WorldWideScience

Sample records for acids relativistic effects

  1. Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.

    Science.gov (United States)

    Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar

    2013-11-07

    It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.

  2. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  3. Relativistic effects in resonance absorption

    International Nuclear Information System (INIS)

    Drake, J.F.; Lee, Y.C.

    1976-01-01

    The role of the relativistic-electron-mass variation in the generation of plasma waves by the linear mode conversion of intense electromagnetic waves is investigated. The increase in the electron mass in high intensity regions of the mode-converted wave reduces the local plasma frequency and thereby strongly modifies the plasma-driver resonance. A spatial discontinuity in the structure of the mode-converted wave results and causes the wave to break. Under rather modest restrictions, the wave breaking resulting from these effects occurs before the wave amplitude is limited either by thermal convection or by breaking caused by previously investigated nonrelativistic effects. Consequently, the amplitude of the mode-converted plasma wave should saturate at a much lower level than previously predicted. For simplicity, the analysis is limited to the initial stages of mode conversion where the ion dynamics can be neglected. The validity of this approximation is discussed

  4. Whispering gallery effect in relativistic optics

    Science.gov (United States)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  5. Relativistic effects in a rotating coordinate system

    International Nuclear Information System (INIS)

    Chugreev, Y.V.

    1989-01-01

    The general approach to calculating various physical effects in a rotating, noninertial reference frame based on the tetrad formalism for observables is discussed. It is shown that the method based on the search for the ''true'' coordinate transformation from an inertial to the rotating frame is ill-founded. Most special relativistic effects in a rotating frame have been calculated without any nonrelativistic restrictions. It is shown how simple physical experiments can be used to determine whether a circle is at rest in the equatorial plane of a Kerr--Newman gravitational source in the relativistic theory of gravity or is rotating about an axis through its center

  6. Exchange effects in Relativistic Schroedinger Theory

    International Nuclear Information System (INIS)

    Sigg, T.; Sorg, M.

    1998-01-01

    The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory

  7. Relativistic effects in gamma-ray bursts

    International Nuclear Information System (INIS)

    Eriksen, Erik; Groen, Oeyvind

    1999-01-01

    According to recent models of the sources of gamma-ray bursts the extremely energetic emission is caused by shells expanding with ultrarelativistic velocity. With the recent identification of optical sources at the positions of some gamma-ray bursts these ''fireball'' models have acquired an actuality that invites to use them as a motivating application when teaching special relativity. We demonstrate several relativistic effects associated with these models which are very pronounced due to the great velocity of the shell. For example a burst lasting for a month in the rest frame of an element of the shell lasts for a few seconds only, in the rest frame of our detector. It is shown how the observed properties of a burst are modified by aberration and the Doppler effect. The apparent luminosity as a function of time is calculated. Modifications due to the motion of the star away from the observer are calculated. (Author)

  8. Effectively semi-relativistic Hamiltonians of nonrelativistic form

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.; Moser, M.

    1993-12-01

    We construct effective Hamiltonians which despite their apparently nonrelativistic form incorporate relativistic effects by involving parameters which depend on the relevant momentum. For some potentials the corresponding energy eigenvalues may be determined analytically. Applied to two-particle bound states, it turns out that in this way a nonrelativistic treatment may indeed be able to simulate relativistic effects. Within the framework of hadron spectroscopy, this lucky circumstance may be an explanation for the sometimes extremely good predictions of nonrelativistic potential models even in relativistic regions. (authors)

  9. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  10. Relativistic effects in elastic scattering of electrons in TEM

    International Nuclear Information System (INIS)

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  11. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1983-01-01

    In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis

  12. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  13. Memory effects in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Greiner, C.; Wagner, K.; Reinhard, P.

    1994-01-01

    We consider equilibration in relativistic nuclear dynamics starting from a nonequilibrium Green's-functions approach. The widely used Boltzmann-Uehling-Uhlenbeck equation is obtained only as the Markovian limit (i.e., negligible memory time). The actual memory time in energetic nuclear collisions turns out to be ∼2--3 fm/c, which interferes substantially with the time scale of the relaxation process. The memory kernels of the collision process will be presented. Because of their more involved structure, depending sensitively on the kinematical regime, both less and more stopping power is observed in the reaction compared to the Markovian description

  14. Quasi-relativistic effects in barrier-penetration processes

    International Nuclear Information System (INIS)

    Anchishkin, D.V.

    1991-01-01

    The problem of a particle tunneling through the potential barrier is solved within quasi-relativistic Schroedinger equation. It is shown that the subbarrier relativistic effects give a significant addition to penetration coefficient when some relations between parameters of the barrier and mass of a tunneling particle are satisfied. For instance an account of these effects for penetration of low energy π + -mesons through Coulomb barrier of the 298 U nuclei would give the increasing of penetration coefficient to 30 percent as compared to the nonrelativistic one. Also we give the criteria under which the contribution of the ''under barrier relativism'' to penetration coefficient becomes essential. 3 refs.; 6 figs. (author)

  15. Causality and relativistic effects in intranuclear cascade calculations

    International Nuclear Information System (INIS)

    Kodama, T.; Duarte, S.B.; Chung, K.C.; Donangelo, R.J.; Nazareth, R.A.M.S.

    1983-01-01

    Relativistic effects in high energy nuclear collisions, when non-invariance of simultaneity is taken into account, are studied. It is shown that the time ordering of nucleon-nucleon collisions is quite different for different observers, giving in some cases non-invariant final results for intranuclear cascade (INC) calculations. In particular, an example of such a case is shown, in which the INC simulation, depending on the reference frame, presents a kind of density instability caused by a specific time ordering of collision events. A new INC calculation, using a causality preserving scheme, which minimizes this kind of relativistic effect is proposed. It is verified that the causality preserving INC prescription essentially recovers the relativistic invariance. (Author) [pt

  16. Relativistic beaming and orientation effects in core-dominated quasars

    International Nuclear Information System (INIS)

    Ubachukwu, A.A.; Chukwude, A.E.

    2002-07-01

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core- dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-ll radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor, γ opt ∼6-16, and also highly anisotropic, with an average viewing angle, ∼ 9 deg. - 16 deg. Furthermore, the largest boosting occurs within a critical cone angle of ∼ 4 deg. - 10 deg. The results suggest that relativistic bulk flow appears to extend to kilo-parsec scales in these sources. (author)

  17. Relativistic description of the Fermi motion effects on deuterium targets

    International Nuclear Information System (INIS)

    Kusno, D.

    1979-12-01

    A comprehensive analysis of the inconsistencies of the conventional, non-relativistic approach, which has been used so far in the extraction of neutron data from deuterium targets, is given. A new approach dealing with the smearing effects, due to the nucleon's Fermi motion inside the deuteron, is developed as an alternative to the conventional one. This new approach is a spin-less, relativistic, simple and consistent approach. A new covariant model of the elastic electromagnetic form factors of the deuteron in the impulse approximation is also presented. The treatment includes spin and allows for a possibility of determining completely the two elastic structure functions

  18. Relativistic quarkonium model with retardation effect, 1

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1990-01-01

    A new relativistic two-body equation is proposed which has the charge-conjugation symmetry. The renormalization of the wave function at the origin (WFO) is done by incorporating the corresponding vertex equation. By using this model, the heavy-quarkonium phenomenology is developed putting emphasis on the short-distance interaction. The typical scale of the distance restricting the applicability of the ladder model for the mass spectra is found to be 0.13 fm: By assuming the equivalent high-momentum cutoff for the gluonic correction, good results are obtained for the charmonium masses. The improved fine-splittings of the bb-bar states are obtained by inclusion of the retardation. Leptonic decay rates are predicted by assuming the renormalized WFO reduced by another high-momentum cutoff. (author)

  19. Effects of relativistic small radial component on atomic photoionization cross sections

    International Nuclear Information System (INIS)

    Liu Xiaobin; Xing Yongzhong; Sun Xiaowei

    2008-01-01

    The effects of relativistic small radial component on atomic photoionization cross sections have been studied within relativistic average self-consistent field theory. Relativistic effects are relatively unimportant for low photon energy, along with a review of high-energy photoionization the relativistic effects are quite important. The effects of relativistic small radial component on photoionization process should show breakdown when the nuclear finite-size effects is taken into account. The compression of wavefunction into the space near nucleus is so strong in highly charged ions that the electronic radius greatly decreases, and the effects of relativistic small radial component on photoionization cross sections turn to stronger than ordinary atoms. Since relativistic effects are extremely sensitive to the behavior of small radial component, the results are in good agreement with relativistic effects on photoionization cross section. (authors)

  20. Relativistic many-body XMCD theory including core degenerate effects

    Science.gov (United States)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.

  1. Relativistic effects in local inertial frames including PPN effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.

    1986-01-01

    In this dissertation they use the concept of a generalized Fermi frame to describe the relativistic effects on a body placed in a local inertial frame of reference due to local and distant sources of gravitation. They have considered, in particular, a model, consisted of two spherically symmetric gravitating sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done in the Parametrized-Post-Newtonian formalism using the slow motion, weak field approximation. The PPN parameters used are γ, β, zeta 1 and zeta 2 . They show that the main relativistic effect on a local satellite is described by the Schwarzchild field of the local body and the nonlinear term corresponding to the self-interaction of the local source itself. There are also much smaller terms that are proportional to the product of the potentials of local and distant bodies and distant body's self interactions. The spatial axis of the local frame undergoes Geodetic precession. Effects involving the parameters zeta 1 and zeta 2 seem to be slightly too small to be observable at the present time. In addition they have found accelerations that vanish in the general relativity limit

  2. Two-dimensional ion effects in relativistic diodes

    International Nuclear Information System (INIS)

    Poukey, J.W.

    1975-01-01

    In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)

  3. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  4. The effective matter potential for highly relativistic neutrinos

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Ohlsson, Tommy

    2006-01-01

    We investigate matter effects on highly relativistic neutrinos. The self-energy of neutrinos is determined in an electron or neutrino background taking into account resonance and finite width effects of the gauge bosons. We find minor changes compared to the formerly used formula for the propagator function and large deviations of the effective width from the decay width of the gauge bosons considering higher moments of the electron or neutrino distribution function

  5. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  6. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    International Nuclear Information System (INIS)

    Ray, Rupashree Shyama

    2009-01-01

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO_2"2"+, [UO_2OH]"+, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  7. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  8. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...... the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering...

  9. Relativistic effects and the fragmentation processes with the microscopic framework

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki

    1995-01-01

    We simulate the fragmentation processes in the Ca + Ca collisions at the bombarding energy 1.05 GeV/u using the Lorentz covariant RQMD and the non-covariant usual QMD approaches. The statistical decay calculation is connected to obtain the final state. By comparing the results of RQMD with those of QMD we examine the relativistic effects and show the necessity of the Lorentz covariance of the mean-field. (author)

  10. Lagrangian formulation of the general relativistic Poynting-Robertson effect

    Science.gov (United States)

    De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio

    2018-04-01

    We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.

  11. Relativistic effects in iron-, ruthenium-, and osmium porphyrins

    International Nuclear Information System (INIS)

    Liao Mengsheng; Scheiner, Steve

    2002-01-01

    Nonrelativistic and relativistic DFT calculations are performed on four-coordinate metal porphyrins MP and their six-coordinate adducts MP(py) 2 and MP(py)(CO) (py=pyridine) with M=Fe, Ru, and Os. The electronic structures of the MPs are investigated by considering all possible low-lying states with different configurations of nd-electrons. FeP and OsP have a 3 A 2g ground state, while this state is nearly degenerate with 3 E g for RuP. Without relativistic corrections, the ground states of both RuP and OsP would be 3 E g . For the six-coordinate adducts with py and CO, the strong-field axial ligands raise the energy of the M d z 2 -orbital, thereby making the M II ion diamagnetic. The calculated redox properties of MP(py) 2 and MP(py)(CO) are in agreement with experiment. The difference between RuP(py)(CO) and OsP(py)(CO), in terms of site of oxidation, is due to relativistic effects

  12. ρ - ω Mixing Effects in Relativistic Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Broniowski, W.; Florkowski, W.

    1999-01-01

    Full text: We have shown that even moderate excess of neutrons over protons in nuclear matter, such as in 208 Pb, can lead to large ρ - ω mixing at densities of the order of twice the nuclear saturation density and higher. The typical mixing angle is of the order of 10 o . The mixing may result in noticeable shifts of the positions and widths of resonances. We also analyze temperature effects and find that temperatures up to 50 MeV have practically no effect on the mixing. The results have relevance for the explanation of dilepton production in relativistic heavy-ion collisions. (author)

  13. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  14. Relativistic effects on complexity indexes in atoms in position and momentum spaces

    International Nuclear Information System (INIS)

    Maldonado, P.; Sarsa, A.; Buendia, E.; Galvez, F.J.

    2010-01-01

    Three different statistical measures of complexity are explored for the atoms He to Ra. The measures are analysed in both position and momentum spaces. Relativistic effects on the complexity indexes are systematically studied. These effects are discussed in terms of the information content factor and the disorder terms of the complexity indexes. Relativistic and non-relativistic complexity indexes are calculated from Optimized Effective Potential densities.

  15. Impact of relativistic effects on cosmological parameter estimation

    Science.gov (United States)

    Lorenz, Christiane S.; Alonso, David; Ferreira, Pedro G.

    2018-01-01

    Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, s (z ), we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine s (z ) to the ˜5 %- 10 % level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters but significant for the level of primordial non-Gaussianity.

  16. Influence of relativistic effects on hydrolysis of Ra2+

    International Nuclear Information System (INIS)

    Zielinska, B.; Bilewicz, A.

    2005-01-01

    Using 224 Ra radiotracer the first hydrolysis constant (pK 1h ) of Ra 2+ cations has been determined. The pK 1h value of Ra 2+ was compared with the pK 1h values of other Group 2 cations. It has been shown that the electrostatic hydrolysis model based on assumption that pK 1h is a linear function of reciprocal ionic radii (1/r i ) does not describe well the hydrolysis of Group 2 metal cations. The reason of higher Ra 2+ hydrolysis as expected is the influence of relativistic effects on bonding 7s and 7p 1/2 orbitals. (author)

  17. Relativistic effects on inner-shell electron properties

    International Nuclear Information System (INIS)

    Desclaux, J.P.

    1976-01-01

    The influence of relativistic effects on hydrogen-like systems is first reviewed. After having considered one-electron systems, the influence of the other electrons is to be taken into account when considering inner ionization energy and ionization cross sections. Two-hole states in inner shells being then dealt with, the problem of angular momentum coupling among electrons can no longer be neglected. In an other way, this implies that wave functions are to be built on a jj basis instead of a ls one. Ksub(α)sup(h) hypersatellite spectra and KLL Auger transition energies are successively discussed

  18. Selectivity of the nucleon-induced deuteron breakup and relativistic effects

    OpenAIRE

    Witała, H.; Golak, J.; Skibiński, R.

    2006-01-01

    Theoretical predictions for the nucleon induced deuteron breakup process based on solutions of the three-nucleon Faddeev equation including such relativistic features as the relativistic kinematics and boost effects are presented. Large changes of the breakup cross section in some complete configurations are found at higher energies. The predicted relativistic effects, which are mostly of dynamical origin, seem to be supported by existing data.

  19. Relativistic effects in ab initio electron-nucleus scattering

    Science.gov (United States)

    Rocco, Noemi; Leidemann, Winfried; Lovato, Alessandro; Orlandini, Giuseppina

    2018-05-01

    The electromagnetic responses obtained from Green's function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.

  20. Relativistic jets: An astrophysical laboratory for the Doppler effect

    Science.gov (United States)

    Zakamska, Nadia L.

    2018-05-01

    Special Relativity is one of the most abstract courses in the standard curriculum for physics majors, and therefore practical applications or laboratory exercises are particularly valuable for providing real-world experiences with this subject. This course poses a challenge for lab development because relativistic effects manifest themselves only at speeds close to the speed of light. The laboratory described in this paper constitutes a low-cost, low-barrier exercise suitable for students whose only background is the standard mechanics-plus-electromagnetism sequence. The activity uses research-quality astronomical data on SS433—a fascinating Galactic X-ray binary consisting of a compact object (a neutron star or a black hole) and a normal star. A pair of moderately relativistic jets moving with v ˜ 0.3 c in opposite directions emanate from the vicinity of the compact object and are clearly detected in optical and radio observations. Following step-by-step instructions, students develop a full kinematic model of a complex real-world source, use the model to fit the observational data, obtain best-fit parameters, and understand the limitations of the model. The observations are in exquisite agreement with the Doppler effect equations of Special Relativity. The complete lab manual, the dataset and the solutions are available in online supplemental materials; this paper presents the scientific and pedagogical background for the exercise.

  1. A relativistic model of the topological acceleration effect

    International Nuclear Information System (INIS)

    Ostrowski, Jan J; Roukema, Boudewijn F; Buliński, Zbigniew P

    2012-01-01

    It has previously been shown heuristically that the topology of the Universe affects gravity, in the sense that a test particle near a massive object in a multiply connected universe is subject to a topologically induced acceleration that opposes the local attraction to the massive object. It is necessary to check if this effect occurs in a fully relativistic solution of the Einstein equations that has a multiply connected spatial section. A Schwarzschild-like exact solution that is multiply connected in one spatial direction is checked for analytical and numerical consistency with the heuristic result. The T 1 (slab-space) heuristic result is found to be relativistically correct. For a fundamental domain size of L, a slow-moving, negligible-mass test particle lying at distance x along the axis from the object of mass M to its nearest multiple image, where GM/c 2 3 )x, where ζ(3) is Apery's constant. For M ∼ 10 14 M sun and L ∼ 10-20h -1 Gpc, this linear expression is accurate to ±10% over h -1 Mpc/h -1 Gpc. Thus, at least in a simple example of a multiply connected universe, the topological acceleration effect is not an artefact of Newtonian-like reasoning, and its linear derivation is accurate over about three orders of magnitude in x. (paper)

  2. Relativistic effects on earth satellites and their measurement

    International Nuclear Information System (INIS)

    Bertotti, B.

    1988-01-01

    There are three kinds of relativistic effects on earth satellites: those due post newtonian corrections in the field of the earth; the relativistic corrections in the field of the sun; and the precession of the local frames with respect to far away bodies. The authors point out that it is not possible to eliminate the second kind by decreasing the distance of the satellite and the earth; in other words, the effect of the sun is not entirely tidal and a generalized principle of equivalence does hold exactly. Concerning the third kind, the motion of the moon and the measurements of its distance from the earth by lunar laser ranging provides a way to establish experimentally the two connections between the three fundamental frames one should consider: the local frame, determined geometrically by parallel transport; the planetary dynamical frame; and the kinematical frame defined by extragalactic radio sources. According to general relativity the first two frames are related by de Sitter's precision; the last two coincide. It shown that the connections between the first two frames and the first and third frame are already hidden in the existing data

  3. Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma

    International Nuclear Information System (INIS)

    Nejoh, Yasunori

    1994-07-01

    Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)

  4. Problems of describing the cumulative effect in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1979-01-01

    The problem of describing the cumulative effect i.e., the particle production on nuclei in the range kinematically forbidden for one-nucleon collisions, is studied. Discrimination of events containing cumulative particles fixes configurations in the wave function of a nucleus, when several nucleons are closely spaced and their quark-parton components are collectivized. For the cumulative processes under consideration large distances between quarks are very important. The fundamental facts and theoretical interpretation of the quantum field theory and of the condensed media theory in the relativistic nuclear physics are presented in brief. The collisions of the relativistic nuclei with low momentum transfers is considered in a fast moving coordinate system. The basic parameter determining this type of collisions is the energy of nucleon binding in nuclei. It has been shown that the short-range correlation model provides a good presentation of many characteristics of the multiple particle production and it may be regarded as an approximate universal property of hadron interactions

  5. Relativistic three-body effects in black hole coalescence

    International Nuclear Information System (INIS)

    Campanelli, Manuela; Dettwyler, Miranda; Lousto, Carlos O.; Hannam, Mark

    2006-01-01

    Three-body interactions are expected to be common in globular clusters and in galactic cores hosting supermassive black holes. We consider an equal-mass binary black hole system in the presence of a third black hole. Using numerically generated binary black hole initial data sets, and first and second-order post-Newtonian (1PN and 2PN) techniques, we find that the presence of the third black hole has non-negligible relativistic effects on the location of the binary's innermost stable circular orbit (ISCO), and that these effects arise at 2PN order. For a stellar-mass black hole binary in orbit about a supermassive black hole, the massive black hole has stabilizing effects on the orbiting binary, leading to an increase in merger time and a decrease of the terminal orbital frequency, and an amplification of the gravitational radiation emitted from the binary system by up to 6%

  6. Relativistic effects in hydrogenlike atoms embedded in Debye plasmas

    International Nuclear Information System (INIS)

    Bielinska-Waz, D.; Karwowski, J.; Saha, B.; Mukherjee, P.K.

    2004-01-01

    Spectra of hydrogenlike atoms embedded in a Debye plasma are investigated. The state energies and the transition rates are studied using a fully relativistic formalism based on the Dirac equation. The effect of the plasma is described by introducing an exponential screening to the nuclear Coulomb potential (the Debye screening). Systematic trends with respect to both the nuclear charge and the screening parameter are observed for all calculated quantities. The pattern of splittings of ns 1/2 , np 1/2 and np 3/2 is modified in a specific way due to the combined relativity and plasma effect. The transition rates decrease with an increase of the Debye parameter as well as with an increase of Z

  7. A general relativistic signature in the galaxy bispectrum: the local effects of observing on the lightcone

    Energy Technology Data Exchange (ETDEWEB)

    Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy [Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535 (South Africa); Clarkson, Chris, E-mail: umeobinna@gmail.com, E-mail: beautifulheart369@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: chris.clarkson@gmail.com [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2017-03-01

    Next-generation galaxy surveys will increasingly rely on the galaxy bispectrum to improve cosmological constraints, especially on primordial non-Gaussianity. A key theoretical requirement that remains to be developed is the analysis of general relativistic effects on the bispectrum, which arise from observing galaxies on the past lightcone, as well as from relativistic corrections to the dynamics. As an initial step towards a fully relativistic analysis of the galaxy bispectrum, we compute for the first time the local relativistic lightcone effects on the bispectrum, which come from Doppler and gravitational potential contributions. For the galaxy bispectrum, the problem is much more complex than for the power spectrum, since we need the lightcone corrections at second order. Mode-coupling contributions at second order mean that relativistic corrections can be non-negligible at smaller scales than in the case of the power spectrum. In a primordial Gaussian universe, we show that the local lightcone projection effects for squeezed shapes at z ∼ 1 mean that the bispectrum can differ from the Newtonian prediction by ∼> 10% when the short modes are k ∼< (50 Mpc){sup −1}. These relativistic projection effects, if ignored in the analysis of observations, could be mistaken for primordial non-Gaussianity. For upcoming surveys which probe equality scales and beyond, all relativistic lightcone effects and relativistic dynamical corrections should be included for an accurate measurement of primordial non-Gaussianity.

  8. Relativistic Jahn-Teller effect in tetrahedral systems

    International Nuclear Information System (INIS)

    Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.

    2010-01-01

    It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.

  9. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2007-01-01

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  10. Ratchet effect on a relativistic particle driven by external forces

    International Nuclear Information System (INIS)

    Quintero, Niurka R; Alvarez-Nodarse, Renato; Cuesta, Jose A

    2011-01-01

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  11. Ratchet effect on a relativistic particle driven by external forces

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, Niurka R [Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, Calle Virgen de Africa 7, E-41011 Sevilla (Spain); Alvarez-Nodarse, Renato [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo 1160, E-41080 Sevilla (Spain); Cuesta, Jose A, E-mail: niurka@us.es, E-mail: ran@us.es, E-mail: cuesta@math.uc3m.es [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes, Madrid (Spain)

    2011-10-21

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  12. Effect of phase transition on QGP fluid in ultra-relativistic heavy ion collision

    International Nuclear Information System (INIS)

    Nonaka, Chiho; Miyamura, Osamu; Muroya, Shin

    2001-01-01

    A full (3+1)-dimensional calculation using the Lagrangian hydrodynamics is proposed for relativistic nuclear collisions. The calculation enables us to evaluate anisotropic flow of hot and dense matter which appears in non-central and/or asymmetrical relativistic nuclear collisions. The relativistic hydrodynamical model is related to the equation of the state and the useful for the verification of quark-gluon plasma state. By virtue of the Lagrangian hydrodynamics we can easily trace the trajectory which corresponds to the adiabatic paths in the T-μ plane. We evaluate the directly of the influence of the phase transition to physical phenomena in the ultra-relativistic nuclear collisions. Using our relativistic hydrodynamical model, we discuss the effect of the phase transition on the collective flow. (author)

  13. Coulomb effects in relativistic laser-assisted Mott scattering

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J.M.; Kwato Njock, M.G.; Tetchou Nganso, H.M.

    2004-09-01

    We reconsider the influence of the Coulomb interaction on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. Coulomb effects of the bare nucleus on the laser-dressed electron are treated more completely than in the previous work of Li et al. [J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 653]. To this end we use Coulomb-Dirac-Volkov functions to describe the initial and the final states of the electron. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for circularly and linearly polarized laser light. Numerical calculations are carried out from both polarizations, for various nucleus charge values, three angular configurations and an incident energy in the MeV range. It is found that for parameters used in the present work, incorporating Coulomb effects of the target nucleus either in the initial state or in the final state yields cross sections which are quite similar whatever the scattering geometry and polarization considered. When Coulomb distortions are included in both states, the cross sections are strongly modified with the increase of Z, as compared to the outcome of the prior form of the T-matrix treatment. (author)

  14. Vlasov simulation of the relativistic effect on the breaking of large amplitude plasma waves

    International Nuclear Information System (INIS)

    Xu Hui; Sheng Zhengming; Zhang Jie

    2007-01-01

    The influence of relativistic and thermal effects on plasma wave breaking has been studied by solving the coupled Vlasov-Poisson equations. When the relativistic effect is not considered, the wave breaking will not occur, provided the initial perturbation is less than certain value as predicted previously, and the largest amplitude of the plasma wave will decrease with the increase of the initial temperature. When the relativistic effect is considered, wave breaking always occurs during the time evolution, irrespective of the initial perturbation amplitude. Yet the smaller the initial perturbation amplitude is, the longer is the time for wave breaking to occur. With large initial perturbations, wave breaking can always occur with the without the relativistic effect. However, the results are significantly different in the two cases. The thermal effects of electrons decrease the threshold value to initial amplitude for wave breaking and large phase velocity makes the nonlinear phenomenon occur more easily. (authors)

  15. Spin-dependent relativistic effect on heavy quarkonium properties in medium

    International Nuclear Information System (INIS)

    Dong Yubing

    1997-01-01

    Spin-dependent relativistic effect on the binding and dissociation of the heavy quarkonium in a thermal environment is investigated. The result shows that the interactions could influence the heavy quarkonium properties in medium

  16. Study of relativistic effects in magnetoemission from white dwarfs

    International Nuclear Information System (INIS)

    Markes, C.T.H.

    1978-01-01

    Some white dwarfs have been observed to emit circularly polarized light, which is believed to be due to magnetoemission because of the existence of high magnetic fields. To explain this, an approximate relativistic Hamiltonian is developed describing the motion of a spinning charged oscillator in a uniform magnetic field. The exact solutions and energy eigenvalues of this Hamiltonian are determined. The fractional circular polarization is calculated using this model in time-dependent peturbation theory. Calculations taking into account low-lying states (low temperatures) as well as higher excited levels (all temperatures). Spin and relativity effects become increasingly important as more and more excited levels are included in the possible transitions. In fact, there appears to be a tendency for one of the polarization components to be quenched in the limit of very large excitations. Thus, the reason for the discrepancy in the infrared and other regions has to be sought elsewhere than in the assembly of charged oscillators in interaction with a high magnetic field, as this model, with relativization, is reasonably complete

  17. Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6

    International Nuclear Information System (INIS)

    Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.

    1992-01-01

    We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)

  18. A new cross-effect in local relativistic thermodynamics of irreversible processes

    International Nuclear Information System (INIS)

    Gariel, J.

    1981-01-01

    It is shown that the supplementary term qsup(α)usub(α) which appears in the caloric conducting fluid Eckart's theory (where qsup(α) is the derivative by the curvilinear absciss of the calorific conduction density and usub(α) the local unitary speed) states a thermodynamics construction problem. We can solve this one by admitting the existence of a new relativistic 'thermokinetic' cross-effect, which leads to the relativistic Fourier's hypothesis of Pham Mau Quan [fr

  19. On the driver of relativistic effect strength in Seyfert galaxies

    Czech Academy of Sciences Publication Activity Database

    Guainazzi, M.; Bianchi, S.; de La Calle, I.; Dovčiak, Michal; Longinotti, A. L.

    2011-01-01

    Roč. 531, July (2011), A131/1-A131/13 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * relativistic processes * nuclei galaxies * Seyfert galaxy * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  20. Relativistic effects in decay of S-wave quarkoniums

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The width of S-wave quarkonium decays η c ,η b → γγ and J/ψ, Y → e + e - are calculated using the quasipotential approach. The nontrivial dependence of decay amplitude on relative quark momentum is considered. It is shown that relativistic corrections reach values of 30-50% in the processes studied

  1. The effect of nonlinearity in relativistic nucleon–nucleon potential

    Indian Academy of Sciences (India)

    2014-04-01

    Apr 1, 2014 ... the popular M3Y form using the relativistic mean field theory (RMFT) with ... are fitted to deuteron properties and available phase shifts. ..... 2.2 Optical potential and the half-lives study using the preformed cluster model (PCM).

  2. Relativistic Beaming and Orientation Effects in BL Lacertae Objects ...

    Indian Academy of Sciences (India)

    tation paradigm for high peaked and low-peaked BL Lacs (X-ray and radio selected .... consequences of relativistic beaming and geometric projection were studied in high- ... model. If we assume α = 0 (for synchrotron self-absorbed sources) and β ∼ 1, it can .... for RBL and XBL subsamples at confidence level of ∼ 95.0%.

  3. Relativistic effects on magnetic circular dichroism studied by GUHF/SECI method

    Science.gov (United States)

    Honda, Y.; Hada, M.; Ehara, M.; Nakatsuji, H.; Downing, J.; Michl, J.

    2002-04-01

    Quasi-relativistic formulation of the Magnetic circular dichroism (MCD) Faraday terms are presented using the generalized unrestricted Hartree-Fock (GUHF)/single excitation configuration interaction (SECI) method combined with the finite perturbation method and applied to the MCD of the three n-σ ∗ states ( 3Q1, 3Q0, 1Q1) of CH 3I. The Faraday B term for the 1Q1 state was 0.1976( Debye) 2( Bohr magneton )/(10 3 cm-1) in the non-relativistic theory, but was dramatically improved by the relativistic effect and became 0.0184 in agreement with the experimental values, 0.014 and 0.0257. This change was mainly due to the one-electron spin-orbit (SO1) term rather than the spin-free relativistic (SFR) and the two-electron spin-orbit (SO2) terms.

  4. Influence of relativistic effects on hydration and hydrolysis of rutherfordium, dubnium and some 6-th row element cations

    International Nuclear Information System (INIS)

    Bilewicz, A.; Siekierski, S.

    1999-01-01

    New evidence for the influence of relativistic effect on coordination number, (CN), and hydrolysis of Rf 4+ and Db 5+ aqua ions has been presented. It has been argued that very strong hydrolysis of the heaviest members of Groups 12, 13 is caused by the low CN of Hg 2+ and Tl 3+ in their aqua ions. Low CN is the result of relativistic effects which stabilize the 6s orbital, increasing thereby the respective promotion energy. That supports our previous view that strong hydrolysis of Rf aq 4+ much greater than that of Hf aq 4+ and Zr aq 4+ , is also a result of lower CN. Since the promotion energy for sp 3 d 4 hybridization (CN 8) seems to be close to that od sp 3 d 2 hybridization (CN 6), and since hybridization energies of Zr 4+ , Hf 4+ and Rf 4+ do not differ very much for hexa- and octahydrates the two aqua ions i.e., M(H 2 O) 6 4+ and M(H 2 O) 8 4+ may coexist in aqueous acid solutions. However, due to relativistic stabilization of 7s and destabilization of 6s orbitals, which increases promotion energy, the Rf 4+ aqua cation should show coordination number 6 rather than 8. A shift of equilibrium toward a lower hydrate increases the tendency to hydrolyse. (author)

  5. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects.

    Science.gov (United States)

    Rinkevicius, Zilvinas; de Almeida, Katia Julia; Oprea, Cornel I; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2008-11-11

    A new approach for the evaluation of the leading-order relativistic corrections to the electronic g tensors of molecules with a doublet ground state is presented. The methodology is based on degenerate perturbation theory and includes all relevant contributions to the g tensor shift up to order O(α(4)) originating from the one-electron part of the Breit-Pauli Hamiltonian-that is, it allows for the treatment of scalar relativistic, spin-orbit, and mixed corrections to the spin and orbital Zeeman effects. This approach has been implemented in the framework of spin-restricted density functional theory and is in the present paper, as a first illustration of the theory, applied to study relativistic effects on electronic g tensors of dihalogen anion radicals X2(-) (X = F, Cl, Br, I). The results indicate that the spin-orbit interaction is responsible for the large parallel component of the g tensor shift of Br2(-) and I2(-), and furthermore that both the leading-order scalar relativistic and spin-orbit corrections are of minor importance for the perpendicular component of the g tensor in these molecules since they effectively cancel each other. In addition to investigating the g tensors of dihalogen anion radicals, we also critically examine the importance of various relativistic corrections to the electronic g tensor of linear molecules with Σ-type ground states and present a two-state model suitable for an approximate estimation of the g tensor in such molecules.

  6. Neutron stars with kaon condensation in relativistic effective model

    International Nuclear Information System (INIS)

    Wu, Chen; Ma, Yugang; Qian, Weiliang; Yang, Jifeng

    2013-01-01

    Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K - in normal nuclear matter U K ≳ -100 MeV, the Kaon condensation phase is absent in the inner cores of the neutron stars. (author)

  7. Correlated relativistic dynamics and nuclear effects in dielectronic and visible spectra of highly charged ions

    International Nuclear Information System (INIS)

    Harman, Z.; Artemyev, A.N.; Crespo Lopez-Urrutia, J.R.

    2008-01-01

    Dielectronic recombination and visible emission spectra are investigated theoretically and experimentally. Spectra of x-rays emitted from electron beam ion trap plasmas allow the study of correlation and quantum electrodynamic effects in relativistic few-body systems. In the visible range, exploring the forbidden M1 transitions in Be- and B-like argon ions provides one new insights into the relativistic modelling of isotope shift effects and extend the scope of bound-electron g factor measurements to few-electron ions. (author)

  8. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... is obtained for d and ?s in Xe2. For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other...

  9. On the theory of superfluid liquid rotation in pulsars taking into account relativistic effects in vortices

    International Nuclear Information System (INIS)

    Chernobaj, V.A.; Andronik, V.V.

    1978-01-01

    The necessity of taking into account the relativistic effects in quantized vortices of pulsar superfluid nuclei is shown. The full energy of a single vortex for special relativity theory approximation is determined. The single vortex full energy asymptotics for quantized numbers n, which are much greater than the ratio of vortex exterior radius to Compton's length of the nucleon, wave is linear with respect to n while in the nonrelativistic case the kinetic energy is proportional to n 2 . This suggests the possibility of existence of quasistable vortices with great quantized numbers n. It is revealed that for small quantized numbers the taking into account of the relativistic effects in the vortices does not lead to qualitative changes of the general condition of superfluid liquid rotation as compared to non-relativistic theory

  10. General relativistic effects in the structure of massive white dwarfs

    Science.gov (United States)

    Carvalho, G. A.; Marinho, R. M.; Malheiro, M.

    2018-04-01

    In this work we investigate the structure of white dwarfs using the Tolman-Oppenheimer-Volkoff equations and compare our results with those obtained from Newtonian equations of gravitation in order to put in evidence the importance of general relativity (GR) for the structure of such stars. We consider in this work for the matter inside white dwarfs two equations of state, frequently found in the literature, namely, the Chandrasekhar and Salpeter equations of state. We find that using Newtonian equilibrium equations, the radii of massive white dwarfs (M>1.3M_{⊙ }) are overestimated in comparison with GR outcomes. For a mass of 1.415M_{⊙ } the white dwarf radius predicted by GR is about 33% smaller than the Newtonian one. Hence, in this case, for the surface gravity the difference between the general relativistic and Newtonian outcomes is about 65%. We depict the general relativistic mass-radius diagrams as M/M_{⊙ }=R/(a+bR+cR^2+dR^3+kR^4), where a, b, c and d are parameters obtained from a fitting procedure of the numerical results and k=(2.08× 10^{-6}R_{⊙ })^{-1}, being R_{⊙ } the radius of the Sun in km. Lastly, we point out that GR plays an important role to determine any physical quantity that depends, simultaneously, on the mass and radius of massive white dwarfs.

  11. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  12. Quantum mechanics of relativistic particles in multiply connected spaces and the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1990-04-01

    We consider the motion of free relativistic particles in multiply connected spaces. We show that if one of the spatial dimensions has the topology of a circle then the D dimensional spacetime is compactified to D-1 dimensions and the particle mass increases by an amount which is proportional to a quantum phase factor and inversely proportional to the radius of the circle. We also consider the relativistic Aharonov-Bohm effect and we show that the interference pattern is a universal characteristic due only to the topological properties of the experimental situation and not to the intrinsic properties of the particle. The propagators are calculated in both situations. (author) [pt

  13. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  14. Elastic proton-deuteron backward scattering: relativistic effects and polarization observables

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Semikh, S.S.

    1997-10-01

    The elastic proton-deuteron backward reaction is analyzed within a covariant approach based on the Bethe-Salpeter equation with 000. Lorentz boost and other relativistic effects in the cross section and spin correlation observables, like tensor analyzing power and polarization transfer etc., are investigated in explicit form. Results of numerical calculations for a complete set of polarization observables are presented. (orig.)

  15. The use of ring lasers for the measurement of relativistic effects

    International Nuclear Information System (INIS)

    Denisov, V I; Zubrilo, A A; Kravtsov, Nikolai V; Pinchuk, V B

    1999-01-01

    The possibility of using a ring laser for the investigation of relativistic effects is analysed. It is shown that gravitational experiments permitting a refinement of certain (fundamental) aspects of the theory of gravitation will become possible in the near future. (laser applications and other topics in quantum electronics)

  16. Gas phase chemistry studies of transactinoid elements and the relativistic effects

    Czech Academy of Sciences Publication Activity Database

    Zvára, Ivo

    1999-01-01

    Roč. 49, č. 2 (1999), s. 563-571 ISSN 0011-4626 Institutional research plan: CEZ:AV0Z1048901 Keywords : transactinoid * relativistic effects * chemical properties Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.328, year: 1999

  17. Relativistic approach to superfluidity in nuclear matter. Constructing effective pair wave function from relativistic mean field theory with a cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, M. [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan); Tanigawa, T.

    1999-08-01

    We propose a simple method to reproduce the {sup 1}S{sub 0} pairing properties of nuclear matter, which are obtained by a sophisticated model, by introducing a density-independent cutoff into the relativistic mean field model. This applies well to the physically relevant density range. (author)

  18. On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.

    1999-01-01

    Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds

  19. Transition from convective to absolute Raman instability via the longitudinal relativistic effect by using Vlasov-Maxwell simulations

    Science.gov (United States)

    Wang, Q.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.

    2018-01-01

    The longitudinal relativistic effect on stimulated Raman backscattering (SRBS) is investigated by using one-dimensional (1D) Vlasov-Maxwell simulations. Using a short backscattered light seed pulse with a very small amplitude, the linear gain spectra of SRBS in the strongly convective regime is presented by combining the relativistic and non-relativistic 1D Vlasov-Maxwell simulations, which is in agreement with the steady-state linear theory. More interestingly, by considering transition from convective to absolute instability due to electron trapping, we successfully predict the critical duration of the seed which can just trigger the kinetic inflation of the excited SRBS after the seed leaves the simulation box. The critical duration in the relativistic case is much shorter than that in the nonrelativistic case, which indicates that the kinetic inflation more easily occurs in the relativistic case than in the nonrelativistic case. In the weakly convective regime, the transition from convective to absolute instability for SRBS can directly occur in the linear regime due to the longitudinal relativistic modification. For the same pump, our simulations first demonstrate that the SRBS excited by a short and small seed pulse is a convective instability in the nonrelativistic case but becomes an absolute instability due to the decrease of the linear Landau damping from the longitudinal relativistic modification in the relativistic case. In more detail, the growth rate of the backscattered light is also in excellent agreement with theoretical prediction.

  20. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    Science.gov (United States)

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.

  1. Relativistic effects in local inertial frames including parametrized-post-Newtonian effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.; Ashby, N.

    1988-01-01

    We use the concept of a generalized Fermi frame to describe relativistic effects, due to local and distant sources of gravitation, on a body placed in a local inertial frame of reference. In particular we have considered a model of two spherically symmetric gravitating point sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done using the slow-motion, weak-field approximation and including four of the parametrized-post-Newtonian (PPN) parameters. The position of the classical center of mass must be modified when the PPN parameter zeta 2 is included. We show that the main relativistic effect on a local satellite is described by the Schwarzschild field of the local body and the nonlinear term corresponding to the self-interaction of the local source with itself. There are also much smaller terms that are proportional, respectively, to the product of the potentials of local and distant bodies and to the distant body's self-interactions. The spatial axes of the local frame undergo geodetic precession. In addition we have an acceleration of the order of 10/sup -11/ cm sec -2 that vanish in the case of general relativity, which is discussed in detail

  2. Third-order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon

  3. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  4. Ion temperature effect on the propagation of ion acoustic solitary waves in a relativistic magnetoplasma

    International Nuclear Information System (INIS)

    Salahuddin, M.

    1990-01-01

    Using the reductive perturbation technique the Korteweg-de Vries (KdV) equation is derived for ion acoustic waves, in the presence of weak relativistic effects and warm ions, in a magnetized plasma. The influence of non ideal effects on the amplitude and width of the ion acoustic solitary waves is also discussed. The results are depicted in the figures. It is shown that the simultaneous presence of ion streaming and magnetic field stops the tendency of soliton breaking. (author)

  5. Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)

    2006-10-15

    Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)

  6. Effective interaction for relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.B.; Celenza, L.S.; Harindranath, A.; Shakin, C.M.

    1987-01-01

    We construct an effective interaction, which when treated in a relativistic Hartree-Fock approximation, reproduces rather accurately the nucleon self-energy in nuclear matter and the Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations. This effective interaction is constructed by adding Born terms, describing the exchange of pseudoparticles, to the Born terms of the Dirac-Hartree-Fock analysis. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  7. Effect of Vavilov–Cherenkov radiation cone transformation upon entry of a relativistic electron into a substance layer

    Energy Technology Data Exchange (ETDEWEB)

    Kishchin, I. A.; Kubankin, A. S., E-mail: kubankin@bsu.edu.ru; Nikulicheva, T. B.; Al-Omari; Sotnikov, A. V.; Starovoitov, A. S. [Belgorod National Research University (Russian Federation)

    2016-12-15

    Transformation of the Vavilov–Cherenkov radiation cone under grazing interaction of a relativistic electron with a layer of substance is theoretically studied. It is shown that this effect can occur when the electron enters the substance layer.

  8. Nonlineart theory of relativistic beam-plasma instabilities in the regime of the collective Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Bobylev, Yu. V. [L.N. Tolstoy Tula State Pedagogical University (Russian Federation); Kuzelev, M. V. [Moscow State University (Russian Federation); Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)

    2008-02-15

    A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.

  9. Effective potentials of the relativistic three-body problem with electromagnetic interaction in adiabatic approximation

    International Nuclear Information System (INIS)

    Bakalov, D.D.; Melezhik, V.S.

    1987-01-01

    The relativistic Hamiltonian for 3-spin particles with electromagnetic interaction has been represented in the form of a sum of terms with factorized dependence on spin, angular and spheroidal variable, and its matrix elements have been expressed in terms of the matrix elements of a small number of ''basic'' operators. The numerical values of the latter have been tabulated, thus allowing for the evaluation of the leading relativistic effects in any 3-body system (with unit particle charge) with and accuracy of ∼ 0(1/2M), where 1/2M=(M 1 -1 +M 2 -1 )/2(M 1 -1 +M 3 -1 ) is the small parameter of the adiabatic expansion (M i , i=1,2,3 being particle masses)

  10. Final-state interactions and relativistic effects in the quasielastic (e,e') reaction

    International Nuclear Information System (INIS)

    Chinn, C.R.; Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545); Picklesimer, A.; Van Orden, J.W.

    1989-01-01

    The longitudinal and transverse response functions for the inclusive quasielastic (e,e') reaction are analyzed in detail. A microscopic theoretical framework for the many-body reaction provides a clear conceptual (nonrelativistic) basis for treating final-state interactions and goes far beyond simple plane-wave or Hermitean potential models. The many-body physics of inelastic final-state channels as described by optical and multiple scattering theories is properly included by incorporating a full complex optical potential. Explicit nonrelativistic and relativistic momentum-space calculations quantitatively demonstrate the importance of such a treatment of final-state interactions for both the transverse and longitudinal response. Nonrelativistic calculations are performed using final-state interactions based on phenomenology, local density models, and microscopic multiple scattering theory. Relativistic calculations span a similar range of models and employ Dirac bound-state wave functions. The theoretical extension to relativistic dynamics is of course not clear, but is done in obvious parallel to elastic proton scattering. Extensive calculations are performed for 40 Ca at momentum transfers of 410, 550, and 700 MeV/c. A number of interesting physical effects are observed, including significant relativistic suppressions (especially for R L ), large off-shell and virtual pair effects, enhancement of the tails of the response by the final-state interactions, and large qualitative and even shape distinctions between the predictions of the various models of the final-state interactions. None of the models is found to be able to simultaneously predict the data for both response functions. This strongly suggests that additional physical mechanisms are of qualitative importance in inclusive quasielastic electron scattering

  11. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  12. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  13. General relativistic galvano-gravitomagnetic effect in current carrying conductors

    International Nuclear Information System (INIS)

    Ahmedov, B.J.

    1998-11-01

    The analogy between general relativity and electromagnetism suggests that there is a galvano-gravitomagnetic effect, which is the gravitational analogue of the Hall effect. This new effect takes place when a current carrying conductor is placed in a gravitomagnetic field and the conduction electrons moving inside the conductor are deflected transversally with respect to the current flow. In connection with this galvano-gravitomagnetic effect, we explore the possibility of using current carrying conductors for detecting the gravitomagnetic field of the Earth. (author)

  14. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  15. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    Science.gov (United States)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random

  16. Relativistic effects in atomic inner-shell transitions

    International Nuclear Information System (INIS)

    Chen, M.H.

    1982-01-01

    Theoretical calculations of atomic inner-shell transition rates based on independent-particle models are reviewed. Factors affecting inner-shell transition rates are examined, particularly the effects of relativity. 48 references, 5 figures

  17. More effective field theory for non-relativistic scattering

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1997-01-01

    An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)

  18. Effects of the ρ - ω mixing interaction in relativistic models

    International Nuclear Information System (INIS)

    Menezes, D.P.; Providencia, C.

    2003-01-01

    The effects of the ρ-ω mixing term in infinite nuclear matter and in finite nuclei are investigated with the non-linear Walecka model in a Thomas-Fermi approximation. For infinite nuclear matter the influence of the mixing term in the binding energy calculated with the NL3 and TM1 parametrizations can be neglected. Its influence on the symmetry energy is only felt for the TM1 with a unrealistically large value for the mixing term strength. For finite nuclei the contribution of the isospin mixing term is very large as compared with the expected value to solve the Nolen-Schiffer anomaly

  19. Rest frames and relativistic effects on de Sitter spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Cotaescu, Ion I. [West University of Timisoara, Timisoara (Romania)

    2017-07-15

    It is shown that the Nachtmann boosting method of introducing coordinates on de Sitter manifolds can be completed with suitable gauge transformations able to keep under control the transformation under isometries of the conserved quantities. With this method, the rest local charts (or natural frames) are defined pointing out the role of the conserved quantities in investigating the relative geodesic motion. The advantages of this approach can be seen from the applications presented here. For the first time, the simple kinematic effects, the electromagnetic field of a free falling charge and the binary fission are solved in terms of conserved quantities on the expanding portion of the de Sitter spacetime. (orig.)

  20. Channeling and coherent bremsstrahlung effects for relativistic positrons and electrons

    International Nuclear Information System (INIS)

    Walker, R.L.

    1976-01-01

    Channeling of positrons in single crystals of silicon was observed in transmission and scattering measurements for incident energies from 16 to 28 MeV. In addition, the spectral dependence upon crystal orientation of the forward coherent bremsstrahlung produced by beams of 28-MeV positrons and electrons incident upon a 5 μm thick single crystal of silicon was measured with a NaI photon spectrometer. Effects of channeling and perhaps of the nonvalidity of the first Born approximation were observed for beam directions near the [111] axis of the crystal, and coherent peaks near 0.5 MeV were observed for a compound interference direction, in agreement with first-order theoretical calculations. 32 fig

  1. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    Science.gov (United States)

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  2. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  3. Calculations of relativistic effects in atoms and molecules from the Schroedinger wave function

    International Nuclear Information System (INIS)

    Detrich, J.H.; Roothaan, C.C.J.

    1981-01-01

    The traditional method for dealing with relativistic effects in atoms and molecules consists of a somewhat heuristic combination of quantum electrodynamics and a many-electron quantum mechanics generalized from the one-electron Dirac theory. On the whole, results calculated from this theory agree with experimental data. Nevertheless, the theory is by no means entirely satisfactory; in its development, certain ambiguities and divergencies must be resolved by somewhat arbitrary and/or questionable means. This paper illuminates - and sidesteps - some of the more questionable aspects of the traditional method, by reformulating electromagnetic interactions between particles in a different way

  4. Relativistic effects in photoionization time delay near the Cooper minimum of noble-gas atoms

    Science.gov (United States)

    Saha, Soumyajit; Mandal, Ankur; Jose, Jobin; Varma, Hari R.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2014-11-01

    Time delay of photoemission from valence n s , n p3 /2 , and n p1 /2 subshells of noble-gas atoms is theoretically scrutinized within the framework of the dipole relativistic random phase approximation. The focus is on the variation of time delay in the vicinity of the Cooper minima in photoionization of the outer subshells of neon, argon, krypton, and xenon, where the corresponding dipole matrix element changes its sign while passing through a node. It is revealed that the presence of the Cooper minimum in one photoionization channel has a strong effect on time delay in other channels. This is shown to be due to interchannel coupling.

  5. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  6. A study of the collective effects in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Tai, A.

    1995-11-01

    Motivated by both the collective features observed in relativistic heavy ion reactions and the assumption that QCD vacuum might have properties similar to a type II superconductor we investigate in this thesis a few possible models which may work in an intermediate state corresponding to the vortex line states of the type II superconductor. In these models we assume that several strings from a relativistic heavy ion reaction will form a cluster and then the strings inside such a cluster will interact in a collective way. We argue that with an increasing energy density the hadronic phase may not be directly changed into the QGP phase through a phase transition, but will go through the intermediate state first. Whether the intermediate state can change further into a QGP state in which the strings 'melt' up into an extended flux tube may largely depend on the nature of the collective effects exhibited in this state. The investigations are proved quite successful in describing many experimental data including the high P T enhancement, the low P T enhancement, the production of transverse energy in mid-rapidity, the strangeness production and so on. It also brings up a more fundamental question, can we reach the energy density needed for the formation of a QGP state in the accelerator experiments? The collective effects, like Firecracker, Smokering and color rope which we study in this thesis are of the same character, they will all tend to disperse the energy density obtained in the initial encounter of relativistic heavy ion collisions. This dynamical possibility may actually mean that it will become more difficult to reach the second phase transition, i. e. to 'melt' the vacuum into a quark-gluon plasma. 56 refs

  7. Nuclear electric dipole moment with relativistic effects in Xe and Hg atoms

    International Nuclear Information System (INIS)

    Oshima, Sachiko; Fujita, Takehisa; Asaga, Tomoko

    2007-01-01

    The atomic electric dipole moment (EDM) is evaluated by considering the relativistic effects as well as nuclear finite size effects in Xe and Hg atomic systems. Due to Schiff's theorem, the first order perturbation energy of EDM is canceled out by the second order perturbation energy for the point nucleus. The nuclear finite size effects arising from the intermediate atomic excitations may be finite for deformed nucleus but it is extremely small. The finite size contribution of the intermediate nuclear excitations in the second order perturbation energy is completely canceled by the third order perturbation energy. As the results, the finite contribution to the atomic EDM comes from the first order perturbation energy of relativistic effects, and it amounts to around 0.3 and 0.4 percents of the neutron EDM d n for Xe and Hg, respectively, though the calculations are carried out with a simplified single-particle nuclear model. From this relation in Hg atomic system, we can extract the neutron EDM which is found to be just comparable with the direct neutron EDM measurement

  8. Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions

    Science.gov (United States)

    Jaiswal, Amaresh; Bhaduri, Partha Pratim

    2018-04-01

    We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.

  9. Influence of relativistic effect on chemical properties of element 104; Wplyw efektu relatywistycznego na wlasnosci chemiczne pierwiastka 104

    Energy Technology Data Exchange (ETDEWEB)

    Bilewicz, A.

    1997-12-31

    The influence of relativistic effect upon chemical properties of element 104 is discussed. An original method of measurements of adsorption on the surface of thin film of cobalt ferrocyanate was developed and applied for the studies of 104{sup 4+} hydrolysis. Results of this experiments indicate that in the Group 4 tendency to hydrolysis decreases in the order 104{sup 4+}>Zr{sup 4+}>Hf{sup 4+}. The results were explained on the basis of relativistic effect. Unexpected chemical properties of element 104 in aqueous solutions indicate, that due to relativistic effect element 104 differs distinctly from its congeners - Zr and Hf. In contrary it becomes similar to the lightest element in the Group, Ti, through atomic mass of latter is 213 unit less. (author). 119 refs, 22 figs, 7 tabs.

  10. Consideration of relativistic effects in band structure calculations based on the empirical tight-binding method

    International Nuclear Information System (INIS)

    Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.

    1988-01-01

    The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available

  11. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  12. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  13. Ab initio effective core potentials including relativistic effects. II. Potential energy curves for Xe2, Xe+2, and Xe*2

    International Nuclear Information System (INIS)

    Ermler, W.C.; Lee, Y.S.; Pitzer, K.S.; Winter, N.W.

    1978-01-01

    Potential energy curves for the ground 1 Σ + /sub g/ state of Xe 2 , the first four states of the Xe + 2 ions, and the eight Xe* 2 excimer states corresponding to the addition of a 6ssigma/sub g/ Rydberg electron to these ion cores have been computed using averaged relativistic effective core potentials (AREP) and the self-consistent field approximation for the valence electrons. The calculations were carried out using the LS-coupling scheme with the effects of spin--orbit coupling included in the resulting potential energy curves using an empirical procedure. A comparison of nonrelativistic and averaged relativistic EP's and subsequent molecular calculations indicates that relativistic effects arising from the mass--velocity and Darwin terms are not important for these properties of Xe 2 molecules. Spectroscopic constants for Xe + 2 are in good agreement with all electron CI calculations suggesting that the computed values for Xe* 2 excimers should be reliable. The lifetime for the O/sub u/ + state of the Xe 2 * is computed to be 5.6 nsec which is in the range of the experimentally determined values

  14. Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2016-03-15

    We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv{sub rel} right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv{sub rel} right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv{sub rel} right angle {sub nr} coinciding with the large x expansion of left angle σv{sub rel} right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v{sub rel}, showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)

  15. Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

    International Nuclear Information System (INIS)

    Cannoni, Mirco

    2016-01-01

    We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv rel right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv rel right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv rel right angle nr coinciding with the large x expansion of left angle σv rel right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v rel , showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)

  16. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  17. Photoelectric effect in the relativistic domain revealed by the time-reversed process for highly charged uranium ions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Mokler, P.H.; Kozhuharov, C.; Warczak, A.

    1996-10-01

    The photoelectric effect in the near relativistic energy regime of 80 to 350 keV is studied by the time-reversed process in ion-atom collisions, i.e. by the radiative capture of a quasi-free target electron. We review shell and subshell differential photon-angular distribution studies of radiative capture into highly-charged uranium ions. The experimental data are compared with exact relativistic calculations and give detailed insight into both the atomic structure of high-Z few-electron ions and into the fundamental electron-photon interaction process involved. In particular it is shown that the angular-differential measurements provide a unique method to study the magnetic interaction in relativistic electron-photon encoun- (orig.)

  18. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  19. Relativistic Anandan quantum phase and the Aharonov–Casher effect under Lorentz symmetry breaking effects in the cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Furtado, C., E-mail: furtado@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2016-09-15

    From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.

  20. Relativistic effects and primordial non-Gaussianity in the galaxy bias

    International Nuclear Information System (INIS)

    Bartolo, Nicola; Matarrese, Sabino; Riotto, Antonio

    2011-01-01

    When dealing with observables, one needs to generalize the bias relation between the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. We provide such relation at second-order in perturbation theory adopting the local Eulerian bias model and starting from the observationally motivated uniform-redshift gauge. Our computation includes the presence of primordial non-Gaussianity. We show that large scale-dependent relativistic effects in the Eulerian bias arise independently from the presence of some primordial non-Gaussianity. Furthermore, the Eulerian bias inherits from the primordial non-Gaussianity not only a scale-dependence, but also a modulation with the angle of observation when sources with different biases are correlated

  1. Three-body forces, relativistic effects, isobars, and pions in nuclear systems

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1983-01-01

    Conventional microscopic calculations in nuclear physics start from a nonrelativistic Hamiltonian. The many-body Schroedinger equation is then solved to obtain the ground state energy, wave function, and expectation values of other quantities of interest. Such a procedure gives a qualitative description of nuclear saturation properties, but it is now well established that the simple H is quantitatively inadequate. For example, the light nuclei are underbound with too large a charge radius, while nuclear matter is overbound at far too high a density. This note reviews recent studies that go beyond the simple H. These include 1) the introduction of three-nucleon potentials, 2) estimates of relativistic effects, 3) the introduction of isobar degrees of freedom in the two-body potential, and 4) probing the influence of pion degrees of freedom on nuclear systems

  2. Charge transfer and relativistic effects in the low-lying electronic states of CuCl, CuBr and CuI

    NARCIS (Netherlands)

    Sousa, C; de Jong, W.A.; Broer, R.; Nieuwpoort, WC

    1997-01-01

    The spectral transitions and the character of the low-lying excited states of the copper halides, CuX (X = Cl, Br, I) are studied by means of two different relativistic computational approaches. One is based on the CASSCF/CASPT2 approach with operators accounting for scalar relativistic effects

  3. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  4. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. A study on the effects of relativistic heavy charged particles on the cellular microenvironment

    Science.gov (United States)

    Costes, Sylvain Vincent

    This study was done under the National Aeronautics Space Administration (NASA) effort to assess the effect of cosmic radiation on astronauts during a 3 year mission to Mars. Carcinogenesis is known to be induced more efficiently by cosmic radiation. Our attention was turned towards one of the most efficient cosmic particles in inducing cancer, relativistic Fe, and focused in assessing its effect on the cellular microenvironment (ECM). Previous observations on mammary glands were showing irregularities in the immunoreactivity of the ECM protein laminin one hour after whole body irradiation with 1GeV/amu Fe ions for a dose of 0.8 Gy. This effect was not observed after 5 Gy γ-rays exposure. The rapidity of such a change suggested that the effect might be due to a physical event specific to relativistic charged particles (HZE), rather than a biological event. Our study showed that this effect is actually a complex and rapid response of the microenvironment to highly ionizing radiation. It involves a fast disruption of the basement membrane of the ECM induced by the highly localized ionization and reactive oxygen formation around the track of the Fe ion. This disruption triggers further chemical and biological responses involved in the remodeling of the laminin network in the basement membrane. A metalloproteinase is suspected to be the intermediate protease affecting laminin. The HZE effect on the microenvironment was seen in both mouse mammary glands and skin, but the laminin isoforms sensitive to Fe ions were different for each organ, with a clear disruption of laminin-1 network in skin and of laminin-5 in mammary glands. In addition, the laminin receptor integrins seem to be involved in this mechanism, but its contribution is unclear at this point. Finally, such studies suggest a shift from the concept of relative biological effectiveness (RBE) used in classical radiation biology since the effect is only seen with HZE at viable whole body doses. In addition, this

  6. Relativistic effects in bonding and dipole moments for the diatomic hydrides of the sixth-row heavy elements

    International Nuclear Information System (INIS)

    Ramos, A.F.; Pyper, N.C.; Malli, G.L.

    1988-01-01

    Ab initio Dirac-Fock (DF) and nonrelativistic-limit (NRL) wave functions and dipole moments are calculated to investigate the bonding characteristics and the relativistic effects in the systems HgH + , TlH, PbH + , and BiH. The dipole moment of AuH is evaluated using the DF self-consistent field and relativistic configuration-interaction wave functions obtained by G. L. Malli and N. C. Pyper [Proc. R. Soc. London, Ser. A 407, 377 (1986)]. Contour plots of relativistic molecular orbital densities and difference density maps are presented to illustrate the arrangement of electronic charge in these systems. It is found that the 5d orbitals are involved in the bonding of HgH + , whereas they do not play a significant role in TlH and PbH + . The relativistic calculations predict HgH + , TlH, and PbH + to be bound. The nonrelativistic-limit wave functions predict HgH + and BiH to be unbound but TlH and PbH + to be bound. It is also found that the calculated dipole moments using the DF and the NRL wave functions for these heavy systems differ significantly in magnitude, and in some cases even in the sign

  7. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  8. Manifestation of transient effects in fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    We examine the manifestation of transient effects in fission by analysing experimental data where fission is induced by peripheral heavy-ion collisions at relativistic energies. Available total nuclear fission cross sections of {sup 238}U at1.A GeV on gold and uranium targets are compared with a nuclear-reaction code, where transient effects in fission are modelled using different approximations to the numerical time-dependent fission-decay width: a new analytical description based on the solution of the Fokker-Planck equation and two widely used but less realistic descriptions, a step function and an exponential-like function. The experimental data are only reproduced when transient effects are considered. The deduced value of the dissipation strength {beta} depends strongly on the approximation applied for the time-dependent fission-decay width and is estimated to be of the order of 2 x 10{sup 21} s{sup -1}. A careful analysis sheds severe doubts on the use of the exponential-like in-growth function largely used in the past. Finally, we discuss which should be the characteristics of experimental observables to be most sensitive to transient effects in fission. (orig.)

  9. Gauge invariance and relativistic effects in X-ray absorption and scattering by solids

    International Nuclear Information System (INIS)

    Bouldi, N.; Brouder, C.

    2017-01-01

    There is an incompatibility between gauge invariance and the semi-classical time-dependent perturbation theory commonly used to calculate light absorption and scattering cross-sections. There is an additional incompatibility between perturbation theory and the description of the electron dynamics by a semi-relativistic Hamiltonian. In this paper, the gauge-dependence problem of exact perturbation theory is described, the proposed solutions are reviewed and it is concluded that none of them seems fully satisfactory. The problem is finally solved by using the fully relativistic absorption and scattering cross-sections given by quantum electrodynamics. Then, a new general Foldy-Wouthuysen transformation is presented. It is applied to the many-body case to obtain correct semi-relativistic transition operators. This transformation considerably simplifies the calculation of relativistic corrections. In the process, a new light-matter interaction term emerges, called the spin-position interaction, that contributes significantly to the magnetic X-ray circular dichroism of transition metals. We compare our result with the ones obtained by using several semi-relativistic time-dependent Hamiltonians. In the case of absorption, the final formula agrees with the result obtained from one of them. However, the correct scattering cross-section is not given by any of the semi-relativistic Hamiltonians. (authors)

  10. Relativistic electron-atom scattering in an extremely powerful laser field: Relevance of spin effects

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2002-01-01

    We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in an extremely powerful electromagnetic plane wave of frequency ω and linear polarization ε. Since to a first order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the first-order Born approximation can be employed to represent the corresponding scattering matrix element. We compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from both approximations, for various parameter values and angular configurations and we find that in most cases the spin effects are marginal, even at very high laser power. On the other hand, we recover the various asymmetries in the angular distributions of the scattered electrons and their respective energies due to the laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming the findings of our previous work [Phys. Rev. A 59, 2105 (1999); Laser Physics 10, 163 (2000)

  11. NATO Advanced Study Institute on Relativistic and Electron Correlation Effects in Molecules and Solids

    CERN Document Server

    1994-01-01

    The NATO Advanced Study Institute (ASI) on "R@lativistic and Electron Correlation Effects in Molecules and Solids", co-sponsored by Simon Fraser University (SFU) and the Natural Sciences and Engineering Research Council of Canada (NSERC) was held Aug 10- 21, 1992 at the University of British Columbia (UBC), Vancouver, Canada. A total of 90 lecturers and students with backgrounds in Chemistry, Physics, Mathematics and various interdisciplinary subjects attended the ASI. In my proposal submitted to NATO for financial support for this ASI, I pointed out that a NATO ASI on the effects of relativity in many-electron systems was held ten years ago, [See G.L. Malli, (ed) Relativistic Effects in Atoms, Molecules and Solids, Plenum Press, Vol B87, New York, 1983]. Moreover, at a NATO Advanced Research Workshop (ARW) on advanced methods for molecular electronic structure "an assessment of state-of­ the-art of Electron Correlation ... " was carried out [see C.E. Dykstra, (ed), Advanced Theories and Computational Approa...

  12. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  13. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  14. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  15. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  16. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  17. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  18. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  19. Resonance effects in projectile-electron loss in relativistic collisions with excited atoms

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2005-01-01

    The theory of electron loss from projectile-ions in relativistic ion-atom collisions is extended to the case of collisions with excited atoms. The main feature of such collisions is a resonance which can emerge between electron transitions in the ion and atom. The resonance becomes possible due to the Doppler effect and has a well-defined impact energy threshold. In the resonance case, the ion-atom interaction is transmitted by the radiation field and the range of this interaction becomes extremely long. Because of this the presence of other atoms in the target medium and the size of the space occupied by the medium have to be taken into account and it turns out that microscopic loss cross sections may be strongly dependent on such macroscopic parameters as the target density, temperature and size. We consider both the total and differential loss cross sections and show that the resonance can have a strong impact on the angular and energy distributions of electrons emitted from the projectiles and the total number of electron loss events

  20. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  1. On quantum effects in spontaneous emission by a relativistic electron beam in an undulator

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-02-15

    Robb and Bonifacio (2011) claimed that a previously neglected quantum effect results in noticeable changes in the evolution of the energy distribution associated with spontaneous emission in long undulators. They revisited theoretical models used to describe the emission of radiation by relativistic electrons as a continuous diffusive process, and claimed that in the asymptotic limit for a large number of undulator periods the evolution of the electron energy distribution occurs as discrete energy groups according to Poisson distribution. We show that these novel results have no physical sense, because they are based on a one-dimensional model of spontaneous emission and assume that electrons are sheets of charge. However, electrons are point-like particles and, as is well-known, the bandwidth of the angular-integrated spectrum of undulator radiation is independent of the number of undulator periods. If we determine the evolution of the energy distribution using a three-dimensional theory we find the well-known results consistent with a continuous diffusive process. The additional pedagogical purpose of this paper is to review how quantum diffusion of electron energy in an undulator with small undulator parameter can be simply analyzed using the Thomson cross-section expression, unlike the conventional treatment based on the expression for the Lienard-Wiechert fields. (orig.)

  2. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  3. Near-threshold photoionization of the Xe 3d spin-orbit doublet: Relativistic, relaxation, and intershell interaction effects

    International Nuclear Information System (INIS)

    Radojevic, V.; Davidovic, D.M.; Amusia, M.Ya.

    2003-01-01

    Results of calculations of the near-threshold photoionization of the xenon 3d spin-orbit doublet are reported. Our theoretical analysis is undertaken in order to interpret and enlighten the very detailed measurements of this process [A. Kivimaeki et al., Phys. Rev. A 63, 012716 (2001)], which revealed a previously unobserved interesting feature--an additional broad maximum--in the partial xenon 3d 5/2 cross section. This double maximum was not produced by earlier calculations, except in the recent study by Amusia et al. [Phys. Rev. Lett. 88, 093002 (2002)], which, in contrast to the present one, is not ab initio and relativistic in character. The partial photoionization cross sections of 3d 5/2 and 3d 3/2 subshells, photoelectron anisotropy parameters, and spin-polarization parameters that were so far not studied either experimentally or theoretically are calculated. Many-electron correlations, relativistic effects, and relaxation effects of the ionic core in the ionization process are taken into account by using the relativistic random-phase approximation, modified to include the relaxation of the considered subshell

  4. THE EFFECT OF COOLING ON PARTICLE TRAJECTORIES AND ACCELERATION IN RELATIVISTIC MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Daniel; Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Piran, Tsvi, E-mail: daniel.kagan@mail.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2016-12-20

    The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle during acceleration. Using the calculated distribution of this average magnetic field as a function of uncooled final particle energy, we find analytically that cooling does not affect power-law particle energy spectra except at energies far above the synchrotron burnoff limit. Finally, we compare fully cooled and uncooled simulations of reconnection, confirming that the synchrotron burnoff limit does not produce a cutoff in the particle energy spectrum. Our results indicate that the TPC method accurately predicts the effects of cooling on particle acceleration in relativistic reconnection, and that, even far above the burnoff limit, the synchrotron energy of radiation produced in reconnection is not limited by cooling.

  5. THE EFFECT OF COOLING ON PARTICLE TRAJECTORIES AND ACCELERATION IN RELATIVISTIC MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle during acceleration. Using the calculated distribution of this average magnetic field as a function of uncooled final particle energy, we find analytically that cooling does not affect power-law particle energy spectra except at energies far above the synchrotron burnoff limit. Finally, we compare fully cooled and uncooled simulations of reconnection, confirming that the synchrotron burnoff limit does not produce a cutoff in the particle energy spectrum. Our results indicate that the TPC method accurately predicts the effects of cooling on particle acceleration in relativistic reconnection, and that, even far above the burnoff limit, the synchrotron energy of radiation produced in reconnection is not limited by cooling.

  6. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  7. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  8. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  9. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  10. The Nustar Spectrum of Mrk 335: Extreme Relativistic Effects Within Two Gravitational Radii of the Event Horizon?

    Science.gov (United States)

    Parker, M. L.; Wilkins, D. R.; Fabian, A. C.; Grupe, D.; Dauser, T.; Matt, G.; Harrison, F. A.; Brenneman, L.; Boggs, S. E.; Christensen, F. E.; hide

    2014-01-01

    We present 3-50 keV NuSTAR observations of the active galactic nuclei Mrk 335 in a very low flux state. The spectrum is dominated by very strong features at the energies of the iron line at 5-7 keV and Compton hump from 10-30 keV. The source is variable during the observation, with the variability concentrated at low energies, which suggesting either a relativistic reflection or a variable absorption scenario. In this work, we focus on the reflection interpretation, making use of new relativistic reflection models that self consistently calculate the reflection fraction, relativistic blurring and angle-dependent reflection spectrum for different coronal heights to model the spectra. We find that the spectra can be well fitted with relativistic reflection, and that the lowest flux state spectrum is described by reflection alone, suggesting the effects of extreme light-bending occurring within approx. 2 gravitational radii (RG) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 RG as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3(sigma) confidence level. By adding a spin-dependent upper limit on the reflection fraction to our models, we demonstrate that this can be a powerful way of constraining the spin parameter, particularly in reflection dominated states. We also calculate a detailed emissivity profile for the iron line, and find that it closely matches theoretical predictions for a compact source within a few RG of the black hole.

  11. Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms

    Directory of Open Access Journals (Sweden)

    M. Fukata

    2002-07-01

    Full Text Available During the recovery phase of geomagnetic storms, the flux of relativistic (>2 MeV electrons at geosynchronous orbits is enhanced. This enhancement reaches a level that can cause devastating damage to instruments on satellites. To predict these temporal variations, we have developed neural network models that predict the flux for the period 1–12 h ahead. The electron-flux data obtained during storms, from the Space Environment Monitor on board a Geostationary Meteorological Satellite, were used to construct the model. Various combinations of the input parameters AL, SAL, Dst and SDst were tested (where S denotes the summation from the time of the minimum Dst. It was found that the model, including SAL as one of the input parameters, can provide some measure of relativistic electron-flux prediction at geosynchronous orbit during the recovery phase. We suggest from this result that the relativistic electron-flux enhancement during the recovery phase is associated with recurring substorms after Dst minimum and their accumulation effect.Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storms and substorms

  12. Stabilization effect of a strong HF electrical field on beam-plasma interaction in a relativistic plasma waveguide

    International Nuclear Information System (INIS)

    El-Shorbagy, K.H.

    2000-07-01

    The influence effect of a strong HF electrical field on the excitation of surface waves by an electron beam under the development of instability of low-density electron beam passing through plane relativistic plasma is investigated. Starting from the two fluid plasma model we separate the problem into two parts. The 'temporal' (dynamical) part enables us to find the frequencies and growth rates of unstable waves. This part within the redefinition of natural (eigen) frequencies coincide with the system describing HF suppression of the Buneman instability in a uniform unbounded plasma. Natural frequencies of oscillations and spatial distribution of the amplitude of the self-consistent electrical field are obtained by solving a boundary value problem ('spatial' part) considering a specific spatial distribution of plasma density. Plasma electrons are considered to have a relativistic velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a relativistic plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to nonrelativistic plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)

  13. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    International Nuclear Information System (INIS)

    Hafeez-Ur-Rehman; Mahmood, S.; Shah, Asif; Haque, Q.

    2011-01-01

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  14. First, second and fourth sound in relativistic superfluidity theory with account for dissipative effects

    International Nuclear Information System (INIS)

    Vyil'chins'kij, S.Yi.

    1993-01-01

    The equations describing the propagation of the first, second and fourth sound in the relativistic theory of superfluidity are derived with account for dissipation. The expressions for the velocity of the first, second and fourth sound are obtained. (author). 4 refs

  15. Compression-amplified EMIC waves and their effects on relativistic electrons

    International Nuclear Information System (INIS)

    Li, L. Y.; Yu, J.; Cao, J. B.; Yuan, Z. G.

    2016-01-01

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R E ). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT 2 /Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT 2 /Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  16. Compression-amplified EMIC waves and their effects on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn; Yu, J.; Cao, J. B. [School of Space and Environment, Beihang University, Beijing (China); Yuan, Z. G. [School of Electronic Information, Wuhan University, Wuhan (China)

    2016-06-15

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  17. Effects of anisotropy on gravitational infall in galaxy clusters using an exact general relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Troxel, M.A.; Peel, Austin; Ishak, Mustapha, E-mail: troxel@utdallas.edu, E-mail: austin.peel@utdallas.edu, E-mail: mishak@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX, 75083 (United States)

    2013-12-01

    We study the effects and implications of anisotropies at the scale of galaxy clusters by building an exact general relativistic model of a cluster using the inhomogeneous and anisotropic Szekeres metric. The model is built from a modified Navarro-Frenk-White (NFW) density profile. We compare this to a corresponding spherically symmetric structure in the Lemaȋtre-Tolman (LT) model and quantify the impact of introducing varying levels of anisotropy. We examine two physical measures of gravitational infall — the growth rate of density and the velocity of the source dust in the model. We introduce a generalization of the LT dust velocity profile for the Szekeres metric and demonstrate its consistency with the growth rate of density. We find that the growth rate of density in one substructure increases by 0.5%, 1.5%, and 3.75% for 5%, 10%, and 15% levels of introduced anisotropy, which is measured as the fractional displaced mass relative to the spherically symmetric case. The infall velocity of the dust is found to increase by 2.5, 10, and 20 km s{sup −1} (0.5%, 2%, and 4.5%), respectively, for the same three levels of anisotropy. This response to the anisotropy in a structure is found to be strongly nonlinear with respect to the strength of anisotropy. These relative velocities correspond to an equivalent increase in the total mass of the spherically symmetric structure of 1%, 3.8%, and 8.4%, indicating that not accounting for the presence of anisotropic mass distributions in cluster models can strongly bias the determination of physical properties like the total mass.

  18. Evaluating the Role and Effects of Precipitation on Relativistic Electron Losses during Storms

    Science.gov (United States)

    Chen, Y.; Fu, X.

    2016-12-01

    Theoretic studies have suggested that during storm times various waves (e.g., whistler-mode chorus and electromagnetic ion cyclotron waves) can cause significant precipitation of relativistic ( MeV) electrons that are originally trapped inside the outer radiation belt. However, the role of precipitation and its quantitative contribution to the losses of outer-belt electrons remain open questions. In this study, we tackle these questions by systemically examining the latest wave and electron in-situ, simultaneous observations made at different altitudes by Van Allen Probes from near equator, NOAA POES at low Earth orbits near/across electron loss cone, and BARREL under the mesosphere. After calibrating with DEMTER observations, we first confirm and quantify the response of POES MEPED proton channels to MeV electrons. Next, we identify a list of precipitation events from BARREL and POES measurements, examine the temporal adn spatial relation between the two data sets, and estimate the intensities of electron precipitation with ascertained uncertainties. Then, from Van Allen Probes data, we select another list of dropout events during storms. By cross checking the above two lists, we are able to determine the causal relation between precipitation and dropouts through individual case as well as statistical studies so as to quantify the contributions from precipitation. This study mainly focuses on the relatively small L-shells with positive phase space density radial gradient in order to alleviate the impacts from outward radial diffusion and adiabatic effects. Based upon the recent discovery of cross-energy cross-pitch angle coherence, we pay particular attention to the cross-term diffusions which may account for the extra "loss" needed by observed MeV electron dropouts. Results from this observational study will advance our knowledge on the loss mechanism of outer-belt electrons, and thus lay down another stepping stone towards high-fidelity physics-based models for

  19. Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas-Kroll, and Dirac-Hartree-Fock response theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Schimmelpfennig, Bernd; Ruud, Kenneth

    2002-01-01

    A systematic investigation of a hierarchy of methods for including relativistic effects in the calculation of linear and nonlinear optical properties was carried out. The simple ECP method and the more involved spin-averaged Douglas-Kroll approximation were compared to benchmark results obtained...

  20. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  1. About effect of the Ramsauer-Townsend type at scattering of relativistic electrons by crystal atomic string

    International Nuclear Information System (INIS)

    Shul'ga, N.F.; Truten', V.I.

    1999-01-01

    It is shown that a considerable decrease in a total cross-section of the elastic scattering of relativistic electrons by a crystal atomic string can take place at certain values of particle incidence angles. This effect is similar to the Ramsauer-Townsend effect of slow electrons scattering by an atom. It is shown that the decrease in the angle of particles incidence on the atomic string essentially changes the process of particles scattering. The phenomena of the particle rainbow scattering and orbiting may occur in this case. 14 refs., 5 figs

  2. The effects of relativistic and non-local non-linearities on modulational instabilities in non-uniform plasma

    International Nuclear Information System (INIS)

    Mohamed, B.F.; El-Shorbagy, Kh.H.

    2000-01-01

    A general detailed analysis for the nonlinear generation of localized fields due to the existence of a strong pump field inside the non-uniform plasma has been considered. We have taken into account the effects of relativistic and non-local nonlinearities on the structure of plasma resonance region. The nonlinear Schrodinger equation described the localized fields are investigated. Besides, the generalized dispersion relation is obtained to study the modulational instabilities in different cases. Keywords: Wave-plasma interaction, Nonlinear effects, Modulation instabilities

  3. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  4. Spin currents, relativistic effects and the Darwin interaction in the theory of hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2005-01-01

    The existence of macroscopic spin currents in the ground state of superconductors is predicted within the theory of hole superconductivity. Here it is shown that the electromagnetic Darwin interaction is attractive for spin currents and repulsive for charge currents. It is also shown that the mere existence of spin currents implies that some electrons are moving at relativistic speeds in macroscopic superconductors, which in turn implies that the Darwin interaction plays a fundamental role in stabilizing the superconducting state

  5. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  6. Finite geometry effects on the stability of a charged beam propagating through a relativistic annular electron beam

    International Nuclear Information System (INIS)

    Ganguli, G.; Palmadesso, P.

    1984-01-01

    Finite geometry effects on the stability properties of a charged beam propagating through an intense relativistic annular electron beam have been studied. The stability of the system under transverse oscillation has been examined in detail in a parameter domain pertinent to the collective particle accelerator, currently under development at the Naval Research Laboratory. Both the normal mode and the convective aspects of this instability have been investigated. Despite a substantial temporal growth rate as predicted by the normal mode approach, this instability does not prevent successful acceleration of a portion of the axial beam. Thus the transverse oscillation is not fatal to the collective particle accelerator operation

  7. Sorting chromatic sextupoles for easily and effectively correcting second order chromaticity in the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Luo, Y.; Tepikian, S.; Fischer, W.; Robert-Demolaize, G.; Trbojevic, D.

    2009-01-01

    Based on the contributions of the chromatic sextupole families to the half-integer resonance driving terms, we discuss how to sort the chromatic sextupoles in the arcs of the Relativistic Heavy Ion Collider (RHIC) to easily and effectively correct the second order chromaticities. We propose a method with 4 knobs corresponding to 4 pairs of chromatic sextupole families to online correct the second order chromaticities. Numerical simulation justifies this method, showing that this method reduces the unbalance in the correction strengths of sextupole families and avoids the reversal of sextupole polarities. Therefore, this method yields larger dynamic apertures for the proposed RHIC 2009 100GeV polarized proton run lattices

  8. Charge Dependence and Electric Quadrupole Effects on Single-Nucleon Removal in Relativistic and Intermediate Energy Nuclear Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Single nucleon removal in relativistic and intermediate energy nucleus-nucleus collisions is studied using a generalization of Weizsacker-Williams theory that treats each electromagnetic multipole separately. Calculations are presented for electric dipole and quadrupole excitations and incorporate a realistic minimum impact parameter, Coulomb recoil corrections, and the uncertainties in the input photonuclear data. Discrepancies are discussed. The maximum quadrupole effect to be observed in future experiments is estimated and also an analysis of the charge dependence of the electromagnetic cross sections down to energies as low as 100 MeV/nucleon is made.

  9. Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S. D., E-mail: sdpatilphy@gmail.com [Department of Physics, Devchand College, Arjunnagar, Dist.: Kolhapur 591 237 (India); Takale, M. V. [Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2016-05-06

    This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.

  10. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  11. Effects of acid rain

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The ecological problems that are caused by sulfur pollution in Scandinavia are addressed. Subsequent chemical and physical transformations that the pollutants undergo in the atmosphere are included. The effects of pollutants on soil nutrients, with consequences mainly for forest production, are discussed. Other effects include acidification of lakes and rivers, resulting in decreased fish production. The size of the drop in pH is quite substantial in some of the lakes. The decreased pH has an immediate effect on the change in species composition of fish populations, such as trout and salmon. Efforts to reduce sulfur pollution are discussed. A long term program for the reduction of sulfur in fuel oil has been introduced. At present, there is a ban on the use of oil containing more then 2.5% S (by weight). A further ban on oil containing more than 1% sulfur is in effect in the three major urban areas of Sweden as well as a number of counties. It has been urged by environmental health authorities that in urban pollution control sulfur should be regarded as an indicator of pollutions and not be dealt with as an isolated problem.

  12. How computational methods and relativistic effects influence the study of chemical reactions involving Ru-NO complexes?

    Science.gov (United States)

    Orenha, Renato Pereira; Santiago, Régis Tadeu; Haiduke, Roberto Luiz Andrade; Galembeck, Sérgio Emanuel

    2017-05-05

    Two treatments of relativistic effects, namely effective core potentials (ECP) and all-electron scalar relativistic effects (DKH2), are used to obtain geometries and chemical reaction energies for a series of ruthenium complexes in B3LYP/def2-TZVP calculations. Specifically, the reaction energies of reduction (A-F), isomerization (G-I), and Cl - negative trans influence in relation to NH 3 (J-L) are considered. The ECP and DKH2 approaches provided geometric parameters close to experimental data and the same ordering for energy changes of reactions A-L. From geometries optimized with ECP, the electronic energies are also determined by means of the same ECP and basis set combined with the computational methods: MP2, M06, BP86, and its derivatives, so as B2PLYP, LC-wPBE, and CCSD(T) (reference method). For reactions A-I, B2PLYP provides the best agreement with CCSD(T) results. Additionally, B3LYP gave the smallest error for the energies of reactions J-L. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  14. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    Cytotoxic effect of betulinic acid and betulinic acid acetate isolated from Melaleuca cajuput on human myeloid leukemia (HL-60) cell line. ... The cytotoxic effect of betulinic acid (BA), isolated from Melaleuca cajuput a Malaysian plant and its four synthetic derivatives were tested for their cytotoxicity in various cell line or ...

  15. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  16. Application of an effective gauge-invariant model to nuclear matter in the relativistic Hartree-Fock approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)

    2001-02-01

    An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)

  17. Effective stopping of relativistic structural heavy ions at collisions with atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2002-01-01

    One develops the unperturbed theory of energy losses at collision of atoms with structural high-charged heavy ions moving with relativistic velocity. One derived a simple formula for efficient braking. The structural ions in terms of this paper are considered to mean partially ionized ions of heavy elements compressing ion nucleus and some bound electrons compensating partially for ion nucleus charge. Account of ion charge magnitude is determined to result in essential increase of efficient braking of ion in contrast to braking of point nucleus of Z* charge [ru

  18. Relativistic effects in the calibration of electrostatic electron analyzers. I. Toroidal analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Keski Rahkonen, O [Helsinki University of Technology, Espoo (Finland). Laboratory of Physics; Krause, M O [Oak Ridge National Lab., Tenn. (USA)

    1978-02-01

    Relativistic correction terms up to the second order are derived for the kinetic energy of an electron travelling along the circular central trajectory of a toroidal analyzer. Furthermore, a practical energy calibration equation of the spherical sector plate analyzer is written for the variable-plate-voltage recording mode. Accurate measurements with a spherical analyzer performed using kinetic energies from 600 to 2100 eV are in good agreement with this theory showing our approximation (neglect of fringing fields, and source and detector geometry) is realistic enough for actual calibration purposes.

  19. Beyond the hall effect: pratical engineering from relativistic quantum field theory

    International Nuclear Information System (INIS)

    Srivastava, Y.

    1986-01-01

    The author discusses the successful microscopic relativistic quantum field theory viz., quantum electrodynamic (QED) as applied to condensed matter systems. A circuit version of the Heisenberg argument is presented to show that the electric and magnetic flux cannot be measured simultaneously if the usual position/momentum uncertainty of a charged particle confined in a circuit is to be preserved. The author suggests that the electronic transport of a microchip itself obeys some of the same field equations for QED in particular. A comparative list is presented

  20. Calculation of high power relativistic beams with consideration of collision effects

    International Nuclear Information System (INIS)

    Sveshnikov, V.M.

    1986-01-01

    This paper considers the numerical calculation of relativistic charged particle beams moving in axisymmetric systems in which the presence of a residual neutral gas is possible. It is essential to consider phenomena related to collisions between charged particles and neutrals. Algorithms are constructed for numerical modeling of ionization processes within the framework of the ERA program complex. Solutions of model and practical problems are presented as examples. Such problems were studied where ionization processes were considered by a more complex method requiring a greater volume of calculations but valid at lower pressures

  1. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  2. Relativistic acceleration and retardation effects on photoemission of intense electron short pulses, in RF-FEL photoinjectors

    International Nuclear Information System (INIS)

    Dolique, J.M.; Coacolo, M.

    1991-01-01

    In high-power free electron lasers, self-field effects in the electron beam are often the most important phenomenon on which the beam quality depends. These effects are generally conceived as space-charge effects, and described by a Poisson equation in a beam frame. In RF-FEL photoinjectors, the electrons of the intense short pulse produced by laser irradiation are submitted, just after their photoemission, to such a strong acceleration that relativistic acceleration and retardation effects are discussed, from the rigorous calculation of the Lienard-Wiechert velocity- and acceleration electric and magnetic fields, as a function of RF-electric field and beam parameters. The beam pulse is assumed to be axisymmetric, with a constant photoemitted current density. Consequences for the maximum current density that can be extracted are considered (the 'self-field limit,' a name more appropriate than 'space-charge limit' for the present conditions where electro-dynamic phenomena play an important role)

  3. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben; Hamid, Mohamed Ali

    2015-01-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H 3 PO 4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid. (paper)

  4. Co-C Dissociation of Adenosylcobalamin (Coenzyme B-12): Role of Dispersion, Induction Effects, Solvent Polarity, and Relativistic and Thermal Corrections

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    for dispersion, relativistic effects, solvent polarity, basis set superposition error, and thermal and vibrational effects were investigated, totaling more than SSO single-point energies for the large model. The results show immense variability depending on method, including solvation, functional type...

  5. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  6. The impact of kinetic effects on the properties of relativistic electron–positron shocks

    International Nuclear Information System (INIS)

    Stockem, Anne; Fiúza, Frederico; Fonseca, Ricardo A; Silva, Luis O

    2012-01-01

    We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first-principles particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease in the upstream bulk speed result in deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time. (paper)

  7. Effects of the electron's anomaly in relativistic laser-assisted Mott scattering

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J.M.; Tetchou Nganso, H.M.; Kwato Njock, M.G.

    2006-02-01

    We investigate the influence of the electron's anomalous magnetic moment on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. For this purpose, we use the Coulomb-Dirac-Volkov and the Dirac-Volkov functions with the electron's anomaly to describe the initial and final states respectively. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for linearly polarized laser light. Numerical calculations are carried out for various parameters values (i.e. scattering angle, the nucleus charge, photon energy, electrical field) and are compared with results obtained by Li et al. It is found that for parameters used in the present work, incorporating the anomaly of the electron in the initial and final states yields cross sections which are strongly modified whatever the scattering geometry, as compared to the outcome of the previous treatment. (author)

  8. High-Frequency H-1 NMR Chemical Shifts of Sn-II and Pb-II Hydrides Induced by Relativistic Effects: Quest for Pb-II Hydrides

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 20 (2016), s. 10302-10309 ISSN 0020-1669 Institutional support: RVO:61388963 Keywords : hydrides of TlI and PbII * high-frequency 1H chemical shifts * relativistic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  9. High-Frequency C-13 and Si-29 NMR Chemical Shifts in Diamagnetic Low-Valence Compounds of TII and Pb-II: Decisive Role of Relativistic Effects

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Marek, R.; Straka, Michal

    2016-01-01

    Roč. 55, č. 4 (2016), s. 1770-1781 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : high-frequency NMR chemical shifts * HALA effect * relativistic DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.857, year: 2016

  10. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: Real-time synchrotron simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, Erik [Department of Physics, Umeå University, SE–901 87 Umeå (Sweden); Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden); Gonoskov, Arkady [Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden); Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Marklund, Mattias [Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden)

    2015-03-15

    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.

  11. Relativistic effects in the energy loss of a fast charged particle moving parallel to a two-dimensional electron gas

    Science.gov (United States)

    Mišković, Zoran L.; Akbari, Kamran; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-05-01

    We present a fully relativistic formulation for the energy loss rate of a charged particle moving parallel to a sheet containing two-dimensional electron gas, allowing that its in-plane polarization may be described by different longitudinal and transverse conductivities. We apply our formulation to the case of a doped graphene layer in the terahertz range of frequencies, where excitation of the Dirac plasmon polariton (DPP) in graphene plays a major role. By using the Drude model with zero damping we evaluate the energy loss rate due to excitation of the DPP, and show that the retardation effects are important when the incident particle speed and its distance from graphene both increase. Interestingly, the retarded energy loss rate obtained in this manner may be both larger and smaller than its non-retarded counterpart for different combinations of the particle speed and distance.

  12. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  13. Inner-shell ionization of heavy atoms by slow ions. A study of electronic relativistic effects and projectile Coulomb deflection in the Semiclassical Approximation

    International Nuclear Information System (INIS)

    Amundsen, P.A.

    1978-08-01

    Several investigations have been made on K and L shell ionization of the heavy collision partner in slow asymmetric collisions based on the SCA. The use of the SCA can only be defended for slow collisions if the projectile has a charge much less than the target. Thus this approximation should first be tested for proton impact on very heavy target elements. For these elements the inner shell electrons move sufficiently fast for a relativistic description to be mandatory. These relativistic effects are in themselves of some interest, as they can be quite large. After discussion of the formulation of the SCA used throughout this work, a further introduction is given on relativistic effects in Coulomb ionisation. Two papers on electronic relativistic effects in K and L shell ionization follow. The next two papers discuss calculations with an exact Coulomb projectile path. The latter of these also touches upon the inclusion of corrections to the SCA from terms beyond first order perturbation theory. In the last paper of this thesis it is shown how the theoretical apparatus developed for the SCA- calculations can immediately be used also for making calculations of more symmetric systems with the Briggs model. Thus, at least for direct ionization in very slow collisions a unification of the SA and MO approaches has apparently been reached. (JIW)

  14. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    Science.gov (United States)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing

  15. Theoretical considerations concerning the effect of relativistic velocities on the rate of biological processes.

    Science.gov (United States)

    Heneine, I F

    1997-06-01

    Theoretical considerations were advanced on the reaction rate of biological systems in a rocket accelerated at fractional levels of the velocity of light. The values of mass increase in reacting molecules and length contraction of space under these relativistic velocities attained by the hypothetical rocket were inserted in equations of the absolute reaction rate theory. The equations employed were for the frequency of collisions, and for the internal kinetic energy of molecular reactions. Results of both sets of equations indicated that reduction of reaction rates were correlated to the mass increase. This would imply a general slowing of all chemical, biochemical and biological processes taking place. A human would suffer a related decrease in metabolic rate. Contrary to what is generally accepted, the biological aging of the space traveler under velocities bearable by humans, namely under 0.50c, would follow a pace very similar to that of an observer remaining in the resting frame of reference. With increased increments of the velocity, the space traveler would display a more intense lowering of the metabolic rate, with signs and symptoms comparable to body core hypothermia. Metabolic rates at insufficient levels to maintain the vital functions would be attained at 0.70c and higher, leading swiftly to coma and death. The presence of an endocrine dysfunction such as hypothyroidism or obesity in the space traveler would aggravate the signs and symptoms. Space travel at efficient velocities would be unbearable for a warm-blooded animal.

  16. Two-dimensional and relativistic effects in lower-hybrid current drive

    International Nuclear Information System (INIS)

    Hewett, D.; Hizanidis, K.; Krapchev, V.; Bers, A.

    1983-06-01

    We present new numerical and analytic solutions of the two-dimensional Fokker-Planck equation supplemented by a parallel quasilinear diffusion term. The results show a large enhancement of the perpendicular temperature of both the electrons resonant with the applied RF fields and the more energetic electrons in the tail. Both the RF-generated current and power dissipated are substantially increased by the perpendicular energy broadening in the resonant region. In the presence of a small DC electric field the RF current generated is very much enhanced, much more than in a simple additive fashion. In addition, we present a relativistic formulation of the two-dimensional Fokker-Planck quasilinear equation. From conservation equations, based upon this formulation, we derive the characteristics of RF current drive with energetic electrons. These show how the RF-driven current and its figure of merit (I/P/sub d/) increase with the energy of the current-carrying electrons, and that their perpendicular, random momentum must also increase

  17. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied

  18. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  19. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... Betulinic acid acetate (BAAC) was most effective than other betulinic acid derivatives. It had most ... blastoma (Schmidt et al., 1997), malignant brain tumor .... 96 well plate and incubated in 37oC, 5% CO2 and 90% humidity.

  20. New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars

    Science.gov (United States)

    Kumar, Bharat; Patra, S. K.; Agrawal, B. K.

    2018-04-01

    We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state properties of superheavy nuclei (Z =120 ), it is noticed that considerable shell gaps appear at neutron numbers N =172 , 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and leptons in β -equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722, 33 (2010), 10.1088/0004-637X/722/1/33] and Nättilä [Astron. Astrophys. 591, A25 (2016), 10.1051/0004-6361/201527416]. Based on the recent observation of GW170817 with a quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018), 10.3847/2041-8213/aaa401] have set a limit for the maximum mass that can be supported against gravity by a nonrotating neutron star in the range 2.01 ±0.04 ≲M (M⊙)≲2.16 ±0.03 . We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15 M⊙ . The radius and tidal deformability of a canonical neutron star of mass 1.4 M⊙ are 13.2 km and 3.9 ×1036g cm2s2 , respectively.

  1. The effects of structure anisotropy on lensing observables in an exact general relativistic setting for precision cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Troxel, M. A.; Ishak, Mustapha; Peel, Austin, E-mail: troxel@utdallas.edu, E-mail: mishak@utdallas.edu, E-mail: austin.peel@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX 75080 (United States)

    2014-03-01

    The study of relativistic, higher order, and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are thus naturally included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observables like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of such clusters. The resulting relative difference in various geometries can be as large as approximately 2%, 8%, and 24% in the measure of convergence (1−κ) for levels of anisotropy of 5%, 10%, and 15%, respectively, as a fraction of total cluster mass. For the total magnitude of shear, the relative difference can grow near the center of the structure to be as large as 15%, 32%, and 44% for the same levels of anisotropy, averaged over the two extreme geometries. The convergence is impacted most strongly for rays which pass in directions along the axis of maximum dipole anisotropy in the structure, while the shear is most strongly impacted for rays which pass in directions orthogonal to this axis, as expected. The rich features found in the lensing signal due to anisotropic substructure are nearly entirely lost when one treats the cluster in the traditional FLRW lensing framework. These effects due to anisotropic structures are thus likely to

  2. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  3. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  4. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.

    Science.gov (United States)

    Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2012-06-14

    The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound

  5. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  6. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  7. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches

    Czech Academy of Sciences Publication Activity Database

    Vícha, J.; Novotný, J.; Straka, Michal; Repisky, M.; Ruud, K.; Komorovsky, S.; Marek, R.

    2015-01-01

    Roč. 17, č. 38 (2015), s. 24944-24955 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : NMR chemical shifts * transition metal complexes * relativistic effects * method calibration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04214c

  8. Space-time Dependency of the Time and its Effect on the Relativistic Classical Equation of the String Theory

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2017-01-01

    In special relativity theory, time dilates in velocity of near light speed. Also based on ``Substantial motion'' theory of Sadra, relative time (time flux); R = f (mv , σ , τ) , for each atom is momentum of its involved fundamental particles, which is different from the other atoms. In this way, for modification of the relativistic classical equation of string theory and getting more precise results, we should use effect of dilation and contraction of time in equation. So we propose to add two derivatives of the time's flux to the equation as follows: n.tp∂/R ∂ τ +∂2Xμ/(σ , τ) ∂τ2 = n .tp (∂/R ∂ σ ) +c2∂2Xμ/(σ , τ) ∂σ2 In which, Xμ is space-time coordinates of the string, σ & τ are coordinates on the string world sheet, respectively space and time along the string, string's mass m , velocity of string's motion v , factor n depends on geometry of each hidden extra dimension which relates to its own flux time, and tp is Planck's time. AmirKabir University of Technology, Tehran, Iran.

  9. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Hong, Xue-Ren, E-mail: hxr_nwnu@163.com; Sun, Jian-An, E-mail: sunja@nwnu.edu.cn; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-12

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  10. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    International Nuclear Information System (INIS)

    Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-01-01

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  11. Relativistic quantum similarities in atoms in position and momentum spaces

    International Nuclear Information System (INIS)

    Maldonado, P.; Sarsa, A.; Buendia, E.; Galvez, F.J.

    2011-01-01

    A study of different quantum similarity measures and their corresponding quantum similarity indices is carried out for the atoms from H to Lr (Z=1-103). Relativistic effects in both position and momentum spaces have been studied by comparing the relativistic values to the non-relativistic ones. We have used the atomic electron density in both position and momentum spaces obtained within relativistic and non-relativistic numerical-parameterized optimized effective potential approximations. -- Highlights: → Quantum similarity measures and indices in electronic structure of atoms. → Position and momentum electronic densities. → Similarity of relativistic and non-relativistic densities. → Similarity of core and valence regions of different atoms. → Dependence with Z along the Periodic Table.

  12. Coherent effects in relativistic electron beams radiation in the presence of beat waves; Kogerentnye ehffekty v izluchenii relyativistskogo ehlektronnogo sgustka pri nalichii voln bienij

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, L A; Shamamian, A N

    1992-12-31

    The problem of relativistic electron beam-laser beat waves interaction is considered. Due to interaction the electron density is changed as opposed to the case, when it interacts with still electron plasma, the change of density gets less. But it is interesting to research the coherent spontaneous radiation of the electron beam interacting with. It is shown that this interaction brings to an increase of the partial coherent effect. The radiation efficiency depends essentially on the beam parameters, i.e. on the radio of the distinctive longitudinal dimension density. The maximum amplification takes place when the beam length makes room for an odd number of wave length quarters. Since the gain factor decreases with the radiation wave length, we offer to use high-current relativistic electron beams to generate micro radio waves. 4 refs.

  13. Relativistic astrophysics

    CERN Document Server

    Ruder, Hanns; Nollert, Hans-Peter; Hehl, Friedrich

    1998-01-01

    This book summarizes the lectures given at the 162. WE-Heraeus Seminar which took place in the house of the German Physical Society in Bad Honnefin August 1996. Already the number 162 shows the activity and effectiveness of the WE-Heraeus Foundation. We would like to express our thanks to Jutta Adam and Dr. Volker Schafer for the almost incredibly simple and unbureaucratical procedure of funding, organization and realization, and, of course, to the founders. Similar to the 152. WE-Heraeus Seminar Relativity and Scientific Computing (Springer Verlag 1996), this seminar was a joint venture of the Astronomical Society (AG) and of the Section 'Gravitation und Relativity Theory' of the German Physical Society (DPG). Since Einstein has developed his Theory of General Relativity more than 80 years ago, the situation has changed dramatically. In the first decades main efforts were untertaken for a better understanding and for the experimental verification of the theory. Mean­ while General Relativity (GR) is one of ...

  14. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  15. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  16. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  17. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  18. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  19. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  20. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  1. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  2. Effective action for reggeized gluons, classical gluon field of relativistic color charge and color glass condensate approach

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, S.; Prygarin, A. [Ariel University, Physics Department, Ariel (Israel); Lipatov, L. [St. Petersburg Nuclear Physics Institute, Saint Petersburg (Russian Federation); Hamburg University, II Institute of Theoretical Physics, Hamburg (Germany)

    2017-08-15

    We discuss application of formalism of small-x effective action for reggeized gluons (Gribov, Sov. Phys. JETP 26:414, 1968; Lipatov, Nucl. Phys. B 452:369, 1995; Lipatov, Phys. Rep. 286:131, 1997; Lipatov, Subnucl. Ser. 49:131, 2013; Lipatov, Int. J. Mod. Phys. Conf. Ser. 39:1560082, 2015; Lipatov, Int. J. Mod. Phys. A 31(28/29):1645011, 2016; Lipatov, EPJ Web Conf. 125:01010, 2016; Lipatov, Sov. J. Nucl. Phys. 23:338, 1976; Kuraev et al., Sov. Phys. JETP 45:199, 1977; Kuraev et al., Zh Eksp, Teor. Fiz. 72:377, 1977; Balitsky and Lipatov, Sov. J. Nucl. Phys. 28:822, 1978; Balitsky and Lipatov, Yad. Fiz. 28:1597 1978), for the calculation of classical gluon field of relativistic color charge, similarly to that done in CGC approach of McLerran and Venugopalan, Phys. Rev. D 49:2233 (1994), Jalilian-Marian et al., Phys. Rev. D 55:5414 (1997), Jalilian-Marian et al., Nucl. Phys. B 504:415 (1997), Jalilian-Marian et al., Phys. Rev. D 59:014014 (1998), Jalilian-Marian et al., Phys. Rev. D 59:014015 (1998), Iancu et al., Nucl. Phys. A 692:583 (2001), Iancu et al., Phys. Lett. B 510:133 (2001), Ferreiro et al., Nucl. Phys. A 703:489 (2002). The equations of motion with the reggeon fields are solved in LO and NLO approximations and new solutions are found. The results are compared to the calculations performed in the CGC framework and it is demonstrated that the LO CGC results for the classical field are reproduced in our calculations. Possible applications of the NLO solution in the effective action and CGC frameworks are discussed as well. (orig.)

  3. Effect of para-chlorophenoxyacetic acid on acid invertase gene ...

    African Journals Online (AJOL)

    Tomato cv. Liaoyuanduoli (Solanum lycopersicum) plants were cultivated in a greenhouse to allow sampling of the second fruit in the first cluster and comparison with tomato fruit that developed following para-chlorophenoxyacetic acid (PCPA) treatment. Sugar content, activities of sugar related enzymes and the effects of ...

  4. New results on Coulomb effects in meson production in relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Rybicki Andrzej

    2014-01-01

    Full Text Available We propose a new method of investigating the space-time evolution of meson production in heavy ion collisions, by making use of spectator-induced electromagnetic (“Coulomb” effects. The presence of two nuclear remnants (“spectator systems” in the non-central collision generates a strong Coulomb field, which modifies the trajectories of charged final state hadrons. This results in charge-dependent azimuthal anisotropies in final state meson emission. In our approach, this effect can be computed numerically by means of a high-statistics Monte Carlo simulation, using the distance between the meson formation zone and the spectator system as free parameter. Our simulation correctly describes the electromagnetic effect on azimuthal anisotropies observed for π+ and π−mesons in Au+Au collisions at lower RHIC energy, known from data recently reported by the STAR Collaboration. Similarly to our earlier studies of spectator-induced electromagnetic effects, also in the present study we find that these effects offer sensitivity to the position of the meson formation zone with respect to the spectator system. Therefore, we conclude that they can serve as a new tool to investigate the space-time evolution of meson production, and the dynamics of the heavy ion collision.

  5. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  6. Self magnetic field effects on energy deposition by intense relativistic electron beams

    International Nuclear Information System (INIS)

    Nardi, E.; Peleg, E.; Zinamon, Z.

    1977-01-01

    The effect of the penetration of the self magnetic field of an intense relativsistic electron beam on the process of beam-target interaction is calculated. The diffusion of the magnetic field and the hydrodynamic expansion of the target are dynamically taken into account. It is found that at beam intensities of interest for pellet fusion considerable range shortening occurs by magnetic stopping. (author)

  7. Relativistic and noise effects on multiplayer Prisoners' dilemma with entangling initial states

    Science.gov (United States)

    Goudarzi, H.; Rashidi, S. S.

    2017-11-01

    Three-players Prisoners' dilemma (Alice, Bob and Colin) is studied in the presence of a single collective environment effect as a noise. The environmental effect is coupled with final states by a particular form of Kraus operators K_0 and K_1 through amplitude damping channel. We introduce the decoherence parameter 0≤p≤1 to the corresponding noise matrices, in order to controling the rate of environment influence on payoff of each players. Also, we consider the Unruh effect on the payoff of player, who is located at a noninertial frame. We suppose that two players (Bob and Colin) are in Rindler region I from Minkowski space-time, and move with same uniform acceleration (r_b=r_c) and frequency mode. The game is begun with the classical strategies cooperation ( C) and defection ( D) accessible to each player. Furthermore, the players are allowed to access the quantum strategic space ( Q and M). The quantum entanglement is coupled with initial classical states by the parameter γ \\in [0,π /2]. Using entangled initial states by exerting an unitary operator \\hat{J} as entangling gate, the quantum game (competition between Prisoners, as a three-qubit system) is started by choosing the strategies from classical or quantum strategic space. Arbitrarily chosen strategy by each player can lead to achieving profiles, which can be considered as Nash equilibrium or Pareto optimal. It is shown that in the presence of noise effect, choosing quantum strategy Q results in a winning payoff against the classical strategy D and, for example, the strategy profile ( Q, D, C) is Pareto optimal. We find that the unfair miracle move of Eisert from quantum strategic space is an effective strategy for accelerated players in decoherence mode (p=1) of the game.

  8. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  9. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  10. Collective effects on transport coefficients of relativistic nuclear matter. Pt. 2

    International Nuclear Information System (INIS)

    Mornas, L.

    1993-04-01

    The transport coefficients (thermal conductivity, shear and bulk viscosities) of symmetric nuclear matter and neutron matter are calculated in the Walecka model with a Boltzmann-Uehling-Uhlenbeck collision term by means of a Chapman-Enskog expansion in first order. The order of magnitude of the influence of collective effects induced by the presence of the mean σ and ω fields on these coefficients is evaluated. (orig.). 9 figs

  11. Loop corrections and other many-body effects in relativistic field theories

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Brown, G.E.; Prakash, M.; Weise, W.

    1988-01-01

    Incorporation of effective masses into negative energy states (nucleon loop corrections) gives rise to repulsive many-body forces, as has been known for some time. Rather than renormalizing away the three- and four-body terms, we introduce medium corrections into the effective σ-exchange, which roughly cancel the nucleon loop terms for densities ρ ≅ ρ nm , where ρ nm is nuclear matter density. Going to higher densities, the repulsive contributions tend to saturate whereas the attractive ones keep on growing in magnitude. The latter is achieved through use of a density-dependent effective mass for the σ-particle, m σ = m σ (ρ), such that m σ (ρ) decreases with increasing density. Such a behavior is seen e.g. in the Nambu-Jona-Lasinio model. It is argued that a smooth transition to chiral restoration implies a similar behavior. The resulting nuclear equation of state is, because of the self-consistency in the problem, immensely insensitive to changes in the mass or coupling constant of the σ-particle. (orig.)

  12. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  13. A confirmation of the general relativistic prediction of the Lense-Thirring effect.

    Science.gov (United States)

    Ciufolini, I; Pavlis, E C

    2004-10-21

    An important early prediction of Einstein's general relativity was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system and to an Earth-orbiting satellite. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it, which will affect the orbit of a satellite. This Lense-Thirring effect has hitherto not been detected with high accuracy, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B--an ongoing space mission using orbiting gyroscopes. Here we report a measurement of the Lense-Thirring effect on two Earth satellites: it is 99 +/- 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total +/- 10 per cent uncertainty to include underestimated and unknown sources of error.

  14. The Relativistic Effect of the Deviation between the CMB Temperatures Obtained by the COBE Satellite

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-01-01

    Full Text Available The Far-Infrared Absolute Spectrophotometer (FIRAS on the COBE satellite, gives different temperatures of the Cosmic Microwave Background. This deviation has a theoretical explanation in the Doppler effect on the dipole (weak component of the radiation, the true microwave background of the Universe that moves at 365 km/sec, if the monopole (strong component of the radiation is due to the Earth. Owing to the Doppler effect, the dipole radiation temperature (determined by the 1st derivative of the monopole is lower than the monopole radiation temperature, with a value equal to the observed deviation. By this theory, the WMAP and PLANCK satellites, targeting the L2 point in the Sun-Earth-Moon system, should be insensitive to the monopole radiation. In contrast to the launched WMAP satellite, the PLANCK satellite will have on board absolute instruments which will not be able to detect the measured temperature of the Cosmic Microwave Background. That the monopole (strong component of the observed Cosmic Microwave Background is generated by the Earth is given a complete theoretical proof herein.

  15. Manifestation of the relativistic effects and conserving currents in the interference longitudinally-transverse structure function in (e,e'p)-reactions on few-body systems

    International Nuclear Information System (INIS)

    Nagornyj, S.I.; Kasatkin, Yu.A.; Zolenko, V.A.

    1992-01-01

    A study is made of the effects of Lorentz invariance and nuclear current conservation in calculations of the AΦ-asymmetry of the cross sections for (e,e',p) reactions on few-body systems. The AΦ-value is shown to be very sensitive to different relativistic effects and to nuclear current conservation. In the quasi-elastic region (q 2 /2mν∼1, P mis /m p cm >50 0 the AΦ-asymmetry is determined by both the reaction mechanisms and the intranuclear dynamics. 12 refs.; 3 figs. (author)

  16. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  17. Theory of a relativistic peniotron

    International Nuclear Information System (INIS)

    Zhurakhovskii, V.A.

    1986-01-01

    A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented

  18. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  19. Plasma effects in attosecond pulse generation from ultra-relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Boyd, T.J.M.

    2010-01-01

    Complete text of publication follows. Particle-in-cell simulations were performed to examine the influence of plasma effects on high harmonic spectra from the interaction of ultra-intense p-polarized laser pulses with overdense plasma targets. Furthermore, a theoretical model is proposed to explain the radiation mechanism that leads to attosecond pulse generation in the reflected field. It is shown that plasma harmonic emission affects the spectral characteristics, causing deviations in the harmonic power decay as compared with the so-called universal 8/3-decay. These deviations may occur, in a varying degree, as a consequence of the extent to which the plasma line and its harmonics affect the emission. It is also found a strong correlation of the emitted attosecond pulses with electron density structures within the plasma, responsible to generate intense localised electrostatic fields. A theoretical model based on the excitation of Langmuir waves by the re-entrant Brunel electron beams in the plasma and their electromagnetic interaction with the laser field is proposed to explain the flatter power spectral emission - described by a weaker 5/3 index and observed in numerical simulations - than that of the universal decay.

  20. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  1. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, C. A. Zen, E-mail: cesarzen@cesarzen.com [Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91501-970, Porto Alegre (Brazil); International Center for Relativistic Astrophysics Network (ICRANet), Piazza della Repubblica 10, 65122 Pescara (Italy)

    2015-12-17

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  2. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  3. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  4. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  5. Interference effects in angular and spectral distributions of X-ray Transition Radiation from Relativistic Heavy Ions crossing a radiator: Influence of absorption and slowing-down

    Energy Technology Data Exchange (ETDEWEB)

    Fiks, E.I.; Pivovarov, Yu.L.

    2015-07-15

    Theoretical analysis and representative calculations of angular and spectral distributions of X-ray Transition Radiation (XTR) by Relativistic Heavy Ions (RHI) crossing a radiator are presented taking into account both XTR absorption and RHI slowing-down. The calculations are performed for RHI energies of GSI, FAIR, CERN SPS and LHC and demonstrate the influence of XTR photon absorption as well as RHI slowing-down in a radiator on the appearance/disappearance of interference effects in both angular and spectral distributions of XTR.

  6. Effects of Docosahexaenoic Acid on Neurotransmission

    OpenAIRE

    Tanaka, Kazuhiro; Farooqui, Akhlaq A.; Siddiqi, Nikhat J.; Alhomida, Abdullah S.; Ong, Wei-Yi

    2012-01-01

    Docosahexaenoic acid (DHA) is the major polyunsaturated fatty acid (PUFA) in the brain and a structural component of neuronal membranes. Changes in DHA content of neuronal membranes lead to functional changes in the activity of receptors and other proteins which might be associated with synaptic function. Accumulating evidence suggests the beneficial effects of dietary DHA supplementation on neurotransmission. This article reviews the beneficial effects of DHA on the brain; uptake, incorporat...

  7. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  8. Calculations of electronic structure of UF6 molecule and crystal UO2 with relativistic pseudopotential

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.

    2008-01-01

    Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru

  9. Relativistic description of directly interacting pions and nucleons

    International Nuclear Information System (INIS)

    Heller, L.

    1976-01-01

    The expected magnitudes of the leading relativistic effects on an off-energy-shell T matrix element are estimated using the Bakamjian--Thomas formulation of relativistic potential theory. For pion-nucleon scattering at medium energy, the two largest corrections are expected to result from the use of relativistic relative momenta rather than nonrelativistic values. The importance of additional terms depends upon the detailed behavior of the T matrix

  10. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  11. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  12. The sporostatic effect of cannabidiolic acid

    International Nuclear Information System (INIS)

    Farkas, J.; Andrassy, E.

    1976-01-01

    A study was undertaken to clarify whether cannabidiolic acid could be made to enhance the microbiological effect of food preservation by heat treatment or irradiation. Cannabidiolic acid was found to have a high inhibiting effect on the spores of Bacillus cereus. Its sporostatic effect is roughly equivalent to that of the antibiotics nisin and tylosin. The aqueous solution of the phytoncide of 50 μg ml -1 concentration (containing 2.5% alcohol) resisted, without a reduction of its activity, a heat treatment of 30 min at 110 deg C. Its activity was reduced by only 15% upon treatment with 400 krad. Hereafter the influence of cannabidiolic acid, added to the brine of canned peas at a concentration of 10 μgml -1 , was studied on samples exposed to treatment with 500 krad or given a heat treatment equivalent to F 0 =4.8. In these combination treatments cannabidiolic acid added at the above concentration proved to be ineffective. On investigating the cause of this phenomenon, cannabidiolic acid was found to react with protein of peas prior to irradiation or heat treatment, or in an early phase of treatment loosing thereby its microbiological effect. On the other hand, since cannabidiolic acid cannot react with proteins denatured by heat, it was found active in a sterilized nutrient medium containing denatured protein. (F.J.)

  13. Anti-Diabetic Effects of Madecassic Acid and Rotundic Acid

    Directory of Open Access Journals (Sweden)

    Yuan-Man Hsu

    2015-12-01

    Full Text Available Anti-diabetic effects of madecassic acid (MEA and rotundic acid (RA were examined. MEA or RA at 0.05% or 0.1% was supplied to diabetic mice for six weeks. The intake of MEA, not RA, dose-dependently lowered plasma glucose level and increased plasma insulin level. MEA, not RA, intake dose-dependently reduced plasminogen activator inhibitor-1 activity and fibrinogen level; as well as restored antithrombin-III and protein C activities in plasma of diabetic mice. MEA or RA intake decreased triglyceride and cholesterol levels in plasma and liver. Histological data agreed that MEA or RA intake lowered hepatic lipid droplets, determined by ORO stain. MEA intake dose-dependently declined reactive oxygen species (ROS and oxidized glutathione levels, increased glutathione content and maintained the activity of glutathione reductase and catalase in the heart and kidneys of diabetic mice. MEA intake dose-dependently reduced interleukin (IL-1β, IL-6, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels in the heart and kidneys of diabetic mice. RA intake at 0.1% declined cardiac and renal levels of these inflammatory factors. These data indicated that MEA improved glycemic control and hemostatic imbalance, lowered lipid accumulation, and attenuated oxidative and inflammatory stress in diabetic mice. Thus, madecassic acid could be considered as an anti-diabetic agent.

  14. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  15. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  16. On the harmonic-type and linear-type confinement of a relativistic scalar particle yielded by Lorentz symmetry breaking effects

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2016-10-15

    Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we also show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.

  17. Semiconductor detector with smoothly tunable effective thickness for the study of ionization loss by moderately relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Shchagin, A.V., E-mail: shchagin@kipt.kharkov.ua [Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Belgorod National Research University, Belgorod (Russian Federation); Shul’ga, N.F.; Trofymenko, S.V. [Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Kharkov National University, Kharkov (Ukraine); Nazhmudinov, R.M.; Kubankin, A.S. [Belgorod National Research University, Belgorod (Russian Federation); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation)

    2016-11-15

    The possibility of measurement of electrons ionization loss in Si layer of smoothly tunable thickness is shown in the proof-of-principle experiment. The Si surface-barrier detector with the depleted layer thickness controlled by the value of high voltage power supply has been used. Ionization loss spectra for electrons emitted by radioactive source {sup 207}Bi are presented and discussed. Experimental results for the most probable ionization loss in the Landau spectral peak are compared with theoretical calculations. The possibility of research of evolution of electromagnetic field of ultra-relativistic particles traversing media interface with the use of detectors with smoothly tunable thickness is proposed.

  18. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  19. Theoretical study of the relativistic molecular rotational g-tensor

    International Nuclear Information System (INIS)

    Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-01-01

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found

  20. An investigation of relativistic microscopic optical potential in terms of relativistic Brueckner-Bethe-Goldstone equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential

  1. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  2. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  3. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  4. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  5. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  6. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  7. Relativistic effects in ultra-high-intensity laser-plasma interaction: electron parametric instabilities and ponderomotive force

    International Nuclear Information System (INIS)

    Quesnel, Brice

    1998-01-01

    This research thesis reports a theoretical and numeric study of the behaviour of two non linear phenomena of the laser-plasma interaction physics in a relativistic regime: the electronic parametric instabilities, and the ponderomotive force. In a first part, the author establishes the three-dimensional scattering relationship of electron parametric instabilities for a circularly polarised wave propagating in a homogeneous and cold plasma, without limitations of wave intensity, nor of plasma density. Results are verified by comparison with those of two-dimensional numerical simulations. The Weibel instability is also briefly studied in relativistic regime. In the second part, the author establishes an expression of the ponderomotive force exerted by an ultra-intense laser pulse in the vacuum about the focus point. A numerical code of integration of equations of motion of an electron in the laser field is used for the different expressions corresponding different approximation degrees. Results are used to interpret a recent experiment, and to critic other theoretical works [fr

  8. Kinetic analysis of thermally relativistic flow with dissipation

    International Nuclear Information System (INIS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  9. Relativistic tunneling through two successive barriers

    International Nuclear Information System (INIS)

    Lunardi, Jose T.; Manzoni, Luiz A.

    2007-01-01

    We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called generalized Hartman effect, an effect observed in the context of nonrelativistic tunneling as well as in its counterparts and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the generalized Hartman effect. We compare our results with the nonrelativistic ones and discuss their interpretation

  10. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  11. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  12. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  13. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  14. Propagation and absorption of electromagnetic waves in fully relativistic plasmas

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Goldfinger, R.C.; Weitzner, H.

    1983-01-01

    Electron cyclotron heating calculations were made for plasmas with electron temperatures above 10 keV. It was assumed that n/sub parallel/ = 0 so that Doppler broadening is not present and relativistic effects are maximum. The plasma distribution function is assumed to be an isotropic relativistic Maxwellian

  15. Relativistic field theory of neutron stars and their hyperon populations

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1986-01-01

    The nuclear many-body problem is examined by means of the formulation of an effective relativistic field theory of interacting hadrons. A relativistic field theory of hadronic matter is especially appropriate for the description of hot or dense matter, because of the appearance of antiparticles and higher baryon resonances and because it automatically respects causality. 8 refs., 7 figs., 1 tab

  16. Deep processes in non-relativistic confining potentials

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Grisaru, M.T.

    1978-01-01

    The authors study deep inelastic and hard scattering processes for non-relativistic particles confined in deep potentials. The mechanisms by which the effects of confinement disappear and the particles scatter as if free are useful in understanding the analogous results for a relativistic field theory. (Auth.)

  17. Fermi liquid description of relativistic high density matter

    Science.gov (United States)

    Pal, K.; Dutt-Mazumder, A. K.

    2011-06-01

    We calculate pionic contribution to the relativistic Fermi Liquid parameters (RFLPs) using Chiral Effective Lagrangian. The RFLPs so determined are then used to calculate chemical potential, exchange energy due to πN interaction. We also compare the results of exchange energy from two loop ring diagrams involving σ, ω and π meson with what one obtains from the relativistic Fermi Liquid theory (RFLT).

  18. On the relativistic Vlasov equation in guiding-center coordinates

    International Nuclear Information System (INIS)

    Salimullah, M.; Chaudhry, M.B.; Hassan, M.H.A.

    1989-11-01

    The relativistic Vlasov equation has been expressed in terms of the guiding-center coordinates in a hot magnetized plasma. It is noted that the relativistic effect reduces the cyclotron resonance frequency for electrostatic and electromagnetic waves propagating transverse to the direction of the static magnetic field in the plasma. (author). 4 refs

  19. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  20. Nonlinear relativistic plasma resonance: Renormalization group approach

    Energy Technology Data Exchange (ETDEWEB)

    Metelskii, I. I., E-mail: metelski@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kovalev, V. F., E-mail: vfkvvfkv@gmail.com [Dukhov All-Russian Research Institute of Automatics (Russian Federation); Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

  1. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  2. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  3. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  4. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  5. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  6. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  7. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  8. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  9. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  10. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  11. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  12. Effect of deformation on structure and reaction of Al isotopes using relativistic mean field densities in Glauber model

    Science.gov (United States)

    Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.

    2018-06-01

    We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28}Al as projectiles with ^{12}C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23}Al and ^{24}Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23}Al could not be ruled out the formation of proton halo.

  13. Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method

    International Nuclear Information System (INIS)

    Eshghi, M.; Ikhdair, S. M.

    2014-01-01

    A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin (p-spin) symmetry setting Σ = C ps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin—orbit coupling number κ. Special attention is devoted to the case Σ = 0 for which p-spin symmetry is exact. The Laplace transform approach (LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods. (general)

  14. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    African Journals Online (AJOL)

    Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate on the ... The test plant was sown in aluminium-polluted soil (conc. ... The perseverance of the test plant in the aluminium spiked soil is an indication of adaptation to the stress ...

  15. Effects of combination of ethylenediaminetetraacetic acid and ...

    African Journals Online (AJOL)

    This experiment was conducted to evaluate the combined effects of ethylene diamine tetraacetic acid (EDTA) and microbial phytase (MP) on the serum concentration and digestibility of some minerals in broiler chicks. This experiment was conducted using 360 Ross-308 male broiler chicks in a completely randomized ...

  16. Measuring Relativistic effects in the field of the Earth with Laser Ranged Satellites and the LARASE research program

    Science.gov (United States)

    Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.

  17. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  18. Classroom computer animations of relativistic objects

    OpenAIRE

    Brewin, Leo

    2003-01-01

    This is a short note to announce the availability of some movies that may be useful in classroom discussions on the photographic appearance of objects moving at relativistic speeds. The images are based on special relativity with no account taken of (other than to ignore) the effects of doppler shifts, intensity shifts or gravitational effects.

  19. Radiatively-driven general relativistic jets

    Indian Academy of Sciences (India)

    Mukesh K. Vyas

    2018-02-10

    Feb 10, 2018 ... relativistic jets and shocks induced by non radial nature of the cross section. Isothermal assumption does not contain the effect of the thermal gradient term which is a significant accelerating agent and is very effec- tive close to the BH. It is also the same region where one needs to consider the effects of ...

  20. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    Science.gov (United States)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  1. Effect of simulated acid rain on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.

    1974-01-01

    Experiments were performed to determine the effects of simulated acid rain on Chenopodium quinoa, Hordeum vulgare and Phaseolus vulgaris. Detailed experiments were conducted only on Phaseolus vulgaris. Sulfuric acid solutions covering a pH range of 1.5 to 3.5 were used. Gross morphological effects noted at lower pH values included failure to attain normal height, necrosis and wrinkling of leaves, excessive and adventitious budding, and premature abscission of primary leaves. Histological effects included smaller cell size, a decreased amount of intercellular space, hypertrophied nuclei and nucleoli, and a reduction in the size of starch granules within the chloroplasts. Dry weight remained an approximately constant percentage of fresh weight, and chlorophyll analyses showed that both chlorophyll concentration and ratio of chlorophyll to chlorophyll also remained constant. Respirometer studies showed that respiration rate increased slightly and photosynthetic rate increased dramatically. Quantitative analyses indicated that carbohydrate content was reduced at low pH values. Root biomass was also reduced. Application of Congo red indicator solution to the acid treated tissue showed that it was being acidified to a pH of below 4. Experiments involving aspiration of control tissue in acid solutions suggest that the increase in photosynthetic rate and the decreases in carbohydrate content and root biomass were caused by an uncoupling of photophosphorylation of adenosine diphosphate. Uncoupling was probably caused by hydrogen ion interference with proton pumps associated with the electron transport chain in the light reactions of photosynthesis. 128 references. (MDF)

  2. Effects of simulated acid rain on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.

    1974-01-01

    Experiments were performed to determine the effects of simulated acid rain on Chenopodium quinoa, Hordeum vulgare and Phaseolus vulgaris. Because of differential species' susceptibility, detailed experiments were conducted only on Phaseolus vulgaris. Acid rain was simulated by spraying the plants with a hand-held atomizer. Sulfuric acid solutions covering a pH range of 1.5 to 3.5 in one half pH unit increments were used. Gross morphological effects noted at lower pH values included failure to attain normal height, necrosis and wrinkling of leaves, excessive and adventitious budding, and premature abscission of primary leaves. Histological effects included smaller cell size, a decreased amount of intercellular space, hypertrophied nuclei and nucleoli, and a reduction in the size of starch granules within the chloroplasts. Dry weight remained an approximately constant percentage of fresh weight, and chlorophyll analyses showed that both chlorophyll concentration and ratio of chlorophyll 'a' to chlorophyll 'b' also remained constant. Respirometer studies showed that, while respiration rate increased only slightly at low pH values, photosynthetic rate increased dramatically. Quantitative analyses indicated that carbohydrate content was reduced at low pH values, with starch content reduced much more than sugar content. Root biomass was also reduced at low pH values. Application of Congo red indicator solution to the acid treated tissue showed that it was being acidified to a pH of below 4. 114 references, 23 figures, 12 tables.

  3. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    Science.gov (United States)

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  4. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  5. Relativistic Calculations for Be-like Iron

    International Nuclear Information System (INIS)

    Yang Jianhui; Zhang Jianping; Li Ping; Li Huili

    2008-01-01

    Relativistic configuration interaction calculations for the states of 1s 2 2s 2 , 1s 2 2s3l (l = s,p,d) and 1s 2 2p3l (l = s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable

  6. Neutron relativistic phenomenological and microscopic optical potential

    International Nuclear Information System (INIS)

    Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong

    1991-01-01

    In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested

  7. Impossibility of an acyclic relativistic electric motor

    Energy Technology Data Exchange (ETDEWEB)

    Spavieri, G [Universidad de Los Andes, Merida (Venezuela); Cavalleri, G [Milan Univ. (Italy). Ist. di Fisica; Spinelli, G [Padua Univ. (Italy). Ist. di Matematica Applicata

    1981-02-11

    The relativistic torque acting on a circuit carrying a current and having a uniform translatory motion in a constant and uniform electric field would seem to suggest the possibility of an acyclic relativistic electric motor. However, the net effect on the side parallel to the rotation axis is exactly balanced by the variation of the angular momentum (in the case of an insulating circuit transporting electric charges) or by the external moment due to the magnetic field (in the case of a conducting circuit) acting on the two sides perpendicular to the rotation axis.

  8. Relativistic multiple scattering X-alpha calculations

    International Nuclear Information System (INIS)

    Chermette, H.; Goursot, A.

    1986-01-01

    The necessity to include self-consistent relativistic corrections in molecular calculations has been pointed out for all compounds involving heavy atoms. Most of the changes in the electronic properties are due to the mass-velocity and the so-called Darwin terms so that the use of Wood and Boring's Hamiltonian is very convenient for this purpose as it can be easily included in MSXalpha programs. Although the spin orbit operator effects are only obtained by perturbation theory, the results compare fairly well with experiment and with other relativistic calculations, namely Hartree-Fock-Slater calculations

  9. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  10. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  11. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  12. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  13. Acid deposition: sources, effects and controls

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, J.W.S. (ed.)

    1989-01-01

    The purpose of this collection of 19 papers is to review our understanding of the cause and effect of acid deposition, to present new data that assist in the provision of a fuller understanding of cause, process and implication and thus to assist in defining the research agenda of the future. The materials presented are European in perspective, drawn from the Federal Republic of Germany, Hungary, Norway, Sweden and the United Kingdom. The current position as regards deposition monitoring, ecological effects and control technologies is presented in five sections: acid deposition monitoring, freshwater acidification, soils and forest systems, structural materials and control technologies. Each section is introduced by an overview paper outlining the contemporary understanding and identifying areas requiring future work. Specialist papers presenting new data or re-interpretations of existing information comprise the remainder of each section. Four of the papers have been abstracted separately.

  14. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  15. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  16. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  17. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  18. Some remarks concerning relativistic kinetic theory

    International Nuclear Information System (INIS)

    Schroeter, J.

    1990-01-01

    The starting point of our investigation is a classical kinetic theory which includes correlational effects as well as the complete electromagnetic interaction. Also classical gravitation can be incorporated. The relativistic version of this theory is written down using some heuristic arguments. Its essential feature is the difference between terms representing gravitational interaction and the metric tensor representing geometrical properties. (author)

  19. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Rio de Janeiro Univ.

    1987-05-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. Very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. (orig.)

  20. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.

  1. Relativistic generalization of the Newtonian force

    International Nuclear Information System (INIS)

    Qadir, A.; Quamar, J.

    1982-06-01

    Whereas there is no denying the essential contribution of geometrodynamics, it must be admitted that our physical intuition is still firmly based in the Newtonian concept of force. Here we extend some earlier work re-introducing the Newtonian force concept into relativity theory. Some fundamentally new insights into the relativistic effects due to charge and rotation are presented. (author)

  2. Interference effects from coexisting fatty acids on elaidic acid separation by fractionating crystallization: A model study

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Bjerring, Thomas

    2010-01-01

    A multi-stage temperature-programmed fractionating crystallization process was carried out to examine the effects of the presence of stearic acid (SA), oleic acid (OA), and linoleic acid (LA) on the separation of elaidic acid (EA). The results showed that the efficiency of fractionating...

  3. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    Science.gov (United States)

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  4. Effect of external magnetic field on critical current for the onset of virtual cathode oscillations in relativistic electron beams

    International Nuclear Information System (INIS)

    Hramov, Alexander; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander

    2008-01-01

    In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields

  5. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  6. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  7. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  8. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  9. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... Betulinic acid exerts a selective anti-tumor activity on cultured human melanoma .... percentage of proliferation was calculated by the following formula: Proliferation ..... artificially imposing the cell cycle checkpoint. Among.

  10. Relativistic rotation and the anholonomic object

    International Nuclear Information System (INIS)

    Corum, J.F.

    1977-01-01

    The purpose of this communication is to call attention to the conceptual economy provided by the object of anholonomity for the theory of relativity. This geometric object expresses certain consequences of relativity theory and provides a single, simple framework for discussing a variety of phenomena. It particularly clarifies the description of relativistic rotation. The relativistic rotational transformation of the four coordinate differentials of flat space--time generates a set of anholonomic, or inexact differentials, whose duals are an orthogonal set of basis vectors. How should a rotating observer interpret physical events referred to such orthogonal, but anholonomic frames The answer to this question rests upon the origin and physical significance of the object of anholonomity. It is demonstrated that not only is the rotational Lorentz transformation an anholonomic transformation, but that the intrinsic anholonomic effects are essential to interpreting rotational phenomena. In particular, the Sagnac effect may be interpreted as the physical manifestation of temporal anholonomity under rotation. The Thomas precession of a reference axis may be interpreted as a consequence of the spatial anholonomity of the rotating frame. Further, the full four-dimensional covariance of Maxwellian electrodynamics, under a relativistic Lorentz rotation, is possible only with the inclusion of anholonomic effects. The anholonomic approach clarifies the distinction between the physically different operations of source rotation and observer rotation in a flat space--time. It is finally concluded that a consistant theory of relativistic rotation, satisfying the principle of general covariance, inherently requires the presence of the object of anholonomity

  11. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  12. Effect of organic acids on shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Mine, Saori; Boopathy, Raj

    2011-07-01

    Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.

  13. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  14. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  15. Analytic approach to the relativistic problem of constructing effective nucleon-nucleon and pion-nucleon interaction operators at low and intermediate energies

    International Nuclear Information System (INIS)

    Safronov, A.N.; Safronov, A.A.

    2006-01-01

    Full text: A nonperturbative character of QCD at low and intermediate energies generates serious mathematical difficulties in describing the dynamics of hadron-hadron interactions in terms quark-gluon degrees of freedom. Therefore much effort has gone in past years into developing QCD-motivated approaches that formulate the theory of strong interaction in terms of hadron degrees of freedom. The path-integral technique together with idea of spontaneous chiral-symmetry breaking leads to Effective Field Theory (EFT) [1]. Unfortunately EFT can be applied to description of hadron-hadron interactions only at very low energies. On the other hand, meson theories of nuclear forces have long since been used to describe the properties of nucleon systems and scattering processes. Now it is not quite clear, up to what distances the meson-exchange pattern of nuclear forces is valid. Recently the new relativistic approach to the problem of constructing effective hadron-hadron interaction operators has been proposed [2-4] on the basis of analytic S-matrix theory and Gelfand-Levitan-Marchenko-Martin methods for solving the inverse quantum scattering problem. In this approach effective potential is defined as a local operator in a partial-wave equation of the quasipotential type such that it generates on-shell relativistic (Feynman) scattering amplitude that has required discontinuities at dynamical cuts. The discontinuities of partial-wave amplitudes are determined by model-independent quantities (renormalized vertex constants and amplitudes of subprocesses involving on-mass-shell particles off the physical region) and can be calculated by methods of relativistic quantum field theory within various dynamical approaches. In particular, EFT can be used to calculate the discontinuities across dynamical-cut segments closest to the physical region. In [2-4] we have examined the basic features of the proposed approach. Attention has been given primarily to analyzing the new mechanism of

  16. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  17. On the Velocity of Moving Relativistic Unstable Quantum Systems

    Directory of Open Access Journals (Sweden)

    K. Urbanowski

    2015-01-01

    Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.

  18. The effect of conjugated linoleic acid on the fatty acid composition of ...

    African Journals Online (AJOL)

    rahim aydin

    Dietary conjugated linoleic acid (CLA) was reported to increase the levels of saturated fatty ... Hence, the objective of this study was to determine the effects of dietary CLA on the fatty acid ..... silver ion-high performance liquid chromatography.

  19. Decontamination effectiveness of mixtures of citric acid, oxalic acid and EDTA

    International Nuclear Information System (INIS)

    Speranzini, R.A.

    1990-01-01

    An experimental study of the decontamination effectiveness of citric acid, oxalic acid and EDTA mixtures was conducted to assess whether oxalic acid could be removed from decontamination solutions to minimize corrosion. In loop experiments, radioactive specimens from two boiling water reactors and one pressurized water reactor were suspended in solutions of single acids or in mixtures of reagents at total reagent concentrations of less than 0.1 wt% under conditions similar to those used to decontaminate reactor systems. Rate constants for dissolution of oxides and decontamination factors were measured. Based on the results, it was concluded that under certain conditions, oxalic acid was the most effective reagent for the dissolution of oxides. It was also found, however, that conditions under which effective dissolution occurred in solutions of oxalic acid and/or citric acid were difficult to define and control. EDTA was found to be an effective reagent for dissolution of oxides such that rates of dissolution in EDTA containing solutions at 117 degrees Celsius were comparable to rates in oxalic acid containing solutions. At 90 degrees Celsius, EDTA acted synergistically with oxalic acid such that the rate of dissolution of oxides in citric-acid/oxalic-acid/EDTA solutions was higher than in citric-acid/EDTA solutions. The rates of dissolution of oxides were significantly reduced when 60 mg/kg of ferric ion was added to the citric-acid/oxalic-acid, citric-acid/EDTA and citric-acid/oxalic-acid/EDTA solutions. It was concluded that effective decontaminations of BWR and PWR systems could be achieved with mixtures of citric acid and EDTA

  20. Fatty acid effects on fibroblast cholesterol synthesis

    International Nuclear Information System (INIS)

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-01-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 μmol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 μCi [ 14 C]acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest [ 14 C]acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total 14 C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1

  1. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  2. Relativistic twins or sextuplets?

    International Nuclear Information System (INIS)

    Sheldon, Eric

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back

  3. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  4. Relativistic quantum cryptography

    Science.gov (United States)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  5. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  6. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  7. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  8. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  9. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  10. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  11. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  12. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  13. Radiative transitions in mesons within a non relativistic quark model

    International Nuclear Information System (INIS)

    Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.

    2002-01-01

    An exhaustive study of radiative transitions in mesons is performed in a non relativistic quark model. Three different types of mesons wave functions are tested. The effect of some usual approximations is commented. Overall agreement with experimental data is obtained

  14. Tensor force effect on the evolution of single-particle energies in some isotopic chains in the relativistic Hartree-Fock approximation

    Science.gov (United States)

    López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.

    2018-03-01

    Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.

  15. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  16. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  17. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  18. Relativistic treatment of mesonic contributions to quasielastic (e,e')

    International Nuclear Information System (INIS)

    Blunden, P.G.; Butler, M.N.

    1988-03-01

    Meson exchange currents play an important role in the description of observables in electron scattering. The authors use a relativistic model with pseudovector pion coupling to study the exchange current contributions, with emphasis on quasielastic kinematics. Starting with the Lagrangian for nucleons interacting with a scalar and vector mason along with pseudovector coupling to pions, they derive the one and two-body electromagnetic currents. They then calculate the longitudinal and transverse pieces of the quasielastic cross section for various nuclei and kinematics. The effects of meson exchange currents are found to be much more important in a relativistic model than in a non-relativistic one

  19. Relativistic treatment of fermion-antifermion bound states

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1990-01-01

    We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs

  20. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  1. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  2. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  3. Calculation of the binding energy per nucleon and the quasi-particle interation in nuclear matter under consideration of relativistic medium effects

    International Nuclear Information System (INIS)

    Hippchen, T.

    1985-12-01

    In a first part, nuclear matter calculations have been performed in the Dirac-Brueckner approach using a) a nucleon-nucleon potential of one-boson-exchange (OBE) type and b) a more realistic interaction in which the fictitious σ-exchange of the OBE-model is replaced by explicit 2π- and πρ-exchange diagrams. Both potential models yield the correct empirical binding energy and saturation density. It turns out that the total sum of relativistic effects caused by the emplicit 2 π- and πρ-exchanges is comparable to those due to σ-exchange. In a second part, the nuclear quasiparticle interaction, i.e. the Landau parameters, have been calculated in the central (F), isospin (F'), spin (G) and spin-isospin (G') channel, in an analogous way. Compared to nonrelativistic calculations (including conventional medium corrections like Pauli and dispersion effects), a strong improvement has been found, especially in the F- and G-channel. Finally, the influence of A 1 -exchange is studied, in NN scattering and in nuclear matter. It turns out that, after a suitable and necessary readjustment of some meson parameters, its role is negligibly small. (orig.)

  4. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  5. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period

    NARCIS (Netherlands)

    Rohof, W. O.; Bennink, R. J.; de Ruigh, A. A.; Hirsch, D. P.; Zwinderman, A. H.; Boeckxstaens, G. E.

    2012-01-01

    Background The risk for acidic reflux is mainly determined by the position of the gastric acid pocket. It was hypothesised that compounds affecting proximal stomach tone might reduce gastro-oesophageal reflux by changing the acid pocket position. Objective To study the effect of azithromycin (Azi)

  6. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I).

    Science.gov (United States)

    Hancock, Robert D; Bartolotti, Libero J

    2005-10-03

    governing complex formation in aqueous solution. All of the above DFT calculations involved corrections for scalar relativistic effects (RE). Au has been described (Koltsoyannis 1997) as a "relativistic element". The chief effect of RE for group 11 ions is to favor linear coordination geometry and greatly increase covalence in the M-L bond. The correlation for M+ ions (H+, Cu+, Ag+, Au+) involved the preferred linear coordination of the [M(H2O)2]+ complexes, so that the DFT calculations of DeltaG for the gas-phase reaction in eq 2 were carried out for M = H+, Cu+, Ag+, and Au+. [M(H2O)2]+(g) + NH3(g) = [M(H2O)NH3]+(g) + H2O(g) (eq 2). Additional DFT calculations for eq 2 were carried out omitting corrections for RE. These indicated, in the absence of RE, virtually no change in the log K1(NH3) value for H+, a small decrease for Cu+, and a larger decrease for Ag+. There would, however, be a very large decrease in the log K1(NH3) value for Au(I) from 9.8 (RE included) to 1.6 (RE omitted). These results suggest that much of "soft" acid behavior in aqueous solution in the hard and soft acid-base classification of Pearson may be the result of RE in the elements close to Au in the periodic table.

  7. Effects of alkali or acid treatment on the isomerization of amino acids.

    Science.gov (United States)

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.

  8. Effect of various amino acids on shoot regeneration of sugarcane ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-06

    Apr 6, 2009 ... Full Length Research Paper. Effect of various amino acids .... maize, sorghum, pineapple, rice and other monocots to enhance somatic ... without additional amino acids, making a total of 26 treatments. All culture media were ...

  9. Relativistic Effects on Metal-Metal Bonding. Comparison of the Performance of ECP and Scalar DKH Description on the Picture of Metal-Metal Bonding in Re2Cl8(2-)

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert; Bučinský, L.; Gatti, C.

    2010-01-01

    Roč. 6, č. 10 (2010), s. 3113-3121 ISSN 1549-9618 R&D Projects: GA ČR GA203/09/0118 Grant - others:VEGA(SK) 1/0817/08; VEGA(SK) 1/0127/09; APVV(SK) 0093-07 Institutional research plan: CEZ:AV0Z40720504 Keywords : relativistic effects * metal-metal bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.138, year: 2010

  10. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  11. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben

    2016-01-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing. (paper)

  12. Cosmetotextiles with Gallic Acid: Skin Reservoir Effect

    Directory of Open Access Journals (Sweden)

    Meritxell Martí

    2013-01-01

    Full Text Available The antioxidant gallic acid (GA has been incorporated into cotton (CO and polyamide (PA through two different vehicles, that is, liposomes and mixed micelles, and their respective absorption/desorption processes have been studied. Moreover, in vitro percutaneous absorption tests of different cosmetotextiles have been performed to demonstrate antioxidant penetration within the layers of the skin. When GA was embedded into the cosmetotextiles, it always promoted a reservoir effect that was much more marked than that observed for polyamide. Similar penetration was observed in the textiles treated with GA in mixed micelles or liposomes in such compartments of the skin as the stratum corneum, epidermis, and even the dermis. GA was detected in receptor fluid only when CO was treated with MM. This methodology may be useful in verifying how encapsulated substances incorporated into textile materials penetrate human skin. Indeed, such materials can be considered strategic delivery systems that release a given active compound into the skin at specific doses.

  13. Effects of kynurenic acid on cardiovascular system

    Directory of Open Access Journals (Sweden)

    Piotr Kozłowski

    2017-08-01

    Full Text Available Kynurenic Acid (KYNA is an endogenous metabolite of tryptophan (TRP which is produced by aminotransferase KAT I and KAT II in the central nervous system and peripheral tissues. Moreover it has been shown that it can be supplied with food. KYNA is an antagonist of glutamate receptors NMDA and antagonist of acetylcholine α7. As we know KYNA can not penetrate or penetrates in very small amounts through the blood-brain barier. Several studies have demonstrated that kynurenine metabolism plays an important role in many neurodegenerative diseases and psychiatric disorders (Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, depression, schizophrenia. Less is known about a peripheral KYNA. Studies suggest that KYNA may have antiatherosclerotic activity and many other beneficial effects on cardiovascular system.

  14. Fermi liquid description of relativistic high density matter

    International Nuclear Information System (INIS)

    Pal, K.; Dutt-Mazumder, A.K.

    2011-01-01

    We calculate pionic contribution to the relativistic Fermi Liquid parameters (RFLPs) using Chiral Effective Lagrangian. The RFLPs so determined are then used to calculate chemical potential, exchange energy due to πN interaction. We also compare the results of exchange energy from two loop ring diagrams involving σ, ω and π meson with what one obtains from the relativistic Fermi Liquid theory (RFLT). (author)

  15. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  16. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  17. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  18. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  19. Relativistic Light Sails

    International Nuclear Information System (INIS)

    Kipping, David

    2017-01-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  20. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  1. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  2. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis1

    Science.gov (United States)

    Traw, M. Brian; Bergelson, Joy

    2003-01-01

    Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds. PMID:14551332

  3. Dietary effects on fatty acid metabolism of common carp.

    Science.gov (United States)

    Csengeri, I

    1996-01-01

    The paper summarises experimental data demonstrating effects of various dietary factors exerting changes in the fatty acid composition and fatty acid metabolism of the common carp (Cyprinus carpio L.). Among the dietary factors (1) supplementary feeding in fish ponds, (2) absence of essential fatty acids (EFA) in the diet, (3) starvation, and (4) ration level were studied. It was concluded that supplementary feeding in carp rearing ponds is frequently excessive in the Hungarian carp culture practice, inducing slight EFA-deficiency and enhancing de novo fatty acid synthesis. This latter caused enlarged fat depots with high oleic acid contents in the fish organs and tissues. EFA-deficient diets enhanced the synthesis of oleic acid except when high rate of de novo fatty acid synthesis was suppressed by dietary fatty acids. Feeding EFA-deficient diets caused gradual decrease in the levels of polyunsaturated fatty acids and gradual increase in that of Mead's acid: 20:3(n-9), an indicator of the EFA-deficiency. At prolonged starvation, polyunsaturated fatty acids of the structural lipids were somehow protected and mainly oleic acid was utilised for energy production. At high ration levels, excessive exogenous polyunsaturates were decomposed, and probably converted to oleic acid or energy. Starvation subsequent to the feeding the fish at various ration levels, reflected adaptive changes in the fatty acid metabolism: Below and above the ration level required for the most efficient feed utilisation for growth, decomposition processes of the fatty acid metabolism were accelerated.

  4. Lectures on relativistic quantum mechanics and path integration

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1989-02-01

    The question posed is why bother with relativistic quantum mechanics? Three reasons are given: First that there are many experimental phenomena which cannot be explained in non-relativistic terms. Secondly it would be unsatisfactory if relativity and quantum mechanics could not be united. Thirdly, there are theoretical reasons why new effects can be expected at relativistic velocities. The objectives of the course are to set up relativistic analogues of the Schroedinger equation and to understand their consequences. In doing so there are some questions which are raised and discussed such as can a first order equation be used to describe spin 0 particles and a second order equation be used to describe spin 1/ 2 (author)

  5. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  6. Relativistic kinetic theory with applications in astrophysics and cosmology

    CERN Document Server

    Vereshchagin, Gregory V

    2017-01-01

    Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...

  7. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  8. High resolution spectrometry for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, G; Schimmerling, W; Greiner, D; Bieser, F; Lindstrom, P [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1975-12-01

    Several techniques are discussed for velocity and energy spectrometry of relativistic heavy ions with good resolution. A foil telescope with chevron channel plate detectors is described. A test of this telescope was performed using 2.1 GeV/A C/sup 6 +/ ions, and a time-of-flight resolution of 160 ps was measured. Qualitative information on the effect of foil thickness was also obtained.

  9. Magnetized pair Bose gas: relativistic superconductor

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    The magnetized Bose gas at temperatures above pair threshold is investigated. New magnetization laws are obtained for a wide range of field strengths, and the gas is shown to exhibit the Meissner effect. Some related results for the Fermi gas, a relativistic paramagnet, are also discussed. It is concluded that the pair gases, through the interplay between pair creation, temperature, field strength, statistics and/in the case of fermions/spin, have remarkable magnetic properties. 14 refs

  10. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus.

    Science.gov (United States)

    Yin, Haisong; Zhang, Renkuan; Xia, Menglei; Bai, Xiaolei; Mou, Jun; Zheng, Yu; Wang, Min

    2017-06-15

    Acetic acid bacteria (AAB) are widely applied in food, bioengineering and medicine fields. However, the acid stress at low pH conditions limits acetic acid fermentation efficiency and high concentration of vinegar production with AAB. Therefore, how to enhance resistance ability of the AAB remains as the major challenge. Amino acids play an important role in cell growth and cell survival under severe environment. However, until now the effects of amino acids on acetic fermentation and acid stress resistance of AAB have not been fully studied. In the present work the effects of amino acids on metabolism and acid stress resistance of Acetobacter pasteurianus were investigated. Cell growth, culturable cell counts, acetic acid production, acetic acid production rate and specific production rate of acetic acid of A. pasteurianus revealed an increase of 1.04, 5.43, 1.45, 3.30 and 0.79-folds by adding aspartic acid (Asp), and cell growth, culturable cell counts, acetic acid production and acetic acid production rate revealed an increase of 0.51, 0.72, 0.60 and 0.94-folds by adding glutamate (Glu), respectively. For a fully understanding of the biological mechanism, proteomic technology was carried out. The results showed that the strengthening mechanism mainly came from the following four aspects: (1) Enhancing the generation of pentose phosphates and NADPH for the synthesis of nucleic acid, fatty acids and glutathione (GSH) throughout pentose phosphate pathway. And GSH could protect bacteria from low pH, halide, oxidative stress and osmotic stress by maintaining the viability of cells through intracellular redox equilibrium; (2) Reinforcing deamination of amino acids to increase intracellular ammonia concentration to maintain stability of intracellular pH; (3) Enhancing nucleic acid synthesis and reparation of impaired DNA caused by acid stress damage; (4) Promoting unsaturated fatty acids synthesis and lipid transport, which resulted in the improvement of cytomembrane

  11. Effect of different carbon fillers and dopant acids on electrical ...

    Indian Academy of Sciences (India)

    The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor ...

  12. Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with ...

    African Journals Online (AJOL)

    Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. C Appunu, B Dhar. Abstract. Eight acid tolerant strains of Bradyrhizobium isolated from soybean plants grown on acid soils in Madhya Pradesh, India, were examined for their ability to survive in soil and YEMB at low pH levels. All the ...

  13. Effects of amino acids and metabolizable energy on egg ...

    African Journals Online (AJOL)

    Jane

    2011-08-31

    Aug 31, 2011 ... rate. All amino acids are not available in the feedstuffs for maintenance and production. Parts of amino acids are indigestible and can vary among different .... Fertility and hatch- ability are the major economical traits in broiler breeder reproductive performance. Main effects of amino acid of feedstuffs was ...

  14. Relativistic theory of electron-impact ionization

    International Nuclear Information System (INIS)

    Rosenberg, Leonard

    2010-01-01

    A relativistic version of an earlier, non-relativistic, formulation of the theory of ionization of an atomic system by electron impact is presented. With a time-independent resolvent operator taken as the basis for the dynamics, a wave equation is derived for a system with open channels consisting of two positive-energy electrons in an external field generated by the residual ion. Virtual intermediate states can be accounted for by the effective Hamiltonian that appears in the wave equation and which in principle may be constructed perturbatively. The asymptotic form of the wavefunction, modified by the effects of the long-range Coulomb interactions of the two electrons in the external field, is derived. These electrons are constrained, by projection operators which appear naturally in the theory, to propagate in positive-energy states only. The long-range Coulomb effects take the form of phase factors similar to those that are found in the non-relativistic version of the theory. With the boundary conditions established, an integral identity for the ionization amplitude is derived, and used to set up a distorted-wave Born expansion for the transition amplitude involving Coulomb-modified propagating waves.

  15. Effect of para-chlorophenoxyacetic acid on acid invertase gene ...

    African Journals Online (AJOL)

    Your User Name

    2011-07-04

    Jul 4, 2011 ... transplanted to a solar greenhouse with array pitch of 50 cm and row spacing 35 cm. .... significant change in response to PCPA treatment. Effect of ..... The regulatory mechanism of sugar accumulation is quite complicated.

  16. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  17. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  18. Electromagnetic interactions in relativistic infinite component wave equations

    International Nuclear Information System (INIS)

    Gerry, C.C.

    1979-01-01

    The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group

  19. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2016-01-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  20. Relativistic Doppler Beaming and Misalignments in AGN Jets

    Science.gov (United States)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  1. Effect of bile acids on digestion

    Directory of Open Access Journals (Sweden)

    O. O. Stremoukhov

    2013-12-01

    Full Text Available Studying the effects of different bile acids in the body in recent years significantly increased the understanding of their physiological functions. The role of bile acids is to transfer to Striated border of enterocytes lipids in high micellar concentration and subsequent return them to the water layer in the molecular form. The rate of diffusion of molecules or particles is inversely proportional to the square root of the magnitude of their molecular weight. Main components of the glycoprotein complex (GPC allows to preserve the natural structure of mucosa. Previous physicochemical experiments on GPC established presence of bile acids (3,5 to 10 mg/ml, enzymes (amylase and lipase, amino acids (from 10150 to 29500 ug/ml in the complex. Objective. The aim was to study the influence of bile on fat filtration on the model of GPC. Method and Materials. Soaked filters were put on the tubes: with bile - the first, water - the second group, GPC bile at a dose of 25 mg/kg - the third group. Then on each filter was poured 2 ml of liquid fat. 30 minutes after the start of the experiment the amount of liquid fat that passes through the filter was measured. Results and Discussion. As established in the first group (bile medical, the amount of liquid fat, which passed through the filter amounted to 1,85±0,02 ml. In the second group (water - 0,30 ± 0,03 ml. In the third group (GPC 25 mg/kg - 1,75±0,02 ml. After that the impact of GPC bile in emulsification of fats was studied. 1 ml of vegetable oil and 1,5 ml of purified water were contributed in three series of tubes. The first series of test tubes left unchanged. In the other two 2 ml in 2 series - medical bile in 3 series - GPC bile were added. Tubes were shaken in all series. In the first (control series observed the formation of turbid fluid - emulsion. However, in a few seconds instability of the emulsion was detected. In the second and third series of tubes formation of stable emulsions which are

  2. Effect of acidic seed on biogenic secondary organic aerosol growth

    Science.gov (United States)

    Czoschke, Nadine M.; Jang, Myoseon; Kamens, Richard M.

    Secondary organic aerosol (SOA) growth in the presence of acid aerosols was studied in twin 500 l Teflon bags and in a 4 m flow reactor. In Teflon bags, isoprene, acrolein and α-pinene were all made to react individually with ozone and exposed to either acid or non-acid inorganic seed aerosols to determine the effect of acid-catalyzed heterogeneous reactions on SOA growth. α-Pinene and ozone were made to react in a flow reactor to assess the immediate effect of mixing an acid aerosol with SOA at high and low relative humidity levels. In all cases, exposure to acid seed aerosol increased the amount of SOA mass produced. Fourier transform infrared spectra of the SOA in acid systems confirmed the transformation of carbonyl functional groups through acid-catalyzed heterogeneous reactions when SOAs formed in acidic environments or were exposed to acidic aerosols. Organic products initially produced from ozonation in the gas phase partition onto the inorganic seed aerosol and react heterogeneously with an acid catalyst forming low vapor pressure products. These acid-catalyzed heterogeneous reactions are implicated in generating the increased SOA mass observed in acidic aerosol systems as they transform predominantly gas phase compounds of high volatility into low vapor pressure predominantly particle phase products.

  3. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  4. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  5. Relativistic quantum chemistry on quantum computers

    DEFF Research Database (Denmark)

    Veis, L.; Visnak, J.; Fleig, T.

    2012-01-01

    The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...

  6. Electroweak interactions in a relativistic Fermi gas

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2006-01-01

    We present a relativistic model for computing the neutrino mean free path in neutron matter. In this model, neutron matter is described as a noninteracting Fermi gas in β equilibrium. We present results for the neutrino mean free path for temperatures of 0 to 50 MeV and a broad range of neutrino energies. We show that relativistic effects cause a considerable enhancement of neutrino-scattering cross sections in neutron matter. The influence of the Q 2 dependence in the electroweak form factors and the inclusion of a weak-magnetic term in the hadron current is discussed. The weak-magnetic term in the hadron current is at the origin of some selective spin dependence for the nucleons that are subject to neutrino interactions

  7. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  8. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  9. Cosmological measurements with general relativistic galaxy correlations

    International Nuclear Information System (INIS)

    Raccanelli, Alvise; Montanari, Francesco; Durrer, Ruth; Bertacca, Daniele; Doré, Olivier

    2016-01-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ''relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  10. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    McKerr, M.; Kourakis, I. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN Belfast, Northern Ireland (United Kingdom); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS (Brazil)

    2016-05-15

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  11. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  12. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    Science.gov (United States)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  13. Scalar Relativistic Study of the Structure of Rhodium Acetate

    Directory of Open Access Journals (Sweden)

    Emily E. Edwards

    2004-01-01

    Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 Å compared to the experimental value of 2.3855±0.0005 Å.

  14. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    International Nuclear Information System (INIS)

    Ito, Len; Kobayashi, Toyoaki; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2008-01-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins

  15. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  16. Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.C.N.; Barros, C.C. [Universidade Federal de Santa Catarina, Dept. de Fisica - CFM, Florianopolis, SC (Brazil)

    2018-01-15

    We study solutions for the Klein-Gordon equation with vector and scalar potentials of the Coulomb types under the influence of noninertial effects in the cosmic string spacetime. We also investigate a quantum particle described by the Klein-Gordon oscillator in the background spacetime generated by a cosmic string. An important result obtained is that the noninertial effects restrict the physical region of the spacetime where the particle can be placed. In addition, we show that these potentials can form bound states for the Klein-Gordon equation in this kind of background. (orig.)

  17. A flat space-time relativistic explanation for the perihelion advance of Mercury

    OpenAIRE

    Behera, Harihar; Naik, P. C.

    2003-01-01

    Starting with the flat space-time relativistic versions of Maxwell-Heaviside's toy model vector theory of gravity and introducing the gravitational analogues for the electromagnetic Lienard-Wiechert potentials together with the notion of a gravitational Thomas Precession; the observed anomalous perihelion advance of Mercury's orbit is here explained as a relativistic effect in flat (Minkowski) space-time, unlike Einstein's curved space-time relativistic explanation. In this new explanation fo...

  18. Relativistic description of pair production of doubly heavy baryons in e+e− annihilation

    International Nuclear Information System (INIS)

    Martynenko, A. P.; Trunin, A. M.

    2015-01-01

    Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated

  19. Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation

    International Nuclear Information System (INIS)

    Rizzato, F.B.

    1985-01-01

    Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)

  20. Intestinal uptake of bile acids: effect of external abdominal irradiation

    International Nuclear Information System (INIS)

    Thomson, A.B.R.; Cheeseman, C.I.; Walker, K.

    1984-01-01

    Abdominal irradiation has recently been shown to influence the uptake of hexoses, amino acids, fatty acids and cholesterol into the jejunum of rats. The present studies were undertaken with a previously validated in vitro technique to determine the effect of abdominal irradiation from a cesium source on the rates of uptake of six bile acids into the jejunum, ileum, and colon. The results show that: 1) there likely are multiple ileal carriers for bile acids: 2) abdominal irradiation has a variable effect on these carriers; 3) the passive permeability to bile acids varies with the bile acid and with the site along the intestine; and 4) abdominal irradiation is associated with a rise in the colonic permeability to only some bile acids

  1. Effect of citric acid on noncovalent interactions in biopolymer jellies

    Directory of Open Access Journals (Sweden)

    Kuanyzhbek Musabekov

    2015-09-01

    Full Text Available The effect of citric acid on the formation of gels based on gelatine, melon pulp and sugar has been studied. It is found that the structuring of gelatin the presence of melon pulp is due to hydrogen bonds between the amino acids of gelatin and pectin melon by hydrogen bonds. It is shown that the structuring of gelatin and gelatin – melon pulp depends on the concentration of sugar. The addition of acid in the pectin-gelatin composition reduces the pH, the solubility of pectin and accelerates the formation of jelly. This is due to the fact that in the presence of citric acid reduced the degree of dissociation of galacturonic acid. The intensity of the effect of citric acid on the structure in the presence of melon pulp could be explained by the formation of hydrogen bonds between pectin and citric acid.

  2. Localization and Entanglement in Relativistic Quantum Physics

    Science.gov (United States)

    Yngvason, Jakob

    These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop "The Message of Quantum Science—Attempts Towards a Synthesis" held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues: Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).

  3. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  4. Search for and study of the effective mass spectra of nucleon clusters produced in relativistic nucleon collisions

    International Nuclear Information System (INIS)

    Didenko, L.A.; Grishin, V.G.; Kuznetsov, A.A.

    1991-01-01

    The effective mass spectra of nucleon clusters, produced in p, d, He and C collisions with carbon nuclei at P=4.2xA GeV/c are studied. The results obtained show that clusters with proton multiplicity n p =2 and 3 can be interpreted as decay products of nucleon resonances with a width from a few MeV to a few tens MeV. 11 refs.; 6 figs.; 4 tabs

  5. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  6. Resonances of the confined hydrogen atom and the Lamb-Dicke effect in non-relativistic qed

    DEFF Research Database (Denmark)

    Faupin, Jeremy

    2008-01-01

    We study a model describing a system of one dynamical nucleus and one electron confined by their center of mass and interacting with the quantized electromagnetic field. We impose an ultraviolet cutoff and assume that the fine-structure constant is sufficiently small. Using a renormalization grou...... method (based on [3, 4]), we prove that the unperturbed eigenvalues turn into resonances when the nucleus and the electron are coupled to the radiation field. This analysis is related to the Lamb–Dicke effect....

  7. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  8. Study of the O-mode in a relativistic degenerate electron plasma

    Science.gov (United States)

    Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar

    2017-03-01

    Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.

  9. Effects of varying levels of n-6:n-3 fatty acid ratio on plasma fatty acid ...

    African Journals Online (AJOL)

    This study investigated the effects of varying dietary levels of n-6:n-3 fatty acid ratio on plasma fatty acid composition and prostanoid synthesis in pregnant rats. Four groups consisting of seven rats per group of non pregnant rats were fed diets with either a very low n-6:n-3 ratio of 50% soybean oil (SBO): 50% cod liver oil ...

  10. Lytic effects of mixed micelles of fatty acids and bile acids

    NARCIS (Netherlands)

    Lapré, J. A.; Termont, D. S.; Groen, A. K.; van der Meer, R.

    1992-01-01

    It has been hypothesized that bile acids and fatty acids promote colon cancer. A proposed mechanism is a lytic effect of these surfactants on colonic epithelium, resulting in a compensatory proliferation of colonic cells. To investigate the first step of this hypothesis, we studied the lytic

  11. The effect of conjugated linoleic acid on the fatty acid composition of ...

    African Journals Online (AJOL)

    The effect of conjugated linoleic acid on the fatty acid composition of different tissues and yolk lipids in pigeons. ... South African Journal of Animal Science ... Eight established breeding pairs per group were fed either a commercially pelleted pigeon diet mixed with 0.5% safflower oil (SFO) or 0.5% CLA for 12 weeks. For fatty ...

  12. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  13. Effects of acid deposition on tree roots

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H. [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1995-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  14. Effects of acid deposition on tree roots

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H [Swedish Univ. of Agricultural Sciences (Sweden). Dept. of Ecology and Environmental Research

    1996-12-31

    Large forest regions in SW Sweden have been exposed to high levels of acid deposition for many decades, causing soil acidification in forest soils. Historically, SO{sub 2} has been the major acidification agent, but lately nitrogen compounds increasingly have become important. The amount and chemical form of nitrogen strongly affects the pH in the rhizosphere and rhizoplane. Many forest stands show a positive growth response to increased nitrogen input, even in heavily N-loaded areas. Nitrogen fertilization experiments suggest that part of the increased forest production is caused by a translocation of biomass production from below-ground to above-ground parts. At the same time fine-root growth dynamics are strongly affected by the high N supply. Deficiencies of various nutrients (Mg,Ca,K,Mn and Zn) obtained from needle analyses have been reported from different Picea abies stands. In areas with more extensive acidification and nutrient leaching, a decline in tree vitality has been observed. Although deficiency symptoms in forest trees may be reflected in nitrogen/cation ratios in fine roots, few attempts have been made to explain forest damage symptoms from fine-root chemistry. Root damage is often described as a decline in the amount of living fine roots, an increase in the amount of dead versus live fine roots (a lower live/dead ratio) and an increasing amount of dead medium and coarse roots. The primary objectives of the present presentation were to analyse available data on the effects of high nitrogen and sulphur deposition on mineral nutrient balance in tree fine roots and to evaluate the risk of Al interference with cation uptake by roots

  15. Effects of water on the esterification of free fatty acids by acid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Yeon; Kim, Deog-Keun; Lee, Jin-Suk [Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Wang, Zhong-Ming [Guangzhou Institute of Energy Conversion, No. 2 Nengyuan Rd, Wushan, Tianhe, Guangzhou 510-640 (China)

    2010-03-15

    To maximize the production of biodiesel from soybean soapstock, the effects of water on the esterification of high-FFA (free fatty acid) oils were investigated. Oleic acid and high acid acid oil (HAAO) were esterified by reaction with methanol in the presence of Amberlyst-15 as a heterogeneous catalyst or sulfuric acid as a homogeneous catalyst. The yield of fatty acid methyl ester (FAME) was studied at oil to methanol molar ratios of 1:3 and 1:6 and reaction temperatures of 60 and 80 C. The rate of esterification of oleic acid significantly decreased as the initial water content increased to 20% of the oil. The activity of Amberlyst-15 decreased more rapidly than that of sulfuric acid, due to the direct poisoning of acid sites by water. Esterification using sulfuric acid was not affected by water until there was a 5% water addition at a 1:6 molar ratio of oil to methanol. FAME content of HAAO prepared from soapstock rapidly increased for the first 30 min of esterification. Following the 30-min mark, the rate of FAME production decreased significantly due to the accumulation of water. When methanol and Amberlyst-15 were removed from the HAAO after 30 min of esterification and fresh methanol and a catalyst were added, the time required to reach 85% FAME content was reduced from 6 h to 1.8 h. (author)

  16. Effect of Hydrochloric Acid Concentration on the Conversion of Sugarcane Bagasse to Levulinic Acid

    Science.gov (United States)

    Anggorowati, Heni; Jamilatun, Siti; Cahyono, Rochim B.; Budiman, Arief

    2018-01-01

    Levulinic acid is a new green platform chemical used to the synthesis of a variety of materials for numerous applications such as fuel additives, polymers and resins. It can be produced using renewable resources such as biomass like sugarcane bagasse which are cheap and widely available as waste in Indonesia. In this study, sugarcane bagasse was hydrolyzed using hydrochloric acid with a solid liquid ratio 1:10. The effects of hydrochloric acid concentration at temperature of 180 °C and reaction time of 30 min were studied. The presence of levulinic acid in product of hydrolysis was measured with gas chromatography (GC). It was found that the highest concentration of levulinic acid was obtained at 1 M hydrochloric acid in 25.56 yield%.

  17. Molecular mechanisms for sweet-suppressing effect of gymnemic acids.

    Science.gov (United States)

    Sanematsu, Keisuke; Kusakabe, Yuko; Shigemura, Noriatsu; Hirokawa, Takatsugu; Nakamura, Seiji; Imoto, Toshiaki; Ninomiya, Yuzo

    2014-09-12

    Gymnemic acids are triterpene glycosides that selectively suppress taste responses to various sweet substances in humans but not in mice. This sweet-suppressing effect of gymnemic acids is diminished by rinsing the tongue with γ-cyclodextrin (γ-CD). However, little is known about the molecular mechanisms underlying the sweet-suppressing effect of gymnemic acids and the interaction between gymnemic acids versus sweet taste receptor and/or γ-CD. To investigate whether gymnemic acids directly interact with human (h) sweet receptor hT1R2 + hT1R3, we used the sweet receptor T1R2 + T1R3 assay in transiently transfected HEK293 cells. Similar to previous studies in humans and mice, gymnemic acids (100 μg/ml) inhibited the [Ca(2+)]i responses to sweet compounds in HEK293 cells heterologously expressing hT1R2 + hT1R3 but not in those expressing the mouse (m) sweet receptor mT1R2 + mT1R3. The effect of gymnemic acids rapidly disappeared after rinsing the HEK293 cells with γ-CD. Using mixed species pairings of human and mouse sweet receptor subunits and chimeras, we determined that the transmembrane domain of hT1R3 was mainly required for the sweet-suppressing effect of gymnemic acids. Directed mutagenesis in the transmembrane domain of hT1R3 revealed that the interaction site for gymnemic acids shared the amino acid residues that determined the sensitivity to another sweet antagonist, lactisole. Glucuronic acid, which is the common structure of gymnemic acids, also reduced sensitivity to sweet compounds. In our models, gymnemic acids were predicted to dock to a binding pocket within the transmembrane domain of hT1R3. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  19. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  20. Effects of Ascorbic Acid on Reproductive Functions of Male Wistar ...

    African Journals Online (AJOL)

    Effects of Ascorbic Acid on Reproductive Functions of Male Wistar Rats Exposed to Nicotine. ... smoke, and its effects on male reproductive system and fertility are well documented. ... The drugs were orally administered for thirty-five days.

  1. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  2. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. J.; Xue, X. L.; Jia, Yu [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Guo, Z. X. [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H (United Kingdom); Li, S. F., E-mail: sflizzu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhenyu, E-mail: zhangzy@ustc.edu.cn [ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Y. F., E-mail: ygao7@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  3. The effect of sulfuric acid on pore initiation in anodic alumina formed in oxalic acid

    Directory of Open Access Journals (Sweden)

    Behnam Hafezi

    2014-07-01

    Full Text Available In this work, a tracer study on pore initiation in anodic alumina in oxalic acid was performed. Effects of some experimental parameters such as applied electrical potential, electrolyte composition and heat pretreatment were evaluated. Electrochemical and morphological experiments were performed using potentiostatic anodizing and scanning electron microscopy (SEM techniques, respectively. Effect of electrolyte composition on current density was discussed. In various electrical potentials, electrolyte composition had different effects on current density. Addition of sulfuric acid into oxalic acid increased porosity. Also, distribution of pore size and pore diameter were influenced by presence of sulfuric acid. Effect of electrolyte composition on the morphology of aluminum surface layer depended on the electric potential. Current density and porosity of aluminum surface layer was decreased by heat pretreatment.

  4. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    Science.gov (United States)

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  5. Effect of Ethylenediaminetetraacetic Acid and Ammonium Oxalate ...

    African Journals Online (AJOL)

    ADOWIE PERE

    acid and ammonium oxalate on the prevalence of microorganisms and removal of aluminum in soil by bitter leaf plant (Vernonia ... highest accumulation of aluminium in the root (16.92mg/kg); however concentrations of aluminium in the roots were .... whereas the sulphate was 13.75mg/kg. Table 2: The total colony count of ...

  6. Effects of combination of ethylenediaminetetraacetic acid and ...

    African Journals Online (AJOL)

    Administrator

    2010-12-27

    Dec 27, 2010 ... Key words: Ethylene diamine tetraacetic acid, microbial phytase, zinc, copper, manganese. .... At day 44, chrome oxide (Cr2O3) was added to all diets at 0.1% level as a .... The hydrolysis of phytate phosphorus by chicks and.

  7. Relativistic equations of state at finite temperature

    International Nuclear Information System (INIS)

    Santos, A.M.S.; Menezes, D.P.

    2004-01-01

    In this work we study the effects of temperature on the equations of state obtained within a relativistic model with and without β equilibrium, over a wide range of densities. We integrate the TOV equations. We also compare the results of the equation of state, effective mass and strangeness fraction from the TM1, NL3 and GL sets of parameters, as well as investigating the importance of antiparticles in the treatment. The have checked that TM1 and NL3 are not appropriate for the description of neutron and protoneutron stars. (author)

  8. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  9. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  10. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  11. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  12. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period.

    Science.gov (United States)

    Rohof, W O; Bennink, R J; de Ruigh, A A; Hirsch, D P; Zwinderman, A H; Boeckxstaens, G E

    2012-12-01

    The risk for acidic reflux is mainly determined by the position of the gastric acid pocket. It was hypothesised that compounds affecting proximal stomach tone might reduce gastro-oesophageal reflux by changing the acid pocket position. To study the effect of azithromycin (Azi) on acid pocket position and acid exposure in patients with gastro-oesophageal reflux disease (GORD). Nineteen patients with GORD were included, of whom seven had a large hiatal hernia (≥3 cm) (L-HH) and 12 had a small or no hiatal hernia (S-HH). Patients were randomised to Azi 250 mg/day or placebo during 3 days in a crossover manner. On each study day, reflux episodes were detected using concurrent high-resolution manometry and pH-impedance monitoring after a standardised meal. The acid pocket was visualised using scintigraphy, and its position was determined relative to the diaphragm. Azi reduced the number of acid reflux events (placebo 8.0±2.2 vs Azi 5.6±1.8, pacid exposure (placebo 10.5±3.8% vs Azi 5.9±2.5%, preflux episodes. Acid reflux occurred mainly when the acid pocket was located above, or at the level of, the diaphragm, rather than below the diaphragm. Treatment with Azi reduced hiatal hernia size and resulted in a more distal position of the acid pocket compared with placebo (below the diaphragm 39% vs 29%, p=0.03). Azi reduced the rate of acid reflux episodes in patients with S-HH (38% to 17%) to a greater extent than in patients with L-HH (69% to 62%, p=0.04). Azi reduces acid reflux episodes and oesophageal acid exposure. This effect was associated with a smaller hiatal hernia size and a more distal position of the acid pocket, further indicating the importance of the acid pocket in the pathogenesis of GORD. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1970 NTR1970.

  13. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    Science.gov (United States)

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  15. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  16. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  17. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    International Nuclear Information System (INIS)

    Bhat, J. Ishwara; Alva, Vijaya D. P.

    2014-01-01

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  18. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  19. Effect of exogenous gibberellic acid on germination, seedling growth ...

    African Journals Online (AJOL)

    The effect of gibberellic acid on germination and seedling growth of lettuce variety, Vista, under salinity conditions was studied. A reduction in germination percentage, roots and shoots length and fresh weight were observed under salt stress. At the same time, acid phosphatase and phytase activities in roots were reduced ...

  20. Effects of Tranexamic Acid on Death, Vascular Occlusive Events ...

    African Journals Online (AJOL)

    Background: Tranexamic acid can reduce bleeding in patients undergoing elective surgery. We assessed the effects of early administration of a short course of tranexamic acid on death, vascular occlusive events, and the receipt of blood transfusion in trauma patients. Methods: This randomised controlled trial was ...

  1. Optimising the Effect of Stimulants on Citric Acid Production from ...

    African Journals Online (AJOL)

    Additives such as low molecular weight alcohols, trace metals, phytate, lipids etc have been reported to stimulate citric acid production. Hence the objective of this study was to investigate the effect of stimulating the metabolic activity of Aspergillus niger for the purpose of improved citric acid production from cocoyam starch.

  2. Effect of cottonseed and canola seed on unsaturated fatty acid ...

    African Journals Online (AJOL)

    student

    biohydrogenation in the rumen and showed that the type of dietary fat has a marked impact on lipid ... Keywords: Extruded oil seed, fatty acid, lamb plasma, liver, Mehraban lambs ..... Effects of diets low in fat or essential fatty acids on the fatty ... Review: Erythrocyte membrane: structure, function, and pathophysiology. Vet.

  3. Neuroprotective effects of Ellagic acid on Neonatal Hypoxic Brain ...

    African Journals Online (AJOL)

    Purpose: To investigate if ellagic acid exerts neuroprotective effects in hypoxic ischemic (HI) brain injury by inhibiting apoptosis and inflammatory responses. Methods: Separate groups of rat pups from post-natal day 4 (D4) were administered with ellagic acid (10, 20 or 40 mg/kg body weight) orally till post- natal day 10 ...

  4. THE EFFECT OF ALOE VERA ON GASTRIC ACID SECRETION ...

    African Journals Online (AJOL)

    The effect of varying doses of ethanol extract of Aloe vera (Liliaceae) on acute gastric mucosal lesions induced by 0.6M HCl and acid output was studied in the pylorus ligated and lumen perfuse rats respectively. Acid secretion was determined by titration of the collected gastric juice to pH 7.0. Intraperitoneal injection of Aloe ...

  5. Cost-effectiveness of periconceptional supplementation of folic acid

    NARCIS (Netherlands)

    Postma, MJ; Londeman, J; Veenstra, M; de Walle, HEK; de Jong-van den Berg, LTW

    Background: Supplementation of folic acid prior to and in the beginning of pregnancy may prevent neural tube defects (NTDs) in newborns - such as spina bifida - and possibly other congenital malformations. Objective. To estimate cost effectiveness of periconceptional supplementation of folk: acid

  6. Effect of supplemental Ascorbic acid and disturbance stress on the ...

    African Journals Online (AJOL)

    Effect of supplemental Ascorbic acid and disturbance stress on the performance of broiler chickens. ... Nigerian Journal of Animal Production ... Results showed that there were no significant interactions between dietary ascorbic acid supplementation and disturbance stress levels on any of the performance data considered.

  7. Chemopreventive effect of corosolic acid in human hepatocellular ...

    African Journals Online (AJOL)

    Anticancer effects of corosolic acid have been demonstrated earlier in human cervix adenocarcinoma and osteosarcoma cells, but the exact underlying molecular mechanisms have not been studied. Hence, an attempt was made to identify the anticancer mechanism of corosolic acid in human hepatocellular carcinoma cells ...

  8. Radioprotective effects of ascorbic acid in barley seeds

    Energy Technology Data Exchange (ETDEWEB)

    Conger, B V

    1975-01-01

    Experiments were conducted to test the radioprotective effects of a naturally occurring reducing agent, ascorbic acid, on seeds (caryopses) of barley, Hordeum vulgare L. emend Lam. Seeds were soaked either before or after ..gamma.. or fission neutron irradiation in distilled water or ascorbic acid solutions ranging in concentration from 0.01 to 1.00 M. Results are reported as percentage germination, seedling height, seedling growth reduction, and (in one experiment) percent of cells with chromosome aberrations. As evidenced by both reduced germination and seedling growth, ascorbic acid was toxic when seeds were soaked for 1 hr at ambient temperature prior to irradiation and then planted immediately. When seeds were soaked in ascorbic acid before irradiation and soaked after irradiation in air-bubbled water at 0/sup 0/C for 18 hr, the toxicity disappeared, and a protective effect (which increased with increasing ascorbic acid concentration) was observed for ..gamma.. and, to a lesser extent, for neutron irradiation. Additional studies suggested that the protective effect was related to reduced hydration of the embryos of seeds soaked in ascorbic acid. Also, no radioprotective effect was observed when seeds were presoaked for 2 or 16 hr in 0.01 M ascorbic acid solutions buffered at pH 3 or pH 7. A protective effect was observed for seeds of 1.5 percent water content soaked after irradiation in an oxygen-bubbled ascorbic acid solution of 0.5 M but was not observed for seeds soaked in nitrogen-bubbled ascorbic acid. The protective effect against oxygen-dependent damage may be a result of interaction of ascorbic acid with radiation-induced free radicals.

  9. Effect of uric acid on oxidative damage

    Czech Academy of Sciences Publication Activity Database

    Buňková, Radka; Papežíková, Ivana; Podborská, Martina; Lojek, Antonín

    2007-01-01

    Roč. 101, č. 14 (2007), s170-s171 E-ISSN 1213-7103. [Mezioborová česko-slovenská toxikologická konference /12./. Praha, 11.06.2007-13.06.2007] R&D Projects: GA ČR(CZ) GP204/07/P539 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : uric acid * lipid peroxidation * HPLC Subject RIV: BO - Biophysics

  10. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  11. Effects of divalent amino acids on iron absorption

    International Nuclear Information System (INIS)

    Christensen, J.M.; Ghannam, M.; Ayres, J.W.

    1984-01-01

    Solutions of each of 10 amino acids or ascorbic acid were mixed with iron and orally administered to rats. Iron was absorbed to a statistically significantly greater extent when mixed with asparagine, glycine, serine, or ascorbic acid as compared with a control solution of iron. The largest effects were for asparagine and glycine, which also increased iron absorption to a significantly greater extent than did serine or ascorbic acid. No statistically significant increase in iron absorption occurred when any of the other amino acids was mixed with iron. The extent of iron absorption from each test solution, as measured by area under the concentration of iron-59 in the blood-time curve (r2 . 0.0002), and the initial rate of iron absorption for each test solution (r2 . 0.01) showed no correlation with the stability constant of the amino acid-iron complex

  12. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    International Nuclear Information System (INIS)

    Pickenheim, B.; Bibler, N.

    2010-01-01

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H 2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O 2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A

  13. Decoherence and discrete symmetries in deformed relativistic kinematics

    Science.gov (United States)

    Arzano, Michele

    2018-01-01

    Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.

  14. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  15. Electron-deuteron scattering in a relativistic theory of hadrons

    International Nuclear Information System (INIS)

    Phillips, D.

    1998-11-01

    The author reviews a three-dimensional formalism that provides a systematic way to include relativistic effects including relativistic kinematics, the effects of negative-energy states, and the boosts of the two-body system in calculations of two-body bound-states. He then explains how to construct a conserved current within this relativistic three-dimensional approach. This general theoretical framework is specifically applied to electron-deuteron scattering both in impulse approximation and when the ρπγ meson-exchange current is included. The experimentally-measured quantities A, B, and T 20 are calculated over the kinematic range that is probed in Jefferson Lab experiments. The role of both negative-energy states and meson retardation appears to be small in the region of interest

  16. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    Science.gov (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  17. EFFECTS OF NITRIC ACID ON CRITICALITY SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, B.

    2011-08-18

    As nitric acid molarity is increased, there are two competing phenomena affecting the reactivity of the system. First, there is interaction between each of the 10 wells in the basket-like insert. As the molarity of the nitric acid solution is increased (it moves from 100% water to 100% HNO{sub 3}), the hydrogen atom density decreases by about 80%. However, it remains a relatively efficient moderator. The moderating ratio of nitric acid is about 90% that of water. As the media between the wells is changed from 100% water to 100% nitric acid, the density of the media increases by 50%. A higher density typically leads to a better reflector. However, when the macroscopic scattering cross sections are considered, nitric acid is a much worse reflector than water. The effectiveness of nitric acid as a reflector is about 40% that of water. Since the media between the wells become a worse reflector and still remains an effective moderator, interaction between the wells increases. This phenomenon will cause reactivity to increase as nitric acid molarity increases. The seond phenomenon is due to the moderating ratio changing in the high concentration fissile-nitric acid solution in the 10 wells. Since the wells contain relatively small volumes of high concentration solutions, a small decrease in moderating power has a large effect on reactivity. This is due to the fact that neutrons are more likely to escape the high concentration fissile solution before causing another fission event. The result of this phenomenon is that as nitric acid molarity increases, reactivity decreases. Recent studies have shown that the second phenomenon is indeed the dominating force in determining reactivity changes in relation to nitric acid molarity changes. When considering the system as a whole, as nitric acid molarity increases, reactivity decreases.

  18. Ancillary effects of selected acid deposition control policies

    Energy Technology Data Exchange (ETDEWEB)

    Moe, R.J.; Lyke, A.J.; Nesse, R.J.

    1986-08-01

    NAPAP is examining a number of potential ways to reduce the precursors (sulfur dioxide and nitrogen oxides) to acid deposition. However, the policies to reduce acid deposition will have other physical, biological and economic effects unrelated to acid deposition. For example, control policies that reduce sulfur dioxide emissions may also increase visibility. The effects of an acid deposition policy that are unrelated to acid deposition are referred to as ''ancillary'' effects. This reserch identifies and characterizes the principle physical and economic ancillary effects associated with acid deposition control and mitigation policies. In this study the ancillary benefits associated with four specific acid deposition policy options were investigated. The four policy options investigated are: (1) flue gas desulfurization, (2) coal blending or switching, (3) reductions in automobile emissions of NO/sub x/, and (4) lake liming. Potential ancillary benefits of each option were identified and characterized. Particular attention was paid to the literature on economic valuation of potential ancillary effects.

  19. The effect of Tranexamic acid on cardiac surgery bleeding

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeelzadeh

    2014-02-01

    Full Text Available Serious bleeding in cardiac surgery leads to re-exploration, blood transfusion and increases the risks of mortality and morbidity. Using the lysine analogous of antifibrionlytic agents are the preferred strategy to suppress the need for transfusion procedures and blood products. Although tranexamic acid has been very influential in reducing the transfusion requirement after operation, tranexamic acid induced seizures is one of the common side effects of this drug. Due to inhibiting the fibrinolysis, thrombotic events are other possible side effects of using tranexamic acid. There are no certain results regarding decreasing the mortality rate by using the drug but it is identified that tranexamic acid does not increase the mortality. In this article, we aimed to review the literature on using tranexamic acid in cardiac surgeries.

  20. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  1. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  2. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  3. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  4. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  5. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  6. Comparative Effects of Retinoic Acid or Glycolic Acid Vehiculated in Different Topical Formulations

    Science.gov (United States)

    Maia Campos, Patrícia Maria Berardo Gonçalves; Gaspar, Lorena Rigo; Gonçalves, Gisele Mara Silva; Pereira, Lúcia Helena Terenciane Rodrigues; Semprini, Marisa; Lopes, Ruberval Armando

    2015-01-01

    Retinoids and hydroxy acids have been widely used due to their effects in the regulation of growth and in the differentiation of epithelial cells. However, besides their similar indication, they have different mechanisms of action and thus they may have different effects on the skin; in addition, since the topical formulation efficiency depends on vehicle characteristics, the ingredients of the formulation could alter their effects. Thus the objective of this study was to compare the effects of retinoic acid (RA) and glycolic acid (GA) treatment on the hairless mouse epidermis thickness and horny layer renewal when added in gel, gel cream, or cream formulations. For this, gel, gel cream, and cream formulations (with or without 6% GA or 0.05% RA) were applied in the dorsum of hairless mice, once a day for seven days. After that, the skin was analyzed by histopathologic, morphometric, and stereologic techniques. It was observed that the effects of RA occurred independently from the vehicle, while GA had better results when added in the gel cream and cream. Retinoic acid was more effective when compared to glycolic acid, mainly in the cell renewal and the exfoliation process because it decreased the horny layer thickness. PMID:25632398

  7. Modular TPC's for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.

    1989-01-01

    We have developed a TPC system for use in relativistic heavy ion experiments that permits the efficient reconstruction of high multiplicity events including events with decay vertices. It operates with the beam through the middle of the chamber giving good efficiency, two-track separation and spatial resolution. The three-dimensional points in this system allow the reconstruction of the complex events of interest. The use of specially developed hybrid electronics allows us to build a compact and cost-effective system. 11 figs

  8. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Sagan, D.

    2006-01-01

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  9. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  10. Isoscalar giant resonances in a relativistic model

    International Nuclear Information System (INIS)

    L'Huillier, M.; Nguyen Van Giai.

    1988-07-01

    Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities

  11. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  12. Individual bile acids have differential effects on bile acid signaling in mice

    International Nuclear Information System (INIS)

    Song, Peizhen; Rockwell, Cheryl E.; Cui, Julia Yue; Klaassen, Curtis D.

    2015-01-01

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  13. Individual bile acids have differential effects on bile acid signaling in mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu; Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  14. Effects of Ascorbic Acid on Reproductive Functions of Male Wistar ...

    African Journals Online (AJOL)

    In conclusion, ascorbic acid supplement may suppress nicotine toxic effects on reproductive functions in male rats. ... et al., 2007). Nicotine is rapidly absorbed by the brain .... difference (LSD) test. p<0.05 was considered significant. Statistical ...

  15. Effect of exogenously added rhamnolipids on citric acid production ...

    African Journals Online (AJOL)

    Effect of exogenously added rhamnolipids on citric acid production yield. Wojciech Białas, Roman Marecik, Alicja Szulc, Łukasz Ławniczak, Łukasz Chrzanowski, Filip Ciesielczyk, Teofil Jesionowski, Andreas Aurich ...

  16. Effects of cold stratification, sulphuric acid, submersion in hot and ...

    African Journals Online (AJOL)

    Effects of cold stratification, sulphuric acid, submersion in hot and tap water pretreatments in the greenhouse and open field conditions on germination of bladder-Senna ( Colutea armena Boiss. and Huet.) seeds.

  17. Effect of dietary citric acid supplementation and partial replacement ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... evaluate the effect of soybean meal (SBM) as a fishmeal (FM) partial replacement and citric acid (CA) .... temperature, pH and salinity were monitored daily and dissolved .... Digestibility, metabolism and excretion of dietary.

  18. In vitro effect of lysophosphatidic acid on proliferation, invasion and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of lysophosphatidic acid (LPA) on the proliferation, invasion and migration ... reproduction in any medium, provided the original work is properly credited. Tropical .... air dried at room temperature overnight.

  19. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  20. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.