measured at pH 8.5. It is likely that the transitional layer harbors distinct groups of methanogens that prefer a high pH. Variations in the optimum pH of Fe(III) reduction and methanogenesis may play a significant role in regulating organic matter decomposition pathways and thus greenhouse gas production in thawing soils. These results support biogeochemical modeling efforts to accurately simulate organic matter decomposition under changing redox and pH conditions.

  7. Effect of the pH on the radiocesium adsorption in tropical soils

    International Nuclear Information System (INIS)

    Roque, Mario Lucio; Boaretto, Antonio E.; Moniz, Antonio C; Smolders, Erik E. T.

    2002-01-01

    The objective was to demonstrate that the pH dependent charges are specific change sites for radiocesium. Clay minerals occurrence in superficial samples of eight tropical soils was analyzed by X-Ray diffractometry. The variation of superficial charge of these soils were quantify by potentiometric titration in a range from 3 to 8 pH values. The results of radiocesium interception potential showed the presence of specific sites of adsorption of this radionuclide for all the soils. The variation of radiocesium adsorption for all soils was quantified in a pH defined range. The increase on the pH values caused increase on the radiocesium adsorption by the soils and a consequent decrease in the radiocesium activity in the equilibrium solution. The soil with predominance of the 2:1 clay minerals showed higher radiocesium adsorption than the soils with 1:1 clay minerals or iron and aluminum oxides. The increase on the negative charge in consequence of pH increase caused increase on radiocesium adsorption. The correction of soil acidity with lime by increasing the specific sites charge for radiocesium and decreasing the radionuclide activity in soil solution may cause decrease on the transference of radiocesium from soil to plant. (author)

  8. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.

    Science.gov (United States)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-03-01

    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  9. Amendment of Acid Soils with Crop Residues and Biochars

    Institute of Scientific and Technical Information of China (English)

    YUAN Jin-Hua; XU Ren-Kou; WANG Ning; LI Jiu-Yu

    2011-01-01

    The liming potential of some crop residues and their biochars on an acid Ultisol was investigated using incubation experiments. Rice hulls showed greater liming potential than rice hull biochar, while soybean and pea straws had less liming potential than their biochars. Due to their higher alkalinity, biochars from legume materials increased soil pH much compared to biochars from non-legume materials. The alkalinity of biochars was a key factor affecting their liming potential,and the greater alkalinity of biochars led to greater reductions in soil acidity. The incorporation of biochars decreased soil exchangeable acidity and increased soil exchangeable base cations and base saturation, thus improving soil fertility.

  10. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Dinesh Adhikari

    2017-12-01

    Full Text Available Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil’s ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples (R2 = 0.25, and this relationship became significantly stronger at near-neutral pH (6.0–7.3; R2 = 0.67. No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0 or alkaline (pH > 7.3 pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH (R2 = 0.72 and 0.73, respectively, as well as for Ca at alkaline pH (R2 = 0.64. Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  11. Sorption behavior of cesium on various soils under different pH levels

    International Nuclear Information System (INIS)

    Giannakopoulou, F.; Haidouti, C.; Chronopoulou, A.; Gasparatos, D.

    2007-01-01

    In the present study we investigated the sorption behavior of Cs in four different soils (sandyloam, loam, clayloam and clay) by using batch experiment. Cs sorption characteristics of the studied soils were examined at 4 mg L -1 Cs concentration, at various pH levels, at room temperature and with 0.01 M CaCl 2 as a background electrolyte. Among different soils the decrease of k d (distribution coefficient) of cesium, at all pH levels, followed the sequence sandyloam > loam > clayloam > clay, indicating that the particle size fractions and especially the clay content plays predominant role on sorption of Cs. The effect of pH on cesium sorption displays a similar pattern for all soils, depending on soil type. At acid pH levels less cesium was sorbed, due to a greater competition with other cations for available sorption sites. The maximum sorption of Cs was observed at pH 8, where the negative charge density on the surface of the absorbents was the highest. For all soils was observed significantly lower Cs sorption at pH 10

  12. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    Science.gov (United States)

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively.

  13. Simulated acid rain effects on soil chemistry and microbiology

    International Nuclear Information System (INIS)

    Gigliotti, C.; Falappi, D.; Farini, A.; Sorlini, C.; Milan Univ.; Molise Univ.

    1992-01-01

    A research study was carried out regarding the effects of artificial rains at different pH's (3.1, 4.0, 5.6) on soil samples from Appiano Gentile pinewood. Chemical parameters, biological activities and microbiological groups, particularly sensitive to possible variations in the presence of pH changes, were monitored after 2, 4 and 6 months of treatment of the soil on eluate obtained from treatment with artificial acid rains. The paper reports the results research

  14. Influence of soil-extractable aluminium and pH on the uptake of aluminium from soil into the soybean plant (Glycine max).

    Science.gov (United States)

    Dong, D; Thornton, I; Ramsey, M H

    1993-09-01

    The effects of soil pH and other soil properties on the uptake of AI by soybean plants have been investigated in a greenhouse experiment. Six soils were compared that were developed over six contrasting bedrock types ranging widely in their AI content and other chemical and physical characteristics, namely Oxford Clay, Chalk, Lower Lias Clay, Devonian Shale, Granite and Lower Greensand. Soil pH varied naturally between soil types and each soil was also amended to give two other pH levels using elemental sulphur and/or calcium carbonate. AI concentrations in various parts of the soybean plants were determined by ICP-AES after acid digestion. The AI solubility in the soils and hence its availability to the plants was estimated using a number of different reagents designed to extract different forms of AI.The AI concentration measured in the soybean leaves was found to be predicted most accurately by the 'available' AI extracted from soils by 0.02 M CaCl2. The relationship appears to the linear, with a correlation coefficient of 0.97 (p <0.01). The AI content of the leaves increases with decreasing soil pH. The relationship is non-linear with a marked increase in leaf AI for soils with pH <4.4. The amounts of 'plant-available' AI in the soils extracted with 0.02 M CaCl2 was much less than that extracted with 0.05 M EDTA, although both increased markedly with decreasing soil pH. The amount of AI measured in the soybean plants was directly related to both the 'available' forms of AI in the soils, and also to the pH of the soils. Soil pH was identified as a major factor that controls the uptake of Al from soil into the soybean plant.

  15. Biochar alters microbial community and carbon sequestration potential across different soil pH.

    Science.gov (United States)

    Sheng, Yaqi; Zhu, Lizhong

    2018-05-01

    Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO 2 emission. To investigate soil microbial response and CO 2 emission of biochar across different pH levels, comparative incubation studies on CO 2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO 2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO 2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO 2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO 2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO 2 emission. Copyright © 2017. Published by Elsevier B.V.

  16. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    Science.gov (United States)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  17. Alleviating soil acidity through plant organic compounds

    Directory of Open Access Journals (Sweden)

    Anderson R. Meda

    2001-06-01

    Full Text Available A laboratory experiment was conducted to evaluate the effects of water soluble plant extracts on soil acidity. The plant materials were: black oat, oil seed radish, white and blue lupin, gray and dwarf mucuna, Crotalaria spectabilis and C. breviflora, millet, pigeon pea, star grass, mato grosso grass, coffee leaves, sugar cane leaves, rice straw, and wheat straw. Plant extracts were added on soil surface in a PVC soil column at a rate of 1.0 ml min-1. Both soil and drainage water were analyzed for pH, Ca, Al, and K. Plant extracts applied on the soil surface increased soil pH, exchangeable Ca ex and Kex and decreased Al ex. Oil seed radish, black oat, and blue lupin were the best and millet the worst materials to alleviate soil acidity. Oil seed radish markedly increased Al in the drainage water. Chemical changes were associated with the concentrations of basic cations in the plant extract: the higher the concentration the greater the effects in alleviating soil acidity.Foram conduzidos experimentos de laboratórios para avaliar os efeitos de extratos de plantas solúveis em água na acidez do solo. Os materiais de plantas foram: aveia preta, nabo, tremoço branco e azul, mucuna cinza e anã, Crotalaria spectabilis e C. breviflora, milheto, guandu, grama estrela, grama mato grosso, folhas de café, folhas de cana-de-açúcar, palhada de arroz e palhada de trigo. Foi utilizado o seguinte procedimento para o extrato da planta solúvel em água: pesar 3g de material de planta, adicionar 150 ml de água, agitar por 8h e filtrar. Os extratos de plantas foram adicionados na superfície do solo em uma coluna de PVC (1 ml min-1. Após, adicionou-se água deionizada em quantidade equivalente a três volumes de poros. Os extratos de plantas aumentaram o pH, Ca e K trocável e diminuíram Al. Nabo, aveia preta e tremoço azul foram os melhores e milheto o pior material para amenizar a acidez do solo. Nabo aumentou Al na água de drenagem. As altera

  18. [Variation characteristics of farmland soil pH in the past 30 years of Enshi Autonomous Prefecture, Hubei, China].

    Science.gov (United States)

    Hu, Min; Xiang, Yong Sheng; Zhang, Zhi; Cong, Ri Huan; Huang, Fei Yue; Zhang, Jun Qiang; Shang, Li Li; Lu, Jian Wei

    2017-04-18

    In order to explore temporal-spatial variability of farmland soil pH at Enshi Antonomous Prefecture, Hubei, China, soil pH during the past three decades was analyzed, using the datasets of the Second National Soil Survey (1980-1983) and the Cultivated Land Quality Evaluation (2010-2013). The natural and human factors inducing the change of soil pH were evaluated to provide theoretical guidance for further soil acidification management. Results showed that acidic soil (i.e., pH<6.5) and neutral and alkaline soil (i.e., pH 6.5-8.5) were accounted for 98.4% and 1.6% in the farmland during the period of 2010-2013, respectively. The ratio increased 61.4% for the acidic soil but decreased 61.2% for the neutral and alkaline soil as compared with the period of 1980-1983. In addition, there was no alkaline soil (pH>8.5) in the region in 2010-2013. According to the dataset of the Second National Soil Survey (1980-1983), acidic soil was mainly distributed at Laifeng, Lichuan, Xuanen and Xianfeng counties, with the area ratio of 74.4%, 63.5%, 61.3% and 60.7%, respectively. For the period of 2010-2013, the ratio of acidic soil enhanced widely which was above 96% for each county. At Enshi Autonomous Prefecture, farmland soil showed an obvious acidification trend during the past three decades, with spatial variation of higher in the eastern part and lower in the western part of the region. Furthermore, soil pH decline occurred among different land use types in different areas. Overall, farmland soil pH declined 0.90 on average, with 1.14 decrease for upland and 0.87 for paddy soil, respectively. Clearly, upland soil acidification was severe than paddy soil. Factors related to soil acidification in the Enshi Autonomous Prefecture were mainly human factors such as unreasonable fertilizer combination, fertilizer ratio change, and more base cations taking away by high crop yield.

  19. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  20. Evaluation of coal combustion byproducts as soil liming materials - their influence on soil pH and enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, G W; Siddaramappa, R; Wright, R J; Codling, E E; Gao, G

    1994-03-01

    To evaluate coal combustion byproducts as liming materials and address issues related to soil quality, the authors compared the influence of different amounts of four combustion byproducts (fly ash and bed ash from a fluidized bed combustion furnace, lime-injected multistage burner residue, and spray dryer residue) and CaCO[sub 3] on soil pH and activities of urease, phosphatase, arylsulfatase, and dehydrogenase in an acidic soil. Studies comparing the influence of the combustion byproducts and CaCO[sub 3] on soil pH showed that on weight basis of application, substantial differences were observed in the ability of these materials to influence soil pH but that such differences decreased markedly after the data were transformed to a CaCO[sub 3] equivalent basis of application. Analysis of covariance for these transformed data indicated that whereas the liming abilities of fly ash and CaCO[sub 3] were not significantly different when compared on the CaCO[sub 3] equivalent basis, those of bed ash, multistage burner residue, and spray dryer residue were less than that of CaCO[sub 3]. Studies comparing the influence of the byproducts and CaCO[sub 3] on soil enzyme activities showed that the effect of these liming materials on the enzyme activities studied was largely due to their influence on soil pH. These studies showed that the combustion byproducts tested functioned as soil liming materials in a manner similar to that of CaCO[sub 3] and seemed to have little adverse effect on soil quality.

  1. Effect of pH on boron adsorption in some soils of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Steiner

    2013-06-01

    Full Text Available Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Paraná State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L¹ NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1. Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC of B was observed in the Arenic Hapludalf (49.8 mg B kg-1 soil followed by Arenic Hapludult (22.5 mg kg-1, Rhodic Hapludox (17.4 mg kg-1, and Typic Usthorthent (7.0 mg kg-1. The organic matter content, clay content, and aluminum oxide content (Al2O3 were the soils properties that affecting the B adsorption on Paraná soils.

  2. Control of lead solubility in soil contaminated with lead shot: Effect of soil pH

    International Nuclear Information System (INIS)

    Rooney, Corinne P.; McLaren, Ronald G.; Condron, Leo M.

    2007-01-01

    An incubation experiment was carried out to assess the rate of oxidation of Pb shot and subsequent transfer of Pb to the soil under a range of soil pH conditions. Lead shot corrosion was rapid, so that soil solution and fine earth ( 3 (CO 3 ) 2 (OH) 2 ), developed in crusts surrounding individual Pb pellets. However, irrespective of pH, Pb 2+ activities in the soil solutions, modelled using WHAM 6, were much lower than would be the case if they were controlled by the solubility of the dominant Pb compounds present in the Pb shot crust material. In contrast, modelling of soil solid-solution phase distribution of Pb, again using WHAM 6, suggested that, at least during the 24 months of the study, soil solution Pb concentrations were more likely to be controlled by sorption of Pb by the soil solid phase. - Sorption processes control Pb 2+ ion activity in soils contaminated with Pb shot

  3. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    Science.gov (United States)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  4. Back to acid soil fields

    NARCIS (Netherlands)

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti Zunin, Marcos; Eeuwijk, van Fred

    2016-01-01

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma

  5. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches

    International Nuclear Information System (INIS)

    Devau, Nicolas; Cadre, Edith Le; Hinsinger, Philippe; Jaillard, Benoit; Gerard, Frederic

    2009-01-01

    Inorganic P is the least mobile major nutrient in most soils and is frequently the prime limiting factor for plant growth in terrestrial ecosystems. In this study, the extraction of soil inorganic P with CaCl 2 (P-CaCl 2 ) and geochemical modelling were combined in order to unravel the processes controlling the environmentally available P (EAP) of a soil over a range of pH values (pH ∼ 4-10). Mechanistic descriptions of the adsorption of cations and anions by the soil constituents were used (1-pK Triple Plane, ion-exchange and NICA-Donnan models). These models are implemented into the geochemical code Visual MINTEQ. An additive approach was used for their application to the surface horizon of a Cambisol. The geochemical code accurately reproduced the concentration of extracted P at the different soil pH values (R 2 = 0.9, RMSE = 0.03 mg kg -1 ). Model parameters were either directly found in the literature or estimated by fitting published experimental results in single mineral systems. The strong agreement between measurements and modelling results demonstrated that adsorption processes exerted a major control on the EAP of the soil over a large range of pH values. An influence of the precipitation of P-containing mineral is discounted based on thermodynamic calculations. Modelling results indicated that the variations in P-CaCl 2 with soil pH were controlled by the deprotonation/protonation of the surface hydroxyl groups, the distribution of P surface complexes, and the adsorption of Ca and Cl from the electrolyte background. Iron-oxides and gibbsite were found to be the major P-adsorbing soil constituents at acidic and alkaline pHs, whereas P was mainly adsorbed by clay minerals at intermediate pH values. This study demonstrates the efficacy of geochemical modelling to understand soil processes, and the applicability of mechanistic adsorption models to a 'real' soil, with its mineralogical complexity and the additional contribution of soil organic matter.

  6. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Devau, Nicolas [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Cadre, Edith Le [Supagro, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Hinsinger, Philippe; Jaillard, Benoit [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Gerard, Frederic, E-mail: gerard@supagro.inra.fr [INRA, UMR 1222 Eco and Sols - Ecologie Fonctionnelle et Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France)

    2009-11-15

    Inorganic P is the least mobile major nutrient in most soils and is frequently the prime limiting factor for plant growth in terrestrial ecosystems. In this study, the extraction of soil inorganic P with CaCl{sub 2} (P-CaCl{sub 2}) and geochemical modelling were combined in order to unravel the processes controlling the environmentally available P (EAP) of a soil over a range of pH values (pH {approx} 4-10). Mechanistic descriptions of the adsorption of cations and anions by the soil constituents were used (1-pK Triple Plane, ion-exchange and NICA-Donnan models). These models are implemented into the geochemical code Visual MINTEQ. An additive approach was used for their application to the surface horizon of a Cambisol. The geochemical code accurately reproduced the concentration of extracted P at the different soil pH values (R{sup 2} = 0.9, RMSE = 0.03 mg kg{sup -1}). Model parameters were either directly found in the literature or estimated by fitting published experimental results in single mineral systems. The strong agreement between measurements and modelling results demonstrated that adsorption processes exerted a major control on the EAP of the soil over a large range of pH values. An influence of the precipitation of P-containing mineral is discounted based on thermodynamic calculations. Modelling results indicated that the variations in P-CaCl{sub 2} with soil pH were controlled by the deprotonation/protonation of the surface hydroxyl groups, the distribution of P surface complexes, and the adsorption of Ca and Cl from the electrolyte background. Iron-oxides and gibbsite were found to be the major P-adsorbing soil constituents at acidic and alkaline pHs, whereas P was mainly adsorbed by clay minerals at intermediate pH values. This study demonstrates the efficacy of geochemical modelling to understand soil processes, and the applicability of mechanistic adsorption models to a 'real' soil, with its mineralogical complexity and the additional

  7. Effect of organic matter and pH on the adsorption of metalaxyl and penconazole by soils

    Energy Technology Data Exchange (ETDEWEB)

    Gondar, Dora; López, Rocío [Departamento de Química Física, Facultad de Química, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Antelo, Juan [Departamento de Edafología y Química Agrícola, Facultad de Biología, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Fiol, Sarah, E-mail: sarah.fiol@usc.es [Departamento de Química Física, Facultad de Química, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Arce, Florencio [Departamento de Química Física, Facultad de Química, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain)

    2013-09-15

    Highlights: • The adsorption of non-ionic pesticides on soils is affected by pH. • At pH < 5, the C{sub s}{sup OC}/C{sub e} ratio increased as the pH of the medium decreased. • The effect of pH on adsorption is related to the ionization of carboxylic groups. • SOM charge had similar effect on C{sub s}{sup OC}/C{sub e} in the four soils under study. -- Abstract: Soil organic matter (SOM) is considered to be the primary adsorbent of non-ionic pesticides, and it is therefore thought to determine the concentration of such pesticides in the soil solution and how they are transported throughout the medium. It is generally assumed that the sorption capacity of different soils is the same per unit mass of SOM; however, the reactivity also depends on the SOM composition and the pH of the medium. We carried out experiments to study the effects of pH and ionic strength on the adsorption of the non-ionic fungicides metalaxyl and penconazole on four soils containing different amounts of organic carbon. The adsorption isotherms fitted a Freundlich equation. For pH > 5, partitioning of the fungicides between the solid phase and the soil solution did not vary with the pH, while at lower pH, the fraction adsorbed on the solid phase increased as the pH decreased. The response was related to the effect of pH on the ionization of the carboxylic groups of the SOM and therefore to the hydrophilic nature of the SOM. Analysis of the charge effect on the partitioning of both fungicides revealed a common response in all four soils. Adsorption appears to be related to the magnitude of the charge developed at the SOM due to ionization of the carboxylic acid groups.

  8. Effect of soil pH on sorption of salinomycin in clay and sandy soils

    African Journals Online (AJOL)

    use

    The sorption of salinomycin to the sandy soil marginally increased as the pH decreased, while the sorption to the two .... plastic containers at room temperature for further analysis. ... The pH was adjusted eight times over 20 days to stabilize at.

  9. Titratable acidity of beverages influences salivary pH recovery

    Directory of Open Access Journals (Sweden)

    Livia Maria Andaló TENUTA

    2015-01-01

    Full Text Available A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively. Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  10. Titratable acidity of beverages influences salivary pH recovery.

    Science.gov (United States)

    Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido

    2015-01-01

    A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  11. Effect of pH value of applied solution on radioiodine sorption by soils

    International Nuclear Information System (INIS)

    Szabova, T.

    1976-01-01

    Sorption of radioiodine by soils was followed under static conditions at different pH values of the initial solution in five soil types. Sorption of radioiodine by soils is affected by the amount of the organic mass and by the pH of solutions. With the same pH, soils containing a higher amount of the organic mass absorb more radioiodine. The highest sorption percentage of 131 I - for all pH values was found in meadow chernozem soil and the lowest in the rendzina and in carboniferous meadow soils. The highest sorption of 131 I - for degraded chernozem, meadow chernozem soils and brown soil was recorded at pH 5 and for carboniferous meadow soil and rendzina at pH 7. (author)

  12. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils.

    Science.gov (United States)

    Park, Jong Yol; Huwe, Bernd

    2016-06-01

    We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0-8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.

  14. The role of soil pH on soil carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    J. Sauze

    2018-01-01

    Full Text Available Carbonic anhydrases (CAs are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2–H2O isotopic exchange rate (kiso in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation that varied with soil texture. The reasons for this offset are still unknown.

  15. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    Science.gov (United States)

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  16. Effect of acid rain on soil microbial processes

    International Nuclear Information System (INIS)

    Myrold, D.D.; Nason, G.E.

    1992-01-01

    Acid rain is real; the pH of precipitation in many areas of the world is below its normal equilibrium value, and concentrations of inorganic N and S are elevated above background. The impact of acid rain on soil microbial processes is less clear. This is largely because of the chemical buffering of the soil ecosystem and the inherent resiliency and redundancy of soil microorganisms. Microorganisms have an amazing capacity to adapt to new situations, which is enhanced by their ability to evolve under selection pressure. Their resilience is a function of both the large number of microorganisms present in a given volume of soil and their high growth rate relative to macroorganisms. This suggests that microorganisms are likely to be able to adapt more quickly to acidification than plants or animals, which may be one reason why symbiotic associations, such as ectomycorrhizae, are more susceptible to acid inputs than their saprophytic counterparts

  17. Effects of simulated acid rain on soil fauna community composition and their ecological niches.

    Science.gov (United States)

    Wei, Hui; Liu, Wen; Zhang, Jiaen; Qin, Zhong

    2017-01-01

    Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO 2 ], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of amino acids in industrial effluents contaminated soil

    International Nuclear Information System (INIS)

    Mahar, M.T.; Khuhawar, M.Y.

    2014-01-01

    38 samples of soil for 19 locations partially irrigated on the effluents of sugar mill and oil andghee mill, bottom sediments of evaporation ponds of sugar and fertilizer industries were collected and analyzed for amino acids after acid digestion by gas chromatography using pre column derivatization with trifluroacetyleacetone and ethyl chloroformate. The results obtained were compared with the soil samples irrigated with fresh water. The soil samples were also analyzed for pH, total nitrogen contents and organic carbon. Nine essential (leucine (Leu), threonine (Thr), lysine (Lys), L-phenylalanine (Phe), tryptophan (Trp), histadine (His), L-valine (Val), methionine (Met) and isoleucine Ile) and ten non-essential ( alanine (Ala), cysteine (Cys), asparagine (Asn), glutamic acid (Glu), serine (Ser), glycine (Gly), proline (Pro), Glutamine (Gln), aspartic acid (Asp), tyrosine (Tyr)) amino acids were analyzed 13-15 amino acids were identified and determined quantitatively from soil samples. Amino acids Met, Asn, Gln and Trp were observed absent from all the samples. The variation in the amino acids contents in soil with the industrial effluents added and total nitrogen and organic carbon is discussed. (author)

  19. Sulfate Reduction at Low Ph To Remediate Acid Mine Drainage

    NARCIS (Netherlands)

    Sánchez-Andrea, I.; Sanz, J.L.; Bijmans, M.F.M.; Stams, A.J.M.

    2014-01-01

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities,

  20. Aging of nickel added to soils as predicted by soil pH and time.

    Science.gov (United States)

    Ma, Yibing; Lombi, Enzo; McLaughlin, Mike J; Oliver, Ian W; Nolan, Annette L; Oorts, Koen; Smolders, Erik

    2013-08-01

    Although aging processes are important in risk assessment for metals in soils, the aging of Ni added to soils has not been studied in detail. In this study, after addition of water soluble Ni to soils, the changes over time in isotopic exchangeability, total concentrations and free Ni(2+) activity in soil pore water, were investigated in 16 European soils incubated outdoors for 18 months. The results showed that after Ni addition, concentrations of Ni in soil pore water and isotopic exchangeability of Ni in soils initially decreased rapidly. This phase was followed by further decreases in the parameters measured but these occurred at slower rates. Increasing soil pH increased the rate and extent of aging reactions. Semi-mechanistic models, based on Ni precipitation/nucleation on soil surfaces and micropore diffusion, were developed and calibrated. The initial fast processes, which were attributed to precipitation/nucleation, occurred over a short time (e.g. 1h), afterwards the slow processes were most likely controlled by micropore diffusion processes. The models were validated by comparing predicted and measured Ni aging in three additional, widely differing soils aged outdoors for periods up to 15 months in different conditions. These models could be used to scale ecotoxicological data generated in short-term studies to longer aging times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Soil pH Mapping with an On-The-Go Sensor

    OpenAIRE

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH ManagerTM, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH ManagerTM under ...

  2. In situ measurements reveal extremely low pH in soil

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Loibide, Amaia Irixar; Nielsen, Lars Peter

    2017-01-01

    We measured pH in situ in the top organic soil horizons in heathland and pine forest and found values between 2.6 and 3.2. This was 0.5e0.8 units lower than concurrent laboratory pH measurements of the same soil, which raises questions about the interpretation of pH measurements. We propose that ...... that the higher pH recorded by standard laboratory methods may be due to buffering ions from soil biota released from drying, grinding and rewetting of soil samples, whereas the in situ pH reflects the correct level of acidification....

  3. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden

    International Nuclear Information System (INIS)

    Oostra, Swantje; Majdi, Hooshang; Olsson, Mats

    2006-01-01

    The impact of tree species on soil carbon stocks and acidity in southern Sweden was studied in a non-replicated plantation with monocultures of 67-year-old ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), elm (Ulmus glabra Huds.), hornbeam (Carpinusbetulus L.), Norway spruce (Picea abies L.) and oak (Quercus robur L.). The site was characterized by a cambisol on glacial till. Volume-determined soil samples were taken from the O-horizon and mineral soil layers to 20 cm. Soil organic carbon (SOC), total nitrogen (TN), pH (H2O), cation-exchange capacity and base saturation at pH 7 and exchangeable calcium, magnesium, potassium and sodium ions were analysed in the soil fraction hornbeam > oak > beech > ash > elm. The pH in the O-horizon ranged in the order elm > ash > hornbeam > beech > oak > spruce. In the mineral soil, SOC and TN ranged in the order elm > oak > ash = hornbeam > spruce > beech, i.e. partly reversed, and pH ranged in the same order as for the O-horizon. It is suggested that spruce is the best option for fertile sites in southern Sweden if the aim is a high carbon sequestration rate, whereas elm, ash and hornbeam are the best solutions if the aim is a low soil acidification rate

  4. Effect of soil pH on sorption of salinomycin in clay and sandy soils ...

    African Journals Online (AJOL)

    Desorption of salinomycin with methanol over a 72 h period was 70% with a phosphate buffer (pH 7). Since the phosphate buffer would mimic, to some extent, the quality of water flowing through field soils containing various salts, it was concluded that salinomycin could pose ...

  5. Soil microbial community responses to acid exposure and neutralization treatment.

    Science.gov (United States)

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Methods of pH determination in Calcareous soils of Oman: The effect of Electrolyte and soil solution ratio

    International Nuclear Information System (INIS)

    Al-Busaidi, A.; Cookson, P.

    2002-01-01

    Determination of pH assists in understanding many reactions that occur in soil. Soil pH values are highly sensitive to the procedure used for determination. In this study, pH was measured in different electrolytes [distilled water (pHw), 0.01MCaCl2 (pHCa), 1MKCl (pHk), and 0.01MBaCl2 (pHba)] with different soil: electrolyte ratios (i.e. 1:1, 1:2.5 and 1:5). The objective was to determine the effect of each electrolyte and dilution ratio on pH of saline and non-saline soils from Oman. It was found that ph values varied significantly between electrolytes and with different dilution ratios. Linear regression equations were generated between electrolytes, dilution ratios and were mostly significant. Soil pH values determined in different electrolytes were significantly interrelated. Water appeared as a highly suitable solvent for soil pH measurements because it is simple and values familiar to soil users. However, alkaline errors and electrode instabilities due to liquid junction and soluble salt effects, affected soil pH measurements, especially in water, and resulted in alkaline errors during pH measurements. Errors were minimized when pH was measured in electrolytes rather than in water. (author)

  7. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis

    International Nuclear Information System (INIS)

    Chapman, Pippa J.; Clark, Joanna M.; Reynolds, Brian; Adamson, John K.

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer. - Seasonal variations in soil solution ANC is controlled by seasonal variations in seasalt deposition and production of dissolved organic acids

  8. Tillage and water management for riceland productivity in acid sulfate soils of the Mekong delta, Vietnam.

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    1997-01-01

    Acid sulfate soils are characterized by low pH and high concentrations of aluminum, sulfate, iron and hydrogen sulfide. Removal of at least part of these substances is a prerequisite for land use, at least in severely acid soils. In this study, the effectiveness of harrowing and flushing with

  9. Tannic acid for remediation of historically arsenic-contaminated soils.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Klik, Barbara; Kulikowska, Dorota

    2017-12-22

    Soil washing effectively and permanently decreases soil pollution. Thus, it can be considered for the removal of the most toxic elements, for example arsenic (As). In this study, historically As-contaminated soils (2041-4294 mg/kg) were remediated with tannic acid (TA) as the washing agent. The scope of this study included optimization of the operational conditions of As removal, determination of As distribution in soil before and after double soil washing, and measurement of TA loss during washing. The optimum conditions for As removal were 4% TA, pH 4 and 24 h washing time. The average As removal after single and double washings was 38% and 63%, respectively. TA decreased As content in amorphous and poorly crystalline oxides by >90%. Although TA increased the amount of As in the easily mobilizable As fraction, the stability of As in washed soils increased, with reduced partition indexes of 0.52-0.66 after washing. The maximum capacity of the soils to adsorb TA (q max ) was 50.2-70.4 g C/kg. TA sorption was higher at alkaline than at acidic conditions. Only TA removes As from soils effectively if the proportion of As in amorphous and poorly crystalline oxides is high. Thus, it can be considered for remediation of historically contaminated soils.

  10. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions. Copyright © 2015. Published by Elsevier B.V.

  11. Replenishing Humic Acids in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Michael Susic

    2016-09-01

    Full Text Available For many decades, it was commonly believed that humic acids were formed in soils by the microbial conversion of plant lignins. However, an experiment to test whether these humic acids were formed prior to plant matter reaching the soil was never reported until the late 1980s (and then only as a side issue, even though humic acids were first isolated and reported in 1786. This was a serious omission, and led to a poor understanding of how the humic acid content of soils could be maintained or increased for optimum fertility. In this study, commercial sugar cane mulch and kelp extracts were extracted with alkali and analyzed for humic acid content. Humic acids in the extracts were positively identified by fluorescence spectrophotometry, and this demonstrated that humic acids are formed in senescent plant and algal matter before they reach the soil, where they are then strongly bound to the soil and are also resistant to microbial metabolism. Humic acids are removed from soils by wind and water erosion, and by water leaching, which means that they must be regularly replenished. This study shows that soils can be replenished or fortified with humic acids simply by recycling plant and algal matter, or by adding outside sources of decomposed plant or algal matter such as composts, mulch, peat, and lignite coals.

  12. Effect of crushed mussel shell addition on bacterial growth in acid polluted soils

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Garrido-Rodríguez, B.; Arias-Estévez, M.

    2015-01-01

    We applied three different doses of crushed mussel shell (CMS) on two Cu-polluted acid soils to study the effect of these amendments on the growth of the bacterial community during 730 days. Soil pH increased in the short and medium term due to CMS addition. In a first stage, bacterial growth...... was lower in the CMS-amended than in the un-amended samples. Thereafter, bacterial growth increased slowly. The soil having the highest initial pH value (4.5) showed the first significant increase in bacterial growth 95 days after the CMS amendment. However, in the soil with the lowest initial pH value (3...... as an agronomic sound practice for strongly acid soils (pH

  13. Effects of simulated acid rain on microbial characteristics in a lateritic red soil.

    Science.gov (United States)

    Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu

    2015-11-01

    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids.

  14. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    Science.gov (United States)

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  15. The effect of meat and bone meal (MBM on the nitrogen and phosphorus content and pH of soil

    Directory of Open Access Journals (Sweden)

    Anna Nogalska

    2017-12-01

    Full Text Available A field experiment was conducted in 2011 – 2013 in Poland. The objective of this study was to determine the effect of increasing doses of meat and bone meal (MBM on the mineral nitrogen (Nmin and available phosphorus (P content of soil and the soil pH. Changes in the content of NH4+-N, NO3--N and available P in soil were affected by MBM dose, experiment duration, weather conditions and crop species. Soil amended with MBM was more abundant in mineral N and available P. The lowest concentration of NO3--N and the highest concentration of NH4+-N were noted in the first year of the study, because the nitrification process requires a longer time. MBM had no influence on the accumulation of Nmin in soil, whereas the concentration of available P increased significantly throughout the experiment. The soil pH decreased with increasing MBM doses. After the application of the highest MBM doses soil pH classification was changed from neutral to slightly acidic.

  16. Effects of some organic materials on bicarbonate extractable phosphate content of soils having different pH

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2016-10-01

    Full Text Available This study was carried out to determine the effects of rice husk compost (RC, town waste compost (TW and tobacco waste (TB on bicarbonate extractable phosphate content (P in soils having different pH levels under greenhouse conditions. Soil samples used in this study were taken from surfaces (0-20 cm of agricultural fields around Samsun, Northern Anatolia. The experiment was conducted according to split plot design with four doses of organic matterials (0, 2.5, 5.0 and 7.5, %. After a month of mixing organic matterials into soils, lettuce were grown in the medias. According to the results, RC, TW and TB applications into acidic (Tepecik, neutral (Kampüs and alkaline (Çetinkaya soils increased extractable P content. It was observed that effectiveness of organic matterials changed depend on soil reaction, type and dose of organic matterials. All organic wastes were more effective on increment of bicarbonate extractable phosphate content in neutral soil pH when compared the other soil pH levels.

  17. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    Science.gov (United States)

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Studies on distribution and residue of sulfur in simulated acid rain in vegetable and soil by using 35S

    International Nuclear Information System (INIS)

    Wan Zhaoliang; Liu Dayong

    1995-01-01

    Distribution and residue of sulfur in simulated acid rain in two kinds of vegetables (lettuce and Chinese cabbage) and three types of soils (acid yellow earth, acid and neutral purple soils) were studied by using 35 S tracer method. The results showed that the higher concentration of acid rain was sprayed, the more residue of sulfur in vegetable there would be. The residue of sulfur in vegetable varied with the different physical and chemical properties of soils, the order of sulfur residue in vegetable was: acid purple soil>acid yellow earth>neutral purple soil. In the same soil, the residue of sulfur in lettuce was higher than that in Chinese cabbage, for the same vegetable, the residue of sulfur in leaves were higher than that in stems. The order of sulfur residue in different soils was acid purple soil>acid yellow earth>neutral purple soil. The higher concentration of acid rain was sprayed, the more residue of sulfur in soil surface there would be. The sulfur residue varied with the depth of soil and the pH value of acid rain. With the increase of soil depth, a slight increase of sulfur residue with rain of ph 6 and a slight decrease with rain of pH 4.0 and 2.5 were found

  19. Labile pools of Pb in vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH.

    Science.gov (United States)

    Xie, Hong; Huang, Zhi-Yong; Cao, Ying-Lan; Cai, Chao; Zeng, Xiang-Cheng; Li, Jian

    2012-08-01

    Pollution of Pb in the surface of agricultural soils is of increasing concern due to its serious impact on the plant growth and the human health through the food chain. However, the mobility, activity and bioavailability of Pb rely mainly on its various chemical species in soils. In the present study, E and L values, the labile pools of isotopically exchangeable Pb, were estimated using the method of isotope dilution in three vegetable-growing soils. The experiments involved adding a stable enriched isotope ((206)Pb > 96%) to a soil suspension and to soils in which plants are subsequently grown, the labile pools of Pb were then estimated by measuring the isotopic composition of Pb in soil solutions and in the plant tissues, respectively. In addition, the correlation of E values and soil pH was investigated at the ranges of pH 4.5-7.0. The amount of labile Pb in soils was also estimated using different single chemical extractants and a modified BCR approach. The results showed that after spiking the enriched isotopes of (206)Pb (>96%) for 24 hours an equilibration of isotopic exchanges in soil suspensions was achieved, and the isotope ratios of (208)Pb/(206)Pb measured at that time was used for calculating the E(24 h) values. The labile pools of Pb by %E(24 h) values, ranging from 53.2% to 61.7% with an average 57%, were found to be significantly higher (p soil pH was found in the tested soil sample. The results indicate that the %E(24 h) value can more rapidly and easily predict the labile pools of Pb in soils compared with L values, but it might be readily overestimated because of the artificial soil acidity derived from the spiked isotopic tracer and the excess of spiked enriched isotopes. The results also suggest that the amounts of Pb extracted with EDTA and the Σ(BCR) values extracted with the modified BCR approach are helpful to detect the labile pools of Pb in soils. In addition, the negative correlation between soil pH and the labile pools of Pb in soils

  20. Supplementing predictive mapping of acid sulfate soil occurrence with Vis-NIR spectroscopy

    DEFF Research Database (Denmark)

    Beucher, Amélie; Peng, Yi; Knadel, Maria

    , including geology, landscape type and terrain parameters. Visible-Near-Infrared (Vis-NIR) spectroscopy constitutes a rapid and cheap alternative to soil analysis, and was successfully utilized for the prediction of soil chemical, physical and biological properties. In particular, the Vis-NIR spectra contain......Releasing acidity and metals into watercourses, acid sulfate soils represent a critical environmental problem worldwide. Identifying the spatial distribution of these soils enables to target the strategic areas for risk management. In Denmark, the occurrence of acid sulfate soils was first studied...... during the 1980’s through conventional mapping (i.e. soil sampling and the subsequent determination of pH at the time of sampling and after incubation, the pyrite content and the acid-neutralizing capacity). Since acid sulfate soils mostly occur in wetlands, the survey specifically targeted these areas...

  1. Chemigation with micronized sulfur rapidly reduces soil pH in northern highbush blueberry

    Science.gov (United States)

    Northern highbush blueberry is adapted to low soil pH in the range of 4.5–5.5. When pH is higher, soil is usually acidified by incorporating elemental sulfur (S) prior to planting. A study was conducted to determine the potential of applying micronized S by chemigation through the drip system to red...

  2. Methodologically controlled variations in laboratory and field pH measurements in waterlogged soils

    DEFF Research Database (Denmark)

    Elberling, Bo; Matthiesen, Henning

    2007-01-01

    artefacts is critical. But the study includes agricultural and forest soils for comparison. At a waterlogged site, Laboratory results were compared with three different field methods: calomel pH probes inserted in the soil from pits, pH measurements of soil solution extracted from the soil, and pH profiles...... using a solid-state pH electrode pushed into the soil from the surface. Comparisons between in situ and laboratory methods revealed differences of more than 1 pH unit. The content of dissolved ions in soil solution and field observations of O2 and CO2 concentrations were used in the speciation model...... PHREEQE in order to predict gas exchange processes. Changes in pH in soil solution following equilibrium in the laboratory could be explained mainly by CO2 degassing. Only soil pH measured in situ using either calomel or solid-state probes inserted directly into the soil was not affected by gas exchange...

  3. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth.

    Science.gov (United States)

    Manoharan, V; Loganathan, P; Tillman, R W; Parfitt, R L

    2007-02-01

    A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF2(1+) and AlF(2+) complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future.

  4. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH

    NARCIS (Netherlands)

    de Cassia Pereira e Silva, M.; Poly, F.; Guillaumaud, N.; van Elsas, J.D.; Falcao Salles, J.

    2012-01-01

    The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators) of

  5. Why plants grow poorly on very acid soils: are ecologists missing the obvious?

    Science.gov (United States)

    Kidd, P S; Proctor, J

    2001-04-01

    Factors associated with soil acidity are considered to be limiting for plants in many parts of the world. This work was undertaken to investigate the role of the toxicity of hydrogen (H(+)) which seems to have been underconsidered by ecologists as an explanation of the reduced plant growth observed in very acid soils. Racial differences are reported in plant growth response to increasing acidity in the grass Holcus lanatus L. (Yorkshire-fog) and the tree Betula pendula Roth (Silver Birch). Soils and seeds were collected from four Scottish sites which covered a range of soils from acid (organic and mineral) to more base-rich. The sites and their pH (1:2.5 fresh soil:0.01 M CaCl(2)) were: Flanders Moss (FM), pH 3.2+/-0.03; Kippenrait Glen (KP), pH 4.8+/- 0.05; Kinloch Rannoch (KR), pH 6.1+/-0.16; and Sheriffmuir (SMM), pH 4.3+/-0.11. The growth rates of two races of H. lanatus, FM and KP, and three races of B. pendula (SMM, KP and KR) were measured in nutrient solution cultures at pH 2.0 (H. lanatus only), 3.0, 4.0, 5.0, and 5.6. Results showed races from acid organic soils (FM) were H(+)-tolerant while those from acid mineral soils (SMM) were Al(3+)-tolerant but not necessarily H(+)-tolerant. These results confirmed that populations were separately adapted to H(+) or Al(3+) toxicity and this was dependent upon the soil characteristics at their site of collection. The fact of plant adaptation to H(+) toxicity supports the view that this is an important factor in very acid soils.

  6. Influence of acid rain and organic matter on the adsorption of trace elements on soil

    International Nuclear Information System (INIS)

    Wang, H.; Ambe, S.; Takematsu, N.; Ambe, F.

    1998-01-01

    Acid rain has become one of the most serious environmental problems. Soil loses its buffering capacity by long exposure to acid rain, and the soil pH value decreases significantly. The acidification of the soil disturbs the adsorption equilibrium of many elements in the soil-water system. Soil is a very complex heterogeneous system, primarily consisting of clay minerals, hydrous oxides and polymeric organic substances, which possess their own characteristic element-adsorbing properties. On the other hand, the intrinsic properties of elements are reflected in their adsorption process as a matter of course. Therefore, both the effects of the pH of acid rain and that of the components of the soil on the adsorption of different elements should be studied when the adsorption process in acid soils is to be clarified. Although leaching of major cations in soil, such as Ca 2+ , Mg 2+ and Al 3+ , by acid rain, has been extensively studied, relatively little attention has been focused on trace elements which can also seriously affect the ecological system. We studied the acid rain effects on element adsorption by kaolin, forest soil, black soil, and also these soils with Fe- and Mn-oxides or organic matter selectively removed by using the radioactive multitracer technique. (author)

  7. Adsorption of 2,4-Dichlorophenoxyacetic Acid onto Volcanic Ash Soils:

    Directory of Open Access Journals (Sweden)

    Ei Ei Mon

    2009-01-01

    Full Text Available The quantification of the linear adsorption coefficient (Kd for soils plays a vital role to predict fate and transport of pesticides in the soil-water environment. In this study, we measured Kd values for 2,4-Dichlorophenoxyacetic acid (2,4-D adsorption onto Japanese volcanic ash soils with different amount of soil organic matter (SOM in batch experiments under different pH conditions. All measurements followed well both linear and Freundlich adsorption isotherms. Strong correlations were found between measured Kd values and pH as well as SOM. The 2,4-D adsorption increased with decreasing pH and with increasing SOM. Based on the data, a predictive Kd equation for volcanic ash soils, log (Kd = 2.04 - 0.37 pH + 0.91 log (SOM, was obtained by the multiple regression analysis. The predictive Kd equation was tested against measured 2,4-D sorption data for other volcanic ash soils and normal mineral soils from literature. The proposed Kd equation well predicted Kd values for other volcanic ash soils and slightly over- or under-predicted Kd values for normal mineral soils. The proposed Kd equation performed well against volcanic ash soils from different sites and countries, and is therefore recommended for predicting Kd values at different pH and SOM conditions for volcanic ash soils when calculating and predicting 2,4-D mobility and fate in soil and groundwater.

  8. Variation in pH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils

    OpenAIRE

    Turner, Benjamin L.

    2010-01-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly am...

  9. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.

    Science.gov (United States)

    Udovic, Metka; Lestan, Domen

    2012-07-01

    The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils.

    Science.gov (United States)

    Wagner, Robert; Zona, Donatella; Oechel, Walter; Lipson, David

    2017-08-01

    While there is no doubt that biogenic methane production in the Arctic is an important aspect of global methane emissions, the relative roles of microbial community characteristics and soil environmental conditions in controlling Arctic methane emissions remains uncertain. Here, relevant methane-cycling microbial groups were investigated at two remote Arctic sites with respect to soil potential methane production (PMP). Percent abundances of methanogens and iron-reducing bacteria correlated with increased PMP, while methanotrophs correlated with decreased PMP. Interestingly, α-diversity of the methanogens was positively correlated with PMP, while β-diversity was unrelated to PMP. The β-diversity of the entire microbial community, however, was related to PMP. Shannon diversity was a better correlate of PMP than Simpson diversity across analyses, while rarefied species richness was a weak correlate of PMP. These results demonstrate the following: first, soil pH and microbial community structure both probably control methane production in Arctic soils. Second, there may be high functional redundancy in the methanogens with regard to methane production. Third, iron-reducing bacteria co-occur with methanogens in Arctic soils, and iron-reduction-mediated effects on methanogenesis may be controlled by α- and β-diversity. And finally, species evenness and rare species abundances may be driving relationships between microbial groups, influencing Arctic methane production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Model study of acid rain effect on adsorption of trace elements on soils using a multitracer

    International Nuclear Information System (INIS)

    Wang, H.F.; Ambe, S.; Takematsu, N.; Ambe, F.

    1998-01-01

    Using a radioactive multitracer and model acid rain (HCl or H 2 SO 4 solution), batch experiments were performed to examine the pH effect on the adsorption-desorption equilibrium of 16 elements on soils as a model study of an acid rain effect. Kaolin, black soil (original and with organic matter almost removed) and Kureha soil (original and with organic matter almost removed) were used as adsorbents. Characteristic dependence on the pH value of the suspension was observed for the adsorption of the elements on kaolin and the soils. The results of this model study indicate that acid rain decreases the retention of cations, while it increases or does not change the adsorption of anions on soils. Organic matter in soils has a positive effect on the extent of adsorption of most elements investigated. (author)

  12. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    Science.gov (United States)

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  13. TOLERANCE OF PEANUT GENOTYPES TO ACIDIC SOIL CONDITION

    Directory of Open Access Journals (Sweden)

    Astanto Kasno

    2013-06-01

    Full Text Available The acidic soil is generally less productive due to soil pH ranging from 3.1 to 5.0. However, it could be solved through soil amelioration, planting tolerant varieties to acidic soil condition, and a combination of both. Twenty peanut genotypes including two check varieties (Jerapah and Talam 1 were evaluated on dolomite-ameliorated and non ameliorated soil. In the greenhouse, the treatments were laid out in factorial design with four replications, while in the field using strip plot design with three replications. Assessment of tolerance was using Stressed Tolerance Index (STI according to Fernandez (1992. Results showed that dolomite application at dose equivalent to 0.5 x exchangeable Al was optimal in improving peanut growth, and peanut yield on acidic soil. Lines of GH3 (G/92088/92088-02-B-2-8-1 and GH 4 (G/92088/ 92088-02-B-2-8-2 genotypes had high STI with average yield of 2.47 tha-1 and 2.62 t ha-1 of dry pods and potential yield of 4.05 t ha-1 and 3.73 t ha-1 of dry pods, respectively as well as check varieties (Jerapah and Talam-1. It is concluded that peanut genotype of G/92088//92088-02-B-2-8-1 and G/92088//920 88- 02-B-2-8-2 were adaptable and tolerance to acidic, and tolerance of peanuts on acidic soil condition were probably controlled by the buffering mechanisms.

  14. Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2014-10-01

    Full Text Available The decline in soil fertility in agricultural land is a major problem that causes a decrease in the production of food crops. One of the causes of the decline in soil fertility is declining soil pH that caused the decline in the availability of nutrients in the soil. This study aimed to assess the influence of alternative liming materials derived from maize cob biochar and rice husk charcoal compared to conventional lime to improve soil pH, soil nutrient availability and maize production. The experiment used a factorial complete randomized design which consisting of two factors. The first factor is the type of soil amendment which consists of three levels (calcite lime, rice husk charcoal and cob maize biochar. The second factor is the application rates of the soil amendment consisted of three levels (3, 6 and 9 t/ha and one control treatment (without soil amendment. The results of this study showed that the application of various soil amendment increased soil pH, which the pH increase of the lime application was relatively more stable over time compared to biochar and husk charcoal. The average of the soil pH increased for each soil amendment by 23% (lime, 20% (rice husk charcoal and 23% (biochar as compared with control. The increase in soil pH can increase the availability of soil N, P and K. The greatest influence of soil pH on nutrient availability was shown by the relationship between soil pH and K nutrient availability with R2 = 0.712, while for the N by R2 = 0.462 and for the P by R2 = 0.245. The relationship between the availability of N and maize yield showed a linear equation. While the relationship between the availability of P and K with the maize yield showed a quadratic equation. The highest maize yield was found in the application of biochar and rice husk charcoal with a dose of 6-9 t/ha. The results of this study suggested that biochar and husk charcoal could be used as an alternative liming material in improving acid soil

  15. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    Science.gov (United States)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, p<0.001). Bulk DNA was extracted from a tea orchard soil (pH 4.8; PNR, 0.078 μg NO2--Ng-1 h-1) and subjected to PCR-aided clone library analyses targeting archaeal and bacterial amoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  16. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  17. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Alshawabkeh, Akram N.; Chen Haifeng

    2007-01-01

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary

  18. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Khalid, Muhammad Salman; Peng, Qi-An; Xu, Xiangyu; Wu, Lei; Younas, Aneela; Bashir, Saqib; Mo, Yongliang; Lin, Shan; Zafar-Ul-Hye, Muhammad; Abid, Muhammad; Hu, Ronggui

    2018-04-01

    Several studies have been carried out to examine nitrous oxide (N 2 O) emissions from agricultural soils in the past. However, the emissions of N 2 O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg -1 soil) under 60% water filled pore space (WFPS) and flooding. N 2 O emissions and several soil properties (pH, NH 4 + N, NO 3 - -N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N 2 O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N 2 O emissions than that of flooding, and dolomite largely reduced N 2 O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N 2 O emissions through promoting nosZ gene transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reduction of exchangeable calcium and magnesium in soil with increasing pH

    Directory of Open Access Journals (Sweden)

    Miyazawa Mário

    2001-01-01

    Full Text Available A laboratory study was conducted with soil samples and synthetic solutions to investigate possible mechanisms related with reduction in KCl exchangeable Ca and Mg with increasing pH. Increasing soil pH over 5.3 with CaCO3 added to the soil and with NaOH solution added to soil/KCl suspension increased adsorptions of Ca and Mg. The reduction of Mg was greater than Ca and was related to the concentration of soil exchangeable Al. The decreases of soluble Ca and Mg following addition of Al in synthetic solution were at pH > 7.5. The isomorphic coprecipitation reaction with Al compounds may be the most possible mechanism responsible for the decrease of exchangeable Ca and Mg with increasing pH. Possible chemical reactions are presented.

  20. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    Science.gov (United States)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for

  1. HONO (nitrous acid) emissions from acidic northern soils

    Science.gov (United States)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.

    2015-04-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.

  2. Effect of Simulated Acid Rain on Potential Carbon and Nitrogen Mineralization in Forest Soils

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xue-Jun; ZHOU Guo-Yi; HUANG Zhong-Liang; LIU Ju-Xiu; ZHANG De-Qiang; LI Jiong

    2008-01-01

    Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control of pH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments.For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg-1 dry soil, net production of available N from 17.37 to 48.95 mg kg-1 dry soil, and net production of NO-3-N from 9.09 to 46.23 mg kg-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission.SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P≤0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.

  3. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    Science.gov (United States)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  4. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  5. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    Science.gov (United States)

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  6. The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure.

    Science.gov (United States)

    Liu, Xingmei; Zhou, Jian; Li, Wanlu; Xu, Jianming; Brookes, Philip C

    2014-05-01

    Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H(+) and Al(3+) and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg(-1)soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H(+) and Al(3+). Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs.

  7. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains soil fines in suspension......The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  8. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    Science.gov (United States)

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26–8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18–20.68 mg kg−1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes. PMID:28051171

  9. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    Science.gov (United States)

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26-8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18-20.68 mg kg-1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes.

  10. Spontaneous aggregation of humic acid observed with AFM at different pH.

    Science.gov (United States)

    Colombo, Claudio; Palumbo, Giuseppe; Angelico, Ruggero; Cho, Hyen Goo; Francioso, Ornella; Ertani, Andrea; Nardi, Serenella

    2015-11-01

    Atomic force microscopy in contact (AFM-C) mode was used to investigate the molecular dynamics of leonardite humic acid (HA) aggregate formed at different pH values. HA nanoparticles dispersed at pH values ranging from 2 to 12 were observed on a mica surface under dry conditions. The most clearly resolved and well-resulted AFM images of single particle were obtained at pH 5, where HA appeared as supramolecular particles with a conic shape and a hole in the centre. Those observations suggested that HA formed under these conditions exhibited a pseudo-amphiphilic nature, with secluded hydrophobic domains and polar subunits in direct contact with hydrophilic mica surface. Based on molecular simulation methods, a lignin-carbohydrate complex (LCC) model was proposed to explain the HA ring-like morphology. The LCC model optimized the parameters of β-O-4 linkages between 14 units of 1-4 phenyl propanoid, and resulted in an optimized structure comprising 45-50 linear helical molecules looped spirally around a central cavity. Those results added new insights on the adsorption mechanism of HA on polar surfaces as a function of pH, which was relevant from the point of view of natural aggregation in soil environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of pH on saturated hydraulic conductivity and soil dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, D.L.; Roades, J.D.; Lavado, R.; Grieve, C.M.

    The adverse effects of exchangeable sodium on soil hydraulic conductivity (K) are well known, but at present only sodicity and total electrolyte concentration are used in evaluating irrigation water suitability. In arid areas, high sodicity is often associatd with high dissolved carbonate and thus high pH, but in humid areas high sodicity may be associated with low pH. To evaluate the effect of pH (as an independent variable) on K, solutions with the same SAR and electrolyte level were prepared at pH 6, 7, 8, and 9. Saturated K values were determined at constant flux in columns packed at a bulk density of 1.5 Mg m/sup -3/. At pH 9, saturated K values were lower than at pH 6 for a montmorillonitic and kaolinitic soil. For a vermiculitic soil with lower organic carbon and higher silt content, pH changes did not cause large K differences. Decreases in K were not reversible on application of waters with higher electrolyte levels. The results from the K experiments were generally consistent with optical transmission measurements of dispersion. Although anion adsorption was at or below detection limits and cation exchange capacity (CEC) was only slightly dependent on pH, differences in pH effects on K among soils are likely due to differences in quantities of variable-charge minerals and organic matter.

  12. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA.

    Science.gov (United States)

    Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng

    2017-08-01

    Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.

  13. Impacts of simulated acid rain on recalcitrance of two different soils.

    Science.gov (United States)

    Dai, Zhongmin; Liu, Xingmei; Wu, Jianjun; Xu, Jianming

    2013-06-01

    Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH 2.0, whereas only cation exchange occurred above SAR pH 3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K(+) and Mg(2+) ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca(2+) >K(+) >Mg(2+) >Na(+) for the Plinthudult and Ca(2+) >Mg(2+) >Na(+) >K(+) for the Paleudalfs soil. The SARs above pH 3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH 2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees.

  14. Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils.

    Science.gov (United States)

    Shi, Renyong; Li, Jiuyu; Jiang, Jun; Mehmood, Khalid; Liu, Yuan; Xu, Renkou; Qian, Wei

    2017-05-01

    The chemical characteristics, element contents, mineral compositions, and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity, and higher Ca and Mg levels in biomass ashes, which made them particularly good at ameliorating effects on soil acidity. However, heavy metal contents, such as Cr, Cu, and Zn in the ashes, were relatively high. The incorporation of all ashes increased soil pH, exchangeable base cations, and available phosphorus, but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore, the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments. Copyright © 2016. Published by Elsevier B.V.

  15. The effect of soil pH and the fungicide 'Captan' on 134Cs transfer factors for cucumber and radish plants

    International Nuclear Information System (INIS)

    Skarlou, V.; Massas, I.; Anoussis, J.; Haidouti, C.; Arapis, G.

    1999-01-01

    The effect of soil pH and the fungicide 'Captan' on 134 Cs transfer factors (TFs) was studied in a greenhouse pot experiment with cucumber and radish plants. A soil with a low pH (4.2) was selected and its pH value has increased to 5.7, 6.5 and 7.6 by the addition of different amounts of Ca(OH) 2 . Liming of the soil and the subsequent increase in pH values resulted in a reduction of 134 Cs TFs which was not always significant. TFs were the highest in the very acid soil (pH 4.2) and were practically the same above the pH 5.7 although they were the lowest in the calcareous soil. The ratio highest / lowest TF of each crop or plant part ranged between ∼ 2.0 for radish and 4.5 for cucumber plants and it was much lower than that previously reported and attributed to pH differences. Edible to other plant material TF ratio indicates that cucumber plant accumulates considerably more of the totally absorbed 134 CS in the edible part than radish crops. When biomass production was used for excluding dilution effects, 134 CS total activity (Bq/pot) was higher for both plants when grown in the intermediate soil pH (5.7 - 6.5), due to the higher yield at these pH values. The application of the fungicide 'Captan' gave no significant differences in 134 Cs TFs for both plant species and in all studied soil pH. Refs. 4 (author)

  16. Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi

    Directory of Open Access Journals (Sweden)

    Yuechun Zhao

    2010-04-01

    Full Text Available High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5–4.5.

  17. Soil amino acid composition across a boreal forest successional sequence

    Science.gov (United States)

    Nancy R. Werdin-Pfisterer; Knut Kielland; Richard D. Boone

    2009-01-01

    Soil amino acids are important sources of organic nitrogen for plant nutrition, yet few studies have examined which amino acids are most prevalent in the soil. In this study, we examined the composition, concentration, and seasonal patterns of soil amino acids across a primary successional sequence encompassing a natural gradient of plant productivity and soil...

  18. Use of cation selective membrane and acid addition for PH control in two-dimensional electrokinetic remediation of copper

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M.S.M.; Lynch, R.J. [Cambridge Univ., Engineering Dept. (United Kingdom); Ilett, D.J. [AEA Technology, Harwell, Oxfordshire (United Kingdom)

    2001-07-01

    The feasibility of using a combination of a cation selective membrane and acid addition for pH control in electrokinetic remediation to toxic and heavy metals from low-permeability soil has been investigated. The high pH generated during the remediation process, as a result of surplus OH{sup -} ions, may cause metal ions to precipitate as hydroxides at or near the cathodes. This region of high pH is known to be associated with high electrical resistance, which limits the remediation efficiency by inhibiting current flow through the soil. One way to control pH is by adding acid to neutralize the OH{sup -} ions. However, preliminary work showed that addition of acid to the cathodic region was not effective in preventing the spread of the alkaline zone from cathodes toward anodes. Precipitates were formed before metal ions reached the cathodic region. Therefore, another method of pH control was investigated, using a cation selective membrane to enhance the electrokinetic process. The membrane was placed in front of the cathodes to contain the OH{sup -} ions generated, and confine the precipitates of metal hydroxide to a small cathodic region. The clean-up of a contaminated site was modelled in a rectangular tank, using silt as the low permeability soul and copper to simulate the contamination. The objective was to redistribute the contaminant so as to concentrate it into a small area. Three experiments were performed with the following methods of pH control: (1) acid addition, (2) use of a cation selective membrane and (3) a combination of acid addition and a cation selective membrane. Using the combined approach, it was found that 75% of the target clean-up section (bounded by the cation selective membrane and the anodes) had more than 40% of the initial copper removed. The general efficiency of remediation increased in the following order. (orig.)

  19. Influence of humified organic matter on copper behavior in acid polluted soils

    International Nuclear Information System (INIS)

    Fernandez-Calvino, D.; Soler-Rovira, P.; Polo, A.; Arias-Estevez, M.; Plaza, C.

    2010-01-01

    The main purpose of this work was to identify the role of soil humic acids (HAs) in controlling the behavior of Cu(II) in vineyard soils by exploring the relationship between the chemical and binding properties of HA fractions and those of soil as a whole. The study was conducted on soils with a sandy loam texture, pH 4.3-5.0, a carbon content of 12.4-41.0 g kg -1 and Cu concentrations from 11 to 666 mg kg -1 . The metal complexing capacity of HA extracts obtained from the soils ranged from 0.69 to 1.02 mol kg -1 , and the stability constants for the metal ion-HA complexes formed, log K, from 5.07 to 5.36. Organic matter-quality related characteristics had little influence on Cu adsorption in acid soils, especially if compared with pH, the degree of Cu saturation and the amount of soil organic matter. - The effect of organic matter quality on Cu adsorption in acid soils was low compared with other soil characteristics such as pH or degree of Cu saturation.

  20. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil.

    Science.gov (United States)

    Wu, L H; Luo, Y M; Christie, P; Wong, M H

    2003-02-01

    A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.

  1. Nitrogen-Utilization by Plant-Species from Acid Heathland Soils .2. Growth and Shoot/Root Partitioning of No3- Assimilation at Constant Low Ph and Varying No3-/Nh4+ Ratio

    NARCIS (Netherlands)

    Troelstra, S.R.; Wagenaar, R.; Smant, W.

    1995-01-01

    The growth of four heathland species, two grasses (D. flexuosa, M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix), was tested in solution culture at pH 4.0 with 2 mol m(-3) N, varying the NO3-/NH4+ ratio up to 40% nitrate. In addition, measurements of NRA, plant chemical composition, and

  2. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    Science.gov (United States)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The

  3. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-01-01

    To date, N 2 O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15 N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N 2 O production in four subtropical acid forest soils (pH 2 O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N 2 O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N 2 O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N 2 O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N 2 O product ratios from nitrification. The ratio of N 2 O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N 2 O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N 2 O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N 2 O production. → While, contribution of autotrophic nitrification to N 2 O production was little. → Ratios of N 2 O-N emission from nitrification were higher than those in most previous references.

  4. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    International Nuclear Information System (INIS)

    Sheng Guangyao; Yang Yaning; Huang Minsheng; Yang Kai

    2005-01-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs ∼3.0 and ∼7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH ∼7.0 than at pH ∼3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH ∼7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH ∼3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH ∼3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides

  5. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Guangyao [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States)]. E-mail: gsheng@uark.edu; Yang Yaning [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Huang Minsheng [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China); Yang Kai [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China)

    2005-04-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs {approx}3.0 and {approx}7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH {approx}7.0 than at pH {approx}3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH {approx}7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH {approx}3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH {approx}3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides.

  6. Lead, zinc and pH concentrations of Enyigba soils in Abakaliki Local ...

    African Journals Online (AJOL)

    The concentrations of lead (Pb) and zinc (Zn) were quantitatively determined in surface and sub-surface soils in Enyigba, Ebonyi State, Nigerian's major lead mining area using atomic absorption spectrophotometer. pH status of the soils was similarly determined. The survey was conducted to establish a base line pollution ...

  7. Novel chelating agents for iron, manganese, zinc, and copper mixed fertilisation in high pH soil-less cultures.

    Science.gov (United States)

    López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2016-03-15

    Studies about simultaneous fertilisation with several micronutrients have increased in recent years, as Fe, Mn and Zn deficiencies may appear in the same culture conditions. In fertigation, the replacement of sulfates by synthetic chelates is essential in areas with high pH irrigation water and substrates. Ethylenediamine-N-(2-hydroxyphenylacetic acid)-N'-(4-hydroxyphenylacetic acid) (o,p-EDDHA) and ethylenediamine disuccinic acid (EDDS) are novel chelating agents whose efficacy in simultaneous fertilisation of Zn, Mn and Cu is unknown. This work evaluates the effectiveness of both ligands compared to traditional ligands (EDTA, HEEDTA and DTPA) applied as micronutrient chelate mixtures to soybean and navy bean plants grown in soil-less cultures at high pH by analysing the SPAD and micronutrient nutritional status, including the Composition Nutritional Diagnosis (CND) analysis tool. The application of micronutrients using o,p-EDDHA was more effective in providing Mn and Zn than traditional ligands or sulfates. The application using EDDS increased the Zn nutrition. The results are well correlated with the chemical stability of the formulations. The combined application of Mn and Zn as o,p-EDDHA chelates can represent a more effective source than traditional chelates in micronutrient fertiliser mixtures in soil-less cultures at a high pH. © 2015 Society of Chemical Industry.

  8. Laser-induced breakdown spectroscopy: Extending its application to soil pH measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Edilene Cristina, E-mail: edilene@iq.unesp.br [São Paulo State University – UNESP, Analytical Chemistry Department, Rua Prof. Francisco Degni 55, CEP 14800-060, Araraquara, SP (Brazil); Gomes Neto, José A. [São Paulo State University – UNESP, Analytical Chemistry Department, Rua Prof. Francisco Degni 55, CEP 14800-060, Araraquara, SP (Brazil); Milori, Débora M.B.P.; Ferreira, Ednaldo José [Embrapa Agricultural Instrumentation, Rua XV de Novembro 1452, CEP 13560-970, São Carlos, SP (Brazil); Anzano, Jesús Manuel [Laser Laboratory & Environment, Faculty of Sciences, University of Zaragoza, C/. Pedro Cerbuna 12, 50009, Zaragoza (Spain)

    2015-08-01

    Acid–base equilibria are involved in almost all the processes that occur in soil. The bioavailability of nutrients for plants, for instance, depends on the solubilization of mineral nutrients in the soil solution, which is a pH-dependent process. The determination of pH in soil solutions is usually carried out by potentiometry using a glass membrane electrode, after extracting some of the soil components with water or CaCl{sub 2} solution. The present work describes a simple method for determining the pH of soil, using laser-induced breakdown spectroscopy (LIBS). Sixty samples presenting different textural composition and pH (previously determined by potentiometry) were employed. The samples were divided into a calibration set with fifty samples and a validation set with ten samples. LIBS spectra were recorded for each pelleted sample using laser pulse energy of 115 mJ. The intensities of thirty-two emission lines for Al, Ca, H, and O were used to fit a partial least squares (PLS) model. The model was validated by prediction of the pH of the validation set samples, which showed good agreement with the reference values. The prediction mean absolute error was 0.3 pH units and the root mean square error of the prediction was 0.4. These results highlight the potential of LIBS for use in other applications beyond elemental composition determinations. For soil analysis, the proposed method offers the possibility of determining pH, in addition to nutrients and contaminants, using a single LIBS measurement. - Highlights: • Physical, chemical, and biological properties of soil are influenced by pH. • The pH of mineral soils is normally determined in slurries of water and soil sample by potentiometric measurements. • The association of LIBS elemental emissions with multivariate strategies of analysis has become LIBS a powerful technique. • LIBS was unprecedentedly applied for direct pH determination in different kinds of soil sample. • The clean and fast proposed

  9. Analysis of Factors Influencing Soil Salinity, Acidity, and Arsenic Concentration in a Polder in Southwest Bangladesh

    Science.gov (United States)

    Ayers, J. C.; Patton, B.; Fry, D. C.; Goodbred, S. L., Jr.

    2017-12-01

    Soil samples were collected on Polder 32 in the coastal zone of SW Bangladesh in wet (October) and dry (May) seasons from 2013-2017 and analyzed to characterize the problems of soil salinization and arsenic contamination and identify their causes. Soils are entisols formed from recently deposited, predominantly silt-sized sediments with low carbon concentrations typical of the local mangrove forests. Soluble (DI extract) arsenic concentrations were below the Government of Bangladesh limit of 50 ppb for drinking water. Soil acidity and extract arsenic concentrations exhibit spatial variation but no consistent trends. In October soil extract As is higher and S and pH are lower than in May. These observations suggest that wet season rainwater oxidizes pyrite, reducing soil S and releasing H+, causing pH to decrease. Released iron is oxidized to form Hydrous Ferric Oxyhydroxides (HFOs), which sorb As and increase extractable As in wet season soils. Changes in pH are small due to pH buffering by soil carbonates. Soil and rice paddy water salinities are consistently higher in May than October, reaching levels in May that reduce rice yields. Rice grown in paddies should be unaffected by salt concentrations in the wet season, while arsenic concentrations in soil may be high enough to cause unsafe As levels in produced rice.

  10. The impact of acid soil volume of reclaimed minespoils on plant growth in minilysimeters

    International Nuclear Information System (INIS)

    Shahandeh, H.; Hossner, L.R.; Birkhead, J.A.

    1996-01-01

    Limited data are available to assess the influence of randomly distributed acid soil, produced from acid forming materials (AFM), on growth and productivity of crops. This study evaluated the effect of amount and volume of acid soil on the growth of an acid tolerant plant (Coastal bermudga grass, Cynodon dactylon, L.) and an acid intolerant plant (Yuchi arrowleaf clover, Trifolium vesiculosum, Savi) in greenhouse lysimeters. Acid soil (pH=2.5) volumes up to 20% for Yuchi arrowleaf clover and up to 40% for Coastal bermuda grass did not significantly decrease dry matter yield. Concentrations of Al and Mn in plant tissue of clover and bermudagrass were below the toxicity level. In the presence of randomly distributed acid soil, plant roots continued to elongate in non-acid soil, by evading localized areas of low soil pH. These results suggest that the federally mandated zero tolerance for AFM in the top 1.2 m of reclaimed lands may not be reasonable. 18 refs., 7 figs., 2 tabs

  11. The impact of acid soil volume of reclaimed minespoils on plant growth in minilysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Shahandeh, H.; Hossner, L.R.; Birkhead, J.A. [Texas A & M University, College Station, TX (United States). College of Agriculture and Life Science

    1996-06-01

    Limited data are available to assess the influence of randomly distributed acid soil, produced from acid forming materials (AFM), on growth and productivity of crops. This study evaluated the effect of amount and volume of acid soil on the growth of an acid tolerant plant (Coastal bermudga grass, {ital Cynodon dactylon}, L.) and an acid intolerant plant (Yuchi arrowleaf clover, {ital Trifolium vesiculosum}, Savi) in greenhouse lysimeters. Acid soil (pH=2.5) volumes up to 20% for Yuchi arrowleaf clover and up to 40% for Coastal bermuda grass did not significantly decrease dry matter yield. Concentrations of Al and Mn in plant tissue of clover and bermudagrass were below the toxicity level. In the presence of randomly distributed acid soil, plant roots continued to elongate in non-acid soil, by evading localized areas of low soil pH. These results suggest that the federally mandated zero tolerance for AFM in the top 1.2 m of reclaimed lands may not be reasonable. 18 refs., 7 figs., 2 tabs.

  12. Influence of ameliorating soil acidity with dolomite on the priming of soil C content and CO2 emission.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Lei; Peng, Qi-An; van Zwieten, Lukas; Chhajro, Muhammad Afzal; Wu, Yupeng; Lin, Shan; Ahmed, Muhammad Mahmood; Khalid, Muhammad Salman; Abid, Muhammad; Hu, Ronggui

    2017-04-01

    Lime or dolomite is commonly implemented to ameliorate soil acidity. However, the impact of dolomite on CO 2 emissions from acidic soils is largely unknown. A 53-day laboratory study was carried out to investigate CO 2 emissions by applying dolomite to an acidic Acrisol (rice-rapeseed rotation [RR soil]) and a Ferralsol (rice-fallow/flooded rotation [RF soil]). Dolomite was dosed at 0, 0.5, and 1.5 g 100 g -1 soil, herein referred to as CK, L, and H, respectively. The soil pH (H2O) increased from 5.25 to 7.03 and 7.62 in L and H treatments of the RR soil and from 5.52 to 7.27 and 7.77 in L and H treatments of the RF soil, respectively. Dolomite application significantly (p ≤ 0.001) increased CO 2 emissions in both RR and RF soils, with higher emissions in H as compared to L dose of dolomite. The cumulative CO 2 emissions with H dose of dolomite were greater 136% in the RR soil and 149% in the RF soil as compared to CK, respectively. Dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased and reached at 193 and 431 mg kg -1 in the RR soil and 244 and 481 mg kg -1 in the RF soil by H treatments. The NH 4 - -N and NO 3 - -N were also increased by dolomite application. The increase in C and N contents stimulated microbial activities and therefore higher respiration in dolomite-treated soil as compared to untreated. The results suggest that CO 2 release in dolomite-treated soils was due to the priming of soil C content rather than chemical reactions.

  13. Adsorption-Desorption of Hexaconazole in Soils with Respect to Soil Properties, Temperature, and pH

    Directory of Open Access Journals (Sweden)

    Maznah Zainol

    2016-06-01

    Full Text Available The effect of temperature and pH on adsorption-desorption of fungicide hexaconazole was studied in two Malaysian soil types; namely clay loam and sandy loam. The adsorption-desorption experiment was conducted using the batch equilibration technique and the residues of hexaconazole were analysed using the GC-ECD. The results showed that the adsorption-desorption isotherms of hexaconazole can be described with Freundlich equation. The Freundlich sorption coefficient (Kd values were positively correlated to the clay and organic matter content in the soils. Hexaconazole attained the equilibrium phase within 24 h in both soil types studied. The adsorption coefficient (Kd values obtained for clay loam soil and sandy loam soil were 2.54 mL/g and 2.27 mL/g, respectively, indicating that hexaconazole was weakly sorbed onto the soils due to the low organic content of the soils. Regarding thermodynamic parameters, the Gibb’s free energy change (ΔG analysis showed that hexaconazole adsorption onto soil was spontaneous and exothermic, plus it exhibited positive hysteresis. A strong correlation was observed between the adsorption of hexaconazole and pH of the soil solution. However, temperature was found to have no effect on the adsorption of hexaconazole onto the soils; for the range tested.

  14. Soil degradation by sulfuric acid disposition on uranium producing sites in south Bulgaria

    International Nuclear Information System (INIS)

    Atanasov, I.; Gribachev, P.

    1997-01-01

    This study assesses the damage of soils caused by spills of sulfuric acid solutions used for in situ leaching of uranium at eight uranium producing (by open-cast method) sites (total area of approximately 220 ha) in the region of Momino-Rakovski (South Bulgaria). The upper soil layer is cinnamonic pseudopodzolic ( or Eutric Planosols by FAO Legend, 1974). The results of the investigation show that the sulfuric acid spills caused strong acidification of upper (0-20 cm) and subsurface (20-60 cm) soil horizons which is expressed as decreasing of pH (H 2 O) to 2.9-3.5 and increasing of exchangeable H + and Al 3+ to 18 and 32% from CEC. Acid degradation of soils is combined with reducing of organic matter content. The average concentration of the total heavy metal content in the upper soil horizon (in ppm) is: Cd=1.5; Cu=30; Pb=25; Zn=40 and U=8. No significant differences were detected between the upper and subsurface soil layers . The heavy metal concentration did not exceed the Bulgarian standards for heavy metals and uranium content of soils. But the coarse texture of the top soil layers, the lack of carbonates, The low CEC and strong acidity determine a low buffering capacity of the investigated soils and this can be considered as hazardous for plants. This indicates that a future soil monitoring should be carried out in the region together with measures for neutralizing of soil acidity

  15. Effect of pH on the adsorption of carbendazim in Polish mineral soils

    International Nuclear Information System (INIS)

    Paszko, Tadeusz

    2012-01-01

    The study aimed to determine the influence of pH on the adsorption of carbendazim in soil profiles of three mineral agricultural soils: Hyperdystric Arenosol, Haplic Luvisol and Hypereutric Cambisol. In the examined pH range between 3 and 7 the adsorption of carbendazim was inversely correlated to the pH of the soil. The adsorption coefficients were in the range between 0.3 and 151.8 mL g −1 . Decreasing the pH in the soil suspensions from 7 to 3 increased the value of this coefficient by 3 to 70 times. A decrease in the amounts of organic matter down the soil profiles was not associated with weaker carbendazim adsorption. In the samples from all soil horizons, at pH values between 3 and 6, the predominant sorption process was carbendazim adsorption on clay minerals. The adsorption of carbendazim on organic matter prevailed over that on clays only at pH > 6 and only in the Ap horizon of the examined soils. The developed mathematical models yielded very good results when the adsorption of the protonated form of carbendazim was assumed to be the predominant adsorption process on clays together with the adsorption of neutral molecules on organic matter and clays. The results from both the model fitting and the experiments revealed the negative effect of Al oxides and hydroxides and Al cations on the adsorption of the protonated form of carbendazim on clay minerals. The developed models successfully described the pH-dependent adsorption processes of carbendazim for both data from particular soil horizons and those from all three examined soil profiles. -- Highlights: ► Adsorption of carbendazim in soils was inversely correlated to soil pH. ► At low pH carbendazim was adsorbed predominantly by clay minerals. ► Al 3+ influenced adsorption of the protonated form of carbendazim on clays. ► Created models predict pH-dependent sorption processes in the whole soil profiles.

  16. Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon - Effect of cation composition and pH.

    Science.gov (United States)

    Campos Pereira, Hugo; Ullberg, Malin; Kleja, Dan Berggren; Gustafsson, Jon Petter; Ahrens, Lutz

    2018-09-01

    Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al 3+ , Ca 2+ and Na + . Often, the organic C-normalized partitioning coefficients (K OC ) showed a negative relationship to both pH (Δlog K OC /ΔpH = -0.32 ± 0.11 log units) and the SOM bulk net negative charge (Δlog K OC  = -1.41 ± 0.40 per log unit mol c g -1 ). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log K OC units per CF 2 moiety for C 3 -C 10 PFCAs and C 4 , C 6 , and C 8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C 5 -C 8 PFCAs and C 6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C 9 -C 11 and C 13 PFCAs, C 8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    Science.gov (United States)

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  18. Interactive effects of soil acidity and fluoride on soil solution aluminium chemistry and barley (Hordeum vulgare L.) root growth

    International Nuclear Information System (INIS)

    Manoharan, V.; Loganathan, P.; Tillman, R.W.; Parfitt, R.L.

    2007-01-01

    A greenhouse study was conducted to determine if concentrations of fluoride (F), which would be added to acid soils via P fertilisers, were detrimental to barley root growth. Increasing rates of F additions to soil significantly increased the soil solution concentrations of aluminium (Al) and F irrespective of the initial adjusted soil pH, which ranged from 4.25 to 5.48. High rates of F addition severely restricted root growth; the effect was more pronounced in the strongly acidic soil. Speciation calculations demonstrated that increasing rates of F additions substantially increased the concentrations of Al-F complexes in the soil. Stepwise regression analysis showed that it was the combination of the activities of AlF 2 1+ and AlF 2+ complexes that primarily controlled barley root growth. The results suggested that continuous input of F to soils, and increased soil acidification, may become an F risk issue in the future. - Addition of high rates of fluoride to strongly acidic soils can reduce barley root growth due to the toxicity of aluminium-fluoride complexes formed in soil solution

  19. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    International Nuclear Information System (INIS)

    Okamura, K; Yamada, T; Hiraishi, A; Takanashi, A

    2012-01-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO 2 - -Ng -1 h -1 and were positively correlated with the soil pH (r 2 0.382, p 2 - -Ng -1 h -1 ) and subjected to PCR-aided clone library analyses targeting archaeal and bacterial amoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  20. Acidez potencial pelo método do pH SMP no Estado do Amazonas Potential acidity by pH SMP method in Amazonas State, Brazil

    Directory of Open Access Journals (Sweden)

    Adônis Moreira

    2004-01-01

    Full Text Available O objetivo deste trabalho foi definir um modelo matemático que estime o H+Al a partir do pH SMP medido em água e em solução de CaCl2 0,01 mol L-1 nas condições edafoclimáticas locais. Foram utilizadas 246 amostras de solo provenientes de diversas localidades. Mesmo apresentando menor coeficiente da correlação (r = 0,89*, a equação H+Al = 30,646 - 3,848pH SMP obtida em H2O foi mais eficiente que a obtida em solução CaCl2 (H+Al = 30,155 - 3,834pH SMP, r = 0,91*, a qual subestima os valores da acidez potencial.The objective of this work was to determine a mathematic model that estimates the potential acidity with pH SMP measured in water and in solution of CaCl2 0.01 mol L-1. Two hundred and forty six soil samples from several localities were utilized. Despite presenting a lower correlation coefficient (r = 0.89*, the equation H+Al = 30.646 - 3.848pH SMP, obtained in H2O, was more efficient than in the CaCl2 solution (H+Al = 30.155 -3.834pH SMP, r = 0.91*, since this last one underestimates the values of the potential acidity.

  1. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    Directory of Open Access Journals (Sweden)

    Linlin Chu

    2014-01-01

    Full Text Available Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China.

  2. Metal mobilization from metallurgical wastes by soil organic acids.

    Science.gov (United States)

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Fondaneche, Patrice; Lens, Piet N L; van Hullebusch, Eric D

    2017-07-01

    Three types of Cu-slags differing in chemical and mineralogical composition (historical, shaft furnace, and granulated slags) and a matte from a lead recovery process were studied with respect to their susceptibility to release Cu, Zn and Pb upon exposure to organic acids commonly encountered in soil environments. Leaching experiments (24-960 h) were conducted with: i) humic acid (20 mg/L) at pH t 0  = 4.4, ii) fulvic acid (20 mg/L) at pH t 0  = 4.4, iii) an artificial root exudates (ARE) (17.4 g/L) solution at pH t 0  = 4.4, iv) ARE solution at pH t 0  = 2.9 and v) ultrapure water (pH t 0  = 5.6). The results demonstrated that the ARE contribute the most to the mobilization of metals from all the wastes analyzed, regardless of the initial pH of the solution. For example, up to 14%, 30%, 24% and 5% of Cu is released within 960 h from historical, shaft furnace, granulated slags and lead matte, respectively, when exposed to the artificial root exudates solution (pH 2.9). Humic and fulvic acids were found to have a higher impact on granulated and shaft furnace slags as compared to the ultrapure water control and increased the release of metals by a factor up to 37.5 (Pb) and 20.5 (Cu) for granulated and shaft furnace slags, respectively. Humic and fulvic acids amplified the mobilization of metals by a maximal factor of 13.6 (Pb) and 12.1 (Pb) for historical slag and lead matte, respectively. The studied organic compounds contributed to different release rates of metallic contaminants from individual metallurgical wastes under the conditions tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    Full Text Available The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF, a transitional mixed conifer and broadleaf forest (MF and an old-growth broadleaved forest (BF] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0. Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  4. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Science.gov (United States)

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  5. The response of soil solution chemistry in European forests to decreasing acid deposition

    DEFF Research Database (Denmark)

    Johnson, James; Pannatier, Elisabeth Graf; Carnicelli, Stefano

    2018-01-01

    to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot) and dissolved organic carbon were determined for the period 1995–2012. Plots...... with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10–20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate () in soil solution; over a 10‐year period (2000...... over the entire dataset. The response of soil solution acidity was nonuniform. At 10–20 cm, ANC increased in acid‐sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid‐sensitive soils (base...

  6. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil.

    Science.gov (United States)

    Luo, Y M; Christie, P; Baker, A J

    2000-07-01

    Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.

  7. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH

    Directory of Open Access Journals (Sweden)

    Michele C ePereira e Silva

    2012-03-01

    Full Text Available The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively, and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 µgN.h-1.gdw-1 and 1.68 ± 0.11 µgN.h-1.gdw-1, being higher in soils with higher clay content (1.09 ± 0.12 µgN.h-1.gdw-1 and lower in soils with lower clay percentages (0.27 ± 0.04 µgN.h-1.gdw-1. Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10% the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%. Similar trends were observed for the sizes of these communities. The present work represents a first step towards defining a NOR for soil nitrification. Moreover, the clear effect of soil texture established here suggests that the NOR should be defined in a soil-type-specific manner.

  8. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  9. Wood ash application increases pH but does not harm the soil mesofauna

    DEFF Research Database (Denmark)

    Qin, Jiayi; Hovmand, Mads Frederik; Ekelund, Flemming

    2017-01-01

    Application of bioash from biofuel combustion to soil supports nutrient recycling, but may have unwanted and detrimental ecotoxicological side-effects, as the ash is a complex mixture of compounds that could affect soil invertebrates directly or through changes in their food or habitat conditions...... is the likely cause of effects while high pH and heavy metals is of minor importance.......Application of bioash from biofuel combustion to soil supports nutrient recycling, but may have unwanted and detrimental ecotoxicological side-effects, as the ash is a complex mixture of compounds that could affect soil invertebrates directly or through changes in their food or habitat conditions....... To examine this, we performed laboratory toxicity studies of the effects of wood-ash added to an agricultural soil and the organic horizon of a coniferous plantation soil with the detrivore soil collembolans Folsomia candida and Onychiurus yodai, the gamasid predaceous mite Hypoaspis aculeifer...

  10. SPATIAL AND TEMPORAL PATTERN OF SOIL pH AND Eh AND THEIR IMPACT ON SOLUTE IRON CONTENT IN A WETLAND (TRANSDANUBIA, HUNGARY

    Directory of Open Access Journals (Sweden)

    SZALAI ZOLTÁN

    2008-06-01

    Full Text Available Land mosaics have direct and indirect influence on chemical reaction and redox condition of soils. The present paper deals with the relationship between some environmental factors (such as soil andvegetation patterns, micro-relief, water regime, temperature and incident solar radiation and the pH, Eh of soils and solute iron in a headwater wetland in Transdanubia, Hungary. Measurements have been taken in four different patches and along their boundaries: sedge (Carex vulpina, Carex riparia, three patches and two species, horsetail (Equisetum arvense, common nettle (Urtica dioica. Thespatial pattern of the studied parameters are influenced by the water regime, micro-topography, climatic conditions and by direct and indirect effects of vegetation. The indirect effect can be the shading, which has influence on soil temperature and on the incident solar radiation (PAR. Root respiration and excretion of organic acids appear as direct effects.. There have been measured individual pH and Eh characteristic in the studied patches. Soil Eh, pH and solute iron have shown seasonal dynamics. Higher redox potentials (increasingly oxidative conditions and higher pH values were measured between late autumn and early spring. The increasing physiological activity of plants causes lower pH and Eh and it leads to higher spatial differences. Although temperature is an essential determining factor for Eh and pH, but our results suggest it rather has indirect effectsthrough plants on wetlands.

  11. Soil pH mapping with an on-the-go sensor.

    Science.gov (United States)

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r(2)) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany.

  12. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    Science.gov (United States)

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was soil solution chemistry became increasingly apparent as the experiment proceeded (except for Na(+) and dissolved organic carbon (DOC)). The net exports of NO₃(-), SO₄(2-), Mg(2+), and Ca(2+) increased about 42-86% under pH 2.5 treatment as compared to CK. The Ca(2+) was sensitive to SAR, and the soil could release Ca(2+) through mineral weathering to mitigate soil acidification. The concentration of exchangeable Al(3+) in the soil increased with increasing the acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.

  13. Selenium speciation in acidic environmental samples: application to acid rain-soil interaction at Mount Etna volcano.

    Science.gov (United States)

    Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus

    2011-09-01

    Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pHpH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Peng, Qi-an; Lin, Shan; Mo, Yongliang; Wu, Lei; Hu, Ronggui; Zhou, Wei

    2016-04-01

    Soil acidification is a major problem for sustainable agriculture since it limits productivity of several crops. Liming is usually adopted to ameliorate soil acidity that can trigger soil processes such as nitrification, denitrification, and loss of nitrogen (N) as nitrous oxide (N2O) emissions. The loss of N following liming of acidic soils can be controlled by nitrification inhibitors (such as dicyandiamide). However, effects of nitrification inhibitors following liming of acidic soils are not well understood so far. Here, we conducted a laboratory study using an acidic soil to examine the effects of dolomite and dicyandiamide (DCD) application on N2O emissions. Three levels of DCD (0, 10, and 20 mg kg(-1); DCD0, DCD10, and DCD20, respectively) were applied to the acidic soil under two levels of dolomite (0 and 1 g kg(-1)) which were further treated with two levels of N fertilizer (0 and 200 mg N kg(-1)). Results showed that N2O emissions were highest at low soil pH levels in fertilizer-treated soil without application of DCD and dolomite. Application of DCD and dolomite significantly (P ≤ 0.001) reduced N2O emissions through decreasing rates of NH4 (+)-N oxidation and increasing soil pH, respectively. Total N2O emissions were reduced by 44 and 13% in DCD20 and dolomite alone treatments, respectively, while DCD20 + dolomite reduced N2O emissions by 54% when compared with DCD0 treatment. The present study suggests that application of DCD and dolomite to acidic soils can mitigate N2O emissions.

  15. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    Science.gov (United States)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  16. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    Science.gov (United States)

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries. © 2013 John Wiley & Sons Ltd.

  17. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    Science.gov (United States)

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  18. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    Directory of Open Access Journals (Sweden)

    Christopher Ash

    Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  19. Acid skim milk gels: The gelation process as affected by preheated pH

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Vliet, van T.

    2008-01-01

    The effect of preheating milk (10 min 80 [degree sign]C) at pH values from 6.20 to 6.90 on formation of acid skim milk gels was studied by dynamic oscillation measurements. Up to pH 6.65 a higher pH of heating (pHheating) resulted in a higher G'. Since below pH 4.9 the development of

  20. Transformation of acetate carbon into carbohydrate and amino acid metabilites during decomposition in soil

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Paul, E. A.

    1971-01-01

    Carbon-14-labelled acetate was added to a heavy clay soil of pH 7.6 to study the transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition. The acetate was totally metabolized after 6 days of incubation at 25°C when 70% of the labelled carbon had been...... evolved as CO2. Maximum incorporation of trace-C into the various organic fractions was observed after 4 days when 19% of residual, labelled carbon in the soil was located in carbohydrates, 29 % in amino acids and 21 % in the insoluble residue of the soil. The curves showing the amounts of labelled carbon...... days of incubation, 2.2% of the labelled carbon originally added to the soil was located in carbohydrate metabolites, 7% in amino acid metabolites and 5% in the insoluble residue. The carbon in these fractions accounted for 77% of the total, residual, labelled carbon in the soil; 12% in carbohydrates...

  1. The soil acidity as restrictive factor of the use of nitrogen fertilizer by spring barley

    International Nuclear Information System (INIS)

    Hejnak, V.; Lippold, H.

    1999-01-01

    In two - year micro - plot trials was studied the effect of soil pH value (pH > 6,5 and pH 15 N in first year and no enriched in second year, rates of 0, 85, 170 and 255 mg N per pot, i.e. 0, 30, 60 and 90 kg N.ha -1 ) on the spring barley productivity and on the use of nitrogen fertilizer by plants in the application year of 15 N and in the following year. The productivity of spring barley is significantly higher in neutral soil than in acid soil. The gradated rates of nitrogen fertilization increased this difference. The total nitrogen uptake by plants was higher in neutral soil. The share of the nitrogen from 'the old soil's supply' in the total uptake by the harvest ranges from 95 to 82 % and is practically identical in studied soils. 'Priming effect' was higher in soil with better fertility (153 - 186 mg N per pot) than in acid soil (to 49 mg N per pot only). The gradated rates of ammonium sulphate increased the uptake nitrogen from fertilizer by harvest of spring barley in the application year of 15 N from 39 mg N to 107 mg N per pot in neutral soil and from 26 mg N to 83 mg N per pot in acid soil and in the following year from 3,05 mg N to 8,15 mg N per pot in neutral soil and from 1,76 mg N to 3,37 mg N per pot in acid soil. The total balance of fertilizer nitrogen ( 15 N) in soil - crop system in two years from application showed that in neutral soil 46 % used by spring barley (42 % in the application year and 4 % in the following year), 16 % rested in soil and loss was 38 % and in acid soil 35 % used by harvest (33 % in first year and 2 % second year), 12 % rested in soil and loss was 53 %. Refs. 5 (author)

  2. Enhanced Soil Chemical Properties and Rice Yield in Acid Sulphate Soil by Application of Rice Straw

    Directory of Open Access Journals (Sweden)

    Siti Nurzakiah

    2012-01-01

    Full Text Available Swampland development such as acid sulphate soil for agricultural cultivation has various problem, including highsoil acidity, fluctuated and unpredictable water flooding and the presence of toxic elements such as Fe whichresulting in low crop yields. The research was conducted at the experimental station Belandean, Barito Kualaregency in dry season 2007. The objective of research was to study the effect of rice straw on the dynamic of soilpH, the concentration of iron and sulphate and yield on tidal land acid sulphate soil at two different water inletchannel. This research was designed in RCBD (Randomized Completely Block Design with five treatments (0, 2.5,5.0, 7.5 and 10 Mg ha-1 and four replications. Dolomite as much as 1 Mg ha-1 was also applied. This research wasdivided into two sub-units experiment i.e. two conditions of different water inlet channel. The first water channelswere placed with limestone and the second inlet was planted with Eleocharis dulcis. The results showed that (i ricestraw application did not affect the dynamic of soil pH, concentration of iron and sulphate, and (ii the highest yieldwas obtained with 7.5 Mg ha-1 of rice straw.

  3. Analysis Of Soil NPK Ph And Electrical Conductivity At Adham Area- Renk Upper Nile State

    Directory of Open Access Journals (Sweden)

    Abubaker Haroun Mohamed Adam

    2015-08-01

    Full Text Available ABSTRACT The objectives of this study were to investigate soil type potentiality and reaction in relation to the scattered remaining vegetation species and to quantify soil suitability for growing field crops. Adham area witnessed serious land degradation due to the rapid expansion of Rain-fed Mechanized Farming and overgrazing. Consequently the low crop yield enforced the local communities to shift to the alternative sources of income generating activities particularly those related to forest products like charcoal making firewood production logging and tree lobbing. By using Randomized Complete Block Design RCBD with emphasizes on Macro nutrients particularly the Nitrogen Phosphorous and potassium NPK in addition to soil pH and Electrical Conductivity EC. random soil samples each with three levels of depths 0 - 15 15 - 30 30 - 45 cm. were collected. All collected data were analyzed in the laboratory. The result of revealed several types of soils including the cracking and non -cracking clay sandy and red soils. The result of statistical analysis depicted variability in NPK pH and EC between the different locations and soil depths. Furthermore the result showed an association between some studied soil attributes and the spatial distribution of the vegetation species. Rational use through participatory approach is recommended for natural resources management conservation and sustainability. Moreover further study using space technology also recommended.

  4. Organic acid excretion in Penicillium ochrochloron increases with ambient pH

    Directory of Open Access Journals (Sweden)

    Pamela eVrabl

    2012-04-01

    Full Text Available Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH.We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi.In this study we explored this hypothesis using ammonium limited chemostat cultivations (pH 2-7, and ammonium or phosphate limited bioreactor batch cultivations (pH 5 and 7. Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids.Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e. overflow metabolism, charge balance and aggressive acidification hypothesis.

  5. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    International Nuclear Information System (INIS)

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Highlights: ► Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. ► Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). ► Determined how compaction affects the hydraulic conductivity of clay soils. ► Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10 −10 , 2.08 × 10 −9 and 6.8 × 10 −10 m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m 3 ). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m 3 ) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  6. Spatial patterns of soil pH and the factors that influence them in plantation forests of northern China

    Science.gov (United States)

    Hong, Songbai; Liu, Yongwen; Piao, Shilong

    2017-04-01

    Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, ppH (0.13 for every degree centigrade, ppH (ppH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.

  7. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    Science.gov (United States)

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  8. Influence of Height Waterlogging on Soil Physical Properties of Potential and Actual Acid Sulphate Soils

    Directory of Open Access Journals (Sweden)

    Arifin Fahmi

    2014-06-01

    Full Text Available Water management is main factor that determines the successful of rice cultivation in acid sulphate soil. Soil waterlogging determines the direction and rate of chemical, geochemical and biological reaction in the soil, indirectly these reactions may influence to the changes of soil psycal properties during soil waterlogging process. The experiment was aimed to study the changes of two type of acid sulphate soils physical properties during rice straw decomposition processes. The research was conducted in the greenhouse consisting of the three treatment factors using the completely randomized design with three replications. The first factor was soil type: potential acid sulphate soil (PASS and actual acid sulphate soil (AASS. The second factor was height of water waterlogging: 0.5-1.0 cm (muddy water–level condition and 4.0 cm from above the soil surface (waterlogged. The third factor was organic matter type: rice straw (RS, purun tikus (Eleocharis dulcis (PT and mixed of RS and PT (MX. Soil physical properties such as aggregate stability, total soil porosity, soil permeability, soil particle density and bulk density were observed at the end of experiment (vegetative maximum stage. The results showed that acid sulphate soil type had large effect on soil physicl properties, soil waterlogging decreased aggregate stability, soil particle density and bulk density both of soil type.

  9. Standard test method for measuring pH of soil for use in corrosion testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method covers a procedure for determining the pH of a soil in corrosion testing. The principle use of the test is to supplement soil resistivity measurements and thereby identify conditions under which the corrosion of metals in soil may be accentuated (see G 57 - 78 (1984)). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    Science.gov (United States)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  11. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    Science.gov (United States)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  12. Change of physical and chemical parameters of fulvic acids at different pH of the system

    Science.gov (United States)

    Dinu, Marina; Kremleva, Tatyana

    2017-04-01

    Organic substances of humic nature significantly change physicochemical properties at different pH of natural waters. As a consequence, a large number of consecutive and parallel reactions in the structure of organic polymers, and reacting with inorganic anions. The main indicators of changes in the properties of organic acids in natural systems are changes in their IR spectra, changes in the colloid stability (the zeta potential) as well as in the molecular weight and emission spectra (fluorescence emission spectra). The aim of our study was to evaluate of changing in physical and chemical properties of the fulvic acid from soil/water samples in the natural areas of European Russia and Western Siberia (the steppe and the northern taiga zones) at different pH (from 8 to 1.5). Changes in absorption bands of fulvic acid caused by both COOH groups and amino groups with varying degrees of protonation were found. Consequently, we can assume that in an electric field fulvic acid change the sign of their charge at depending on pH. During the lowering of the pH intensity of C-O bands generally decreases, while in the region 1590 cm-1 disappears. In turn, the band at 1700 cm-1 is the most intense; it could mean a complete protonation of the carboxyl groups. According to our data, the values of zeta potential changes depending on pH of the system. The zeta potential becomes more negative with increasing pH and it may be due to ionization of oxygen groups of fulvic acid. For the colloidal polymer systems the value of the zeta potential is strongly negative (less than -20 mV) and strongly positive (over 20 mV) characterize the system as the most stable. Our experimental data for the study of the zeta potential of fulvic acids extracted from the soils and waters of different climatic zones show zonal influence of the qualitative characteristics of organic substances on the surface charge of the high-molecular micelle of fulvic acids. It was found that fulvic acids extracted

  13. Bacterial chitinolytic communities respond to chitin and pH alteration in soil

    DEFF Research Database (Denmark)

    Kielak, Anna; Cretoiu, Mariana; Semenov, Alexander

    2013-01-01

    by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one of Actinobacteria in the immediate response to the added chitin (based on 16S rRNA gene abundance and chiA gene types) was indicated. The results of this study enhance our...

  14. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India.

    Science.gov (United States)

    Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K

    2015-11-01

    A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.

  15. Acid-base status and changes in Swedish forest soils

    International Nuclear Information System (INIS)

    Karltun, Erik; Stendahl, Johan; Lundin, Lars

    2003-01-01

    In this paper we use data from the Swedish National Survey of Forest Soils and Vegetation (NSFSV) to evaluate the present acid-base status of forest soils to try to answer the following questions. Which role do anthropogenic and biological acidification play for the present acid-base status of the soil profile? What is the present acid-base status of Swedish forest soils and how large areas may be considered as severely acidified? Do the current tendencies in soil acid-base status correspond with the positive development in surface waters?

  16. Mechanisms of adaptation of small grains to soil acidity

    OpenAIRE

    Đalović Ivica G.; Maksimović Ivana V.; Kastori Rudolf R.; Jelić Miodrag Ž.

    2010-01-01

    Acid soils limit crop production on 30-40% of the world's arable land and up to 70% of the world's potentially arable land. Over 60% of the total arable lands in Serbia are acid soils. Soil acidity is determined by hydrogen (H+) in soil solution and it is influenced by edaphic, climatic, and biological factors. Major constraints for plant growth on acid mineral soils are toxic concentrations of mineral elements like Al of H+ and/or low mineral nutrient availability due to low solubility (e.g....

  17. Aluminium release from acidic forest soil following deforestation and ...

    African Journals Online (AJOL)

    Acidic tropical soils often have high Al3+ concentrations in soil solutions, which can be toxic to plants and, thereby, reduce agricultural yields. This study focuses on the impact of deforestation and cultivation on the short and long-term Al geochemistry of acidic soils in Ghana, West Africa. Site-specific investigations were ...

  18. Neutralizing salivary pH by mouthwashes after an acidic challenge.

    Science.gov (United States)

    Dehghan, Mojdeh; Tantbirojn, Daranee; Kymer-Davis, Emily; Stewart, Colette W; Zhang, Yanhui H; Versluis, Antheunis; Garcia-Godoy, Franklin

    2017-05-01

    The aim of the present study was to test the neutralizing effect of mouthwashes on salivary pH after an acidic challenge. Twelve participants were recruited for three visits, one morning per week. Resting saliva was collected at baseline and after 2-min swishing with 20 mL orange juice as an acidic challenge. Participants then rinsed their mouth for 30 s with 20 mL water (control), an over-the-counter mouthwash (Listerine), or a two-step mouthwash, randomly assigned for each visit. Saliva was collected immediately, 15, and 45 min after rinsing. The pH values of the collected saliva were measured and analyzed with anova, followed by Student-Newman-Keuls post-hoc test (significance level: 0.05). Orange juice significantly lowered salivary pH. Immediately after rinsing, Listerine and water brought pH back to baseline values, with the pH significantly higher in the Listerine group. The two-step mouthwash raised pH significantly higher than Listerine and water, and higher than the baseline value. Salivary pH returned to baseline and was not significantly different among groups at 15 and 45 min post-rinsing. Mouth rinsing after an acidic challenge increased salivary pH. The tested mouthwashes raised pH higher than water. Mouthwashes with a neutralizing effect can potentially reduce tooth erosion from acid exposure. © 2015 Wiley Publishing Asia Pty Ltd.

  19. Multitracer studies on the effects of model acid rain on the adsorption of trace elements on soils

    International Nuclear Information System (INIS)

    Wang, H.F.; Ambe, S.; Takematsu, N.; Ambe, F.

    2001-01-01

    Using a multitracer technique, the effects of acid rain pH on the adsorption of 15 trace elements on soil were studied. Kaolin, forest soil (original and with partially removed oxides), black soil (original and without organic matter) and Kureha soil (original, with partially removed oxides, and without organic matter) were employed as the adsorbents. Instead of H 2 SO 4 solution, HCl solution was selected as the model acid rain based on the results of adsorption experiments on kaolin. In general, the percentage adsorption of cationic elements on three original soils and kaolin increased with increasing pH. The adsorption of oxyanionic elements, As and Se, on three soils was high over the entire pH range studied, while that on kaolin was low and decreased with an increase in pH. The differences in the physical and chemical properties of soils were reflected on the adsorption. The organic matter in soil had positive effects on the extent of adsorption of most elements studied, while the oxides apparently showed positive effects only for Fe and Se adsorption. The results indicate that acid rain decreases the retention of cations in soil and that it increases or does not change the adsorption of anions. (orig.)

  20. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents.

    Science.gov (United States)

    Zhu, Hao; Wu, Chunfa; Wang, Jun; Zhang, Xumei

    2018-04-16

    Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier's sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.

  1. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence.

    Science.gov (United States)

    Choi, Jeongjoon; Groisman, Eduardo A

    2016-09-01

    pH regulates gene expression, biochemical activities and cellular behaviors. A mildly acidic pH activates the master virulence regulatory system PhoP/PhoQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The sensor PhoQ harbors an extracytoplasmic domain implicated in signal sensing, and a cytoplasmic domain controlling activation of the regulator PhoP. We now report that, surprisingly, a decrease in Salmonella's own cytoplasmic pH induces transcription of PhoP-activated genes even when the extracytoplasmic pH remains neutral. Amino acid substitutions in PhoQ's cytoplasmic domain hindered activation by acidic pH and attenuated virulence in mice, but did not abolish activation by low Mg(2+) or the antimicrobial peptide C18G. Conversely, removal of PhoQ's extracytoplasmic domains prevented the response to the latter PhoQ-activating signals but not to acidic pH. PhoP-dependent genes were minimally induced by acidic pH in the non-pathogenic species Salmonella bongori but were activated by low Mg(2+) and C18G as in pathogenic S. enterica. Our findings indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived signals that alter its cytoplasmic pH. © 2016 John Wiley & Sons Ltd.

  2. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    Science.gov (United States)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  3. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    Science.gov (United States)

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  4. Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.

    Science.gov (United States)

    Yan, Wei; Hu, Shan; Jing, Chuanyong

    2012-04-15

    Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Csacid had a negligible contribution to the interlayer intercalation. The results of this study provide new insight into the molecular mechanisms of ENR sorption on clay minerals. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress

    International Nuclear Information System (INIS)

    Zeng Fanrong; Chen Song; Miao Ying; Wu Feibo; Zhang Guoping

    2008-01-01

    The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants. - Rhizosphere pH and organic acid exudation of rice roots are markedly affected by chromium level in culture solution

  6. Characterization of Growing Soil Bacterial Communities across a pH gradient Using H218O DNA-Stable Isotope Probing

    Science.gov (United States)

    Welty-Bernard, A. T.; Schwartz, E.

    2014-12-01

    Recent studies have established consistent relationships between pH and bacterial diversity and community structure in soils from site-specific to landscape scales. However, these studies rely on DNA or PLFA extraction techniques from bulk soils that encompass metabolically active and inactive, or dormant, communities, and loose DNA. Dormant cells may comprise up to 80% of total live cells. If dormant cells dominate a particular environment, it is possible that previous interpretations of the soil variables assumed to drive communities could be profoundly affected. We used H218O stable isotope probing and bar-coded illumina sequencing of 16S rRNA genes to monitor the response of actively growing communities to changes in soil pH in a soil microcosm over 14 days. This substrate-independent approach has several advantages over 13C or 15N-labelled molecules in that all growing bacteria should be able to make use of water, allowing characterization of whole communities. We hypothesized that Acidobacteria would increasingly dominate the growing community and that Actinobacteria and Bacteroidetes would decline, given previously established responses by these taxa to soil pH. Instead, we observed the reverse. Actinobacteria abundance increased three-fold from 26 to 76% of the overall community as soil pH fell from pH 5.6 to pH 4.6. Shifts in community structure and decreases in diversity with declining soil pH were essentially driven by two families, Streptomyceaca and Microbacteracea, which collectively increased from 2 to 40% of the entire community. In contrast, Acidobacteria as a whole declined although numbers of subdivision 1 remained stable across all soil pH levels. We suggest that the brief incubation period in this SIP study selected for growth of acid-tolerant Actinobacteria over Acidobacteria. Taxa within Actinomycetales have been readily cultured over short time frames, suggesting rapid growth patterns. Conversely, taxa within Acidobacteria have been

  7. Immobilization of Cd, Zn, and Pb from Soil Treated by Limestone with Variation of pH Using a Column Test

    Directory of Open Access Journals (Sweden)

    Sung-Wook Yun

    2015-01-01

    Full Text Available Decades of mining in South Korea have resulted in the contamination of large amounts of soil by metals. The most feasible approach to site restoration requires the use of a stabilization agent to reduce metal mobility. This study examined the leaching characteristics of limestone used as a stabilization agent when subjected to solutions of differing pH. In a laboratory-scale column test, solutions with pH values of 3.5, 4.6, and 5.6, representing acidic to nonacidic rainfall, were applied to soil mixed with limestone. Test results indicate that metal components can be released with the addition of acidic solutions, even if the soil is highly alkaline. Cd and Zn, in particular, exhibited abrupt or continuous leaching when exposed to acid solutions, indicating the potential for contamination of water systems as metal-laden soils are exposed to the slightly acidic rainfall typical of South Korea. Treatment using stabilization agents such as limestone may reduce leaching of metals from the contaminated soil. Stabilizing metal-contaminated farmland is an economical and feasible way to reduce pollutants around abandoned metal mines.

  8. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    Directory of Open Access Journals (Sweden)

    Bernhardt Harold S

    2012-01-01

    Full Text Available Abstract Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11 deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent, acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(tRNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline

  9. Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China

    International Nuclear Information System (INIS)

    Zhou, Jun; Wang, Zhangwei; Zhang, Xiaoshan; Chen, Jian

    2015-01-01

    Tieshanping catchment in southwest China was supposed to a large pool of atmospheric mercury. This work was aimed to examine THg (total mercury) concentrations, pools and influence factors in the acidic forest. THg concentrations were highly elevated in the study area, which was significantly depended on TOM (total organic matter) concentrations and altitudinal elevation, whereas negatively correlated with soil pH. The pools of mercury accumulated in soils were correlated strongly with the stocks of TOM and altitude, ranged from 5.9 to 32 mg m −2 and averaged 14.5 mg m −2 , indicating that the acidic forest was a great sink of atmospheric mercury in southwest China. THg concentrations in stream waters decreased with altitude increasing and regression analyses showed that soil/air exchange flux would be increased with the decrease of altitude. Present results suggest that elevation increasing decreases THg losses as low THg concentrations in runoffs and volatilization from soils. - Highlights: • Soil THg pools and influence factors were studied at an acidic catchment in southwestern China. • THg concentrations was increased significantly with TOM concentrations and altitude increasing, decreased with pH. • THg pools in soils were highly elevated and deepened on TOM pools and altitude. • Difference in THg output by volatilization and runoff was a major reason for THg distribution at different altitudes. - Mercury pools increased with altitude increasing as mercury lost more at low elevation area in acidic subtropical forest

  10. Removal of radium-226 from radium-contaminated soil using humic acid by column leaching method

    International Nuclear Information System (INIS)

    Esther Phillip; Muhamad Samudi Yasir

    2012-01-01

    In this study, evaluation of radium-226 removal from radium-contaminated soil using humic acid extracted from peat soil by column leaching method was carried out. Humic acid of concentration 100 ppm and pH 7 was leached through a column packed with radium-contaminated soil and leachates collected were analysed with gamma spectrometer to determine the leached radium-226. Results obtained indicated low removal of radium-226 between 1 - 4 %. Meanwhile, leaching profile revealed that radium-226 was bound to soil components with three different strength, thus resulting in three phases of radium-226 removal. It was estimated that the total removal of radium-226 from 10 g radium-contaminated soil sample studied could be achieved using approximately 31500 - 31850 ml HA solutions with leaching rate of 1 ml/ min. (author)

  11. Effect of Rain Acidity Upon Mobility of Cs-134 and Co-60 in Soil

    International Nuclear Information System (INIS)

    Ruangchuay, S.; Harvey, N.W.; Sriyotha, P.

    1998-01-01

    This research was aimed to study the effects of groundwater and acid rain upon the mobility of radionuclides (Cs-134 and Co-60) in contaminated top soil. Clay soil was homogeneously packed in columns with dimension φ.12.5 cm. * 50 cm.. At the top 5 cm. of the columns, soil contaminated with radionuclides was added with the same consistency. Column were kept standing for 4 months in an artificial water table kept at 3 cm. from the bottom. During this period artificial acid rain with pH3, 4.5 and 6 was applied weekly at the top. Soil samples were taken every 30 days for examination of total and extracable radioactivity. It was shown that with the aide of the rain radionuclide movement down the profile was greater, with Co-60 > Cs-134. However acidity of the rain shown no effect on their movement

  12. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.; Leitner, D.; Jones, D. L.; Zygalakis, K. C.; Schnepf, A.; Roose, T.

    2011-01-01

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal

  13. Natural Arabidopsis brx loss-of-function alleles confer root adaptation to acidic soil.

    Science.gov (United States)

    Gujas, Bojan; Alonso-Blanco, Carlos; Hardtke, Christian S

    2012-10-23

    Soil acidification is a major agricultural problem that negatively affects crop yield. Root systems counteract detrimental passive proton influx from acidic soil through increased proton pumping into the apoplast, which is presumably also required for cell elongation and stimulated by auxin. Here, we found an unexpected impact of extracellular pH on auxin activity and cell proliferation rate in the root meristem of two Arabidopsis mutants with impaired auxin perception, axr3 and brx. Surprisingly, neutral to slightly alkaline media rescued their severely reduced root (meristem) growth by stimulating auxin signaling, independent of auxin uptake. The finding that proton pumps are hyperactive in brx roots could explain this phenomenon and is consistent with more robust growth and increased fitness of brx mutants on overly acidic media or soil. Interestingly, the original brx allele was isolated from a natural stock center accession collected from acidic soil. Our discovery of a novel brx allele in accessions recently collected from another acidic sampling site demonstrates the existence of independently maintained brx loss-of-function alleles in nature and supports the notion that they are advantageous in acidic soil pH conditions, a finding that might be exploited for crop breeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Temperature effects on protein depolymerization and amino acid immobilization rates in soils.

    Science.gov (United States)

    Noll, Lisa; Hu, Yuntao; Zhang, Shasha; Zheng, Qing; Wanek, Wolfgang

    2017-04-01

    Increasing N deposition, land use change, elevated atmospheric CO2 concentrations and global warming have altered soil nitrogen (N) cycling during the last decades. Those changes affected ecosystem services, such as C and N sequestration in soils, which calls for a better understanding of soil N transformation processes. The cleavage of macromolecular organic N by extracellular enzymes maintains an ongoing flow of new bioavailable organic N into biotic systems and is considered to be the bottle neck of terrestrial N cycling in litter and soils. Recent studies showed that protein depolymerization is susceptible to changes in C and N availabilities. Based on general biological observations the temperature sensitivity of soil organic N processes is expected to depend on whether they are rather enzyme limited (i.e. Q10=2) or diffusion limited (i.e. Q10= 1.0 - 1.3). However, temperature sensitivities of protein depolymerization and amino acid immobilization are still unknown. We therefore here report short-term temperature effects on organic N transformation rates in soils differing in physicochemical parameters but not in climate. Soil samples were collected from two geologically distinct sites close to the LFZ Raumberg-Gumpenstein, Styria, Austria, each from three different management types (arable land, grassland, forest). Four replicates of mineral soil were taken from every site and management type. The area provides a unique opportunity to study geological and management controls in soils without confounding effects of climate and elevation. The soils differ in several soil chemical parameters, such as soil pH, base saturation, soil C: N ratio and SOM content as well as in soil physical parameters, such as soil texture, bulk density and water holding capacity. Soils were pre-incubated at 5, 15 and 25˚ C for one day. Protein depolymerization rates and amino acid immobilization rates were assessed by an isotope pool dilution assay with 15N labeled amino acids at

  15. Measurement of pH, alkalinity and acidity in ultra-soft waters

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... A blend composed of the raw water, sodium chloride (to increase conductivity), and standard bicarbonate (to increase buffering capacity) was titrated with standard strong acid in two pH regions: 6.3 pH < 4.0. In both methods, total alkalinity was determined using the latter set of points, ...

  16. The Role of Organic Acids on the Release of Phosphorus and Zinc in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Sareh Nezami

    2017-02-01

    Full Text Available Introduction: Phosphorus (P and zinc (Zn fixation by soil minerals and their precipitation is one of the major constraints for crop production in calcareous soils. Recent Studies show that root exudates are effective for the extraction of the large amounts of nutrients in calcareous soils. A part of the root exudations are Low Molecular Weight Organic Acids (LMWOAs. LMWOAs are involved in the nutrients availability and uptake by plants, nutrients detoxification, minerals weathering and microbial proliferation in the soil. At nutrients deficiency conditions citric and oxalic acids are released by plants root in large quantities and increase nutrient solubility like P, Zn, Fe, Mn and Cu in the rhizosphere. These components are the large portion of the carbon source in the soil after exudations are mineralized by microorganisms, quickly. In addition, soil surface sorption can affect their half-life and other behaviors in the soil. In order to study the effect of oxalic and citric organic acids on the extraction of phosphorus and zinc from a calcareous soil, an experiment was conducted. Materials and Methods: Studied soil was calcareous and had P and Zn deficiency. Soil sample was collected from A horizon (0-30 cm of Damavand region. 3 g of dried soil sample was extracted with 30 ml of oxalic and citric acids extraction solutions at different concentrations (0.1, 1 and 10 mM and different time periods (10, 60, 180 and 360 minutes on an orbital shaker at 200 rev min-1.The soil extracts then centrifuged for 10 minutes (16000g. After filtering, the pH of the extractions was recorded and then phosphorus, calcium and zinc amounts were determined. Soil extraction with distilled water was used as control. Each treatment was performed in 3 replications. Statistical analysis was performed with ANOVA test followed by the Bonferroni method significant level adjustments due to multiple comparisons. Results and Discussion: The results of variance analysis showed

  17. Oxidation in fish oil enriched mayonnaise : Ascorbic acid and low pH increase oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Timm Heinrich, Maike; Meyer, Anne S.

    2001-01-01

    The effect of ascorbic acid (0-4000 ppm) and pH (3.8-6.2) on oxidation and levels of iron and copper in various fractions of mayonnaise enriched with 16% fish oil was investigated. Ascorbic acid induced release of iron from the assumed oil- water interface into the aqueous phase at all pH levels......, but this effect of ascorbic acid was strongest at low pH (pH 3.8- 4.2). Ascorbic acid generally promoted formation of volatile oxidation compounds and reduced the peroxide value in mayonnaises. Peroxide values and total volatiles generally increased with decreasing pH values, suggesting that low pH promoted...... oxidation. It is proposed that iron bridges between the egg yolk proteins low-density lipoproteins, lipovitellin, and phosvitin at the oil-water interface are broken at low pH values, whereby iron ions become accessible as oxidation initiators. In the presence of ascorbic acid, oxidation is further enhanced...

  18. The treatments of soil Rirang by floatation and Acid leaching

    International Nuclear Information System (INIS)

    Kosim-Affandi; Umar-Sarip; Alwi, Guswita; Sri-Sudaryanto

    2000-01-01

    The treatments of soil Rirang by floatation and acid leaching has been carried out to increase high uranium concentrates of materials, separating associated economical minerals and to reduce the gangue minerals which bothering at chemical processing. The physical treatment has been done by ore preparation and floatation using oleic acid and p ine oil , 20 % of pulp at pH 9, condition time at 5 minutes and collections of float fraction was 10 minutes. The chemical processing has been done by dynamic leaching using H 2 SO 4 100 kg/ton, MnO 2 20 kg/ton, 50 % of solid with ore size - 65 mesh, temperature at 80 o C and time of leaching was 8 hours. The result of experiments is as follows : Physical treatment by floatation shown that the concentrates of U increased at sink fraction by (1.5 - 2) times against feed sample for all the samples, and in the float fraction the recovery of molybdenite separation is 58 - 81 % and rare earths is 57 - 80 %. The result of dynamic leaching is 76 - 91 %, and recovery uranium increasing from 81.02 % (mixture samples soil before floatation) to 91.16 % ( mixture samples of float fraction)

  19. Soil organic matter and soil acidity in Mangrove areas in the river Paraiba Estuary, Cabedelo, Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Renata Wilma Vasconcelos

    2014-08-01

    Full Text Available Mangrove ecosystems are of great environmental significance, because of their fragility and role in feeding and breeding various animal species. In northeastern Brazil, the disorderly occupation of estuarine areas and the urban sprawl have led to a considerable loss of the original area occupied by mangroves. In the municipality of Cabedelo, State of Paraíba, there are about 4,900 ha of remnant mangrove areas in the estuarine complex of the Paraíba River. However, information about the attributes of mangrove soils at this location is quite scarce. The aim of this study was to quantify the soil organic matter and soil acidity in mangroves located in the estuary of the Paraíba River, State of Paraíba, Brazil, in order to increase the database of soil attributes in this region. The study area is in local influence of the Restinga de Cabedelo National Forest (Flona, an environmental conservation unit of the Chico Mendes Institute for Biodiversity Conservation. For the choice of sampling points, we considered an area that receives direct influence of the eviction of domestic and industrial effluents. The soil of the study area is an “Organossolo Háplico” in Brazilian Soil Classification (Histosol, and was sampled at four point sites: one upstream of the effluent discharge (P1, one in the watercourse receiving effluent water (P2, one downstream of the effluent discharge (P3 and another near Flona (P4, at 0-20 and 20-40 cm, in four replications in time (28/08/2012 in the morning and afternoon, and 21/01/2013 in the morning and afternoon. Potential acidity, pH and soil organic matter (SOM were determined. No significant differences were detected in the potential acidity of the four collection sites, which ranged from 0.38 to 0.45 cmolc dm-3. Soil pH was greatest at point P4 (7.0 and lowest at point P1 (5.8. The SOM was highest at point P1 (86.4 % and lowest at P2 (77.9 %. The attributes related to soil acidity were not sensitive to indicate

  20. Effect Of Soil Acidity On Some Soybean Varieties

    OpenAIRE

    Hanafiah, Diana Sofia; Lubis, Alida; Asmarlaili

    2015-01-01

    This study aims to determine the mechanism of adaptation and morphophysiology character of soybean genotypes to soil acidity levels. Research using randomized block design with four replications, the first factor consists of soybean varieties: Tanggamus varieties, Detam 2, Anjasmoro and Detam 1, while the second factor is the media's treatment consisted of medium acid soils and limed soil. The results showed that the low level acidity of planting medium will affect the growth and ...

  1. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.

    Science.gov (United States)

    Merdoud, Ouarda; Cameselle, Claudio; Boulakradeche, Mohamed Oualid; Akretche, Djamal Eddine

    2016-11-09

    The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg -1 ), Ni (1135 mg kg -1 ) and zinc (1200 mg kg -1 ). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil. Only 7.2% of Ni and 6.7% of Zn were removed from the soil in the test with citric acid. The best results were found with EDTA, which was able to solubilize and complex Zn and Ni forming negatively charged complexes that were transported and accumulated in the anolyte. Complete removal was observed for Ni and Zn in the electrodialytic treatment with EDTA. Minor amounts of Cr were removed with both EDTA and citric acid.

  2. Estimation of the acid sensitivity of a soil

    International Nuclear Information System (INIS)

    Thimm, H.F.

    1991-01-01

    Current regulations for environmental monitoring in the sour gas industry require annual reporting of soil pH. It is well known that this procedure may produce results with wide scatter, and without a clear trend over time. An alternative method which overcomes this problem is proposed. Rather than relying on soil monitoring to indicate the beginning of an irreversible pH drop, the new method allows the time of this occurrence to be calculated if the mean sulfur dioxide or sulfur deposition rate is known or can be estimated. It is also possible, in at least some cases, to identify the minerals that govern initial pH control of the soil. The method rests on kinetic measurement of soil pH change with time after acidification in the laboratory. It is recommended for monitoring, and especially for environmental impact assessment submissions to regulatory authorities. 8 refs., 3 figs

  3. Effect of some soil amendments on soil properties and plant growth in Southern Thailand acid upland soil

    Directory of Open Access Journals (Sweden)

    Onthong, C.

    2007-01-01

    Full Text Available One of the major factors limiting plant growth is acid soil. In general lime is used for soil amendment in acid soil. However, It has been reported that gypsum or phosphogypsum can be used for ameliorating soilacidity. Pot experiment was conducted to study the effects of lime, phosphogypsum and kieserite on soil properties and plant growth in Kho Hong soil series (coarse loamy, kaolinitic,isohyperthermic, TypicKandiudults which was considered as acid upland soil (pH 5.07. Sweet corn variety INSEE 2 was used as the test crop. The experiment was a completely randomized design with 4 replications and 19 treatments asfollow : unamended, application of hydrated lime and dolomite to raise soil pH at 5.5, application of hydrated lime and dolomite combined with phosphogypsum at the rate that can supply calcium 0.25, 0.50,0.75 and 1 time of both limes, application of hydrated lime and dolomite combined with kieserite at the rate 0.25, 0.50,0.75 and 1 times of sulfur requirement for corn (40 kg S ha-1. The result showed that shoot and root dry weights of corn were increased when lime materials, phosphogypsum and kieserite were applied and the drymatter weights were increased according to the increasing of phosphogypsum and kieserite. The maximum shoot dry weight (18.98 g pot-1 was obtained when 1 times of kieserite was supplied with dolomite and wassignificantly (P<0.01 higher than those of the unamended treatment, only hydrated lime and dolomite treatments, which had dry weights of 12.64, 15.18 and 15.67 g pot-1 respectively. Phosphorus and K uptakewere not significantly different in all treatments and the lowest uptake of N, Ca, Mg and S was obtained in the unamended treatment. The maximum uptake of N (512.10 mg pot-1 was found when 0.5 times ofphosphogypsum was applied together with dolomite. Calcium and Mg uptake was likely to increase according to the increasing rate of soil amendment application. Highest uptake of Ca (42.51 mg pot-1 was obtainedwhen

  4. Effects of Applying Lime and CalciumMontmorillonite on Nitrification Dynamics in Acidic Soil

    Directory of Open Access Journals (Sweden)

    WANG Mei

    2017-01-01

    Full Text Available Soil acidification is known as a natural and slow process along with clay mineral weathering. In recent years however, with inten sive soil utilization in agriculture, soil acidification has increased dramatically and nitrification of ammonium nitrogen fertilizer is one of the main contributors to soil acidification. Lime application is the traditional practice to improve acidic soils but it often makes the soil acidic a gain leading to soil compaction in most cases. Montmorillonite is the main clay mineral component of alkaline or neutral soils, more so it is known to undergo further weathering processes during soil acidification. The laboratory-based incubations were used in this study, and nitri fication was measured while kinetic curves were fitted to check the effects of decreasing soil acidity by lime(Ca-OHand montmorillonite (Ca-Mon nitrification of the acidic soil. The results showed that significant nitrification was observed both in Ca-OH and Ca-M treatments, and the nitrification process was fitted in the first-order kinetic model, NNO3=N0+Np(1-exp(-k1t(P-1·d-1was significantly higher than that of Ca-M treatment(2.381 mg·kg-1·d-1. The potential nitrifi cation rate(Vpwere 6.42, 8.58 mg N·kg-1·d-1 at pH 5.7 and 6.2 respectively, and the average nitrification rate(Vaof Ca-OH treatment were 2.71, 3.88 mg N·kg-1·d-1 respectively, which were significantly greater than those of Ca-M treatment(Vp were 3.40, 4.56 mg N·kg-1·d-1 and Va were 2.36, 3.04 mg N·kg-1·d-1 at pH 5.7 and 6.2 respectively. Therefore the net nitrification rate, potential nitrification rate(Vp and average nitrification rate(Vaof Ca-OH treatment were significantly higher than that of Ca-M treatment, suggesting that the possibili ty and degree of soil reacidification by using lime to improve acidic soil is greater than using calcium montmorillonite. This study will provide a new reference for the improvement of acid soils.

  5. The influence of surface incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. I. Soil solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lime, fluidised bed boiler ash (FBA) and flue gas desulfurisation gypsum (FGDG) were incorporated in the top 50 mm of repacked columns of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. After leaching with water, the columns were sliced into sections for chemical analysis. In the columns of the variable-charged, allophanic Patua soil, topsoil-incorporated FBA ameliorated top and subsurface soil acidity through liming and the `self liming effect` induced by sulfate sorption, respectively. The soil solution pH of the top and subsurface layers of the Patua soil were raised to pH 6.40 and 5.35, respectively, by the FBA treatment. Consequently , phytotoxic labile monomeric aluminium (Al) concentration in the soil solution of the FBA treatment was reduced to {lt} 0.1 {mu}M Al. FGDG had a similar `self-liming effect` on subsurface of the Patua soil, but not the topsoil. Whereas FBA raised the pH of the Kaawa topsoil, no `self-liming effect` of subsurface soil by sulfate sorption was observed on the Kaawa subsurface soil, which is dominated by permanently charged clay minerals. Application of FBA and FGDG to both soils, however, caused significantly leaching of native soil Mg{sup 2+} and K{sup +}.

  6. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  7. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

    Science.gov (United States)

    Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M

    2016-11-01

    Intracellular pH (pH i ) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pH i homeostasis. Unfortunately, accurate pH i quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pH i at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pH i in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pH i and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pH i regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous growth

  8. Effect of decreasing acidity on the extractability of inorganic soil phosphorus

    Directory of Open Access Journals (Sweden)

    Helinä Hartikainen

    1981-01-01

    Full Text Available The extractability of P by the water and anion exchange resin methods and reactions of soil inorganic P were investigated with seven acid mineral soil samples incubated with KOH solutions of various concentrations. The results were compared with the analytical data obtained from three soil samples incubated in a prolonged liming experiment. The resin extraction method proved more effective than the water extraction method. The amounts of P desorbed by both methods seemed to increase exponentially as the pH in the soil suspensions rose. The factors involved were discussed. On the basis of fractionation analyses P reacting to changes in the pH and participating in desorption processes was supposed to originate from secondary NH4F and NaOH soluble reserves. In general, as the acidity decreased NH4F-P increased at the expense of NaOH-P. In heavily limed gyttja soil also H2SO4-P increased. This was possibly induced by the precipitation of mobilized P as a Ca compound. The significance of pH in the extractability of soil P seemed somewhat to lessen as the amount of secondary P increased. The results were in accordance with the conception that liming improves the availability of inorganic P to plants and reduces the need for P fertilization. However, increasing of the soil pH involves the risk that P is more easily desorbed to the recipient water by the eroded soil material carried into the watercourse. Therefore, intensive liming is not recommendable close to the shoreline. Further, it should be taken into account that liming of lakes may also result in eutrophication as desorption of sedimentary inorganic P is enhanced.

  9. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    Energy Technology Data Exchange (ETDEWEB)

    Liljestrand, H.M.

    1985-01-01

    The system of water equilibrated with a constant partial pressure of CO/sub 2/, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not (H/sup +/). Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity (H/sup +/) yields erroneously low mean pH values. To extend the open CO/sub 2/ system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometers is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH/sub 3/, HCl, NHO/sub 3/, SO/sub 2/, and CH/sub 3/COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  10. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    Science.gov (United States)

    Liljestrand, Howard M.

    The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  11. Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.

    Science.gov (United States)

    Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B

    2006-07-01

    alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.

  12. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    International Nuclear Information System (INIS)

    Muhammad, Iqbal; Puschenreiter, Markus; Wenzel, Walter W.

    2012-01-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C soln ) and 0.005 M Ca(NO 3 ) 2 extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased C soln , the 0.005 M Ca(NO 3 ) 2 -soluble fractions and the DGT-measured Cd and Zn concentrations (C DGT ) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R 2 > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C soln . However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: ► The effect of soil acidification was assessed for four Zn and Cd polluted soils. ► For some soils moderate acidification could enhance the metal uptake efficiency. ► Chemical assessment of bioavailability using

  13. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Iqbal; Puschenreiter, Markus, E-mail: markus.puschenreiter@boku.ac.at; Wenzel, Walter W.

    2012-02-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C{sub soln}) and 0.005 M Ca(NO{sub 3}){sub 2} extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75 days in a pot experiment. Lowering soil pH increased C{sub soln}, the 0.005 M Ca(NO{sub 3}){sub 2}-soluble fractions and the DGT-measured Cd and Zn concentrations (C{sub DGT}) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R{sup 2} > 0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C{sub soln}. However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. - Highlights: Black-Right-Pointing-Pointer The effect of soil acidification was assessed for four Zn and Cd polluted soils. Black-Right-Pointing-Pointer For some soils moderate acidification could

  14. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils

    International Nuclear Information System (INIS)

    Li Yongtao; Becquer, Thierry; Dai Jun; Quantin, Cecile; Benedetti, Marc F.

    2009-01-01

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils. - First evidence of the real free metal ion concentrations in acid mine drainage context in tropical systems

  15. pH and Titratable Acidity of different Cough Syrups in Nigeria ...

    African Journals Online (AJOL)

    Background: Cough linctuses are liquid oral medicines widely used in children to treat cough and related conditions. Some of their constituents are acidic and dental erosive. Objectives: This in vitro study aimed to evaluate the endogenous pH and titratable acidity of Nigerian cough syrups and also determine their erosive ...

  16. Intracellular product recycling in high succinic acid producing yeast at low pH

    NARCIS (Netherlands)

    Wahl, S.A.; Bernal Martinez, C.; Zhao, Zheng; van Gulik, W.M.; Jansen, Mickel L.A.

    2017-01-01

    Background: The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e. the acid is reentering

  17. pH : a key control of the nature and distribution of dissolved organic matter and associated trace metals in soil

    Science.gov (United States)

    Pédrot, M.; Dia, A.; Davranche, M.

    2009-04-01

    Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size pH and ionic strength .The molecular size and shape of HS is

  18. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    Science.gov (United States)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  19. Behavior of phenolic substances in the decaying process of plants. V. Elution of heavy metals with phenolic acids from soil

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, H; Kuwatsuka, S

    1977-01-01

    The relationship between the elution of heavy metals with phenolic substances and the chemical structure of phenolic substances, as well as the interaction between phenolic substances and metals were studied using batch and column methods. The elution of 3 metals (Fe, Al and Mn) with 4 phenolic acids (rho-hydroxybenzoic, salicylic, ..cap alpha..-resorcylic, and protocatechuic acids) and phthalic acid were investigated using 3 different soils. The results are as follows: (1) The elution of heavy metals was largely influenced by the chemical structures of the phenolic acids. Protocatechuic, salicylic, and phthalic acids which had different chelating sites easily extracted iron, aluminum, and manganese from the soils. Hydroxybenzoic and ..cap alpha..-resorcylic acids which had no chelating sites contributed little to the elution process. (2) In many cases protocatechuic acid showed a stronger affinity to iron than to aluminum, but salicylic acid showed the opposite trend. The affinity of phthalic acid to metals was much less than that of both phenolic acids. (3) The elution of heavy metals was also influenced by the soil pH. The amounts of heavy metals eluted with protocatechuic acid increased as the soil pH increased. The amounts eluted with salicylic and phthalic acids increased as the soil pH decreased. (4) The results suggested that chelating phenolics such as protocatechuic and salicylic acids, which were exuded from plant residues or produced during the decaying process of plant residues, eluted heavy metals such as iron, aluminum and manganese from soil particles and accelerated the downward movement of these metal ions.

  20. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    Science.gov (United States)

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  1. Respiration rates in forest soil organic horizon materials treated with simulated acid rain

    Energy Technology Data Exchange (ETDEWEB)

    Salonius, P O

    1990-01-01

    The entire organic horizon above the mineral soil was collected under a mature black spruce (Picea mariana) stand in central New Brunswick. The organic horizon consisted of litter, fermentation, and humus layers of 1.5, 4.0, and 1.0 cm depths respectively. In concert with a series of simulated rain experiments, which dealt with the effects of acid precipitation of pH 4.6, 3.6, and 2.6 compared with controls at pH 5.6 on germination and early growth of forest tree seedlings, 30 randomly distributed, unplanted tubes in each rain chamber were exposed to treatment during each of the 5-week treatments of the various tree species. During the experiments, ca 315 mm of simulated rain was deposited on the soil surfaces in the tube containers. Marked decreases in soil microbial activity were found only with pH 2.6 rain, but responsiveness to increasing temperature was lower as rain of greater acidity was applied to the soil. Ammonium nitrogen mineralization rates were not affected by treatment of soil with acidified precipitation. 26 refs., 3 figs., 1 tab.

  2. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1999-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  3. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1998-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  4. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution...... level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10......% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments...

  5. Soil pH and nutrient uptake in cauliflower (Brassica oleracea L. var. botrytis) and Broccoli (Brassica oleracea L. var. italica) in Northern Sweden. Multielement studies by means of plant and soil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Margareta [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    2000-07-01

    To reveal nutrient element deficiencies or imbalances limiting vegetable production in northern Sweden, multielement soil and plant analyses were performed in cauliflower and broccoli during the period 1989 to 1996. The pH range of the soils was 4.4-8. 1. The results were evaluated with the multivariate statistical methods PCA (Principal Component Analysis) and PLS (Partial Least Squares Projection to Latent Structures). The major yield-limiting elements were Mg, B, Mn, Zn, Fe and Cu. This was a result of high soil pH and large content of Ca in the soil. The reason for B deficiency was also low B content in the soil. Applications of green mulch increased yield on soils with a pH below 6.0. It also increased the uptake and concentration in the plants of B, Ba, Cl, Cu, K, Mg, Mn, N, P, Se and Zn, and decreased the uptake and concentration of Al, Cs and Tl. The mineral fertilizer applied, NPK 11-5-18 micro, decreased soil pH. This has resulted in larger uptake and higher concentrations in the plants of Co and Mn, in comparison to where cattle manure was applied. This fertilizer strongly decreased uptake of Mo, as a result of both the acidifying effect and the large S content. Repeated applications of nitrate of lime in combination with the NPK 11-5-18 strongly increased the uptake of Cs by the plants. The results in this investigation, together with the literature reviews, strongly indicate that a relatively low soil pH (5.0-5.5) is favourable when organic fertilizers are used and that harmful effects of very low soil pH (<5.0), are ameliorated by organic materials but aggravated by mineral fertilizers. The main purpose of lime is to counteract the acidity and increased leaching created by mineral fertilizers. Because of the historical context in which the lime requirements were established, the dangers of acid soils appear to have been strongly overestimated.

  6. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan.

    Science.gov (United States)

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Soto Obando, Alina; Hoxha, Sany; Ja, William W

    2015-12-01

    Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival. © 2015 American Society for Nutrition.

  7. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules

    Directory of Open Access Journals (Sweden)

    Christian Hundshammer

    2018-02-01

    Full Text Available pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa. Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP. Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  8. Monascus ruber as cell factory for lactic acid production at low pH.

    Science.gov (United States)

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils

    DEFF Research Database (Denmark)

    Agyei Frimpong, Kwame; Amoakwah, Emmanuel; Osei, Benjamin A

    2016-01-01

    imposed on two highly weathered, acidic soils from the coastal savanna and tropical rainforest agroecological zones of Ghana, respectively, to elucidate their effect on yield of lettuce. The study showed that application of biochar solely or in combination with cow dung increased soil pH, total organic...... carbon, and cation exchange capacity, and temporarily increased soil respiration and microbial biomass carbon. Further, incorporation of combined application of cow dung and biochar increased lettuce yield more than sole incorporation of either amendment. The study demonstrated that corn cob biochar can...... improve soil chemical properties and lettuce yield if applied solely or in combination with cow dung....

  10. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    Science.gov (United States)

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions. © 2013 SETAC.

  11. Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities

    DEFF Research Database (Denmark)

    Read, Daniel S.; Matzke, Marianne; Gweon, Hyun S.

    2016-01-01

    nanoparticles due to the practice of applying sewage sludge as a fertiliser or as an organic soil improver. However, understanding on the interactions between soil properties, nanoparticles and the organisms that live within soil is lacking, especially with regards to soil bacterial communities. We studied......Zinc oxide nanoparticles (ZnO NPs) are used in an array of products and processes, ranging from personal care products to antifouling paints, textiles, food additives, antibacterial agents and environmental remediation processes. Soils are an environment likely to be exposed to manmade...... the effects of nanoparticulate, non-nanoparticulate and ionic zinc (in the form of zinc chloride) on the composition of bacterial communities in soil with a modified pH range (from pH 4.5 to pH 7.2). We observed strong pH-dependent effects on the interaction between bacterial communities and all forms of zinc...

  12. Pd(II)/PhI(OAc)2 promoted direct cross coupling of glucals with aromatic acids.

    Science.gov (United States)

    Begum, Zubeda; Shankar, G; Sirisha, K; Reddy, B V Subba

    2018-05-22

    A highly efficient oxidative C2-aroyloxylation of D-glucal with aromatic carboxylic acids has been achieved for the first time using 5 mol% Pd(OAc) 2 and 1 equiv of PhI(OAc) 2 to produce C2-aroyloxyglycals in good yields. The use of excess of PhI(OAc) 2 (2 equiv) provides C2-acyloxyglycal exclusively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. pH and its frequency distribution patterns of Acid Precipitation in Japan

    International Nuclear Information System (INIS)

    Kitamura, Moritsugu; Katou, Takunori; Sekiguchi, Kyoichi

    1991-01-01

    The pH data was collected at the 29 stations in Phase-I study of Acid Precipitation Survey over Japan by Japan Environment Agency in terms of frequency distribution patterns. This study was undertaken from April 1984 to March 1988, which was the first survey of acid precipitation over Japan with identical sampling procedures and subsequent chemical analyses. While the annual mean pH at each station ranged from 4.4 to 5.5, the monthly mean varied more widely, from 4.0 to 7.1. Its frequency distribution pattern was obtained for each station, and further grouped into four classes: class I; a mode at the rank of pH 4.5∼4.9, class II; bimodes above and below this pH region, class III; a mode at a higher pH region, class IV; a mode at a lower pH region. The bimodal pattern was suggestive of precipitation with and without incorporation of significant amounts of basic aerosol of anthropogenic origin during descent of rain droplet. The patterns of the stations were also classified on a basis of summer-winter difference into another four classes. Winter pH values were appreciably lower than summer pHs in western parts of Japan and on Japan Sea coast, we attribute the winter pH to probable contribution of acidic pollutants transported by strong winter monsoon from Eurasian Continent. At most stations in northern and eastern Japan, the pH was higher in winter months reflecting more incorporation of basic materials, e.g., NH 4 + and Ca 2+ . (author)

  14. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Science.gov (United States)

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  15. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  16. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    Science.gov (United States)

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  17. Kinetics of salivary pH after acidic beverage intake by patients undergoing orthodontic treatment.

    Science.gov (United States)

    Turssi, Cecilia P; Silva, Carolina S; Bridi, Enrico C; Amaral, Flavia Lb; Franca, Fabiana Mg; Basting, Roberta T

    2015-01-01

    The saliva of patients undergoing orthodontic treatment with fixed appliances can potentially present a delay in the diluting, clearing, and buffering of dietary acids due to an increased number of retention areas. The aim of this clinical trial was to compare salivary pH kinetics of patients with and without orthodontic treatment, following the intake of an acidic beverage. Twenty participants undergoing orthodontic treatment and 20 control counterparts had their saliva assessed for flow rate, pH, and buffering capacity. There was no significant difference between salivary parameters in participants with or without an orthodontic appliance. Salivary pH recovery following acidic beverage intake was slower in the orthodontic subjects compared to controls. Patients with fixed orthodontic appliances, therefore, seem to be at higher risk of dental erosion, suggesting that dietary advice and preventive care need to be implemented during orthodontic treatment.

  18. Predictive mapping of the acidifying potential for acid sulfate soils

    DEFF Research Database (Denmark)

    Boman, A; Beucher, Amélie; Mattbäck, S

    Developing methods for the predictive mapping of the potential environmental impact from acid sulfate soils is important because recent studies (e.g. Mattbäck et al., under revision) have shown that the environmental hazards (e.g. leaching of acidity) related to acid sulfate soils vary depending...... on their texture (clay, silt, sand etc.). Moreover, acidity correlates, not only with the sulfur content, but also with the electrical conductivity (EC) measured after incubation. Electromagnetic induction (EMI) data collected from an EM38 proximal sensor also enabled the detailed mapping of acid sulfate soils...... over a field (Huang et al., 2014).This study aims at assessing the use of EMI data for the predictive mapping of the acidifying potential in an acid sulfate soil area in western Finland. Different supervised classification modelling techniques, such as Artificial Neural Networks (Beucher et al., 2015...

  19. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    Science.gov (United States)

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  20. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome.

    Directory of Open Access Journals (Sweden)

    Edward V LaBelle

    Full Text Available Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼ 5. Hydrogen production by biocathodes poised at -600 mV vs. SHE increased >100-fold and acetate production ceased at acidic pH, but ∼ 5-15 mM (catholyte volume/day acetate and >1,000 mM/day hydrogen were attained at pH ∼ 6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈ 2.6 gallons gasoline equivalent, 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured.

  1. Interrelationships of Land Use/Cover Change and Topography with Soil Acidity and Salinity as Indicators of Land Degradation

    Directory of Open Access Journals (Sweden)

    Ramita Manandhar

    2014-03-01

    Full Text Available As soil is the basis of all terrestrial ecosystems, degraded soil means lower fertility, reduced biodiversity and reduced human welfare. Therefore the focus of this paper is on elucidating the influence of land use and land cover (LULC change on two important soil quality indicators that are fundamental to effective measures for ameliorating soil degradation; namely soil acidity and soil salinity in the Lower Hunter Valley of New South Wales, Australia. First, Analysis of Variance was used to elucidate the effects of LULC categories on soil acidity and salinity. The results indicate that soils under Vineyard have significantly higher pH. In contrast there is no significant effect of LULC or its change on soil salinity. To further elucidate the complex interactions of these soil quality indicators with landscape attributes over 20 years and other terrain attributes, multivariate ordination techniques (correspondence analysis and canonical correspondence analysis were used. The results show that elevation exerted a more dominant influence on pH than the LULC types and their dynamics. In comparison, salinity of the soil appears to be higher in subsoil layers under woodland than under other LULC categories. The environmental implications of these interactions, as evidenced by this study, provide some insights for future land use planning in the region.

  2. [Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation].

    Science.gov (United States)

    Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei

    2015-01-01

    Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (PpH 4.5, pH 3.5 and pH 2.5 did not cause significant changes in NO3(-)-N, mineral N, available P as well as in the rates of nitrification, ammonification, net N-mineralization and P mineralization. With increasing the acid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation rates, decrease their availability, alter their rhizosphere

  3. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH.

    Science.gov (United States)

    Barad, Shiri; Sela, Noa; Dubey, Amit K; Kumar, Dilip; Luria, Neta; Ment, Dana; Cohen, Shahar; Schaffer, Arthur A; Prusky, Dov

    2017-08-04

    The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit

  4. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    Science.gov (United States)

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was soil.

  5. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    Science.gov (United States)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  6. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils

    DEFF Research Database (Denmark)

    Hansen, Mette; Clough, Tim J.; Elberling, Bo

    2014-01-01

    emissions is poorly studied for agricultural systems. The overall N2O dynamics during flooding of an agricultural soil and the effect of pH and NO3− concentration has been investigated based on a combination of the use of microsensors, stable isotope techniques, KCl extractions and modelling. This study...... within the soil. The magnitude of the emissions are, not surprisingly, positively correlated with the soil NO3− concentration but also negatively correlated with liming (neutral pH). The redox potential of the soil is found to influence N2O accumulation as the production and consumption of N2O occurs...... in narrow redox windows where the redox range levels are negatively correlated with the pH. This study highlights the potential importance of N2O bursts associated with flooding and infers that annual N2O emission estimates for tilled agricultural soils that are temporarily flooded will be underestimated...

  7. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    Science.gov (United States)

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  8. Acid drainage from coal mining: Effect on paddy soil and productivity of rice.

    Science.gov (United States)

    Choudhury, Burhan U; Malang, Akbar; Webster, Richard; Mohapatra, Kamal P; Verma, Bibhash C; Kumar, Manoj; Das, Anup; Islam, Mokidul; Hazarika, Samarendra

    2017-04-01

    Overburden and acid drainage from coal mining is transforming productive agricultural lands to unproductive wasteland in some parts of Northeast India. We have investigated the adverse effects of acid mine drainage on the soil of rice paddy and productivity by comparing them with non-mined land and abandoned paddy fields of Jaintia Hills in Northeast India. Pot experiments with a local rice cultivar (Myngoi) as test crop evaluated biological productivity of the contaminated soil. Contamination from overburden and acid mine drainage acidified the soil by 0.5 pH units, increased the exchangeable Al 3+ content 2-fold and its saturation on clay complexes by 53%. Available sulfur and extractable heavy metals, namely Fe, Mn and Cu increased several-fold in excess of critical limits, while the availability of phosphorus, potassium and zinc contents diminished by 32-62%. The grain yield of rice was 62% less from fields contaminated with acid mine drainage than from fields that have not suffered. Similarly, the amounts of vegetation, i.e. shoots and roots, in pots filled with soil from fields that received acid mine drainage were 59-68% less than from uncontaminated land (average shoot weight: 7.9±2.12gpot -1 ; average root weight: 3.40±1.15gpot -1 ). Paddy fields recovered some of their productivity 4years after mining ceased. Step-wise multiple regression analysis affirmed that shoot weight in the pots and grain yield in field were significantly (p<0.01) and positively influenced by the soil's pH and its contents of K, N and Zn, while concentration of S in excess of threshold limits in contaminated soil significantly (p<0.01) reduced the weight of shoots in the pots and grain yield in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mechanisms of adaptation of small grains to soil acidity

    Directory of Open Access Journals (Sweden)

    Đalović Ivica G.

    2010-01-01

    Full Text Available Acid soils limit crop production on 30-40% of the world's arable land and up to 70% of the world's potentially arable land. Over 60% of the total arable lands in Serbia are acid soils. Soil acidity is determined by hydrogen (H+ in soil solution and it is influenced by edaphic, climatic, and biological factors. Major constraints for plant growth on acid mineral soils are toxic concentrations of mineral elements like Al of H+ and/or low mineral nutrient availability due to low solubility (e.g. P and Mo or low reserves and impaired uptake (e.g. Mg2+ at high H+ concentrations. Aluminum (Al toxicity is primary factor limiting crop production on acid soils. This review examines our current understanding of mechanisms of Al-toxicity, as well as the physiological and genetic basis for Al-toxicity and tolerance. Inhibition of root growth by Al leads to more shallow root systems, which may affect the capacity for mineral nutrient acquisition and increase the risk of drought stress. Of the two principal strategies (tolerance and avoidance of plants for adaptation to adverse soil conditions, the strategy of avoidance is more common for adaptation to acid mineral soils. At the same, the short view of the most important genetics tolerance mechanisms, developed and determined in some small grains genotypes, is showed as well.

  10. Spatial variability of soil carbon, pH, available phosphorous and potassium in organic farm located in Mediterranean Croatia

    Science.gov (United States)

    Bogunović, Igor; Pereira, Paulo; Šeput, Miranda

    2016-04-01

    Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the

  11. The effects of extracellular pH and hydroxycinnamic acids influence the intracellular pH of Brettanomyces bruxellensis DSM 7001

    DEFF Research Database (Denmark)

    Campolongo, Simona; Siegumfeldt, Henrik; Aabo, Thomas Ask

    2014-01-01

    and intracellular pH changes in B. bruxellensis DSM 7001, in response to extracellular pH, as well as to the presence of an energy source and hydroxycinnamic acids, have been investigated in this paper by means of Fluorescent Ratio Imaging Microscopy (FRIM). The results show that B. bruxellensis DSM 7001 is able...

  12. THE IMPACT OF CONJUGATED LINOLEIC ACID ADDITION ON PH VALUE OF LONGISSIMUS DORSI MUSCLE

    Directory of Open Access Journals (Sweden)

    Przemysław WASILEWSKI

    2009-08-01

    Full Text Available The subject of research was 60 crossbred gilts, divided into 6 groups, fed the fodder with addition of conjugated linoleic acid (CLA or sunflower oil (SFO in amount: 0.5; 1.0; and 2.0 %, respectively. Animals were slaughtered with the body weight ca. 95 kg. The aim of research was to determine pH value of loin meat tissue (Longissimus dorsi of right half-carcass in 45 minutes, 2, 3, 4, 5, 6 hours and 24 hours after slaughter. Results were statistically elaborated using one-way variance analysis. Longissimus dorsi muscle pH values measured 45 minutes after slaughter in case of all groups of pigs were in range from 6.34 up to 6.47, what shows good meat quality. The lowest pH1 (measured 45 minutes after slaughter had meat of fatteners where addition of 2 % sunflower oil was given into fodder and the highest value of this trait was in group of individuals where also was given sunflower oil in 1 % amount. Statistical significant differences in pH value measured in different time after slaughter i.e. after 45 minutes, 2, 3, 4, 6 and 24 hours between tested groups of pigs were not stated. The exception is the result of pH measurement 5 hours after slaughter. Statistical significant differences were between group of pigs getting 0.5 % addition of conjugated linoleic acid characterized by the highest pH value of meat and group of animals fed the fodder with 1 % addition of conjugated linoleic acid (P≤0.01. On the basis of the results obtained in presented paper may be stated that feeding pigs with addition of conjugated linoleic acid in amounts 0.5; 1.0 and 2.0 % did not impact negatively on meat quality defined by pH value.

  13. Coastal acid sulphate soils in Poland: a review

    Directory of Open Access Journals (Sweden)

    Hulisz Piotr

    2017-03-01

    Full Text Available This paper presents the state of knowledge on coastal acid sulphate soils in Poland. The properties of these soils are closely related to the influence of brackish water from the Baltic Sea, high accumulation of organic matter and human activity. The obtained results demonstrate that the sulphide accumulation in soils refers to a relatively small areas of the Polish coastal zone with the unique and very valuable habitats. They require an adequate regulation of the water relations to avoid the risk of strong soil acidification and environmental pollution by heavy metals. Currently, there are no relevant criteria for classification of acid sulphate soil materials in the Polish Soil Classification (2011. Therefore, based on the presented data, the authors proposed to identify these features at the lower classification level (for different soil types. The criteria for the Thionic and Sulfidic qualifiers used in the WRB classification (IUSS Working Group WRB 2015 could be accepted for this purpose.

  14. Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus.

    Science.gov (United States)

    Tourinho, Paula S; van Gestel, Cornelis A M; Lofts, Stephen; Soares, Amadeu M V M; Loureiro, Susana

    2013-12-01

    The effects of soil pH on the toxicity of ZnO nanoparticles (NPs) to the terrestrial isopod Porcellionides pruinosus were evaluated. Isopods were exposed to a natural soil amended with CaCO3 to reach 3 different pH(CaCl2) levels (4.5, 6.2, and 7.3) and to standard LUFA 2.2 soil (pH 5.5) spiked with ZnO NPs (30 nm), non-nano ZnO (200 nm), and ionic Zn as ZnCl₂. Toxicity was expressed based on total Zn concentration in soil, as well as total Zn and free Zn²⁺ ion concentrations in porewater. Compared with ZnO-spiked soils, the ZnCl₂-spiked soils had lower pH and higher porewater Ca²⁺ and Zn levels. Isopod survival did not differ between Zn forms and soils, but survival was higher for isopods exposed to ZnO NPs at pH 4.5. Median effect concentrations (EC50s) for biomass change showed similar trends for all Zn forms in all soils, with higher values at intermediate pH. Median lethal concentration (LC50) and EC50 values based on porewater Zn or free Zn ion concentrations were much lower for ZnO than for ionic zinc. Zn body concentrations increased in a dose-related manner, but no effect of soil pH was found. It is suggested not only that dissolved or free Zn in porewater contributed to uptake and toxicity, but also that oral uptake (i.e., ingestion of soil particles) could be an important additional route of exposure. © 2013 SETAC.

  15. ESTIMATION OF pH, TOTAL ACID AND ETHANOL CONTENT OF COMMERCIALLY AVAILABLE ALCOHOL-CONTAINING MOUTHWASHES AND ITS EFFECT ON SALIVARY pH

    OpenAIRE

    Rafi Shaik; Sharath Pocha Reddy; Sameeulla Shaik; Sarah Emerald Sheela Nemalladinne; Dandu Sivasai Prasad Reddy; Kotu Nagavenkata Sai Praveen

    2017-01-01

    BACKGROUND Use of mouthwash has become widespread as a part of routine oral hygiene. Mouthwashes may have deleterious effects on oral tissues because of its low pH, high acid content and use of ethanol as an antiseptic agent. MATERIALS AND METHODS A cross-sectional experimental study was conducted among 48 undergraduate dental students. Eight commercially available alcohol-containing mouthwashes, which are available in Indian market were selected for which the pH, total acid an...

  16. A new fluorescent pH probe for extremely acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Jiang, Zheng [School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Xiao, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Bi, Fu-Zhen [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-04-01

    A new coumarin-based fluorescent probe can detect highly acidic conditions in both solution and bacteria with high selectivity and sensitivity. Highlights: • A new fluorescence probe for very low pH was synthesized and characterized. • The probe can monitor pH in solution and bacteria. • The two-step protonation of N atoms of the probe leads to fluorescence quenching. Abstract: A novel turn-off fluorescent probe based on coumarin and imidazole moiety for extremely acidic conditions was designed and developed. The probe with pKa = 2.1 is able to respond to very low pH value (below 3.5) with high sensitivity relying on fluorescence quenching at 460 nm in fluorescence spectra or the ratios of absorbance maximum at 380 nm to that at 450 nm in UV–vis spectra. It can quantitatively detect pH value based on equilibrium equation, pH = pKa -log[(Ix - Ib)/(Ia - Ix)]. It had very short response time that was less than 1 min, good reversibility and nearly no interference from common metal ions. Moreover, using ¹H NMR analysis and theoretical calculation of molecular orbital, we verified that a two-step protonation process of two N atoms of the probe leaded to photoinduced electron transfer (PET), which was actually the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. Furthermore, the probe was also applied to imaging strong acidity in bacteria, E.coli and had good effect. This work illustrates that the new probe could be a practical and ideal pH indicator for strongly acidic conditions with good biological significance.

  17. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic)

    Science.gov (United States)

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4+-N), silicate silicon (SiO42--Si), nitrite nitrogen (NO2--N), phosphate phosphorus (PO43--P), and nitrate nitrogen (NO3--N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8–9, whereas Sordariales predominated in soils of pH 7–8 and Coniochaetales predominated in soils of pH 6–7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic. PMID:26955371

  18. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (High Arctic

    Directory of Open Access Journals (Sweden)

    Tao eZhang

    2016-02-01

    Full Text Available This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic. A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS region. The following eight soil properties were analyzed: pH, organic carbon (C, organic nitrogen (N, ammonium nitrogen (NH4+-N, silicate silicon (SiO42--Si, nitrite nitrogen (NO2--N, phosphate phosphorus (PO43--P and nitrate nitrogen (NO3--N. A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs were found. Of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>8 soil samples were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda and analysis of similarities (ANOSIM revealed that soil pH (p=0.001 was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8-9, whereas Sordariales predominated in soils of pH 7-8 and Coniochaetales predominated in soil samples of pH 6-7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic.

  19. Adsorción de cadmio, cromo y mercurio en suelos del Valle del Cauca a varios valores de pH Cadmium, chromium and mercury adsorption on Cauca Valley soils as a function of pH

    Directory of Open Access Journals (Sweden)

    García O. Álvaro

    1991-12-01

    were collected and prepared for sorption experiments adjusting the pH to 5.7,6.5 and 7.8 values using, 1,4 and 12% acetic acid or 0.01 N NaOH. Six saturating solution of each metal (0.0, 0.28, 0.56, 1.12 and 2.25 mg L-1 were added to 0.25 g air dried and ground to pass a 2-mm sieve soil samples. The soil solution suspensions were shaken for 25 minutes and then extracted with 0.01N HC1. Cadmium; Cr and Hg concentrations were determined by atomic absorption spectrofotometry. The difference between the initial and final metal solution concentration was considered to be soil adsorbed and the amount 0.01 N HC1 extracted as the metal retained by the soil. Cadmium adsorption in all the soils was higher at neutral or alkaline pH values due to the predominance of divalent solubles or insoluble metalanion complexes formed in the soil at pH values higter than 7.0. The Cr and Hg adsorption is higher at acid values of pH due to the formation of complexes with the organic matter (chelation or with Fe, Al or Mn hydrous oxids wich are favoreced at this pH values. The lower 0.01N HC1 extraction (higher retention was observed at pH values 6.4-6.6 in all the soils suggesting that in this range of pH this heavy metals are strongly adsorbed by the exchange complex and are not available to plants.

  20. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  1. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region.

    Science.gov (United States)

    Liu, Xin; Zhang, Bo; Zhao, Wenrui; Wang, Ling; Xie, Dejin; Huo, Wentong; Wu, Yanwen; Zhang, Jinchi

    2017-12-01

    Acid rain is mainly caused by dissolution of sulfur dioxide and nitrogen oxides in the atmosphere, and has a significant negative effect on ecosystems. The relative composition of acid rain is changing gradually from sulfuric acid rain (SAR) to nitric acid rain (NAR) with the rapidly growing amount of nitrogen deposition. In this study, we investigated the impact of simulated SAR and NAR on litter decomposition and the soil microbial community over four seasons since March 2015. Results first showed that the effects of acid rain on litter decomposition and soil microbial were positive in the early period of the experiment, except for SAR on soil microbes. Second, soil pH with NAR decreased more rapidly with the amount of acid rain increased in summer than with SAR treatments. Only strongly acid rain (both SAR and NAR) was capable of depressing litter decomposition and its inhibitory effect was stronger on leaf than on fine root litter. Meanwhile, NAR had a higher inhibitory effect on litter decomposition than SAR. Third, in summer, autumn and winter, PLFAs were negatively impacted by the increased acidity level resulting from both SAR and NAR. However, higher acidity level of NAR (pH=2.5) had the strongest inhibitory impact on soil microbial activity, especially in summer. In addition, Gram-negative bacteria (cy19:0) and fungi (18:1ω9) were more sensitive to both SAR and NAR, and actinomycetes was more sensitive to SAR intensity. Finally, soil total carbon, total nitrogen and pH were the most important soil property factors affecting soil microbial activity, and high microbial indices (fungi/bacteria) with high soil pH. Our results suggest that the ratio of SO 4 2- to NO 3 - in acid rain is an important factor which could affect litter decomposition and soil microbial in subtropical forest of China. Copyright © 2017. Published by Elsevier B.V.

  2. Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida

    International Nuclear Information System (INIS)

    Ardestani, Masoud M.; Gestel, Cornelis A.M. van

    2013-01-01

    The aim of this study was to improve our understanding of metal bioavailability in soil by linking the biotic ligand approach with toxicokinetics modelling. We determined cadmium bioaccumulation kinetics in Folsomia candida (Collembola) as a function of soil pH. Animals were exposed for 21 days to LUFA 2.2 soil at 5 or 20 μg Cd g −1 dry soil followed by 21 days elimination in clean soil. Internal cadmium concentrations were modelled using a first-order one-compartment model, relating uptake rate constants (k 1 ) to total soil, water or 0.01 M CaCl 2 extractable and porewater concentrations. Based on total soil concentrations, k 1 was independent of soil pH while it strongly increased with increasing pH based on porewater concentrations explaining the reduced competition of H + ions making cadmium more bioavailable in pore water at high pH. This shows that the principles of biotic ligand modelling are applicable to predict cadmium accumulation kinetics in soil-living invertebrates. -- Highlights: •Cadmium uptake and elimination in Folsomia candida were investigated. •Animals were exposed to LUFA 2.2 soil at different pH levels. •Langmuir isotherms were used to describe interaction of Ca and protons with Cd. •pH was the main factor affecting Cd toxicokinetics when pore water was considered. -- Integrating bioaccumulation kinetics with a BLM approach provides novel insights into the bioavailability of cadmium to springtails in soil

  3. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    Science.gov (United States)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive

  4. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    Science.gov (United States)

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Environmental responsiveness of polygalacturonic acid-based multilayers to variation of pH.

    Science.gov (United States)

    Westwood, Marta; Noel, Timothy R; Parker, Roger

    2011-02-14

    The effect of pH on the stability of layer-by-layer deposited polygalacturonic acid (PGalA)-based multilayer films prepared with the polycations poly-L-lysine, chitosan, and lysozyme is studied. The response was characterized using a quartz crystal microbalance, dual polarization interferometry, and Fourier transform infrared spectroscopy which probe multilayer thickness, density, polymer mass (composition and speciation), and hydration. All multilayers showed irreversible changes in response to pH change becoming thinner due to the partial disassembly. Preferential loss of the polycation (50-80% w/w) and relative small losses of PGaLA (10-35% w/w) occurred. The charge density on the polycation has a strong influence on the response to the acid cycle. Most of the disassembly takes place at the pH lower that pK(a) of PGaLA, indicating that this factor was crucial in determining the stability of the films. The pH challenge also revealed a polycation-dependent shift to acid pH in the PGaLA pK(a).

  6. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    Science.gov (United States)

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    Science.gov (United States)

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  8. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    Science.gov (United States)

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  9. Soil pH Is the Primary Factor Correlating With Soil Microbiome in Karst Rocky Desertification Regions in the Wushan County, Chongqing, China

    Directory of Open Access Journals (Sweden)

    Daihua Qi

    2018-05-01

    Full Text Available Karst rocky desertification (KRD is a process of land degradation, which causes desert-like landscapes, deconstruction of endemic biomass, and declined soil quality. The relationship of KRD progression with above-ground communities (e.g. vegetation and animal is well-studied. Interaction of soil desertification with underground communities, such as soil microbiome, however, is vastly unknown. This study characterizes change in soil bacterial community in response to KRD progression. Soil bacterial communities were surveyed by deep sequencing of 16S amplicons. Eight soil properties, pH, soil organic matter (SOM, total and available nitrogen (TN and AN, total and available phosphorus (TP and AP, and total and available potassium (TK and AK, were measured to assess soil quality. We find that the overall soil quality decreases along with KRD progressive gradient. Soil bacterial community compositions are distinguishingly different in KRD stages. The richness and diversity in bacterial community do not significantly change with KRD progression although a slight increase in diversity was observed. A slight decrease in richness was seen in SKRD areas. Soil pH primarily correlates with bacterial community composition. We identified a core microbiome for KRD soils consisting of; Acidobacteria, Alpha-Proteobacteria, Planctomycetes, Beta-Proteobacteria, Actinobacteria, Firmicutes, Delta-Proteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Gemmatimonadetes in this study. Phylum Cyanobacteria is significantly abundant in non-degraded soils, suggesting that Cyanobacterial activities might be correlated to soil quality. Our results suggest that Proteobacteria are sensitive to changes in soil properties caused by the KRD progression. Alpha- and beta-Proteobacteria significantly predominated in SKRD compared to NKRD, suggesting that Proteobacteria, along with many others in the core microbiome (Acidobacteria, Actinobacteria, Firmicutes, and Nitrospirae

  10. A proposed relationship between pH and ascorbic acid content of ...

    African Journals Online (AJOL)

    A relationship between the ascorbic acid content of fresh squeezed juice of orange, lemon, grape and lime and the pH was presented. The relationship established were statistically compared with those obtained by the 2,6 dichlorophenol indophenol titration method. It was shown that they do not differ significantly (p≥0.05) ...

  11. Dynamics of fatty acid vesicles in response to pH stimuli

    DEFF Research Database (Denmark)

    Ikari, Keita; Sakuma, Yuka; Jimbo, Takehiro

    2015-01-01

    We investigate the dynamics of decanoic acid/decanoate (DA) vesicles in response to pH stimuli. Two types of dynamic processes induced by the micro injection of NaOH solutions are sequentially observed: deformations and topological transitions. In the deformation stage, DA vesicles show a series...

  12. Effects of pH, titratable acidity and calcium concentration of non ...

    African Journals Online (AJOL)

    It has also been reported that experimental addition of calcium in beverages can reduce the progression of erosion. This study was carried out to investigate effects the of pH, titratable acidity and calcium concentration of non alcoholic carbonated beverages on enamel erosion of extracted human premolar teeth. Method: ...

  13. Measurement of pH, alkalinity and acidity in ultra-soft waters | Lahav ...

    African Journals Online (AJOL)

    In the "blend" method, equilibrium chemistry data were used to calculate total acidity for each point based on the known total alkalinity, pH reading, temperature and ionic strength. The two methods gave excellent results (in terms of both repetition and accuracy) as compared to characterisation based on total alkalinity and ...

  14. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  15. Action of smoke acids on soil

    Energy Technology Data Exchange (ETDEWEB)

    Wieler, A

    1924-01-01

    Experiments were performed over a 14 year period to determine the effects of sulfur dioxide on plants. Conifers, deciduous trees and herbs were grown on two types of soil. One type was treated by applying lime and the other soil was left to be contaminated with sulfur dioxide. Results indicate that plants grew well on the lime treated soil. However, plants did not grow on the untreated soil and they soon died. It has been determined that plants which do not require much calcium survive longer under the effects of sulfur dioxide. The author concludes that the effects of sulfur dioxide is due to the decalcification of the soil.

  16. Acid-base status of soils in groundwater discharge zones — relation to surface water acidification

    Science.gov (United States)

    Norrström, Ann Catrine

    1995-08-01

    Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters. To assess the importance of the last soil horizon of contact before discharge, the upper 0-0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3-4 m 2 in size and selected from two catchments exposed to different levels of acid deposition. The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation ( r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm -3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.

  17. Reuse of dredged marine soils as landfill liner: Effect of pH on Escherichia coli growth

    Science.gov (United States)

    Anuar, N. M.; Chan, C. M.

    2017-11-01

    A potential reuse area yet to be explored is the utilization of dredged marine soils (DMS) as geosorbent to retain pathogenic bacteria in landfill leachate. The use of DMS as geosorbent in landfill site could be considered as a new way of environmental friendly solid waste management. By laying DMS at the base of landfill like conventional clay liners, the geowaste could be simultaneously disposed of and act as passive geosorbent for microbes in leachate. DMS are known to serve as a hospitable environment for bacteria growth. Environmental factors such as soil’s pH, salinity and particle size could affect the bacteria growth rate. This study investigated the effect range of pH value on the growth of indicator bacteria, Escherichia coli (E. coli) isolated from landfill leachate. The results showed that the number of E. coli grew higher in alkaline compared to acidic condition. Findings from this study will serve as a base for future studies for removing bacteria in leachate using DMS as geosorbent in a landfill site.

  18. Spatial variability of soil pH based on GIS combined with geostatistics in Panzhihua tobacco area

    International Nuclear Information System (INIS)

    Du Wei; Wang Changquan; Li Bing; Li Qiquan; Du Qian; Hu Jianxin; Liu Chaoke

    2012-01-01

    GIS and geostatistics were utilized to study the spatial variability of soil pH in Panzhihua tobacco area. Results showed that pH values in this area ranged from 4.5 to 8.3, especially 5.5 to 6.5, and in few areas were lower than 5.0 or higher than 7.0 which can meet the need of high-quality tobacco production. The best fitting model of variogram was exponential model with the nugget/sill of soil pH in 13.61% indicating strong spatial correlation. The change process was 5.40 km and the coefficient of determination was 0.491. The spatial variability of soil pH was mainly caused by structural factors such as cane, topography and soil type. The soil pH in Panzhihua tobacco area also showed a increasing trend of northwest to southeast trend. The pH of some areas in Caochang, Gonghe and Yumen were lower, and in Dalongtan were slightly higher. (authors)

  19. Calcium ion binding to a soil fulvic acid using a Donnan Potential model

    International Nuclear Information System (INIS)

    Marinsky, J.A.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 x 10 -4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log β app ) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log β app =2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential correction term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log β=1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. (orig.)

  20. Recovery of carboxylic acids at pH greater than pKa

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Lisa A. [Univ. of California, Berkeley, CA (United States)

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pKa and regenerability depend on sorbent basicity; apparent pKa and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  1. Adsorption of tetracycline on soil and sediment: Effects of pH and the presence of Cu(II)

    International Nuclear Information System (INIS)

    Zhang Zheyun; Sun Ke; Gao Bo; Zhang Guixiang; Liu Xitao; Zhao Ye

    2011-01-01

    Tetracycline (TC) is frequently detected in the environment, however, knowledge on the environmental fate and transport of TC is still limited. Batch adsorption experiments of TC by soil and sediment samples were conducted. The distribution of charge and electrostatic potential of individual atoms of various TC species in the aqueous solution were determined using MOPAC version 0.034 W program in ChemBio3D Ultra software. Most of the adsorption isotherms on the soil, river and marine sediments were well fitted with the Freundlich and Polanyi-Manes (PMM) models. The single point organic carbon (OC)-normalized adsorption distribution coefficients (K OC ) and PMM saturated adsorption capacity (Q OC 0 ) values of TC were associated with the mesopore volume and clay content to a greater extent, indicating the mesopore volume of the soil and sediments and their clay content possibly influenced the fate and transport of TC in the natural environment. The adsorption of TC on soil and sediments strongly depended on the pH and presence of Cu(II). The presence of Cu(II) facilitated TC adsorption on soil and sediments at low pH (pH < 5), possibly due to the metallic complexation and surface-bridging mechanism by Cu(II) adsorption on soil and sediments. The cation exchange interaction, metallic complexation and Coulombic interaction of mechanisms for adsorption of TC to soils and sediments were further supported by quantum chemical calculation of various TC species in different pH.

  2. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers.

    Science.gov (United States)

    Negri, Graciela E; Deming, Timothy J

    2017-01-01

    New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rice straw incorporated just before soil flooding increases acetic acid formation and decreases available nitrogen

    Directory of Open Access Journals (Sweden)

    Ronaldir Knoblauch

    2014-02-01

    Full Text Available Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept soil. The treatments were as follows: control (no straw or ash; incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+ and nitrate (NO3-. Soil solution pH and concentration of organic acids (acetic, propionic and butyric were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days

  4. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  5. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors

    Directory of Open Access Journals (Sweden)

    Paul A. Schornack

    2003-03-01

    Full Text Available The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines.

  6. Evaluation of plant species for use in the control of acid sulfated soils in Paipa, Boyacá

    Directory of Open Access Journals (Sweden)

    Andrea Angélica Bernal Figueroa

    2014-07-01

    Full Text Available Acid sulfated soils are characterized by high amounts of iron and sulfur, which in presence of air are oxidized and form sulfuric horizons extremely acidic, generating environmental changes ranging from water pollution to problems associated with fertility and crop production, among others. This research was conducted in order to identify suitable plant species to control the acidity of these soils in the town of Paipa, Boyacá, Colombia. A completely randomized experimental design with 6 treatments and 3 replications was implemented in potting shed; there, the response of Beta vulgaris L. (forage beet, Brassica rapa L. (forage turnip and Raphanus sativus L. (forage radish on the acidity of sulfated acid soil, contrasted with a non-sulfated soil, was evaluated, after correction with liming. To assess the effects, pH and exchangeable acidity (H+ + Al+3 cmolc/kg were measured in the two types of soil before and after seeding ; the agronomic response of plants in each treatment was determined at the end of the growing season (120 days after seeding . On acid sulfated soils, species B. rapa, R. sativus and B. vulgaris along with the complementary use of liming as corrective induced a reduction in exchangeable acidity; B. rapa and R. sativus showed better growth potential and resistance, while B. vulgaris was affected in height and root diameter.

  7. Bioleaching of heavy metals from soil using fungal-organic acids : bench scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, S.J.; Ousmanova, D.; Somers, A.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Brown, C.E. [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Division]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre

    2006-07-01

    The ability of fungi to solubilize metals from solid materials may present new opportunities in environmental remediation. This paper presented details of a bench scale experiment that evaluated the leaching of heavy metals from contaminated soil using in situ fungal-generated organic acids. Rice was used as the growing media for organic acid production by A. foetidus. The cultivated fungus was placed on large pieces of potato-dextrose agar (PDA) plates and suspended in 5 L of sterilized water. The cooked rice was inoculated by pouring the 5 L spore suspension over the rice layer. Soil was obtained from a soil pile impacted with heavy metals at a private industrial site and augmented with Pb-contaminated soil. A polyethylene tub was used with a drain pipe leading to a leachate vessel. Crushed stone was spread over the bottom of the tub to assist leachate drainage. Approximately 45 kg of the contaminated soil was spread evenly over the stone layer to a depth of 10 cm. The concentrated spore suspension was sprinkled over the rice. Each week the leachate collection vessel was removed from the bioleaching system and the fine soil particles were allowed to settle. A control was run using the contaminated soil and solid substrate without fungus. Growth of A. foetidus was observed in both control experiment and test experiment after a period of 35 days. The pH of the leachate was measured as the fungal growth progressed. The process was assessed using ICP Mass Spectroscopy and electron spectroscopy, which showed that approximately 65 g of heavy metals were mobilized from 45 kg of soil, and that the biological leaching process resulted in greater mobilization of heavy metals relative to the control experiment. It was concluded that organic acids generated by A. foetidus were capable of leaching heavy metals from the soil. 30 refs., 4 tabs., 15 figs.

  8. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    Science.gov (United States)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  9. Ionoregulatory and toxicological responses of stonefly nymphs (Plecoptera) to acidic and alkaline pH

    Energy Technology Data Exchange (ETDEWEB)

    Lechleitner, R.A.; Cherry, D.S.; Cairns, J. Jr.; Stetler, D.A.

    1985-03-01

    The acute toxicities of acidic and alkaline pH to nymphs of the stoneflies Pteronarcys dorsata, P. proteus, and Tallaperla maria were determined in 96-hr static bioassays. The acidic and alkaline 96-hr LC/sub 50/ values were 2.8 to 3.3 and 12.1 to 10.3, respectively. Exposure to pH 3.0 for 72 hr or longer caused a significant loss of sodium from nymphs of P. proteus. Morphological changes, including distension of cuticular disk and increased number of vesicles, were observed in gill tissue from nymphs of P. dorsata exposed to pH 2.5 for 9 hr while minor changes were observed in nymphs exposed to pH 4.0 for 96 hr. Changes in gill tissue ultrastructure included an increase in number of vesicles and a decrease in number and size of mitochondria in nymphs exposed to alkaline pH of 11.75.

  10. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    International Nuclear Information System (INIS)

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H 2 S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H 2 S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [ 14 C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake

  11. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  12. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    Directory of Open Access Journals (Sweden)

    Min-Suk Kim

    Full Text Available Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  13. The pH Game.

    Science.gov (United States)

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  14. The soil sulphate effect and maize plant (Zea mays L.) growth of sulphate reducing bacteria (SRB) inoculation in acid sulfate soils with the different soil water condition

    Science.gov (United States)

    Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.

    2018-02-01

    The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).

  15. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  16. Hydrochemistry of rivers in an acid sulphate soil hotspot area in western Finland

    Directory of Open Access Journals (Sweden)

    M. ROOS

    2008-12-01

    Full Text Available During heavy rains and snow melting, acid sulphate (AS soils on the coastal plains of Finland are flushed resulting in discharge of acidic and metal-rich waters that strongly affect small streams. In this study, the impact of AS soils occurrence and hydrological changes on water quality were determined for 21 rivers (catchment sizes between 96–4122 km2 running through an AS soil hotspot area in western central Finland. Water samples, collected at the outlet, during eight selected events, were analysed for pH, dissolved organic carbon, electrical conductivity (EC and 32 chemical elements. Based on the correlation with percentage arable land in the catchments (a rough estimate of AS soil occurrences, as up to 50% of the arable land is underlain with these soils, it was possible to categorize variables into those that are enriched in runoff from such land, depleted in runoff from such land (only one element, and not affected by land-use type in the catchments. Of the variables enriched in runoff from arable land, some were leached from AS soils during high-water flows, in particular (aluminium, boron, beryllium, cadmium, cobalt, copper, lithium, manganese, nickel, sulphur, silicon, thorium, thallium, uranium, and zinc and others occurred in highest concentrations during lower flows (calcium, EC, potassium, magnesium, sodium, rubidium and strontium. Molybdenum and phosphorus were not leached from AS soils in larger amounts than from other soils and thus related to other factors connected to the arable land. Based on the concentrations of potentially toxic metals derived from AS soils, the 21 rivers were ranked from the least (Lestijoki River, Lapväärtinjoki River and Perhonjoki River to the most (Sulvanjoki River, Vöyrinjoki River and Maalahdenjoki River heavily AS soil impacted. It has been decided that Vöyrinjoki is to be dredged along a ca. 20 km distance. This is quite alarming considering the high metal concentrations in the river.;

  17. Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil.

    Science.gov (United States)

    Ramzani, Pia Muhammad Adnan; Khalid, Muhammad; Naveed, Muhammad; Ahmad, Rashid; Shahid, Muhammad

    2016-07-01

    Incidence of iron (Fe) deficiency in human populations is an emerging global challenge. This study was conducted to evaluate the potential of iron sulphate combined with biochar and poultry manure for Fe biofortification of wheat grains in pH affected calcareous soil. In first two incubation studies, rates of sulfur (S) and Fe combined with various organic amendments for lowering pH and Fe availability in calcareous soil were optimized. In pot experiment, best rate of Fe along with biochar (BC) and poultry manure (PM) was evaluated for Fe biofortification of wheat in normal and S treated low pH calcareous soil. Fe applied with BC provided fair increase in root-shoot biomass and photosynthesis up to 79, 53 and 67%, respectively in S treated low pH soil than control. Grain Fe and ferritin concentration was increased up to 1.4 and 1.2 fold, respectively while phytate and polyphenol was decreased 35 and 44%, respectively than control in treatment where Fe was applied with BC and S. In conclusion, combined use of Fe and BC could be an effective approach to improve growth and grain Fe biofortification of wheat in pH affected calcareous soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Jensen, Henrik; Larsen, Susan W

    2014-01-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate...... in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved....... Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing....

  19. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  20. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  1. Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L. ), in acid soils

    Energy Technology Data Exchange (ETDEWEB)

    Doebereiner, J

    1966-02-01

    Three greenhouse experiments were conducted to study manganese toxicity effects on the nitrogen fixing symbiosis of beans (Phaseolus vulgaris). Addition of 40 ppm of manganese to two acid soils affected nodulation and nitrogen fixation. Dependent on the Rhizobion strain either nodule numbers or efficiency in nitrogen fixation were reduced; the efficiency of one Rhizobium-host combination was more affected than another. Under less severe conditions of manganese toxicity, reduction of nodule numbers or of efficiency in nitrogen fixation could be compensated by an increase of nodule size. In the absence of manganese toxicity nodulation and nitrogen fixation of beans were abundant in a soil with pH 4.4. Naturally occurring manganese toxicity in a gray hydromorphic soil was eliminated by liming. The total nitrogen content of bean plants which were dependent on symbiotic nitrogen fixation decreased linearly with the logarithm of the manganese concentration in the plants. This did not happen when the plants were grown with mineral nitrogen. The role of manganese toxicity in the well known sensitivity to acid soil conditions of certain legumes and the importance of selection of manganese tolerant Rhizobium strains for the inoculation of beans in acid tropical soils, are discussed. 25 references, 1 figure, 6 tables.

  2. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam.

    Science.gov (United States)

    Goswami, Gunajit; Deka, Priyadarshini; Das, Pompi; Bora, Sudipta Sankar; Samanta, Ramkrishna; Boro, Robin Chandra; Barooah, Madhumita

    2017-07-01

    In this study, we report on the bacterial diversity and their functional properties prevalent in tea garden soils of Assam that have low pH (3.8-5.5). Culture-dependent studies and phospholipid fatty acid analysis revealed a high abundance of Gram-positive bacteria. Further, 70 acid-tolerant bacterial isolates characterized using a polyphasic taxonomy approach could be grouped to the genus Bacillus, Lysinibacillus, Staphylococcus, Brevundimonas, Alcaligenes, Enterobacter, Klebsiella, Escherichia, and Aeromonas. Among the 70 isolates, 47 most promising isolates were tested for their plant growth promoting activity based on the production of Indole Acetic Acid (IAA), siderophore, and HCN as well as solubilization of phosphate, zinc, and potassium. Out of the 47 isolates, 10 isolates tested positive for the entire aforesaid plant growth promoting tests and further tested for quantitative analyses for production of IAA, siderophore, and phosphate solubilization at the acidic and neutral condition. Results indicated that IAA and siderophore production, as well as phosphate solubilization efficiency of the isolates decreased significantly (P ≤ 0.05) in the acidic environment. This study revealed that low soil pH influences bacterial community structure and their functional properties.

  3. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  4. A Novel Phytase Derived from an Acidic Peat-Soil Microbiome Showing High Stability under Acidic Plus Pepsin Conditions.

    Science.gov (United States)

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-01-01

    Four novel phytases of the histidine acid phosphatase family were identified in two publicly available metagenomic datasets of an acidic peat-soil microbiome in northeastern Bavaria, Germany. These enzymes have low similarity to all the reported phytases. They were overexpressed in Escherichia coli and purified. Catalytic efficacy in simulated gastric fluid was measured and compared among the four candidates. The phytase named rPhyPt4 was selected for its high activity. It is the first phytase identified from unculturable Acidobacteria. The phytase showed a longer half-life than all the gastric-stable phytases that have been reported to date, suggesting a strong resistance to low pH and pepsin. A wide pH profile was observed between pH 1.5 and 5.0. At the optimum pH (2.5) the activity was 2,790 μmol/min/mg at the physiological temperature of 37°C and 3,989 μmol/min/mg at the optimum temperature of 60°C. Due to the competent activity level as well as the high gastric stability, the phytase could be a potential candidate for practical use in livestock and poultry feeding. © 2016 S. Karger AG, Basel.

  5. Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity.

    Science.gov (United States)

    Wang, Ziquan; Tan, Xiangping; Lu, Guannan; Liu, Yanju; Naidu, Ravi; He, Wenxiang

    2018-01-01

    Soil phosphatase, which plays an important role in phosphorus cycling, is strongly inhibited by Arsenic (As). However, the inhibition mechanism in kinetics is not adequately investigated. In this study, we investigated the kinetic characteristics of soil acid phosphatase (ACP) in 14 soils with varied properties, and also explored how kinetic properties of soil ACP changed with different spiked As concentrations. The results showed that the Michaelis constant (K m ) and maximum reaction velocity (V max ) values of soil ACP ranged from 1.18 to 3.77mM and 0.025-0.133mMh -1 in uncontaminated soils. The kinetic parameters of soil ACP in different soils changed differently with As contamination. The K m remained unchanged and V max decreased with increase of As concentration in most acid and neutral soils, indicating a noncompetitive inhibition mechanism. However, in alkaline soils, the K m increased linearly and V max decreased with increase of As concentration, indicating a mixed inhibition mechanism that include competitive and noncompetitive. The competitive inhibition constant (K ic ) and noncompetitive inhibition constant (K iu ) varied among soils and ranged from 0.38 to 3.65mM and 0.84-7.43mM respectively. The inhibitory effect of As on soil ACP was mostly affected by soil organic matter and cation exchange capacity. Those factors influenced the combination of As with enzyme, which resulted in a difference of As toxicity to soil ACP. Catalytic efficiency (V max /K m ) of soil ACP was a sensitive kinetic parameter to assess the ecological risks of soil As contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The effect of pH on the erosion of dentine and enamel by dietary acids in vitro.

    Science.gov (United States)

    West, N X; Hughes, J A; Addy, M

    2001-09-01

    The reported incidence of tooth erosion caused by acidic soft drinks has been increasingly documented. Citric and phosphoric acids are the two main dietary acids present in these soft drinks. Many variables need to be determined in order to assess risk factors for dental erosion caused by beverage consumption including pH, titratable acidity, pKa, buffering capacity, hence the aim of these in vitro investigations. Methodologies included profiling flat enamel and dentine samples (acidic solutions adjusted with alkali over the available pH range; citric, phosphoric and hydrochloric acid were adjusted with sodium hydroxide and citric acid with trisodium citrate. Tissue loss was calculated by profilometry. Results showed that under these conditions citric acid caused far more erosion over the pH range employed than phosphoric acid for both tissue types. Citric acid compared with hydrochloric acid highlighted dissolution and chelation effects. Phosphoric acid caused minimal erosion over pH 3 for enamel and pH 4 for dentine. These factors could be considered in order to reduce the erosivity of acidic soft drinks.

  7. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag.

    Science.gov (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong

    2017-12-01

    Contamination of rice (Oryza sativa) by Cd is of great concern. Steel slag could be used to amend Cd-contaminated soils and make them safe for cereal production. This work was conducted to study the effects of steel slag on Cd uptake and growth of rice plants in acidic and Cd-contaminated paddy soils and to determine the possible mechanisms behind these effects. Pot (rhizobag) experiments were conducted using rice plants grown on two acidic and Cd-contaminated paddy soils with or without steel slag amendment. Steel slag amendment significantly increased grain yield by 36-45% and root catalase activity, and decreased Cd concentrations in brown rice by 66-77% compared with the control, in both soils. Steel slag amendment also markedly decreased extractable soil Cd, Cd concentrations in pore-water and Cd translocation from roots to above-ground parts. It also significantly increased soil pH, extractable Si and Ca in soils and Ca concentrations in roots. Significant positive correlations were found between extractable soil Cd and Cd concentrations in rice tissues, but it was negatively correlated with soil pH and extractable Si. Calcium in root tissues significantly and negatively correlated with Cd translocation factors from roots to straw. Overall, steel slag amendment not only significantly promoted rice growth but decreased Cd accumulation in brown rice. These benefits appear to be related to improvements in soil conditions (e.g. increasing pH, extractable Si and Ca), a reduction in extractable soil Cd, and suppression of Cd translocation from roots to above-ground parts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form.

    Directory of Open Access Journals (Sweden)

    Javed M Khan

    Full Text Available Banana lectin (BL is a homodimeric protein categorized among jacalin-related family of lectins. The effect of acidic pH was examined on conformational stability of BL by using circular dichroism, intrinsic fluorescence, 1-anilino-8-napthalene sulfonate (ANS binding, size exclusion chromatography (SEC and dynamic light scattering (DLS. During acid denaturation of BL, the monomerization of native dimeric protein was found at pH 2.0. The elution profile from SEC showed two different peaks (59.65 ml & 87.98 ml at pH 2.0 while single peak (61.45 ml at pH 7.4. The hydrodynamic radii (R h of native BL was 2.9 nm while at pH 2.0 two species were found with R h of 1.7 and 3.7 nm. Furthermore at, pH 2.0 the secondary structures of BL remained unaltered while tertiary structure was significantly disrupted with the exposure of hydrophobic clusters confirming the existence of molten globule like state. The unfolding of BL with different subunit status was further evaluated by urea and temperature mediated denaturation to check their stability. As inferred from high Cm and ΔG values, the monomeric form of BL offers more resistance towards chemical denaturation than the native dimeric form. Besides, dimeric BL exhibited a Tm of 77°C while no loss in secondary structures was observed in monomers even up to 95°C. To the best of our knowledge, this is the first report on monomeric subunit of lectins showing more stability against denaturants than its native dimeric state.

  9. A statistically based mapping of the influence of geology and land use on soil pH

    DEFF Research Database (Denmark)

    Balstrøm, Thomas; Breuning-Madsen, Henrik; Krüger, Johannes

    2013-01-01

    . The data have been analysed using statistical spatial analysis methods, and a model has been erected demonstrating areas of homogeneous low, high, or inhomogeneous pH values relative to deposits from different ice advances and regional variations in land use. The investigation shows that the major part......The purpose of this paper is to investigate the geographical distribution of pH values in Danish soils of different ages representing the main Saalian and Weichselian ice advances. The investigation is based on soil sampling from top- and subsoils in soil profiles located in a nationwide 7-km grid...... of Jutland is characterized by low pH values in the topsoils and subsoils compared to the islands east of the peninsula. This corresponds with the maximum extension of the Weichselian Young Baltic Ice Cap. A Hot Spot analysis carried out on regional and local scales shows that most of the Danish islands form...

  10. The response of soil solution chemistry in European forests to decreasing acid deposition.

    Science.gov (United States)

    Johnson, James; Graf Pannatier, Elisabeth; Carnicelli, Stefano; Cecchini, Guia; Clarke, Nicholas; Cools, Nathalie; Hansen, Karin; Meesenburg, Henning; Nieminen, Tiina M; Pihl-Karlsson, Gunilla; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Jonard, Mathieu

    2018-03-31

    Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Al tot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca 2+  + Mg 2+  + K + ) and Al tot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Al tot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition. © 2018 John Wiley & Sons

  11. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    Science.gov (United States)

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pHwaters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  12. pH studies in the synthesis of amino acid coated hydrophilic MNPs

    Science.gov (United States)

    Saxena, Namita; Dube, Charu Lata

    2018-04-01

    Magnetic iron oxide nanoparticles magnetite and maghemite (MNPs) are specially useful in various fields like biomedical, waste disposal, catalysis etc. because of their biocompatibility and magnetic properties. They can be manipulated by applying magnetic field and hence their easier separation, wider applications and unending scope in the field of research. They are inherently hydrophobic, and aggregate easily mainly due to magnetic and nanosize effects. The present work reports the synthesis of hydrophilic, stably dispersed MNPs coated by different amino acids at different pH values. Lower concentration of amino acids, 1/3 (moles by moles) of Iron salts concentration was used in the study. Crystallites were found to be approximately 6-7 nm in size, as determined by XRD and also found to have good magnetization values in VSM studies. The effects of coating are mainly studied by FTIR and TG. Higher/lower pH values have been studied for better coating, and it is observed that higher pH is more helpful in getting better results, on bare MNPs synthesized under a pH of approximately 13.3. The effects of net charge on coating efficiency were also studied.

  13. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  14. Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution

    Science.gov (United States)

    van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter

    2010-02-01

    Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.

  15. Long term field evaluation of phosphate rock and superphosphate in acid soils of Hungary; Incubation and pot experiments

    International Nuclear Information System (INIS)

    Nemeth, T.; Osztoics, E.; Csatho, P.; Radimszky, L.; Baczo, G.Y.

    2002-01-01

    A series of experiments was conducted to compare the agronomic effectiveness of phosphate rock (from Algeria) and of single superphosphate (from Russia, Kola) on a moderately acidic pseudogley brown forest soil (Szentgyoergyvoelgy) and on a slightly acidic chernozem brown forest soil (Kompolt). Dynamics of water-soluble and ammonium lactate-soluble P-contents (AL-P) and soil pH-H 2 O changes were studied in a half-year long incubation experiment. A follow-up pot experiment with the same soils was carried out with winter rape as test plants. Both experiments were set up with similar P fertilizer sources and P rates (100, 200, and 400 mg mineral acid soluble P 2 O 5 per kg soil). At the beginning of incubation experiment, the water-soluble P content of the pseudogley brown forest soil was influenced by both the sources of P and the experimental conditions. The water-soluble P content decreased with time. After the 15 th to 20 th day of incubation, when the fast binding process of the water-soluble P ended, the effects of the P forms decreased. In this stage, the effects of environmental conditions depended on the form of the P fertilizer. The water-soluble P content of the phosphate rock-treated samples was affected to a great extent by soil water content, while the incubation temperature had a greater effect in soils treated with superphosphate. The AL-P content of soils was increased similarly by addition of equal rates of phosphate rock and super-phosphate at the beginning of incubation. The AL-P content of phosphate rock-treated soils was higher throughout the incubation period than of the superphosphate-treated soils -treated. Temperature had a greater effect on the AL-P content of soils than soil water content. As the AL-extraction may dissolve a substantial amount of the undecomposed phosphate rock, this method is not applicable to soil testing of available P forms from phosphate rock-treated soils. Initial soil pH decreased on average by 0.5 units in the

  16. Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling

    Czech Academy of Sciences Publication Activity Database

    Welc, M.; Bünemann, E. K.; Flieβbach, A.; Frossard, E.; Jansa, Jan

    2012-01-01

    Roč. 49, JUN 2012 (2012), s. 184-192 ISSN 0038-0717 Institutional support: RVO:61388971 Keywords : Fatty acid methyl esters * Glacier forefield * Soil chronosequence Subject RIV: EE - Microbiology, Virology Impact factor: 3.654, year: 2012

  17. Deletion of the pH sensor GPR4 decreases renal acid excretion.

    Science.gov (United States)

    Sun, Xuming; Yang, Li V; Tiegs, Brian C; Arend, Lois J; McGraw, Dennis W; Penn, Raymond B; Petrovic, Snezana

    2010-10-01

    Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.

  18. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    Science.gov (United States)

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.

  19. Effect of three Electron Shuttles on Bioreduction of Ferric Iron in two Acidic and Calcareous soils

    Directory of Open Access Journals (Sweden)

    Setareh Sharifi

    2017-01-01

    Full Text Available Introduction: Iron cycle is one of the most important biogeochemical processes which affect the availability of iron in soils. Ferric iron oxides are the most abundant forms of iron in soils and sediments. Ferric iron is highly insoluble at circumneutral pH. Present investigations have shown that the structural ferric iron bound in clay minerals is reduced by some microorganisms. Anaerobic bacteria reduce ferric iron which bound to soil clay minerals under anaerobic conditions. They have the ability to use ferric iron as a terminal electron acceptor. Many studies presented that dissimilatory iron reducing bacteria (DIRB mediate the transfer of electrons from small organic molecules like acetate and glucose to various humic materials (electron shuttles which then pass electrons abiotically to ferric iron oxyhydroxide and phyllosilicate minerals. Electron shuttles like AQDS, a tricyclic quinone, increase the rate of iron reduction by iron reducing bacteria on sites of iron oxides and oxyhydroxides. By increasing the rate of bioreduction of ferric iron, the solubility and availability of iron enhanced meaningfully. Royer et al. (2002 showed that bioreduction of hematite (common iron mineral in soils increased more than three times in the presence of AQDS and Shewanella putrefaciens comparedto control treatments. Previous works have mostly used synthetic minerals as electron acceptor in bioreduction process. Furthermore, the effect of quinones as electron acceptor for microorganisms were studied with poorly crystalline ferric iron oxides . The main objective of this study was to study the effect of AQS, humic acid and fulvic acid (as electron shuttle and Shewanella sp. and Pseudomonas aeruginosa, on bioreduction of native ferric iron in two acidic and calcareous soils. Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in vitro condition. The soil samples collected

  20. Cation effects on phosphatidic acid monolayers at various pH conditions.

    Science.gov (United States)

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pHCations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    Science.gov (United States)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  2. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    Science.gov (United States)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; Fendorf, Scott; Kumar, Naresh; Lowry, Gregory V.; Brown, Gordon E.

    2017-10-01

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O22+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0-835 ppm) or Suwanee River Fulvic Acid (SRFA) (0-955 ppm). No evidence was found for reduction of uranyl by either form of NOM after 24 h of exposure. The following three size fractions were considered in this study: (1) ≥0.2 μm (Fh-NOM aggregates), (2) 0.02-0.2 μm (dispersed Fh nanoparticles and NOM macro-molecules), and (3) <0.02 μm (dissolved). The extent to which U(VI) is sorbed in aggregates or dispersed as colloids was assessed by comparing U, Fe, and NOM concentrations in these three size fractions. Partitioning of uranyl between Fh and NOM was determined in size fraction (1) using X-ray absorption spectroscopy (XAS). Uranyl sorption on Fh-NOM aggregates was affected by the presence of NOM in different ways depending on pH and type of NOM (ESHA vs. SRFA). The presence of ESHA in the uranyl-Fh-NOM ternary system at pH 4.6 enhanced uranyl uptake more than the presence of SRFA. In contrast, neither form of NOM affected uranyl sorption at pH 7.0 over most of the NOM concentration range examined (0-500 ppm); at the highest NOM concentrations (500-955 ppm) uranyl uptake in the aggregates was slightly inhibited at pH 7.0, which is interpreted as being due to the dispersion of Fh aggregates. XAS at the U LIII-edge was used to characterize molecular-level changes in uranyl complexation as a result of sorption to the Fh-NOM aggregates. In the absence of NOM, uranyl formed dominantly inner-sphere, mononuclear, bidentate sorption complexes on Fh. However, when NOM concentration was increased at pH 4.6, the

  3. The production and degradation of trichloroacetic acid in soil: Results from in situ soil column experiments

    Czech Academy of Sciences Publication Activity Database

    Heal, M. R.; Dickey, C. A.; Heal, K.V.; Stidson, R.T.; Matucha, Miroslav; Cape, J. N.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 401-407 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z50380511 Keywords : Trichloroacetic acid * TCA * Soil lysimeter Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 3.155, year: 2010

  4. Impacts of Steel-Slag-Based Silicate Fertilizer on Soil Acidity and Silicon Availability and Metals-Immobilization in a Paddy Soil.

    Directory of Open Access Journals (Sweden)

    Dongfeng Ning

    Full Text Available Slag-based silicate fertilizer has been widely used to improve soil silicon- availability and crop productivity. A consecutive early rice-late rice rotation experiment was conducted to test the impacts of steel slag on soil pH, silicon availability, rice growth and metals-immobilization in paddy soil. Our results show that application of slag at a rate above higher or equal to 1 600 mg plant-available SiO2 per kg soil increased soil pH, dry weight of rice straw and grain, plant-available Si concentration and Si concentration in rice shoots compared with the control treatment. No significant accumulation of total cadmium (Cd and lead (Pb was noted in soil; rather, the exchangeable fraction of Cd significantly decreased. The cadmium concentrations in rice grains decreased significantly compared with the control treatment. In conclusion, application of steel slag reduced soil acidity, increased plant-availability of silicon, promoted rice growth and inhibited Cd transport to rice grain in the soil-plant system.

  5. Distribution and function of carbamate hydrolase genes cehA and mcd in soils: the distinct role of soil pH.

    Science.gov (United States)

    Rousidou, Constantina; Karaiskos, Dionysis; Myti, Despoina; Karanasios, Evangelos; Karas, Panagiotis A; Tourna, Maria; Tzortzakakis, Emmanuel A; Karpouzas, Dimitrios G

    2017-01-01

    Synthetic carbamates constitute a significant pesticide group with oxamyl being a leading compound in the nematicide market. Oxamyl degradation in soil is mainly microbially mediated. However, the distribution and function of carbamate hydrolase genes (cehA, mcd, cahA) associated with the soil biodegradation of carbamates is not yet clear. We studied oxamyl degradation in 16 soils from a potato monoculture area in Greece where oxamyl is regularly used. Oxamyl showed low persistence (DT50 2.4-26.7 days). q-PCR detected the cehA and mcd genes in 10 and three soils, respectively. The abundance of the cehA gene was positively correlated with pH, while both cehA abundance and pH were negatively correlated with oxamyl DT50. Amongst the carbamates used in the study region, oxamyl stimulated the abundance and expression only of the cehA gene, while carbofuran stimulated the abundance and expression of both genes. The cehA gene was also detected in pristine soils upon repeated treatments with oxamyl and carbofuran and only in soils with pH ≥7.2, where the most rapid degradation of oxamyl was observed. These results have major implications regarding the maintenance of carbamate hydrolase genes in soils, have practical implications regarding the agricultural use of carbamates, and provide insights into the evolution of cehA. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The gamma dose assessment and pH correlation for various soil types at Batu Pahat and Kluang districts, Johor, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Johar, Saffuwan Mohamed, E-mail: saffuwan@uthm.edu.my [Department of Science, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (Malaysia); Embong, Zaidi [Department of Science, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (Malaysia); Research Center for Soft Soil (RECESS), Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia (Malaysia); Tajudin, Saiful Azhar Ahmad [Research Center for Soft Soil (RECESS), Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia (Malaysia)

    2016-01-22

    An assessment of absorbed dose and radiation hazard index as well as its relationship with soil pH was performed in this study. The area was chosen due to its variety of soil types from the Alluvial and the Sedentary group. The radioactivity concentration levels and the soil acidity were measured using the Canberra GC3518 high pure germanium with a relative efficiency of 35% at 1.3 MeV and the Takemura Soil pH and Moisture Tester (DM15), respectively. Overall results show the Holyrood-Lunas soil of Alluvial group recorded the highest external terrestrial gamma radiation dose rate (TGRD) of 286.4±37.9 nGy h{sup −1} and radioactivity concentrations of 78.1±8.9 Bq kg{sup −1} ({sup 226}Ra), 410.5±55.4 Bq kg{sup −1} ({sup 232}Th) and 56.4±8.8 Bq kg{sup −1} ({sup 40}K), respectively, while the Peat soil of Alluvial group recorded the lowest TGRD of 4.4±2.7 nGy h{sup −1} and radioactivity concentrations of 4.8±1.7 Bq kg{sup −1} ({sup 226}Ra), 3.1±1.1 Bq kg{sup −1} ({sup 232}Th) and 6.1±2.0 Bq kg{sup −1} ({sup 40}K), respectively. The estimated mean outdoor annual effective dose, the mean radium equivalent activity (R{sub eq}) and the mean external (H{sub ext}) and internal hazard index (H{sub int}) associated with the alluvial and sedentary soil group were evaluated at 0.15 and 0.20 mSv, 280 and 364 Bq kg{sup −1}, H{sub ext} = 0.78 and 1.01, and H{sub int} = 0.93 and 1.26, respectively. Correlation analysis between 238U, {sup 232}Th and {sup 40}K with soil pH level for alluvial group was r = +0.68, +0.48 and 0, respectively, while for sedentary soil, the Pearson’s, r = −0.30, −0.90 and +0.14, respectively.

  7. The gamma dose assessment and pH correlation for various soil types at Batu Pahat and Kluang districts, Johor, Malaysia

    Science.gov (United States)

    Johar, Saffuwan Mohamed; Embong, Zaidi; Tajudin, Saiful Azhar Ahmad

    2016-01-01

    An assessment of absorbed dose and radiation hazard index as well as its relationship with soil pH was performed in this study. The area was chosen due to its variety of soil types from the Alluvial and the Sedentary group. The radioactivity concentration levels and the soil acidity were measured using the Canberra GC3518 high pure germanium with a relative efficiency of 35% at 1.3 MeV and the Takemura Soil pH and Moisture Tester (DM15), respectively. Overall results show the Holyrood-Lunas soil of Alluvial group recorded the highest external terrestrial gamma radiation dose rate (TGRD) of 286.4±37.9 nGy h-1 and radioactivity concentrations of 78.1±8.9 Bq kg-1 (226Ra), 410.5±55.4 Bq kg-1 (232Th) and 56.4±8.8 Bq kg-1 (40K), respectively, while the Peat soil of Alluvial group recorded the lowest TGRD of 4.4±2.7 nGy h-1 and radioactivity concentrations of 4.8±1.7 Bq kg-1 (226Ra), 3.1±1.1 Bq kg-1 (232Th) and 6.1±2.0 Bq kg-1 (40K), respectively. The estimated mean outdoor annual effective dose, the mean radium equivalent activity (Req) and the mean external (Hext) and internal hazard index (Hint) associated with the alluvial and sedentary soil group were evaluated at 0.15 and 0.20 mSv, 280 and 364 Bq kg-1, Hext = 0.78 and 1.01, and Hint = 0.93 and 1.26, respectively. Correlation analysis between 238U, 232Th and 40K with soil pH level for alluvial group was r = +0.68, +0.48 and 0, respectively, while for sedentary soil, the Pearson's, r = -0.30, -0.90 and +0.14, respectively.

  8. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  9. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    Science.gov (United States)

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  10. Enhancing Nitrogen Availability, Ammonium Adsorption-Desorption, and Soil pH Buffering Capacity using Composted Paddy Husk

    Science.gov (United States)

    Latifah, O.; Ahmed, O. H.; Abdul Majid, N. M.

    2017-12-01

    Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.

  11. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

    International Nuclear Information System (INIS)

    Conte, Pellegrino; Agretto, Anna; Spaccini, Riccardo; Piccolo, Alessandro

    2005-01-01

    The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils. - Solutions of natural humic acids appear to be a better choice for washing highly polluted soils

  12. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    Science.gov (United States)

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  13. Drainage, liming and fertilization of organic soils. 1. Long-term effects on acid/base relations

    International Nuclear Information System (INIS)

    Braekke, F.H.

    1999-01-01

    Long-term changes of the acid/base relations of organic soils after drainage, fertilization and/or liming at three experimental sites - two ombrogenous and one soligenous - in south-central Norway are discussed. These sites were drained, fertilized and/or limed in 1953-1956 and sampled in 1991-1992. Drainage at the ombrogenous sites caused: insignificant shifts of pH, higher bulk densities to 40 cm depth, higher ash percentage, higher contents of N and P to 20 cm depth and reduced concentrations of total Ca, K, Mg, Na, Al and Fe in soil layers deeper than 20 cm. The soligenous site was not effectively drained; despite this, pH dropped about 0.5 unit in the surface and subsurface soil layers of the control plots, while small changes were measured for most other soil variables. The suggested reason for the pH drop is limited sulphide oxidation in the upper 20 cm drained layer. Base saturation at actual soil pH, when all treatments were included, was estimated with good precision by four regressors: pH, extractable Al, extractable Fe and extractable Ca (R 2 = 0.90-0.95). Similar models explained 97-99% of the variation in base saturation at soil pH = 7.0. The lime effects at the properly drained oligotrophic sites were proportional to applied doses; for pH to 40 cm, base saturation to 60 cm, and Ca concentration to 60 cm depth. At the less well-drained soligenous site, effects were limited to the upper 30 cm layer. Both drainage and liming caused higher cation exchange capacities and proper drainage seems to be a prerequisite for the liming effect. Estimated recovery of calcium to 60 cm depth was 64-79% at the ombrogenous sites and 42-46% at the soligenous site 28 refs, 3 figs, 8 tabs

  14. Case studies related to the management of soil acidity and infertility in the West-African Moist Savannah

    International Nuclear Information System (INIS)

    Vanlauwe, B.; Sanginga, N.; Diels, J.; Merckx, R.

    2006-01-01

    Although the soil pH and base status of the soils in the West African Moist Savannah Zone (MSZ) are usually favourable, their buffer capacity is usually low, indicating that while soil acidity may not be a problem initially, inappropriate management of these soils may induce soil-acidity-related problems in the medium to long term. The current paper addresses 3 topics that are closely related to the management of soil pH (acidity) in the West African MSZ. A first experiment addressed the release of P from low reactivity phosphate rock (PR) by mixing it with various N fertilizers. Mixing ammonium-sulphate, urea, and calcium-ammonium nitrate with PR substantially enhanced the soil Olsen-P content, but not for soils with an initial pH above 5.5, while potassium nitrate did not change the Olsen-P content. Changes in soil pH could be predicted based on the production of nitrate from ammonium (nitrification) and the soil buffer capacity. A second experiment examined the changes in topsoil pH as affected by long term management based on the application of organic inputs derived from hedgerow trees (Leucaena leucocephala and Senna siamea), fertilizer, or both. Maize crop yields declined steadily over the 16 years studied, but the least so in the Senna + fertilizer treatment where in 2002 still 2.2 t ha -1 of maize were obtained. The fertilizer only treatment led to a yield of 0.4 t ha -1 in 2002, while the absolute control without any inputs yielded a mere 40 kg ha -1 in the same year. Nitrogen fertilizer use efficiency was usually higher in the Senna treatment compared to the control or the Leucaena treatment. Interactions between fertilizer and organic matter additions were negative for the Leucaena treatments in the first three years, and positive for the Senna treatment in the last 6 years. Trees had a positive effect on the maintenance of exchangeable cations in the topsoil. Exchangeable Ca, Mg and K - and hence ECEC - were only slightly reduced after 16 years of

  15. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.

    Science.gov (United States)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-05

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    Science.gov (United States)

    Akhtar, Muhammad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC b/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  17. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    Directory of Open Access Journals (Sweden)

    Asif Naeem

    2013-01-01

    Full Text Available In calcareous soils, phosphorus (P retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % for 15 days. Freundlich adsorption isotherms ( were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1 were calculated. It was observed that P adsorption in soil increased with . Moreover, at all the levels of , P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil contents and quantity of fertilizer to other similar textured soils needs confirmation.

  18. Interaction between Al3+ and acrylic acid and polyacrylic acid in acidic aqueous solution: a model experiment for the behavior of Al3+ in acidified soil solution.

    Science.gov (United States)

    Etou, Mayumi; Masaki, Yuka; Tsuji, Yutaka; Saito, Tomoyuki; Bai, Shuqin; Nishida, Ikuko; Okaue, Yoshihiro; Yokoyama, Takushi

    2011-01-01

    From the viewpoint of the phytotoxicity and mobility of Al(3+) released from soil minerals due to soil acidification, the interaction between Al(3+) and acrylic acid (AA) and polyacrylic acid (PAA) as a model compound of fulvic acid was investigated. The interaction was examined at pH 3 so as to avoid the hydrolysis of Al(3+). The interaction between Al(3+) and AA was weak. However, the interaction between Al(3+) and PAA was strong and depended on the initial (COOH in PAA)/Al molar ratio (R(P)) of the solution. For the range of 1/R(P), the interaction between Al(3+) and PAA can be divided into three categories: (1) 1:1 Al-PAA-complex (an Al(3+) combines to a carboxyl group), (2) intermolecular Al-PAA-complex (an Al(3+) combines to more than 2 carboxyl groups of other Al-PAA-complexes) in addition to the 1:1 Al-PAA-complex and (3) precipitation of intermolecular complexes. In conclusion, R(P) is an important factor affecting the behavior of Al(3+) in acidic soil solution.

  19. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    Science.gov (United States)

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  20. Effect of Soil Amendments on Microbial Resilience Capacity of Acid Soil Under Copper Stress.

    Science.gov (United States)

    Mounissamy, Vassanda Coumar; Kundu, Samaresh; Selladurai, Rajendiran; Saha, Jayanta Kumar; Biswas, Ashish Kumar; Adhikari, Tapan; Patra, Ashok Kumar

    2017-11-01

    An incubation study was undertaken to study microbial resilience capacity of acid soil amended with farmyard manure (FYM), charcoal and lime under copper (Cu) perturbation. Copper stress significantly reduced enzymatic activities and microbial biomass carbon (MBC) in soil. Percent reduction in microbial activity of soil due to Cu stress was 74.7% in dehydrogenase activity, 59.9% in MBC, 48.2% in alkaline phosphatase activity and 15.1% in acid phosphatase activity. Soil treated with FYM + charcoal showed highest resistance index for enzymatic activities and MBC. Similarly, the highest resilience index for acid phosphatase activity was observed in soil amended with FYM (0.40), whereas FYM + charcoal-treated soil showed the highest resilience indices for alkaline, dehydrogenase activity and MBC: 0.50, 0.22 and 0.25, respectively. This investigation showed that FYM and charcoal application, either alone or in combination, proved to be better than lime with respect to microbial functional resistance and resilience of acid soil under Cu perturbation.

  1. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    Science.gov (United States)

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.

  2. Mineral concentrations of forage legumes and grasses grown in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA). Beltsville Agricultural Research Center West

    2003-07-01

    Considerable quantities of flue gas desulfurization products (FGDs) are generated when coal is burned for production of electricity, and these products have the potential to be reused rather than discarded. Use of FGDs as soil amendments could be important in overall management of these products, especially on acidic soils. Glasshouse studies were conducted to determine shoot concentrations of calcium (Ca), sulfur (S), potassium (K), magnesium (Mg), phosphorus (P), boron (B), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), sodium (Na), molybdenum (Mo), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) in alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dacrylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) grown in acidic (pH 4) soil (Typic Hapludult) amended with various levels of three FGDs and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4}. Shoot concentrations of Ca, S, Mg, and B generally increased as levels of soil applied FGD increased. Concentrations of Mn, Fe, Zn, Cu were lower in shoots, especially when soil pH was high ({gt}7). Shoot concentrations of the trace elements Mo, Ni, Cd, Cr, and Pb were not above those reported as normal for foliage. Overall concentrations of most minerals remained near normal for shoots when plants were grown in FGD amended acidic soil.

  3. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE.

  4. Optical ph sensing material prepared from doped sol-gel film for use in acid-base titration

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2017-11-01

    Full Text Available An optical pH sensing material has been prepared in this study by using sol-gel technique. Bromothymol blue, bromophenol blue and thymol blue were chosen in this study as acidbase indicators for strong acid-strong base, strong acid-weak base and weak acid-strong base titration, respectively. The results show that these indicators could be successfully entrapped inside the sol-gel film and still maintain its chemical behaviour as in solution. The entrapped acid-base indicators respond well to any pH changes and could be used to determine the end-point of the acid-base titration.

  5. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    Science.gov (United States)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  6. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Effect of systemic pH on pHi and lactic acid generation in exhaustive forearm exercise

    International Nuclear Information System (INIS)

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S.

    1988-01-01

    To investigate whether changes in systemic pH affect intracellular pH (pH i ), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH 4 Cl (acidosis; A) or NaHCO 3 (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH i and phosphocreatine (PCr) content were measured with 31 P-nuclear magnetic resonance ( 31 P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH i did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability

  8. Microbiological aspects of determination of trichloroacetic acid in soil

    International Nuclear Information System (INIS)

    Matucha, M.; Rohlenová, J.; Forczek, S.T.; Gryndler, M.; Uhlířová, H.; Fuksová, K.; Schroder, P.

    2004-01-01

    Soils have been shown to possess a strong microbial trichloroacetic acid (TCA)-degrading activity. High TCA-degradation rate was also observed during soil extraction with water. For correct measurements of TCA levels in soil all TCA-degrading activities have to be inhibited immediately after sampling before analysis. We used rapid freezing of soil samples (optimally in liquid nitrogen) with subsequent storage and slow thawing before analysis as an efficient technique for suppressing the degradation. Frozen soil samples stored overnight at −20 °C and then thawed slowly exhibited very low residual TCA-degrading activity for several hours. Omitting the above procedure could lead to the confusing differences between the TCA levels previously reported in the literature

  9. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.

    Science.gov (United States)

    Del Rio, Beatriz; Linares, Daniel; Ladero, Victor; Redruello, Begoña; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-11-07

    Lactococcus lactis subsp. cremoris CECT 8666 is a lactic acid bacterium that synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The AGDI genes cluster includes aguR. This encodes a transmembrane protein that functions as a one-component signal transduction system, the job of which is to sense the agmatine concentration of the medium and accordingly regulate the transcription of the catabolic operon aguBDAC. The latter encodes the proteins necessary for agmatine uptake and its conversion into putrescine. This work reports the effect of extracellular pH on putrescine biosynthesis and on the genetic regulation of the AGDI pathway. Increased putrescine biosynthesis was detected at acidic pH (pH5) compared to neutral pH. Acidic pH induced the transcription of the catabolic operon via the activation of the aguBDAC promoter PaguB. However, the external pH had no significant effect on the activity of the aguR promoter PaguR, or on the transcription of the aguR gene. The transcriptional activation of the AGDI pathway was also found to require a lower agmatine concentration at pH5 than at neutral pH. Finally, the following of the AGDI pathway counteracted the acidification of the cytoplasm under acidic external conditions, suggesting it to provide protection against acid stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. pH dependence of the properties of waterborne pressure-sensitive adhesives containing acrylic acid.

    Science.gov (United States)

    Wang, Tao; Canetta, Elisabetta; Weerakkody, Tecla G; Keddie, Joseph L; Rivas, Urko

    2009-03-01

    Polymer colloids are often copolymerized with acrylic acid monomers in order to impart colloidal stability. Here, the effects of the pH on the nanoscale and macroscopic adhesive properties of waterborne poly(butyl acrylate-co-acrylic acid) films are reported. In films cast from acidic colloidal dispersions, hydrogen bonding between carboxylic acid groups dominates the particle-particle interactions, whereas ionic dipolar interactions are dominant in films cast from basic dispersions. Force spectroscopy using an atomic force microscope and macroscale mechanical measurements show that latex films with hydrogen-bonding interactions have lower elastic moduli and are more deformable. They yield higher adhesion energies. On the other hand, in basic latex, ionic dipolar interactions increase the moduli of the dried films. These materials are stiffer and less deformable and, consequently, exhibit lower adhesion energies. The rate of water loss from acidic latex is slower, perhaps because of hydrogen bonding with the water. Therefore, although acid latex offers greater adhesion, there is a limitation in the film formation.

  11. Effect of N, P and K humates on dry matter of Zea mays and soil pH ...

    African Journals Online (AJOL)

    Ammonia volatilization from surface-applied urea reduces urea-N use efficiency in crop production and it also pollutes the environment; it is an economic loss. A greenhouse study was conducted to confirm the effect of similar fertilizer formulations (N, P and K humates) on soil pH, exchangeable ammonium, available nitrate ...

  12. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands

    Czech Academy of Sciences Publication Activity Database

    Palpurina, S.; Wagner, V.; von Wehrden, H.; Hájek, M.; Horsák, M.; Brinkert, A.; Hölzel, N.; Wesche, K.; Kamp, J.; Hájková, Petra; Danihelka, Jiří; Lustyk, P.; Merunková, K.; Preislerová, Z.; Kočí, M.; Kubešová, S.; Cherosov, M. M.; Ermakov, N.; German, D.; Gogoleva, P. A.; Lashchinsky, N.; Martynenko, V. B.; Chytrý, M.

    2017-01-01

    Roč. 26, č. 4 (2017), s. 425-434 ISSN 1466-822X Institutional support: RVO:67985939 Keywords : diversity-environment relationship * dry grassland * precipitation * soil pH Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 6.045, year: 2016

  13. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.B. (Cornell Univ., Ithaca, NY (USA))

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  14. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    International Nuclear Information System (INIS)

    Russell, J.B.

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y ATP (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [ 14 C]acetate and [ 14 C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation

  15. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy.

    Science.gov (United States)

    Liu, Li; Song, Cunyi; Yan, Zengguang; Li, Fasheng

    2009-09-01

    Although excitation-emission matrix spectroscopy (EEMS) has been widely used to characterize dissolved organic matter (DOM), there has no report that EEMS has been used to study the effects of acid rain on DOM and its composition in soil. In this work, we employed three-dimensional EEMS to characterize the compositions of DOM leached by simulated acid rain from red soil. The red soil was subjected to leaching of simulated acid rain of different acidity, and the leached DOM presented five main peaks in its EEMS: peak-A, related to humic acid-like (HA-like) material, at Ex/Em of 310-330/395-420nm; peak-B, related to UV fulvic acid-like (FA-like) material, at Ex/Em of 230-280/400-435nm; peak-C and peak-D, both related to microbial byproduct-like material, at Ex/Em of 250-280/335-355nm and 260-280/290-320nm, respectively; and peak-E, related to simple aromatic proteins, at Ex/Em of 210-240/290-340nm. EEMS analysis results indicated that most DOM could be lost from red soil in the early phase of acid rain leaching. In addition to the effects of the pH of acid rain, the loss of DOM also depended on the properties of its compositions and the solubility of their complexes with aluminum. HA-like and microbial byproduct-like materials could be more easily released from red soil by acid rain at both higher pH (4.5 and 5.6) and lower pH (2.5 and 3) than that at middle pH (3.5). On the contrary, FA-like material lost in a similar manner under the action of different acid rains with pH ranging from 2.5 to 5.6.

  16. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations

    Science.gov (United States)

    Zhou, Xiaoqi; Guo, Zhiying; Chen, Chengrong; Jia, Zhongjun

    2017-04-01

    Forest plantations have been recognised as a key strategy management tool for stocking carbon (C) in soils, thereby contributing to climate warming mitigation. However, long-term ecological consequences of anthropogenic forest plantations on the community structure and diversity of soil microorganisms and the underlying mechanisms in determining these patterns are poorly understood. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e. slash pine, hoop pine and kauri pine) and a eucalypt species in subtropical Australia. We investigated the patterns of community structure, and the diversity of soil bacteria and eukaryotes by using high-throughput sequencing of 16S rRNA and 18S rRNA genes. We also measured the potential methane oxidation capacity under different tree species. The results showed that slash pine and Eucalyptus significantly increased the dominant taxa of bacterial Acidobacteria and the dominant taxa of eukaryotic Ascomycota, and formed clusters of soil bacterial and eukaryotic communities, which were clearly different from the clusters under hoop pine and kauri pine. Soil pH and nutrient quality indicators such as C : nitrogen (N) and extractable organic C : extractable organic N were key factors in determining the patterns of soil bacterial and eukaryotic communities between the different tree species treatments. Slash pine and Eucalyptus had significantly lower soil bacterial and eukaryotic operational taxonomical unit numbers and lower diversity indices than kauri pine and hoop pine. A key factor limitation hypothesis was introduced, which gives a reasonable explanation for lower diversity indices under slash pine and Eucalyptus. In addition, slash pine and Eucalyptus had a higher soil methane oxidation capacity than the other tree species. These results suggest that significant changes in soil microbial communities may occur in response to chronic disturbance by tree plantations, and highlight

  17. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    Science.gov (United States)

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.

  18. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  19. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    Science.gov (United States)

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  20. Sulfate reduction at low pH to remediate acid mine drainage

    International Nuclear Information System (INIS)

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Bijmans, Martijn F.M.; Stams, Alfons J.M.

    2014-01-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed

  1. Sulfate reduction at low pH to remediate acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Andrea, Irene, E-mail: irene.sanchezandrea@wur.nl [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Sanz, Jose Luis [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Bijmans, Martijn F.M. [Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Stams, Alfons J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga (Portugal)

    2014-03-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  2. Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging.

    Science.gov (United States)

    Waldner, Georg; Friesl-Hanl, Wolfgang; Haberhauer, Georg; Gerzabek, Martin H

    The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18 months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy. The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/ n exponents, and K d values, respectively) were given for pH = 3 and the unbuffered pH of ∼7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3 months. Sorption increased at acidic pH values. Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.

  3. Soil Chemistry Effect on Feasibility of Cr-decontamination by Acid-Washing

    OpenAIRE

    Isoyama, Masahiro; Wada, Shin-Ichiro

    2006-01-01

    Soil washing with sample acid jas been proven to be effective for removal of cationic heavy metals from contaminated soils. Since the obsorption of anitonic heavy metals is enhanced in acidic medium, the efficiency of acid-washing may not be guaranteed for soils that are doubly contaminated with cationic and anitonic heavy metals. To evaluate the efficiensy of acid-washing, nine soils are artifically contaminated with chromate and chromium was extracted with hydrochrolic acid of 0.5 mmol L[-1...

  4. Changes in the pH and other soil chemical parameters in soil surrounding wood ant (.i.Formica polyctena./i.) nests

    Czech Academy of Sciences Publication Activity Database

    Jílková, Veronika; Matějíček, L.; Frouz, J.

    2011-01-01

    Roč. 47, č. 1 (2011), s. 72-76 ISSN 1164-5563 Institutional research plan: CEZ:AV0Z60660521 Keywords : wood ants * soil pH * nutrients Subject RIV: EH - Ecology, Behaviour Impact factor: 1.578, year: 2011

  5. Benthic fauna of extremely acidic lakes (pH 2-3)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G G

    2001-07-01

    The structure of the benthic invertebrate communities were investigated in terms of composition, abundance, and biomass from extremely acidic lakes with pH values from 2 to 3 in areas where coal was intensively mined in the Lusatian region in the eastern region of Germany. Benthic invertebrates colonisation on leaves and the breakdown rate processing of the three deciduous leaf: Betula pendula (birch), Fraxinus excelsior (ash), and Juglans regia (walnut) were investigated. Also, the main key-species of these acidic environments were investigated, in terms of description of pupal exuviae of Chironomus crassimanus and the feeding habit of this acid-resistant species through analysis of their gut content. The benthic food web in extremely acidic mining Lusatian lakes is very short in terms of species richness, trophic relationship, guilds and functional feeding groups. Collector-filters and scraper-grazers were absent in extremely acidic mining lakes (AML 107, AML 111 and AML 117). Shredders as Limnophyes minimus (Diptera, Chironomidae, Orthocladiinae) and Hydrozetes lacustris (Acari, Hydrozetidae) occurred in low abundance in AML 107 and AML 111, and it may be in response to slow leaf breakdown process in these ecosystems, except in AML 117 where the H. lacustris contributed most to ecosystems functioning via the processing of litter. Aquatic insects as Sialis lutaria (Megaloptera, Sialidae), Orectochilus villosus (Coleoptera, Gyrinidae), Coenagrion mercuriale (Odonata, Coenagrionidae), and Phryganeidae (Trichoptera) are the top-predators of these ecosystems. They did not depend on the level of pH in the lakes, but on the availability of food resources. (orig.)

  6. Chloroacetic acids - Degradation intermediates of organic matter in forest soil

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav; Gryndler, Milan; Schröder, P.; Forczek, Sándor; Uhlířová, H.; Fuksová, Květoslava; Rohlenová, Jana

    2007-01-01

    Roč. 39, č. 1 (2007), s. 382-385 ISSN 0038-0717 R&D Projects: GA ČR GA522/02/0874; GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Keywords : trichloroacetic acid * dichloroacetic acid * chlorination * soil organic matter Subject RIV: EF - Botanics Impact factor: 2.580, year: 2007

  7. Simulation of soil response to acidic deposition scenarios in Europe

    International Nuclear Information System (INIS)

    Vries, W. de; Reinds, G.J.; Posch, M.; Kaemaera, J.

    1994-01-01

    The chemical response of European forest soils to three emission-deposition scenarios for the year 1960-2050, i.e. official energy pathways (OEP), current reduction plans (CRP) and maximum feasible reductions (MFR), was evaluated with the SMART model (Simulation Model for Acidification's Regional Trends). Calculations were made for coniferous and deciduous forests on 80 soil types occurring on the FAO soil map of Europe, using a gradient of 1.0 degree C longitude x 0.5 degree latitude. Results indicated that the area with nitrogen saturated soils, i.e. soils with elevated NO 3 concentrations (>0.02 mol c m -3 ) will increase in the future for all scenarios, even for the MFR scenario. The area with acidified soils, with a high Al concentration (> 0.2 mol c m -3 ) and Al/BC ratio (>1 mol -1 ) and a low pH ( 3 and Al concentrations mainly occurred in western, central and eastern Europe. Uncertainties in the initial values of C/N ratios and base saturation, and in the description of N dynamics in the SMART model had the largest impact on the temporal development of forested areas exceeding critical parameter values. Despite uncertainties involved, predicted general trends are plausible and reliable. 61 refs., 11 figs., 10 tabs

  8. Aromatic amino acids and their relevance in the specificity of the PH domain

    Czech Academy of Sciences Publication Activity Database

    Morales, J.; Sobol, Margaryta; Rodriguez-Zapata, L.C.; Hozák, Pavel; Castano, E.

    2017-01-01

    Roč. 30, č. 12 (2017), č. článku e2649. ISSN 0952-3499 R&D Projects: GA TA ČR(CZ) TE01020118; GA ČR GAP305/11/2232; GA ČR GA16-03346S; GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : PH domain * Phosphatidic acid * Phosphoinositides Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.175, year: 2016

  9. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange.

    Science.gov (United States)

    Sauze, Joana; Ogée, Jérôme; Maron, Pierre-Alain; Crouzet, Olivier; Nowak, Virginie; Wohl, Steven; Kaisermann, Aurore; Jones, Sam P; Wingate, Lisa

    2017-12-01

    The stable oxygen isotope composition of atmospheric CO 2 and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO 2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO 2 and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO 2 and OCS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO 2 , CO 18 O and OCS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototrophs. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO 2 sink and the CA-driven CO 2 -H 2 O isotopic exchange rates correlated with phototrophs abundance. OCS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. Our findings demonstrate that soil-atmosphere CO 2 , OCS and CO 18 O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and supports the idea that different members of the microbial community express different classes of CA, with different affinities to CO 2 and OCS.

  10. Intracellular pH regulation by acid-base transporters in mammalian neurons

    Science.gov (United States)

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  11. Mobilization of arsenic and heavy metals from polluted soils by humic acid

    Science.gov (United States)

    Reyes, Arturo; Fuentes, Bárbara; Letelier, María Victoria; Cuevas, Jacqueline

    2017-04-01

    The existence of soils contaminated with harmful elements by mining activities is a global environmental concern. The northern part of Chile has several heavy metal contaminated sites due to former copper and gold artisanal mining activities. Therefore, a complete characterization of abandoned sites and the implementation of remediation technologies are of interest for regulators, the industry, and the population. The objective of the study was to test the use of humic acid as a washing treatment to reduce the heavy metal concentration of soil samples impacted by mine waste material. A stratified random sampling was conducted on the target site to determine the physical and chemical composition of mine waste and soil material. The sampling consisted of taking 37 samples at 0-20 cm depths in a 10,000 square-meter area. The samples were dried and sieved at 2 mm. The batch washing experiments were conducted in triplicate at pH 7.0. A 1:10 solid to liquid ratio and three humic acid dose (0, 50, and 100 mg/l) were used. After shaking (24 h, room temperature) and subsequently filtration (0.22 μm), the supernatants were analyzed for heavy metals, redox potential and pH. The heavy metals mobility was assessed using extraction methods before and after treatments. The soils had alkaline pH values, conductivity ranged between 8 and 35 mS/cm, with low organic matter. Total concentrations of Vanadium (V) (10.80 to 175.00 mg/kg), Lead (Pb) (7.31 to 90.10 mg/kg), Antimonium (Sb) (0.83 to 101.00 mg/kg), and Arsenic (As) (9.53 to 2691.00 mg/kg) exceeded several times the EPA`s recommended values for soils. At 100 mg/L HA the removal efficiencies for V, Pb, Sb, and As were 32, 68, 77, and 82% respectively. According to the extraction procedure V, Pb, Sb, and As species are mainly as oxidizable and residual fractions. According to the results, the target mine site is contaminated with harmful elements. It can be concluded that the use of humic acid is a good alternative as a

  12. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  13. The Effect of EDTA and Citric acid on Soil Enzymes Activity, Substrate Induced Respiration and Pb Availability in a Contaminated Soil

    Directory of Open Access Journals (Sweden)

    seyed sajjad hosseini

    2017-03-01

    determined by standard methods after 7, 14, 21 and 28 days of chelates addition. Results and Discussion: The soil texture was loam and the indigenous Pb content was 25.55 mg kg-1. The soil pH was 7.4 and electrical conductivity of saturated extraction measured 2.5 dS m-1. The soil carbonate calcium was 14% and the content of organic carbon and essential nutrients were low. The results showed that EDTA3 and EDTA5 treatments increased Pb availability by 2.17% and 10% compared to control treatment but CA3 and CA5 treatments decreased it by 3.8% and 15.7% respectively. The Pb availability in control and EDTA5 treatments did not change during the incubation time. The available Pb concentration dropped sharply during the incubation time in EDTA3, CA3 and CA5 treatments. The reduction rates in CA3 and CA5 treatments were more than EDTA3 treatment. This may be due to the high stability and low biodegradability of EDTA than biodegradable chelators and low molecular weight organic acids. The results showed that urease and dehydrogenase activities were significantly reduced in EDTA3 and EDTA5 treatments compared to control treatment. Urease and dehydrogenase activities were decreased with the increase of EDTA concentration. Alkaline phosphomonoesterase activity was not affected by the EDTA3 and EDTA5 treatments. In CA3 and CA5 treatments, dehydrogenase and alkaline phosphomonoesterase activities significantly increased with increasing the concentration of citric acid. CA5 treatment showed a prominent effect on urease activity compare to CA3 treatment. The soil enzyme activities increased with incubation time. It seems that reduction in Pb availability causes an increase of soil enzymes activities. Significant negative relationships were found between soil enzymes activities and available Pb concentration (dehydrogenase activity (r=-0.906, P

  14. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    Science.gov (United States)

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  15. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite.

    Science.gov (United States)

    Antoniadis, Vasileios; Zanni, Anna A; Levizou, Efi; Shaheen, Sabry M; Dimirkou, Anthoula; Bolan, Nanthi; Rinklebe, Jörg

    2018-03-01

    Dynamics of chromate (Cr(VI)) in contaminated soils may be modulated by decreasing its phytoavailability via the addition of organic matter-rich amendments, which might accelerate Cr(VI) reduction to inert chromite (Cr(III)) or high-cation exchange capacity amendments. We studied Cr(VI) phytoavailability of oregano in a Cr(VI)-spiked acidic soil non-treated (S) and treated with peat (SP), lime (SL), and zeolite (SZ). The addition of Cr(VI) increased the concentrations of Cr(VI) and Cr(III) in soils and plants, especially in the lime-amended soil. The plant biomass decreased in the lime-amended soil compared to the un-spiked soil (control) due to decreased plant phosphorus concentrations and high Cr(VI) concentrations in root at that treatment. Oregano in the peat-amended soil exhibited significantly less toxic effects, due to the role of organic matter in reducing toxic Cr(VI) to Cr(III) and boosted plant vigour in this treatment. In the lime-amended soil, the parameters of soil Cr(VI), soil Cr(III), and root Cr(III) increased significantly compared to the non-amended soil, indicating that Cr(VI) reduction to Cr(III) was accelerated at high pH. Added zeolite failed to decreased Cr(VI) level to soil and plant. Oregano achieved a total uptake of Cr(III) and Cr(VI) of 0.275 mg in plant kg -1 soil in a pot in the non-amended soil. We conclude that peat as soil amendment might be considered as a suitable option for decreasing Cr(VI) toxicity in soil and plant, and that oregano as tolerant plant species has a certain potential to be used as a Cr accumulator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Predicting recovery from acid rain using the micro-spatial heterogeneity of soil columns downhill the infiltration zone of beech stemflow: introduction of a hypothesis.

    Science.gov (United States)

    Berger, Torsten W; Muras, Alexander

    Release of stored sulfur may delay the recovery of soil pH from Acid Rain. It is hypothesized that analyzing the micro-spatial heterogeneity of soil columns downhill of a beech stem enables predictions of soil recovery as a function of historic acid loads and time. We demonstrated in a very simplified approach, how these two different factors may be untangled from each other using synthetic data. Thereafter, we evaluated the stated hypothesis based upon chemical soil data with increasing distance from the stem of beech trees. It is predicted that the top soil will recover from acid deposition, as already recorded in the infiltration zone of stemflow near the base of the stem. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed.

  17. Deposition and conversion in soil of acids, acid-forming substances and nutrients

    International Nuclear Information System (INIS)

    Mayer, R.

    1990-01-01

    Balancing of material depositions entries is the basis for their evaluation. The acid depositions must be put in relation to the acid neutralization capacity and to the buffer rate of the soil. Every 'excess' in depositons leads to an acid supply into the sub-soil and/or into the groundwater system. On the one hand, the nutrient depositions are interpreted in relation to the nutrient supplies of the soil and their availability to the plants; and on the other hand with a view to the nutrient depletion through the polants. Excesses can also lead to a (non-desirable) pollution of aquatic systems, or else to an enhanced nutrient supply in the soil. Balancing is therefore a necessary aid for the evaluation of material depositions from the atmosphere. (orig./EF) [de

  18. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    Science.gov (United States)

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interaction of Th with humic acid over a wide pH region

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, G.; Guczi, J. [National Research Inst. for Radiobiology and Radiohygi ene, Budapest, H-1775 (Hungary); Geckeis, H. [FZK - Inst. fuer Nukleare Entsorgung, Karlsruhe (Germany); Reiller, P. [CEA, CE Saclay, Nuclear Energy Division/DPC/SERC, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sue-Y vette (France); Bulman, R.A. [Radiation Protection Division Division, Health Protec tion Agency, Chilton, Didcot (United Kingdom)

    2007-06-15

    The influence of humic substances on the migration of tetravalent actinides in the far-field of nuclear waste repositories has been modeled by examining the uptake of Th(IV) by a silica/humic acid composite. It is anticipated that this material might serve as a geochemical model of the humate-coated minerals that are likely to be present in the vicinity of the repositories. The binding of Th(IV) by the immobilized humic acid was examined at pH 1-9 in 0.1 mol/l NaClO{sub 4} by the batch method. Th(IV)-humate conditional stability constants have been evaluated from data obtained from these experiments by using non-linear regression of binding isotherms. The results have been interpreted in terms of complexes of 1:1 stoichiometry.

  20. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH.

    Science.gov (United States)

    Wang, Xiaojuan; Butterly, Clayton R; Baldock, Jeff A; Tang, Caixian

    2017-06-01

    Residues differing in quality and carbon (C) chemistry are presumed to contribute differently to soil pH change and long-term soil organic carbon (SOC) pools. This study examined the liming effect of different crop residues (canola, chickpea and wheat) down the soil profile (0-30cm) in two sandy soils differing in initial pH as well as the long-term stability of SOC at the amended layer (0-10cm) using mid-infrared (MIR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. A field column experiment was conducted for 48months. Chickpea- and canola-residue amendments increased soil pH at 0-10cm in the Podzol by up to 0.47 and 0.36units, and in the Cambisol by 0.31 and 0.18units, respectively, at 48months when compared with the non-residue-amended control. The decomposition of crop residues was greatly retarded in the Podzol with lower initial soil pH during the first 9months. The MIR-predicted particulate organic C (POC) acted as the major C sink for residue-derived C in the Podzol. In contrast, depletion of POC and recovery of residue C in MIR-predicted humic organic C (HOC) were detected in the Cambisol within 3months. Residue types showed little impact on total SOC and its chemical composition in the Cambisol at 48months, in contrast to the Podzol. The final HOC and resistant organic C (ROC) pools in the Podzol amended with canola and chickpea residues were about 25% lower than the control. This apparent priming effect might be related to the greater liming effect of these two residues in the Podzol. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    Science.gov (United States)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases

  2. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    Science.gov (United States)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these

  3. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Louisse, Jochem; Bai Yanqing; Verwei, Miriam; Sandt, Johannes J.M. van de; Blaauboer, Bas J.; Rietjens, Ivonne M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH i ) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH i in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH i of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na + /H + -antiporter, corroborating an important role of the pH i in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH i may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  4. Estimated net acid excretion inversely correlates with urine pH in vegans, lacto-ovo vegetarians, and omnivores.

    Science.gov (United States)

    Ausman, Lynne M; Oliver, Lauren M; Goldin, Barry R; Woods, Margo N; Gorbach, Sherwood L; Dwyer, Johanna T

    2008-09-01

    Diet affects urine pH and acid-base balance. Both excess acid/alkaline ash (EAA) and estimated net acid excretion (NAE) calculations have been used to estimate the effects of diet on urine pH. This study's goal was to determine if free-living vegans, lacto-ovo vegetarians, and omnivores have increasingly acidic urine, and to assess the ability of EAA and estimated NAE calculations to predict urine pH. This study used a cross-sectional design. This study assessed urine samples of 10 vegan, 16 lacto-ovo vegetarian, and 16 healthy omnivorous women in the Boston metropolitan area. Six 3-day food records from each dietary group were analyzed for EAA content and estimated NAE, and correlations with measured urine pH were calculated. The mean (+/- SD) urine pH was 6.15 +/- 0.40 for vegans, 5.90 +/- 0.36 for lacto-ovo vegetarians, and 5.74 +/- 0.21 for omnivores (analysis of variance, P = .013). Calculated EAA values were not significantly different among the three groups, whereas mean estimated NAE values were significantly different: 17.3 +/- 14.5 mEq/day for vegans, 31.3 +/- 8.5 mEq/day for lacto-ovo vegetarians, and 42.6 +/- 13.2 mEq/day for omnivores (analysis of variance, P = .01). The average deattenuated correlation between urine pH and EAA was 0.333; this value was -0.768 for estimated NAE and urine pH, with a regression equation of pH = 6.33 - 0.014 NAE (P = .02, r = -0.54). Habitual diet and estimated NAE calculations indicate the probable ranking of urine pH by dietary groups, and may be used to determine the likely acid-base status of an individual; EAA calculations were not predictive of urine pH.

  5. Soil Burial of Polylactic Acid/Paddy Straw Powder Biocomposite

    Directory of Open Access Journals (Sweden)

    Noorulnajwa Diyana Yaacob

    2015-12-01

    Full Text Available The objective of this work was to study the biodegradability of polylactic acid (PLA/paddy straw powder (PSP biocomposites. Environmental degradation was evaluated by composting the biocomposite samples into the soil. Different techniques, including mechanical tests and scanning electron microscopy (SEM, were used to obtain a view of the degradation that occurred during the soil burial of the biocomposites. Results of the mechanical tests showed that an increasing content of PSP in the biocomposites decreased the tensile strength and elongation at break (EB, while it increased the modulus of elasticity after six months of exposure. Scanning electron microscopy on the surface after soil burial showed that the filler was poorly wetted by the matrix. This explains the reduction in tensile strength and the elongation at break after soil burial. Differential scanning calorimetry results indicated that the crystallinity of the biocomposites increased with longer composting periods.

  6. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    Science.gov (United States)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  7. The Effect of Limestone and Stabilized Nitrogen Fertilizers Application on Soil pH Value and on the Forage Production of Permanent Grassland

    Directory of Open Access Journals (Sweden)

    Pavel Ryant

    2016-01-01

    Full Text Available The changes of soil pH and dry forage yield of permanent grassland after application of dolomitic limestone and stabilized nitrogen fertilizers are described in this paper. The small‑plot experiment was located on semi‑natural grassland at Bohemian‑Moravian Highlands, near village Kameničky (Czech Republic, with poor and acidic soil. The experiment was divided into two blocks, within one of whose dolomitic limestone was applied in autumn 2013. In each block, 4 experimental treatments were applied: 1. control (untreated, 2. Urea, 3. Urea with inhibitor of urease, 4. Urea with inhibitor of nitrification. After liming, the pH/CaCl2 soil values increased in both the first as well as the second year after application. Fertilizing by urea, namely urea with inhibitors, did not significantly influence the pH/CaCl2 values. Dry forage productions in both years were comparable. In comparison to the untreated variants, significant increase in dry forage yield was achieved after application of urea and urea with urease inhibitors. The impact of stabilized fertilizers on the yield was not proven. In case of the limed variants, yield drop by 1.12 t/ha (average of both years was observed; the yield decrease may be connected with disturbance of production potential of the stable community of plant species that had been adapted to acidic locations.

  8. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Komonweeraket, Kanokwan [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Cetin, Bora, E-mail: bora.cetin@sdsmt.edu [College of Engineering, University of Georgia, Athens, GA 30602 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Aydilek, Ahmet H., E-mail: aydilek@umd.edu [Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742 (United States); Edil, Tuncer B., E-mail: edil@engr.wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2015-04-15

    Highlights: • The impact of pH on the leaching of elements and metals from fly ash mixed soils. • Generally Ca, Cd, Mg, and Sr follows a cationic leaching pattern. • The leaching of As and Se shows an oxyanionic leaching pattern. • The leaching behavior of elements does not change based on material type. • Different fly ash types show different abilities in immobilizing trace elements. - Abstract: Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2–14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.

  9. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid

    Science.gov (United States)

    Song, Guixue; Hayes, Michael H. B.; Novotny, Etelvino H.; Simpson, Andre J.

    2011-01-01

    Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% ( v/ v) sulphuric acid (H2SO4) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic substances which emphasise that these arise from

  10. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. [Evaluation of compounding EDTA and citric acid on remediation of heavy metals contaminated soil].

    Science.gov (United States)

    Yin, Xue; Chen, Jia-Jun; Cai, Wen-Min

    2014-08-01

    As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.

  13. Effect of organic fertilizer and its residual on cowpea and soybean in acid soils

    Directory of Open Access Journals (Sweden)

    Henny Kuntyastuty

    2017-10-01

    Full Text Available The expansion of planting areas on acid soils is one of the strategies to achieve Indonesian self-sufficiency program on food. Acidic soil has low pH that causes contents of Al, Fe, and Mn are high. In addition, acidic soil also only has low microbial population. These conditions make soybean growth is not optimal. This research consisted of two phases i.e., the first and second planting. The first planting was aimed to study the effectiveness of fertilizer treatment, with three replications, using cowpea commodity. The second planting was done without additional fertilizer that consisted of three replicates (continued from the first planting using soybean. This research that was carried out at Iletri’s greenhouse Malang in 2014 was arranged in a randomized block design consisting of eight treatments, namely: (a control/without fertilizer; (B 300 kg/ha (15% N, 15% P2O5, 15% K2O, 10% S; (C 1500 kg/ha cow manure; (D 3000 kg/ha cow manure; (E 5000 kg/ha cow manure; (F 1500 kg/ha fermented chicken + cow manures; (G 3000 kg/ha fermented chicken + cow manures; and (H 5000 kg/ha fermented chicken + cow manures. The results showed that organic fertilizer (cow manure 5000 kg/ha had higher yields both in the first planting and second planting compared to inorganic fertilizer 300 kg/ha (15% N, 15% P2O5, 15% K2O, 10% S

  14. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Directory of Open Access Journals (Sweden)

    Alpers Charles N

    2007-10-01

    Full Text Available Abstract Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5. The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1 preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2 stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3 reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA and denaturing gradient gel electrophoresis (DGGE analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

  15. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Science.gov (United States)

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  16. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Fanrong; Ali Shafaqat; Zhang Haitao [Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Ouyang Younan [China National Rice Research Institute, Fuyang 310041 (China); Qiu Boyin; Wu Feibo [Department of Agronomy, College of Agriculture and Biotechnology, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Zhang Guoping, E-mail: zhanggp@zju.edu.c [China National Rice Research Institute, Fuyang 310041 (China)

    2011-01-15

    The experiments were done to investigate the effect of soil pH and organic matter content on EDTA-extractable heavy metal contents in soils and heavy metal concentrations in rice straw and grains. EDTA-extractable Cr contents in soils and concentrations in rice tissues were negatively correlated with soil pH, but positively correlated with organic matter content. The combination of soil pH and organic matter content would produce the more precise regression models for estimation of EDTA-Cu, Pb and Zn contents in soils, demonstrating the distinct effect of the two factors on the availability of these heavy metals in soils. Soil pH greatly affected heavy metal concentrations in rice plants. Furthermore, inclusion of other soil properties in the stepwise regression analysis improved the regression models for predicting straw Fe and grain Zn concentrations, indicating that other soil properties should be taken into consideration for precise predicting of heavy metal concentrations in rice plants. - Soil pH and organic matter content significantly affect heavy metal availability and accumulation in rice plants.

  17. Stream plant chemistry as indicator of acid sulphate soils in Sweden

    Directory of Open Access Journals (Sweden)

    K. LAX

    2008-12-01

    Full Text Available Results from the biogeochemical mapping (roots of aquatic plants and Fontinalis antipyretica conducted by the Geological Survey of Sweden (SGU reflects the metal load of surface waters draining acid sulphate (AS soils in Sweden. In this study, results from the biogeochemical, soil geochemical and Quaternary mapping programmes at SGU were used to investigate the impact of fine-grained deposits hosting AS soils on stream water trace element chemistry in two separate areas. In the area around Lake Mälaren, postglacial sediments contain the highest levels of most trace elements studied. Owing to the low pH of AS soils and subsequent leaching, levels of nickel (Ni, cobalt (Co, copper (Cu, sulphur (S, yttrium (Y, uranium (U, tungsten (W, and molybdenum (Mo were significantly elevated in aquatic roots. Levels were lower in the Skellefteå area, which may be explained by lower concentrations in source deposits. Concentrations of arsenic (As and lead (Pb were normal or impoverished in biogeochemical samples from postglacial, finegrained sediment areas. Maps based on ratios (Ni:Pb or Y:Pb in biogeochemical samples can, together with results from Quaternary mapping, be used to predict areas with AS soils in Sweden.;

  18. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    Science.gov (United States)

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity. © 2014 International Society for Diseases of the Esophagus.

  19. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    Science.gov (United States)

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.

    Science.gov (United States)

    Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2012-11-01

    The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Behaviour of lactose with the presence of lactic acid and Ca as affected by pH.

    Science.gov (United States)

    Chandrapala, Jayani; Gauthier, Claire; Vasiljevic, Todor

    2017-11-01

    Contradictory statements about the effects of pH change on crystallisation behaviour of lactose exist in the literature. Considering the importance of addressing the processability issue of acid whey, a systematic study is required to establish lactose crystallisation behaviour in the presence of LA and Ca at concentrations present in real acid whey waste streams emphasising impact of pH. Structural modifications of lactose were evident at elevated, more neutral pH in the presence of 1% w/w LA and 0·12% w/w Ca. These structural changes led to changes in the anomeric equilibrium of lactose, which manipulated the water-lactose behaviour and increased the crystallinity. Therefore, altering pH to 6·5 may be the solution to proper industrial processing of acid whey, enhancing the ability of lactose to crystallise properly.

  2. Determination of the titratable acidity and the pH of wine based on potentiometric flow injection analysis.

    Science.gov (United States)

    Vahl, Katja; Kahlert, Heike; von Mühlen, Lisandro; Albrecht, Anja; Meyer, Gabriele; Behnert, Jürgen

    2013-07-15

    A FIA system using a pH-sensitive detector based on a graphite/quinhydrone/silicone composite electrode was applied to determine sequentially the titratable acidity and the pH of wine, as well as the sum of calcium and magnesium ions. For all measurements the same FIA configuration was used employing different carrier solutions. The result