WorldWideScience

Sample records for acids insulin catecholamines

  1. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  2. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    International Nuclear Information System (INIS)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-01-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references

  3. Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency.

    Science.gov (United States)

    Limesand, Sean W; Rozance, Paul J

    2017-08-01

    Placental insufficiency and intrauterine growth restriction (IUGR) of the fetus affects approximately 8% of all pregnancies and is associated with short- and long-term disturbances in metabolism. In pregnant sheep, experimental models with a small, defective placenta that restricts delivery of nutrients and oxygen to the fetus result in IUGR. Low blood oxygen concentrations increase fetal plasma catecholamine concentrations, which lower fetal insulin concentrations. All of these observations in sheep models with placental insufficiency are consistent with cases of human IUGR. We propose that sustained high catecholamine concentrations observed in the IUGR fetus produce developmental adaptations in pancreatic β-cells that impair fetal insulin secretion. Experimental evidence supporting this hypothesis shows that chronic elevation in circulating catecholamines in IUGR fetuses persistently inhibits insulin concentrations and secretion. Elevated catecholamines also allow for maintenance of a normal fetal basal metabolic rate despite low fetal insulin and glucose concentrations while suppressing fetal growth. Importantly, a compensatory augmentation in insulin secretion occurs following inhibition or cessation of catecholamine signalling in IUGR fetuses. This finding has been replicated in normally grown sheep fetuses following a 7-day noradrenaline (norepinephrine) infusion. Together, these programmed effects will potentially create an imbalance between insulin secretion and insulin-stimulated glucose utilization in the neonate which probably explains the transient hyperinsulinism and hypoglycaemia in some IUGR infants. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  4. Possible modulatory effect of endogenous islet catecholamines on insulin secretion

    Directory of Open Access Journals (Sweden)

    Gagliardino Juan J

    2001-10-01

    Full Text Available Abstract Background The possible participation of endogenous islet catecholamines (CAs in the control of insulin secretion was tested. Methods Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT, a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I] and α1-adrenergic antagonists (prazosin [P] and terazosin [T] upon insulin secretion elicited by high glucose. Results Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p Conclusion Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.

  5. Experience affects exercise-induced changes in catecholamines, glucose, and FFA

    NARCIS (Netherlands)

    Scheurink, A.J.W.; Steffens, A.B.; Dreteler, G.H.; Benthem, L.; Bruntink, R.

    The interference of the experimental conditions on the exercise-induced alterations in plasma catecholamines, plasma free fatty acids, and glucose and insulin concentrations was investigated in rats. Exercise consisted of strenuous swimming against a countercurrent (0.22 m/s) for 15 min in a pool

  6. Preservation of urine free catecholamines and their free O-methylated metabolites with citric acid as an alternative to hydrochloric acid for LC-MS/MS-based analyses.

    Science.gov (United States)

    Peitzsch, Mirko; Pelzel, Daniela; Lattke, Peter; Siegert, Gabriele; Eisenhofer, Graeme

    2016-01-01

    Measurements of urinary fractionated metadrenalines provide a useful screening test to diagnose phaeochromocytoma. Stability of these compounds and their parent catecholamines during and after urine collection is crucial to ensure accuracy of the measurements. Stabilisation with hydrochloric acid (HCl) can promote deconjugation of sulphate-conjugated metadrenalines, indicating a need for alternative preservatives. Urine samples with an intrinsically acidic or alkaline pH (5.5-6.9 or 7.1-8.7, respectively) were used to assess stability of free catecholamines and their free O-methylated metabolites over 7 days of room temperature storage. Stabilisation with HCl was compared with ethylenediaminetetraacetic acid/metabisulphite and monobasic citric acid. Catecholamines and metabolites were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Free catecholamines and their O-methylated metabolites were stable in acidic urine samples over 7 days of room temperature storage, independent of the presence or absence of any stabilisation method. In contrast, free catecholamines, but not the free O-methylated metabolites, showed rapid degradation within 24 h and continuing degradation over 7 days in urine samples with an alkaline pH. Adjustment of alkaline urine samples to a pH of 3-5 with HCl or 4.8-5.4 with citric acid completely blocked degradation of catecholamines. Ethylenediaminetetraacetic acid/metabisulphite, although reducing the extent of degradation of catecholamines in alkaline urine, was largely ineffectual as a stabiliser. Citric acid is equally effective as HCl for stabilisation of urinary free catecholamines and minimises hazards associated with use of strong inorganic acids while avoiding deconjugation of sulphate-conjugated metabolites during simultaneous LC-MS/MS measurements of free catecholamines and their free O-methylated metabolites.

  7. Effect of catecholamines and insulin on plasma volume and intravascular mass of albumin in man

    DEFF Research Database (Denmark)

    Hilsted, J; Christensen, N J; Larsen, S

    1989-01-01

    1. The effect of intravenous catecholamine infusions and of intravenous insulin on plasma volume and intravascular mass of albumin was investigated in healthy males. 2. Physiological doses of adrenaline (0.5 microgram/min and 3 microgram/min) increased peripheral venous packed cell volume...... significantly; intravenous noradrenaline at 0.5 microgram/min had no effect on packed cell volume, whereas packed cell volume increased significantly at 3 micrograms of noradrenaline/min. No significant change in packed cell volume was found during saline infusion. 3. During adrenaline infusion at 6 micrograms...... in packed cell volume, plasma volume, intravascular mass of albumin and transcapillary escape rate of albumin during hypoglycaemia may be explained by the combined actions of adrenaline and insulin....

  8. Potentiometric and NMR complexation studies of phenylboronic acid PBA and its aminophosphonate analog with selected catecholamines

    Science.gov (United States)

    Ptak, Tomasz; Młynarz, Piotr; Dobosz, Agnieszka; Rydzewska, Agata; Prokopowicz, Monika

    2013-05-01

    Boronic acids are a class of intensively explored compounds, which according to their specific properties have been intensively explored in last decades. Among them phenylboronic acids and their derivatives are most frequently examined as receptors for diverse carbohydrates. In turn, there is a large gap in basic research concerning complexation of catecholamines by these compounds. Therefore, we decided to undertake studies on interaction of chosen catecholamines, namely: noradrenaline (norephinephrine), dopamine, L-DOPA, DOPA-P (phosphonic analog of L-DOPA) and catechol, with simple phenyl boronic acid PBA by means of potentiometry and NMR spectroscopy. For comparison, the binding properties of recently synthesized phenylboronic receptor 1 bearing aminophosphonate function in meta-position were investigated and showed promising ability to bind catecholamines. The protonation and stability constants of PBA and receptor 1 complexes were examined by potentiometry. The obtained results demonstrated that PBA binds the catecholamines with the following affinity order: noradrenaline ⩾ dopamine ≈ L-DOPA > catechol > DOPA-P, while its modified analog 1 reveals slightly different preferences: dopamine > noradrenaline > catechol > L-DOPA > DOPA-P.

  9. Urinary catecholamines, plasma insulin and environmental factors in relation to body fat distribution.

    Science.gov (United States)

    Leonetti, D L; Bergstrom, R W; Shuman, W P; Wahl, P W; Jenner, D A; Harrison, G A; Fujimoto, W Y

    1991-05-01

    The relationship of body fat distribution to insulin and the catecholamines, hormones that affect lipolysis differentially by fat site, was examined within an environmental context, including factors of medication use, physical activity, dietary intake, educational attainment, and age. Four cross-sectional body fat areas (cm2) were determined by three computed tomography (CT) scans (subcutaneous chest fat at the level of the nipples, subcutaneous and intra-abdominal fat at the level of the umbilicus, and subcutaneous left mid-thigh fat) in 191 second-generation Japanese-American men aged 45-74 years. The site-specific fat measurements were first examined in relation to use of beta-adrenergic antagonists, then to fasting plasma insulin and C-peptide levels and to urinary epinephrine and norepinephrine levels from a 24-h urine collection made during usual daily activities. Greater fat stores in the intra-abdominal area, even after adjustment for body mass index (BMI, weight/height2) and presence of coronary heart disease, were found to be related to use of beta-adrenergic antagonists. In men taking no adrenergic antagonists (n = 157), after adjustment for BMI, truncal fat measurements of the chest (partial r = -0.16, P less than 0.05) and intra-abdominal area (partial r = -0.21, P less than 0.05) were found to be inversely related to epinephrine, and intra-abdominal fat (partial r = 0.25, P less than 0.01) alone was directly related to fasting plasma insulin. With respect to other environmental variables, the significant inverse relationship of intra-abdominal fat (adjusted for BMI) with physical activity (partial r = -0.17, P less than 0.05) and the significant difference in intra-abdominal fat by educational attainment (college 102.3 +/- 5.7 vs no college 115.7 +/- 6.1 cm2, P = 0.03) became non-significant with adjustment, using multiple regression analysis, for insulin in the case of physical activity and epinephrine in the case of educational attainment. Thus

  10. Identification of catecholamine neurotransmitters using fluorescence sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Forough [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Hormozi-Nezhad, M. Reza, E-mail: hormozi@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mahmoudi, Morteza, E-mail: mahmoudi@stanford.edu [Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551 (Iran, Islamic Republic of); Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101 (United States)

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and L-DOPA) and their mixtures in the concentration range of 0.25–30 μmol L{sup −1}. Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. - Highlights: • We have proposed a fluorescence sensor array to detect catecholamine neurotransmitters. • Visual differentiation of catecholamines is provided by fluorescence array fingerprints. • Discrimination of catecholamines from each other, and from their mixture is obtained on a PCA plot. • Proposed sensor array can be used for detection of catecholamines in urine samples.

  11. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    International Nuclear Information System (INIS)

    Salhanick, A.I.; Amatruda, J.M.

    1988-01-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5'-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable [ 14 C]sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus

  12. Identification of catecholamine neurotransmitters using fluorescence sensor array.

    Science.gov (United States)

    Ghasemi, Forough; Hormozi-Nezhad, M Reza; Mahmoudi, Morteza

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and l-DOPA) and their mixtures in the concentration range of 0.25-30 μmol L(-1). Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Catecholamines, Plasma and Urine Test

    Science.gov (United States)

    ... and Iron-binding Capacity (TIBC, UIBC) Trichomonas Testing Triglycerides Troponin Tryptase Tumor Markers Uric Acid Urinalysis Urine ... blood pressure, and epinephrine increases heart rate and metabolism . After completing their actions, catecholamines are metabolized to ...

  14. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  15. Electrochemical Investigation of the Interaction between Catecholamines and ATP.

    Science.gov (United States)

    Taleat, Zahra; Estévez-Herrera, Judith; Machado, José D; Dunevall, Johan; Ewing, Andrew G; Borges, Ricardo

    2018-02-06

    The study of the colligative properties of adenosine 5'-triphosphate (ATP) and catecholamines has received the attention of scientists for decades, as they could explain the capabilities of secretory vesicles (SVs) to accumulate neurotransmitters. In this Article, we have applied electrochemical methods to detect such interactions in vitro, at the acidic pH of SVs (pH 5.5) and examined the effect of compounds having structural similarities that correlate with functional groups of ATP (adenosine, phosphoric acid and sodium phosphate salts) and catecholamines (catechol). Chronoamperometry and fast scan cyclic voltammetry (FSCV) provide evidence compatible with an interaction of the catechol and adenine rings. This interaction is also reinforced by an electrostatic interaction between the phosphate group of ATP and the protonated ammonium group of catecholamines. Furthermore, chronoamperometry data suggest that the presence of ATP subtlety reduces the apparent diffusion coefficient of epinephrine in aqueous media that adds an additional factor leading to a slower rate of catecholamine exocytosis. This adds another plausible mechanism to regulate individual exocytosis events to alter communication.

  16. Changes of blood levels of several hormones, catecholamines, prostaglandins, electrolytes and cAMP in man during emotional stress.

    Science.gov (United States)

    Tigranian, R A; Orloff, L L; Kalita, N F; Davydova, N A; Pavlova, E A

    1980-01-01

    The levels of several hormones (ACTH, GH, TSH, FSH, LH, parathyroid hormone--PTH, insulin, thyroxine--T4, triiodothyronine--T3, cortisol, testosterone, aldosterone, renin), catecholamines (epinephrine, norepinephrine, dopamin), prostaglandins (F1 alpha, F2 alpha, A + E), electrolytes (Na, K, Ca, Mg), cAMP and glucose in blood were measured before and immediately after the examination in 15 male students aged 28 to 35 years. Simultaneously the blood pressure was measured and hemodynamic measures were registered with the aid of echocardiography. A remarkable increase of catecholamines, ACTH, renin, T3, PTH, cAMP, PG F1 alpha, PG F2 alpha and Ca was found before the examination together with the increase of blood pressure. After the examination the levels of catecholamines, renin, aldosterone, T3, PTH, GH, FSH, LH, testosterone, PG A + E, glucose and Ca were found to be increased, while these of insulin, Na, PG F1 alpha, PG F2 alpha were decreased. The decrease of blood pressure was also found.

  17. Refeeding-induced brown adipose tissue glycogen hyper-accumulation in mice is mediated by insulin and catecholamines.

    Directory of Open Access Journals (Sweden)

    Christopher M Carmean

    Full Text Available Brown adipose tissue (BAT generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT glycogen levels within 4-12 hours (hr of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT. Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology.

  18. Refeeding-Induced Brown Adipose Tissue Glycogen Hyper-Accumulation in Mice Is Mediated by Insulin and Catecholamines

    Science.gov (United States)

    Carmean, Christopher M.; Bobe, Alexandria M.; Yu, Justin C.; Volden, Paul A.; Brady, Matthew J.

    2013-01-01

    Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4–12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology. PMID:23861810

  19. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  20. Plasma Ascorbic Acid in Insulin and Non-insulin Dependent Diabetes

    African Journals Online (AJOL)

    Blood glucose, plasma ascorbic acid and haemoglobin levels were estimated in insulin dependent diabetics, non-insulin dependent diabetics and controls matched for number, sex and age. Significantly higher levels of these parameters were found in control group than in the other two groups. Statistically differences were ...

  1. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  2. Use of deuterated tyrosine and phenylalanine in the study of catecholamine and aromatic acid metabolism

    International Nuclear Information System (INIS)

    Curtius, H.C.; Redweik, U.; Steinmann, B.; Leimbacher, W.; Wegmann, H.

    1975-01-01

    Deuterated tyrosine and phenylalanine have been used for the study of their respective metabolism in patients with phenylketonuria (PKU) and in healthy persons. Urinary excretion of dopamine and its metabolites was studied by GC-MS after oral administration of deuterated L-tyrosine in 2 patients with PKU and in normal controls at low and high plasma phenylalanine levels. From these studies it seemed that the in vivo tyrosine 3-hydroxylase activity and thus the formation of L-dopa depend on the phenylalanine concentration in plasma and also in tissues. After loading 3 mentally retarded patients with 3,5-[ 2 H 2 ]-4-hydroxyphenylalanine, we found, among others, excretion of deuterated m-hydroxyphenyl-hydracrylic acid, p-hydroxymandelic acid, p-hydroxybenzoic acid, p-hydroxyhippuric acid, benzoic acid and hippuric acid. An intramolecular rearrangement is postulated. Deuterated phenylalanine was used to investigate phenylalanine and dopa metabolism in PKU. In addition, one untreated person with PKU of normal intelligence and normal excretion of catecholamines at high plasma phenylalanine concentration was investigated in order to see whether there exists an alternative metabolic pathway from phenylalanine to dopa formation

  3. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans.

    Science.gov (United States)

    Clore, J N; Li, J; Gill, R; Gupta, S; Spencer, R; Azzam, A; Zuelzer, W; Rizzo, W B; Blackard, W G

    1998-10-01

    The fatty acid composition of skeletal muscle membrane phospholipids (PL) is known to influence insulin responsiveness in humans. However, the contribution of the major PL of the outer (phosphatidylcholine, PC) and inner (phosphatidylethanolamine, PE) layers of the sarcolemma to insulin sensitivity is not known. Fatty acid composition of PC and PE from biopsies of vastus lateralis from 27 normal men and women were correlated with insulin sensitivity determined by the hyperinsulinemic euglycemic clamp technique at insulin infusion rates of 0.4, 1.0, and 10.0 mU . kg-1 . min-1. Significant variation in the half-maximal insulin concentration (ED50) was observed in the normal volunteers (range 24.0-146.0 microU/ml), which correlated directly with fasting plasma insulin (r = 0.75, P insulin sensitivity was observed in PE (NS). These studies suggest that the fatty acid composition of PC may be of particular importance in the relationship between fatty acids and insulin sensitivity in normal humans.

  4. Catecholamine stimulation, substrate competition, and myocardial glucose uptake in conscious dogs assessed with positron emission tomography

    International Nuclear Information System (INIS)

    Merhige, M.E.; Ekas, R.; Mossberg, K.; Taegtmeyer, H.; Gould, K.L.

    1987-01-01

    Uptake of radiolabelled deoxyglucose out of proportion to reduced coronary flow demonstrated by positron emission tomography has been used to identify reversibly ischemic, viable myocardium. For this concept to be applied reliably in the clinical setting, factors that may depress glucose availability independent of tissue viability, such as adrenergic stimulation and substrate competition, must be examined. Accordingly, we studied the effect of catecholamine stimulation by dopamine on myocardial glucose uptake in vivo using chronically instrumented, intact dogs and positron emission tomography. We measured myocardial activity of [2- 18 F]-2-deoxyglucose (FDG) and 82 Rb in glucose-loaded animals randomly studied during dopamine infusion, during insulin infusion, and then during their combined infusion. Myocardial FDG uptake was significantly decreased when animals were treated with dopamine, compared with treatment in the same animals with insulin. When insulin was added to the dopamine infusion, myocardial FDG uptake was restored. In contrast, myocardial activity of 82 Rb, which is taken up in proportion to coronary flow, was similar under all three experimental conditions. Plasma glucose, free fatty acid, and lactate concentrations were determined before and during each infusion. The depression of myocardial FDG activity seen during dopamine infusion and its reversal with addition of insulin can be explained on the basis of effects of these hormones on substrate availability and competition

  5. Circulating docosahexaenoic acid levels are associated with fetal insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Jin-Ping Zhao

    Full Text Available Arachidonic acid (AA; C20∶4 n-6 and docosahexaenoic acid (DHA; C22∶6 n-3 are important long-chain polyunsaturated fatty acids (LC-PUFA in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally "programming" this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies.In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration and beta-cell function (proinsulin-to-insulin ratio in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids were lower comparing newborns of gestational diabetic (n = 24 vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01. Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = -0.37, P <0.0001. The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity.Low circulating DHA levels are associated with compromised fetal insulin sensitivity, and may be involved in

  6. Insulin-dependent signaling: regulation by amino acids and energy

    NARCIS (Netherlands)

    Meijer, A. J.

    2004-01-01

    Recent research has indicated that amino acids stimulate a signal-transduction pathway that is also used by insulin. Moreover, for insulin to exert its anabolic and anticatabolic effects on protein, there is an absolute requirement for amino acids. This signaling pathway becomes inhibited by

  7. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  8. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    Science.gov (United States)

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  9. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  10. Insulin Sensitivity and Glucose Homeostasis Can Be Influenced by Metabolic Acid Load

    Directory of Open Access Journals (Sweden)

    Lucio Della Guardia

    2018-05-01

    Full Text Available Recent epidemiological findings suggest that high levels of dietary acid load can affect insulin sensitivity and glucose metabolism. Consumption of high protein diets results in the over-production of metabolic acids which has been associated with the development of chronic metabolic disturbances. Mild metabolic acidosis has been shown to impair peripheral insulin action and several epidemiological findings suggest that metabolic acid load markers are associated with insulin resistance and impaired glycemic control through an interference intracellular insulin signaling pathways and translocation. In addition, higher incidence of diabetes, insulin resistance, or impaired glucose control have been found in subjects with elevated metabolic acid load markers. Hence, lowering dietary acid load may be relevant for improving glucose homeostasis and prevention of type 2 diabetes development on a long-term basis. However, limitations related to patient acid load estimation, nutritional determinants, and metabolic status considerably flaws available findings, and the lack of solid data on the background physiopathology contributes to the questionability of results. Furthermore, evidence from interventional studies is very limited and the trials carried out report no beneficial results following alkali supplementation. Available literature suggests that poor acid load control may contribute to impaired insulin sensitivity and glucose homeostasis, but it is not sufficiently supportive to fully elucidate the issue and additional well-designed studies are clearly needed.

  11. Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2002-10-01

    This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.

  12. Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS)

    OpenAIRE

    Lee, C. Christine; Watkins, Steve M.; Lorenzo, Carlos; Wagenknecht, Lynne E.; Il?yasova, Dora; Chen, Yii-Der I.; Haffner, Steven M.; Hanley, Anthony J.

    2016-01-01

    OBJECTIVE Recent studies using untargeted metabolomics approaches have suggested that plasma branched-chain amino acids (BCAAs) are associated with incident diabetes. However, little is known about the role of plasma BCAAs in metabolic abnormalities underlying diabetes and whether these relationships are consistent across ethnic populations at high risk for diabetes. We investigated the associations of BCAAs with insulin sensitivity (SI), acute insulin response (AIR), and metabolic clearance ...

  13. The Effects of Insulin-Induced Hypoglycaemia on Tyrosine Hydroxylase Phosphorylation in Rat Brain and Adrenal Gland.

    Science.gov (United States)

    Senthilkumaran, Manjula; Johnson, Michaela E; Bobrovskaya, Larisa

    2016-07-01

    In this study we investigated the effects of insulin-induced hypoglycaemia on tyrosine hydroxylase (TH) protein and TH phosphorylation in the adrenal gland, C1 cell group, locus coeruleus (LC) and midbrain dopaminergic cell groups that are thought to play a role in response to hypoglycaemia and compared the effects of different concentrations of insulin in rats. Insulin (1 and 10 U/kg) treatment caused similar reductions in blood glucose concentration (from 7.5-9 to 2-3 mmol/L); however, plasma adrenaline concentration was increased 20-30 fold in response to 10 U/kg insulin and only 14 fold following 1 U/kg. Time course studies (at 10 U/kg insulin) revealed that in the adrenal gland, Ser31 phosphorylation was increased between 30 and 90 min (4-5 fold), implying that TH was activated to increase catecholamine synthesis in adrenal medulla to replenish the stores. In the brain, Ser19 phosphorylation was limited to certain dopaminergic groups in the midbrain, while Ser31 phosphorylation was increased in most catecholaminergic regions at 60 min (1.3-2 fold), suggesting that Ser31 phosphorylation may be an important mechanism to maintain catecholamine synthesis in the brain. Comparing the effects of 1 and 10 U/kg insulin revealed that Ser31 phosphorylation was increased to similar extent in the adrenal gland and C1 cell group in response to both doses whereas Ser31 and Ser19 phosphorylation were only increased in response to 1 U/kg insulin in LC and in response to 10 U/kg insulin in most midbrain regions. Thus, the adrenal gland and some catecholaminergic brain regions become activated in response to insulin administration and brain catecholamines may be important for initiation of physiological defences against insulin-induced hypoglycaemia.

  14. Catecholamine induced cardiomyopathy in pheochromocytoma

    Directory of Open Access Journals (Sweden)

    Ron Thomas Varghese

    2013-01-01

    Full Text Available Catecholamine induced cardiomyopathy in the setting of pheochromocytoma is an unusual clinical entity. Earlier studies have reported left ventricular dysfunction in around 10% of subjects with pheochromocytoma. [1] Catecholamine induced vasoconstriction, direct toxic effect of byproducts of catecholamine degradation and direct receptor-mediated mechanisms are thought to contribute to cardiomyopathy in subjects with pheochromocytoma. The presentation remains a diagnostic challenge as patients may already have hypertensive heart disease and acute coronary syndrome on account of uncontrolled secondary hypertension. We report a case of a 42-year-old male, who presented with features of pheochromocytoma induced cardiomyopathy.

  15. Fatty Acids, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Peter Arner

    2015-04-01

    Full Text Available Objective: Although elevated free fatty acid (FFA levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Methods: Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888. Serum FFA (n = 3,306, plasma glycerol (n = 3,776, and insulin sensitivity index (HOMA-IR,n = 3,469 were determined. Obesity was defined as BMI ≥ 30 kg/m2 and insulin resistance as HOMA-IR ≥ 2.21. Results: In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Conclusion: Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established.

  16. Catecholamines and obesity: effects of exercise and training.

    Science.gov (United States)

    Zouhal, Hassane; Lemoine-Morel, Sophie; Mathieu, Marie-Eve; Casazza, Gretchen A; Jabbour, Georges

    2013-07-01

    Excess body fat in obese individuals can affect the catecholamine response to various stimuli. Indeed, several studies report lower plasma catecholamine concentrations in obese subjects compared with nonobese subjects in response to submaximal or maximal exercise. This low catecholamine response reflects decreased sympathetic nervous system (SNS) activity. Although the relationship between the SNS and obesity is not well established, some authors have suggested that low SNS activity may contribute to the development of obesity. A decreased catecholamine response could affect α- and β-adrenoceptor sensitivity in adipose tissue, reducing lipolysis and increasing fat stores. Few studies have examined the effects of obesity on the plasma catecholamine response at rest and during exercise in adolescents. It is interesting to note that the effects of age, sex, and degree of obesity and the impact of very intense exercise on the catecholamine response have not yet been well examined. Moreover, the hormonal concentrations measured in the majority of obesity studies did not take into account plasma volume changes. This methodological factor can also undoubtedly influence plasma catecholamine results.

  17. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    OpenAIRE

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or...

  18. Endocrine determinants of changes in insulin sensitivity and insulin secretion during a weight cycle in healthy men.

    Directory of Open Access Journals (Sweden)

    Judith Karschin

    Full Text Available Changes in insulin sensitivity (IS and insulin secretion occur with perturbations in energy balance and glycemic load (GL of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear.In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2 followed 1wk of overfeeding (OF, 3wks of caloric restriction (CR containing either 50% or 65% carbohydrate (CHO and 2wks of refeeding (RF with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI, insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion were assessed.IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05. Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05 whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05 and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only. After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant.Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and ghrelin seem to be the major

  19. Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young-Chang [Radiation Application Research Division, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of)]. E-mail: ycnho@kaeri.re.kr; Park, Sung-Eun [Radiation Application Research Division, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of); Kim, Hyung-Il [College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hwang, Taek-Sung [College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2005-07-01

    The pH-responsive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared via a two-step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto this poly(vinyl alcohol) hydrogels with subsequent irradiation (5-20 kGy). These graft hydrogels showed pH-sensitive swelling behavior. These hydrogels were used as carrier for the controlled release of insulin. The in vitro release of insulin was observed for the insulin-loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose.

  20. Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation

    International Nuclear Information System (INIS)

    Nho, Young-Chang; Park, Sung-Eun; Kim, Hyung-Il; Hwang, Taek-Sung

    2005-01-01

    The pH-responsive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing in the small intestine. Hydrogels based on poly(vinyl alcohol) networks grafted with acrylic acid or methacrylic acid were prepared via a two-step process. Poly(vinyl alcohol) hydrogels were prepared by gamma ray irradiation (50 kGy) and then followed by grafting either acrylic acid or methacrylic acid onto this poly(vinyl alcohol) hydrogels with subsequent irradiation (5-20 kGy). These graft hydrogels showed pH-sensitive swelling behavior. These hydrogels were used as carrier for the controlled release of insulin. The in vitro release of insulin was observed for the insulin-loaded hydrogels in a simulated intestinal fluid (pH 6.8) but not in a simulated gastric fluid (pH 1.2). The release behavior of insulin in vivo in a rat model confirmed the effectiveness of the oral delivery of insulin to control the level of glucose

  1. Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity

    NARCIS (Netherlands)

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H.; Bouwman, Freek G.; Moors, Chantalle C.; Boekschoten, Mark; Afman, Lydia; Muller, Michael; Mariman, Edwin C.; Blaak, Ellen E.

    2012-01-01

    Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin

  2. Relationship between red cell membrane fatty acids and adipokines in individuals with varying insulin sensitivity.

    Science.gov (United States)

    Min, Y; Lowy, C; Islam, S; Khan, F S; Swaminathan, R

    2011-06-01

    Plasma leptin and adiponectin, and membrane phospholipid fatty acid composition are implicated into the mechanism of insulin resistance but no clear pattern has emerged. Hence, this study examined these variables in subjects presenting to the diabetic clinic for a diagnostic glucose tolerance test. Body composition, glucose, glycated hemoglobin, insulin, leptin, adiponectin, and red cell and plasma phospholipid fatty acids were assessed from 42 normal and 28 impaired glucose tolerant subjects. Insulin sensitivity was determined by homeostatic model assessment. The plasma phosphatidylcholine fatty acid composition of the impaired glucose tolerant subjects was similar to that of normal subjects. However, the impaired glucose tolerant subjects had significantly lower linoleic (Pphosphatidylcholine and phosphatidylethanolamine compared with the normal subjects. Moreover, red cell phosphatidylcholine docosahexaenoic acid correlated positively with adiponectin (r=0.290, Pinsulin (r=-0.335, Pinsulin resistance (r=-0.322, Pinsulin level whereas insulin was the only component that predicted the membrane fatty acids. We postulate that membrane phospholipids fatty acids have an indirect role in determining insulin concentration but insulin has a major role in determining membrane fatty acid composition.

  3. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research July 2015; 14 (7): 1191-1197 ... Abstract. Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGF- ... catecholamines, reduces levels of dopamine and.

  4. Mid-gestational serum uric acid concentration effect on neonate birth weight and insulin resistance in pregnant women.

    Science.gov (United States)

    Nasri, Khadijeh; Razavi, Maryamsadat; Rezvanfar, Mohammad Reza; Mashhadi, Esmat; Chehrei, Ali; Mohammadbeigi, Abolfazl

    2015-01-01

    To investigate the relationship between mid-gestational serum uric acid and birth weight in diabetic pregnant women with or without insulin resistance. In a prospective cohort study, fasting uric acid, blood glucose, and serum insulin were measured in 247 pregnant women between 20-22 weeks of gestational period. Insulin resistance was estimated using the homeostasis model assessment-insulin resistance (HOMA-IR). Stratification analysis and independent t-test was used to assess the association between uric acid and birth weights regarding to insulin resistance. The means of the mid-gestational serum uric acid concentrations were not significantly different in women with and without insulin resistance. But stratification analysis showed that there was a significant difference between uric acid concentration and macrosomic birth in diabetic women without insulin resistance. Higher mid - gestation serum uric acid concentration, even if it does not exceed the normal range, is accompanied by lower birth weight only in non-insulin resistance women. Insulin resistance could have a negative confounding effect on hyperuriemia and birth weight.

  5. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    Science.gov (United States)

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875

  6. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    Science.gov (United States)

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  7. RELATIONSHIP BETWEEN URIC ACID METABOLISM AND INSULIN RESISTANCE

    OpenAIRE

    辻本, 伸宏; 金内, 雅夫; 尾崎, 博基; 藤田, 泰三; 中嶋, 民夫; 土肥, 和紘

    1998-01-01

    To investigate the relationship between uric acid (UA) metabolism and insulin resistance, serum creatinine concentration (Scr), serum UA concentration (SuA) and the urinary excretion of creatinine and UA were determined in 25 non-diabetic patients. Creatinine clearance (Ccr) and UA clearance/creatinine clearance ratio (CuA/Ccr) were also calculated. Insulin resistance was evaluated by the euglycemic glucose clamp tech- nique and expressed as the mean value of the glucose infusion rate (M-valu...

  8. The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action.

    Science.gov (United States)

    Baynes, Habtamu Wondifraw; Mideksa, Seifu; Ambachew, Sintayehu

    2018-03-14

    Polyunsaturated Fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. The n-3 Polyunsaturated Fatty acids prevent and reverse high-fat-diet induced adipose tissue inflammation and insulin resistance. Insulin secretion is stimulated by glucose, amino acids, and glucagon- like peptide-1 in tissue containing high levels of n-3 Polyunsaturated Fatty acids than lower level of n-3 Polyunsaturated Fatty acids. Also, n-3 Polyunsaturated Fatty acids led to decreased production of prostaglandin, which in turn contributed to the elevation of insulin secretion. N-3 polyunsaturated fatty acids prevent cytokine-induced cell death in pancreatic islets. Supplementation of n-3 Polyunsaturated Fatty acids for human subjects prevent beta cell destruction and insulin resistance. It also enhances insulin secretion, reduction in lipid profiles and glucose concentration particularly in type II diabetes patients. Therefore there should be a focus on the treatment mechanism of insulin related obesity and diabetes by n-3 polyunsaturated fatty acids.

  9. Uric acid concentrations are associated with insulin resistance and birthweight in normotensive pregnant women.

    Science.gov (United States)

    Laughon, S Katherine; Catov, Janet; Roberts, James M

    2009-12-01

    We sought to investigate whether uric acid concentrations are increased in pregnant women with insulin resistance and to correlate both with fetal growth. Uric acid, glucose, and insulin were measured in plasma at 20.4 (+/-2.0) weeks' gestation in 263 women. The association between uric acid and insulin resistance, as estimated using the homeostasis model assessment (HOMA), was analyzed and related to birthweights. In 212 (80.6%) women who remained normotensive throughout pregnancy, HOMA increased 1.23 U per 1-mg/dL increase in uric acid (95% confidence interval, 1.07-1.42; P=.003). Infants born to normotensive women in the upper quartile of uric acid and lowest HOMA quartile weighed 435.6 g less than infants of women with highest uric acid and HOMA quartiles (Pinsulin resistance in midpregnancy. Hyperuricemia was associated with lower birthweight in normotensive women, and this effect was attenuated by insulin resistance.

  10. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. Published by Elsevier Ireland Ltd.

  11. Associations of erythrocyte fatty acid patterns with insulin resistance

    Science.gov (United States)

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  12. Changes in phosphatidylcholine fatty acid composition are associated with altered skeletal muscle insulin responsiveness in normal man.

    Science.gov (United States)

    Clore, J N; Harris, P A; Li, J; Azzam, A; Gill, R; Zuelzer, W; Rizzo, W B; Blackard, W G

    2000-02-01

    The fatty acid composition of skeletal muscle cell membrane phospholipids (PLs) is known to influence insulin responsiveness in man. We have recently shown that the fatty acid composition of phosphatidylcholine (PC), and not phosphatidylethanolamine (PE), from skeletal muscle membranes is of particular importance in this relationship. Efforts to alter the PL fatty acid composition in animal models have demonstrated induction of insulin resistance. However, it has been more difficult to determine if changes in insulin sensitivity are associated with changes in the skeletal muscle membrane fatty acid composition of PL in man. Using nicotinic acid (NA), an agent known to induce insulin resistance in man, 9 normal subjects were studied before and after treatment for 1 month. Skeletal muscle membrane fatty acid composition of PC and PE from biopsies of vastus lateralis was correlated with insulin responsiveness using a 3-step hyperinsulinemic-euglycemic clamp. Treatment with NA was associated with a 25% increase in the half-maximal insulin concentration ([ED50] 52.0 +/- 7.5 to 64.6 +/- 9.0 microU/mL, P insulin sensitivity. Significant changes in the fatty acid composition of PC, but not PE, were also observed after NA administration. An increase in the percentage of 16:0 (21% +/- 0.3% to 21.7% +/- 0.4%, P insulin resistance with NA is associated with changes in the fatty acid composition of PC in man.

  13. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  14. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  15. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    Directory of Open Access Journals (Sweden)

    Nabil A. Siddiqui

    2016-10-01

    Full Text Available Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.

  16. Catecholamines in Post-Traumatic Stress Disorder

    Science.gov (United States)

    2012-07-01

    CONTRACT NUMBER Catecholamines in post - traumatic stress disorder 5b. GRANT NUMBER W81XWH-08-1-0327 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...emotionally arousing experiences are typically vivid and persistent. The recurrent, intrusive memories of traumatic events in post - traumatic stress disorder ...AD_________________ Award Number: W81XWH-08-1-0327 TITLE: Catecholamines in post - traumatic stress

  17. Catecholamine blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003561.htm Catecholamine blood test To use the sharing features on this page, ... measured with a urine test than with a blood test. How the Test is Performed A blood sample ...

  18. Catecholamine-resistant hypotension and myocardial performance following patent ductus arteriosus ligation.

    LENUS (Irish Health Repository)

    Noori, S

    2014-08-14

    Objective:We performed a multicenter study of preterm infants, who were about to undergo patent ductus arteriosus ligation, to determine whether echocardiographic indices of impaired myocardial performance were associated with subsequent development of catecholamine-resistant hypotension following ligation.Study Design:A standardized treatment approach for hypotension was followed at each center. Infants were considered to have catecholamine-resistant hypotension if their dopamine infusion was >15 μg kg(-1)min(-1). Echocardiograms and cortisol measurements were obtained between 6 and 14 h after the ligation (prior to the presence of catecholamine-resistant hypotension).Result:Forty-five infants were enrolled, 10 received catecholamines (6 were catecholamine-responsive and 4 developed catecholamine-resistant hypotension). Catecholamine-resistant hypotension was not associated with decreased preload, shortening fraction or ventricular output. Infants with catecholamine-resistant hypotension had significantly lower levels of systemic vascular resistance and postoperative cortisol concentration.Conclusion:We speculate that low cortisol levels and impaired vascular tone may have a more important role than impaired cardiac performance in post-ligation catecholamine-resistant hypotension.Journal of Perinatology advance online publication, 14 August 2014; doi:10.1038\\/jp.2014.151.

  19. Association between insulin resistance and plasma amino acid profile in non-diabetic Japanese subjects

    OpenAIRE

    Yamada, Chizumi; Kondo, Masumi; Kishimoto, Noriaki; Shibata, Takeo; Nagai, Yoko; Imanishi, Tadashi; Oroguchi, Takashige; Ishii, Naoaki; Nishizaki, Yasuhiro

    2015-01-01

    Aims/Introduction Elevation of the branched-chain amino acids (BCAAs), valine, leucine and isoleucine; and the aromatic amino acids, tyrosine and phenylalanine, has been observed in obesity-related insulin resistance. However, there have been few studies on Asians, who are generally less obese and less insulin-resistant than Caucasian or African-Americans. In the present study, we investigated the relationship between homeostasis model assessment of insulin resistance (HOMA-IR) and plasma ami...

  20. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults

    Directory of Open Access Journals (Sweden)

    Laville Martine

    2011-07-01

    Full Text Available Abstract Background Accumulating data suggest a novel role for bile acids (BAs in modulating metabolic homeostasis. BA treatment has been shown to improve glucose tolerance and to increase energy expenditure in mice. Here, we investigated the relationship between fasting plasma BAs concentrations and metabolic parameters in humans. Findings Fasting plasma glucose, insulin and lipid profile were measured in 14 healthy volunteers, 20 patients with type 2 diabetes (T2D, and 22 non-diabetic abdominally obese subjects. Insulin sensitivity was also assessed by the determination of the glucose infusion rate (GIR during a hyperinsulinemic-euglycemic clamp in a subgroup of patients (9 healthy and 16 T2D subjects. Energy expenditure was measured by indirect calorimetry. Plasma cholic acid (CA, chenodeoxycholic acid (CDCA and deoxycholic acid (DCA concentrations were analyzed by gas chromatograph-mass spectrometry. In univariable analysis, a positive association was found between HOMA-IR and plasma CDCA (β = 0.09, p = 0.001, CA (β = 0.03, p = 0.09 and DCA concentrations (β = 0.07, p Conclusions Both plasma CDCA, CA and DCA concentrations were negatively associated with insulin sensitivity in a wide range of subjects.

  1. Effects of mixed volatile fatty acid sodium salt on insulin-like growth ...

    African Journals Online (AJOL)

    Effects of mixed volatile fatty acid sodium salt on insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) in plasma and rumen tissue, and rumen epithelium development in lambs.

  2. Pentavalent Bismuth-Mediated Glycosylation Methods to Activate Sialic and Uronic Acids and the Incorporation of Sialic Acids Into Insulin

    Science.gov (United States)

    Kabotso, Daniel Elorm Kwame

    The negative charge at physiological pH of carboxylic acid-containing monosaccharides modulate the properties of many natural biomolecules such as oligosaccharides and glycoconjugates. Unfortunately, these altered electronic properties also make the incorporation of such acidic sugars more challenging as compared to the more commonly studied neutral sugars. Herein are reported the first demonstration of glycosylation reactions mediated by triphenylbis(1,1,1-trifluoromethanesulfonato)-bismuth with thioglycosides containing carboxylic acid substituents protected as esters. Unlike with many neutral sugar substrates, the addition of 1-propanethiol to the reactions proved critical to obtaining good yields of the desired glycosylation products using sialic acid, galacturonic acid, and glucuronic acid. The protocol was demonstrated to be amenable to automation using a liquid-handling platform. The consequences of artificially incorporating carboxylic-acid-containing sugars into proteins were tested by the design of a linker containing 1 to 4 sialic acids--a sugar found in many human proteins and brain tissues--that was attached via reductive amination of trityl thiopropylaldehyde at the phenyl alanine terminal end of the protein insulin produced through solid-phase peptide synthesis. Removal of the trityl group with neat trifluoroacetic acid furnished the thiol-free modified insulin that was ligated via a disulfide bond to the peptide scaffold bearing acetyl protected sialic acids. A 14-15% ammonium hydroxide solution was found to be effective in deprotecting the acetyl groups without degradation of the disulfide bond. In addition to maintaining the potency and bioactivity of insulin, the sialic acid-containing linker rendered insulin more resistant to aggregation due to heat and mechanical agitation compared to the unmodified protein.

  3. Effect of Ursolic Acid on Metabolic Syndrome, Insulin Sensitivity, and Inflammation.

    Science.gov (United States)

    Ramírez-Rodríguez, Alejandra M; González-Ortiz, Manuel; Martínez-Abundis, Esperanza; Acuña Ortega, Natalhie

    2017-09-01

    To evaluate the effect of ursolic acid on metabolic syndrome, insulin sensitivity, and inflammation, a randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (30-60 years) with a diagnosis of metabolic syndrome without treatment. They were randomly assigned to two groups of 12 patients, each to receive orally 150 mg of ursolic acid or homologated placebo once a day for 12 weeks. Before and after the intervention, the components of metabolic syndrome, insulin sensitivity (Matsuda index), and inflammation profile (interleukin-6 and C-reactive protein) were evaluated. After ursolic acid administration, the remission of metabolic syndrome occurred in 50% of patients (P = .005) with significant differences in body weight (75.7 ± 11.5 vs. 71 ± 11 kg, P = .002), body mass index (BMI) (29.9 + 3.6 vs. 24.9 ± 1.2 kg/m 2 , P = .049), waist circumference (93 ± 8.9 vs. 83 + 8.6 cm, P = .008), fasting glucose (6.0 ± 0.5 vs. 4.7 ± 0.4 mmol/L, P = .002), and insulin sensitivity (3.1 ± 1.1 vs. 4.2 ± 1.2, P = .003). Ursolic acid administration leads to transient remission of metabolic syndrome, reducing body weight, BMI, waist circumference and fasting glucose, as well as increasing insulin sensitivity.

  4. Effects of catecholamines on rat myocardial metabolism. II. Influence of catecholamines on 32p-incorporation into rat myocardial adenylic nucleotides and their turn-over.

    Science.gov (United States)

    Merouze, P; Gaudemer, Y; Gautheron, D

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on 32Pi incorporation into intracellular phosphate and adenylic nucleotides has been studied on rat myocardium slices; consequently, the turn-over of nucleotides could be determined and compared under the influence of these two hormones. 2. In order to specify the site of action of these catecholamines, several inhibitors and activators of energetic metabolism were included in the incubation medium: 3'5'-AMP, caffein, ouabain, oligomycin, rotenone + antimycin. 3. Both catecholamines favour Pi exchanges between intra and extracellular spaces; ATP turn-over is greatly increased, while ADP turn-over is slightly decreased, and 32P-incorporation into ADP is increased. 4. 3'5'-AMP and caffein are without effect on Pi penetration; however, caffein increases catecholamine effects on this penetration. ATP turn-over is slightly increased by 3'5'-AMP or caffein. 5. Ouabain decreases ATP turn-over but does not prevent the adrenaline induced acceleration. Inhibitors of oxidative phosphorylation and electron transport decrease ATP-turn-over severely; this inhibition is not released by catecholamines. 6. It is concluded that the catecholamine effects observed are dependent on the oxidative phosphorylations process. The increase of Pi exchange by catecholamines may be related to the increase of extracellular space and cation translocations we observed with the hormones.

  5. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running

    Directory of Open Access Journals (Sweden)

    Dominique Daniel Gagnon

    2013-05-01

    Full Text Available Cold exposure modulates the use of carbohydrates and fat during exercise. This phenomenon has mostly been observed in controlled cycling studies, but not during walking and running when core temperature and oxygen consumption are controlled, as both may alter energy metabolism. This study aimed at examining energy substrate availability and utilization during walking and running in the cold when core temperature and oxygen consumption are maintained. Ten lightly clothed male subjects walked or ran for 60-min, at 50% and 70% of maximal oxygen consumption, respectively, in a climatic chamber set at 0°C or 22°C. Thermal, cardiovascular, and oxidative responses were measured every 15-min during exercise. Blood samples for serum non-esterified fatty acids, glycerol, glucose, beta-hydroxybutyrate, plasma catecholamines, and serum lipids were collected immediately prior, and at 30- and 60-min of exercise. Skin temperature strongly decreased while core temperature did not change during cold trials. Heart rate was also lower in cold trials. A rise in fat utilization in the cold was seen through lower respiratory quotient (-0.03 ± 0.02, greater fat oxidation (+0.14 ± 0.13 g•min-1 and contribution of fat to total energy expenditure (+1.62 ± 1.99 kcal•min-1. No differences from cold exposure were observed in blood parameters. During submaximal walking and running, a greater reliance on derived fat sources occurs in the cold, despite the absence of concurrent alterations in non-esterified fatty acids, glycerol, or catecholamine concentrations. This disparity may suggest a greater reliance on intra-muscular energy sources such as triglycerides during both walking and running.

  6. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  7. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat.

    Science.gov (United States)

    Brodnik, Zachary D; Double, Manda; España, Rodrigo A; Jaskiw, George E

    2017-09-01

    We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated. Published by Elsevier Ltd.

  8. A human model of dietary saturated fatty acid induced insulin resistance.

    Science.gov (United States)

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all pinsulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  9. Clustering effects on postprandial insulin secretion and sensitivity in response to meals with different fatty acid compositions.

    Science.gov (United States)

    Bermudez, Beatriz; Ortega-Gomez, Almudena; Varela, Lourdes M; Villar, Jose; Abia, Rocio; Muriana, Francisco J G; Lopez, Sergio

    2014-07-25

    Dietary fatty acids play a role in glucose homeostasis. The aim of this study was to assess the individual relationship between dietary saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids with postprandial β-cell function and insulin sensitivity in subjects with normal and high fasting triglycerides. We assessed postprandial β-cell function (by the insulinogenic index and the ratio of the insulin to glucose areas under the time-concentration curve) and insulin sensitivity (by the oral glucose and the minimal model insulin sensitivity indices) over four nonconsecutive, randomly assigned, high-fat meals containing a panel of SFA (palmitic and stearic acids), MUFA (palmitoleic and oleic acids) and PUFA (linoleic and α-linolenic acids) in 14 subjects with normal and in 14 subjects with high fasting triglycerides. The proportions of each fatty acid in the meals and the values for surrogate measures of postprandial β-cell function and insulin sensitivity were subjected to a Pearson correlation and hierarchical cluster analysis, which revealed two classes of dietary fatty acids for regulating postprandial glucose homeostasis. We successfully discriminated the adverse effects of SFA palmitic acid from the beneficial effects of MUFA oleic acid on postprandial β-cell function (r ≥ 0.84 for SFA palmitic acid and r ≥ -0.71 for MUFA oleic acid; P < 0.05) and insulin sensitivity (r ≥ -0.92 for SFA palmitic acid and r ≥ 0.89 for MUFA oleic acid; P < 0.001) both in subjects with normal and high fasting triglycerides. In conclusion, dietary MUFA oleic acid, in contrast to SFA palmitic acid, favours the tuning towards better postprandial glycaemic control in subjects with normal and high fasting triglycerides.

  10. Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation*

    OpenAIRE

    Kim, Jeong-Ho; Yoon, Mee-Sup; Chen, Jie

    2009-01-01

    Nutrient overload is associated with the development of obesity, insulin resistance, and type II diabetes. High plasma concentrations of amino acids have been found to correlate with insulin resistance. At the cellular level, excess amino acids impair insulin signaling, the mechanisms of which are not fully understood. Here, we report that STAT3 plays a key role in amino acid dampening of insulin signaling in hepatic cells. Excess amino acids inhibited insulin-stimulated Akt phosphorylation a...

  11. Plasma lipid fatty acid composition, desaturase activities and insulin sensitivity in Amerindian women.

    Science.gov (United States)

    Vessby, B; Ahrén, B; Warensjö, E; Lindgärde, F

    2012-03-01

    Two Amerindian populations--Shuar women living in the Amazonian rain forest under traditional conditions and urbanized women in a suburb of Lima were studied. The fatty acid composition in plasma lipids and the relationships between fatty acid composition and metabolic variables were studied, as well as in a reference group of Swedish women. Fasting plasma was used for analyses of glucose, insulin, leptin and fatty acid composition. Women in Lima had more body fat, higher fasting insulin and leptin and lower insulin sensitivity than the Shuar women, who had insulin sensitivity similar to Swedish women. Shuar women had very high proportions (mean; SD) of palmitoleic (13.2; 3.9%) and oleic (33.9; 3.7%) acids in the plasma cholesteryl esters with very low levels of linoleic acid (29.1; 6.1 3%), as expected on a low fat, high carbohydrate diet. The estimated activity of delta 9 (SCD-1) desaturase was about twice as high in the Shuar compared with Lima women, suggesting neo lipogenesis, while the delta 5 desaturase activity did not differ. The Lima women, as well as the Swedish, showed strong positive correlations between SCD-1 activity on the one hand and fasting insulin and HOMA index on the other. These associations were absent in the Shuar women. The high SCD-1 activity in the Shuar women may reflect increased lipogenesis in adipose tissue. It also illustrates how a low fat diet rich in non-refined carbohydrates can be linked to a good metabolic situation. Copyright © 2010. Published by Elsevier B.V.

  12. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    DEFF Research Database (Denmark)

    Vrieze, Anne; Out, Carolien; Fuentes, Susana

    2014-01-01

    .i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced...... (pinsulin sensitivity (p... of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid...

  13. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2016-07-01

    Full Text Available Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM. The activation of mammalian target of rapamycin complex 1 (mTORC1 by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  14. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.

    Science.gov (United States)

    Choi, Sun Ju; Kim, Francis; Schwartz, Michael W; Wisse, Brent E

    2010-06-01

    Hypothalamic inflammation induced by high-fat feeding causes insulin and leptin resistance and contributes to the pathogenesis of obesity. Since in vitro exposure to saturated fatty acids causes inflammation and insulin resistance in many cultured cell types, we determined how cultured hypothalamic neurons respond to this stimulus. Two murine hypothalamic neuronal cell cultures, N43/5 and GT1-7, were exposed to escalating concentrations of saturated fatty acids for up to 24 h. Harvested cells were evaluated for activation of inflammation by gene expression and protein content. Insulin-treated cells were evaluated for induction of markers of insulin receptor signaling (p-IRS, p-Akt). In both hypothalamic cell lines, inflammation was induced by prototypical inflammatory mediators LPS and TNFalpha, as judged by induction of IkappaBalpha (3- to 5-fold) and IL-6 (3- to 7-fold) mRNA and p-IkappaBalpha protein, and TNFalpha pretreatment reduced insulin-mediated p-Akt activation by 30% (P fatty acid (100, 250, or 500 microM for neurons, whereas they did in control muscle and endothelial cell lines. Despite the lack of evidence of inflammatory signaling, saturated fatty acid exposure in cultured hypothalamic neurons causes endoplasmic reticulum stress, induces mitogen-activated protein kinase, and causes apoptotic cell death with prolonged exposure. We conclude that saturated fatty acid exposure does not induce inflammatory signaling or insulin resistance in cultured hypothalamic neurons. Therefore, hypothalamic neuronal inflammation in the setting of DIO may involve an indirect mechanism mediated by saturated fatty acids on nonneuronal cells.

  15. Catecholamine innervation of the caudal spinal cord in the rat

    DEFF Research Database (Denmark)

    Schrøder, H D; Skagerberg, G

    1985-01-01

    matter were found to contain catecholamines. In the dorsal horn the most intense fluorescence was seen in the superficial layers. The motoneuron neuropil exhibited the most prominent catecholamine-fluorescence of the ventral horn layers. In the sixth lumbar segment, which contains the motor nuclei....... In the intermediate gray the intermediolateral nucleus in thoracic and upper lumbar segments was the most heavily innervated area, followed by the medial lumbar sympathetic group, which contains the majority of the sympathetic preganglionic neurons innervating the pelvic organs. The parasympathetic intermediolateral...... nucleus in the upper sacral segments received a catecholamine innervation of moderate density. The catecholamine innervation pattern is discussed in relation to the patterns of other putative transmitters. The distribution of catecholamine fluorescence in relation to nuclei that control the pelvic organs...

  16. Low serum uric acid concentration augments insulin effects on the prevalence of metabolic syndrome.

    Science.gov (United States)

    Porchia, Leonardo M; Gonzalez-Mejia, M Elba; Torres-Rasgado, Enrique; Ruiz-Vivanco, Guadalupe; Pérez-Fuentes, Ricardo

    2018-05-01

    Insulin and uric acid were shown affect the prevalence of Metabolic Syndrome (MetS), but no studies examine their interaction. Therefore, we conducted this study to determine their biological interaction in subjects from central Mexico. 433 subjects were enrolled for a cross-sectional study. MetS was defined according to the Harmonizing Definition. Hyperuricemia was defined as ≥7.0 mg/dL in males and ≥5.8 mg/dL in females. Hyperinsulinemia was defined as ≥11.0 μU/mL. Pearson correlation coefficient (r) was calculated to determine the association between uric acid or insulin and MetS. Logistic regression was used to determine the risk (odds ratio) of developing MetS. Biological interactions were determined by the PROCESS Macro and Anderson's method. Insulin and uric acid levels were elevated in MetS positive group (p uric acid and insulin was associated with the number of MetS components (PROCESS Model 1, interaction coefficient = -0.009, 95%CI: -0.017 to -0.001, p = .036). Johnson-Neyman analysis suggests the interaction is lost when uric acid concentration increased >7.0 mg/dL. When the cohort was separated by hyperinsulinemia and hyperuricemia, there was a significant risk of developing MetS for subjects with hyperuricemia (odds ratio = 2.3; 95%CI: 1.1-4.8, p uric acid and insulin augments the prevalence of MetS; however, no biological interaction was determined for hyperuricemia and hyperinsulinemia. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  17. Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance

    OpenAIRE

    Newgard, Christopher B.

    2012-01-01

    Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventio...

  18. [The role of uric acid in the insulin resistance in children and adolescents with obesity].

    Science.gov (United States)

    de Miranda, Josiane Aparecida; Almeida, Guilherme Gomide; Martins, Raissa Isabelle Leão; Cunha, Mariana Botrel; Belo, Vanessa Almeida; dos Santos, José Eduardo Tanus; Mourão-Júnior, Carlos Alberto; Lanna, Carla Márcia Moreira

    2015-12-01

    To investigate the association between serum uric acid levels and insulin resistance in children and adolescents with obesity. Cross-sectional study with 245 children and adolescents (134 obese and 111 controls), aged 8 to 18 years. The anthropometric variables (weight, height and waist circumference), blood pressure and biochemical parameters were collected. The clinical characteristics of the groups were analyzed by t-test or chi-square test. To evaluate the association between uric acid levels and insulin resistance the Pearson's test and logistic regression were applied. The prevalence of insulin resistance was 26.9%. The anthropometric variables, systolic and diastolic blood pressure and biochemical variables were significantly higher in the obese group (p<0.001), except for the high-density-lipoprotein cholesterol. There was a positive and significant correlation between anthropometric variables and uric acid with HOMA-IR in the obese and in the control groups, which was higher in the obese group and in the total sample. The logistic regression model that included age, gender and obesity, showed an odds ratio of uric acid as a variable associated with insulin resistance of 1.91 (95%CI 1.40 to 2.62; p<-0.001). The increase in serum uric acid showed a positive statistical correlation with insulin resistance and it is associated with and increased risk of insulin resistance in obese children and adolescents. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  19. ABNORMAL PLASMA NORADRENALINE RESPONSE AND EXERCISE INDUCED ALBUMINURIA IN TYPE-1 (INSULIN-DEPENDENT) DIABETES-MELLITUS

    NARCIS (Netherlands)

    HOOGENBERG, K; DULLAART, RPF

    1992-01-01

    Submaximal exercise provokes an abnormal elevation in albuminuria in type 1 (insulin-dependent) diabetes mellitus. Plasma catecholamines might be involved in this phenomenon by a renal vasoconstrictive effect. Twelve healthy subjects (Controls: albuminuria It is concluded that the exercise-induced

  20. Interplay between lipids and branched-chain amino acids in development of insulin resistance

    Science.gov (United States)

    Newgard, Christopher B.

    2013-01-01

    Summary Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventions. Nevertheless, in animal feeding studies, BCAA supplementation requires the background of a high-fat diet to promote insulin resistance. This article develops a model to explain how lipids and BCAA may synergize to promote metabolic diseases. PMID:22560213

  1. A Role for IR-β in the Free Fatty Acid Mediated Development of Hepatic Insulin Resistance?

    Directory of Open Access Journals (Sweden)

    Arthur G. Cox

    2009-10-01

    Full Text Available Several studies have been conducted to elucidate the role of free fatty acids (FFAs in the pathogenesis of type 2 diabetes, but the exact molecular mechanism by which FFAs alter glucose metabolism in the liver is still not completely understood.1-4 In a recent publication, Ragheb and co-workers have examined the effect of free fatty acid (FFA treatment on insulin signaling and insulin resistance by using immunoprecipitation and immunoblotting to study the effect of high concentrations of insulin and FFAs on insulin receptor-beta (IR-β and downstream elements in the PI3K pathway using the fructose-fed hamster model.5 Their results clearly show that free fatty acids have an insignificant effect on IR-β and supports previous findings that FFAs lead to insulin resistance in the liver via the PKC-NFĸB pathway.2,3

  2. Mid-gestational serum uric acid concentration effect on neonate birth weight and insulin resistance in pregnant women

    OpenAIRE

    Nasri, Khadijeh; Razavi, Maryamsadat; Rezvanfar, Mohammad Reza; Mashhadi, Esmat; Chehrei, Ali; Mohammadbeigi, Abolfazl

    2015-01-01

    Objective To investigate the relationship between mid-gestational serum uric acid and birth weight in diabetic pregnant women with or without insulin resistance. Methods: In a prospective cohort study, fasting uric acid, blood glucose, and serum insulin were measured in 247 pregnant women between 20-22 weeks of gestational period. Insulin resistance was estimated using the homeostasis model assessment-insulin resistance (HOMA-IR). Stratification analysis and independent t-test was used to ass...

  3. The isolation, purification and amino-acid sequence of insulin from the teleost fish Cottus scorpius (daddy sculpin).

    Science.gov (United States)

    Cutfield, J F; Cutfield, S M; Carne, A; Emdin, S O; Falkmer, S

    1986-07-01

    Insulin from the principal islets of the teleost fish, Cottus scorpius (daddy sculpin), has been isolated and sequenced. Purification involved acid/alcohol extraction, gel filtration, and reverse-phase high-performance liquid chromatography to yield nearly 1 mg pure insulin/g wet weight islet tissue. Biological potency was estimated as 40% compared to porcine insulin. The sculpin insulin crystallised in the absence of zinc ions although zinc is known to be present in the islets in significant amounts. Two other hormones, glucagon and pancreatic polypeptide, were copurified with the insulin, and an N-terminal sequence for pancreatic polypeptide was determined. The primary structure of sculpin insulin shows a number of sequence changes unique so far amongst teleost fish. These changes occur at A14 (Arg), A15 (Val), and B2 (Asp). The B chain contains 29 amino acids and there is no N-terminal extension as seen with several other fish. Presumably as a result of the amino acid substitutions, sculpin insulin does not readily form crystals containing zinc-insulin hexamers, despite the presence of the coordinating B10 His.

  4. Catecholamines and diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1995-01-01

    In diabetic patients with autonomic neuropathy plasma noradrenaline concentration, used as an index of sympathetic nervous activity, is low. This decrease is, however, only found in patients with a long duration of diabetes with clinically severe autonomic neuropathy. This apparent insensitivity...... of plasma catecholamine measurements is not due to changes in the clearance of catecholamines in diabetic autonomic neuropathy. The physiological responses to infused adrenaline and to noradrenaline are enhanced, for noradrenaline mainly cardiovascular responses. Adrenoceptors (alpha and beta adrenoceptors......) are not altered in circulating blood cells in diabetic autonomic neuropathy. Thus, a generalized up-regulation of adrenoceptors does not occur in diabetic autonomic neuropathy....

  5. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets.

    Science.gov (United States)

    Huang, Jiung-Pang; Cheng, Mei-Ling; Hung, Cheng-Yu; Wang, Chao-Hung; Hsieh, Po-Shiuan; Shiao, Ming-Shi; Chen, Jan-Kan; Li, Dai-Er; Hung, Li-Man

    2017-10-01

    The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  6. EPR studies of chromium(V) intermediates generated via reduction of chromium(VI) by DOPA and related catecholamines

    DEFF Research Database (Denmark)

    Pattison, D I; Lay, P A; Davies, Michael Jonathan

    2000-01-01

    The reductions of K2Cr2O7 by catecholamines, DOPA, DOPA-beta,beta-d2, N-acetyl-DOPA, alpha-methyl-DOPA, dopamine, adrenaline, noradrenaline, catechol, 1,2-dihydroxybenzoic acid (DHBA), and 4-tert-butylcatechol (TBC), produce a number of Cr(V) electron paramagnetic resonance (EPR) signals. These s......The reductions of K2Cr2O7 by catecholamines, DOPA, DOPA-beta,beta-d2, N-acetyl-DOPA, alpha-methyl-DOPA, dopamine, adrenaline, noradrenaline, catechol, 1,2-dihydroxybenzoic acid (DHBA), and 4-tert-butylcatechol (TBC), produce a number of Cr(V) electron paramagnetic resonance (EPR) signals...... deuteration or enrichment with 15N), and simulation of the signals, show that the superhyperfine couplings originate from the side chain protons, confirming that the catecholamine ligands are cyclized. At pH 3.5, a major short-lived EPR signal is observed for many of the substrates at g(iso) approximately 1......) species with a sixth ligand (e.g. H2O). Addition of catalase or deoxygenation of the solutions did not affect the main EPR signals. When the substrates were in excess (pH > 4.5), primary and secondary (cyclized) semiquinones were also detected. Semiquinone stabilization by Zn(II) complexation yielded...

  7. The effect of insulin on amino acid incorporation into exocrine pancreatic cells of the rat

    International Nuclear Information System (INIS)

    Kramer, M.F.; Poort, C.

    1975-01-01

    The rate of incorporation of radioactive leucine per cell in the acinar pancreatic cells of the rat increases by 50 per cent within one hour after subcutaneous administration of insulin, an effect that lasts for at least one more hour. The rate of incorporation has been measured by quantitative radioautography and by determination of the radioactivity per μg DNA in TCA-precipitable material from tissue homogenates. The capacity for amino acid (leucine and lysine) incorporation as measured by incubating pancreatic fragments in vitro is not enhanced by insulin treatment of the rat in vivo during one or more hours. Insulin was found to lower the serum concentration of most amino acids significantly, leucine by 50 per cent. The apparent effect of insulin on the incorporation of radioactive leucine in vivo can be explained by the difference in the specific radioactivity of the circulating amino acid in the treated rats as compared to the untreated ones. A change in amino acid concentration in the serum may likewise be the explanation of the decrease in amino acid incorporation rate in alloxan diabetic rats. (orig./GSE) [de

  8. Determination of catecholamines and their metabolites by radioisotopic techniques, value in pharmacology and physiopathology

    International Nuclear Information System (INIS)

    Comoy, E.; Bohuon, C.

    1980-01-01

    At present the only way to estimate catecholamines and similar compounds at concentrations between 10 and 100 femtomoles is by the use of radioenzymatic techniques. Such methods are all based in practice on the enzymatic transformation of these substrates, in the presence of labelled S-adenosylmethionine, under the action of catechol-O-methyltrans-ferase (COMT) or phenylethanol-amine-N-methyltransferase (PNMT), which means that molecules suitable for such determinations must possess either a catechol group (catecholamines, dihydroxyphenylalanine, dihydroxyphenylacetic acid) or a phenylethanolamine group (noradrenaline, methoxynoradrenaline). At present the largest number of molecules may be estimated by methods based on the principle of O-methylation by COMT. The main processes described in the literature are examined, with special reference to the proposed means of solving problems which arise at various stages of the determination, mention is made of the many difficulties inherent in this kind of manipulation and of the limits to be expected of these tests. The immunological aspect of quantitative research on catecholamines and their derivatives is mentioned, work in this direction at present being based on radioimmunology. As a practical illustration of the many methodological studies mentioned, the application of radioisotopic techniques to in vitro exploration of the catecholamine metabolism is discussed; the contribution of these new techniques is shown particularly in the physiopathological study of certain metabolic disorders observed in man, in the pharmacodynamic study of certain molecules and in experimental studies on the central nervous system [fr

  9. Biological activity of alligator, avian, and mammalian insulin in juvenile alligators: plasma glucose and amino acids.

    Science.gov (United States)

    Lance, V A; Elsey, R M; Coulson, R A

    1993-02-01

    The biological activity of alligator, turkey, and bovine insulin on plasma glucose and plasma amino acids was tested in fasted juvenile alligators. Preliminary experiments showed that the stress associated with taking the initial blood sample resulted in a hyperglycemic response lasting more than 24 hr. Despite repeated bleedings no additional hyperglycemic events occurred, and blood glucose declined slowly over the next 7 days. Under these conditions the smallest dose of insulin eliciting a hypoglycemic response was 40 micrograms/kg body wt. A dose of 400 micrograms/kg body wt of either alligator or bovine insulin caused a pronounced hypoglycemia by 12 hr postinjection. Maximum decline in plasma glucose occurred at 24 to 36 hr with a slow return to control levels by 120 hr. There were no significant differences in the hypoglycemic responses to any of the three insulins tested. The decline in plasma amino acids was much more rapid than the decline in plasma glucose in response to insulin. Even at the 40 micrograms/kg body wt dose a significant difference from saline-injected control was seen at 2 hr postinjection. Maximum decline in plasma amino acids occurred at 8 to 12 hr with a return to baseline by 36 hr. These results show that the relatively conservative changes in the sequence of alligator insulin (three amino acid substitutions in the B-chain compared with that of chicken) have little effect on biological activity and that alligator insulin receptors do not appear to discriminate among the three insulins.

  10. Fatty acid metabolism, energy expenditure and insulin resistance in muscle.

    Science.gov (United States)

    Turner, Nigel; Cooney, Gregory J; Kraegen, Edward W; Bruce, Clinton R

    2014-02-01

    Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.

  11. Plasma Amino Acids vs Conventional Predictors of Insulin Resistance Measured by the Hyperinsulinemic Clamp

    OpenAIRE

    Labonte, Cherise C.; Farsijani, Samaneh; Marliss, Errol B.; Gougeon, Réjeanne; Morais, José A.; Pereira, Sandra; Bassil, Maya; Winter, Aaron; Murphy, Jessica; Combs, Terry P.; Chevalier, Stéphanie

    2017-01-01

    Context: Specific plasma amino acid (AA) profiles including elevated postabsorptive branched-chain amino acids (BCAAs) have been associated with insulin resistance (IR), mostly estimated by homeostatic model assessment. This study assessed the associations of postabsorptive AAs with IR directly measured by insulin-mediated glucose disposal and determined the quantitative value of AAs and conventional IR predictors. Design: Fifty-one healthy, 31 overweight or obese (Ow/Ob), and 52 men and wome...

  12. Insulin acutely upregulates protein expression of the fatty acid transporter CD36 in human skeletal muscle in vivo

    NARCIS (Netherlands)

    Corpeleijn, E.; Pelsers, M.M.A.L.; Soenen, S.; Mensink, M.; Bouwman, F.G.; Kooi, M.E.; Saris, W.H.M.; Glatz, J.F.C.; Blaak, E.E.

    2008-01-01

    Enhanced fatty acid uptake may lead to the accumulation of lipid intermediates. This is related to insulin resistance and type 2 diabetes mellitus. Rodent studies suggest that fatty acid transporters are acutely regulated by insulin. We investigated differences in fatty acid transporter content

  13. Dietary linolenic acid and fasting glucose and insulin: the National Heart, Lung, and Blood Institute Family Heart Study.

    Science.gov (United States)

    Djoussé, Luc; Hunt, Steven C; Tang, Weihong; Eckfeldt, John H; Province, Michael A; Ellison, R Curtis

    2006-02-01

    To assess whether dietary linolenic acid is associated with fasting insulin and glucose. In a cross-sectional design, we studied 3993 non-diabetic participants of the National Heart, Lung, and Blood Institute Family Heart Study 25 to 93 years of age. Linolenic acid was assessed through a food frequency questionnaire, and laboratory data were obtained after at least a 12-hour fast. We used generalized linear models to calculate adjusted means of insulin and glucose across quartiles of dietary linolenic acid. From the lowest to the highest sex-specific quartile of dietary linolenic acid, means +/- standard error for logarithmic transformed fasting insulin were 4.06 +/- 0.02 (reference), 4.09 +/- 0.02, 4.13 +/- 0.02, and 4.17 +/- 0.02 pM, respectively (trend, p continuous variable, the multivariable adjusted regression coefficient was 0.42 +/- 0.08. There was no association between dietary linolenic acid and fasting glucose (trend p = 0.82). Our data suggest that higher consumption of dietary linolenic acid is associated with higher plasma insulin, but not glucose levels, in non-diabetic subjects. Additional studies are needed to assess whether higher intake of linolenic acid results in an increased insulin secretion and improved glucose use in vivo.

  14. Effect of glucose and insulin infusion on the myocardial extraction of a radioiodinated methyl-substituted fatty acid

    International Nuclear Information System (INIS)

    Bianco, J.A.; Elmaleh, D.R.; Leppo, J.A.; King, M.A.; Moring, A.; Livni, E.; Espinoza, E.; Alpert, J.S.; Strauss, H.W.; Massachusetts General Hospital, Boston

    1986-01-01

    We investigated the one-way. An extraction of 14-iodophenyl-tetradecanoic acid (BMTDA) in the canine heart under fasting conditions and during infusion of glucose plus insulin in eight an esthetized greyhound dogs. Myocardial extraction measurements were made with dual tracer approach, using Tc-99m albumin as reference tracer. Prior to, and during, infusion of 10% glucose and 25 units of regular insulin, heart rate, blood pressure, plasma glucose, insulin and free fatty acid levels were measured. Myocardial blood flow was determined using Sn-113 and Ru-103 radioactive microspheres. The mean extraction fraction of BMTDA was 0.38+-SEM 0.06 at baseline and increased to 0.44+-0.06 during hyperglycemia plus insulin (P<0.025). Plasma glucose and insulin were higher during the infusion (P<0.01) while plasma free fatty acids significantly declined (P<0.01). There were no changes in hemodynamics or myocardial blood flow during the infusion. We conclude that glucose and insulin infusion result in increased first-pass extraction fraction of radioiodinated BMTDA unaccompanied by changes in coronary flow or hemodynamics, implying an insulin-mediated augmented transport of BMTDA. (orig.)

  15. Impaired Sympathoadrenal Axis Function Contributes to Enhanced Insulin Secretion in Prediabetic Obese Rats

    Directory of Open Access Journals (Sweden)

    Ana Eliza Andreazzi

    2011-01-01

    Full Text Available The involvement of sympathoadrenal axis activity in obesity onset was investigated using the experimental model of treating neonatal rats with monosodium L-glutamate. To access general sympathetic nervous system activity, we recorded the firing rates of sympathetic superior cervical ganglion nerves in animals. Catecholamine content and secretion from isolated adrenal medulla were measured. Intravenous glucose tolerance test was performed, and isolated pancreatic islets were stimulated with glucose and adrenergic agonists. The nerve firing rate of obese rats was decreased compared to the rate for lean rats. Basal catecholamine secretion decreased whereas catecholamine secretion induced by carbachol, elevated extracellular potassium, and caffeine in the isolated adrenal medulla were all increased in obese rats compared to control. Both glucose intolerance and hyperinsulinaemia were observed in obese rats. Adrenaline strongly inhibited glucose-induced insulin secretion in obese animals. These findings suggest that low sympathoadrenal activity contributes to impaired glycaemic control in prediabetic obese rats.

  16. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo systems

    Science.gov (United States)

    Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H

    2009-01-01

    Background Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-α in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. Methods The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-α and oleic acid treated cells was evaluated using flow cytometry. PPAR-γ translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Results Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-α inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-α and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Conclusion

  17. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems.

    Science.gov (United States)

    Vassiliou, Evros K; Gonzalez, Andres; Garcia, Carlos; Tadros, James H; Chakraborty, Goutam; Toney, Jeffrey H

    2009-06-26

    Chronic inflammation is a key player in pathogenesis. The inflammatory cytokine, tumor necrosis factor-alpha is a well known inflammatory protein, and has been a therapeutic target for the treatment of diseases such as Rheumatoid Arthritis and Crohn's Disease. Obesity is a well known risk factor for developing non-insulin dependent diabetes melitus. Adipose tissue has been shown to produce tumor necrosis factor-alpha, which has the ability to reduce insulin secretion and induce insulin resistance. Based on these observations, we sought to investigate the impact of unsaturated fatty acids such as oleic acid in the presence of TNF-alpha in terms of insulin production, the molecular mechanisms involved and the in vivo effect of a diet high in oleic acid on a mouse model of type II diabetes, KKAy. The rat pancreatic beta cell line INS-1 was used as a cell biological model since it exhibits glucose dependent insulin secretion. Insulin production assessment was carried out using enzyme linked immunosorbent assay and cAMP quantification with competitive ELISA. Viability of TNF-alpha and oleic acid treated cells was evaluated using flow cytometry. PPAR-gamma translocation was assessed using a PPRE based ELISA system. In vivo studies were carried out on adult male KKAy mice and glucose levels were measured with a glucometer. Oleic acid and peanut oil high in oleic acid were able to enhance insulin production in INS-1. TNF-alpha inhibited insulin production but pre-treatment with oleic acid reversed this inhibitory effect. The viability status of INS-1 cells treated with TNF-alpha and oleic acid was not affected. Translocation of the peroxisome proliferator- activated receptor transcription factor to the nucleus was elevated in oleic acid treated cells. Finally, type II diabetic mice that were administered a high oleic acid diet derived from peanut oil, had decreased glucose levels compared to animals administered a high fat diet with no oleic acid. Oleic acid was found to

  18. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  19. Studies on catecholamine function in human fat cells

    OpenAIRE

    Hellström, Lena

    1996-01-01

    Catecholamine function in human fat cells Lena Hellström, Centre for Metabolism and Endocrinology, Department of Medicine, Huddinge University Hospital, Karolinska Institute, S-141 86 Huddinge, Sweden Human adipose tissue is a heterogeneous organ as regards metabolism. The effects of catecholamines, the main lipolytic hormones in man vary considerably in different regions. Fat cell lipolysis also changes in a number of physiological and pathophysiological states...

  20. Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes

    Directory of Open Access Journals (Sweden)

    Weiwei Dai

    2015-06-01

    Full Text Available Background/Aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway. Methods: We stimulated trout primary hepatocytes with different AA levels and employed acute administration of rapamycin to inhibit mTORC1 activation. Results: Increased AA levels enhanced the phosphorylation of ribosomal protein S6 kinase (S6K1, S6, and insulin receptor substrate 1 (IRS-1 on Ser302 but suppressed Akt and p38 phosphorylation; up-regulated the expression of genes related to gluconeogenesis and fatty acid biosynthesis. mTORC1 inhibition not only inhibited the phosphorylation of mTORC1 downstream targets, but also blunted IRS-1 Ser302 phosphorylation and restored excessive AAs-suppressed Akt phosphorylation. Rapamycin also inhibited fatty acid biosynthetic and gluconeogenic gene expression. Conclusion: High levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt activation and thereby weakening insulin action. We propose that p38 MAPK probably also involves in these AAs-induced metabolic changes.

  1. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  2. Do high fetal catecholamine levels affect heart rate variability and ...

    African Journals Online (AJOL)

    Objectives. To deternrine the relationship between Umbilical arterial catecholamine levels and fetal heart rate variability and meconium passage. Study design. A prospective descriptive study was perfonned. Umbilical artery catecholamine levels were measured in 55 newborns and correlated with fetal heart rate before ...

  3. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance.

    OpenAIRE

    Baier, L J; Sacchettini, J C; Knowler, W C; Eads, J; Paolisso, G; Tataranni, P A; Mochizuki, H; Bennett, P H; Bogardus, C; Prochazka, M

    1995-01-01

    The intestinal fatty acid binding protein locus (FABP2) was investigated as a possible genetic factor in determining insulin action in the Pima Indian population. A polymorphism at codon 54 of FABP2 was identified that results in an alanine-encoding allele (frequency 0.71) and a threonine-encoding allele (frequency 0.29). Pimas who were homozygous or heterozygous for the threonine-encoding allele were found to have a higher mean fasting plasma insulin concentration, a lower mean insulin-stimu...

  4. Automated mass spectrometric analysis of urinary free catecholamines using on-line solid phase extraction

    NARCIS (Netherlands)

    de Jong, Wilhelmina H. A.; de Vries, Elisabeth G. E.; Wolffenbuttel, Bruce H. R.; Kema, I. P.

    2010-01-01

    Analysis of catecholamines (epinephrine, norepinephrine and dopamine) in plasma and urine is used for diagnosis and treatment of catecholamine-producing tumors Current analytical techniques for catecholamine quantification are laborious, time-consuming and technically demanding Our aim was to

  5. Emerging Perspectives on Essential Amino Acid Metabolism in Obesity and the Insulin-Resistant State12

    Science.gov (United States)

    Adams, Sean H.

    2011-01-01

    Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+). PMID:22332087

  6. Aortoarteritis: Could it be a form of catecholamine-induced vasculitis?

    Directory of Open Access Journals (Sweden)

    Vijaya Sarathi

    2013-01-01

    Full Text Available Catecholamine-induced vasculitis is a well known but rarely described entity. However, aortoarteritis as a manifestation of catecholamine-induced vasculitis is not described in the literature. We have reported two patients in whom pheochromocytoma coexisted with aortoarteritis. Both patients were young females with history of bilateral pheochromocytomas in more than one first-degree relative. Both patients also had bilateral adrenal pheochromocytomas (second patient also had paraganglioma at left renal hilum with elevation of plasma free normetanephrine levels. We conclude that there may be an association between pheochromocytoma and aortoarteritis, and that catecholamine excess may have a role in the etiopathogenesis of aortoarteritis in these patients.

  7. Aortoarteritis: Could it be a form of catecholamine-induced vasculitis?

    Science.gov (United States)

    Sarathi, Vijaya; Lila, Anurag R.; Bandgar, Tushar R.; Shah, Nalini S.

    2013-01-01

    Catecholamine-induced vasculitis is a well known but rarely described entity. However, aortoarteritis as a manifestation of catecholamine-induced vasculitis is not described in the literature. We have reported two patients in whom pheochromocytoma coexisted with aortoarteritis. Both patients were young females with history of bilateral pheochromocytomas in more than one first-degree relative. Both patients also had bilateral adrenal pheochromocytomas (second patient also had paraganglioma at left renal hilum) with elevation of plasma free normetanephrine levels. We conclude that there may be an association between pheochromocytoma and aortoarteritis, and that catecholamine excess may have a role in the etiopathogenesis of aortoarteritis in these patients. PMID:23776874

  8. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.

    Science.gov (United States)

    Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne

    2017-07-01

    The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial.

    Science.gov (United States)

    Heianza, Yoriko; Sun, Dianjianyi; Li, Xiang; DiDonato, Joseph A; Bray, George A; Sacks, Frank M; Qi, Lu

    2018-06-02

    Alterations in gut microbiota have been linked to host insulin resistance, diabetes and impaired amino acid metabolism. We investigated whether changes in gut microbiota-dependent metabolite of trimethylamine N-oxide (TMAO) and its nutrient precursors (choline and L-carnitine) were associated with improvements in glucose metabolism and diabetes-related amino acids in a weight-loss diet intervention. We included 504 overweight and obese adults who were randomly assigned to one of four energy-reduced diets varying in macronutrient intake. The 6-month changes (Δ) in TMAO, choline and L-carnitine levels after the intervention were calculated. Greater decreases in choline and L-carnitine were significantly (p<0.05) associated with greater improvements in fasting insulin concentrations and homeostasis model assessment of insulin resistance (HOMA-IR) at 6 months. The reduction of choline was significantly related to 2-year improvements in glucose and insulin resistance. We found significant linkages between dietary fat intake and ΔTMAO for changes in fasting glucose, insulin and HOMA-IR (p interaction <0.05); a greater increase in TMAO was related to lesser improvements in the outcomes among participants who consumed a high-fat diet. In addition, ΔL-carnitine and Δcholine were significantly related to changes in amino acids (including branched-chain and aromatic amino acids). Interestingly, the associations of ΔTMAO, Δcholine and ΔL-carnitine with diabetes-related traits were independent of the changes in amino acids. Our findings underscore the importance of changes in TMAO, choline and L-carnitine in improving insulin sensitivity during a weight-loss intervention for obese patients. Dietary fat intake may modify the associations of TMAO with insulin sensitivity and glucose metabolism. NCT00072995. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless

  10. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Li Zhi

    Full Text Available Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS production. Western blot analysis was used to examine the levels of insulin receptor (IR, phosphorylated insulin receptor substrate 1 (IRS1, Ser307 and phospho-Akt (Ser473. We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307 and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307 response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307 and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.

  12. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... plasma total triacylglycerol (P = 0.0361), and higher plasma glucose (P = 0.033). Plasma HDL-cholesterol and insulin concentrations and activities of cholesterol ester transfer protein and phospholipid transfer protein did not differ significantly between the diets. Conclusions: Compared with fat high...

  13. Uric Acid or 1-Methyl Uric Acid in the Urinary Bladder Increases Serum Glucose, Insulin, True Triglyceride, and Total Cholesterol Levels in Wistar Rats

    Directory of Open Access Journals (Sweden)

    T. Balasubramanian

    2003-01-01

    Full Text Available In animals deprived of food for a long period, a drop in the fat mass below 5% of the total body mass results in an increase in blood glucocorticoids and uric acid levels, followed by foraging activity. Since the glucocorticoids increase the uric acid excretion, an increase in the level of uric acid in the bladder urine could be the signal for this feeding behaviour and subsequent fat storage. Accumulation of fat is associated with hyperglycaemia, hyperinsulinaemia, hyperlipidaemia, and hypercholesterolaemia as seen in the metabolic syndrome or hibernation. It is hypothesized that uric acid or its structurally related compound, 1-methyl uric acid (one of the metabolites of the methyl xanthines namely caffeine, theophylline, and theobromine present in coffee, tea, cocoa, and some drugs, can act on the urinary bladder mucosa and increases the blood glucose, insulin, triglyceride, and cholesterol levels. In rats, perfusion of the urinary bladder with saturated aqueous solution of uric acid or 1-methyl uric acid results in a significant increase in the serum levels of glucose, insulin, true triglyceride, and total cholesterol in comparison with perfusion of the bladder with distilled water at 20, 40, and 80 min. The uric acid or the 1-methyl uric acid acts on the urinary bladder mucosa and increases the serum glucose, insulin, true triglyceride, and total cholesterol levels.

  14. Plasma fatty acid profile in depressive disorder resembles insulin resistance state.

    Science.gov (United States)

    Vareka, Tomas; Vecka, Marek; Jirak, Roman; Tvrzicka, Eva; Macasek, Jaroslav; Zak, Ales; Zeman, Miroslav

    2012-01-01

    Depressive disorder is related to an increased risk of type 2 diabetes mellitus (DM2) and cardiovascular disease (CVD). Insulin resistance (IR), connected with altered fatty acid (FA) composition, namely with decreased proportion of polyunsaturated FA could participate in these associations. The aim of the study was to investigate the composition of FA in plasma cholesterol esters (CE) and phosphatidylcholine (PC) as well as indices of insulin resistance and oxidative stress in the patients with depressive disorder. Parameters of lipid and glucose homeostasis, concentrations of FA in plasma cholesteryl esters (CE) and phosphatidylcholine (PC) and conjugated dienes in LDL were investigated in a group of 47 patients (9M/38F) with depression and compared with 47 control persons (16M/31F). Delta-9 desaturase (D9D) and D6D desaturase were estimated as product to precursor fatty acid ratios. In depressive patients increased concentrations of palmitoleic acid and total monounsaturated FA with decreased proportion of total polyunsaturated FA n-6 (PUFA n-6) (all pinsulin resistance. Dysregulation of FA could participate in the pathogenesis of depression and be associated with an increased risk of CVD and DM2.

  15. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    2008-03-01

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  16. On the distribution of catecholamines in Promesostoma balticum (Turbellaria, Neorhabdocoela, Promesostomatidae).

    Science.gov (United States)

    Joffe, B I

    1994-01-01

    The distribution of putative catecholamines has been previously studied in the nervous system of three Promesostoma species using the glyoxylic-acid-induced fluorescence (GAIF) method. In this communication, the results are reported of a similar study of Promesostoma balticum, which is classified to another group of species in the genus. Promesostoma species from two different species groups differed in the position of neurons associated with the ventral and lateral cords. All the studied species of Promesostoma demonstrated doubled dorsal neurons in so called anterior complex (AnDo), a character which differentiates this genus from the other studied Typhloplanoida.

  17. Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome.

    Science.gov (United States)

    Gunther, Joan; Tian, Yingfang; Stamova, Boryana; Lit, Lisa; Corbett, Blythe; Ander, Brad; Zhan, Xinhua; Jickling, Glen; Bos-Veneman, Netty; Liu, Da; Hoekstra, Pieter; Sharp, Frank

    2012-12-30

    Tourette syndrome (TS) is a heritable disorder characterized by tics that are decreased in some patients by treatment with alpha adrenergic agonists and dopamine receptor blockers. Thus, this study examines the relationship between catecholamine gene expression in blood and tic severity. TS diagnosis was confirmed using Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria and tic severity measured using the Yale Global Tic Severity Scale (YGTSS) for 26 un-medicated subjects with TS. Whole blood was collected and Ribonucleic acid (RNA) processed on Affymetrix Human Exon 1.0 ST arrays. An Analysis of Covariance (ANCOVA) identified 3627 genes correlated with tic severity (pdisorders, Attention Deficit Hyperactivity Disorder (ADHD), and Obsessive-Compulsive Disorder (OCD). Correlation of gene expression in peripheral blood with tic severity may allow inferences about catecholamine pathway dysfunction in TS subjects. Findings built on previous work suggest that at least some genes expressed peripherally are relevant for central nervous system (CNS) pathology in the brain of individuals with TS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  19. Catecholamine levels in the brain of rats exposed by inhalation to benzalkonium chloride.

    Science.gov (United States)

    Swiercz, Radosław; Grzelińska, Zofia; Gralewicz, Sławomir; Wasowicz, Wojciech

    2009-01-01

    The aim of the study was to obtain quantitative data on the effect of inhalation exposure to benzalkonium chloride (BAC) on the concentration of catecholamines and their metabolites in selected brain structures. Additionally, concentration of corticosterone (CORT) in plasma was estimated. Wistar rats were subjected to a single (6-hour) or repeated (3 days, 6 h/day) exposure to BAC aerosol at ca. 30 mg/m3. The Waters integrated analytical system of HPLC was used to determine the plasma corticosterone. Qualitative and quantitative determinations of catecholamines and their metabolites: 3,4-dihydroxyphenylacetic (DOPAC) and homovanillic (HVA) acids were performed with the use of the Waters integrity HPLC. The determinations have shown that in the BAC-exposed rats the plasma CORT concentration was several times higher than in the control rats. A significant increase of the concentration of dopamine (DA) (striatum and diencephalon) and noradrenaline (NA) (hippocampus and cerebellum) and a significant reduction of adrenaline (A) level (cortex, hippocampus, striatum and mesencephaloon) was found to occur in the brain of rats exposed to BAC compared to control. In the animals exposed to BAC, the concentration of DOPAC, a DA metabolite, was significantly reduced, but the change occurred mainly in the striatum. This resulted in a significant decrease of the DOPAC/DA and HVA/DA metabolic ratio in this structure. It is assumed that the alterations in the concentration of catecholamines and their metabolites in the BAC-exposed rats were related to the unexpectedly strong and persistent activation of the hypothalamo-pituitary-adrenocortical (HPA) axis evidenced by the high plasma CORT concentration.

  20. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    Science.gov (United States)

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  1. Hindbrain medulla catecholamine cell group involvement in lactate-sensitive hypoglycemia-associated patterns of hypothalamic norepinephrine and epinephrine activity.

    Science.gov (United States)

    Shrestha, P K; Tamrakar, P; Ibrahim, B A; Briski, K P

    2014-10-10

    Cell-type compartmentation of glucose metabolism in the brain involves trafficking of the oxidizable glycolytic end product, l-lactate, by astrocytes to fuel neuronal mitochondrial aerobic respiration. Lactate availability within the hindbrain medulla is a monitored function that regulates systemic glucostasis as insulin-induced hypoglycemia (IIH) is exacerbated by lactate repletion of that brain region. A2 noradrenergic neurons are a plausible source of lactoprivic input to the neural gluco-regulatory circuit as caudal fourth ventricular (CV4) lactate infusion normalizes IIH-associated activation, e.g. phosphorylation of the high-sensitivity energy sensor, adenosine 5'-monophosphate-activated protein kinase (AMPK), in these cells. Here, we investigated the hypothesis that A2 neurons are unique among medullary catecholamine cells in directly screening lactate-derived energy. Adult male rats were injected with insulin or vehicle following initiation of continuous l-lactate infusion into the CV4. Two hours after injections, A1, C1, A2, and C2 neurons were collected by laser-microdissection for Western blot analysis of AMPKα1/2 and phosphoAMPKα1/2 proteins. Results show that AMPK is expressed in each cell group, but only a subset, e.g. A1, C1, and A2 neurons, exhibit increased sensor activity in response to IIH. Moreover, hindbrain lactate repletion reversed hypoglycemic augmentation of pAMPKα1/2 content in A2 and C1 but not A1 cells, and normalized hypothalamic norepinephrine and epinephrine content in a site-specific manner. The present evidence for discriminative reactivity of AMPK-expressing medullary catecholamine neurons to the screened energy substrate lactate implies that that lactoprivation is selectively signaled to the hypothalamus by A2 noradrenergic and C1 adrenergic cells. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Association between plasma fatty acids and inflammatory markers in patients with and without insulin resistance and in secondary prevention of cardiovascular disease, a cross-sectional study.

    Science.gov (United States)

    Bersch-Ferreira, Ângela Cristine; Sampaio, Geni Rodrigues; Gehringer, Marcella Omena; Torres, Elizabeth Aparecida Ferraz da Silva; Ross-Fernandes, Maria Beatriz; da Silva, Jacqueline Tereza; Torreglosa, Camila Ragne; Kovacs, Cristiane; Alves, Renata; Magnoni, Carlos Daniel; Weber, Bernardete; Rogero, Marcelo Macedo

    2018-02-21

    Proinflammatory biomarkers levels are increased among patients with cardiovascular disease, and it is known that both the presence of insulin resistance and diet may influence those levels. However, these associations are not well studied among patients with established cardiovascular disease. Our objective is to compare inflammatory biomarker levels among cardiovascular disease secondary prevention patients with and without insulin resistance, and to evaluate if there is any association between plasma fatty acid levels and inflammatory biomarker levels among them. In this cross-sectional sub-study from the BALANCE Program Trial, we collected data from 359 patients with established cardiovascular disease. Plasma fatty acids and inflammatory biomarkers (interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12, high sensitive C-reactive protein (hs-CRP), adiponectin, and tumor necrosis factor (TNF)-alpha) were measured. Biomarkers and plasma fatty acid levels of subjects across insulin resistant and not insulin resistant groups were compared, and general linear models were used to examine the association between plasma fatty acids and inflammatory biomarkers. Subjects with insulin resistance had a higher concentration of hs-CRP (p = 0.002) and IL-6 (p = 0.002) than subjects without insulin resistance. Among subjects without insulin resistance there was a positive association between stearic fatty acid and IL-6 (p = 0.032), and a negative association between alpha-linolenic fatty acid and pro-inflammatory biomarkers (p fatty acids and arachidonic fatty acid and adiponectin (p fatty acids and pro-inflammatory biomarkers (p fatty acids and adiponectin (p fatty acids. Subjects in secondary prevention for cardiovascular disease with insulin resistance have a higher concentration of hs-CRP and IL-6 than individuals without insulin resistance, and these inflammatory biomarkers are positively associated with saturated fatty acids and negatively associated with

  3. Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores.

    Science.gov (United States)

    De Koster, J; Hostens, M; Van Eetvelde, M; Hermans, K; Moerman, S; Bogaert, H; Depreester, E; Van den Broeck, W; Opsomer, G

    2015-07-01

    The objective of the present research was to determine the insulin response of the glucose and fatty acid metabolism in dry dairy cows with a variable body condition score (BCS). Ten pregnant Holstein Friesian dairy cows (upcoming parity 2 to 5) were selected based on BCS at the beginning of the study (2mo before expected parturition date). During the study, animals were monitored weekly for BCS and backfat thickness and in the last 2wk, blood samples were taken for determination of serum nonesterified fatty acid (NEFA) concentration. Animals underwent a hyperinsulinemic euglycemic clamp test in the third week before the expected parturition date. The hyperinsulinemic euglycemic clamp test consisted of 4 consecutive insulin infusions with increasing insulin doses: 0.1, 0.5, 2, and 5mIU/kg per minute. For each insulin infusion period, a steady state was defined as a period of 30min where no or minor changes of the glucose infusion were necessary to keep the blood glucose concentration constant and near basal levels. During the steady state, the glucose infusion rate [steady state glucose infusion rate (SSGIR) in µmol/kg per minute] and NEFA concentration [steady state NEFA concentration (SSNEFA) in mmol/L] were determined and reflect the insulin response of the glucose and fatty acid metabolism. Dose response curves were created based on the insulin concentrations during the steady state and the SSGIR or SSNEFA. The shape of the dose response curves is determined by the concentration of insulin needed to elicit the half maximal effect (EC50) and the maximal SSGIR or the minimal SSNEFA for the glucose or fatty acid metabolism, respectively. The maximal SSGIR was negatively associated with variables reflecting adiposity of the cows (BCS, backfat thickness, NEFA concentration during the dry period, and absolute weight of the different adipose depots determined after euthanasia and dissection of the different depots), whereas the EC50 of the glucose metabolism was

  4. Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Xue Sun

    Full Text Available Elevated serum uric acid concentration is an independent risk factor and predictor of type 2 diabetes (T2D. Whether the uric acid-associated genes have an impact on T2D remains unclear. We aimed to investigate the effects of the uric acid-associated genes on the risk of T2D as well as glucose metabolism and insulin secretion.We recruited 2,199 normal glucose tolerance subjects from the Shanghai Diabetes Study I and II and 2,999 T2D patients from the inpatient database of Shanghai Diabetes Institute. Fifteen single nucleotide polymorphisms (SNPs mapped in or near 11 loci (PDZK1, GCKR, LRP2, SLC2A9, ABCG2, LRRC16A, SLC17A1, SLC17A3, SLC22A11, SLC22A12 and SF1 were genotyped and serum biochemical parameters related to uric acid and T2D were determined.SF1 rs606458 showed strong association to T2D in both males and females (p = 0.034 and 0.0008. In the males, LRRC16A was associated with 2-h insulin and insulin secretion (p = 0.009 and 0.009. SLC22A11 was correlated with HOMA-B and insulin secretion (p = 0.048 and 0.029. SLC2A9 rs3775948 was associated with 2-h glucose (p = 0.043. In the females, LRP2 rs2544390 and rs1333049 showed correlations with fasting insulin, HOMA-IR and insulin secretion (p = 0.028, 0.033 and 0.052 and p = 0.034, 0.047 and 0.038, respectively. SLC2A9 rs11722228 was correlated with 2-h glucose, 2-h insulin and insulin secretion (p = 0.024, 0.049 and 0.049, respectively.Our results indicated that the uric acid-associated genes have an impact on the risk of T2D, glucose metabolism and insulin secretion in a Chinese population.

  5. Abdominal obesity in older women: potential role for disrupted fatty acid reesterification in insulin resistance.

    Science.gov (United States)

    Yeckel, Catherine W; Dziura, James; DiPietro, Loretta

    2008-04-01

    Excess abdominal adiposity is a primary factor for insulin resistance in older age. Our objectives were to examine the role of abdominal obesity on adipose tissue, hepatic, and peripheral insulin resistance in aging, and to examine impaired free fatty acid metabolism as a mechanism in these relations. This was a cross-sectional study. The study was performed at a General Clinical Research Center. Healthy, inactive older (>60 yr) women (n = 25) who were not on hormone replacement therapy or glucose-lowering medication were included in the study. Women with abdominal circumference values above the median (>97.5 cm) were considered abdominally obese. Whole-body peripheral glucose utilization, adipose tissue lipolysis, and hepatic glucose production were measured using in vivo techniques according to a priori hypotheses. In the simple analysis, glucose utilization at the 40 mU insulin dose (6.3 +/- 2.8 vs. 9.1 +/- 3.4; P suppression of lipolysis (35 vs. 54%; P women with and without abdominal obesity, respectively. Using the glycerol appearance rate to free fatty acid ratio as an index of fatty acid reesterification revealed markedly blunted reesterification in the women with abdominal adiposity under all conditions: basal (0.95 +/- 0.29 vs. 1.35 +/- 0.47; P < 0.02); low- (2.58 +/- 2.76 vs. 6.95 +/- 5.56; P < 0.02); and high-dose (4.46 +/- 3.70 vs. 12.22 +/- 7.13; P < 0.01) hyperinsulinemia. Importantly, fatty acid reesterification was significantly (P < 0.01) associated with abdominal circumference and hepatic and peripheral insulin resistance, regardless of total body fat. These findings support the premise of dysregulated fatty acid reesterification with abdominal obesity as a pathophysiological link to perturbed glucose metabolism across multiple tissues in aging.

  6. [Effect of oral administration of ascorbic acid on insulin sensitivity and lipid profile in obese individuals].

    Science.gov (United States)

    Martínez-Abundis, E; Pascoe-González, S; González-Ortiz, M; Mora-Martínez, J M; Cabrera-Pivaral, C E

    2001-01-01

    The aim of this study was to identify the effect of an oral ascorbic acid (AA) supplement on lipid profile and insulin sensitivity in obese people. A randomized double-blind clinical trial placebo controlled was performed in 16 obese male volunteers [body mass index (BMI) 30-40 kg/m2]. Eight received orally 1 g of AA daily for four weeks and the other eight volunteers received placebo by the same scheme and period of time. Before and after the pharmacological intervention were measured total cholesterol, high-density-lipoprotein (HDL) cholesterol, triglycerides, glucose, creatinine and uric acid. Low-density-lipoprotein (LDL) cholesterol and very-low-density-lipoprotein (VLDL) triglycerides were calculated using formulas. In order to assess insulin sensitivity before and after the intervention, the steady-state glucose (SSG) was calculated from the insulin suppression test modified with octreotide. There were not significant differences in clinical characteristics between both groups. Basal metabolic profile and SSG were similar between both groups. There were not significant differences in both groups between before and after the intervention in metabolic profile and insulin sensitivity. AA did not modify the lipid profile nor insulin sensitivity in the group of obese people studied.

  7. A protein with amino acid sequence homology to bovine insulin is present in the legume Vigna unguiculata (cowpea

    Directory of Open Access Journals (Sweden)

    Venâncio T.M.

    2003-01-01

    Full Text Available Since the discovery of bovine insulin in plants, much effort has been devoted to the characterization of these proteins and elucidation of their functions. We report here the isolation of a protein with similar molecular mass and same amino acid sequence to bovine insulin from developing fruits of cowpea (Vigna unguiculata genotype Epace 10. Insulin was measured by ELISA using an anti-human insulin antibody and was detected both in empty pods and seed coats but not in the embryo. The highest concentrations (about 0.5 ng/µg of protein of the protein were detected in seed coats at 16 and 18 days after pollination, and the values were 1.6 to 4.0 times higher than those found for isolated pods tested on any day. N-terminal amino acid sequencing of insulin was performed on the protein purified by C4-HPLC. The significance of the presence of insulin in these plant tissues is not fully understood but we speculate that it may be involved in the transport of carbohydrate to the fruit.

  8. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation

    International Nuclear Information System (INIS)

    Quirion, R.; Chabot, J.-G.; Dore, S.; Seto, D.; Kar, S.

    1997-01-01

    Administration of kainic acid evokes acute seizure in hippocampal pathways that results in a complex sequence of functional and structural alterations resembling human temporal lobe epilepsy. The structural alterations induced by kainic acid include selective loss of neurones in CA1-CA3 subfields and the hilar region of the dentate gyrus followed by sprouting and permanent reorganization of the synaptic connections of the mossy fibre pathways. Although the neuronal degeneration and process of reactive synaptogenesis have been extensively studied, at present little is known about means to prevent pathological conditions leading to kainate-induced cell death. In the present study, to address the role of insulin-like growth factors I and II, and insulin in neuronal survival as well as synaptic reorganization following kainate-induced seizure, the time course alterations of the corresponding receptors were evaluated. Additionally, using histological preparations, the temporal profile of neuronal degeneration and hypertrophy of resident astroglial cells were also studied. [ 125 I]Insulin-like growth factor I binding was found to be decreased transiently in almost all regions of the hippocampal formation at 12 h following treatment with kainic acid. The dentate hilar region however, exhibited protracted decreases in [ 125 I]insulin-like growth factor I receptor sites throughout (i.e. 30 days) the study. [ 125 I]Insulin-like growth factor II receptor binding sites in the hippocampal formation were found to be differentially altered following systemic administration of kainic acid. A significant decrease in [ 125 I]insulin-like growth factor II receptor sites was observed in CA1 subfield and the pyramidal cell layer of the Ammon's horn at all time points studied whereas the hilar region and the stratum radiatum did not exhibit alteration at any time. A kainate-induced decrease in [ 125 I]insulin receptor binding was noted at all time points in the molecular layer of the

  9. Radioprotective effect of catecholamines on the cultured Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Chirkov, Yu.Yu.; Malatsidze, M.A.; Sobolev, A.S.

    1985-01-01

    On cultivated in vitro Chinese hamster fibroblasts radioprotective properties of adrenaline, noradrenaline and isoproterenol in different concentrations are studied. Isoproterenol radiopreventive effect is clearly manifested with its concentration being 1x10 -8 M; adrenaline and noradrenaline are efficient in higher concentrations. Propranolol, blocking β-adrenergic receptors, completely presents radioprotective effect of catecholamines on the cells. β-adrenergic mechanism of catecholamine radioprotective effect on Mammalia cells is discussed

  10. Effect of trans-fatty acid intake on insulin sensitivity and intramuscular lipids - a randomized trial in overweight postmenopausal women

    DEFF Research Database (Denmark)

    Bendsen, Nathalie Tommerup; Haugaard, Steen; Larsen, Thomas Meinert

    2011-01-01

    lipid deposition in abdominally obese women. In a double-blind, parallel dietary intervention study, 52 healthy but overweight postmenopausal women were randomized to receive either partially hydrogenated soybean oil (15 g/d TFA) or a control oil (mainly oleic and palmitic acid) for 16 weeks. Three......-nine women completed the study. Insulin sensitivity (assessed by ISI(composite)), β-cell function (the disposition index), and the metabolic clearance rate of insulin were not significantly affected by the dietary intervention. Neither was the ability of insulin to suppress plasma nonesterified fatty acid...

  11. Role of catecholamines in maternal-fetal stress transfer in sheep.

    Science.gov (United States)

    Rakers, Florian; Bischoff, Sabine; Schiffner, Rene; Haase, Michelle; Rupprecht, Sven; Kiehntopf, Michael; Kühn-Velten, W Nikolaus; Schubert, Harald; Witte, Otto W; Nijland, Mark J; Nathanielsz, Peter W; Schwab, Matthias

    2015-11-01

    We sought to evaluate whether in addition to cortisol, catecholamines also transfer psychosocial stress indirectly to the fetus by decreasing uterine blood flow (UBF) and increasing fetal anaerobic metabolism and stress hormones. Seven pregnant sheep chronically instrumented with uterine ultrasound flow probes and catheters at 0.77 gestation underwent 2 hours of psychosocial stress by isolation. We used adrenergic blockade with labetalol to examine whether decreased UBF is catecholamine mediated and to determine to what extent stress transfer from mother to fetus is catecholamine dependent. Stress induced transient increases in maternal cortisol and norepinephrine (NE). Maximum fetal plasma cortisol concentrations were 8.1 ± 2.1% of those in the mother suggesting its maternal origin. In parallel to the maternal NE increase, UBF decreased by maximum 22% for 30 minutes (P Fetal NE remained elevated for >2 hours accompanied by a prolonged blood pressure increase (P fetal NE and blood pressure increase and the shift toward anaerobic metabolism. We conclude that catecholamine-induced decrease of UBF is a mechanism of maternal-fetal stress transfer. It may explain the influence of maternal stress on fetal development and on programming of adverse health outcomes in later life especially during early pregnancy when fetal glucocorticoid receptor expression is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  13. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  14. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    Longo, N.; Nagata, N.; Danner, D.; Priest, J.; Elsas, L.

    1986-01-01

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124 I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED 50 = 70 ng/ml at 24 0 C and 7 ng/ml at 37 0 C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED 50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  15. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  16. Reversible catecholamine-induced cardiomyopathy due to pheochromocytoma: case report.

    Science.gov (United States)

    Satendra, Milan; de Jesus, Cláudia; Bordalo e Sá, Armando L; Rosário, Luís; Rocha, José; Bicha Castelo, Henrique; Correia, Maria José; Nunes Diogo, António

    2014-03-01

    Pheochromocytoma is a tumor originating from chromaffin tissue. It commonly presents with symptoms and signs of catecholamine excess, such as hypertension, tachycardia, headache and sweating. Cardiovascular manifestations include catecholamine-induced cardiomyopathy, which may present as severe left ventricular dysfunction and congestive heart failure. We report a case of pheochromocytoma which was diagnosed following investigation of dilated cardiomyopathy. We highlight the dramatic symptomatic improvement and reversal of cardiomyopathy, with recovery of left ventricular function after treatment. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  17. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    Science.gov (United States)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  18. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats.

    Science.gov (United States)

    Amin, Mohamed M; Arbid, Mahmoud S

    2017-02-01

    Even though ellagic acid has previously been valued in many models of cancer, so far its full mechanistic effect as a natural antiapoptotic agent in the prevention of type 2 diabetes complications has not been completely elucidated, which was the goal of this study. We fed albino rats a high-fat fructose diet (HFFD) for 2 months to induce insulin resistance/type 2 diabetes and then treated the rats with ellagic acid (10 mg/kg body weight, orally) and/or repaglinide (0.5 mg/kg body weight, orally) for 2 weeks. At the serum level, ellagic acid challenged the consequences of HFFD, significantly improving the glucose/insulin balance, liver enzymes, lipid profile, inflammatory cytokines, redox level, adipokines, ammonia, and manganese. At the tissue level (liver, pancreas, adipose tissue, and brain), ellagic acid significantly enhanced insulin signaling, autophosphorylation, adiponectin receptors, glucose transporters, inflammatory mediators, and apoptotic markers. Remarkably, combined treatment with both ellagic acid and repaglinide had a more pronounced effect than treatment with either alone. These outcomes give new insight into the promising molecular mechanisms by which ellagic acid modulates numerous factors induced in the progression of diabetes.

  19. The role of energy & fatty acid metabolism in obesity and insulin resistance

    NARCIS (Netherlands)

    Heemskerk, Mattijs Maria

    2015-01-01

    In today’s world, more people die from complications of overweight than from underweight. But not all individuals are equally prone to develop metabolic complications, such as obesity and insulin resistance. This thesis focuses on the differences in the energy and fatty acid metabolism that play a

  20. Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.

    Science.gov (United States)

    Whittingham, Jean L; Scott, David J; Chance, Karen; Wilson, Ashley; Finch, John; Brange, Jens; Guy Dodson, G

    2002-04-26

    When insulin solutions are subjected to acid, heat and agitation, the normal pattern of insulin assembly (dimers-->tetramers-->hexamers) is disrupted; the molecule undergoes conformational changes allowing it to follow an alternative aggregation pathway (via a monomeric species) leading to the formation of insoluble amyloid fibres. To investigate the effect of acid pH on the conformation and aggregation state of the protein, the crystal structure of human insulin at pH 2.1 has been determined to 1.6 A resolution. The structure reveals that the native fold is maintained at low pH, and that the molecule is still capable of forming dimers similar to those found in hexameric insulin structures at higher pH. Sulphate ions are incorporated into the molecule and the crystal lattice where they neutralise positive charges on the protein, stabilising its structure and facilitating crystallisation. The sulphate interactions are associated with local deformations in the protein, which may indicate that the structure is more plastic at low pH. Transmission electron microscopy analysis of insulin fibres reveals that the appearance of the fibres is greatly influenced by the type of acid employed. Sulphuric acid produces distinctive highly bunched, truncated fibres, suggesting that the sulphate ions have a sophisticated role to play in fibre formation, rather as they do in the crystal structure. Analytical ultracentrifugation studies show that in the absence of heating, insulin is predominantly dimeric in mineral acids, whereas in acetic acid the equilibrium is shifted towards the monomer. Hence, the effect of acid on the aggregation state of insulin is also complex. These results suggest that acid conditions increase the susceptibility of the molecule to conformational change and dissociation, and enhance the rate of fibrillation by providing a charged environment in which the attractive forces between the protein molecules is increased. (c) 2002 Elsevier Science Ltd.

  1. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    OpenAIRE

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of ...

  2. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    Science.gov (United States)

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  3. Branched-Chain and Aromatic Amino Acids Are Predictors of Insulin Resistance in Young Adults

    OpenAIRE

    Würtz, Peter; Soininen, Pasi; Kangas, Antti J.; Rönnemaa, Tapani; Lehtimäki, Terho; Kähönen, Mika; Viikari, Jorma S.; Raitakari, Olli T.; Ala-Korpela, Mika

    2013-01-01

    OBJECTIVE Branched-chain and aromatic amino acids are associated with the risk for future type 2 diabetes; however, the underlying mechanisms remain elusive. We tested whether amino acids predict insulin resistance index in healthy young adults. RESEARCH DESIGN AND METHODS Circulating isoleucine, leucine, valine, phenylalanine, tyrosine, and six additional amino acids were quantified in 1,680 individuals from the population-based Cardiovascular Risk in Young Finns Study (baseline age 32 ± 5 y...

  4. Branched-chain amino acids in metabolic signalling and insulin resistance

    Science.gov (United States)

    Lynch, Christopher J.; Adams, Sean H.

    2015-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM. PMID:25287287

  5. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  6. Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids

    DEFF Research Database (Denmark)

    Garcia Diaz, Maria; Foged, Camilla; Nielsen, Hanne Mørck

    2015-01-01

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading...... of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique...... efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid–insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer...

  7. Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes

    Directory of Open Access Journals (Sweden)

    Lomax Michael A

    2007-03-01

    Full Text Available Abstract Background The ubiquitin-proteasome system is the predominant pathway for myofibrillar proteolysis but a previous study in C2C12 myotubes only observed alterations in lysosome-dependent proteolysis in response to complete starvation of amino acids or leucine from the media. Here, we determined the interaction between insulin and amino acids in the regulation of myotube proteolysis Results Incubation of C2C12 myotubes with 0.2 × physiological amino acids concentration (0.2 × PC AA, relative to 1.0 × PC AA, significantly increased total proteolysis and the expression of 14-kDa E2 ubiquitin conjugating enzyme (p Conclusion In a C2C12 myotube model of myofibrillar protein turnover, amino acid limitation increases proteolysis in a ubiquitin-proteasome-dependent manner. Increasing amino acids or leucine alone, act additively with insulin to down regulate proteolysis and expression of components of ubiquitin-proteasome pathway. The effects of amino acids on proteolysis but not insulin and leucine, are blocked by inhibition of the mTOR signalling pathway.

  8. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.

    Science.gov (United States)

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C; Dedmon, William L; Katsanos, Christos S

    2016-10-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA. Copyright © 2016 the American Physiological Society.

  9. Sugar-Responsive Layer-by-Layer Film Composed of Phenylboronic Acid-Appended Insulin and Poly(vinyl alcohol).

    Science.gov (United States)

    Takei, Chihiro; Ohno, Yui; Seki, Tomohiro; Miki, Ryotaro; Seki, Toshinobu; Egawa, Yuya

    2018-01-01

    Previous studies have shown that reversible chemical bond formation between phenylboronic acid (PBA) and 1,3-diol can be utilized as the driving force for the preparation of layer-by-layer (LbL) films. The LbL films composed of a PBA-appended polymer and poly(vinyl alcohol) (PVA) disintegrated in the presence of sugar. This type of LbL films has been recognized as a promising approach for sugar-responsive drug release systems, but an issue preventing the practical application of LbL films is combining them with insulin. In this report, we have proposed a solution for this issue by using PBA-appended insulin as a component of the LbL film. We prepared two kinds of PBA-appended insulin derivatives and confirmed that they retained their hypoglycemic activity. The LbL films composed of PBA-appended insulin and PVA were successfully prepared through reversible chemical bond formation between the boronic acid moiety and the 1,3-diol of PVA. The LbL film disintegrated upon treatment with sugars. Based on the results presented herein, we discuss the suitability of the PBA moiety with respect to hypoglycemic activity, binding ability, and selectivity for D-glucose.

  10. Activation of PPARd and RXRa stimulates fatty acid oxidatin and insulin secretion inpancreatic beta-cells

    DEFF Research Database (Denmark)

    Børgesen, Michael; Ravnskjær, Kim; Frigerio, Francesca

    as a central effector of unsaturated fatty acids in pancreatic ß-cells. Interestingly, activation of PPARd increases basal as well as glucose-stimulated insulin secretion of INS-1E cells. This increase is further potentiated by RXR agonists. This observation suggests that PPARd may mediate some of the positive......ACTIVATION OF PPARd AND RXRa STIMULATES FATTY ACID OXIDATION AND INSULIN SECRETION IN PANCREATIC b-CELLS Michael Boergesen1, Kim Ravnskjaer2, Francesca Frigerio3, Allan E. Karlsen4, Pierre Maechler3 and Susanne Mandrup1 1 Department of Biochemistry and Molecular Biology, University of Southern...... of genes as PPARd specific agonists and stimulates ß-oxidation. Importantly, oleate-induction of gene expression and ß-oxidation in INS-1E cells is abolished by knock-down of PPARd using adenoviral transfer of shRNA. Thus, PPARd appears to be a central regulator of fatty acid metabolism as well...

  11. The associations between serum adiponectin, leptin, C-reactive protein, insulin, and serum long-chain omega-3 fatty acids in Labrador Retrievers

    Directory of Open Access Journals (Sweden)

    Streeter RM

    2015-04-01

    Full Text Available Renee M Streeter,1 Angela M Struble,1 Sabine Mann,2 Daryl V Nydam,2 John E Bauer,3 Marta G Castelhano,1 Rory J Todhunter,1 Bethany P Cummings,4 Joseph J Wakshlag11Department of Clinical Sciences, 2Department of Population Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; 3Department of Clinical Sciences, Texas A&M University, College Station, TX, USA; 4Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USAAbstract: Obesity has been associated with an increased inflammatory response and insulin resistance due to adipose tissue–derived adipokines and increases in C-reactive protein (CRP. Dogs appear to be similar to other species with the exception of adiponectin, which might not be affected by obesity status. Serum long-chain polyunsaturated fatty acid concentrations have been positively and negatively associated with serum adipokines. The aim of the study was to examine the relationship between leptin, CRP, adiponectin, and insulin to body condition score (BCS and to the long-chain omega-3 fatty acids in serum lipoproteins, including alpha-linolenic acid, eicosapentaenoic acid (EPA, docosapentanenoic acid (DPA, and docosahexaenoic acid (DHA as a reflection of dietary omega-3 status in the Labrador Retriever. Seventy-seven Labrador Retrievers were evaluated for BCS, percent fasting serum lipoprotein fatty acid concentrations, as well as serum leptin, adiponectin, insulin, and CRP. A multivariable general linear regression model was constructed to examine the association between the dependent variables leptin, CRP, adiponectin, and insulin and the predictor variables of BCS, age, and sex, as well as concentrations of alpha-linolenic acid, EPA, DHA, and DPA. Adiponectin concentration was positively associated with age (P<0.0008, EPA (P=0.027 and negatively associated with DHA (P=0.008. Leptin concentration was positively associated with an increased DHA (P=0.009, BCS (P

  12. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice.

    NARCIS (Netherlands)

    Vroegrijk, I.O.; Diepen, J.A. van; Berg, S.; Westbroek, I.; Keizer, H.; Gambelli, L.; Hontecillas, R.; Bassaganya-Riera, J.; Zondag, G.C.; Romijn, J.A.; Havekes, L.M.; Voshol, P.J.

    2011-01-01

    BACKGROUND: Pomegranate seed oil has been shown to protect against diet induced obesity and insulin resistance. OBJECTIVE: To characterize the metabolic effects of punicic acid on high fat diet induced obesity and insulin resistance. DESIGN: High-fat diet or high-fat diet with 1% Pomegranate seed

  13. Methylphenidate during early consolidation affects long-term associative memory retrieval depending on baseline catecholamines.

    Science.gov (United States)

    Wagner, Isabella C; van Buuren, Mariët; Bovy, Leonore; Morris, Richard G; Fernández, Guillén

    2017-02-01

    Synaptic memory consolidation is thought to rely on catecholaminergic signaling. Eventually, it is followed by systems consolidation, which embeds memories in a neocortical network. Although this sequence was demonstrated in rodents, it is unclear how catecholamines affect memory consolidation in humans. Here, we tested the effects of catecholaminergic modulation on synaptic and subsequent systems consolidation. We expected enhanced memory performance and increased neocortical engagement during delayed retrieval. Additionally, we tested if this effect was modulated by individual differences in a cognitive proxy measure of baseline catecholamine synthesis capacity. Fifty-three healthy males underwent a between-subjects, double-blind, placebo-controlled procedure across 2 days. On day 1, subjects studied and retrieved object-location associations and received 20 mg of methylphenidate or placebo. Drug intake was timed so that methylphenidate was expected to affect early consolidation but not encoding or retrieval. Memory was tested again while subjects were scanned three days later. Methylphenidate did not facilitate memory performance, and there was no significant group difference in activation during delayed retrieval. However, memory representations differed between groups depending on baseline catecholamines. The placebo group showed increased activation in occipito-temporal regions but decreased connectivity with the hippocampus, associated with lower baseline catecholamine synthesis capacity. The methylphenidate group showed stronger activation in the postcentral gyrus, associated with higher baseline catecholamine synthesis capacity. Altogether, methylphenidate during early consolidation did not foster long-term memory performance, but it affected retrieval-related neural processes depending on individual levels of baseline catecholamines.

  14. Phentolamine tests and catecholamine levels in normotensive CVA patients.

    Science.gov (United States)

    Favazza, A R

    1974-11-01

    Ten normotensive patients diagnosed as having a CVA had Regitine tests and urinary VMA and catecholamine determinations during the first day of hospitalization. The VMA and catecholamine levels were all within normal limits (except for one elevated VMA level) but did not correlate well with each other. The average response to phentolamine was an average drop in blood pressure of 30mm. Hg systolic and 19 mm. Hg diastolic. Mechanisms by which hypertensive states or cerebral damage might effect blood pressure are discussed. It is suggested that CNS damage might induce a vasolabile or hypersensitive state via connections and consequent alterations in the autonomic vasomotor system.

  15. Catecholamine crisis during induction of general anesthesia : A case report.

    Science.gov (United States)

    Sonntagbauer, M; Koch, A; Strouhal, U; Zacharowski, K; Weber, C F

    2018-03-01

    Catecholamine crises associated with pheochromocytoma may cause life-threatening cardiovascular conditions. We report the case of a 75-year-old male who developed a hypertensive crisis during induction of general anesthesia for elective resection of a cervical neuroma due to an undiagnosed pheochromocytoma. Hemodynamic instability occurred immediately after the injection of fentanyl, propofol and rocuronium, prior to laryngoscopy and in the absence of any manipulation of the abdomen. In this case report, we present the management of this incident and discuss the underlying pathophysiology triggering a catecholamine crisis.

  16. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation.

    Science.gov (United States)

    Melin, Victoria; Henríquez, Adolfo; Freer, Juanita; Contreras, David

    2015-03-01

    Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.

  17. Insulin structure and stability.

    Science.gov (United States)

    Brange, J; Langkjoer, L

    1993-01-01

    Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the

  18. Pomegranate seed oil, a rich source of punicic acid, prevents diet-induced obesity and insulin resistance in mice

    NARCIS (Netherlands)

    Vroegrijk, Irene O. C. M.; van Diepen, Janna A.; van den Berg, Sjoerd; Westbroek, Irene; Keizer, Hiskias; Gambelli, Luisa; Hontecillas, Raquel; Bassaganya-Riera, Josep; Zondag, Gerben C. M.; Romijn, Johannes A.; Havekes, Louis M.; Voshol, Peter J.

    2011-01-01

    Pomegranate seed oil has been shown to protect against diet induced obesity and insulin resistance. To characterize the metabolic effects of punicic acid on high fat diet induced obesity and insulin resistance. High-fat diet or high-fat diet with 1% Pomegranate seed oil (PUA) was fed for 12weeks to

  19. Clozapine response and plasma catecholamines and their metabolites.

    Science.gov (United States)

    Green, A I; Alam, M Y; Sobieraj, J T; Pappalardo, K M; Waternaux, C; Salzman, C; Schatzberg, A F; Schildkraut, J J

    1993-02-01

    The atypical neuroleptic clozapine has an unusual profile of clinical effects and a distinctive spectrum of pharmacological actions. Plasma measures of catecholamines and their metabolites have been used in the past to study the action of typical neuroleptics. We obtained longitudinal assessments of plasma measures of dopamine (pDA), norepinephrine (pNE), and their metabolites, homovanillic acid (pHVA) and 3-methoxy-4-hydroxyphenylglycol (pMHPG), in eight treatment-resistant or treatment-intolerant schizophrenic patients who were treated with clozapine for 12 weeks following a prolonged drug-washout period. Our findings from the study of these eight patients suggest the following: Plasma levels of HVA and possibly NE derived from the neuroleptic-free baseline period may predict response to clozapine; plasma levels of HVA and MHPG decrease during the initial weeks of treatment in responders but not in nonresponders; and plasma levels of DA and NE increase in both responders and nonresponders to clozapine.

  20. Catecholamine levels in sheep hypothalamus, hypophysis and adrenals following whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Pastorova, B.; Arendarcik, J.; Molnarova, M.

    1985-01-01

    Changes were studied in the levels of catecholamines and L-DOPA in the control system of the reproduction cycle (hypothalamus, hypophysis) and in the adrenal glands of sheep after whole-body irradiation with 60 Co at a total dose of 6.7 Gy for seven days. The output of the radiation source was 0.039 Gy/h. The catecholamines (noradrenaline, dopamine and adrenaline) and L-DOPA were determined after separation from the tissues by the method of spectral fluorometry. After whole-body exposure to gamma radiation, noradrenaline dropped in the hypothalamus in comparison with the control group, most significantly in the rostral (by 74.2%) and caudal (by 40%) parts. A similar drop was also observed in dopamine, the concentrations of which decreased in the rostral hypothalamus by 60%. Adrenaline showed a drop in the hypothalamus, most significant in the caudal region (by 62%). Consequently, the level of the precursor of the synthesis of catecholamines and L-DOPA changed and showed in the studied regions of the hypothalamus significantly lower levels than in the control group. As regards the hypophysis, after irradiation no significant changes in the levels of noradrenaline and adrenaline were recorded, however, dopamine and L-DOPA dropped significantly (P<0.01). The exposure to gamma radiation also causes a decrease in the concentrations of catecholamines and L-DOPA in the adrenal glands of sheep, most significantly in noradrenaline (by 61%). It was thus found that whole-body irradiation of sheep with a dose of 6.7 Gy results in a significant decrease in the level of catecholamines in the hypothalamus, hypophysis and adrenal glands, which is probably in relation to the failure of synthesis and degradation of catecholamines and to the total organism injury

  1. Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Harsh Sancheti

    Full Text Available Alzheimer's disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits and synaptic plasticity have been shown to be affected in the early stages of Alzheimer's disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer's disease (3xTg-AD that shows progression of pathology as a function of age; two age groups: 6 months (young and 12 months (old were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O and long term potentiation (LTP (measured by electrophysiology. Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice.

  2. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.

    Science.gov (United States)

    Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D

    2004-06-11

    An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.

  3. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    Science.gov (United States)

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Effects of Ursodeoxycholic Acid and Insulin on Palmitate-Induced ROS Production and Down-Regulation of PI3K/Akt Signaling Activity.

    Science.gov (United States)

    Yokoyama, Kunihiro; Tatsumi, Yasuaki; Hayashi, Kazuhiko; Goto, Hidemi; Ishikawa, Tetsuya; Wakusawa, Shinya

    2017-01-01

    In obese and diabetic patients, plasma free fatty acid (FFA) levels are often elevated and may play a causal role in insulin resistance and reactive oxygen species (ROS) production. We have previously shown that ursodeoxycholic acid (UDCA) has antioxidative activity through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling-mediated glutathione production. In this study, we investigated the effects of UDCA on insulin response by analyzing intracellular ROS and the activation of the PI3K/Akt signaling pathway in HepG2 cells treated with palmitate. The level of ROS was quantified using 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCFDA), and the activation of the PI3K/Akt signaling pathway was determined by Western blotting assay using appropriate antibodies. The intracellular ROS levels were increased by palmitate but were reduced by treatment with UDCA and insulin. Furthermore, insulin significantly stimulated the phosphorylation of Akt. When the cells were pre-treated with palmitate, insulin-induced Akt-phosphorylation was markedly inhibited. However, when the cells were treated with palmitate and UDCA, the effects of insulin were partially restored. UDCA may have protective effects against palmitate-induced decreases in responsiveness to insulin.

  5. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment.

    Science.gov (United States)

    Spasojevic, Natasa; Jovanovic, Predrag; Dronjak, Sladjana

    2015-03-01

    We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS) for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  6. Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment

    Directory of Open Access Journals (Sweden)

    NATASA SPASOJEVIC

    2015-03-01

    Full Text Available We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyrosine hydroxylase, a rate-limiting enzyme in catecholamine synthesis, as well as a norepinephrine transporter and vesicular monoamine transporter 2 gene expressions in adrenal medulla of animals exposed to chronic unpredictable mild stress (CUMS for 4 weeks, were investigated. Gene expression analyses were performed using a real-time quantitative reverse transcription-PCR. Chronically stressed animals had increased tyrosine hydroxylase mRNA levels and decreased expression of both transporters. Fluoxetine increased tyrosine hydroxylase and decreased norepinephrine transporter gene expression in both unstressed and CUMS rats. These findings suggest that chronic fluoxetine treatment increased plasma catecholamine levels by affecting opposing changes in catecholamine synthesis and uptake.

  7. The effect of ionizing irradiation on the catecholamine levels in pituitary gland of ewes

    International Nuclear Information System (INIS)

    Pastorova, B.; Stanikova, A.; Maracek, I.; Danko, J.

    2004-01-01

    The changes were studied in the levels of catecholamines and L-DOPA in the pituitary gland of sheep after all-body irradiation with 60 Co at the total dose of 6.7 Gy for seven days. The power input per hour of irradiation source was 0.039 Gy. The catecholamines were determined after having been isolated from the tissues and determined by the method of spectral fluorimetry. After all-body exposition to gamma-radiation L-DOPA dropped in pituitary gland in comparison with the control group of sheep most significantly by 66.7% (P < 0,001). A similar drop like in the case of adrenaline was also observed in epinephrine (P < 0,05). On basis of the results we presume that the all-body irradiation of sheep by results a significant decrease in the content of catecholamines in pituitary gland, which is probably in relation with failure of synthesis and degradation of catecholamines and with total organism injury. (authors)

  8. Determination of free and conjugated catecholamines and L-3,4-dihydroxyphenylalanine in plasma and urine: evidence for a catechol-O-methyltransferase inhibitor in uraemia

    International Nuclear Information System (INIS)

    Demassieux, S.; Corneille, L.; Lachance, S.; Carriere, S.

    1981-01-01

    A sensitive, accurate and reproducible method has been developed for the determination of free and conjugated catecholamines and L-3,4-dihydroxyphenylalanine in plasma and urine. The assay involves the enzymatic conversion of these compounds to their radio-labelled O-methylated derivatives using catechol-O-methyltransferase and S-adenosyl-L-[methyl- 3 H]methionine. Recoveries of 75 +- 5% for dopamine, 70 +- 5% for adrenaline and 65 +- 5% for noradrenaline were obtained. The sensitivities were 0.5 pg for adrenaline and noradrenaline and 5-7 pg for dopamine and dihydroxyphenylalanine. Measurements of conjugated catecholamines were performed after mild acid hydrolysis for 20 min at 95 0 C. During this procedure no degradation of the catecholamines was observed. This assay led to the discovery of a dialyzable factor in the plasma of chronic uraemic patients which inhibits catechol-O-methyltransferase activity in vitro. The mean 22% inhibition observed for unhydrolyzed plasma increased to 42% after hydrolysis. The identity of this inhibitor which exists as an inactive conjugated form, probably a sulphate ester, and its implication in physiopathological disorders remain to be established. (Auth.)

  9. Effects of catecholamines on rat myocardial metabolism. I. Influence of catecholamines on energy-rich nucleotides and phosphorylated fraction contents.

    Science.gov (United States)

    Merouze, P; Gaudemer, Y

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on energy metabolism of the rat myocardium has been studied by incubating slices of this tissue with these hormones and by following the levels of the different phosphorylated fractions and adenylic nucleotides. 2. Similar effects are obtained with both hormones, adrenaline being more effective. 3. Catecholamines decrease significantly the total amount of phosphate while Pi content increases during the first 10 minutes of incubation; labile and residual phosphate contents increase at the beginning of incubation and decrease to the initial values afterwards. 4. ATP and ADP levels decrease significantly with both hormones; however, the effect of noradrenalin on the ATP level needs a longer time of incubation. The ATP/ADP ratios decrease after 5 minutes incubation and the total adenylic nucleotide content is severely decreased (35 per cent with adrenalin, after 20 minutes incubation). 5. Similar results have been obtained with other tissues; these results can explain the decrease of aerobic metabolism we observed under the same conditions.

  10. Dietary enrichment with alpha-linolenic acid during pregnancy attenuates insulin resistance in adult offspring in mice.

    Science.gov (United States)

    Hollander, K S; Tempel Brami, C; Konikoff, F M; Fainaru, M; Leikin-Frenkel, A

    2014-07-01

    Our objective was to test the contribution of dietary enrichment in essential or saturated fatty acids, in normocaloric diets, on the lipid accumulation and insulin resistance in the adult offspring in a C57Bl6/J mice model. Pregnant mothers were fed normocaloric diets containing 6% fat enriched in essential fatty acids (EFA): alpha-linolenic (ALA-18:3, n-3), linoleic (LA-18:2, n-6), or saturated fatty acids (SFA). After a washing-out period with regular diet, the offspring received a high-fat diet before euthanization. Adult mice fed maternal ALA showed lower body weight gain and lower liver fat accumulation, lower HOMA index and lower stearoyl-CoA desaturase (SCD1) activity than those fed maternal SFA. The results observed using this novel model suggest that ALA in maternal diet may have the potential to inhibit insulin resistance in adult offspring.

  11. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  12. Quantum-mechanical DFT calculation supported Raman spectroscopic study of some amino acids in bovine insulin.

    Science.gov (United States)

    Tah, Bidisha; Pal, Prabir; Roy, Sourav; Dutta, Debodyuti; Mishra, Sabyashachi; Ghosh, Manash; Talapatra, G B

    2014-08-14

    In this article Quantum mechanical (QM) calculations by Density Functional Theory (DFT) have been performed of all amino acids present in bovine insulin. Simulated Raman spectra of those amino acids are compared with their experimental spectra and the major bands are assigned. The results are in good agreement with experiment. We have also verified the DFT results with Quantum mechanical molecular mechanics (QM/MM) results for some amino acids. QM/MM results are very similar with the DFT results. Although the theoretical calculation of individual amino acids are feasible, but the calculated Raman spectrum of whole protein molecule is difficult or even quite impossible task, since it relies on lengthy and costly quantum-chemical computation. However, we have tried to simulate the Raman spectrum of whole protein by adding the proportionate contribution of the Raman spectra of each amino acid present in this protein. In DFT calculations, only the contributions of disulphide bonds between cysteines are included but the contribution of the peptide and hydrogen bonds have not been considered. We have recorded the Raman spectra of bovine insulin using micro-Raman set up. The experimental spectrum is found to be very similar with the resultant simulated Raman spectrum with some exceptions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration

    DEFF Research Database (Denmark)

    Agrawal, Ashish Kumar; Harde, Harshad; Thanki, Kaushik

    2014-01-01

    The present study reports the folic acid (FA) functionalized insulin loaded stable liposomes with improved bioavailability following oral administration. Liposomes were stabilized by alternating coating of negatively charged poly(acrylic acid) (PAA) and positively charged poly(allyl amine...

  14. (3H)-dihydrotestosterone in catecholamine neurons of rat brain stem: combined localization by autoradiography and formaldehyde-induced fluorescence

    International Nuclear Information System (INIS)

    Heritage, A.S.; Stumpf, W.E.; Sar, M.; Grant, L.D.

    1981-01-01

    A combined formaldehyde-induced fluorescence (FIF)-autoradiography procedure was used to determine how and where the androgen, dihydrotestosterone (DHT), is associated with catecholamine systems in the rat brain. With this dual localization method, ( 3 H)-DHT target sites can be visualized in relation to catecholamine perikarya and terminals. In the hindbrain, catecholamine neurons adjacent to the fourth ventricle (group A4), the nucleus (n.) olivaris superior (group A5), the n. parabranchialis medialis (group A7), and in the locus coeruleus (group A6) and subcoeruleal regions, as well as in the substantia grisea centralis, concentrate ( 3 H)-DHT in their nuclei. ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following hindbrain regions: n. motorius dorsalis nervi vagi, n. tractus solitarii, n. commissuralis, n. raphe pallidus, n. olivaris inferior, the ventrolateral portion of the substantia grisea centralis, n. cuneiformis, and the ventrolateral reticular formation in the caudal mesencephalon. In the forebrain, ( 3 H)-DHT concentrates in nuclei of catecholamine neurons located in the n. arcuatus and n. periventricularis (group A12). In addition, ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following forebrain regions: n. periventricularis rotundocellularis, n. paraventricularis, n. dorsomedialis, n. periventricularis, area retrochiasmatica, n. interstititalis striae terminalis (ventral portion), and n. amygdaloideus centralis. The disclosure of a morphologic association between ( 3 H)-DHT target sites and certain brain catecholamine systems suggests a close functional interdependence between androgens and catecholamines

  15. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  16. Low-fat diet with omega-3 fatty acids increases plasma insulin-like growth factor concentration in healthy postmenopausal women.

    Science.gov (United States)

    Young, Lindsay R; Kurzer, Mindy S; Thomas, William; Redmon, J Bruce; Raatz, Susan K

    2013-07-01

    The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in healthy individuals are not well defined. Three test diets-high-fat diet (40% energy as fat), low-fat diet (LF; 20% energy as fat), and a diet with low fat and high omega-3 fatty acid (LFn3; 23% energy as fat)--were tested in a randomized crossover designed controlled feeding trial in healthy postmenopausal women. Plasma IGF-I, IGF binding protein-3 (IGFBP-3), insulin, glucose, and ratio of IGF-I/IGFBP-3 concentrations were measured in response to diets. Insulin sensitivity was calculated using the homeostatic model assessment of insulin resistance We hypothesized that IGF-I, insulin, and glucose concentrations would decrease and IGFBP-3 concentration would increase in response to the low-fat diets. Eight weeks of the LFn3 diet increased circulating IGF-I (P diet increased IGFBP-3 (P = .04), resulting in trends toward an increased IGF-I/IGFBP-3 ratio with the LFn3 diet and a decreased IGF-I/IGFBP-3 ratio with the LF diet (P = .13 for both comparisons). No statistically significant differences were detected between treatments at baseline or 8 weeks for IGF-1, IGFBP-3, or the ratio of IGF-1/IGFBP-3. Insulin, glucose, and the homeostatic model assessment of insulin resistance were not altered by the interventions. Low-fat diet with high n-3 fatty acids may increase circulating IGF-I concentrations without adversely affecting insulin sensitivity in healthy individuals. Published by Elsevier Inc.

  17. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation.

    Science.gov (United States)

    Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan

    2017-10-01

    A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (Pinsulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.

  18. Hyperadrenergic syndrome in severe tetanus: extreme rise in catecholamines responsive to labetalol.

    OpenAIRE

    Domenighetti, G M; Savary, G; Stricker, H

    1984-01-01

    The hyperadrenergic syndrome that occurs in tetanus is characterised by hypertension, tachycardia, and increased systemic arteriolar resistance. A 74 year old man with tetanus was found to have very high catecholamine concentrations--as high as those in phaeochromocytoma--and the fluctuations in blood pressure and heart rate were measured to see whether they paralleled changes in the catecholamine values. A labetalol infusion of 0.25-1 mg/min gradually stabilised the cardiovascular disturbanc...

  19. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model.

    Science.gov (United States)

    Newman, Monica A; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U

    2017-03-16

    Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin ( p phosphatidylcholines and sphingomyelins were generally increased ( p phosphatidylcholines and lysophosphatidylcholines were decreased ( p insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  20. Reductive methylation of insulin. Production of a biologically active tritiated insulin

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, J W; Nahum, A; Steiner, D F [Department of Biochemistry, University of Chicago, Illinois, USA

    1983-01-01

    Reductive methylation of the three amino groups of porcine insulin was accomplished by incubation with formaldehyde and sodium cyanoborohydride. The two amino termini and the epsilon amino group of B29 lysine were each dimethylated within 1 h of incubation. The fully methylated insulin bound more tightly to a reverse phase column than did native insulin, had a slightly more acid isoelectric point, and maintained approximately 50% biological activity when examined with an insulin sensitive cultured cell line. Reductive methylation with sodium cyanoboro (/sup 3/H) hydride resulted in a (/sup 3/H) methylated insulin with a specific activity of 6 Ci/mmol.

  1. Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    LJUBICA GAVRILOVIC

    2013-09-01

    Full Text Available ABSTRACT Chronic isolation of adult animals represents a form of psychological stress that produces sympatho-adrenomedullar activation. Exercise training acts as an important modulator of sympatho-adrenomedullary system. This study aimed to investigate physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase, dopamine-ß-hydroxylase and phenylethanolamine N-methyltransferase and cyclic adenosine monophosphate response element-binding (CREB in the adrenal medulla, concentrations of catecholamines and corticosterone (CORT in the plasma and the weight of adrenal glands of chronically psychosocially stressed adult rats exposed daily to 20 min treadmill running for 12 weeks. Also, we examined how additional acute immobilization stress changes the mentioned parameters. Treadmill running did not result in modulation of gene expression of catecholamine synthesizing enzymes and it decreased the level of CREB mRNA in the adrenal medulla of chronically psychosocially stressed adult rats. The potentially negative physiological adaptations after treadmill running were recorded as increased concentrations of catecholamines and decreased morning CORT concentration in the plasma, as well as the adrenal gland hypertrophy of chronically psychosocially stressed rats. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. Treadmill exercise does not change the activity of sympatho-adrenomedullary system of chronically psychosocially stressed rats.

  2. Demonstration of β-adrenergic receptors and catecholamine-mediated effects on cell proliferation in embryonic palatal tissue

    International Nuclear Information System (INIS)

    Pisano, M.M.

    1986-01-01

    The ability of catecholamines to modulate cell proliferation, differentiation and morphogenesis in other systems, and modulate adenylate cyclase activity in the developing palate during the period of cellular differentiation, made it of interest to determine their involvement in palatal ontogenesis. Catecholamines exert their physiologic effects via interaction with distinct membrane-bound receptors, one class being the B-adrenergic receptors which are coupled to stimulation of adenylate cyclase and the generation of cAMP. A direct radioligand binding technique utilizing the B-adrenergic antagonist [ 3 H]-dihydroalprenolol ([ 3 H]-DHA) was employed in the identification of B-adrenergic receptors in the developing murine secondary palate. Specific binding of [ 3 H]-DHA in embryonic (day 13) palatal tissue homogenates was saturable and of high affinity. The functionality of B-adrenergic receptor binding sites was assessed from the ability of embryonic palate mesenchmyal cells in vitro to respond to catecholamines with elevations of cAMP. Embryonic palate mesenchymal cells responded to various B-adrenergic catecholamine agonists with significant, dose-dependent accumulations of intracellular cAMP. Embryonic (day 13) maxillary tissue homogenates were analyzed for the presence of catecholamines by high performance liquid chromatography and radioenzymatic assay. Since normal palatal and craniofacial morphogenesis depends on proper temporal and spatial patterns of growth, the effect of B-adrenergic catecholamines on embryonic palate mesenchymal cell proliferation was investigated

  3. [Effects of triterpenoid from Psidium guajava leaves ursolic acid on proliferation, differentiation of 3T3-L1 preadipocyte and insulin resistance].

    Science.gov (United States)

    Lin, Juan-Na; Kuang, Qiao-Ting; Ye, Kai-He; Ye, Chun-Ling; Huang, Yi; Zhang, Xiao-Qi; Ye, Wen-Cai

    2013-08-01

    To investigate the influences of triterpenoid from Psidium guajava Leaves (ursolic acid) on the proliferation, differentiation of 3T3-L1 preadipocyte, and its possible mechanism treat for insulin resistance. 3T3-L1 preadipocyte was cultured in vitro. After adding ursolic acid to the culture medium for 48h, the cell viability was tested by MTT assay. Induced for 6 days, the lipid accumulation of adipocyte was measured by Oil Red O staining. The insulin resistant cell model was established with Dexamethasone. Cellular glucose uptake was determined with GOD-POD assays and FFA concentration was determined at the time of 48h. Secreted adiponectin were measured by ELISA. The protein levels of PPARgamma and PTP1B in insulin resistant adipocyte were measured by Western Blotting. Compared with medium control group, 30, 100 micromol/L ursolic acid could increase its proliferation and differentiation significantly (P 0.05). Ursolic acid can improve the proliferation and differentiation of 3T3-L1 preadipocyte, enhance cellular glucose uptake, inhibit the production of FFA, promote the secretion of adiponectin insulin resistant adipocyte, its mechanism may be related to upregulating the expression of PPARgamma protein.

  4. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Science.gov (United States)

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  5. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery

    DEFF Research Database (Denmark)

    Fan, Weiwei; Xia, Dengning; Zhu, Quanlei

    2018-01-01

    , especially to avoid lysosomal degradation, and basolateral release. Here, the functional material, deoxycholic acid-conjugated chitosan, is synthesized and loaded with the model protein drug insulin into deoxycholic acid-modified nanoparticles (DNPs). The DNPs designed in this study are demonstrated......Oral absorption of protein/peptide-loaded nanoparticles is often limited by multiple barriers of the intestinal epithelium. In addition to mucus translocation and apical endocytosis, highly efficient transepithelial absorption of nanoparticles requires successful intracellular trafficking...... to endolysosomal escape of DNPs. Additionally, DNPs can interact with a cytosolic ileal bile acid-binding protein that facilitates the intracellular trafficking and basolateral release of insulin. In rats, intravital two-photon microscopy also reveals that the transport of DNPs into the intestinal villi...

  6. [IMPACT OF DIETARY FATTY ACIDS ON LIPID PROFILE, INSULIN SENSITIVITY AND FUNCTIONALITY OF PANCREATIC β CELLS IN TYPE 2 DIABETIC SUBJECTS].

    Science.gov (United States)

    Sambra Vásquez, Verónica; Rojas Moncada, Pamela; Basfi-Fer, Karen; Valencia, Alejandra; Codoceo, Juana; Inostroza, Jorge; Carrasco, Fernando; Ruz Ortiz, Manuel

    2015-09-01

    the quality of fats could influence the metabolic control of patients with Type 2 Diabetes Mellitus (DM2). to determine the relationship between intake and quality of dietary fatty acids to lipid profile, metabolic control, functionality of pancreatic cells and insulin sensivity in subjects with DM2. we studied 54 subjects with DM2, anthropometric measurements were performed, body composition and dietary lipid intake, saturated fatty acids (SFA), trans, monounsaturated, polyunsaturated, omega 3, omega 6 and dietary cholesterol. Laboratory parameters related to their metabolic control were determined (fasting blood glucose, glycated hemoglobin, and lipid profile). The insulin secretion and insulin sensitivity was determined with the insulin-modified intravenous glucose tolerance test according to the Bergman's minimal model. 28 men and 26 women were studied (BMI of 29.5 ± 3.7 kg/m2; age 55.6 ± 6.8 y.), 48% had LDL-C 40 mg/dL and 7.4% of women c-HDL > 50 mg/dL. 32% consumed > 10% of AGS and > 300 mg/day of dietary cholesterol. The SFA intake and percentage of calories from fat (G%) were significantly associated with insulin resistance and fasting plasma glucose concentration. The G% predicted 84% variability on c-VLDL. in patients with DM2 a greater intake of fat and saturated fatty acids it associated with greater fasting glycemia and insulin resistance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Ketamine inhibits 45Ca influx and catecholamine secretion by inhibiting 22Na influx in cultured bovine adrenal medullary cells

    International Nuclear Information System (INIS)

    Takara, Hiroshi; Wada, Akihiko; Arita, Masahide; Izumi, Futoshi; Sumikawa, Koji

    1986-01-01

    The effects of ketamine, an intravenous anesthetic, on 22 Na influx, 45 Ca influx and catecholamine secretion were investigated in cultured bovine adrenal medullary cells. Ketamine inhibited carbachol-induced 45 Ca influx and catecholamine secretion in a concentration-dependent manner with a similar potency. Ketamine also reduced veratridine-induced 45 Ca influx and catecholamine secretion. The influx of 22 Na caused by carbachol or by veratridine was suppressed by ketamine with a concentration-inhibition curve similar to that of 45 Ca influx and catecholamine secretion. Inhibition by ketamine of the carbachol-induced influx of 22 Na, 45 Ca and secretion of catecholamines was not reversed by the increased concentrations of carbachol. These observations indicate that ketamine, at clinical concentrations, can inhibit nicotinic receptor-associated ionic channels and that the inhibition of Na influx via the receptor-associated ionic channels is responsible for the inhibition of carbachol-induced Ca influx and catecholamine secretion. (Auth.)

  8. [Changes in the secretion of somatotropin and insulin in hyperthyroidism].

    Science.gov (United States)

    Cavagnini, F; Peracchi, M; Panerai, A E; Pinto, M

    1975-06-01

    Twenty hyperthyroid patients were investigated for growth hormone (GH) and immunoreactive insulin (IRI) secretion in response to insulin hypoglycaemia, arginine infusion and glucose-induced hyperglycaemia. GH response to either insulin hypoglycaemia or arginine infusion was significantly reduced in these patients compared with 20 normal subjects. Thyrotoxic patients also displayed an abnormal GH pattern after a 100 g oral glucose load: in fact, serum GH underwent a paradoxical increase in spite of abnormally high levels attained by blood glucose. IRI secretion was also clearly reduced in response to arginine infusion and moderately blunted after oral glucose. In a group of patients re-evaluated under euthyroid conditions, a fair increase of GH response to the provocative stimuli jointly with the restoration of a normal suppressibility of serum GH by glucose were noted; by contrast, no significant change of IRI response to arginine or glucose took place. Likewise, the impairment of glucose tolerance was not improved. These findings indicate that an impairment of GH and IRI secretion is present in hyperthyroidism. The possibility that a potentiation of the catecholamine effects caused by the thyroid hormones is involved in this alteration deserves consideration.

  9. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Sean M. McNabney

    2017-12-01

    Full Text Available Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance.

  10. Effects of immediate-release niacin and dietary fatty acids on acute insulin and lipid status in individuals with metabolic syndrome.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Lopez, Sergio; Bermudez, Beatriz; Guerrero, Juan M; Abia, Rocio; Muriana, Francisco Jg

    2018-04-01

    The nature of dietary fats profoundly affects postprandial hypertriglyceridemia and glucose homeostasis. Niacin is a potent lipid-lowering agent. However, limited data exist on postprandial triglycerides and glycemic control following co-administration of high-fat meals with a single dose of niacin in subjects with metabolic syndrome (MetS). The aim of the study was to explore whether a fat challenge containing predominantly saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated (LCPUFAs) fatty acids together with a single dose of immediate-release niacin have a relevant role in postprandial insulin and lipid status in subjects with MetS. In a randomized crossover within-subject design, 16 men with MetS were given a single dose of immediate-release niacin (2 g) and ∼15 cal kg -1 body weight meals containing either SFAs, MUFAs, MUFAs plus omega-3 LCPUFAs or no fat. At baseline and hourly over 6 h, plasma glucose, insulin, C-peptide, triglycerides, free fatty acids (FFAs), total cholesterol, and both high- and low-density lipoprotein cholesterol were assessed. Co-administered with niacin, high-fat meals significantly increased the postprandial concentrations of glucose, insulin, C-peptide, triglycerides, FFAs and postprandial indices of β-cell function. However, postprandial indices of insulin sensitivity were significantly decreased. These effects were significantly attenuated with MUFAs or MUFAs plus omega-3 LCPUFAs when compared with SFAs. In the setting of niacin co-administration and compared to dietary SFAs, MUFAs limit the postprandial insulin, triglyceride and FFA excursions, and improve postprandial glucose homeostasis in MetS. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Effect of Omega-3 Fatty Acids Treatment on Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mogoş Tiberius

    2014-12-01

    Full Text Available Background and aims: Insulin resistance (IR is a common pathogenic factor of several diseases: diabetes mellitus, the metabolic syndrome, arterial hypertension, atherosclerosis, dyslipidemia, etc. There are many therapeutic factors involved in decreasing IR. Among them we mention metformin, pioglitazone, physical activity, weight loss, diet, etc. In the last decade, there are more observations of the influence of polyunsaturated fatty acids on IR. The most powerful seem to be omega-3 fatty acids. In our study, we wanted to asses if the administration of omega-3 fatty acids is involved in modifying IR. Materials and methods: We evaluated 126 diabetic patients with IR from January 2011 until July 2014. The study was open-label and non-randomized. For the determination of IR we used the HOMA-IR method. Results: For both males and females there was a regression of HOMA-IR during the 4 weeks of treatment with omega-3 and also after 2 weeks after stopping the administration of these fatty acids. The decrease of HOMA-IR was statistically significant (p<0.05. The statistic result observed in the next 2 weeks after stopping administration of omega-3 was also significant (p<0.05.

  12. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters.

    Science.gov (United States)

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian

    2013-08-01

    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Chronic treatment with pioglitazone does not protect obese patients with diabetes mellitus type II from free fatty acid-induced insulin resistance

    NARCIS (Netherlands)

    Serlie, Mireille J.; Allick, Gideon; Groener, Johanna E.; Ackermans, Mariette T.; Heijligenberg, Rik; Voermans, Barbara C.; Aerts, Johannes M.; Meijer, Alfred J.; Sauerwein, Hans P.

    2007-01-01

    CONTEXT: Thiazolidinediones increase peripheral insulin sensitivity and decrease plasma free fatty acids (FFA). However, their exact mechanism of action has not been fully elucidated. OBJECTIVE: We studied the protective effect of pioglitazone on FFA-induced insulin resistance and the effects on

  14. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  15. Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance.

    Science.gov (United States)

    Shinjo, Satoko; Jiang, Shuying; Nameta, Masaaki; Suzuki, Tomohiro; Kanai, Mai; Nomura, Yuta; Goda, Nobuhito

    2017-10-01

    The mitochondria-associated ER membrane (MAM) is a specialized subdomain of ER that physically connects with mitochondria. Although disruption of inter-organellar crosstalk via the MAM impairs cellular homeostasis, its pathological significance in insulin resistance in type 2 diabetes mellitus remains unclear. Here, we reveal the importance of reduced MAM formation in the induction of fatty acid-evoked insulin resistance in hepatocytes. Palmitic acid (PA) repressed insulin-stimulated Akt phosphorylation in HepG2 cells within 12h. Treatment with an inhibitor of the ER stress response failed to restore PA-mediated suppression of Akt activation. Mitochondrial reactive oxygen species (ROS) production did not increase in PA-treated cells. Even short-term exposure (3h) to PA reduced the calcium flux from ER to mitochondria, followed by a significant decrease in MAM contact area, suggesting that PA suppressed the functional interaction between ER and mitochondria. Forced expression of mitofusin-2, a critical component of the MAM, partially restored MAM contact area and ameliorated the PA-elicited suppression of insulin sensitivity with Ser473 phosphorylation of Akt selectively improved. These results suggest that loss of proximity between ER and mitochondria, but not perturbation of homeostasis in the two organelles individually, plays crucial roles in PA-evoked Akt inactivation in hepatic insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.

    Science.gov (United States)

    Wang, Hao; Sun, Xiaoxu; Zhang, Ning; Ji, Zhouye; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-12-01

    Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment. Copyright © 2017. Published by Elsevier Inc.

  17. Altered insulin distribution and metabolism in type I diabetics assessed by [123I]insulin scanning

    International Nuclear Information System (INIS)

    Hachiya, H.L.; Treves, S.T.; Kahn, C.R.; Sodoyez, J.C.; Sodoyez-Goffaux, F.

    1987-01-01

    Scintigraphic scanning with [ 123 I]insulin provides a direct and quantitative assessment of insulin uptake and disappearance at specific organ sites. Using this technique, the biodistribution and metabolism of insulin were studied in type 1 diabetic patients and normal subjects. The major organ of [ 123 I]insulin uptake in both diabetic and normal subjects was the liver. After iv injection in normal subjects, the uptake of [ 123 I]insulin by the liver was rapid, with peak activity at 7 min. Activity declined rapidly thereafter, consistent with rapid insulin degradation and clearance. Rapid uptake of [ 123 I]insulin also occurred in the kidneys, although the uptake of insulin by the kidneys was about 80% of that by liver. In type 1 diabetic patients, uptake of [ 123 I]insulin in these organ sites was lower than that in normal subjects; peak insulin uptakes in liver and kidneys were 21% and 40% lower than those in normal subjects, respectively. The kinetics of insulin clearance from the liver was comparable in diabetic and normal subjects, whereas clearance from the kidneys was decreased in diabetics. The plasma clearance of [ 123 I]insulin was decreased in diabetic patients, as was insulin degradation, assessed by trichloroacetic acid precipitability. Thirty minutes after injection, 70.9 +/- 3.8% (+/- SEM) of [ 123 I]insulin in the plasma of diabetics was trichloroacetic acid precipitable vs. only 53.9 +/- 4.0% in normal subjects. A positive correlation was present between the organ uptake of [123I]insulin in the liver or kidneys and insulin degradation (r = 0.74; P less than 0.001)

  18. Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jun-zi [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 (China); Bremner, David H. [School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland (United Kingdom); Li, He-yu; Sun, Xiao-zhu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 (China); Zhu, Li-Min, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 (China)

    2016-12-01

    Poly N-vinylcaprolactam-co-acrylamidophenylboronic acid p(NVCL-co-AAPBA) was prepared from N-vinylcaprolactam (NVCL) and 3-acrylamidophenylboronic acid (AAPBA), using 2,2-azobisisobutyronitrile (AIBN) as initiator. The synthesis and structure of the polymer were examined by Fourier Transform infrared spectroscopy (FT-IR) and {sup 1}H-NMR. Dynamic light scattering (DLS), lower critical solution temperature (LCST) and transmission electron microscopy (TEM) were utilized to characterize the nanoparticles, CD spectroscopy was used to determine if there were any changes to the conformation of the insulin, and cell and animal toxicity were also investigated. The prepared nanoparticles were found to be monodisperse submicron particles and were glucose- and temperature-sensitive. In addition, the nanoparticles have good insulin-loading characteristics, do not affect the conformation of the insulin and show low-toxicity to cells and animals. These p(NVCL-co-AAPBA) nanoparticles may have some value for insulin or other hypoglycemic protein delivery. - Highlights: • A comprehensive study of a nanoparticles may have some value for insulin or other hypoglycemic protein delivery. • p(NVCL-co-AAPBA)'s synthetic method is simple, convenient to carry out. • NVCL is low toxic and safe. • The evaluation of acute toxicity and chronic toxicity is the most highlight.

  19. Studies on lipids and fatty acids in rats with streptozotocin-induced insulin deficiency II. Incorporation of 1-(14)C-sodium acetate into lipids and fatty acids of liver slices and whole blood cells

    OpenAIRE

    三宅,寛治

    1988-01-01

    In order to study the lipid and fatty acid metabolism in the insulin deficient state, the in vitro incorporation of 1-(14)C-sodium acetate into major lipid fractions and fatty acids of liver slices and whole blood cells was determined. Rats were studied one week, one month and three months after insulin deficiency was induced by administration of streptozotocin.The net incorporation of (14)C into lipid fractions and total fatty acids of liver slices significantly decreased after one week. On ...

  20. Increased Incretin But Not Insulin Response after Oral versus Intravenous Branched Chain Amino Acids.

    Science.gov (United States)

    Gojda, Jan; Straková, Radka; Plíhalová, Andrea; Tůma, Petr; Potočková, Jana; Polák, Jan; Anděl, Michal

    2017-01-01

    Branched chain amino acids (BCAAs) are known to exert an insulinotropic effect. Whether this effect is mediated by incretins (glucagon like peptide 1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) is not known. The aim of this study was to show whether an equivalent dose of BCAA elicits a greater insulin and incretin response when administered orally than intravenously (IV). Eighteen healthy, male subjects participated in 3 tests: IV application of BCAA solution, oral ingestion of BCAA and placebo in an equivalent dose (30.7 ± 1.1 g). Glucose, insulin, C-peptide, glucagon, GLP-1, GIP, valine, leucine and isoleucine concentrations were measured. Rise in serum BCAA was achieved in both BCAA tests, with incremental areas under the curve (iAUC) being 2.1 times greater for IV BCAA compared with those of the oral BCAA test (p BCAA induced comparable insulin response greater than placebo (240 min insulin iAUC: oral 3,411 ± 577 vs. IV 2,361 ± 384 vs. placebo 961.2 ± 175 pmol/L, p = 0.0006). Oral BCAA induced higher GLP-1 (p BCAA tests with no change in the placebo group. An equivalent dose of BCAA elicited a comparable insulin and greater incretin response when administered orally and not when administered through IV. We conclude that insulinotropic effects of BCAA are partially incretin dependent. © 2017 S. Karger AG, Basel.

  1. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  2. Posttranscriptional regulation of adrenal TH gene expression contributes to the maladaptive responses triggered by insulin-induced recurrent hypoglycemia.

    Science.gov (United States)

    Kudrick, Necla; Chan, Owen; La Gamma, Edmund F; Kim, Juhye Lena; Tank, Arnold William; Sterling, Carol; Nankova, Bistra B

    2015-02-01

    Acute metabolic stress such as insulin-induced hypoglycemia triggers a counterregulatory response during which the release of catecholamines (epinephrine), the activation of tyrosine hydroxylase (TH) enzyme and subsequent compensatory catecholamine biosynthesis occur in the adrenal medulla. However, recurrent exposure to hypoglycemia (RH), a consequence of tight glycemic control in individuals with type 1 and type 2 diabetes compromises this physiological response. The molecular mechanisms underlying the maladaptive response to repeated glucose deprivation are incompletely understood. We hypothesize that impaired epinephrine release following RH reflects altered regulation of adrenal catecholamine biosynthesis. To test this hypothesis, we compared the effect of single daily (RH) and twice-daily episodes of insulin-induced hypoglycemia (2RH) on adrenal epinephrine release and production in normal rats. Control animals received saline injections under similar conditions (RS and 2RS, respectively). Following 3 days of treatment, we assessed the counterregulatory hormonal responses during a hypoglycemic clamp. Changes in adrenal TH gene expression were also analyzed. The counterregulatory responses, relative TH transcription and TH mRNA levels and Ser40-TH phosphorylation (marker for enzyme activation) were induced to a similar extent in RS, 2RS, and RH groups. In contrast, epinephrine and glucagon responses were attenuated in the 2RH group and this was associated with a limited elevation of adrenal TH mRNA, rapid inactivation of TH enzyme and no significant changes in TH protein. Our results suggest that novel posttranscriptional mechanisms controlling TH mRNA and activated TH enzyme turnover contribute to the impaired epinephrine responses and may provide new therapeutic targets to prevent HAAF. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. Perioperative management of paraganglioma and catecholamine-induced cardiomyopathy in child- a case report and review of the literature.

    Science.gov (United States)

    Jia, Xixi; Guo, Xiangyang; Zheng, Qing

    2017-10-17

    Paragangliomas are catecholamine-secreting tumors of the paraganglia. Perioperative mortality of children with paraganglioma is high, but preoperative therapy and anesthetic management of paraganglioma resection are controversial in children. The literatures on catecholamine-induced cardiomyopathy are limited to several case reports,with few reports of studies on children. Here we report the anesthetic management of a child with paraganglioma and catecholamine-induced cardiomyopathy, and the possible perioperative anesthesia problems of the paraganglioma resection are discussed. Preoperative and intraoperative anesthetic management of Pheochromocytomas children should follow the same principles as for adults, The most important aspects are the control of blood pressure liability and maintenance of adequate blood volume. Pheochromocytomas patient may have cardiomoyopathy due to myocardial toxicity of excessive circulating catecholamines level. The perioperative management of catecholamine-induced cardiomyopathy should include lowering sympathetic activation by means of α-and β-adrenergic receptor blocker and diuretics administration in case of volume overload.

  4. Insights into Insulin Fibril Assembly at Physiological and Acidic pH and Related Amyloid Intrinsic Fluorescence

    Directory of Open Access Journals (Sweden)

    Clara Iannuzzi

    2017-11-01

    Full Text Available Human insulin is a widely used model protein for the study of amyloid formation as both associated to insulin injection amyloidosis in type II diabetes and highly prone to form amyloid fibrils in vitro. In this study, we aim to gain new structural insights into insulin fibril formation under two different aggregating conditions at neutral and acidic pH, using a combination of fluorescence, circular dichroism, Fourier-transform infrared spectroscopy, and transmission electron miscroscopy. We reveal that fibrils formed at neutral pH are morphologically different from those obtained at lower pH. Moreover, differences in FTIR spectra were also detected. In addition, only insulin fibrils formed at neutral pH showed the characteristic blue-green fluorescence generally associated to amyloid fibrils. So far, the molecular origin of this fluorescence phenomenon has not been clarified and different hypotheses have been proposed. In this respect, our data provide experimental evidence that allow identifying the molecular origin of such intrinsic property.

  5. Polyamine and amino acid content, and activity of polyamine-synthesizing decarboxylases, in liver of streptozotocin-induced diabetic and insulin-treated diabetic rats

    OpenAIRE

    Brosnan, Margaret E.; Roebothan, Barbara V.; Hall, Douglas E.

    1980-01-01

    1. Concentrations of polyamines, amino acids, glycogen, nucleic acids and protein, and activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, were measured in livers from control, streptozotocin-diabetic and insulin-treated diabetic rats. 2. Total DNA per liver and protein per mg of DNA were unaffected by diabetes, whereas RNA per mg of DNA and glycogen per g of liver were decreased. Insulin treatment of diabetic rats induced both hypertrophy and hyperplasia, as indicat...

  6. Role of catecholamines and nitric oxide on pigment displacement of the chromatophores of freshwater snakehead teleost fish, Channa punctatus.

    Science.gov (United States)

    Biswas, Saikat P; Jadhao, Arun G; Palande, Nikhil V

    2014-04-01

    We are reporting for the first time that the catecholamines (adrenaline and noradrenaline) inhibit the effect of nitric oxide (NO) on melanosome dispersion in freshly isolated scales of the freshwater snakehead fish, Channa punctatus. We studied the effect of NO and catecholamines on the pigment displacement by observing the changes in the melanophore index. The scales when treated with solution containing NO donor sodium nitroprusside (SNP) showed dispersion of melanosomes, whereas NO synthase blocker N-omega-Nitro-L-arginine suppresses this action of SNP. Treatment with adrenaline and noradrenaline on the isolated scales caused aggregation of melanosomes. Scales treated with solution containing catecholamines and SNP resulted in aggregation of melanosomes suggesting that catecholamines mask the effect of SNP. These results suggest that the catecholamines are inhibiting the effect of NO and causing the aggregation of the melanosomes may be via surface receptors.

  7. Catecholamine function, brain state dynamics, and human cognition

    NARCIS (Netherlands)

    Van den Brink R.L.,

    2017-01-01

    The locus coeruleus (LC) is a nucleus in the brainstem, and projects widely to the forebrain where it releases norepinephrine (NE). Catecholamines such as NE do not have a unitary effect on their target neurons, but instead influence the function of other neurotransmitters, a process that is known

  8. Insulin Inclusion into a Tragacanth Hydrogel: An Oral Delivery System for Insulin

    OpenAIRE

    Mokhamad Nur; Todor Vasiljevic

    2018-01-01

    Nanoparticles or microparticles created by physical complexation between two polyelectrolytes may have a prospective use as an excipient for oral insulin administration. Natural polymers such as tragacanth, alginate, dextran, pullulan, hyaluronic acid, gelatin and chitosan can be potential candidates for this purpose. In this research, insulin particles were prepared by the inclusion of insulin into a tragacanth hydrogel. The effect of the pH and concentration relationship involving polyelect...

  9. Intracoronary infusion of catecholamines causes focal arrhythmias in pigs.

    Science.gov (United States)

    Doppalapudi, Harish; Jin, Qi; Dosdall, Derek J; Qin, Hao; Walcott, Gregory P; Killingsworth, Cheryl R; Smith, William M; Ideker, Raymond E; Huang, Jian

    2008-09-01

    Acute ischemia causes myriad changes including increased catecholamines. We tested the hypothesis that elevated catecholamines alone are arrhythmogenic. A 504 electrode sock was placed over both ventricles in six open-chest pigs. During control infusion of saline through a catheter in the left anterior descending coronary artery (LAD), no sustained arrhythmias occurred, and the refractory period estimated by the activation recovery interval (ARI) was 175 +/- 14 ms in the LAD bed below the catheter. After infusion of isoproterenol at 0.1 microg/kg/min through the catheter, the ARI in this bed was significantly reduced to 109 +/- 10 ms. A sharp gradient of refractoriness of 43 +/- 10 ms was at the border of the perfused bed. Sustained monomorphic ventricular tachycardia occurred after drug infusion in the perfused bed or near its boundary in all animals with a cycle length of 329 +/- 26 ms and a focal origin. The maximum slope of the ARI restitution curve at the focal origins of the tachyarrhythmias was always <1 (0.62 +/- 0.15). Similar results with a focal arrhythmia origin occurred in two additional pigs in which intramural mapping was performed with 36 plunge needle electrodes in the left ventricular perfused bed. Regional elevation of a catecholamine, which is one of the alterations produced by acute ischemia, can by itself cause tachyarrhythmias. These arrhythmias are closely associated with a shortened refractory period and a large gradient of the spatial distribution of refractoriness but not with a steep restitution curve.

  10. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme.

    Science.gov (United States)

    Affholter, J A; Cascieri, M A; Bayne, M L; Brange, J; Casaretto, M; Roth, R A

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Thermogenesis induced by a high-carbohydrate meal in fasted lean and overweight young men: insulin, body fat, and sympathetic nervous system involvement.

    Science.gov (United States)

    Marques-Lopes, Iva; Forga, Luis; Martínez, J Alfredo

    2003-01-01

    This dietary trial was designed to evaluate the effect of an experimental short-term fasting period followed by a high-carbohydrate meal on energy expenditure, thermogenesis, and sympathetic nervous system activity in normal (body mass index 27 kg/m(2)) men who were healthy, non-diabetic or with no other endocrine disease, non-smokers, not taking oral prescription medications, and with a stable body weight for the previous 3 mo. Fasting and fed energy expenditures and diet-induced thermogenesis were measured after a high-carbohydrate meal in seven overweight and six lean young male subjects by indirect calorimetry. Heart rate, urinary excretion of catecholamines, serum glucose, and insulin were also measured over the experimental fasting (7.5 h) and postprandial (4 h) periods. After carbohydrate intake, overweight men showed a significantly higher energy production (kJ/kg of fat-free mass) than did lean individuals, and the diet-induced thermogenesis (percentage of energy intake) was positively correlated with body fat (kg), percentage of body fat, fat-free mass (kg), and fasting pre-meal serum insulin levels. Postprandial cumulative energy expenditure was directly associated with postprandial insulin response and with mean postprandial heart rate values. No significant differences in urinary catecholamines were found between lean and overweight men at basal conditions or during the study period. Overweight individuals showed similar short-term sympathetic nervous system responses induced by an experimental fasting period. Although diet-induced thermogenesis after carbohydrate intake was not statistically different between lean and overweight men, the postprandial insulin response and body fat content seemed to be involved in sympathetic nervous system activity.

  12. Neural response to catecholamine depletion in remitted bulimia nervosa: Relation to depression and relapse.

    Science.gov (United States)

    Mueller, Stefanie Verena; Mihov, Yoan; Federspiel, Andrea; Wiest, Roland; Hasler, Gregor

    2017-07-01

    Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in this region predicted staying in remission. These findings demonstrated the importance of depressive symptoms and the stress system in the course of bulimia nervosa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model

    Directory of Open Access Journals (Sweden)

    Monica A. Newman

    2017-03-01

    Full Text Available Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON or TGS. A meal tolerance test (MTT was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p < 0.05 and glucose (p < 0.10 peaks compared to CON-fed pigs. The MTT showed increased (p < 0.05 serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p < 0.05 amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p < 0.05 preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased (p < 0.05 postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  14. Estimation of systemic catecholamine levels, in the Edible frog, using a radioenzymatic assay

    International Nuclear Information System (INIS)

    Bourgeois, Philippe; Dupont, Willy; Vaillant, Rene

    1978-01-01

    We have developed a radio-enzymatic assay for systemic catecholamines in the Frog. Such are its specificity and sensibility that adrenaline and noradrenaline may be measured in 50 μl of plasma samples, the withdrawal of which strongly influenced the results. The smaller values were obtained in plasma withdrawn from canulated animals. In this case, adrenaline was the major catecholamine in the plasma: 190 +- 55 ng/100 ml versus 35 +- 18 ng/100 ml for noradreline [fr

  15. Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Pedersen, Sune H; Jensen, Jan S

    2013-01-01

    INTRODUCTION: Excessive sympathoadrenal activation in critical illness contributes directly to organ damage, and high concentrations of catecholamines damage the vascular endothelium. This study investigated associations between potential drivers of sympathoadrenal activation, circulating...... catecholamines and biomarkers of endothelial damage and outcome in ST segment elevation myocardial infarction (STEMI)-patients, hypothesizing that the catecholamine surge would reflect shock degree and correlate with biomarkers of endothelial damage. METHODS: This was a prospective study of 678 consecutive STEMI...

  16. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, ...

  17. Urinary catecholamine concentrations in three beef breeds at ...

    African Journals Online (AJOL)

    Handling and transport of live animals is a stressful experience for animals. The temperaments of cattle affect their behaviour and differ between breeds, i.e. studies have shown that Bos indicus types are more temperamental than Sanga and Bos taurus types. Catecholamines (CAT's) are considered as indicators of stress, ...

  18. Radio-prophylactic treatment with imidazole and/or Serotonin for Modulation of Tissue Catecholamines in whole body gamma irradiated Rats

    International Nuclear Information System (INIS)

    Hassan, S.H.M.; Roushdy, H.M.; Maklaad, Y.A.; El-Sayed, M.E.

    1995-01-01

    The present study has been conducted to evaluate the radioprotective effects of imidazole, serotonin and their combination on radiation induced reduction in catecholamine contents of the heart and adrenal glands in albino rat. The contribution of catecholamines in the radioprotective role of these agents has been evaluated. Whole-body gamma-irradiation (6 Gy) induced a significant reduction in heart and adrenal glands contents of catecholamine (epinephrine, norepinephrine and dopamine) one day post irradiation. Such reduction in catecholamine contents was more pronounced on the seventh day post exposure. Administration of imidazole (350 mg kg-1) or serotonin. (15 mg. kg-1) controlled the radiation induced reduction in catecholamine contents of heart as well as adrenal glands. Whereas, combination of imidazole (17 mg kg-1) serotonin (15 mg. kg-1) afforded a better protection than either agent given alone, in view that all the measured parameters could be fully restored to the values pre-irradiation. This study appreciate the usage of such combination as a prophylactic treatment for controlling the stress-state induced by irradiation which is associated with disturbed level of endogenous catecholamine contents in those sensitive patients undergoing radiotherapy. 2 tabs

  19. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid.

    Science.gov (United States)

    Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear.

  20. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid.

    Directory of Open Access Journals (Sweden)

    Asako Kinoshita

    Full Text Available The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA lowered plasma non-esterified fatty acids (NEFA concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2 were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21 to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio and supplemented with NA (24 g/day (NA or without (CON until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT and retroperitoneal (RPAT adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR, phosphatidylinositol-3-kinase (PI3K, protein kinase Cζ (PKCζ and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear.

  1. [The isozymes of stearil-coenzymeA-desaturase and insulin activity in the light of phylogenetic theory of pathology. Oleic fatty acid and realization of biologic functions of trophology and locomotion].

    Science.gov (United States)

    2013-11-01

    The formation of function of isozymes of stearil-coenzymeA-desaturases occured at the different stages of phylogeny under realization of biologic function of trophology (stearil-coenzymeA-desaturase 1) and biologic function of locomotion, insulin system (stearil-coenzymeA-desaturase 2) billions years later. The stearil-coenzymeA-desaturase 1 transforms in C 18:1 oleic fatty acid only exogenous C 16:0 palmitinic saturated fatty acid. The stearil-coenzymeA-desaturase 2 transforms only endogenic palmitinic saturated fatty acid, synthesized form glucose. The biologic role of insulin is in energy support of biologic function of locomotion. Insulin through expressing stearil-coenzymeA-desaturase 2 transforms energetically non-optimal palmitinic variation of metabolism of substrates into highly effective oleic variation for cells' groundwork of energy (saturated fatty acid and mono fatty acid). The surplus of palmitinic saturated fatty acid in food is enabled in pathogenesis of resistance to insulin and derangement of synthesis of hormone by beta-cells of islets. The resistance to insulin and diabetes mellitus are primarily the derangement of metabolism of saturated fatty acids with mono fatty acids, energy problems of organism and only afterwards the derangement of metabolism of carbohydrates. It is desirable to restrict food intake of exogenous palmitinic saturated fatty acid. The reasons are low expression of independent of insulin stearil-coenzymeA-desaturase 2, marked lipotoxicity of polar form of palmitinic saturated fatty acid and synthesis of non-optimal palmitinic triglycerides instead of physiologic and more energetically more effective oleic triglycerides.

  2. Branched Chain Amino Acids Are Associated with Insulin Resistance Independent of Leptin and Adiponectin in Subjects with Varying Degrees of Glucose Tolerance

    NARCIS (Netherlands)

    Connelly, Margery A.; Wolak-Dinsmore, Justyna; Dullaart, Robin P. F.

    Background: Branched chain amino acids (BCAA) may be involved in the pathogenesis of insulin resistance and are associated with type 2 diabetes mellitus (T2DM) development. Adipokines such as leptin and adiponectin influence insulin resistance and reflect adipocyte dysfunction. We examined the

  3. Gamma Amino Butyric Acid Attenuates Liver and Kidney Damage Associated with Insulin Alteration in γ-Irradiated and Streptozotocin-Treated Rats

    International Nuclear Information System (INIS)

    Saada, H.N.; Eltahawy, N.A.; Hammad, A.S.; Morcos, N.Y.S.

    2016-01-01

    Gamma aminobutyric acid (GABA) is one of the inhibitory neurotransmitters that may have the ability to relive the intensity of stress. The aim of the current study was to evaluate the role of γ-amino butyric acid (GABA) in modulating insulin disturbance associated with liver and kidney damage in γ-irradiated and streptozotocin-treated rats. Irradiation was performed by whole body exposure to 6 Gy from a Cs-137 source. Streptozotocin (STZ) was administered in a single intraperitoneal dose (60 mg/kg body weight). GABA (200 mg/Kg body weight/day) was administered daily via gavages during 3 weeks to γ-irradiated and STZ-treated-rats. The results obtained showed that γ-irradiation induced hyperglycemia, hyperinsulinaemia and insulin resistance (similar to type 2 Diabetes), while STZ-treatment produced hyperglycemia, insulin deficiency with no insulin resistance detected (similar to type 1 Diabetes). In both cases, significant increases of alanine amino transferase (ALT) and aspartate amino transferase (AST) activities, urea and creatinine levels were recorded in the serum. These changes were associated with oxidative damage to the liver and kidney tissues notified by significant decreases of superoxide dismutase (SOD ), catalase and glutathione peroxidase ( GSH-Px) activities in parallel to significant increases of malondialdehyde (MDA) and advanced oxidation protein products ( AOPP) levels. The administration of GABA to irradiated as well as STZ-treated rats regulated insulin and glucose levels, minimized oxidative stress and reduced the severity of liver and kidney damage. It could be concluded that GABA could be a useful adjunct to reduce some metabolic complications associated with insulin deficiency and insulin resistance

  4. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.

    Science.gov (United States)

    Wei, Hong-Kui; Deng, Zhao; Jiang, Shu-Zhong; Song, Tong-Xing; Zhou, Yuan-Fei; Peng, Jian; Tao, Ya-Xiong

    2017-01-05

    Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) increase insulin signaling in skeletal muscle. In the current study, we investigated the effect of eicosapentaenoic acid (EPA) on insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes. We showed that EPA did not affect basal and insulin-induced mTOR phosphorylation in myotubes. However, EPA abolished lipopolysaccharide (LPS) -induced deficiency in insulin signaling (P  0.05). In myotubes, LPS stimulated PTP1B expression via NF-κB and activation protein-1 (AP1). Pre-incubation of 50 μM EPA prevented the LPS-induced activation of AP1 and NF-κΒ as well as PTP1B expression (P < 0.05). Interestingly, incubation of peroxisome proliferator-activated receptor γ (PPARγ) antagonist (GW9662) prior to EPA treatment, the effect of EPA on insulin-induced mTOR phosphorylation was blocked. Accordingly, EPA did not inhibit the LPS-induced activation of AP1 or NF-κΒ as well as PTP1B expression when incubation of GW9662 prior to EPA treatment. The in vivo study showed that EPA prevented LPS-induced PTPT1B expression and a decrease in insulin-induced mTOR phosphorylation in muscle of mice. In summary, EPA abolished LPS inhibition of insulin-induced mTOR phosphorylation in myotubes, and one of the key mechanisms was to inhibit AP1 and NF-κB activation and PTP1B transcription. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients

    OpenAIRE

    Nakamura, H; Jinzu, H; Nagao, K; Noguchi, Y; Shimba, N; Miyano, H; Watanabe, T; Iseki, K

    2014-01-01

    Objectives: Plasma-free amino acid (PFAA) profiles have been associated with a future risk of developing diabetes or cardiovascular disease in nondiabetic subjects. These PFAA alterations might predominantly result from the metabolic shift caused by insulin resistance and visceral fat deposition. The variety of PFAA profiles within diabetic subjects is not well researched. In this study, we focused on type 2 diabetic subjects and examined the association between PFAA profiles and insulin- and...

  6. Effect of eicosapentaenoic acid ethyl ester v. oleic acid-rich safflower oil on insulin resistance in type 2 diabetic model rats with hypertriacylglycerolaemia.

    Science.gov (United States)

    Minami, Asako; Ishimura, Noriko; Sakamoto, Sadaichi; Takishita, Eiko; Mawatari, Kazuaki; Okada, Kazuko; Nakaya, Yutaka

    2002-02-01

    The purpose of the present study was to test whether hyperlipidaemia and insulin resistance in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats can be improved by dietary supplementation with purified eicosapentaenoic acid (EPA) or oleic acid (OA). Male OLETF rats were fed powdered chow (510 g fat/kg) alone (n 8) or chow supplemented with 10 g EPA- (n 8) or OA- (n 8) rich oil/kg per d from 5 weeks until 30 weeks of age. An oral glucose tolerance test and hyperinsulinaemic euglycaemic clamp was performed at 25 and 30 weeks of age. EPA supplementation resulted in significantly (P<0.05) reduced plasma lipids, hepatic triacylglycerols, and abdominal fat deposits, and more efficient in vivo glucose disposal compared with OA supplementation and no supplementation. OA supplementation was associated with significantly increased insulin response to oral glucose compared with EPA supplementation and no supplementation. Inverse correlation was noted between glucose uptake and plasma triacylglycerol levels (r -086, P<0.001) and abdominal fat volume (r -0.80, P<0.001). The result of oral glucose tolerance test study showed that the rats fed EPA tended to improve glucose intolerance, although this was not statistically significant. Levels of plasma insulin at 60 min after glucose was significantly increased in rats fed OA compared with the other two groups. The results indicate that long-term feeding of EPA might be effective in preventing insulin resistance in diabetes-prone rats, at least in part, due to improving hypertriacylglycerolaemia.

  7. Leisure activities, caregiving demands and catecholamine levels in dementia caregivers.

    Science.gov (United States)

    Chattillion, Elizabeth A; Mausbach, Brent T; Roepke, Susan K; von Känel, Roland; Mills, Paul J; Dimsdale, Joel E; Allison, Matthew; Ziegler, Michael G; Patterson, Thomas L; Ancoli-Israel, Sonia; Grant, Igor

    2012-01-01

    This study examined whether satisfaction from leisure activities moderates the relationship between caregiving demands (i.e., hours per day spent caring for a spouse with dementia) and resting levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). Spousal caregivers (n = 107; mean age = 73.95 ± 8.12 years) were assessed in home for plasma levels of NE and EPI, amount of care provided, and leisure satisfaction. Regression was used to determine whether leisure satisfaction moderated the relationship between hours providing care per day and catecholamine levels. A significant interaction was found between hours caregiving and leisure satisfaction for NE, but not for EPI. Post hoc regressions were conducted for both NE and EPI. At low leisure satisfaction, time spent caring for a spouse was positively associated with plasma NE (β = 0.41; p = 0.005) and EPI (β = 0.44; p = 0.003). In contrast, at high levels of satisfaction, time caregiving was not significantly associated with plasma NE (β = -0.08; p = 0.57) or EPI (β = 0.23; p = 0.12). These findings suggest that leisure satisfaction may protect caregivers from increases in catecholamines, which have been implicated in cardiovascular risk. Further support for these findings may impact psychological treatments for distressed caregivers.

  8. The catecholamine response to spaceflight: role of diet and gender

    Science.gov (United States)

    Stein, T. P.; Wade, C. E.

    2001-01-01

    Compared with men, women appear to have a decreased sympathetic nervous system (SNS) response to stress. The two manifestations where the sexual dimorphism has been the most pronounced involve the response of the SNS to fluid shifts and fuel metabolism during exercise. The objectives of this study were to investigate whether a similar sexual dimorphism was found in the response to spaceflight. To do so, we compared catecholamine excretion by male and female astronauts from two similar shuttle missions, Spacelab Life Sciences 1 (SLS1, 1991) and 2 (SLS2, 1993) for evidence of sexual dimorphism. To evaluate the variability of the catecholamine response in men, we compared catecholamine excretion from the two SLS missions against the 1996 Life and Microgravity Sciences Mission (LMS) and the 1973 Skylab missions. RESULTS: No gender- or mission-dependent changes were found with epinephrine. Separating out the SLS1/2 data by gender shows that norepinephrine excretion was essentially unchanged with spaceflight in women (98 +/- 10%; n = 3) and substantially decreased with the men (41 +/- 9%; n = 4, P gender-specific effects. We conclude that norepinephrine excretion during spaceflight is both mission and gender dependent. Men show the greater response, with at least three factors being involved, a response to microgravity, energy balance, and the ratio of carbohydrate to fat in the diet.

  9. Catecholamines and in vitro growth of pathogenic bacteria: enhancement of growth varies greatly among bacterial species

    Science.gov (United States)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2003-01-01

    The purpose of this study was to examine the effects of catecholamines on in vitro growth of a range of bacterial species, including anaerobes. Bacteria tested included: Porphyromonas gingivalis, Bacteriodes fragilis, Shigella boydii, Shigella sonnie, Enterobacter Sp, and Salmonella choleraesuis. The results of the current study indicated that supplementation of bacterial cultures in minimal medium with norepinephrine or epinephrine did not result in increased growth of bacteria. Positive controls involving treatment of Escherichia coli with catecholamines did result in increased growth of that bacterial species. The results of the present study extend previous observations that showed differential capability of catecholamines to enhance bacterial growth in vitro.

  10. Glucose-stimulated insulin response in pregnant sheep following acute suppression of plasma non-esterified fatty acid concentrations

    Directory of Open Access Journals (Sweden)

    Sriskandarajah Nadarajah

    2004-09-01

    Full Text Available Abstract Background Elevated non-esterified fatty acids (NEFA concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL, 105 and 135 days gestational age (dGA, term 147+/- 3 days. Methods The plasma concentrations of insulin, growth hormone (GH and ovine placental lactogen (oPL were determined by double antibody radioimmunoassay. Insulin responsiveness to glucose was measured using bolus injection and hyperglycaemic clamp techniques in 15 non-pregnant, non-lactating ewes and in nine pregnant ewes at 105 dGA and near term at 135 dGA. Plasma samples were also collected for hormone determination. In addition to bolus injection glucose and insulin Area Under Curve calculations, the Mean Plasma Glucose Increment, Glucose Infusion Rate and Mean Plasma Insulin Increment and Area Under Curve were determined for the hyperglycaemic clamp procedures. Statistical analysis of data was conducted with Students t-tests, repeated measures ANOVA and 2-way ANOVA. Results Maternal growth hormone, placental lactogen and NEFA concentrations increased, while basal glucose and insulin concentrations declined with advancing gestation. At 135 dGA following bolus glucose injections, peak insulin concentrations and insulin area under curve (AUC profiles were significantly reduced in pregnant ewes compared with NPNL control ewes (p Conclusions Results suggest that despite an acute suppression of circulating NEFA concentrations during pregnancy, the associated steroids and hormones

  11. Reduction in total plasma ghrelin levels following catecholamine depletion: relation to bulimic and depressive symptoms.

    Science.gov (United States)

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Hasler, Gregor

    2013-09-01

    There is increasing preclinical and clinical evidence of the important role played by the gastric peptide hormone ghrelin in the pathogenesis of symptoms of depression and eating disorders. To investigate the role of ghrelin and its considered counterpart, peptide tyrosine tyrosine (PYY), in the development of bulimic and depressive symptoms induced by catecholamine depletion, we administered the tyrosine hydroxylase inhibitor alpha-methyl-paratyrosine (AMPT) in a randomized, double-blind, placebo-controlled crossover, single-site experimental trial to 29 healthy controls and 20 subjects with fully recovered bulimia nervosa (rBN). We found a decrease between preprandial and postprandial plasma ghrelin levels (psymptoms (psymptoms induced by catecholamine depletion. These findings suggest a relationship between catecholamines and ghrelin with depressive symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles.

    Science.gov (United States)

    Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A

    2010-01-01

    Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5min decreased [(3)H]NE uptake capacity, an effect characterized by a robust decrease in the V(max) of the transport of [(3)H]NE. As expected, reserpine did not displace the binding of [(3)H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [(3)H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [(3)H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca(2+)/Ca(2+)-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [(3)H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, alpha-methyl-p-tyrosine, increased [(3)H]NE uptake and eliminated the inhibitory effects of reserpine on [(3)H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca(2+)-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    Science.gov (United States)

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  14. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    Directory of Open Access Journals (Sweden)

    Domenico Bucci

    2017-11-01

    Full Text Available Catecholamine nuclei within the brainstem reticular formation (RF play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH immune-positive cells of the brainstem correspond to dopamine (DA-, norepinephrine (NE-, and epinephrine (E-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  15. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    Directory of Open Access Journals (Sweden)

    Phillip J. White

    2016-07-01

    Full Text Available Objective: A branched-chain amino acid (BCAA-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR and Zucker-fatty rats (ZFR were fed either a custom control, low fat (LF diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val were reduced by 45% (LF-RES. We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. Results: LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH, was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Conclusions: Our data are consistent with a model wherein

  16. The interaction of insulin with phospholipids

    Science.gov (United States)

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholineInsulin decreased the [14C]glucose solubilized by phosphatidylcholine, phosphatidylethanolamine and phosphatidic acid, but not by sphingomyelin. 5. The significance of these results and the molecular requirements for the formation of insulin–phospholipid complexes in chloroform are discussed. PMID:5158903

  17. Effect of β-endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    International Nuclear Information System (INIS)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-01-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus

  18. Effect of. beta. -endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-10-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus.

  19. Serum liver fatty acid binding protein levels correlate positively with obesity and insulin resistance in Chinese young adults.

    Directory of Open Access Journals (Sweden)

    Juan Shi

    Full Text Available BACKGROUND: Liver fatty acid-binding protein (FABP1 plays an inconclusive role in adiposity. We investigated the association of serum FABP1 levels with obesity and insulin resistance in Chinese young people under 30 years old. METHODOLOGY AND PRINCIPAL FINDINGS: Cross-sectional analysis including 200 obese and 172 normal-weight subjects matched for age and sex, anthropometric measurements were performed and serum FABP1 and biochemical characteristics were measured. Insulin resistance was determined by homeostasis model assessment of insulin resistance (HOMA-IR and by the insulin sensitivity index (S(i derived from Bergman's minimal model. FABP1 levels in obese subjects were significantly higher than those in normal-weight subjects (p<0.001 and the significance remained after adjustment for age, gender, alanine and aspartate aminotransferases (p<0.001. Serum FABP1 levels were significantly correlated with many metabolic-related parameters, with BMI and triglycerides as the independent determinants. FABP1 levels remained an independent risk factor of insulin resistance assessed by binary S(i (OR = 1.868 per SD unit, 95% CI [1.035-3.373], p = 0.038 after adjustment for age, sex, BMI, waist circumference, systolic blood pressure, serum triacylglycerol, total cholesterol, HDL- and LDL-cholesterol,. FABP1 levels were also elevated with an increasing number of components of the metabolic syndrome (p for trend <0.001. Multiple regression modeling for the MetS and its components demonstrated that hypertriglyceridemia and low HDL-cholesterol were significantly correlated to serum FABP1 levels. CONCLUSIONS AND SIGNIFICANCE: Serum FABP1 correlates positively with obesity and insulin resistance in Chinese young adults. Our data supports the fact that FABP1 might be an important mediator participating in fatty acid metabolism and energy balance.

  20. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  1. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells

    International Nuclear Information System (INIS)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-01-01

    Highlights: ► G protein coupled receptor TGR5 is expressed in mouse and human islets. ► TGR5 is coupled to activation of Gs and Ca 2+ release via cAMP/Epac/PLC-ε pathway. ► Activation of TGR5 by bile salts and selective ligands causes insulin secretion. ► TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gα s and caused an increase in intracellular cAMP and Ca 2+ . OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gα s inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G s /cAMP/Ca 2+ pathway. 8-pCPT-2′-O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  2. Effect of betel quid on catecholamine secretion from adrenal chromaffin cells.

    Science.gov (United States)

    Wang, C K; Hwang, L S

    1997-10-01

    Health damage and environmental pollution are serious problems caused by betel quid chewing in Taiwan. Many people acquire the habit of chewing betel quid due to its physiological effects, including increased stamina and a general feeling of well-being. In this study, a sympathetic model system of adrenal chromaffin cells and sensory evaluation were used to examine the physiological effects of betel quid and the interaction of all the ingredients (areca fruit, Piper betle inflorescence and red time paste) in betel quid. Physiological effects of cardioacceleration, a slightly drunk feeling, sweating and salivation occurred during the chewing of betel quid (a mixture of areca fruit, Piper betle inflorescence and red lime paste) and a mixture of areca fruit and red lime paste. Both induced much more basal catecholamine secretion from adrenal chromaffin cells than did other ingredients and combinations of ingredients. It was evident that the responses in the sympathetic model system were closely correlated with the physiological feeling of well-being. The inhibitory effects of all the chewing juices on catecholamine secretion evoked by carbachol and a high concentration of potassium (high K+) showed that they perhaps affected the calcium influx through voltage-sensitive channels or the steps involved in secretion after calcium entry to stimulate basal catecholamine secretion from chromaffin cells.

  3. Haloperidol response and plasma catecholamines and their metabolites.

    Science.gov (United States)

    Green, A I; Alam, M Y; Boshes, R A; Waternaux, C; Pappalardo, K M; Fitzgibbon, M E; Tsuang, M T; Schildkraut, J J

    1993-06-01

    Eleven acutely psychotic patients with schizophrenia or schizoaffective disorder underwent a 5-7 day drug-washout period (with lorazepam allowed) prior to participating in a 6-week controlled dose haloperidol trial. Patients were evaluated longitudinally with clinical ratings and with plasma measures of the catecholamines dopamine (pDA) and norepinephrine (pNE) and their metabolites, homovanillic acid (pHVA) and 3-methoxy-4-hydroxyphenylglycol (pMHPG). All patients exhibited clinical improvement with haloperidol; the decrease in their Brief Psychiatric Rating Scale (BPRS) scores ranged from 32 to 89%. Measures of pHVA increased within the first week of treatment and returned to baseline by week 5. The pattern of change of pDA resembled that of pHVA. The pattern of change of pNE and pMHPG revealed a decrease over the course of treatment. The early increase and the subsequent decrease in pHVA were strongly correlated with improvement in positive symptoms on the BPRS. These data are consistent with previous reports on the change in pHVA and pMHPG during clinical response to haloperidol. The data on change of pDA and pNE further describe the nature of the biochemical response to this drug.

  4. The existence of an insulin-stimulated glucose and non-essential but not essential amino acid substrate interaction in diabetic pigs

    NARCIS (Netherlands)

    Koopmans, S.J.; Meulen, van der J.; Wijdenes, J.W.; Corbijn, H.; Dekker, R.A.

    2011-01-01

    Background The generation of energy from glucose is impaired in diabetes and can be compensated by other substrates like fatty acids (Randle cycle). Little information is available on amino acids (AA) as alternative energy-source in diabetes. To study the interaction between insulin-stimulated

  5. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance

    Science.gov (United States)

    Newgard, Christopher B; An, Jie; Bain, James R; Muehlbauer, Michael J; Stevens, Robert D; Lien, Lillian F; Haqq, Andrea M; Shah, Svati H.; Arlotto, Michelle; Slentz, Cris A; Rochon, James; Gallup, Dianne; Ilkayeva, Olga; Wenner, Brett R; Yancy, William E; Eisenson, Howard; Musante, Gerald; Surwit, Richard; Millington, David S; Butler, Mark D; Svetkey, Laura P

    2009-01-01

    Summary Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA) or standard chow (SC) diets. Despite having reduced food intake and weight gain equivalent to the SC group, HF/BCAA rats were equally insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1(ser307), accumulation of multiple acylcarnitines in muscle, and was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a poor dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance. PMID:19356713

  6. Insulin resistance and chronic inflammation

    Directory of Open Access Journals (Sweden)

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  7. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    Science.gov (United States)

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  8. Insulin Inclusion into a Tragacanth Hydrogel: An Oral Delivery System for Insulin

    Science.gov (United States)

    Vasiljevic, Todor

    2018-01-01

    Nanoparticles or microparticles created by physical complexation between two polyelectrolytes may have a prospective use as an excipient for oral insulin administration. Natural polymers such as tragacanth, alginate, dextran, pullulan, hyaluronic acid, gelatin and chitosan can be potential candidates for this purpose. In this research, insulin particles were prepared by the inclusion of insulin into a tragacanth hydrogel. The effect of the pH and concentration relationship involving polyelectrolytes offering individual particle size and zeta potential was assessed by zetasizer and scanning electron microscopy (SEM). Insulin–tragacanth interactions at varying pH (3.7, 4.3, 4.6, or 6), and concentration (0.1%, 0.5%, or 1% w/w) were evaluated by differential scanning calorimetry (DSC) and ATR Fourier transform infrared (ATR-FTIR) analysis. Individual and smaller particles, approximately 800 nm, were acquired at pH 4.6 with 0.5% of tragacanth. The acid gelation test indicated that insulin could be entrapped in the physical hydrogel of tragacanth. DSC thermograms of insulin–tragacanth showed shifts on the same unloaded tragacanth peaks and suggested polyelectrolyte–protein interactions at a pH close to 4.3–4.6. FTIR spectra of tragacanth–insulin complexes exhibited amide absorption bands featuring in the protein spectra and revealed the creation of a new chemical substance. PMID:29304023

  9. Catecholamine Responses to Virtual Combat: Implications for Post-Traumatic Stress and Dimensions of Functioning

    Directory of Open Access Journals (Sweden)

    Krista Beth Highland

    2015-03-01

    Full Text Available PTSD symptoms can result in functional impairment among service members (SMs, even in those without a clinical diagnosis. The variability in outcomes may be related to underlying catecholamine mechanisms. Individuals with PTSD tend to have elevated basal catecholamine levels, though less is known regarding catecholamine responses to trauma-related stimuli. We assessed whether catecholamine responses to a virtual combat environment impact the relationship between PTSD symptom clusters and elements of functioning. Eighty-seven clinically healthy SMs, within 2 months after deployment to Iraq or Afghanistan, completed self-report measures, viewed virtual-reality (VR combat sequences, and had sequential blood draws. Norepinephrine responses to VR combat exposure moderated the relationship between avoidance symptoms and scales of functioning including physical functioning, physical-role functioning, and vitality. Among those with high levels of avoidance, norepinephrine change was inversely associated with functional status, whereas a positive correlation was observed for those with low levels of avoidance. Our findings represent a novel use of a virtual environment to display combat-related stimuli to returning SMs to elucidate mind-body connections inherent in their responses. The insight gained improves our understanding of post-deployment symptoms and quality of life in SMs and may facilitate enhancements in treatment. Further research is needed to validate these findings in other populations and to define the implications for treatment effectiveness.

  10. Effect of intracerebral administration of catecholamines and subsequent x-irradiation on brain metabolism

    International Nuclear Information System (INIS)

    Pikulev, A.T.; Khripchenko, I.P.; Kukulyanskaya, M.F.; Chernoguzov, V.M.; Lavrova, V.M.

    1987-01-01

    The effect of X-radiation in a relatively small dose on the content of glutamic acid and enzyme activity related to its exchange, as well as on certain links of carbohydrate - energy exchange in rat brain, was studied. It is shown that changes in the activity of hexokinase at the background of intercerebral administration of adrenaline prior to irradiation are related to the switching on of nonspecific regulation mechanisms. The detected single direction of changes in hexokinase activity, level of aminoacids and enzymes of reamination in subcellar fractions of brain in intact and irradiated rats both in case of intracerebral and intraperitoneal administration of catecholamines permits to consider that the realization of nonspecific component of ionizing radiation proceeds via changes in hormonal status of organism and changes in the functions of mediator systems

  11. Brain insulin controls adipose tissue lipolysis and lipogenesis

    Science.gov (United States)

    Scherer, Thomas; O’Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J.; Previs, Stephen F.; Buettner, Christoph

    2011-01-01

    SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality. PMID:21284985

  12. Irradiation induced changes in endogenous regional distribution of catecholamines in rat brain and possible control through combined radioprotective treatments

    International Nuclear Information System (INIS)

    Hassan, S.H.M.; Elsayed, M.E.; Roushdy, H.M.; Maklaad, Y.A.

    1994-01-01

    The present study has been conducted aiming to evaluate the protective role of imidazole serotonin or their combination, on the radiation induced changes in the endogenous catecholamine contents in various areas of rat's brain : cortex, striatum, cerebellum, pons and medulla and thalamus and hypothalamus. Whole body gamma-irradiation (6 Gy) resulted in significant progressive decreases of catecholamine (epinephrine, norepinephrine and dopamine) contents, as investigated one and seven days post exposure. Administration of imidazole or serotonin showed to control radiation induced changes in catecholamine contents. Higher protection with lower potential risk of toxicity could be achieved by administration of lower doses of combined agents. The data suggest that, the endogenous concentration of catecholamines in the brain may play an important role in diagnosing the radiation hazard and evaluating the protective capacity of pharmacologic radioprotective. 2 figs

  13. Counter-regulatory hormone responses to spontaneous hypoglycaemia during treatment with insulin Aspart or human soluble insulin

    DEFF Research Database (Denmark)

    Brock Jacobsen, I; Vind, B F; Korsholm, Lars

    2011-01-01

    examined in a randomized, double-blinded cross-over study for two periods of 8 weeks. Sixteen patients with type 1 diabetes were subjected to three daily injections of human soluble insulin or Aspart in addition to Neutral Protamine Hagedorn (NPH) insulin twice daily. Each intervention period was followed......-regulatory responses regarding growth hormone, glucagon and ghrelin whereas no differences were found in relation to free fatty acid, cortisol, insulin-like growth factor (IGF)-I, IGF-II and IGF-binding proteins 1 and 2. Treatment with insulin Aspart resulted in well-defined peaks in serum insulin concentrations...... elicited a slightly different physiological response to spontaneous hypoglycaemia compared with human insulin. Keywords hypoglycaemia counter-regulation, insulin Aspart, type 1 diabetes....

  14. Accelerated oxygen consumption by catecholamines in the presence of aromatic nitro and nitroso compounds. Implications and neurotoxicity of nitro compounds

    International Nuclear Information System (INIS)

    Sridhar, K.

    1981-01-01

    The interactions of catecholamines with nitro and nitroso compounds are studied in view of the possible involvement of catecholamine type neurotransmitters in neurotoxicity caused by hypoxic cell sensitizers. The data reported suggest that neurotoxicity of nitro compounds may be due to depletion of oxygen, catecholamines and ascorbate in nerve tissue with concomitant generation of toxic species such as hydroxyl, hydronitroxyl and superoxide free radicals as well as nitroso and quinonoid derivatives. 5 references, 1 figure

  15. The content of catecholamines in the adrenal glands and sections of the brain under hypokinesia and injection of some neurotropic agents

    Science.gov (United States)

    Melnik, B. E.; Paladiy, E. S.

    1980-01-01

    The dynamics of catecholamine content were studied in the adrenal glands and in various region of the brain of white rats under hypokinesia and injections of neurotropic agents. Profound changes in body catecholamine balance occured as a result of prolonged acute restriction of motor activity. Adrenalin retention increased and noradrenanalin retention decreased in the adrenal glands, hypothalamus, cerebral hemispheres, cerebellum and medulla oblongata. Observed alterations in catecholamine retention varied depending upon the type of neurotropic substance utilized. Mellipramine increased catecholamine retention in the tissues under observation while spasmolytin brought about an increase in adrenalin concentration in the adrenals and a decrease in the brain.

  16. Bidirectional regulation of bakuchiol, an estrogenic-like compound, on catecholamine secretion

    International Nuclear Information System (INIS)

    Mao, Haoping; Wang, Hong; Ma, Shangwei; Xu, Yantong; Zhang, Han; Wang, Yuefei; Niu, Zichang; Fan, Guanwei; Zhu, Yan; Gao, Xiu Mei

    2014-01-01

    Excess or deficiency of catecholamine (CA) secretion was related with several diseases. Recently, estrogen and phytoestrogens were reported to regulate the activity of CA system. Bakuchiol is a phytoestrogen isolated from the seeds of Psoralea corylifolia L. (Leguminosae) which has been used in Traditional Chinese medicine as a tonic or aphrodisiac. In the present study, bovine adrenal medullary cells were employed to investigate the effects and mechanisms of bakuchiol on the regulation of CA secretion. Further, its anti-depressant like and anti-stress effects were evaluated by using behavioral despair and chronic immobilization stress models. Our results indicated that bakuchiol showed bidirectional regulation on CA secretion. It stimulated basal CA secretion in a concentration dependent manner (p + (p + induced CA secretion was related with reduction of intracellular calcium rise. In vivo experiments, we found that bakuchiol significantly reduced immobilization time in behavioral despair mouse (p < 0.05 or 0.01), and plasma epinephrine (E) and norepinephrine (NE) levels in chronic immobilization stress (p < 0.05). Overall, these results present a bidirectional regulation of bakuchiol on CA secretion which indicated that bakuchiol may exert anti-stress and the potential anti-depressant-like effects. - Highlights: • Bakuchiol stimulated basal catecholamine secretion. • Bakuchiol inhibited various secretagogues induced catecholamine secretion. • Bakuchiol may have anti-stress and the potential anti-depression-like effects

  17. Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1 (insulin-dependent) diabetes mellitus

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Mathiesen, E R; Deckert, T

    1987-01-01

    .41, p less than 0.01). Extracellular volume was increased in patients (p less than 0.05), whereas plasma volume was normal. Supine serum angiotensin II was suppressed in the patients (p less than 0.001). A negative correlation was found between mean blood pressure and supine serum aldosterone (n = 68, r...... = -0.24, p less than 0.05), and exchangeable sodium and aldosterone (n = 66, r = -0.36, p less than 0.002) in all patients. The catecholamine levels were also suppressed or normal in the patients.(ABSTRACT TRUNCATED AT 250 WORDS)...

  18. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor.

    Science.gov (United States)

    Bunzow, J R; Sonders, M S; Arttamangkul, S; Harrison, L M; Zhang, G; Quigley, D I; Darland, T; Suchland, K L; Pasumamula, S; Kennedy, J L; Olson, S B; Magenis, R E; Amara, S G; Grandy, D K

    2001-12-01

    The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmitter from intracellular stores. Here we report the discovery and pharmacological characterization of a rat G protein-coupled receptor that stimulates the production of cAMP when exposed to the trace amines p-tyramine, beta-phenethylamine, tryptamine, and octopamine. An extensive pharmacological survey revealed that psychostimulant and hallucinogenic amphetamines, numerous ergoline derivatives, adrenergic ligands, and 3-methylated metabolites of the catecholamine neurotransmitters are also good agonists at the rat trace amine receptor 1 (rTAR1). These results suggest that the trace amines and catecholamine metabolites may serve as the endogenous ligands of a novel intercellular signaling system found widely throughout the vertebrate brain and periphery. Furthermore, the discovery that amphetamines, including 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy"), are potent rTAR1 agonists suggests that the effects of these widely used drugs may be mediated in part by this receptor as well as their previously characterized targets, the neurotransmitter transporter proteins.

  19. Meal composition and plasma amino acid ratios: Effect of various proteins or carbohydrates, and of various protein concentrations

    Science.gov (United States)

    Yokogoshi, Hidehiko; Wurtman, Richard J.

    1986-01-01

    The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein

  20. Effects of supplementation of calcium salts of polyunsaturated fatty acids on serum concentrations of progesterone and insulin of pregnant dairy cows

    Directory of Open Access Journals (Sweden)

    Philipe Moriel

    2014-01-01

    Full Text Available Forty-five non-lactating, pregnant Holstein animals (18 heifers and 27 multiparous cows; BW = 561±114 kg; BCS = 2.9±0.3; days pregnant = 110±56 d were stratified by initial BW and BCS, and randomly assigned to receive daily (as-fed basis 0.50 kg of ground corn plus 0.22 kg of kaolin (CON, calcium salts of saturated fatty acids (SFA or polyunsaturated fatty acids (PF for 14 d. Blood samples were collected on days 0, 7 and 14, immediately prior to (0 h and 3, 6, 9 and 12 h after feeding, to determine the serum concentrations of P4 and insulin. No treatment effects were detected for serum concentrations of P4 (5.52, 6.13 and 5.63±0.41 ng/mL for CON, SFA and PF, respectively. No treatment effects were detected for serum concentrations of insulin (11.5, 10.5 and 10.1±1.43 µIU/mL for CON, SFA and PF, respectively. Heifers had greater serum concentrations of P4 than multiparous cows (6.35 vs. 5.16±0.42 ng/mL, but lower serum concentrations of insulin (7.0 vs. 14.4±1.49 µIU/mL. Feeding 0.22 kg of calcium salts of polyunsaturated fatty acids is not sufficient to increase the serum concentrations of P4 and insulin of non-lactating, pregnant dairy cows.

  1. Mice Lacking Free Fatty Acid Receptor 1 (GPR40/FFAR1) are Protected Against Conjugated Linoleic Acid-Induced Fatty Liver but Develop Inflammation and Insulin Resistance in the Brain.

    Science.gov (United States)

    Sartorius, Tina; Drescher, Andrea; Panse, Madhura; Lastovicka, Petr; Peter, Andreas; Weigert, Cora; Kostenis, Evi; Ullrich, Susanne; Häring, Hans-Ulrich

    2015-01-01

    Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver. © 2015 S. Karger AG, Basel.

  2. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    Science.gov (United States)

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  3. Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications.

    Science.gov (United States)

    Dhand, Chetna; Harini, Sriram; Venkatesh, Mayandi; Dwivedi, Neeraj; Ng, Alice; Liu, Shouping; Verma, Navin Kumar; Ramakrishna, Seeram; Beuerman, Roger W; Loh, Xian Jun; Lakshminarayanan, Rajamani

    2016-01-20

    In an era of relentless evolution of antimicrobial resistance, there is an increasing demand for the development of efficient antimicrobial coatings or surfaces for food, biomedical, and industrial applications. This study reports the laccase-catalyzed room-temperature synthesis of mechanically robust, thermally stable, broad spectrum antimicrobial films employing interfacial interactions between poly(vinyl alcohol), PVA, and 14 naturally occurring catecholamines and polyphenols. The oxidative products of catecholamines and polyphenols reinforce the PVA films and also alter their surface and bulk properties. Among the catecholamines-reinforced films, optimum surface and bulk properties can be achieved by the oxidative products of epinephrine. For polyphenols, structure-property correlation reveals an increase in surface roughness and elasticity of PVA films with increasing number of phenolic groups in the precursors. Interestingly, PVA films reinforced with oxidized/polymerized products of pyrogallol (PG) and epinephrine (EP) display potent antimicrobial activity against pathogenic Gram-positive and Gram-negative strains, whereas hydroquinone (HQ)-reinforced PVA films display excellent antimicrobial properties against Gram-positive bacteria only. We further demonstrate that HQ and PG films retain their antimicrobial efficacy after steam sterilization. With an increasing trend of giving value to natural and renewable resources, our results have the potential as durable self-defensive antimicrobial surfaces/films for advanced healthcare and industrial applications.

  4. Determination of the changes of the plasma catecholamine level by radioenzymatic method following noise-exposition

    International Nuclear Information System (INIS)

    Pinter, Cs.; Vincze, I.

    1982-01-01

    A new method was applied for the determination of plasma catecholamine levels: all the catecholamines were methylated in the presence of S-adenosyl-1-methyl 3 H-methyonine and the radioactivity of the components - separated with thin-layer chromatography - was measured by liquid scintillation. It is concluded that noise exposition for one hour per day significantly increases the plasma concentration of noradrenaline and dopamine whereas the adrenaline-level shows biphasic change: after a short increase it decreases. (L.E.)

  5. Insulin Inclusion into a Tragacanth Hydrogel: An Oral Delivery System for Insulin

    Directory of Open Access Journals (Sweden)

    Mokhamad Nur

    2018-01-01

    Full Text Available Nanoparticles or microparticles created by physical complexation between two polyelectrolytes may have a prospective use as an excipient for oral insulin administration. Natural polymers such as tragacanth, alginate, dextran, pullulan, hyaluronic acid, gelatin and chitosan can be potential candidates for this purpose. In this research, insulin particles were prepared by the inclusion of insulin into a tragacanth hydrogel. The effect of the pH and concentration relationship involving polyelectrolytes offering individual particle size and zeta potential was assessed by zetasizer and scanning electron microscopy (SEM. Insulin–tragacanth interactions at varying pH (3.7, 4.3, 4.6, or 6, and concentration (0.1%, 0.5%, or 1% w/w were evaluated by differential scanning calorimetry (DSC and ATR Fourier transform infrared (ATR-FTIR analysis. Individual and smaller particles, approximately 800 nm, were acquired at pH 4.6 with 0.5% of tragacanth. The acid gelation test indicated that insulin could be entrapped in the physical hydrogel of tragacanth. DSC thermograms of insulin–tragacanth showed shifts on the same unloaded tragacanth peaks and suggested polyelectrolyte–protein interactions at a pH close to 4.3–4.6. FTIR spectra of tragacanth–insulin complexes exhibited amide absorption bands featuring in the protein spectra and revealed the creation of a new chemical substance.

  6. Catecholamine-based treatment in AD patients: Expectations and delusions

    Directory of Open Access Journals (Sweden)

    Alessandro eStefani

    2015-05-01

    Full Text Available In Alzheimer disease, the gap between excellence of diagnostics and efficacy of therapy is wide. Despite sophisticated imaging and biochemical markers, the efficacy of available therapeutic options is limited.Here we examine the possibility that assessment of endogenous catecholamine levels in cerebrospinal fluid (CSF may fuel new therapeutic strategies.In reviewing the available literature, we consider the effects of levodopa, monoamine oxidase inhibitors (MAOI, and noradraneline (NE modulators, showing disparate results. We present a preliminary assessment of CSF concentrations of dopamine (DA and NE, determined by HPLC, in a small dementia cohort of either Alzheimer’s disease (AD or frontotemporal dementia (FTD patients, compared to control subjects. Our data reveal detectable levels of DA, NE in CSF, though we found no significant alterations in the dementia population as a whole. AD patients exhibit a small impairment of the DA axis and a larger increase of NE concentration, likely to represent a compensatory mechanism.While waiting for preventive strategies, a pragmatic approach to AD may re-evaluate catecholamine modulation, possibly stratified to dementia subtypes, as part of the therapeutic armamentarium.

  7. Insulin sensitivity in post-obese women

    DEFF Research Database (Denmark)

    Toubro, S; Western, P; Bülow, J

    1994-01-01

    1. Both increased and decreased sensitivity to insulin has been proposed to precede the development of obesity. Therefore, insulin sensitivity was measured during a 2 h hyperinsulinaemia (100 m-units min-1 m-2) euglycaemic (4.5 mmol/l) glucose clamp combined with indirect calorimetry in nine weight......-1 kg-1, not significant). Basal plasma concentrations of free fatty acids were similar, but at the end of the clamp free fatty acids were lower in the post-obese women than in the control women (139 +/- 19 and 276 +/- 48 mumol/l, P = 0.02). 3. We conclude that the insulin sensitivity of glucose...... metabolism is unaltered in the post-obese state. The study, however, points to an increased antilipolytic insulin action in post-obese subjects, which may favour fat storage and lower lipid oxidation rate postprandially.(ABSTRACT TRUNCATED AT 250 WORDS)...

  8. Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Powers, Bethany R; Ritter, Sue

    2014-02-15

    Previous work has shown that hindbrain catecholamine neurons are required components of the brain's glucoregulatory circuitry. However, the mechanisms and circuitry underlying their glucoregulatory functions are poorly understood. Here we examined three drugs, glucosamine (GcA), phloridzin (Phl) and 5-thio-d-glucose (5TG), that stimulate food intake but interfere in different ways with cellular glucose utilization or transport. We examined feeding and blood glucose responses to each drug in male rats previously injected into the hypothalamic paraventricular nucleus with anti-dopamine-β-hydroxylase conjugated to saporin (DSAP), a retrogradely transported immunotoxin that selectively lesions noradrenergic and adrenergic neurons, or with unconjugated saporin (SAP) control. Our major findings were 1) that GcA, Phl, and 5TG all stimulated feeding in SAP controls whether injected into the lateral or fourth ventricle (LV or 4V), 2) that each drug's potency was similar for both LV and 4V injections, 3) that neither LV or 4V injection of these drugs evoked feeding in DSAP-lesioned rats, and 4) that only 5TG, which blocks glycolysis, stimulated a blood glucose response. The antagonist of the MEK/ERK signaling cascade, U0126, attenuated GcA-induced feeding, but not Phl- or 5TG-induced feeding. Thus GcA, Phl, and 5TG, although differing in mechanism and possibly activating different neural populations, stimulate feeding in a catecholamine-dependent manner. Although results do not exclude the possibility that catecholamine neurons possess glucose-sensing mechanisms responsive to all of these agents, currently available evidence favors the possibility that the feeding effects result from convergent neural circuits in which catecholamine neurons are a required component.

  9. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  10. Effect of α-bungarotoxin and etorphine on acetylcholine-evoked release of endogenous and radiolabeled catecholamines from primary culture of adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Kageyama, H.; Guidotti, A.

    1984-01-01

    Cell cultures of adrenal medulla have become an important research tool to study basic processes that regulate catecholamine storage, release and synthesis. Release has been studied either by labeling with [ 3 H]norepinephrine and measuring release of radioactivity or by measuring the endogenous catecholamines released with HPLC. Acetylcholine (5X10 -6 -10 -4 M) appears to release preferentially norepinephrine, although the cells store more epinephrine than norepinephrine. Etorphine and α-bungarotoxin antagonize the release of catecholamines elicited by acetylcholine. This inhibitory action appears to be greater when the measurement of endogenous catecholamines rather than radioactive norepinephrine is used to monitor the action of acetylcholine. The data suggest that the measurement of endogenous catecholamines by HPLC is preferable to the [ 3 H]NE loading and release technique, especially when analyzing the effects of low concentrations of drugs that are thought to affect nicotinic receptor function. (Auth.)

  11. Hyperlipidaemia is associated with increased insulin-mediated glucose metabolism, reduced fatty acid metabolism and normal blood pressure in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Koopmans, S.J.; Jong, M.C.; Que, I.; Dahlmans, V.E.H.; Pijl, H.; Radder, J.K.; Frölich, M.; Havekes, L.M.

    2001-01-01

    Aims/hypothesis. Insulin resistance for glucose metabolism is associated with hyperlipidaemia and high blood pressure. In this study we investigated the effect of primary hyperlipidaemia on basal and insulin-mediated glucose and on non-esterified fatty acid (NEFA) metabolism and mean arterial

  12. Plasma catecholamine responses to physiologic stimuli in normal human pregnancy.

    Science.gov (United States)

    Barron, W M; Mujais, S K; Zinaman, M; Bravo, E L; Lindheimer, M D

    1986-01-01

    The dynamic response of the sympathoadrenal system was evaluated during and after pregnancy in 13 healthy women with a protocol that compared cardiovascular parameters and plasma catecholamine levels during the basal state, after postural maneuvers, and following isometric exercise. Plasma epinephrine and norepinephrine levels were similar during and after gestation when the women rested on their sides, but heart rate was greater in pregnancy. Ten minutes of supine recumbency produced minimal changes, but attenuation of the anticipated increases in heart rate and plasma norepinephrine levels during standing and isometric exercise were observed during pregnancy. In contrast, alterations in plasma epinephrine appeared unaffected by gestation. Plasma renin activity and aldosterone levels were, as expected, greater during pregnancy; however, increments in response to upright posture were similar in pregnant and postpartum women. To the extent that circulating catecholamines may be considered indices of sympathoadrenal function, these data suggest that normal pregnancy alters cardiovascular and sympathetic nervous system responses to physiologic stimuli.

  13. Analysis of the relationship of leptin, high-sensitivity C-reactive protein, adiponectin, insulin, and uric acid to metabolic syndrome in lean, overweight, and obese young females.

    Science.gov (United States)

    Abdullah, Abdul Ridha; Hasan, Haydar A; Raigangar, Veena L

    2009-02-01

    Over the last decade there has been a steady rise in obesity and co-morbidity, but little is known about the rate of metabolic dysfunction among young adults in the United Arab Emirates. Various factors have been implicated as biomarkers of metabolic syndrome. The objective of this study was to analyze the relationships of leptin, C-reactive protein (CRP), adiponectin, insulin, and uric acid to the metabolic syndrome components in lean, overweight, and obese young females. This was a cross-sectional study of 69 apparently healthy young females, who were classified according to their body mass index (BMI) (kg/m(2)) into three groups: lean (25 and or=30). Estimated biomarkers were: leptin, insulin, adiponectin, high-sensitivity [hs]-CRP, uric acid, blood sugar, high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and triglycerides (TG). Anthropometric measures, blood pressure, and homeostasis model assessment-insulin resistance (HOMA-IR) were also measured. Serum leptin, hs-CRP, insulin, and uric acid increased significantly (p syndrome components was found in lean subjects (leptin vs. waist circumference r = 0.48) as opposed to six in the obese group (hs-CRP vs. waist circumference and systolic blood pressure [SBP], r = 0.45 and r = -0.41, respectively; insulin vs. diastolic blood pressure [DBP], r = 0.47; adiponectin vs. blood sugar, r = -0.44; and uric acid vs. waist circumference and TG, r = 0.5 and r = 0.51, respectively). Estimation of the levels of studied biomarkers could be an important tool for early detection of metabolic syndrome before the appearance of its frank components. Uric acid seems to be the most reliable biomarker to identify obese subjects with metabolic syndrome.

  14. Probing the mechanism of insulin fibril formation with insulin mutants.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Brange, J; Uversky, V N; Fink, A L

    2001-07-27

    The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were monitored with the fluorescent dye, Thioflavin T. The results indicate that the monomer is the state from which fibrils arise, thus under some conditions dissociation of hexamers may be rate limiting or partially rate limiting. The insulin mutants were found to retain substantial nativelike secondary and tertiary structure under all conditions studied. The results suggest that fibril formation of the insulin mutants is controlled by specific molecular interactions that are sensitive to variations in the primary structure. The observed effects of several mutations on the rate of fibril formation are inconsistent with a previously suggested model for fibrillation [Brange, J., Whittingham, J., Edwards, D., Youshang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci. 72, 470-476]. Two surfaces on the insulin monomer are identified as potential interacting sites in insulin fibrils, one consisting of the residues B10, B16, and B17 and the other consisting of at least the residues A8 and B25. The marked increase in the lag time for fibril formation with mutations to more polar residues, as well as mutations to charged residues, demonstrates the importance of both hydrophobic and electrostatic interactions in the initial stages of fibrillation

  15. Changes in eosinophil and corticosterone levels and catecholamine metabolism during emotionalpainful stress

    International Nuclear Information System (INIS)

    Malyshev, V.V.; Manukhin, B.N.; Petrova, V.A.

    1985-01-01

    The aim of this investigation was to study blood levels of eosinophils, corticosterone (CS), adrenalin, noradrenalin (NA), and dopamine (DA) during the development of the stress reaction, and also to study neuronal uptake and synthesis of catecholamines in the adrenals and heart. In some animal groups, the neuronal uptake of 3 H-NA and the intensity of 3 H-Na and 3 H-DA synthesis from 3 H-tyrosine were investigated by a method described previously, 2 h after the end of induction of emotional-painful stress (EPS). Radioactivity was measured on an SL-30 liquid scintillation counter. A regular relationship was found between changes in blood eosinophil level, the CH concentration, and catecholamine metabolism in the course of EPS

  16. The role of adipose tissue and excess of fatty acids in the induction of insulin resistance in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Agnieszka Błachnio-Zabielska

    2016-11-01

    Full Text Available Skeletal muscle is the main tissue responsible for insulin-stimulated glucose uptake. Consumption of a high-fat diet rich in saturated fats (HFD and obesity are associated with accumulation of intramuscular lipids that leads to several disorders, e.g. insulin resistance (IRes and type 2 diabetes (T2D. The mechanism underlying the induction of IRes is still unknown. It was speculated that accumulation of intramuscular triacylglycerols (TAG is linked to induction of IRes. Now, research focuses on bioactive lipids: long-chain acyl-CoA (LCACoA, diacylglycerols (DAG and ceramides (Cer. It has been demonstrated that accumulation of each of the above-mentioned lipid classes negatively affects the insulin signaling pathway. It is not clear which of those lipids play the most important role in HFD-induced skeletal muscle IRes. The aim of the present work is to present the current knowledge of the role of adipose tissue and excess of fatty acids in the induction of insulin resistance.

  17. Circulating Docosahexaenoic Acid Associates with Insulin-Dependent Skeletal Muscle and Whole Body Glucose Uptake in Older Women Born from Normal Weight Mothers

    Directory of Open Access Journals (Sweden)

    Robert M. Badeau

    2017-02-01

    Full Text Available Background: Obesity among pregnant women is common, and their offspring are predisposed to obesity, insulin resistance, and diabetes. The circulating metabolites that are related to insulin resistance and are associated with this decreased tissue-specific uptake are unknown. Here, we assessed metabolite profiles in elderly women who were either female offspring from obese mothers (OOM or offspring of lean mothers (OLM. Metabolic changes were tested for associations with metrics for insulin resistance. Methods: Thirty-seven elderly women were separated into elderly offspring from obese mothers (OOM; n = 17 and elderly offspring from lean/normal weight mothers (OLM; n = 20 groups. We measured plasma metabolites using proton nuclear magnetic resonance (1H-NMR and insulin-dependent tissue-specific glucose uptake in skeletal muscle was assessed. Associations were made between metabolites and glucose uptake. Results: Compared to the OLM group, we found that the docosahexaenoic acid percentage of the total long-chain n-3 fatty acids (DHA/FA was significantly lower in OOM (p = 0.015. DHA/FA associated significantly with skeletal muscle glucose uptake (GU (p = 0.031 and the metabolizable glucose value derived from hyperinsulinemic-euglycemic clamp technique (M-value in the OLM group only (p = 0.050. Conclusions: DHA/FA is associated with insulin-dependent skeletal muscle glucose uptake and this association is significantly weakened in the offspring of obese mothers.

  18. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    Science.gov (United States)

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  19. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release

    Energy Technology Data Exchange (ETDEWEB)

    Bigornia, L; Suozzo, M; Ryan, K A; Napp, D; Schneider, A S

    1988-10-01

    The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.

  20. Effects of Mind-Body Training on Cytokines and Their Interactions with Catecholamines.

    Science.gov (United States)

    Jang, Joon Hwan; Park, Hye Yoon; Lee, Ui Soon; Lee, Kyung-Jun; Kang, Do-Hyung

    2017-07-01

    Mind-body training (MBT) may control reactions to stress and regulate the nervous and immune systems. The present study was designed to assess the effects of MBT on plasma cytokines and their interactions with catecholamines. The study group consisted of 80 subjects who practice MBT and a control group of 62 healthy subjects. Plasma catecholamine (norepinephrine, NE; epinephrine, E; and dopamine, DA) and cytokine (TNF-alpha, IL-6, IFN-gamma, and IL-10) levels were measured, and the differences between the MBT and control groups and the interactions of cytokines with catecholamines were investigated. A significant increase in IL-10+IFN-gamma was found in females of the MBT group compared with controls. Also, a significant increase of IL-10 (anti-inflammatory cytokine) in the MBT group was shown in a specific condition in which TNF-alpha and IL-6 (pro-inflammatory cytokines) are almost absent (≤1 ng/L) compared with controls. In the MBT group, significant positive correlations were found between IL-10 and the NE/E ratio and between IL-10 and the DA/E ratio, whereas the control group did not show any such correlations. MBT may increase IL-10, under specific conditions such as a decrease of pro-inflammatory cytokines or E, which may regulate the stress response and possibly contribute to effective and beneficial interactions between the nervous and immune systems.

  1. Developmental aspects of the rat brain insulin receptor: loss of sialic acid and fluctuation in number characterize fetal development

    International Nuclear Information System (INIS)

    Brennan, W.A. Jr.

    1988-01-01

    In this study, I have investigated the structure of the rat brain insulin receptor during fetal development. There is a progressive decrease in the apparent molecular size of the brain alpha-subunit during development: 130K on day 16 of gestation, 126K at birth, and 120K in the adult. Glycosylation was investigated as a possible reason for the observed differences in the alpha-subunit molecular size. The results show that the developmental decrease in the brain alpha-subunit apparent molecular size is due to a parallel decrease in sialic acid content. This was further confirmed by measuring the retention of autophosphorylated insulin receptors on wheat germ agglutinin (WGA)-Sepharose. An inverse correlation between developmental age and retention of 32 P-labeled insulin receptors on the lectin column was observed. Insulin binding increases 6-fold between 16 and 20 days of gestation [61 +/- 25 (+/- SE) fmol/mg protein and 364 +/- 42 fmol/mg, respectively]. Thereafter, binding in brain membranes decreases to 150 +/- 20 fmol/mg by 2 days after birth, then reaches the adult level of 63 +/- 15 fmol/mg. In addition, the degree of insulin-stimulated autophosphorylation closely parallels the developmental changes in insulin binding. Between 16 and 20 days of fetal life, insulin-stimulated phosphorylation of the beta-subunit increases 6-fold. Thereafter, the extent of phosphorylation decreases rapidly, reaching adult values identical with those in 16-day-old fetal brain. These results suggest that the embryonic brain possesses competent insulin receptors whose expression changes markedly during fetal development. This information should be important in defining the role of insulin in the developing nervous system

  2. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells

    OpenAIRE

    Gao, Yuanfang; Chen, Xiaohui; Gupta, Sanju; Gillis, Kevin D.; Gangopadhyay, Shubhra

    2008-01-01

    Carbon electrodes are widely used in electrochemistry due to their low cost, wide potential window, and low and stable background noise. Carbon-fiber electrodes (CFE) are commonly used to electrochemically measure “quantal” catecholamine release via exocytosis from individual cells, but it is difficult to integrate CFEs into lab-on-a-chip devices. Here we report the development of nitrogen doped diamond-like carbon (DLC:N) microelectrodes on a chip to monitor quantal release of catecholamines...

  3. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  4. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life.

    Science.gov (United States)

    Velazquez, Miguel A; Sheth, Bhavwanti; Smith, Stephanie J; Eckert, Judith J; Osmond, Clive; Fleming, Tom P

    2018-02-01

    Mouse maternal low protein diet exclusively during preimplantation development (Emb-LPD) is sufficient to programme altered growth and cardiovascular dysfunction in offspring. Here, we use an in vitro model comprising preimplantation culture in medium depleted in insulin and branched-chain amino acids (BCAA), two proposed embryo programming inductive factors from Emb-LPD studies, to examine the consequences for blastocyst organisation and, after embryo transfer (ET), postnatal disease origin. Two-cell embryos were cultured to blastocyst stage in defined KSOM medium supplemented with four combinations of insulin and BCAA concentrations. Control medium contained serum insulin and uterine luminal fluid amino acid concentrations (including BCAA) found in control mothers from the maternal diet model (N-insulin+N-bcaa). Experimental medium (three groups) contained 50% reduction in insulin and/or BCAA (L-insulin+N-bcaa, N-insulin+L-bcaa, and L-insulin+N-bcaa). Lineage-specific cell numbers of resultant blastocysts were not affected by treatment. Following ET, a combined depletion of insulin and BCAA during embryo culture induced a non sex-specific increase in birth weight and weight gain during early postnatal life. Furthermore, male offspring displayed relative hypertension and female offspring reduced heart/body weight, both characteristics of Emb-LPD offspring. Combined depletion of metabolites also resulted in a strong positive correlation between body weight and glucose metabolism that was absent in the control group. Our results support the notion that composition of preimplantation culture medium can programme development and associate with disease origin affecting postnatal growth and cardiovascular phenotypes and implicate two important nutritional mediators in the inductive mechanism. Our data also have implications for human assisted reproductive treatment (ART) practice. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Blood pressure and plasma catecholamines in acute and prolonged hypoxia

    DEFF Research Database (Denmark)

    Kanstrup, I L; Poulsen, T D; Hansen, J M

    1999-01-01

    This study measured the pressor and plasma catecholamine response to local hypothermia during adaptation to hypobaric hypoxia. Eight healthy men were studied at rest and after 10 and 45 min of local cooling of one hand and forearm as well as after 30 min of rewarming at sea level and again 24 h...

  6. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  7. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    Science.gov (United States)

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  8. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  9. Dissociation of the effects of epinephrine and insulin on glucose and protein metabolism

    International Nuclear Information System (INIS)

    Castellino, P.; Luzi, L.; Del Prato, S.; DeFronzo, R.A.

    1990-01-01

    The separate and combined effects of insulin and epinephrine on leucine metabolism were examined in healthy young volunteers. Subjects participated in four experimental protocols: (1) euglycemic insulin clamp (+80 microU/ml), (2) epinephrine infusion (50 ng.kg-1.min-1) plus somatostatin with basal replacement of insulin and glucagon, (3) combined epinephrine (50 ng.kg-1.min-1) plus insulin (+80 microU/ml) infusion, and (4) epinephrine and somatostatin as in study 2 plus basal amino acid replacement. Studies were performed with a prime-continuous infusion of [1-14C]leucine and indirect calorimetry. Our results indicate that (1) hyperinsulinemia causes a generalized decrease in plasma amino acid concentrations, including leucine; (2) the reduction in plasma leucine concentration is primarily due to an inhibition of endogenous leucine flux; nonoxidative leucine disposal decreases after insulin infusion; (3) epinephrine, without change in plasma insulin concentration, reduces plasma amino acid levels; (4) combined epinephrine-insulin infusion causes a greater decrease in plasma amino levels than observed with either hormone alone; this is because of a greater inhibition of endogenous leucine flux; and (5) when basal amino acid concentrations are maintained constant with a balanced amino acid infusion, epinephrine inhibits the endogenous leucine flux. In conclusion, the present results do not provide support for the concept that epinephrine is a catabolic hormone with respect to amino acid-protein metabolism. In contrast, epinephrine markedly inhibits insulin-mediated glucose metabolism

  10. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice.

    Science.gov (United States)

    Tsuchida, Takuma; Shiraishi, Muneshige; Ohta, Tetsuya; Sakai, Kaoru; Ishii, Shinichi

    2012-07-01

    Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Adrenal Vein Catecholamine Levels and Ratios: Reference Intervals Derived from Patients with Primary Aldosteronism.

    Science.gov (United States)

    Sze, Candy W C; O'Toole, Samuel Matthew; Tirador, Roger Kent; Akker, Scott A; Matson, Matthew; Perry, Leslie; Druce, Maralyn Rose; Dekkers, Tanja; Deinum, Jaap; Lenders, Jacques W M; Eisenhofer, Graeme; Drake, William Martyn

    2017-06-01

    Phaeochromocytoma localisation is generally reliably achieved with modern imaging techniques, particularly in sporadic cases. On occasion, however, there can be diagnostic doubt due to the presence of bilateral adrenal abnormalities, particularly in patients with mutations in genes predisposing them to the development of multiple phaeochromocytomas. In such cases, surgical intervention is ideally limited to large or functional lesions due to the long-term consequences associated with hypoadrenalism. Adrenal venous sampling (AVS) for catecholamines has been used in this situation to guide surgery, although there are few data available to support diagnostic thresholds. Retrospective analyses of AVS results from 2 centres were carried out. A total of 172 patients (88 men, 84 women) underwent AVS under cosyntropin stimulation for the diagnosis of established primary aldosteronism (PA) with measurement of adrenal and peripheral venous cortisol, aldosterone and catecholamines. Six patients (3 men, 3 women) with phaeochromocytoma underwent AVS for diagnostic purposes with subsequent histological confirmation. Reference intervals for the adrenal venous norepinephrine to epinephrine ratio were created from the PA group. Using the 97.5th centile (1.21 on the left, 1.04 on the right), the false negative rate in the phaeochromocytoma group was 0%. In conclusion, this study describes the largest dataset of adrenal venous catecholamine measurements and provides reference intervals in patients without phaeochromocytoma. This strengthens the certainty with which conclusions related to adrenal venous sampling for catecholamines can be drawn, acknowledging the procedure is not part of the routine diagnostic workup and is an adjunct for use only in difficult clinical cases. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Human gut microbes impact host serum metabolome and insulin sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn

    2016-01-01

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individ......Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin......-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus...

  13. Insulin suppresses bile acid synthesis in cultured rat hepatocytes by down-regulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase gene transcription

    NARCIS (Netherlands)

    Twisk, J.; Hoekman, M.F.M.; Lehmann, E.M.; Meijer, P.; Mager, W.H.; Princen, H.M.G.

    1995-01-01

    Evidence from in vivo studies indicates that the bile acid pool and bile acid excretion are increased in humans with diabetes mellitus and in experimental diabetic animals, and that both parameters return to normal levels after administration of insulin. To investigate the biochemical background of

  14. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels.

    Science.gov (United States)

    Mahendran, Yuvaraj; Jonsson, Anna; Have, Christian T; Allin, Kristine H; Witte, Daniel R; Jørgensen, Marit E; Grarup, Niels; Pedersen, Oluf; Kilpeläinen, Tuomas O; Hansen, Torben

    2017-05-01

    Fasting plasma levels of branched-chain amino acids (BCAAs) are associated with insulin resistance, but it remains unclear whether there is a causal relation between the two. We aimed to disentangle the causal relations by performing a Mendelian randomisation study using genetic variants associated with circulating BCAA levels and insulin resistance as instrumental variables. We measured circulating BCAA levels in blood plasma by NMR spectroscopy in 1,321 individuals from the ADDITION-PRO cohort. We complemented our analyses by using previously published genome-wide association study (GWAS) results from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) (n = 46,186) and from a GWAS of serum BCAA levels (n = 24,925). We used a genetic risk score (GRS), calculated using ten established fasting serum insulin associated variants, as an instrumental variable for insulin resistance. A GRS of three variants increasing circulating BCAA levels was used as an instrumental variable for circulating BCAA levels. Fasting plasma BCAA levels were associated with higher HOMA-IR in ADDITION-PRO (β 0.137 [95% CI 0.08, 0.19] p = 6 × 10 -7 ). However, the GRS for circulating BCAA levels was not associated with fasting insulin levels or HOMA-IR in ADDITION-PRO (β -0.011 [95% CI -0.053, 0.032] p = 0.6 and β -0.011 [95% CI -0.054, 0.031] p = 0.6, respectively) or in GWAS results for HOMA-IR from MAGIC (β for valine-increasing GRS -0.012 [95% CI -0.069, 0.045] p = 0.7). By contrast, the insulin-resistance-increasing GRS was significantly associated with increased BCAA levels in ADDITION-PRO (β 0.027 [95% CI 0.005, 0.048] p = 0.01) and in GWAS results for serum BCAA levels (β 1.22 [95% CI 0.71, 1.73] p = 4 × 10 -6 , β 0.96 [95% CI 0.45, 1.47] p = 3 × 10 -4 , and β 0.67 [95% CI 0.16, 1.18] p = 0.01 for isoleucine, leucine and valine levels, respectively) and instrumental variable analyses in ADDITION

  15. Heart type fatty acid binding protein response and subsequent development of atherosclerosis in insulin resistant polycystic ovary syndrome patients.

    Science.gov (United States)

    Cakir, Evrim; Ozbek, Mustafa; Sahin, Mustafa; Cakal, Erman; Gungunes, Askin; Ginis, Zeynep; Demirci, Taner; Delibasi, Tuncay

    2012-12-18

    Women with polycystic ovary syndrome (PCOS) have higher risk for cardiovascular disease (CVD). Heart type fatty acid binding protein (HFABP) has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductive-age PCOS women and 28 control subjects. We evaluated anthropometric and metabolic parameters, carotid intima media thickness and HFABP levels in both PCOS patients and control group. Mean fasting insulin, homeostasis model assessment insulin resistance index (HOMA-IR), triglyceride, total cholesterol, low density lipoprotein cholesterol, free testosterone, total testosterone, carotid intima media thickness (CIMT) levels were significantly higher in PCOS patients. Although HFABP levels were higher in PCOS patients, the difference did not reach statistically significant in early age groups. After adjustment for age and body mass index, HFABP level was positive correlated with hsCRP, free testosterone levels, CIMT and HOMA-IR. Heart type free fatty acid binding protein appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, hyperandrogenemic PCOS patients.

  16. Heart type fatty acid binding protein response and subsequent development of atherosclerosis in insulin resistant polycystic ovary syndrome patients

    Directory of Open Access Journals (Sweden)

    Cakir Evrim

    2012-12-01

    Full Text Available Abstract Background Women with polycystic ovary syndrome (PCOS have higher risk for cardiovascular disease (CVD. Heart type fatty acid binding protein (HFABP has been found to be predictive for myocardial ischemia.Wet ested whether HFABP is the predictor for CVD in PCOS patients, who have an increased risk of cardiovascular disease. Methods This was a prospective, cross sectional controlled study conducted in a training and research hospital.The study population consisted of 46 reproductive-age PCOS women and 28 control subjects. We evaluated anthropometric and metabolic parameters, carotid intima media thickness and HFABP levels in both PCOS patients and control group. Results Mean fasting insulin, homeostasis model assessment insulin resistance index (HOMA-IR, triglyceride, total cholesterol, low density lipoprotein cholesterol, free testosterone, total testosterone, carotid intima media thickness (CIMT levels were significantly higher in PCOS patients. Although HFABP levels were higher in PCOS patients, the difference did not reach statistically significant in early age groups. After adjustment for age and body mass index, HFABP level was positive correlated with hsCRP, free testosterone levels, CIMT and HOMA-IR. Conclusions Heart type free fatty acid binding protein appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, hyperandrogenemic PCOS patients.

  17. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    Science.gov (United States)

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. The existence of an insulin-stimulated glucose and non-essential but not essential amino acid substrate interaction in diabetic pigs

    Directory of Open Access Journals (Sweden)

    Wijdenes Jan

    2011-05-01

    Full Text Available Abstract Background The generation of energy from glucose is impaired in diabetes and can be compensated by other substrates like fatty acids (Randle cycle. Little information is available on amino acids (AA as alternative energy-source in diabetes. To study the interaction between insulin-stimulated glucose and AA utilization in normal and diabetic subjects, intraportal hyperinsulinaemic euglycaemic euaminoacidaemic clamp studies were performed in normal (n = 8 and streptozotocin (120 mg/kg induced diabetic (n = 7 pigs of ~40-45 kg. Results Diabetic vs normal pigs showed basal hyperglycaemia (19.0 ± 2.0 vs 4.7 ± 0.1 mmol/L, P P P P P P P . Essential AA clearance was largely unchanged (72.9 ± 8.5 vs 63.3 ± 8.5 mL/kg· min, however clearances of threonine (P P Conclusions The ratio of insulin-stimulated glucose versus AA clearance was decreased 5.4-fold in diabetic pigs, which was caused by a 3.6-fold decrease in glucose clearance and a 2.0-fold increase in non-essential AA clearance. In parallel with the Randle concept (glucose - fatty acid cycle, the present data suggest the existence of a glucose and non-essential AA substrate interaction in diabetic pigs whereby reduced insulin-stimulated glucose clearance seems to be partly compensated by an increase in non-essential AA clearance whereas essential AA are preferentially spared from an increase in clearance.

  19. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance.

    Science.gov (United States)

    Haus, Jacob M; Solomon, Thomas P J; Marchetti, Christine M; Edmison, John M; González, Frank; Kirwan, John P

    2010-01-01

    The objective of the study was to examine the effects of an exercise/diet lifestyle intervention on free fatty acid (FFA)-induced hepatic insulin resistance in obese humans. Obese men and women (n = 23) with impaired glucose tolerance were randomly assigned to either exercise training with a eucaloric (EU; approximately 1800 kcal; n = 11) or hypocaloric (HYPO; approximately 1300 kcal; n = 12) diet for 12 wk. Hepatic glucose production (HGP; milligrams per kilogram fat-free mass(-1) per minute(-1)) and hepatic insulin resistance were determined using a two-stage sequential hyperinsulinemic (40 mU/m(2) . min(-1)) euglycemic (5.0 mm) clamp with [3-(3)H]glucose. Measures were obtained at basal, during insulin infusion (INS; 120 min), and insulin plus intralipid/heparin infusion (INS/FFA; 300 min). At baseline, basal HGP was similar between groups; hyperinsulinemia alone did not completely suppress HGP, whereas INS/FFA exhibited less suppression than INS (EU, 4.6 +/- 0.8, 2.0 +/- 0.5, and 2.6 +/- 0.4; HYPO, 3.8 +/- 0.5, 1.2 +/- 0.3, and 2.3 +/- 0.4, respectively). After the intervention the HYPO group lost more body weight (P HYPO: -50 +/- 20%, before vs. after, P = 0.02). In contrast, the ability of insulin to overcome FFA-induced hepatic insulin resistance and HGP was improved only in the HYPO group (EU: -15 +/- 24% vs. HYPO: -58 +/- 19%, P = 0.02). Both lifestyle interventions are effective in reducing hepatic insulin resistance under basal and hyperinsulinemic conditions. However, the reversal of FFA-induced hepatic insulin resistance is best achieved with a combined exercise/caloric-restriction intervention.

  20. n-3 polyunsaturated fatty acid supplementation reduces insulin resistance in hepatitis C virus infected patients: a randomised controlled trial.

    Science.gov (United States)

    Freire, T O; Boulhosa, R S S B; Oliveira, L P M; de Jesus, R P; Cavalcante, L N; Lemaire, D C; Toralles, M B P; Lyra, L G C; Lyra, A C

    2016-06-01

    Insulin resistance promotes liver disease progression and may be associated with a lower response rate in treated hepatitis C virus (HCV) infected patients. n-3 polyunsaturated fatty acid (PUFA) supplementation may reduce insulin resistance. The present study aimed to evaluate the effect of n-3 PUFA supplementation on insulin resistance in these patients. In a randomised, double-blind clinical trial, 154 patients were screened. After applying inclusion criteria, 52 patients [homeostasis model assessment index of insulin resistance (HOMA-IR ≥2.5)] were randomly divided into two groups: n-3 PUFA (n = 25/6000 mg day(-1) of fish oil) or control (n = 27/6000 mg day(-1) of soybean oil). Both groups were supplemented for 12 weeks and underwent monthly nutritional consultation. Biochemical tests were performed at baseline and after intervention. Statistical analysis was performed using the Wilcoxon Mann-Whitney test for comparisons and the Wilcoxon test for paired data. Statistical package r, version 3.02 (The R Project for Statistical Computing) was used and P resistance in genotype 1 HCV infected patients. © 2015 The British Dietetic Association Ltd.

  1. Study of NSILA-s (nonsuppressible insulin-like activity soluble in acid ethanol) by a new radio-receptor assay

    International Nuclear Information System (INIS)

    Megyeri, K.

    1977-01-01

    The insulin-like activity nonsuppressible with insulin-antibodies (NSILA) accounts for 90% of the insulin activity of the blood plasma. A peptid, soluble in acid ethanol, was purified (NSILA-s) and specific NSILA-s receptors were found on the plasma membrane of liver cells. The specificity, kinetics, affinity and pH-optimum of NSILA-s receptors significantly differed from those of insulin-receptors. A new, highly specific radio-receptor assay was developed, applying 125 I NSILA-s and liver cell membranes or lymphocytes. By this means the NSILA-s concentration of blood plasma was determined under normal and pathological (hypoglycaemizing tumours, hypopituritarism, acromegaly, anorexia nervosa, etc.) conditions. It is concluded that, 90% of the NSILA-s concentration of blood plasma is bound. In cases of hypoglycaemizing tumours increased NSILA-s activity was demonstrated both in blood serum and in the extracts of the tumour-tissue. Pharmacological doses of growth hormon (GH) increased plasma NSILA-s concentration, however, in the case of stimulation- and inhibition-tests carried out in normal patients, no unambiguous relationship could be demonstrated between plasma GH- and NSILA-s-levels. (L.E.)

  2. Identification of four amino acid substitutions in hexokinase II and studies of relationships to NIDDM, glucose effectiveness, and insulin sensitivity

    DEFF Research Database (Denmark)

    Echwald, Søren Morgenthaler; Bjørbaek, C; Hansen, Torben

    1995-01-01

    not predict any change in amino acid composition of the protein. One homozygous and nine heterozygous carriers of the codon 142 mutation were found among the NIDDM patients. The mutations at codons 148, 497, and 844 were each found in one diabetic subject and only on one allele. There were no carriers......Human hexokinase (HK) II, a glucose phosphorylating enzyme in muscle tissue, plays a central role in glucose metabolism. Since reduced insulin-stimulated glucose uptake and reduced glucose-6-phosphate content in muscle have been demonstrated in pre-non-insulin-dependent diabetes mellitus (pre...

  3. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    Science.gov (United States)

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  4. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension.

    Science.gov (United States)

    Han, Tianshu; Lan, Li; Qu, Rongge; Xu, Qian; Jiang, Ruyue; Na, Lixin; Sun, Changhao

    2017-10-01

    Although hyperuricemia and insulin resistance significantly correlated, their temporal sequence and how the sequence influence on future risk of hypertension are largely unknown. This study assessed temporal relationship between uric acid and insulin resistance and its impact on future risk of hypertension by examining a longitudinal cohort including 8543 subjects aged 20 to 74 years from China, with an average follow-up of 5.3 years. Measurements of fasting uric acid, as well as fasting and 2-hour serum glucose and insulin, were obtained at baseline and follow-up. Indicators of hepatic and peripheral insulin resistance were calculated. Cross-lagged panel and mediation analysis were used to examine the temporal relationship between uric acid and insulin resistance and its impact on follow-up hypertension. After adjusting for covariates, the cross-lagged path coefficients ( β 1 values) from baseline uric acid to follow-up insulin resistance indices were significantly greater than path coefficients ( β 2 values) from baseline insulin resistance indices to follow-up uric acid ( β 1 =0.110 versus β 2 =0.017; P hypertensive group were significantly greater than that in the normotensive group ( P hypertension, and the mediation effect of peripheral insulin resistance was significantly greater than that of hepatic insulin resistance (31.3% versus 13.2%; P hypertension than hepatic insulin resistance does. © 2017 American Heart Association, Inc.

  5. Thermodynamic and kinetic analysis of the reaction between biological catecholamines and chlorinated methylperoxy radicals

    Science.gov (United States)

    Dimić, Dušan S.; Milenković, Dejan A.; Marković, Jasmina M. Dimitrić; Marković, Zoran S.

    2018-05-01

    The antiradical potency of catecholamines (dopamine, epinephrine, norepinephrine, L-DOPA), metabolites of dopamine (homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) and catechol towards substituted methylperoxy radicals is investigated. The thermodynamic parameters, together with the kinetic approach, are used to determine the most probable mechanism of action. The natural bond orbital and quantum theory of atoms in molecules are utilised to explain the highest reactivity of trichloromethylperoxy radical. The preferred mechanism is dependent both on the thermodynamic and kinetic parameters . The number of chlorine atoms on radical, the presence of intra-molecular hydrogen bond and number of hydroxy groups attached to the aromatic ring significantly influence the mechanism. The results suggest that sequential proton loss electron transfer (SPLET) is the most probable for reaction with methylperoxy and hydrogen atom transfer (HAT) for reaction with trichloromethylperoxy radicals, with a gradual transition between SPLET and HAT for other two radicals. Due to the significant deprotonation of molecules containing the carboxyl group, the respective anions are also investigated. The HAT and SPLET mechanisms are highly competitive in reaction with MP radical, while the dominant mechanism towards chlorinated radicals is HAT. The reactions in methanol and benzene are also discussed.

  6. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.

    Science.gov (United States)

    Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique

    2013-10-01

    Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effects of stress on catecholamine stores in central and peripheral tissues of long-term socially isolated rats.

    Science.gov (United States)

    Dronjak, S; Gavrilovic, L

    2006-06-01

    Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4 degrees C, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(3H-methyl)-methionine was used. The O-methylated derivatives were oxidized to 3H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.

  8. Effects of stress on catecholamine stores in central and peripheral tissues of long-term socially isolated rats

    Directory of Open Access Journals (Sweden)

    Dronjak S.

    2006-01-01

    Full Text Available Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4ºC, 2 h, were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(³H-methyl-methionine was used. The O-methylated derivatives were oxidized to ³H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18% and hippocampal dopamine (about 20% stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39% in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20% as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.

  9. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    Science.gov (United States)

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production.

    Science.gov (United States)

    Dalmas, Elise; Lehmann, Frank M; Dror, Erez; Wueest, Stephan; Thienel, Constanze; Borsigova, Marcela; Stawiski, Marc; Traunecker, Emmanuel; Lucchini, Fabrizio C; Dapito, Dianne H; Kallert, Sandra M; Guigas, Bruno; Pattou, Francois; Kerr-Conte, Julie; Maechler, Pierre; Girard, Jean-Philippe; Konrad, Daniel; Wolfrum, Christian; Böni-Schnetzler, Marianne; Finke, Daniela; Donath, Marc Y

    2017-11-21

    Pancreatic-islet inflammation contributes to the failure of β cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1β, and palmitate). IL-33 promoted β cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the β cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute β cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Affholter, J.A.; Roth, R.A. (Stanford Univ. School of Medicine, CA (USA)); Cascieri, M.A.; Bayne, M.L. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA)); Brange, J. (Novo Research Institute, Bagsvaerd (Denmark)); Casaretto, M. (Deutsches Wollforschungsinstitut an der Technischen, Aachen (West Germany))

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants (B25-Asp)insulin and (B25-His)insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants (B1-24-His{sup 25}-NH{sub 2})insulin and (B1-24-Leu{sup 25}-NH{sub 2})insulin, but not (B1-24-Trp{sup 25}-NH{sub 2})insulin and (B1-24-Tyr{sup 25}-NH{sub 2})insulin. The truncated analogue with the lowest affinity for IDE ((B1-24-His{sup 25}-NH{sub 2})insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ.

  12. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    International Nuclear Information System (INIS)

    Affholter, J.A.; Roth, R.A.; Cascieri, M.A.; Bayne, M.L.; Brange, J.; Casaretto, M.

    1990-01-01

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants [B1-24-His 25 -NH 2 ]insulin and [B1-24-Leu 25 -NH 2 ]insulin, but not [B1-24-Trp 25 -NH 2 ]insulin and [B1-24-Tyr 25 -NH 2 ]insulin. The truncated analogue with the lowest affinity for IDE ([B1-24-His 25 -NH 2 ]insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ

  13. Insulin secretion and sensitivity in space flight: diabetogenic effects

    Science.gov (United States)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  14. Solvent Extraction and QSPR of Catecholamines with a Bis(2-ethlhexyl) Hydrogen Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizuka, Kazuharu.; Fujimoto, Yuko.; Ota, Keisuke.; Inoue, Katsutoshi. [Saga University, Saga (Japan). Dept. of Applied Chemistry

    1999-02-01

    In order to develop an effective separation recess for catecholamine (CA), a basic investigation on solvent extraction of dopamine (DA), adrenaline (Ad) and noradrenaline (NA) from hydrochloric acid solution and their stripping is conducted at 30 degree C employing bis(2-ethylhexyl) hydrogen phosphate (D2EHPA) in chloroform, n-hexane and toluene as the organic diluents. From the dependencies of the distribution ratios on the concentrations of reactant species, i.e. CA, hydrogen ion and D2EHPA, it is elucidated that CA (RNH{sub 2}) is extracted with D2EHPA (HR`) according to the ion exchange mechanism, as the complex type, RNH{sub 3}R` (HR`){sub 3}, and the equilibrium constants (K{sub ex,CA}) for the extraction reactions are also evaluated. The quantitative structure property relationship (QSPR) of K{sub ex,CA} values for each organic diluent is discussed using molecular modeling with semi-empirical molecular orbital calculations considering the solvent effect. (author)

  15. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    OpenAIRE

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A.; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J.; Lapworth, Amanda L.; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M.; Scheja, Ludger; Grove, Kevin L.

    2014-01-01

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α keto-acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors ...

  16. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  17. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  18. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Science.gov (United States)

    Nielsen, L; Frokjaer, S; Carpenter, J F; Brange, J

    2001-01-01

    Fibril formation (aggregation) of insulin was investigated in acid media by visual inspection, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Insulin fibrillated faster in hydrochloric acid than in acetic acid at elevated temperatures, whereas the fibrillation tendencies were reversed at ambient temperatures. Electron micrographs showed that bovine insulin fibrils consisted of long fibers with a diameter of 5 to 10 nm and lengths of several microns. The fibrils appeared either as helical filaments (in hydrochloric acid) or arranged laterally in bundles (in acetic acid, NaCl). Freeze-thawing cycles broke the fibrils into shorter segments. FTIR spectroscopy showed that the native secondary structure of insulin was identical in hydrochloric acid and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid was different from that formed in acetic acid. Fibrils of bovine insulin prepared by heating or agitating an acid solution of insulin showed an increased content of beta-sheet (mostly intermolecular) and a decrease in the intensity of the alpha-helix band. In hydrochloric acid, the frequencies of the beta-sheet bands depended on whether the fibrillation was induced by heating or agitation. This difference was not seen in acetic acid. Freeze-thawing cycles of the fibrils in hydrochloric acid caused an increase in the intensity of the band at 1635 cm(-1) concomitant with reduction of the band at 1622 cm(-1). The results showed that the structure of insulin fibrils is highly dependent on the composition of the acid media and on the treatment. Copyright 2001 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 90: 29-37, 2001

  19. Reversibility of increased formation of catecholamines in patients with alcoholic liver disease

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Reisenauer, C.; Biermann, J.

    2004-01-01

    BACKGROUND: While chronic alcohol abuse has been shown to be associated with increased production of catecholamines, little is known about the reversibility of this increased sympathetic activity and the influence of severity of alcoholic liver disease (ALD). The aim of the present study...... was to investigate whether the increase in urinary excretion rates and plasma levels of catecholamines in alcohol-abusing patients are reversible during prolonged abstinence, especially with respect to the severity of ALD. METHODS: Urinary excretion rates and plasma levels of noradrenaline (NA), adrenaline (A...... concentrations of NA and A were increased in ALD1 and ALD2 about 2-fold, while those of DA were elevated only moderately compared to HC. During exercise under a load of 100 watts, the increases in plasma levels of NA and A with reference to the resting values were nearly identical in all three groups. Already...

  20. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    Science.gov (United States)

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  1. [Solid state isotope hydrogen exchange for deuterium and tritium in human gene-engineered insulin].

    Science.gov (United States)

    Zolotarev, Yu A; Dadayan, A K; Kozik, V S; Gasanov, E V; Nazimov, I V; Ziganshin, R Kh; Vaskovsky, B V; Murashov, A N; Ksenofontov, A L; Haribin, O N; Nikolaev, E N; Myasoedov, N F

    2014-01-01

    The reaction of high temperature solid state catalytic isotope exchange in peptides and proteins under the action of catalyst-activated spillover hydrogen was studied. The reaction of human gene-engineered insulin with deuterium and tritium was conducted at 120-140° C to produce insulin samples containing 2-6 hydrogen isotope atoms. To determine the distribution of the isotope label over tritium-labeled insulin's amino acid residues, oxidation of the S-S bonds of insulin by performic acid was performed and polypeptide chains isolated; then their acid hydrolysis, amino acid analysis and liquid scintillation counts of tritium in the amino acids were conducted. The isotope label was shown to be incorporated in all amino acids of the protein, with the peptide fragment FVNQHLCGSHLVE of the insulin β-chain showing the largest incorporation. About 45% of the total protein isotope label was incorporated in His5 and His10 of this fragment. For the analysis of isotope label distribution in labeled insulin's peptide fragments, the recovery of the S-S bonds by mercaptoethanol, the enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius and HPLC division of the resulting peptides were carried out. Attribution of the peptide fragments formed due to hydrolysis at the Glu-X bond in the β-chain was accomplished by mass spectrometry. Mass spectrometry analysis data of the deuterium-labeled insulin samples' isotopomeric composition showed that the studied solid state isotope exchange reaction equally involved all the protein molecules. Biological studying of tritium-labeled insulin showed its physiological activity to be completely retained.

  2. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects.

    Science.gov (United States)

    Liang, Hanyu; Tantiwong, Puntip; Sriwijitkamol, Apiradee; Shanmugasundaram, Karthigayan; Mohan, Sumathy; Espinoza, Sara; Defronzo, Ralph A; Dubé, John J; Musi, Nicolas

    2013-06-01

    Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IBα protein (an indication of decreased IB kinase-nuclear factor B signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs.

  3. Effect of oral amino acids on counterregulatory responses and cognitive function during insulin-induced hypoglycemia in nondiabetic and type 1 diabetic people.

    Science.gov (United States)

    Rossetti, Paolo; Porcellati, Francesca; Busciantella Ricci, Natalia; Candeloro, Paola; Cioli, Patrizia; Nair, K Sreekumaran; Santeusanio, Fausto; Bolli, Geremia B; Fanelli, Carmine G

    2008-07-01

    Amino acids stimulate glucagon responses to hypoglycemia and may be utilized by the brain. The aim of this study was to assess the responses to hypoglycemia in nondiabetic and type 1 diabetic subjects after ingestion of an amino acid mixture. Ten nondiabetic and 10 diabetic type 1 subjects were studied on three different occasions during intravenous insulin (2 mU . kg(-1) . min(-1)) plus variable glucose for 160 min. In two studies, clamped hypoglycemia (47 mg/dl plasma glucose for 40 min) was induced and either oral placebo or an amino acid mixture (42 g) was given at 30 min. In the third study, amino acids were given, but euglycemia was maintained. Plasma glucose and insulin were no different in the hypoglycemia studies with both placebo and amino acids (P > 0.2). After the amino acid mixture, plasma amino acid concentrations increased to levels observed after a mixed meal (2.4 +/- 0.13 vs. placebo study 1.7 +/- 0.1 mmol/l, P = 0.02). During clamped euglycemia, ingestion of amino acids resulted in transient increases in glucagon concentrations, which returned to basal by the end of the study. During clamped hypoglycemia, glucagon response was sustained and increased more in amino acid studies versus placebo in nondiabetic and diabetic subjects (P colored words, and verbal memory tests for nondiabetic subjects; and Trail-Making part B, digit span backward, and Stroop color tests for diabetic subjects. Oral amino acids improve cognitive function in response to hypoglycemia and enhance the response of glucagon in nondiabetic and diabetic subjects.

  4. Role of Catecholamine in Tumor Angiogenesis Linked to Capacitance Relaxation Phenomenon

    Directory of Open Access Journals (Sweden)

    Guangyue SHI

    2010-08-01

    Full Text Available The present paper deals with the CgA level during metastasis linked with Capacitance relaxation phenomenon in cancer cell. CgA co-stored and correlated by exocytosis with catecholamines is a precursor to peptides that exert feedback regulatory control on catecholamine secretion. It is to be noted that CgA was the most sensitive marker for detecting patients with tumor angiogenesis. The progressive rise in CgA increases with the tumor size and this fact has been correlated with the Capacitance relaxation phenomenon (T. K. Basak, US patent No. 5691178, 1997 in different stages. The experimental results of Capacitance relaxation phenomenon were given as inputs to a model for correlation with the CgA level. This model is a control system model, the output of which is the CgA level. It is to be noted that the model is simulated in MATLAB. The expression of tumorogenisis in prostate and liver is also linked to Capacitance relaxation phenomenon in respect of its correlation with the CgA level.

  5. Negative association of acetate with visceral adipose tissue and insulin levels

    Directory of Open Access Journals (Sweden)

    Layden BT

    2012-02-01

    Full Text Available Brian T Layden1, Sudha K Yalamanchi1, Thomas MS Wolever2, Andrea Dunaif1, William L Lowe Jr11Division of Endocrinology, Metabolism and Molecular Medicine (BTL, SKY, AD, WLL, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; 2Department of Nutritional Sciences (TMSW, University of Toronto, Toronto, CanadaBackground: The composition of gut flora has been proposed as a cause of obesity, a major risk factor for type 2 diabetes. The objective of this study was to assess whether serum short chain fatty acids, a major by-product of fermentation in gut flora, are associated with obesity and/or diabetes-related traits (insulin sensitivity and secretion.Methods: The association of serum short chain fatty acids levels with measures of obesity was assessed using body mass index, computerized tomography scan, and dual photon X-ray absorptiometry scan. Insulin sensitivity and insulin secretion were both determined from an oral glucose tolerance test and insulin sensitivity was also determined from a hyperinsulinemic euglycemic clamp.Results: In this population of young, obese women, acetate was negatively associated with visceral adipose tissue determined by computerized tomography scan and dual photon X-ray absorptiometry scan, but not body mass index. The level of the short chain fatty acids acetate, but not propionate or butyrate, was also negatively associated with fasting serum insulin and 2 hour insulin levels in the oral glucose tolerance test.Conclusions: In this population, serum acetate was negatively associated with visceral adipose tissue and insulin levels. Future studies need to verify these findings and expand on these observations in larger cohorts of subjects.Keywords: obesity, insulin, gut flora, short chain fatty acids 

  6. Admission biomarkers of trauma-induced secondary cardiac injury predict adverse cardiac events and are associated with plasma catecholamine levels.

    Science.gov (United States)

    Naganathar, Sriveena; De'Ath, Henry D; Wall, Johanna; Brohi, Karim

    2015-07-01

    Secondary cardiac injury and dysfunction may be important contributors to poor outcomes in trauma patients, but the pathophysiology and clinical impact remain unclear. Early elevations in cardiac injury markers have been associated with the development of adverse cardiac events (ACEs), prolonged intensive care unit stays, and increased mortality. Studies of preinjury β-blocker use suggest a potential protective effect in critically ill trauma patients. This study aimed to prospectively examine the association of early biomarker evidence of trauma-induced secondary cardiac injury (TISCI) and ACEs and to examine the potential contribution of circulating catecholamines to its pathophysiology. Injured patients who met the study criteria were recruited at a single major trauma center. A blood sample was collected immediately on arrival. Serum epinephrine (E), norepinephrine (NE), and cardiac biomarkers including heart-related fatty acid binding protein (H-FABP) were assayed. Data were prospectively collected on ACEs. Of 300 patients recruited, 38 (13%) developed an ACE and had increased mortality (19% vs. 9%, p = 0.01) and longer intensive care unit stays (13 days, p < 0.001). H-FABP was elevated on admission in 56% of the patients, predicted the development of ACE, and was associated with higher mortality (14% vs. 5%, p = 0.01). Admission E and NE levels were strongly associated with elevations in H-FABP and ACEs (E, 274.0 pg/mL vs. 622.5 pg/mL, p < 0.001; NE, 1,063.2 pg/mL vs. 2,032.6 pg/mL, p < 0.001). Catecholamine effect on the development of TISCI or ACEs was not statistically independent of injury severity or depth of shock. Admission levels of H-FABP predict the development of ACEs and may be useful for prognosis and stratification of trauma patients. The development of TISCI and ACEs was associated with high admission levels of catecholamines, but their role in pathogenesis remains unclear. Clinical trials of adrenergic blockade may have the potential to

  7. Interaction between insulin and calf thymus DNA, and quantification of insulin and calf thymus DNA by a resonance Rayleigh scattering method

    International Nuclear Information System (INIS)

    Kong, L.; Liu, Z.; Hu, X.; Liu, S.; Li, W.

    2012-01-01

    The interaction of insulin with calf thymus deoxyribonucleic acid (ctDNA) leads to a complex that displays remarkably enhanced resonance Rayleigh scattering (RRS). The complex and its formation were investigated by atomic force microscopy and by absorption, fluorescence and circular dichroism spectroscopies. We show that the Tyr B16, Tyr B26 and Phe B24 amino acids near the active center (Phe B25) were influenced by the interaction, whereas Tyr A14, Tyr A19 and Phe B1 (which are located far away from the active center) were less influenced. The interaction provide a way in the quantitation of both ctDNA and insulin with high sensitivity. When ctDNA is used as a probe to quantify insulin, the detection limit (3σ) is 6.0 ng mL -1 . If, inversely, insulin is used as a probe to quantify ctDNA, the detection limit (3σ) is 7.2 ng mL -1 . The analysis of synthetic DNA samples and an insulin infection sample provided satisfactory results. (author)

  8. Whole-body γ-irradiation effects on catecholamine concentration in animal tissues

    International Nuclear Information System (INIS)

    Makashev, Zh.K.; Uteshev, T.A.; Abylaev, Zh. A.; Zhurnist, A.G.

    2003-01-01

    On the whole-body gamma-radiation activity in the exchanges of catecholamines (adrenalin and non-adrenalin) and their predecessors (dopamine and DOPA) in the rats tissue organism, indicate the infringement of irradiated animals in different links of biological synthesis the bio-gen amines in different phases of the radiation: DOPA→dopamine, dopamine→adrenalin, adrenalin→non-adrenalin. (author)

  9. Electrophoretic behavior in filter paper and molecular weight of insulin

    NARCIS (Netherlands)

    Sluyterman, L.A.A.E.

    1955-01-01

    Insulin travels as well defined band in electropherograms if acetic acid-water 1:2 (v/v) is used as a buffer. Preparations of partially acetylated insulin were analysed by this method. From the results it could be derived that the molecular weight of insulin is 6,000. An improvement in the

  10. Similar weight-adjusted insulin secretion and insulin sensitivity in short-duration late autoimmune diabetes of adulthood (LADA) and Type 2 diabetes

    DEFF Research Database (Denmark)

    Juhl, C B; Bradley, U; Holst, Jens Juul

    2014-01-01

    AIMS: To explore insulin sensitivity and insulin secretion in people with latent autoimmune diabetes in adulthood (LADA) compared with that in people with Type 2 diabetes. METHODS: A total of 12 people with LADA, defined as glutamic acid decarboxylase (GAD) antibody positivity and > 1 year...... of insulin independency (group A) were age-matched pairwise to people with Type 2 diabetes (group B) and to six people with Type 2 diabetes of similar age and BMI (group C). β-cell function (first-phase insulin secretion and assessment of insulin pulsatility), insulin sensitivity (hyperinsulinemic......-euglycemic clamp) and metabolic response during a mixed meal were studied. RESULTS: Both first-phase insulin secretion and insulin release during the meal were greater (P = 0.05 and P = 0.009, respectively) in Type 2 diabetes as compared with LADA; these differences were lost on adjustment for BMI (group C...

  11. Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases

    Science.gov (United States)

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-01-01

    The last decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of the G protein-coupled receptors. Free Fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. PMID:21663979

  12. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export

    OpenAIRE

    White, Phillip J.; Lapworth, Amanda L.; An, Jie; Wang, Liping; McGarrah, Robert W.; Stevens, Robert D.; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J.; Bain, James R.; Trimmer, Jeff K.; Brosnan, M. Julia; Rolph, Timothy P.; Newgard, Christopher B.

    2016-01-01

    Objective: A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Methods: Zucker-lean rats (ZLR) and Zucker-fatty rats (Z...

  13. Maternal High Folic Acid Supplement Promotes Glucose Intolerance and Insulin Resistance in Male Mouse Offspring Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Yifan Huang

    2014-04-01

    Full Text Available Maternal nutrition may influence metabolic profiles in offspring. We aimed to investigate the effect of maternal folic acid supplement on glucose metabolism in mouse offspring fed a high-fat diet (HFD. Sixty C57BL/6 female mice were randomly assigned into three dietary groups and fed the AIN-93G diet containing 2 (control, 5 (recommended folic acid supplement, RFolS or 40 (high folic acid supplement, HFolS mg folic acid/kg of diet. All male offspring were fed HFD for eight weeks. Physiological, biochemical and genetic variables were measured. Before HFD feeding, developmental variables and metabolic profiles were comparable among each offspring group. However, after eight weeks of HFD feeding, the offspring of HFolS dams (Off-HFolS were more vulnerable to suffer from obesity (p = 0.009, glucose intolerance (p < 0.001 and insulin resistance (p < 0.001, compared with the controls. Off-HFolS had reduced serum adiponectin concentration, accompanied with decreased adiponectin mRNA level but increased global DNA methylation level in white adipose tissue. In conclusion, our results suggest maternal HFolS exacerbates the detrimental effect of HFD on glucose intolerance and insulin resistance in male offspring, implying that HFolS during pregnancy should be adopted cautiously in the general population of pregnant women to avoid potential deleterious effect on the metabolic diseases in their offspring.

  14. Investigations on the role of insulin and scorpion antivenom in scorpion envenoming syndrome

    Directory of Open Access Journals (Sweden)

    K. Radha Krishna Murthy

    2003-01-01

    biochemical improvement. Severe scorpion envenoming causes an autonomic storm with a massive release of catecholamines and other counter-regulatory hormones; changes in insulin secretion resulting in fuel energy deficits producing multi-system-organ-failure (MSOF; and death. Administration of either insulin or SAV (through the release of insulin appears to be the physiological basis for the control of the metabolic support to control the adverse effects triggered by counter-regulatory hormones.

  15. [Studies on the relationship between beta-adrenergic receptor density on cell wall lymphocytes, total serum catecholamine level and heart rate in patients with hyperthyroidism].

    Science.gov (United States)

    Gajek, J; Zieba, I; Zyśko, D

    2000-08-01

    Hyperthyreosis mimics the hyperadrenergic state and its symptoms were though to be dependent on increased level of catecholamines. Another reason for the symptoms could be the increased density or affinity of beta-adrenergic receptors to catecholamines. The aim of the study was to examine the elements of sympathetic nervous system, thyroid hormones level and their influence on heart rate control in patients with hyperthyreosis. The study was carried out in 18 women, mean age 48.9 +/- 8.7 yrs and 6 men, mean age 54.2 +/- 8.7 yrs. The control group consisted of 30 healthy persons matched for age and sex. We examined the density of beta-adrenergic receptors using radioligand labelling method with 125I-cyanopindolol, serum total catecholamines level with radioenzymatic assay kit, the levels of free thyroid hormones using radioimmunoassays and thyreotropine level with immunoradiometric assay. Maximal, minimal and mean heart rate were studied using Holter monitoring system. The density of beta-adrenergic receptors in hyperthyreosis was 37.3 +/- 21.7 vs 37.2 +/- 18.1 fmol/mg in the control group (p = NS). Total catecholamines level was significantly decreased in hyperthyreosis group: 1.5 +/- 0.89 vs 1.9 +/- 0.73 pmol/ml (p < 0.05). There was significantly higher minimal, maximal and mean heart rate in hyperthyreosis group (p < 0.0001, p < 0.0001 and p < 0.05 respectively). There was a weak inverse correlation between minimum heart rate and triiodothyronine level (r = -0.38, p < 0.05). An inverse correlation between triiodothyronine and catecholamines level (r = -0.49, p < 0.05) was observed. Beta-adrenergic receptors density is unchanged and catecholamines level is decreased in hyperthyreosis when compared to normal subjects. There is no correlation between minimal heart rate and adrenergic receptors density or catecholamines level in hyperthyreosis.

  16. L-DOPA therapy interferes with urine catecholamine analysis in children with suspected neuroblastoma: a case series.

    Science.gov (United States)

    Kelly, Alison U; Srivastava, Rajeev; Dow, Ellie; Davidson, D Fraser

    2017-09-01

    Neuroblastoma is the most common solid extracranial malignancy diagnosed in childhood. Clinical presentation is variable, and metastatic disease is common at diagnosis. Analyses of urinary catecholamines and their metabolites are commonly requested as a first-line investigation when clinical suspicion exists. Levodopa (L-Dopa) therapy is utilized as a treatment for a number of disorders in childhood, including Dopa-responsive dystonia. Neuroblastoma may mimic some of the clinical features of this disorder. L-Dopa can interfere with analysis of urinary catecholamines and their metabolites and complicate the interpretation of results. We present the cases of three children who were prescribed L-dopa at the time of analysis of urinary catecholamines and metabolites as a screen for neuroblastoma, but who did not have the disease. Comparison of their results with those from cases with true neuroblastoma reveal that it is impossible to reliably distinguish true neuroblastoma from L-Dopa therapy using these tests. We recommend that patients should be off L-dopa therapy, if possible when these tests are performed. These cases illustrate the importance of providing clinical details and drug history to the laboratory in order to avoid diagnostic confusion.

  17. Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome

    NARCIS (Netherlands)

    Gunther, Joan; Tian, Yingfang; Stamova, Boryana; Lit, Lisa; Corbett, Blythe; Ander, Brad; Zhan, Xinhua; Jickling, Glen; Bos-Veneman, Netty; Liu, Da; Hoekstra, Pieter; Sharp, Frank

    2012-01-01

    Tourette syndrome (TS) is a heritable disorder characterized by tics that are decreased in some patients by treatment with alpha adrenergic agonists and dopamine receptor blockers. Thus, this study examines the relationship between catecholamine gene expression in blood and tic severity. TS

  18. Toluene-induced, Ca2+-dependent vesicular catecholamine release in rat PC12 cells

    NARCIS (Netherlands)

    Westerink, R.H.S.|info:eu-repo/dai/nl/239425952; Vijverberg, H.P.M.|info:eu-repo/dai/nl/068856474

    2002-01-01

    Acute effects of toluene on vesicular catecholamine release from intact PC12 phaeochromocytoma cells have been investigated using carbon fiber microelectrode amperometry. The frequency of vesicles released is low under basal conditions and is enhanced by depolarization. Toluene causes an increase in

  19. Reevaluation of Fatty acid receptor 1 (FFAR1/GPR40) as drug target for the stimulation of insulin secretion in humans

    DEFF Research Database (Denmark)

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are under investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes...... risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1-agonist, TUG-469......, stimulate glucose-induced insulin secretion through FFAR1. The pro-apoptotic effect of chronic exposure of beta-cells to palmitate was independent of FFAR1. TUG-469 was protective, while inhibition of FFAR1 promoted apoptosis. In accordance with the pro-apoptotic effect of palmitate, in vivo crosssectional...

  20. Data on Na,K-ATPase in primary cultures of renal proximal tubule cells treated with catecholamines

    Directory of Open Access Journals (Sweden)

    Mary Taub

    2016-03-01

    Full Text Available This data article is concerned with chronic regulation of Na,K-ATPase by catecholamines. After a chronic treatment, inhibition of Na,K-ATPase activity was observed in cultures with dopamine, while a stimulation was observed in cultures treated with norepinephrine. Following a chronic incubation with guanabenz, an α adrenergic agonist, an increase in Na,K-ATPase α and β subunit mRNAs was observed. This data supports the research article entitled, “Renal proximal tubule Na, K-ATPase is controlled by CREB regulated transcriptional coactivators as well as salt inducible kinase 1” (Taub et al. 2015 [1]. Keywords: Catecholamines, Kidney, Proximal tubule, Na,K-ATPase, Chronic

  1. Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion.

    Science.gov (United States)

    Kim, K M; Kawada, T; Ishihara, K; Inoue, K; Fushiki, T

    1997-10-01

    Increase in endurance swimming capacity caused by capsaicin (CAP), a pungent component of red pepper, -induced increase of fat metabolism in mice was investigated using an adjustable-current water pool. The mice administered CAP via a stomach tube, showed longer swimming time until exhaustion than the control group of mice, in a dose-dependent manner. The maximal effect was observed at a dose of 10 mg/kg while more than 15 mg/kg had no effect. The increase of endurance was observed only when CAP was administered two hours before swimming. After the administration of CAP, the serum glucose concentration rapidly increased and then decreased within 60 min, while the concentration of serum-free fatty acids gradually increased through 3 hours. The residual glycogen concentration of the gastrocnemius muscle after 30 min of swimming was significantly higher in the CAP-administered mice than in control mice, suggesting that use of the serum free fatty acids spared muscle glycogen consumption. The serum adrenaline concentration significantly increased with twin peaks at 30 min and two hours after administration of CAP. An experiment using adrenalectomized mice was done to confirm that the effect of CAP is due to increased energy metabolism through the secretion of adrenaline from the adrenal gland. The swimming endurance capacity of the adrenalectomized mice was not increased by CAP administration, although adrenaline injection induced a 58% increase in the endurance time. These results suggest that the increase of swimming endurance induced by CAP in mice is caused by an increase in fatty acid utilization due to CAP-induced adrenal catecholamine secretion.

  2. Insulin regulation of Na/K pump activity in rat hepatoma cells

    International Nuclear Information System (INIS)

    Gelehrter, T.D.; Shreve, P.D.; Dilworth, V.M.

    1984-01-01

    Insulin rapidly increases Na/K pump activity in HTC rat hepatoma cells in tissue culture, as measured by the ouabain-sensitive influx of the potassium analogue 86Rb+. Increased influx is observed within minutes and is maximal (70% above control) within 1-2 h. The effect appears to be mediated by the insulin receptors, as: the concentration dependence on insulin is identical to that for insulin induction of tyrosine aminotransferase and stimulation of 2-aminoisobutyric acid transport, proinsulin is 6% as potent as insulin, and the effect is blocked by anti-receptor antibodies. The early stimulation of potassium influx is not blocked by cycloheximide and is not associated with an increased number of pump sites as measured by 3 H-ouabain binding. The insulin effect is blocked by amiloride, which blocks sodium influx, and is mimicked by the sodium ionophore monensin, which increases sodium influx and intracellular accumulation. Insulin also rapidly increases the initial rate of 22 Na+ influx, suggesting that insulin may enhance Na/K pump activity, in part, by increasing intracellular sodium concentration. Incubation of HTC cells with insulin for 24 h causes complete unresponsiveness to the insulin induction of transaminase and stimulation of amino acid transport, a phenomenon mediated by postbinding mechanisms. In contrast, similar incubation with insulin does not cause unresponsiveness to the insulin stimulation of Na/K pump activity. Therefore, the site of regulation of responsiveness to insulin must be distal to, or separate from, those events causing stimulation of ion fluxes

  3. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Science.gov (United States)

    Everman, Sarah; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2015-01-01

    Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion. Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile - 3rd quartile)] between Control and BCAA in either the 40U ([199 (167-278) vs. 186 (94-308)] or 80 U ([491 (414-548) vs. 478 (409-857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P BCAA in either of the experiments (P > 0.05). Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  4. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects.

    Directory of Open Access Journals (Sweden)

    Sarah Everman

    Full Text Available Plasma branched-chain amino acids (BCAA are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5 to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5. In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U in association with the above BCAA infusion (N = 4 or under the same conditions without BCAA infusion (N = 3. Plasma glucose turnover was measured prior to and during insulin infusion.Insulin infusion completely suppressed the endogenous glucose production (EGP across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05. Insulin infusion stimulated whole-body glucose disposal rate (GDR across all groups. However, the increase (% in GDR was not different [median (1st quartile - 3rd quartile] between Control and BCAA in either the 40U ([199 (167-278 vs. 186 (94-308] or 80 U ([491 (414-548 vs. 478 (409-857] experiments (P > 0.05. Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P 0.05.Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.

  5. Site-specific antibodies distinguish single amino acid substitutions in position 57 in HLA-DQ beta-chain alleles associated with insulin-dependent diabetes

    DEFF Research Database (Denmark)

    Atar, D; Dyrberg, T; Michelsen, Birgitte

    1989-01-01

    The HLA-DQ beta-chain gene shows a close association with susceptibility or resistance to autoimmune insulin-dependent diabetes mellitus (IDDM) and it has been suggested that the amino acid in position 57 may be of pathogenetic importance. To study the expression of the IDDM associated HLA-DQ beta......-chain alleles, we immunized rabbits with 12 to 13 amino acid long peptides representing HLA-DQw7 and -DQw8 allelic sequences, differing only by one amino acid in position 57 being aspartic acid (Asp) and alanine (Ala), respectively. Immunoblot analysis of lymphoblastoid cells showed that several antisera...

  6. Modulatory effects of alpha-lipoic acid (ALA) administration on insulin sensitivity in obese PCOS patients.

    Science.gov (United States)

    Genazzani, A D; Shefer, K; Della Casa, D; Prati, A; Napolitano, A; Manzo, A; Despini, G; Simoncini, T

    2018-05-01

    To evaluate the efficacy of alpha-lipoic acid (ALA) administration on hormonal and metabolic parameters of obese PCOS patients. A group of 32 obese PCOS patients were selected after informed consent. 20 patients referred to have first grade relatives with diabetes type I or II. Hormonal and metabolic parameters as well as OGTT were evaluated before and after 12 weeks of ALA integrative administration (400 mg per os every day). ALA administration significantly decreased insulin, glucose, BMI and HOMA index. Hyperinsulinemia and insulin response to OGTT decreased both as maximal response (Δmax) and as AUC. PCOS with diabetes relatives showed the decrease also of triglyceride and GOT. Interestingly in all PCOS no changes occurred on all hormonal parameters involved in reproduction such as LH, FSH, and androstenedione. ALA integrative administration at a low dosage as 400 mg daily improved the metabolic impairment of all PCOS patients especially in those PCOS with familiar diabetes who have a higher grade of risk of NAFLD and predisposition to diabetes.

  7. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ibitoye, Oluwayemisi B; Ajiboye, Taofeek O

    2017-12-20

    This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.

  8. Catecholamines of the body tissues and radiosensitivity of rodents

    International Nuclear Information System (INIS)

    Grayevskaya, V.M.; Zolotariova, N.N.

    1975-01-01

    Various species of rodents are distinguished by their radiosensitivity (increasing): bank vole 57 Br mouse < golden hamster < BALB mouse < guinea pig. There is a positive correlation between radiosensitivity of these species and catecholamines content in the adrenals, urea and blood; and negative correlation between radiosensitivity and adrenaline and noradrenaline concentrations in liver and spleen cells. Presumable causes of this correlation, and the possibility of application of the index under study for predicting the organism radiosensitivity and forecasting the outcome of radiation damage are discussed

  9. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    Science.gov (United States)

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  10. Insulin Aspart in the Management of Diabetes Mellitus: 15 Years of Clinical Experience

    OpenAIRE

    Hermansen, Kjeld; Bohl, Mette; Schioldan, Anne Grethe

    2015-01-01

    Limiting excessive postprandial glucose excursions is an important component of good overall glycemic control in diabetes mellitus. Pharmacokinetic studies have shown that insulin aspart, which is structurally identical to regular human insulin except for the replacement of a single proline amino acid with an aspartic acid residue, has a more physiologic time?action profile (i.e., reaches a higher peak and reaches that peak sooner) than regular human insulin. As expected with this improved ph...

  11. Dissociation of changes in the permeability of the blood-brain barrier from catecholamine-induced changes in blood pressure of normotensive and spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Sankar, R.; Domer, F.R.; Taylor, B.

    1982-01-01

    Researchers have studied the effects of the pressor catecholamine, dopamine, and the depressor catecholamine, isoproterenol, on the systemic blood pressure and the permeability of the blood-brain barrier (BBB) to albumin in normotensive (WKY) and spontaneously hypertensive (SHR) rats. The rats were anesthetized with pentobarbital. The permeability of the BBB to protein was measured by the extravasation of radioiodinated serum albumin (RISA). The permeability was decreased by both catecholamines despite the dose-dependent, yet opposite, changes in blood pressure in the WKY rats. The blood pressure response to both of the catecholamines was enhanced in the SHR rats. Isoproterenol caused a decrease in the permeability of the BBB in the SHR but dopamine did not. Results with both WKY and SHR rats are suggestive of an adrenergically-mediated decrease in movement across the BBB of compounds of large molecular weight, regardless of changes in blood pressure

  12. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases.

    Science.gov (United States)

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-09-01

    The past decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of G-protein-coupled receptors (GPCRs). Free fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review paper, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The effect of exogenous glucocorticoids on plasma catecholamines and metanephrines in patients without phaeochromocytomas.

    Science.gov (United States)

    Druce, M R; Walker, D; Maher, K T; Dodzo, K; Perry, L; Ball, S; Peaston, R; Chew, S L; Drake, W M; Akker, S A; Grossman, A B

    2011-04-01

    The aim of the study was to evaluate the effects of steroid administration under standardised conditions in a range of patients both normal and with adrenal pathologies and to review the impact on plasma catecholamines and metanephrines. Corticosteroid administration has been linked to the development of hypertensive crises in patients with phaeochromocytoma, however a mechanism for this is not fully understood. We aimed to add useful information about the effect of steroids on levels of these hormones under usual circumstances. A prospective, observational cohort study of 50 patients undergoing the low-dose dexamethasone suppression test (LDDST) was undertaken. Additional blood samples were taken at the start and end of the standard LDDST. Biochemical analysis was carried out for plasma catecholamines and plasma free metanephrines. Demographic and hormonal data were acquired from review of the notes or measured at baseline. No significant changes in plasma catecholamines or metanephrines were seen at the end of the LDDST compared to baseline. This was also true of subgroup analysis, divided by age, gender, or type of underlying pathology. Our results suggest that hypertensive reaction responses, rare as they are, are unlikely to be related to normal adrenal physiology. Thus LDDST is likely to be safe under most circumstances, however caution should be exercised in patients with adrenal masses with imaging characteristics compatible with phaeochromocytoma. It may be prudent to defer glucocorticoid administration until functioning phaeochromocytoma has been excluded biochemically. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  15. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration.

    Science.gov (United States)

    Natale, G; Ryskalin, L; Busceti, C L; Biagioni, F; Fornai, F

    2017-09-01

    The gastrointestinal tract is provided with extrinsic and intrinsic innervation. The extrinsic innervation includes the classic vagal parasympathetic and sympathetic components, with afferent sensitive and efferent secretomotor fibers. The intrinsic innervations is represented by the enteric nervous system (ENS), which is recognized as a complex neural network controlling a variety of cell populations, including smooth muscle cells, mucosal secretory cells, endocrine cells, microvasculature, immune and inflammatory cells. This is finalized to regulate gastrointestinal secretion, absorption and motility. In particular, this network is organized in several plexuses each one providing quite autonomous control of gastrointestinal functions (hence the definition of "second brain"). The similarity between ENS and CNS is further substantiated by the presence of local sensitive pseudo- unipolar ganglionic neurons with both peripheral and central branching which terminate in the enteric wall. A large variety of neurons and neurotransmitters takes part in the ENS. However, the nature of these neurons and their role in the regulation of gastrointestinal functions is debatable. In particular, the available literature reporting the specific nature of catecholamine- containing neurons provides conflicting evidence. This is critical both for understanding the specific role of each catecholamine in the gut and, mostly, to characterize specifically the enteric neuropathology occurring in a variety of diseases. An emphasis is posed on neurodegenerative disorders, such as Parkinson's disease, which is associated with the loss of catecholamine neurons. In this respect, the recognition of the nature of such neurons within the ENS would contribute to elucidate the pathological mechanisms which produce both CNS and ENS degeneration and to achieve more effective therapeutic approaches. Despite a great emphasis is posed on the role of noradrenaline to regulate enteric activities only a few

  16. Long-acting insulins alter milk composition and metabolism of lactating dairy cows.

    Science.gov (United States)

    Winkelman, L A; Overton, T R

    2013-01-01

    This study investigated the effect of 2 different types of long-acting insulin on milk production, milk composition, and metabolism in lactating dairy cows. Multiparous cows (n=30) averaging 88 d in milk were assigned to one of 3 treatments in a completely randomized design. Treatments consisted of control (C), Humulin-N (H; Eli Lilly and Company, Indianapolis, IN), and insulin glargine (L). The H and L treatments were administered twice daily at 12-h intervals via subcutaneous injection for 10d. Cows were milked twice daily, and milk composition was determined every other day. Mammary biopsies were conducted on d 11, and mammary proteins extracted from the biopsies were analyzed by Western blot for components of insulin and mammalian target of rapamycin signaling pathways. Treatment had no effect on dry matter intake or milk yield. Treatment with both forms of long-acting insulin increased milk protein content and tended to increase milk protein yield over the 10-d treatment period. Analysis of milk N fractions from samples collected on d 10 of treatment suggested that cows administered L tended to have higher yields of milk protein fractions than cows administered H. Milk fat content and yield tended to be increased for cows administered long-acting insulins. Lactose content and yields were decreased by treatment with long-acting insulins. Administration of long-acting insulins, particularly L, tended to shift milk fatty acid composition toward increased short- and medium-chain fatty acids and decreased long-chain fatty acids. Plasma concentrations of glucose and urea N were lower for cows administered long-acting insulins; interactions of treatment and sampling time were indicative of more pronounced effects of L than H on these metabolites. Concentrations of nonesterified fatty acids and insulin were increased in cows administered long-acting insulins. Decreased concentrations of urea N in both plasma and milk suggested more efficient use of N in cows

  17. PEDF-induced alteration of metabolism leading to insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Bidirectional regulation of bakuchiol, an estrogenic-like compound, on catecholamine secretion

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Haoping; Wang, Hong; Ma, Shangwei; Xu, Yantong; Zhang, Han; Wang, Yuefei [Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae (China); Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin (China); Niu, Zichang [First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin (China); Fan, Guanwei; Zhu, Yan [Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae (China); Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin (China); Gao, Xiu Mei, E-mail: gaoxiumei@tjutcm.edu.cn [Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae (China); Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin (China)

    2014-01-01

    Excess or deficiency of catecholamine (CA) secretion was related with several diseases. Recently, estrogen and phytoestrogens were reported to regulate the activity of CA system. Bakuchiol is a phytoestrogen isolated from the seeds of Psoralea corylifolia L. (Leguminosae) which has been used in Traditional Chinese medicine as a tonic or aphrodisiac. In the present study, bovine adrenal medullary cells were employed to investigate the effects and mechanisms of bakuchiol on the regulation of CA secretion. Further, its anti-depressant like and anti-stress effects were evaluated by using behavioral despair and chronic immobilization stress models. Our results indicated that bakuchiol showed bidirectional regulation on CA secretion. It stimulated basal CA secretion in a concentration dependent manner (p < 0.01), while it reduced 300 μM acetylcholine (ACh) (p < 0.01), 100 μM veratridine (Ver) (p < 0.01) and 56 mM K{sup +} (p < 0.05) induced CA secretion, respectively. We also found that the stimulation of basal CA secretion by bakuchiol may act through estrogen-like effect and the JNK pathway in an extra-cellular calcium independent manner. Further, bakuchiol elevated tyrosine hydroxylase Ser40 and Ser31 phosphorylation (p < 0.01) through the PKA and ERK1/2 pathways, respectively. Bakuchiol inhibited ACh, Ver and 56 mM K{sup +} induced CA secretion was related with reduction of intracellular calcium rise. In vivo experiments, we found that bakuchiol significantly reduced immobilization time in behavioral despair mouse (p < 0.05 or 0.01), and plasma epinephrine (E) and norepinephrine (NE) levels in chronic immobilization stress (p < 0.05). Overall, these results present a bidirectional regulation of bakuchiol on CA secretion which indicated that bakuchiol may exert anti-stress and the potential anti-depressant-like effects. - Highlights: • Bakuchiol stimulated basal catecholamine secretion. • Bakuchiol inhibited various secretagogues induced catecholamine secretion

  19. Influence of Unweighting on Insulin Signal Transduction in Muscle

    Science.gov (United States)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  20. Autocrine growth induced by the insulin-related factor in the insulin-independent teratoma cell line 1246-3A

    International Nuclear Information System (INIS)

    Yamada, Yukio; Serrero, G.

    1988-01-01

    An insulin-independent teratoma-derived cell line, called 1246-3A, has been isolated from the adipogenic cell line 1246, which stringently requires insulin for proliferation. The 1246-3A cell line, which can proliferate in the absence of exogenous insulin, produces in its conditioned medium a growth factor similar to pancreatic insulin by its biological and immunological properties. This factor, called insulin-related factor (IRF), was purified and iodinated to study its binding to cell surface receptors. 125 I-labeled IRF binding to intact 1246-3A cells is lower than to 1246 cells. Cell surface binding can be restored by culturing the 1246-3A cells in the presence of an anti-porcine insulin monoclonal antibody of by acid prewash of the cells prior to performing the binding. Scatchard analysis of binding indicates that IRF secreted by the 1246-3A cells partially occupies high-affinity binding sites on the producer cells. Moreover, insulin monoclonal antibody inhibits the proliferation of the IRF-producing 1246-3A cells, suggesting that these cells are dependent on the secreted IRF for growth in culture. The authors conclude that the insulin-related factor secreted by the insulin-independent 1246-3A cells stimulates their proliferation in an autocrine fashion

  1. Catecholamines of the body tissues and radiosensitivity of rodents

    Energy Technology Data Exchange (ETDEWEB)

    Grayevskaya, V M; Zolotariova, N N [AN SSSR, Moscow. Inst. Morfologii Zhivotnykh

    1975-01-01

    Various species of rodents are distinguished by their radiosensitivity (increasing): bank vole < Wistar rat < wild mouse < CC/sub 57/Br mouse < golden hamster < BALB mouse < guinea pig. There is a positive correlation between radiosensitivity of these species and catecholamines content in the adrenals, urea and blood; and negative correlation between radiosensitivity and adrenaline and noradrenaline concentrations in liver and spleen cells. Presumable causes of this correlation, and the possibility of application of the index under study for predicting the organism radiosensitivity and forecasting the outcome of radiation damage are discussed.

  2. Catecholamine-o-methyltransferase polymorphisms are associated with postoperative pain intensity.

    LENUS (Irish Health Repository)

    Lee, Peter J

    2011-02-01

    single nucleotide polymorphisms (SNPs) in the genes for catecholamine-O-methyltransferase (COMT), μ-opioid receptor and GTP cyclohydrolase (GCH1) have been linked to acute and chronic pain states. COMT polymorphisms are associated with experimental pain sensitivity and a chronic pain state. No such association has been identified perioperatively. We carried out a prospective observational clinical trial to examine associations between these parameters and the development of postoperative pain in patients undergoing third molar (M3) extraction.

  3. Fatty acid desaturase (FADS gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: cross-sectional study

    Directory of Open Access Journals (Sweden)

    Yang Long In

    2011-04-01

    Full Text Available Abstract Background We investigated the relationship between fatty acid desaturase (FADS gene polymorphisms and insulin resistance (IR in association with serum phospholipid polyunsaturated fatty acid (FA composition in healthy Korean men. Methods Healthy men (n = 576, 30 ~ 79 years old were genotyped for rs174537 near FADS1 (FEN1-10154G>T, FADS2 (rs174575C>G, rs2727270C>T, and FADS3 (rs1000778C>T SNPs. Dietary intake, serum phospholipid FA composition and HOMA-IR were measured. Results Fasting insulin and HOMA-IR were significantly higher in the rs174575G allele carriers than the CC homozygotes, but lower in the rs2727270T allele carriers than the CC homozygotes. The proportion of linoleic acid (18:2ω-6, LA was higher in the minor allele carriers of FEN1-10154G>T, rs174575C>G and rs2727270C>T than the major homozygotes, respectively. On the other hand, the proportions of dihomo-γ-linolenic acid (20:3ω-6, DGLA and arachidonic acid (20:4ω-6, AA in serum phospholipids were significantly lower in the minor allele carriers of FEN1-10154 G>T carriers and rs2727270C>T than the major homozygotes respectively. AA was also significantly lower in the rs1000778T allele carriers than the CC homozygotes. HOMA-IR positively correlated with LA and DGLA and negatively with AA/DGLA in total subjects. Interestingly, rs174575G allele carriers showed remarkably higher HOMA-IR than the CC homozygotes when subjects had higher proportions of DLGA (≥1.412% in total serum phospholipid FA composition (P for interaction = 0.009 or of AA (≥4.573% (P for interaction = 0.047. Conclusion HOMA-IR is associated with FADS gene cluster as well as with FA composition in serum phospholipids. Additionally, HOMA-IR may be modulated by the interaction between rs174575C>G and the proportion of DGLA or AA in serum phospholipids.

  4. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes.

    Science.gov (United States)

    Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong

    2018-02-16

    Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Biochemical changes in tissue catecholamines and serotonin in duodenal ulceration caused by cysteamine or propionitrile in the rat

    International Nuclear Information System (INIS)

    Szabo, S.; Horner, H.C.; Maull, H.; Schnoor, J.; Chiueh, C.C.; Palkovits, M.

    1987-01-01

    Previous structure-activity and pharmacologic studies with duodenal ulcerogens cysteamine and propionitrile implicating catecholamines in the pathogenesis of duodenal ulceration have now been followed up by dose- and time-response biochemical investigations to assess the importance of monoamines in the development of duodenal ulcers. The concentrations of norepinephrine (noradrenaline), dopamine, serotonin and their metabolites were measured in total brain, brain regions, stomach, duodenum, pancreas and adrenals in the rat. Turnover of catecholamines was determined in rats pretreated with the inhibitor of tyrosine hydroxylase alpha-methyl-p-tyrosine. The duodenal ulcerogens caused a dose- and time-dependent depletion of norepinephrine in virtually all the tissues examined. The effect was maximal 4 or 7 hr after cysteamine or propionitrile, and norepinephrine levels returned to normal in 24 hr. Dopamine changes were selective and often biphasic, e.g., elevation in adrenals, biphasic in brain cortex, hippocampus and midbrain, but uniformly decreasing in glandular stomach and duodenum. In the median eminence dopamine levels decreased by 181 and 324% at 15 and 30 min, respectively, after cysteamine, but neither dopamine nor 3,4-dihydroxyphenylacetic acid was modified in the periventricular nucleus. Serotonin levels were relatively stable, revealing slight elevations or no changes in most of the tissues. The turnover of norepinephrine was accelerated by both chemicals in virtually all brain regions, but dopamine turnover was affected only in a few areas, e.g., in the corpus striatum and medulla oblongata cysteamine decreased dopamine turnover, whereas propionitrile first (at 1 hr) accelerated then (at 8 hr) significantly suppressed it.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Overnight changes of immune parameters and catecholamines are associated with mood and stress.

    Science.gov (United States)

    Rief, Winfried; Mills, Paul J; Ancoli-Israel, Sonia; Ziegler, Michael G; Pung, Meredith A; Dimsdale, Joel E

    2010-10-01

    To test the hypothesis that a nocturnal decrease of secretion of inflammation markers and catecholamines would be associated with mood and stress variables even after controlling for objective sleep variables. A total of 130 healthy volunteers participated in this study, spending 2 nights in the Gillin Laboratory of Sleep and Chronobiology at the University of California, San Diego, General Clinical Research Center. Blood samples were obtained before sleep (10:30 PM) and after awakening (6:30 AM) on the first day, and these samples were assayed for inflammatory biomarkers and catecholamines. On the second night, polysomnographic records were scored for objective sleep variables, e.g., total sleep time and wake after sleep onset. Self-rating scales for mood, stress, depression, and daily hassles were administered the second day. The nocturnal decrease in interleukin-6 was smaller in people who reported more negative mood or fatigue and greater in those who reported more uplift events (e.g., with Profile of Mood States fatigue r(p) = -.25 to -.30). People with high stress or high depression levels had smaller nocturnal decreases of epinephrine. That relationship was even stronger when partial correlations were used to control for morning level and sleep variables. The associations between nocturnal changes of C-reactive protein, soluble tumor necrosis factor-receptor I, and norepinephrine with psychological states were nonremarkable. The analyses of nocturnal change scores (difference scores) add substantial information compared with the traditional analyses of morning levels of immune variables and catecholamines alone. Subjective well-being is significantly associated with a greater nocturnal decrease of interleukin-6 and epinephrine. More research on nocturnal adaptation processes is warranted.

  7. Effect of dry period dietary energy level in dairy cattle on volume, concentrations of immunoglobulin G, insulin, and fatty acid composition of colostrum.

    Science.gov (United States)

    Mann, S; Leal Yepes, F A; Overton, T R; Lock, A L; Lamb, S V; Wakshlag, J J; Nydam, D V

    2016-02-01

    The objective was to investigate the effect of different dry cow feeding strategies on the volume, concentration of IgG and insulin, as well as fatty acid composition of colostrum. Our hypothesis was that different dry period diets formulated to resemble current feeding practices on commercial dairy farms and differing in plane of energy would have an effect on IgG and insulin concentration, as well as composition of fatty acid of colostrum. Animals (n=84) entering parity 2 or greater were dried off 57 d before expected parturition and fed either a diet formulated to meet, but not greatly exceed energy requirements throughout the dry period (CON), or a higher energy density diet, supplying approximately 150% of energy requirements (HI). A third group received the same diet as group CON from dry-off until 29 d before expected parturition. After this time point, from 28 d before expected parturition until calving, they received a diet formulated to supply approximately 125% of energy requirements (I-med). Concentration of IgG and insulin in colostrum were measured by radial immunodiffusion and RIA, respectively. Composition of fatty acids was determined by gas-liquid chromatography. The IgG concentration was highest in colostrum of cows in group CON [96.1 (95% CI: 83.3-108.9) g/L] and lowest in group HI [72.4 (60.3-84.5) g/L], whereas insulin concentration was highest in group HI [1,105 (960-1,250) μU/mL] and lowest in group CON [853 (700-1,007) μU/mL]. Colostrum yield did not differ between treatments and was 5.9 (4.5-7.4), 7.0 (5.6-8.4), and 7.3 (5.9-8.7) kg in groups CON, I-med, and HI, respectively. A multivariable linear regression model showed the effect of dietary treatment group on IgG concentration was independent of the effect of dry matter. Cows in groups CON, I-med, and HI had an average colostral fat percentage of 5.0 (4.1-5.9), 5.6 (4.8-6.4), and 6.0 (5.2-6.8) and an average fat yield of 289 (196-380), 406 (318-495), and 384 (295-473) g, respectively

  8. Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids.

    Science.gov (United States)

    Iannello, S; Camuto, M; Cavaleri, A; Milazzo, P; Pisano, M G; Bellomia, D; Belfiore, F

    2004-01-01

    Based on the known effect of metformin (MET) in improving insulin sensitivity in type 2 diabetes, with the scope to focus the effects on glycaemic and free fatty acids (FFA) levels, we studied the effects of a short-term treatment with this drug in obese subjects and obese patients with diabetes or family history of diabetes (FHD). We used a method to allow us to evaluate the possible difference of insulin sensibility with regard to the insulin action on glycaemia and blood FFA, both in the basal state and during oral glucose tolerance test (OGTT). Insulin sensitivity was investigated before and after MET treatment (850 mg bid for 10 days) in seven obese subjects with normal glucose tolerance and without FHD and 13 obese patients with diabetes (n=7) or FHD (n=6). By using specifically designed formulae, we calculated four insulin-sensitivity indices (ISI) from basal level (b) and area values (a) (during OGTT) of insulinaemia, glycaemia (gly) or FFA (ffa), namely: ISI (gly)-b, ISI (gly)-a, ISI (ffa)-b and ISI (ffa)-a. In patients with diabetes or FHD, MET improved ISI (gly)-b (0.79 +/- 0.06 vs. 0.59 +/- 0.07, p<0.001) and ISI (gly)-a (0.69 +/- 0.09 vs. 0.51 +/- 0.07, p<0.05), whereas only minor changes occurred for ISI (ffa)-b and ISI (ffa)-a. In contrast, in simple obese subjects, MET induced further deterioration of both ISI (gly)-a (0.47 +/- 0.07 vs. 0.64 +/- 0.10, p<0.01) and ISI (ffa)-a (0.43 +/- 0.07 vs. 0.55 +/- 0.08, p<0.05). Fasting level and total area of lactate were high in the obese patients and were not affected by MET. A statistically significant increase (p<0.01), however, was observed for the 'decremental' area of lactate in obese subjects with diabetes or FHD, which might probably contribute to the reduction of insulin resistance induced by the drug in these patients. Although the low number of subjects studied precludes absolute conclusions, data would suggest that MET improved ISI towards glucose but not towards FFA, in the diabetic and

  9. The acid-labile subunit of the ternary insulin-like growth factor complex in cirrhosis: relation to liver dysfunction

    DEFF Research Database (Denmark)

    Møller, S; Juul, A; Becker, U

    2000-01-01

    BACKGROUND/AIMS: In the circulation, insulin-like growth factor-I (IGF-I) is bound in a trimeric complex of 150 kDa with IGF binding protein-3 (IGFBP-3) and the acid-labile subunit (ALS). Whereas circulating IGF-I and IGFBP-3 are reported to be low in patients with chronic liver failure, the leve...... with significant relations to liver dysfunction and other components of the IGF complex. A small hepatic extraction was found in controls, which suggests extrahepatic production of ALS. Future studies should focus on organ-specific removal of ALS.......BACKGROUND/AIMS: In the circulation, insulin-like growth factor-I (IGF-I) is bound in a trimeric complex of 150 kDa with IGF binding protein-3 (IGFBP-3) and the acid-labile subunit (ALS). Whereas circulating IGF-I and IGFBP-3 are reported to be low in patients with chronic liver failure, the level...... of ALS has not been described in relation to hepatic dysfunction. The aim of the present study was therefore to measure circulating and hepatic venous concentrations of ALS in relation to hepatic function and the IGF axis. METHODS: Twenty-five patients with cirrhosis (Child class A/B/C:5/10/10) and 30...

  10. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism.

    Science.gov (United States)

    Shin, Andrew C; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J; Lapworth, Amanda L; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M; Scheja, Ludger; Grove, Kevin L; Smith, Richard D; Qian, Wei-Jun; Lynch, Christopher J; Newgard, Christopher B; Buettner, Christoph

    2014-11-04

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in nonhuman primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Watery diarrhea syndrome in an adult with ganglioneuroma-pheochromocytoma: identification of vasoactive intestinal peptide, calcitonin, and catecholamines and assessment of their biologic activity.

    Science.gov (United States)

    Trump, D L; Livingston, J N; Baylin, S B

    1977-10-01

    A case of adult ganglioneuroma-pheochromocytoma with an associated watery diarrhea syndrome is reported. High levels of vasoactive intestinal peptide (VIP) were found in preoperative serum and in tumor tissue. The serum VIP levels fell to normal, and the watery diarrhae syndrome completely ceased following removal of the tumor. In addition to containing VIP, the tumor was rich in catecholamines, and calcitonin. Peptide hormone-containing extracts and catecholamine extracts from the tumor both activated the adenyl cyclase system and increased lipolytic activity in a preparation of isolated rat fat cells. The findings in this patient further link VIP with neural crest tissues, and suggest the importance of determining catecholamine levels in patients with the watery diarrhea syndrome.

  12. Insulin degradation products from perfused rat kidney

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Peavy, D.; Frank, B.; Rabkin, R.

    1989-01-01

    The kidney is a major site for insulin metabolism, but the enzymes involved and the products generated have not been established. To examine the products, we have perfused rat kidneys with insulin specifically iodinated on either the A14 or the B26 tyrosine. Labeled material from both the perfusate and kidney extract was examined by Sephadex G50 and high-performance liquid chromatography (HPLC). In perfusate from a filtering kidney, 22% of the insulin-sized material was not intact insulin on HPLC. With the nonfiltering kidney, 10.6% was not intact insulin. Labeled material from HPLC was sulfitolyzed and reinjected on HPLC. By use of 125 I-iodo(A14)-insulin, almost all the degradation products contained an intact A-chain. By use of 125 I-iodo(B26)-insulin, several different B-chain-cleaved products were obtained. The material extracted from the perfused kidney was different from perfusate products but similar to intracellular products from hepatocytes, suggesting that cellular metabolism by kidney and liver are similar. The major intracellular product had characteristics consistent with a cleavage between the B16 and B17 amino acids. This product and several of the perfusate products are also produced by insulin protease suggesting that this enzyme is involved in the degradation of insulin by kidney

  13. The effects of mind-body training on stress reduction, positive affect, and plasma catecholamines.

    Science.gov (United States)

    Jung, Ye-Ha; Kang, Do-Hyung; Jang, Joon Hwan; Park, Hye Yoon; Byun, Min Soo; Kwon, Soo Jin; Jang, Go-Eun; Lee, Ul Soon; An, Seung Chan; Kwon, Jun Soo

    2010-07-26

    This study was designed to assess the association between stress, positive affect and catecholamine levels in meditation and control groups. The meditation group consisted of 67 subjects who regularly engaged in mind-body training of "Brain-Wave Vibration" and the control group consisted of 57 healthy subjects. Plasma catecholamine (norepinephrine (NE), epinephrine (E), and dopamine (DA)) levels were measured, and a modified form of the Stress Response Inventory (SRI-MF) and the Positive Affect and Negative Affect Scale (PANAS) were administered. The meditation group showed higher scores on positive affect (p=.019) and lower scores on stress (pmind-body training is associated with lower stress, higher positive affect and higher plasma DA levels when comparing the meditation group with the control group. Thus, mind-body training may influence stress, positive affect and the sympathetic nervous system including DA activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Blocking of beta-2 adrenergic receptors hastens recovery from hypoglycemia-associated social withdrawal.

    Science.gov (United States)

    Park, Min Jung; Guest, Christopher B; Barnes, Meredith B; Martin, Jonathan; Ahmad, Uzma; York, Jason M; Freund, Gregory G

    2008-11-01

    Hypoglycemia is associated with a variety of adverse behaviors including fatigue, confusion and social withdrawal. While these clinical symptoms are well characterized, the mechanism of their cause is not understood. Here we investigated how insulin-induced hypoglycemia causes social withdrawal. Male 8-12-week-old C57BL/6J mice were injected intraperitoneally (IP) with or without and/or insulin, norepinephrine (NE) and epinephrine (Epi), terbutaline and butoxamine with subsequent measurement of blood glucose, social withdrawal and plasma catecholamines. Insulin generated (0.75h post-injection) significant hypoglycemia with blood glucose nadirs of 64+/-4 and 48+/-5mg/dl for 0.8 and 1.2units/kg of insulin, respectively. Insulin (0.8 or 1.2units/kg) caused near total social withdrawal at 0.75h with full recovery not occurring until 4h (0.8units/kg) or 8h (1.2units/kg) post-insulin injection. Insulin also caused a marked elevation in plasma catecholamines. Basal 12h fasting NE and Epi were 287+/-38 and 350+/-47pg/ml, respectively. Insulin at 0.8units/kg increased plasma NE and Epi to 994+/-73 and 1842+/-473pg/ml, respectively. Administration of exogenous NE or Epi caused social withdrawal similar in magnitude to insulin. Importantly, administration of the beta-2 adrenergic receptor agonist terbutaline also caused social withdrawal while administration of the beta-2 adrenergic receptor antagonist butoxamine blocked NE-induced social withdrawal. Finally, butoxamine blocked insulin-induced social withdrawal. These data demonstrate that hypoglycemia-associated social withdrawal is dependent on catecholamines via a beta-2 receptor-mediated pathway.

  15. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    Science.gov (United States)

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic

  16. Effects of exercise training and diet on lipid kinetics during free fatty acid-induced insulin resistance in older obese humans with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Solomon, Thomas; Haus, Jacob M; Marchetti, Christine M

    2009-01-01

    Elevated free fatty acids (FFA) are implicated with insulin resistance at the cellular level. However, the contribution of whole body lipid kinetics to FFA-induced insulin resistance is not well understood, and the effect of exercise and diet on this metabolic defect is not known. We investigated...... the effect of 12 wk of exercise training with and without caloric restriction on FFA turnover and oxidation (FFA(ox)) during acute FFA-induced insulin resistance. Sixteen obese subjects with impaired glucose tolerance were randomized to either a hypocaloric (n = 8; -598 +/- 125 kcal/day, 66 +/- 1 yr, 32.......8 +/- 1.8 kg/m(2)) or a eucaloric (n = 8; 67 +/- 2 yr, 35.3 +/- 2.1 kg/m(2)) diet and aerobic exercise (1 h/day at 65% of maximal oxygen uptake) regimen. Lipid kinetics ([1-(14)C]palmitate) were assessed throughout a 7-h, 40 mU x m(-2) x min(-1) hyperinsulinemic euglycemic clamp, during which insulin...

  17. Lack of association between the fatty acid binding protein 2 (FABP2) polymorphism with obesity and insulin resistance in two aboriginal populations from Chile.

    Science.gov (United States)

    Pérez-Bravo, F; Fuentes, M; Angel, B; Sanchez, H; Carrasco, E; Santos, J L; Lera, L; Albala, C

    2006-12-01

    The aim of this study was to assess the frequency of fatty acid binding protein 2 (FABP2) Ala54Thr genetic polymorphism and to evaluate its association with obesity and insulin resistance in Chilean aboriginal populations. A sample of 96 urban Aymara and 111 urban Mapuche subjects aged 20-80 years were recruited for this cross-sectional study. Glucose, insulin and lipid profile were measured in fasting plasma samples. Insulin resistance was estimated through the HOMA-IR model. FABP2 Ala54Thr genotypes were determined by PCR followed by RFLP analysis. The allele frequency of Thr54 variant was estimated as 18.2% in Aymara subjects, which is one of the lowest reported to date. The corresponding frequency in Mapuche subjects was 31.9% (pMapuche group: OR=2.37, 95% CI 1.319-4.277, p=0.004) It is unlikely that Ala54Thr polymorphism of the FABP2 gene plays a relevant role in obesity and insulin resistance in Chilean ethnic groups.

  18. Branched Chain Amino Acids Are Associated with Insulin Resistance Independent of Leptin and Adiponectin in Subjects with Varying Degrees of Glucose Tolerance.

    Science.gov (United States)

    Connelly, Margery A; Wolak-Dinsmore, Justyna; Dullaart, Robin P F

    2017-05-01

    Branched chain amino acids (BCAA) may be involved in the pathogenesis of insulin resistance and are associated with type 2 diabetes mellitus (T2DM) development. Adipokines such as leptin and adiponectin influence insulin resistance and reflect adipocyte dysfunction. We examined the extent to which the association of BCAA with insulin resistance is attributable to altered leptin and adiponectin levels in individuals with varying degrees of glucose tolerance. BCAA were measured by nuclear magnetic resonance, whereas leptin and adiponectin were measured by immunoassay, in subjects with normal fasting glucose (n = 30), impaired fasting glucose (n = 25), and T2DM (n = 15). Insulin resistance was estimated by homeostasis model assessment (HOMAir). BCAA were higher in men than in women (P BCAA were correlated with HOMAir (r = 0.46; P  0.05). Multivariable linear regression analysis, adjusting for age, sex, T2DM, and body mass index (BMI), demonstrated that BCAA were positively associated with HOMAir (β = 0.242, P = 0.023). When BCAA, leptin, and adiponectin were included together, the positive relationship of HOMAir with BCAA (β = 0.275, P = 0.012) remained significant. Insulin resistance was associated with BCAA. This association remained after adjusting for age, sex, T2DM, BMI, as well as leptin and adiponectin. It is unlikely that the relationship of insulin resistance with BCAA is to a major extent attributable to effects of leptin and adiponectin.

  19. Night-rest urinary catecholamine excretion in relation to aspects of free time, work and background data in a teacher group.

    Science.gov (United States)

    Kinnunen, U; Vihko, V

    1991-01-01

    Free time, work and background data were related to night-rest catecholamine excretion rates in a teacher group (n = 137) during an autumn term. The explained interindividual variance increased slightly towards the end of the term. Adrenaline excretion was predicted better than noradrenaline, notedly by coffee consumption, amount of physical activity, and subjective stress feelings which explained 16% of the variance in adrenaline excretion during night rest. However, the results indicated that the differences in catecholamine excretion during night rest remained mostly unpredictable.

  20. Differential effects of catecholamines on in vitro growth of pathogenic bacteria

    Science.gov (United States)

    Belay, Tesfaye; Sonnenfeld, Gerald

    2002-01-01

    Supplementation of minimal medium inoculated with bacterial cultures with norepinephrine, epinephrine, dopamine, or isoproterenol resulted in marked increases in growth compared to controls. Norepinephrine and dopamine had the greatest enhancing effects on growth of cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae, while epinephrine and isoproterenol also enhanced growth to a lesser extent. The growth of Escherichia coli in the presence of norepinephrine was greater than growth in the presence of the three other neurochemicals used in the study. Growth of Staphylococcus aureus was also enhanced in the presence of norepinephrine, but not to the same degree as was the growth of gram negative bacteria. Addition of culture supernatants from E. coli cultures that had been grown in the presence of norepinephrine was able to enhance the growth of K. pneumoniae. Addition of the culture supernatant fluid culture from E. coli cultures that had been grown in the presence of norepinephrine did not enhance growth of P. aeruginosa or S. aureus. Culture supernatant fluids from bacteria other than E. coli grown in the presence of norepinephrine were not able to enhance the growth of any bacteria tested. The results suggest that catecholamines can enhance growth of pathogenic bacteria, which may contribute to development of pathogenesis; however, there is no uniform effect of catecholamines on bacterial growth.

  1. Skeletal muscle inflammation and insulin resistance in obesity

    Science.gov (United States)

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  2. Effects of acupuncture on peripheral T lymphocyte subpopulation and amounts of cerebral catecholamines in mice.

    Science.gov (United States)

    Okumura, M; Toriizuka, K; Iijima, K; Haruyama, K; Ishino, S; Cyong, J C

    1999-01-01

    The aim of this study was to investigate the effects of acupuncture on peripheral lymphocyte subpopulations and cerebral catecholamines. In order to examine the effects of acupuncture, two experiments were performed. Experiment 1: Eighteen female mice (strain; C57BL/6) at the age of 7 weeks were divided three groups, (a) sham operated (control; n=6), (b) ovariectomized (OVX; n=6), and (c) ovariectomized and stimulated by subcutaneous needles on acupuncture point, Shenshu (BL23) at the both sides of the back for 20 days (OVX+Acu; n=6). These animals were sacrificed at 20 days after needle insertion, and the splenic lymphoid cells were examined by two-color flow cytometry, using monoclonal antibodies (mAb) to the cell surface antigens, CD3, CD4, CD8a and NK1.1 (CD56). In the ovariectomized (OVX) group, the peripheral CD4/CD8 ratio was significantly increased and the ratio of natural killer (NK) cells (CD3-NK1.1+; CD3 negative, NK1.1 positive) to T lymphocytes was decreased compared to the sham control group. In the ovariectomized with needle insertion (OVX+Acu) group, the CD4/CD8 ratio was reduced, but the NK cells ratio was not changed compared to the OVX group. Experiment 2: To investigate the acute effects of subcutaneous needle insertion, male C57BL/6 mice (7 weeks old) were used (n=6, each group). The acupuncture points Shen-shu (BL23) on the backs of the male mice were also stimulated by subcutaneous needles for 3 and 7 days. As a result, the CD4/CD8 ratio was significantly decreased at day 3 and day 7, compared to the control group. On the other hand the NK cells ratio and activated T-cells were increased at day 7. The mitogenic activities in the splenic lymphocytes were also increased by acupuncture stimulation at day 3. Catecholamine contents in the hippocampus were measured by high performance liquid chromatography with the electro-chemical detector (ECD-HPLC) method. No significant change was observed in either dopamine contents or norepinephrine; however

  3. Novel insulin from the bullfrog: its structure and function in protein secretion by hepatocytes

    International Nuclear Information System (INIS)

    Hulsebus, J.J.

    1987-01-01

    Bullfrog insulin was extracted and purified from the pancreas of Rana catesbeiana adults using gel filtration and reverse phase high performance liquid chromatography. Amino acid analysis of bullfrog insulin revealed 52 amino acids instead of the most common number of 51. The most unique features of bullfrog insulin is a two amino acid extension on the amino terminus (A1) of the A chain. This is the only insulin to date that has an extension at this position. Bullfrog and porcine insulin increase protein secretion from bullfrog adult and three developmental stages of tadpole hepatocytes in a totally defined, serum-free culture system. The hormone slightly stimulates protein secretion by premetamorphic and early prometamorphic tadpoles. Late prometamorphic tadpoles respond to bullfrog and porcine insulin with higher concentrations of secreted protein than either of the two previous developmental stages. Insulin treated adult hepatocytes secrete significantly higher concentrations of protein than any of the tadpole stages. 35 S-methionine and 35 S-cysteine were added to the culture medium for twelve hours. Proteins secreted into the medium were separated using SDS polyacrylamide linear gradient gels. Densitometer scans of autoradiograms did not show an increases in any specific proteins, but did show a generalized increase in all secreted proteins for both adults, and tadpoles

  4. Catecholamine and insulin control of lipolysis in subcutaneous adipose tissue during long-term diet-induced weight loss in obese women

    DEFF Research Database (Denmark)

    Koppo, Katrien; Siklová-Vitková, Michaela; Klimcáková, Eva

    2012-01-01

    The aim of this study was to investigate the evolution of the adrenergic and insulin-mediated regulation of lipolysis during different phases of a 6-mo dietary intervention. Eight obese women underwent a 6-mo dietary intervention consisting of a 1-mo very low-calorie diet (VLCD) followed by a 2-mo...

  5. Influence of metformin and insulin on myocardial substrate oxidation under conditions encountered during cardiac surgery.

    Science.gov (United States)

    Holmes, Cyonna; Powell, LaShondra; Clarke, Nicholas S; Jessen, Michael E; Peltz, Matthias

    2018-02-01

    The influence of diabetic therapies on myocardial substrate selection during cardiac surgery is unknown but may be important to ensure optimal surgical outcomes. We hypothesized that metformin and insulin alter myocardial substrate selection during cardiac surgery and may affect reperfusion cardiac function. Rat hearts (n = 8 per group) were evaluated under 3 metabolic conditions: normokalemia, cardioplegia, or bypass. Groups were perfused with Krebs-Henseleit buffer in the presence of no additives, metformin, insulin, or both insulin and metformin. Perfusion buffer containing physiologic concentrations of energetic substrates with different carbon-13 ( 13 C) labeling patterns were used to determine substrate oxidation preferences using 13 C magnetic resonance spectroscopy and glutamate isotopomer analysis. Rate pressure product and oxygen consumption were measured. Myocardial function was not different between groups. For normokalemia, ketone oxidation was reduced in the presence of insulin and the combination of metformin and insulin reduced fatty acid oxidation. Metformin reduced fatty acid and ketone oxidation during cardioplegia. Fatty acid oxidation was increased in the bypass group compared with all other conditions. Metformin and insulin affect substrate utilization and reduce fatty acid oxidation before reperfusion. These alterations in substrate oxidation did not affect myocardial function in otherwise normal hearts. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Natalizumab Modifies Catecholamines Levels Present in Patients with Relapsing- Remitting Multiple Sclerosis.

    Science.gov (United States)

    Escribano, Begona M; Aguilar-Luque, Macarena; Bahamonde, Carmen; Conde, Cristina; Lillo, Rafael; Sanchez-Lopez, Fernando; Giraldo, Ana I; Cruz, Antonio H; Luque, Evelio; Gascon, Felix; Aguera, Eduardo; Tunez, Isaac

    2016-01-01

    The main aim of this study was to verify the effect of natalizumab on the levels of circulating catecholamines and indolamine and their possible relation with MS. For this purpose, 12 healthy individuals (control group) and 12 relapsing-remitting multiple sclerosis patients (RR-MS) were selected. The patients were treated with 300 mg of natalizumab during 56 weeks (1 dose/4 weeks) (MS-56). This selection was based on the McDonalds revision criterion and scheduled to star treatment with natalizumab. Blood samples were taken before treatment (basal level) and after 56 weeks of using natalizumab. Melatonin was measured in serum and in plasma, catecholamines (dopamine, epinephrine, and norepinephrine), carbonylated proteins, 8-hydroxy-2'deoxyguanosine (8OH-dG) and the ratio reduced glutathione/oxidised glutathione (GSH/GSSG). The epinephrine and dopamine levels diminished in the basal group with respect to the control and did not recover normal levels with the treatment. The melatonin was decreased in RR-MS patients and went back to its normal levels with natalizumab. Norepinephrine was increased in RR-MS and decreased in MS-56 until it equalled the control group. Natalizumab normalizes altered melatonin and norepinephrine levels in MS.

  7. Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links

    Science.gov (United States)

    Samuel, Varman T.; Shulman, Gerald I.

    2012-01-01

    Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956

  8. Hydrocortisone Therapy in Catecholamine-Resistant Pediatric Septic Shock: A Pragmatic Analysis of Clinician Practice and Association With Outcomes.

    Science.gov (United States)

    Nichols, Blake; Kubis, Sherri; Hewlett, Jennifer; Yehya, Nadir; Srinivasan, Vijay

    2017-09-01

    The 2012 Surviving Sepsis Campaign pediatric guidelines recommend stress dose hydrocortisone in children experiencing catecholamine-dependent septic shock with suspected or proven absolute adrenal insufficiency. We evaluated whether stress dose hydrocortisone therapy in children with catecholamine dependent septic shock correlated with random serum total cortisol levels and was associated with improved outcomes. Retrospective cohort study. Non-cardiac PICU. Critically ill children (1 mo to 18 yr) admitted between January 1, 2013, and December 31, 2013, with catecholamine dependent septic shock who had random serum total cortisol levels measured prior to potential stress dose hydrocortisone therapy. None. The cohort was dichotomized to random serum total cortisol less than 18 mcg/dL and greater than or equal to 18 mcg/dL. Associations of stress dose hydrocortisone with outcomes: PICU mortality, PICU and hospital length of stay, ventilator-free days, and vasopressor-free days were examined. Seventy children with catecholamine-dependent septic shock and measured random serum total cortisol levels were eligible (16% PICU mortality). Although 43% (30/70) had random serum total cortisol less than 18 μg/dL, 60% (42/70) received stress dose hydrocortisone. Children with random serum total cortisol less than 18 μg/dL had lower severity of illness and lower Vasopressor Inotrope Scores than those with random serum total cortisol greater than or equal to 18 μg/dL (all p stress dose hydrocortisone had higher severity of illness and PICU mortality than those without stress dose hydrocortisone (all p stress dose hydrocortisone (21.1 vs 18.7 μg/dL; p = 0.69). In children with random serum total cortisol less than 18 μg/dL, stress dose hydrocortisone was associated with greater PICU and hospital length of stay and fewer ventilator-free days (all p stress dose hydrocortisone was associated with greater PICU mortality and fewer ventilator-free days and vasopressor-free days (all

  9. Effects of chemical sympathectomy on the increases in plasma catecholamines and dopamine-beta-hydroxylase induced by forced immobilization and insulin-induced hypoglycemia: origin and fate of plasma dopamine-beta-hydroxylase.

    Science.gov (United States)

    Israel, A S; Barbella, Y R; Cubeddu, L X

    1982-06-01

    The effect of acute stresses on plasma norepinephrine, epinephrine and dopamine-beta-hydroxylase (DBH) were evaluated in control and 6-hydroxydopamine-treated, awake cannulated guinea pigs. Forced immobolization for 1 hr caused a 3- and 5-fold increase in plasma DBH and norepinephrine, respectively. Pretreatment with 6-hydroxydopamine (23 mg/kg b.wt.i.a., 72 and 48 hr before stress) reduced by 70% the increase in plasma DBH and totally prevented the rise in plasma catecholamines evoked by the restraining stress. Injection of insulin (5 U/kg b.wt.i.a.) induced a 60% decrease in blood glucose, a 1-fold increase in plasma DBH and a selective 4-fold increase in plasma epinephrine; these effects were not modified by chemical sympathectomy. Our results indicate that forced immobilization and hypoglycemia produce a preferential activation of the sympathetic postganglionic nerves and of the adrenal medulla, respectively, and that in guinea pigs both stresses increase plasma DBH. The kinetics of disappearance of plasma DBH were studied after subjecting the guinea pigs for 1 hr to forced immobilization. Although 7 of 12 animals showed a biphasic rate of fall of plasma DBH, in each case there was a rapid initial fall possibly due to the "distribution" of the enzyme with a T1/2 of 1.65 hr. Similar findings were observed in 6-hydroxydopamine-treated guinea pigs. These results suggest that the distribution of DBH is the most important process in reducing the augmented plasma DBH levels elicited by a short-term stress and that this process is not dependent on the integrity of the sympathetic nerves nor on the adrenal or sympathetic origin of the enzyme. This study supports the view that the ratio, content of releasable DBH present in sympathetic nerves and adrenal glands/total circulating pool of DBH, is the factor that determines whether an increase in plasma DBH would occur in animals exposed to an acute stress.

  10. Genetic regulation of catecholamine synthesis, storage and secretion in the spontaneously hypertensive rat

    Czech Academy of Sciences Publication Activity Database

    Jirout, M. L.; Friese, R. S.; Mahapatra, N. R.; Mahata, M.; Taupenot, L.; Mahata, S. K.; Křen, V.; Zídek, Václav; Fischer, J.; Maatz, H.; Ziegler, M. G.; Pravenec, Michal; Hubner, N.; Aitman, T. J.; Schork, N. J.; O´Connor, D. T.

    2010-01-01

    Roč. 19, č. 13 (2010), s. 2567-2580 ISSN 0964-6906 R&D Projects: GA AV ČR(CZ) IAA500110604 Grant - others:HHMI(US) HHMI Institutional research plan: CEZ:AV0Z50110509 Keywords : spontaneously hypertensive rat * catecholamines * blood pressure Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.058, year: 2010

  11. Arterial bicarbonate may be a useful indicator of inadequate cortisol response in children with catecholamine resistant septic shock

    Directory of Open Access Journals (Sweden)

    M B Maralihalli

    2013-01-01

    Full Text Available Objective: To study the clinical and biochemical parameters that can predict cortisol insufficiency in children with septic shock. Design: prospective, observational study. Setting: tertiary health-care center. Patients/Subjects: Fifty children admitted with the catecholamine resistant septic shock to a tertiary health-care center. Materials and Methods: At the time of hospitalization all patients underwent detailed clinical evaluation including, history and physical examination, evaluation with the complete blood count, serum cortisol, renal function tests, liver function tests, prothrombin time activated partial thromboplastin time, arterial blood gas analysis, urine analysis, chest roentgenogram, ultrasonography of the abdomen and chest, urine, and blood culture for bacteria and fungi. Results: Out of 50 children with the catecholamine resistant septic shock, seven had adrenal insufficiency (serum cortisol <18 μg/dl. Of all parameters studied, only arterial bicarbonate at the time of admission to intensive care predicted adrenal insufficiency. On Receptor operative characteristic curve analysis, a bicarbonate level of 10.9 mEq/L had the best accuracy to predict adrenal insufficiency. Conclusion: Arterial bicarbonate may be used as a rapid test for provisional identification of adrenal insufficiency among children with the catecholamine resistant septic shock.

  12. Development of a bioassay system for investigating insulin resistance factors of pregnancy

    International Nuclear Information System (INIS)

    Hausman, D.B.; Singh, R.; Martin, R.J.

    1986-01-01

    To determine if late-term pregnant serum and/or placenta could induce insulin resistance in normal adipose cells, the authors have developed an insulin sensitive bioassay system. Cells isolated from epididymal fat pads of 250-275 g Sprague Dawley rats are preincubated for 3 hours at 37 0 in media 199 and serum or placental extract. The cells are washed free of serum and tested for metabolic activity in a 2 hour incubation which measures the conversion of U- 14 C-glucose to 14 CO 2 and to 14 C-triglyceride fatty acids under basal and insulin stimulated conditions. Maximal insulin responsiveness (350-450% basal for CO 2 and 1400-1700% basal for fatty acids) is achieved using Worthington Type II collagenase and a 45-60 minute digestion period for cell isolations and Krebs-Ringer bicarbonate buffer containing 0.5 mM glucose, 2% Armour bovine serum albumin (CRG-7), 1000 μU/ml insulin and 110,000 to 120,000 cells in the 2 hour incubations. Using this bioasssay system the authors have found that insulin responsiveness, in terms of glucose conversion to fatty acids, is unchanged when cells are preincubated with 5% control pig serum but reduced following preincubation with late pregnant (110 day) pig serum. In future experiments the authors hope to further characterize the factor(s) in pregnant serum responsible for inducing this metabolic effect

  13. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: possible role for PTP1B.

    Science.gov (United States)

    Ormazabal, Paulina; Scazzocchio, Beatrice; Varì, Rosaria; Santangelo, Carmela; D'Archivio, Massimo; Silecchia, Gianfranco; Iacovelli, Annunziata; Giovannini, Claudio; Masella, Roberta

    2018-05-16

    The occurrence of chronic inflammation in visceral adipose tissue (VAT) in obese subjects precipitates the development of insulin resistance and type 2 diabetes (T2D). Anthocyanins and their main metabolite protocatechuic acid (PCA) have been demonstrated to stimulate insulin signaling in human adipocytes. The aim of this study was to investigate whether PCA is able to modulate insulin responsiveness and inflammation in VAT from obese (OB) and normal weight (NW) subjects. VATs obtained from NW and OB subjects were incubated or not (control) with 100 μM PCA for 24 h. After incubation, tissues untreated and treated with PCA were acutely stimulated with insulin (20 nM, 20 min). PTP1B, p65 NF-κB, phospho-p65 NF-κB, IRS-1, IRβ, Akt, GLUT4 as well as basal and insulin-stimulated Tyr-IRS-1 and Ser-Akt phosphorylations were assessed by Western blotting in NW- and OB-VAT. Samples were assessed for PTP1B activity and adipocytokine secretion. PCA restored insulin-induced phosphorylation in OB-VAT by increasing phospho-Tyr-IRS-1 and phospho-Ser-Akt after insulin stimulation as observed in NW-VAT (p < 0.05). PTP1B activity was lower in OB-VAT treated with PCA with respect to untreated (p < 0.05). Compared to non-treated tissues, PCA reduced phospho-p65 NF-κB and IL-6 in OB-VAT, and IL-1β in NW-VAT (p < 0.05); and increased adiponectin secretion in NW-VAT (p < 0.05). PCA restores the insulin responsiveness of OB-VAT by increasing IRS-1 and Akt phosphorylation which could be related with the lower PTP1B activity found in PCA-treated OB-VAT. Furthermore, PCA diminishes inflammation in VAT. These results support the beneficial role of an anthocyanin-rich diet against inflammation and insulin resistance in obesity.

  14. Effects of niacin supplementation on the insulin resistance in Holstein cows during early lactation

    Directory of Open Access Journals (Sweden)

    Talija Hristovska

    2017-01-01

    Full Text Available Insulin resistance in early lactation includes low glucose concentration, low insulin release and responsiveness and high lipolysis. Niacin is important antilipolytic agent and leads to increase glucose and insulin concentration. The objectives of this study were to determine the influence of niacin on the insulin resistance in cows during early lactation using the difference of value and regression analysis between blood non-esterified fatty acid (NEFA, glucose and insulin concentrations, revised quantitative insulin sensitivity check index and glucose-to-insulin ratio. Niacin supplementation led to a decrease of NEFA concentration and an increase of glucose and insulin concentrations during the first three weeks after calving. Cows in the niacin group which were more resistant to insulin showed higher concentrations of non-esterified fatty acid in comparison with more sensitive cows from the same group, but still lower than the control. The regression analyses suggest the following characteristics of cows supplemented with niacin in comparison with the control group: the insulin response to glucose was more intense; the antilipolytic effect of insulin was lower; insulin efficiency expressed as glucose-to-insulin ratio increase with a decrease in NEFA. The metabolic changes due to niacin supplementation showed a dual influence on the insulin resistance in dairy cows during early lactation: decreased NEFA concentrations led to a decrease in the insulin resistance (due to an increase in insulin efficiency and insulin sensitivity index, but increased concentrations of insulin and glucose possibly caused an increase in the insulin resistance in dairy cows (due to lower insulin sensitivity index and possibly lower antilipolytic effects of insulin.

  15. Dissection of the insulin signaling pathway via quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Krüger, Marcus; Kratchmarova, Irina; Blagoev, Blagoy

    2008-01-01

    spectrum of the tyrosine phosphorylation cascade, we have defined the tyrosine-phosphoproteome of the insulin signaling pathway, using high resolution mass spectrometry in combination with phosphotyrosine immunoprecipitation and stable isotope labeling by amino acids in cell culture (SILAC......The insulin signaling pathway is of pivotal importance in metabolic diseases, such as diabetes, and in cellular processes, such as aging. Insulin activates a tyrosine phosphorylation cascade that branches to create a complex network affecting multiple biological processes. To understand the full...

  16. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. © 2016 Society for Endocrinology.

  17. Combining insulins for optimal blood glucose control in type 1 and 2 diabetes: focus on insulin glulisine

    Directory of Open Access Journals (Sweden)

    Heather Ulrich

    2007-07-01

    Full Text Available Heather Ulrich1,4, Benjamin Snyder1,Satish K Garg1,2,31Barbara Davis Center for Childhood Diabetes; 2Department of Medicine; 3Pediatrics; 4Department of Clinical Pharmacy, School of Pharmacy, University of Colorado at Denver and Health Sciences Center, Denver, CO, USAAbstract: Normalization of blood glucose is essential for the prevention of diabetes mellitus (DM-related microvascular and macrovascular complications. Despite substantial literature to support the benefits of glucose lowering and clear treatment targets, glycemic control remains suboptimal for most people with DM in the United States. Pharmacokinetic limitations of conventional insulins have been a barrier to achieving treatment targets secondary to adverse effects such as hypoglycemia and weight gain. Recombinant DNA technology has allowed modification of the insulin molecule to produce insulin analogues that overcome these pharmacokinetic limitations. With time action profiles that more closely mimic physiologic insulin secretion, rapid acting insulin analogues (RAAs reduce post-prandial glucose excursions and hypoglycemia when compared to regular human insulin (RHI. Insulin glulisine (Apidra® is a rapid-acting insulin analogue created by substituting lysine for asparagine at position B3 and glutamic acid for lysine at position B29 on the B chain of human insulin. The quick absorption of insulin glulisine more closely reproduces physiologic first-phase insulin secretion and its rapid acting profile is maintained across patient subtypes. Clinical trials have demonstrated comparable or greater efficacy of insulin glulisine versus insulin lispro or RHI, respectively. Efficacy is maintained even when insulin glulisine is administered post-meal. In addition, glulisine appears to have a more rapid time action profile compared with insulin lispro across various body mass indexes (BMIs. The safety and tolerability profile of insulin glulisine is also comparable to that of insulin

  18. The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD, implying a potential relationship with the insulin signaling pathway.

  19. Subcutaneous blood flow during insulin-induced hypoglycaemia: studies in juvenile diabetics with and without autonomic neuropathy and in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Hilsted, J; Madsbad, S; Sestoft, L

    1982-08-01

    Subcutaneous blood flow was measured preceding insulin-induced hypoglycaemia, at the onset of hypoglycaemic symptoms and 2 h later in juvenile diabetics with and without autonomic neuropathy and in normal males. In all groups subcutaneous blood flow decreased at the onset of hypoglycaemic symptoms compared with pre-hypoglycaemic flow. Two hours after onset of hypoglycaemic symptoms, subcutaneous blood flow was still significantly decreased compared with pre-hypoglycaemic flow. In normal subjects local nerve blockade had no effect on blood flow changes during hypoglycaemia, whereas local alpha-receptor blockade abolished the vasoconstrictor response. We suggest that circulating catecholamines stimulating vascular alpha-receptors are probably responsible for flow reduction in the subcutaneous tissue during hypoglycaemia.

  20. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer-enzyme hybrid system.

    Science.gov (United States)

    Huang, Hui; Gao, Yuan; Shi, Fanping; Wang, Guannan; Shah, Syed Mazhar; Su, Xingguang

    2012-03-21

    In this paper, a sensitive water-soluble fluorescent conjugated polymer biosensor for catecholamine (dopamine DA, adrenaline AD and norepinephrine NE) was developed. In the presence of horse radish peroxidase (HRP) and H(2)O(2), catecholamine could be oxidized and the oxidation product of catecholamine could quench the photoluminescence (PL) intensity of poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylethynylenealt-1,4-poly(phenylene ethynylene)) (PPESO(3)). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of DA, AD and NE in the concentration ranges of 5.0 × 10(-7) to 1.4 × 10(-4), 5.0 × 10(-6) to 5.0 × 10(-4), and 5.0 × 10(-6) to 5.0 × 10(-4) mol L(-1), respectively. The detection limit for DA, AD and NE was 1.4 × 10(-7) mol L(-1), 1.0 × 10(-6) and 1.0 × 10(-6) mol L(-1), respectively. The PPESO(3)-enzyme hybrid system based on the fluorescence quenching method was successfully applied for the determination of catecholamine in human serum samples with good accuracy and satisfactory recovery. The results were in good agreement with those provided by the HPLC-MS method.

  1. Inverse association between serum phospholipid oleic acid and insulin resistance in subjects with primary dyslipidaemia.

    Science.gov (United States)

    Sala-Vila, A; Cofán, M; Mateo-Gallego, R; Cenarro, A; Civeira, F; Ortega, E; Ros, E

    2011-10-01

    Data on intake of oleic acid (OA) and insulin resistance (IR) are inconsistent. We investigated whether OA in serum phosphatidylcholine relates to surrogate measures of IR in dyslipidaemic subjects from a Mediterranean population. Cross-sectional study of 361 non-diabetic subjects (205 men, 156 women; mean age 44 and 46 y, respectively; BMI 25.7 kg/m(2)). IR was diagnosed by BMI and HOMA values using published criteria validated against the euglycemic clamp. Alternatively, IR was defined by the 75th percentile of HOMA-IR of our study population. The fatty acid composition of serum phosphatidylcholine was determined by gas-chromatography. The mean (±SD) proportion of OA was 11.7 ± 2.0%. Ninety-two subjects (25.5%) had IR. By adjusted logistic regression, including the proportions of other fatty acids known to relate to IR, the odds ratios (OR) (95% confidence intervals) for IR were 0.75 (0.62-0.92) for 1% increase in OA and 0.84 (0.71-0.99) for 1% increase in linoleic acid. Other fatty acids were unrelated to IR. When using the alternate definition of IR, OA remained a significant predictor (0.80 [0.65-0.99]). Higher phospholipid proportions of OA relate to less IR, suggesting an added benefit of increasing olive oil intake within the Mediterranean diet. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Ciguatoxin-induced catecholamine secretion in bovine chromaffin cells: mechanism of action and reversible inhibition by brevenal.

    Science.gov (United States)

    Nguyen-Huu, Truong D; Mattei, César; Wen, Peter J; Bourdelais, Andrea J; Lewis, Richard J; Benoit, Evelyne; Baden, Daniel G; Molgó, Jordi; Meunier, Frédéric A

    2010-10-01

    Ciguatoxin (P-CTX-1B) from the dinoflagellate Gambierdiscus toxicus, belongs to the family of polyether neurotoxins responsible for the neurological poisoning disorder ciguatera. Although it is the most widespread marine-borne disease affecting humans, there is no current FDA-approved treatment available except for symptomatic therapies. In this paper, we report that P-CTX-1B promotes catecholamine secretion from bovine chromaffin cells, an effect that is insensitive to concomitant activation of capacitative Ca(2+) entry. Moreover, we confirm that brevenal, a polyether from the dinoflagellate Karenia brevis, blocks P-CTX-1B-induced catecholamine secretion. This effect is partially reversible. Our results therefore raise the prospect of finding functional antagonists for P-CTX-1B that could be useful for the treatment of ciguatera. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects.

    Science.gov (United States)

    Liu, Liyan; Feng, Rennan; Guo, Fuchuan; Li, Ying; Jiao, Jundong; Sun, Changhao

    2015-04-01

    Obesity is the result of a positive energy balance and often leads to difficulties in maintaining normal postprandial metabolism. The changes in postprandial metabolites after an oral glucose tolerance test (OGTT) in young obese Chinese men are unclear. In this work, the aim is to investigate the complex metabolic alterations in obesity provoked by an OGTT using targeted metabolomics. We used gas chromatography-mass spectrometry and ultra high performance liquid chromatography-triple quadrupole mass spectrometry to analyze serum fatty acids, amino acids and biogenic amines profiles from 15 control and 15 obese subjects at 0, 30, 60, 90 and 120 min during an OGTT. Metabolite profiles from 30 obese subjects as independent samples were detected in order to validate the change of metabolites. There were the decreased levels of fatty acid, amino acids and biogenic amines after OGTT in obesity. At 120 min, percent change of 20 metabolites in obesity has statistical significance when comparing with the controls. The obese parameters was positively associated with changes in arginine and histidine (Pchange in palmitic acid (PA), branched-chain amino acids (BCAAs) and phenylalanine between 1 and 120 min were positively associated with fasting insulin and HOMA-IR (all Presistance in obesity. Our findings offer new insights in the complex physiological regulation of the metabolism during an OGTT in obesity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin.

    Science.gov (United States)

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F

    1990-06-12

    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  5. Effects of niacin supplementation on the insulin resistance in Holstein cows during early lactation

    OpenAIRE

    Talija Hristovska; Marko R. Cincović; Branislava Belić; Dragica Stojanović; Milanka Jezdimirović; Radojica Đoković; Bojan Toholj

    2017-01-01

    Insulin resistance in early lactation includes low glucose concentration, low insulin release and responsiveness and high lipolysis. Niacin is important antilipolytic agent and leads to increase glucose and insulin concentration. The objectives of this study were to determine the influence of niacin on the insulin resistance in cows during early lactation using the difference of value and regression analysis between blood non-esterified fatty acid (NEFA), glucose and insulin concentrations, r...

  6. Flaxseed oil supplementation manipulates correlations between serum individual mol % free fatty acid levels and insulin resistance in type 2 diabetics. Insulin resistance and percent remaining pancreatic β-cell function are unaffected.

    Science.gov (United States)

    Barre, D E; Mizier-Barre, K A; Griscti, O; Hafez, K

    2016-10-01

    Elevated total serum free fatty acids (FFAs) concentrations have been suggested, controversially, to enhance insulin resistance and decrease percent remaining β-cell function. However, concentrations of individual serum FFAs have never been published in terms of their relationship (correlation) to homeostatic model assessment-insulin resistance (HOMA-IR) and percent remaining β-cell function (HOMA-%β) in the type 2 diabetics (T2Ds). Alpha-linolenic acid consumption has a negative correlation with the insulin resistance, which in turn is negatively correlated with the remaining β-cell function. The primary objective was to test the hypothesis that there would be different relationship (correlation) between the blood serum individual free FFA mol % levels and HOMA-IR and/or HOMA-%β in T2D. The secondary objective was to test the hypothesis that flaxseed oil, previously being shown to be ineffective in the glycemic control in T2Ds, may alter these correlations in a statistically significant manner as well as HOMA-IR and/or HOMA-%β. Patients were recruited via a newspaper advertisement and two physicians have been employed. All the patients came to visit one and three months later for a second visit. At the second visit, the subjects were randomly assigned (double blind) to flaxseed or safflower oil treatment for three months, until the third visit. Different statistically significant correlations or trends towards among some serum individual free FFA mol % levels and HOMA-IR and HOMA-%β, pre- and post-flaxseed and safflower oil supplementation were found. However, flaxseed oil had no impact on HOMA-IR or HOMA-%β despite statistically significant alterations in correlations compared to baseline HOMA-IR. The obtained data indicate that high doses of flaxseed oil have no statistically significant effect on HOMA-IR or HOMA-%β in T2Ds, probably due to the additive effects of negative and positive correlations.

  7. Plasma and erythrocyte relationship of catecholamines in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Marcin Dziedzic

    2014-09-01

    Full Text Available The function of the autonomic nervous system is based on reciprocal interaction between the sympathetic and parasympathetic parts, most frequently in the form of antagonistic action on target organs. The main mediators of the sympathetic nervous system in the effectors part are catecholamines (CA, which are involved in various physiological processes. Moreover, CA also has a profound effect on the kidneys, being factors that impact on renal haemodynamics, and have been reported to be altered in pathological disorders, e.g. extracellular volume expression, hypertension and cardiovascular complications. The increased sympathetic nerve activity, at least in part, can explain the raised in plasma CA observed in chronic kidney diseases. Furthermore, plasma CA levels in ureamic patients cannot be considered a reliable index of sympathetic activity, due to existence of many factors which may affect their values. In addition, CA released into the circulation, as one of many substances, may penetrate across the cellular membranes of erytrocytes (RBC. Taking these observations together, the aim of the presented study was to investigate for the first time the plasma and erythrocyte relationship of catecholamines in haemodialysis. The studies were performed among 37 haemodialysed patients who were inhabitants of the Lublin commune. Plasma and intracellular concentration of CA were measured prior to and following haemodialysis by high performance liquid chromatography with electrochemical detection. The results suggest that RBC are able to accumulate CA at the stage of terminal renal failure; in addition, the levels of adrenaline and dopamine in RBC depend on the accumulation of urea in plasma. It was also found that the dynamic changes in concentration of RBC adrenaline are an independent predictor of mortality in haemodialysis patients.

  8. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport.

    Science.gov (United States)

    Ochiai, Yusuke; Uchida, Yasuo; Ohtsuki, Sumio; Tachikawa, Masanori; Aizawa, Sanshiro; Terasaki, Tetsuya

    2017-05-01

    We purposed to clarify the contribution of fatty acid transport protein 1 (FATP1/SLC 27A1) to the supply of docosahexaenoic acid (DHA) to the brain across the blood-brain barrier in this study. Transport experiments showed that the uptake rate of [ 14 C]-DHA in human FATP1-expressing HEK293 cells was significantly greater than that in empty vector-transfected (mock) HEK293 cells. The steady-state intracellular DHA concentration was nearly 2-fold smaller in FATP1-expressing than in mock cells, suggesting that FATP1 works as not only an influx, but also an efflux transporter for DHA. [ 14 C]-DHA uptake by a human cerebral microvascular endothelial cell line (hCMEC/D3) increased in a time-dependent manner, and was inhibited by unlabeled DHA and a known FATP1 substrate, oleic acid. Knock-down of FATP1 in hCMEC/D3 cells with specific siRNA showed that FATP1-mediated uptake accounts for 59.2-73.0% of total [ 14 C]-DHA uptake by the cells. Insulin treatment for 30 min induced translocation of FATP1 protein to the plasma membrane in hCMEC/D3 cells and enhanced [ 14 C]-DHA uptake. Immunohistochemical analysis of mouse brain sections showed that FATP1 protein is preferentially localized at the basal membrane of brain microvessel endothelial cells. We found that two neuroprotective substances, taurine and biotin, in addition to DHA, undergo FATP1-mediated efflux. Overall, our results suggest that FATP1 localized at the basal membrane of brain microvessels contributes to the transport of DHA, taurine and biotin into the brain, and insulin rapidly increases DHA supply to the brain by promoting translocation of FATP1 to the membrane. Read the Editorial Comment for this article on page 324. © 2016 International Society for Neurochemistry.

  9. Analyses of insulin-potentiating fragments of human growth hormone by computative simulation; essential unit for insulin-involved biological responses.

    Science.gov (United States)

    Ohkura, K; Hori, H

    2000-07-01

    We analyzed the structural features of insulin-potentiating fragments of human growth hormone by computative simulations. The peptides were designated from the N-terminus sequences of the hormone positions at 1-15 (hGH(1-15); H2N-Phe1-Pro2-Thr3-Ile4-Pro5-Leu6-Ser7-Arg8-L eu9-Phe10-Asp11-Asn12-Ala13-Met14-Leu15 -COOH), 6-13 (hGH(6-13)), 7-13 (hGH(7-13)) and 8-13 (hGH(8-13)), which enhanced insulin-producing hypoglycemia. In these peptide molecules, ionic bonds were predicted to form between 8th-arginyl residue and 11th-aspartic residue, and this intramolecular interaction caused the formation of a macrocyclic structure containing a tetrapeptide Arg8-Leu9-Phe10-Asp11. The peptide positions at 6-10 (hGH(6-10)), 9-13 (hGH(9-13)) and 10-13 (hGH(10-13)) did not lead to a macrocyclic formation in the molecules, and had no effect on the insulin action. Although beta-Ala13hGH(1-15), in which the 13th-alanine was replaced by a beta-alanyl residue, had no effect on insulin-producing hypoglycemia, the macrocyclic region (Arg8-Leu9-Phe10-Asp11) was observed by the computative simulation. An isothermal vibration analysis of both of beta-Ala13hGH(1-15) and hGH(1-15) peptide suggested that beta-Ala13hGH(1-15) is molecule was more flexible than hGH(1-15); C-terminal carboxyl group of Leu15 easily accessed to Arg8 and inhibited the ionic bond formation between Arg8 and Asp11 in beta-Ala13hGH(1-15). The peptide of hGH(8-13) dose-dependently enhanced the insulin-involved fatty acid synthesis in rat white adipocytes, and stabilized the C6-NBD-PC (1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]-sn- glycero-3-phosphatidylcholine) model membranes. In contrast, hGH(9-13) had no effect both on the fatty acid synthesis and the membrane stability. In the same culture conditions as the fatty acid synthesis assay, hGH(8-13) had no effect on the transcript levels of glucose transporter isoforms (GLUT 1, 4) and hexokinase isozymes (HK I, II) in rat white adipocytes. Judging from

  10. Effect of a high monounsaturated fatty acids diet and a Mediterranean diet on serum lipids and insulin sensitivity in adults with mild abdominal obesity

    NARCIS (Netherlands)

    Bos, M.B.; Vries, de J.H.M.; Feskens, E.J.M.; Dijk, van S.J.; Hoelen, D.; Siebelink, E.; Heijligenberg, R.; Groot, de C.P.G.M.

    2010-01-01

    Background and aims - Diets high in monounsaturated fatty acids (MUFA) such as a Mediterranean diet may reduce the risk of cardiovascular diseases by improving insulin sensitivity and serum lipids. Besides being high in MUFA, a Mediterranean diet also contains abundant plant foods, moderate wine and

  11. Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid depend on intracellular calcium levels in primary cultures of human adipocytes

    DEFF Research Database (Denmark)

    Kennedy, Arion; Martinez, Kristina; Chung, Soonkyu

    2010-01-01

    We previously demonstrated that trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) induced inflammation and insulin resistance in primary human adipocytes by activating nuclear factor kappaB (NFkappaB) and extracellular signal-related kinase (ERK) signaling. In this study, we demonstrated...... that the initial increase in intracellular calcium ([Ca2+]i) mediated by 10,12 CLA was attenuated by TMB-8, an inhibitor of calcium release from the endoplasmic reticulum (ER), by BAPTA, an intracellular calcium chelator, and by D609, a phospholipase C (PLC) inhibitor. Moreover, BAPTA, TMB-8, and D609 attenuated......, and suppression of peroxisome proliferator activated receptor gamma protein levels and insulin-stimulated glucose uptake. These data suggest that 10,12 CLA increases inflammation and insulin resistance in human adipocytes, in part by increasing [Ca2+]i levels, particularly calcium from the ER....

  12. 92 INSULIN RESISTANCE: CAUSES AND METABOLIC ...

    African Journals Online (AJOL)

    drclement

    2009-12-01

    Dec 1, 2009 ... Edo State Institute of Technology and Management. Usen, Edo State ... type 2 diabetes mellitus. The cause of the vast ... Insulin (molecular mass 6000D) consists of 51 amino acids .... Experimental Biology and. Medicine 2004 ...

  13. Regulation of skeletal muscle insulin action in relation to dietary fatty acids and gender

    DEFF Research Database (Denmark)

    Høeg, Louise Dalgas

    In the present thesis the aims were 1) to investigate whether insulin sensitivity was different between women and men and whether a lipid load induced insulin resistance to a similar extent in women and men, 2) to determine whether lipid-induced insulin resistance was due to energy surplus...

  14. Cerebrospinal fluid levels of catecholamine metabolites in Parkinson’s disease and L-DOPA-induced dyskinesia

    DEFF Research Database (Denmark)

    Dammann Andersen, Andreas; Binzer, Michael; Stenager, Egon

    -dyskinetic PD patients and controls. Method: Cerebrospinal fluid (CSF) of 6 age-matched controls and 16 PD patients, (11 receiving levodopa, 6 dyskinetic and 6 not receiving levodopa), was analysed for catecholamines and metabolites by HPLC with electrochemical detection. Samples were collected after overnight...

  15. Concentrated insulins: the new basal insulins

    Directory of Open Access Journals (Sweden)

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  16. The Association Between IGF-I and Insulin Resistance

    DEFF Research Database (Denmark)

    Friedrich, Nele; Thuesen, Betina; Jørgensen, Torben

    2012-01-01

    OBJECTIVEIGF-I has an almost 50% amino acid sequence homology with insulin and elicits nearly the same hypoglycemic response. Studies showed that low and high IGF-I levels are related to impaired glucose tolerance and to a higher risk of type 2 diabetes. The aim of the current study was to evaluate...... the association between IGF-I level and insulin resistance in a Danish general population.RESEARCH DESIGN AND METHODSIncluded were 3,354 adults, aged 19-72 years, from the cross-sectional Health2006 study. The homeostasis model assessment of insulin resistance (HOMA-IR) was used as the index to estimate insulin...... with intermediate (Q3) IGF-I levels. These associations remained statistically significant after the exclusion of subjects with type 2 diabetes and by using the updated computer HOMA2-IR model.CONCLUSIONSLow- and high-normal IGF-I levels are both related to insulin resistance. The biological mechanism...

  17. Insulin detemir for the treatment of obese patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Hollander PA

    2012-01-01

    Full Text Available Priscilla A Hollander1,21Baylor Endocrine Center, 2Baylor Medical Center, Dallas, Texas, USAAbstract: The risk for developing type 2 diabetes (T2DM is greater among obese individuals. Following onset of the disease, patients with T2DM become more likely to be afflicted with diabetic micro- and macrovascular complications. Decreasing body weight has been shown to lower glycosylated hemoglobin and improve other metabolic parameters in patients with T2DM. Medications used to lower blood glucose may increase body weight in patients with T2DM and this has been repeatedly shown to be the case for conventional, human insulin formulations. Insulin detemir is a neutral, soluble, long-acting insulin analog in which threonine-30 of the insulin B-chain is deleted, and the C-terminal lysine is acetylated with myristic acid, a C14 fatty acid chain. Insulin detemir binds to albumin, a property that enhances its pharmacokinetic/pharmacodynamic profile. Results from clinical trials have demonstrated that treatment with insulin detemir is associated with less weight gain than either insulin glargine or neutral protamine Hagedorn insulin. There are many potential reasons for the lower weight gain observed among patients treated with insulin detemir, including lower risk for hypoglycemia and therefore decreased defensive eating due to concern about this adverse event, along with other effects that may be related to the albumin binding of this insulin that may account for lower within-patient variability and consistent action. These might include faster transport across the blood–brain barrier, induction of satiety signaling in the brain, and preferential inhibition of hepatic glucose production versus peripheral glucose uptake. Experiments in diabetic rats have also indicated that insulin detemir increases adiponectin levels, which is associated with both weight loss and decreased eating.Keywords: basal insulin, body mass index, detemir, insulin analog, satiety

  18. Caffeic Acid Phenethyl Ester (Propolis Extract) Ameliorates Insulin Resistance by Inhibiting JNK and NF-κB Inflammatory Pathways in Diabetic Mice and HepG2 Cell Models.

    Science.gov (United States)

    Nie, Jiarui; Chang, Yaning; Li, Yujia; Zhou, Yingjun; Qin, Jiawen; Sun, Zhen; Li, Haibin

    2017-10-18

    Caffeic acid phenethyl ester (CAPE), extracted from propolis, was evaluated for the ameliorative effects on insulin resistance and the mechanisms were identified, using non-insulin-dependent diabetes mellitus (NIDDM) model mice and insulin resistance (IR) model cells. After 5 weeks of CAPE supplementation, insulin sensitivity, hyperlipidemia, and peroxisome proliferator-activated receptor-α (PPAR-α) levels were improved in mice. Proinflammatory cytokines in serum and the expressions of tumor necrosis factor-alpha (TNF-α) mRNA in tissues were markedly downregulated from CAPE-treated mice. In vitro, CAPE supplement significantly improved glucose consumption, glucose uptake, glycogen content, and oxidative stress and decreased expression of glucose-6-phosphatase (G6Pase) mRNA in cells. Both in vivo and in vitro, CAPE enhanced p-Akt (Ser473) and p-insulin receptor substrate (IRS)-1 (Tyr612), but inhibited p-JNK (Thr183/Tyr185), p-NF-κB p65 (Ser536), and nuclear translocation of p-NF-κB p65 (Ser536). In summary, CAPE can ameliorate insulin resistance through modulation of JNK and NF-κB signaling pathway in mice and HepG2 cells.

  19. Novel double-isotope technique for enzymatic assay of catecholamines, permitting high precision, sensitivity and plasma sample capacity

    International Nuclear Information System (INIS)

    Brown, M.J.; Jenner, D.A.

    1981-01-01

    A novel use of a double-isotope method is described which allows radioenzymatic assays to combine precision and sensitivity. In the catechol O-methyltransferase assay separate portions of each plasma sample are incubated with either S-[ 3 H]- or S-[ 14 C]-adenosyl-L-methionine. Standards of noradrenaline and adrenaline are added to the latter portions and are thus converted into standards of [ 14 C]metadrenalines. These are added to the 3 H-labelled portions after the incubation, where they function as tracers. The final recovery of 14 C radioactivity corrects for (a) the efficiency of methylation in the plasma sample concerned and (b) the recovery of metadrenalines during the extraction procedures. The 3 H/ 14 C ratio is constant in each assay for a given catecholamine concentration and is determined for samples to which standards of noradrenaline and adrenaline are added to the 3 H- (as well as the 14 C-) labelled portions before the initial incubation. The sensitivity of the assay is increased by using high specific radioactivity S-[ 3 H]adenosyl-L-methionine, and low backgrounds are maintained by catecholamine depletion in vivo in the rats used for enzyme preparation. Both catecholamines (1.5 pg/ml; 10 pmol/l) may be detected; the coefficients of variation are 3.0 and 3.2% for noradrenaline and adrenaline respectively (intra-assay) and 4.6 and 5.0% (inter-assay). (author)

  20. Molecular mechanisms of insulin resistance

    African Journals Online (AJOL)

    Review Article. ,. Molecular ... This review discusses recent advances in understanding of the structure and ... insulin action from receptor to the alteration of blood glucose. Hence, in ... the first protein to have its amino acid sequence determined;2 ... an integral membrane glycoprotein composed of two subunits, a and 13 ...

  1. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression.

    Science.gov (United States)

    Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R

    2013-10-01

    The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Skeletal muscle lipid metabolism in exercise and insulin resistance

    DEFF Research Database (Denmark)

    Kiens, Bente

    2006-01-01

    Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids...... of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed....

  3. Effect of exercise on insulin action in human skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Mikines, K J; Galbo, Henrik

    1989-01-01

    The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization...... was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2...... consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp...

  4. Hyperglucagonemia during insulin deficiency accelerates protein catabolism

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Matthews, D.E.; Welle, S.L.

    1987-01-01

    Hyperglucagonemia coexists with insulin deficiency or insulin resistance in many conditions where urinary nitrogen excretion is increased, but the precise role of glucagon in these conditions is controversial. The purpose of this study was to evaluate the effect of hyperglucagonemia on protein metabolism in insulin-deficient subjects. The authors used the stable isotope of an essential amino acid (L-[1- 13 C]leucine) as a tracer of in vivo protein metabolism. A combined deficiency of insulin and glucagon was induced by intravenous infusion of somatostatin. Hyperglucagonemia and hypoinsulinemia were induced by infusions of somatostatin and glucagon. When somatostatin alone was infused leucine flux increased, indicating a 6-17% increase in proteolysis. When somatostatin and glucagon were infused, leucine flux increased, indicating a 12-32% increase in proteolysis. The increase in leucine flux during the infusion of somatostatin and glucagon was higher than the increase during infusion of somatostatin alone. Somatostatin alone did not change leucine oxidation, whereas the somatostatin plus glucagon increased leucine oxidation 100%. They conclude that hyperglucagonemia accelerated proteolysis and leucine oxidation in insulin-deficient humans

  5. Modified high-sucrose diet-induced abdominally obese and normal-weight rats developed high plasma free fatty acid and insulin resistance.

    Science.gov (United States)

    Cao, Li; Liu, Xuehui; Cao, Hongyi; Lv, Qingguo; Tong, Nanwei

    2012-01-01

    Metabolically obese but normal-weight (MONW) individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW) rat model. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS) diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  6. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  7. Clinical and Genetic Characteristics of Non-Insulin-Requiring Glutamic Acid Decarboxylase (GAD Autoantibody-Positive Diabetes: A Nationwide Survey in Japan.

    Directory of Open Access Journals (Sweden)

    Junichi Yasui

    Full Text Available Glutamic acid decarboxylase autoantibodies (GADAb differentiate slowly progressive insulin-dependent (type 1 diabetes mellitus (SPIDDM from phenotypic type 2 diabetes, but many GADAb-positive patients with diabetes do not progress to insulin-requiring diabetes. To characterize GADAb-positive patients with adult-onset diabetes who do not require insulin therapy for >5 years (NIR-SPIDDM, we conducted a nationwide cross-sectional survey in Japan.We collected 82 GADAb-positive patients who did not require insulin therapy for >5 years (NIR-SPIDDM and compared them with 63 patients with insulin-requiring SPIDDM (IR-SPIDDM. Clinical and biochemical characteristics, HLA-DRB1-DQB1 haplotypes, and predictive markers for progression to insulin therapy were investigated.Compared with the IR-SPIDDM group, the NIR-SPIDDM patients showed later diabetes onset, higher body mass index, longer duration before diagnosis, and less frequent hyperglycemic symptoms at onset. In addition, C-peptide, LDL-cholesterol, and TG were significantly higher in the NIR-SPIDDM compared to IR-SPIDDM patients. The NIR-SPIDDM group had lower frequency of susceptible HLA-DRB1*04:05-DQB1*04:01 and a higher frequency of resistant HLA-DRB1*15:01-DQB1*06:02 haplotype compared to IR-SPIDDM. A multivariable analysis showed that age at diabetes onset (OR = 0.82, duration before diagnosis of GADAb-positive diabetes (OR = 0.82, higher GADAb level (≥10.0 U/ml (OR = 20.41, and fasting C-peptide at diagnosis (OR = 0.07 were independent predictive markers for progression to insulin-requiring diabetes. An ROC curve analysis showed that the optimal cut-off points for discriminating two groups was the GADAb level of 13.6 U/ml, age of diabetes onset of 47 years, duration before diagnosis of 5 years, and fasting C-peptide of 0.65 ng/ml.Clinical, biochemical and genetic characteristics of patients with NIR-SPIDDM are different from those of IR-SPIDDM patients. Age of diabetes onset, duration before

  8. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine.

    Science.gov (United States)

    Belwal, Tarun; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2017-10-12

    Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.

  9. Rebelling against the (Insulin Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Jaime L. Clark

    2018-03-01

    Full Text Available Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.

  10. Retroendocytosis of insulin in rat adipocytes

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1986-01-01

    A variety of ligands internalized by receptor-mediated endocytosis follow a short circuit pathway that does not lead to degradation but results in rapid exocytosis of intact ligand, a process termed retroendocytosis. We studied the time course of [ 125 I]iodoinsulin processing and retroendocytosis after internalization in isolated rat adipocytes. After steady state binding and internalization, surface receptor-bound insulin was removed by exposing cells to a low pH at low temperatures. The cells containing internalized [ 125 I]iodoinsulin were reincubated in fresh medium; subsequently, the radioactivity remaining within the cells and released into the medium were analyzed at various times by trichloroacetic acid (TCA) precipitation, Sephadex G-50 gel filtration, and reverse phase HPLC. Cell-associated radioactivity progressively decreased after reincubation in 37 C buffer, with 50% released in 9 min and 85% by 45 min. In the media, TCA-precipitable material appeared quickly, with a t1/2 of 2 min, and plateaued by 10 min. TCA-soluble material was released continually throughout the 45-min period. The release of both TCA-precipitable and TCA-soluble material was temperature and energy dependent. Sephadex G-50 chromatography demonstrated the loss of insulin from the intracellular pool and its appearance in the medium with a time course similar to that of TCA-precipitable material. Reverse phase HPLC demonstrated that the intracellular and medium radioactivity eluting in peak II (insulin peak) on Sephadex G-50 was composed of both intact insulin and intermediates. After the internalization of insulin, rat adipocytes release not only small mol wt degradation products of insulin, but also insulin intermediates and intact insulin. The rate of retroendocytosis reported here is almost identical to the rate of insulin receptor recycling in rat adipocytes

  11. The influence of night-flight noise on sleep and catecholamine secretion. Der Einfluss von Nachtfluglaerm auf den Schlaf und die Katecholaminausscheidung

    Energy Technology Data Exchange (ETDEWEB)

    Maschke, C; Breinl, S [Technische Univ. Berlin (Germany). Inst. fuer Technische Akustik; Grimm, R; Ising, H [BGA, Berlin (Germany). Inst. fuer Wasser-, Boden- und Lufthygiene

    1992-03-01

    The influence of noise from night flying on electro-bioligical reactions and on the secretion of catecholamines (adrenaline and noradrenaline) was studied in eight healthy adults whose place of residence exposes them to day-time aircraft noise. The inter-relationships were then analysed, with daytime noise exposure, personality traits and general day-to-day condition reflected in control variables. The subjects were each observed during five nights without noise exposure (Leq=dB(A)) and five nights with noise exposure (Leq=36 to 56 dB(A)), when the following factors were varied: frequency of nocturnal flights; and sound level. All these flights were transmitted via a sound system between the third and sixth hour of the night. In the case of adrenaline, the original data already showed a significant increase with noise exposure. Taking various day-time exposures into account, significant mean value differences between noisy and peaceful nights were assessed in 8-hour collected urine for both catecholamines. Furthermore, catecholamine concentration increases with sound level. (orig.).

  12. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis.

    Science.gov (United States)

    Bilandžija, Helena; Ma, Li; Parkhurst, Amy; Jeffery, William R

    2013-01-01

    Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.

  13. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis.

    Directory of Open Access Journals (Sweden)

    Helena Bilandžija

    Full Text Available Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish and several albino cave-dwelling forms (cavefish, albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment.

  14. Mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes.

    Science.gov (United States)

    Farese, R V; Cooper, D R; Konda, T S; Nair, G; Standaert, M L; Davis, J S; Pollet, R J

    1988-01-01

    We previously suggested that insulin increases diacylglycerol (DAG) in BC3H-1 myocytes, both by increases in synthesis de novo of phosphatidic acid (PA) and by hydrolysis of non-inositol-containing phospholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). We have now evaluated these insulin effects more thoroughly, and several potential mechanisms for their induction. In studies of the effect on PA synthesis de novo, insulin stimulated [2-3H]glycerol incorporation into PA, DAG, PC/PE and total glycerolipids of BC3H-1 myocytes, regardless of whether insulin was added simultaneously with, or after 2 h or 3 or 10 days of prelabelling with, [2-3H]glycerol. In prelabelled cells, time-related changes in [2-3H]glycerol labelling of DAG correlated well with increases in DAG content: both were maximal in 30-60 s and persisted for 20-30 min. [2-3H]Glycerol labelling of glycerol 3-phosphate, on the other hand, was decreased by insulin, presumably reflecting increased utilization for PA synthesis. Glycerol 3-phosphate concentrations were 0.36 and 0.38 mM before and 1 min after insulin treatment, and insulin effects could not be explained by increases in glycerol 3-phosphate specific radioactivity. In addition to that of [2-3H]glycerol, insulin increased [U-14C]glucose and [1,2,3-3H]glycerol incorporation into DAG and other glycerolipids. Effects of insulin on [2-3H]glycerol incorporation into DAG and other glycerolipids were half-maximal and maximal at 2 nM- and 20 nM-insulin respectively, and were not dependent on glucose concentration in the medium, extracellular Ca2+ or protein synthesis. Despite good correlation between [3H]DAG and DAG content, calculated increases in DAG content from glycerol 3-phosphate specific radioactivity (i.e. via the pathway of PA synthesis de novo) could account for only 15-30% of the observed increases in DAG content. In addition to increases in [3H]glycerol labelling of PC/PE, insulin rapidly (within 30 s) increased PC

  15. NEUROANATOMICAL ASSOCIATION OF HYPOTHALAMIC HSD2-CONTAINING NEURONS WITH ERα, CATECHOLAMINES, OR OXYTOCIN: IMPLICATIONS FOR FEEDING?

    Directory of Open Access Journals (Sweden)

    Maegan L. Askew

    2015-06-01

    Full Text Available This study used immunohistochemical methods to investigate the possibility that hypothalamic neurons that contain 11-β-hydroxysteroid dehydrogenase type 2 (HSD2 are involved in the control of feeding by rats via neuroanatomical associations with the α subtype of estrogen receptor (ERα, catecholamines, and/or oxytocin. An aggregate of HSD2-containing neurons is located laterally in the hypothalamus, and the numbers of these neurons were greatly increased by estradiol treatment in ovariectomized rats compared to numbers in male rats and in ovariectomized rats that were not given estradiol. However, HSD2-containing neurons were anatomically segregated from ERα-containing neurons in the Ventromedial Hypothalamus and the Arcuate Nucleus. There was an absence of oxytocin-immunolabeled fibers in the area of HSD2-labeled neurons. Taken together, these findings provide no support for direct associations between hypothalamic HSD2 and ERα or oxytocin neurons in the control of feeding. In contrast, there was catecholamine-fiber labeling in the area of HSD2-labeled neurons, and these fibers occasionally were in close apposition to HSD2-labeled neurons. Therefore, we cannot rule out interactions between HSD2 and catecholamines in the control of feeding; however, given the relative sparseness of the appositions, any such interaction would appear to be modest. Thus, these studies do not conclusively identify a neuroanatomical substrate by which HSD2-containing neurons in the hypothalamus may alter feeding, and leave the functional role of hypothalamic HSD2-containing neurons subject to further investigation.

  16. Effect of starvation on human muscle protein metabolism and its response to insulin

    International Nuclear Information System (INIS)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.; Gelfand, R.A.

    1990-01-01

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using [3H]phenylalanine (Phe) and [14C]leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action

  17. Effect of starvation on human muscle protein metabolism and its response to insulin

    Energy Technology Data Exchange (ETDEWEB)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.; Gelfand, R.A. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-10-01

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using (3H)phenylalanine (Phe) and (14C)leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action.

  18. Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing.

    Science.gov (United States)

    Kajisa, Taira; Yanagimoto, Yoshiyuki; Saito, Akiko; Sakata, Toshiya

    2018-02-23

    Surface-coated poly(catecholamine) (pCA) films have attracted attention as biomaterial interfaces owing to their biocompatible and physicochemical characteristics. In this paper, we report that pCA-film-coated electrodes are useful for potentiometric biosensing devices. Four different types of pCA film, l-dopa, dopamine, norepinephrine, and epinephrine, with thicknesses in the range of 7-27 nm were electropolymerized by oxidation on Au electrodes by using cyclic voltammetry. By using the pCA-film electrodes, the pH responsivities were found to be 39.3-47.7 mV/pH within the pH range of 1.68 to 10.01 on the basis of the equilibrium reaction with hydrogen ions and the functional groups of the pCAs. The pCA films suppressed nonspecific signals generated by other ions (Na + , K + , Ca 2+ ) and proteins such as albumin. Thus, the pCA-film electrodes can be used in pH-sensitive and pH-selective biosensors. HeLa cells were cultivated on the surface of the pCA-film electrodes to monitor cellular activities. The surface potential of the pCA-film electrodes changed markedly because of cellular activity; therefore, the change in the hydrogen ion concentration around the cell/pCA-film interface could be monitored in real time. This was caused by carbon dioxide or lactic acid that is generated by cellular respiration and dissolves in the culture medium, resulting in the change of hydrogen concentration. pCA-film electrodes are suitable for use in biocompatible and pH-responsive biosensors, enabling the more selective detection of biological phenomena.

  19. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  20. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation.

    Science.gov (United States)

    Almario, R U; Karakas, S E

    2015-02-01

    Wingless-type MMTV integration site family member (WNT) signaling and WNT-inhibitors have been implicated in regulation of adipogenesis, insulin resistance, pancreatic function, and inflammation. Our goal was to determine serum proteins involved in WNT signaling (WNT5 and WISP2) and WNT inhibition (SFRP4 and SFRP5) as they relate to obesity, serum adipokines, insulin resistance, insulin secretion, and inflammation in humans. Study population comprised 57 insulin resistant women with polycystic ovary syndrome (PCOS) and 27 reference women. In a cross-sectional study, blood samples were obtained at fasting, during oral, and frequently sampled intravenous glucose tolerance tests. Serum WNT5, WISP2, and SFRP4 concentrations did not differ between PCOS vs. reference women. Serum WNT5 correlated inversely with weight both in PCOS and reference women, and correlated directly with insulin response during oral glucose tolerance test in PCOS women. Serum WISP2 correlated directly with fatty acid binding protein 4. Serum SFRP5 did not differ between obese (n=32) vs. nonobese (n=25) PCOS women, but reference women had lower SFRP5 (pPCOS groups). Serum SFRP5 correlated inversely with IL-1β, TNF-α, cholesterol, and apoprotein B. These findings demonstrated that WNT5 correlated inversely with adiposity and directly with insulin response, and the WNT-inhibitor SFRP5 may be anti-inflammatory. Better understanding of the role of WNT signaling in obesity, insulin resistance, insulin secretion, lipoprotein metabolism, and inflammation is important for prevention and treatment of metabolic syndrome, diabetes and cardiovascular disease. © Georg Thieme Verlag KG Stuttgart · New York.

  1. RESISTENSI INSULIN TERKAIT OBESITAS: MEKANISME ENDOKRIN DAN INTRINSIK SEL

    Directory of Open Access Journals (Sweden)

    Mira Dewi

    2012-03-01

    Full Text Available 800x600 Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} The number of obese individuals worldwide has reached 2.1 billion and this will lead to explosion of obesity-related morbidity and mortality. Obese individuals will develop re­sistance to celluler action of insulin. The obesity related insulin resistance is the major risk factor of cardiovascular diseases and Type 2 Diabetes Mellitus, the disease which number has reached epidemic proportion. The association between obesity and insulin resistance seem to be cause and effect relation because studies on human and animal has indicated that the increase or decrease of body weight correlates with insulin sensitivity.  Among of many mechanisms proposed, the most often proposed mechanisms are endocrine and cell in­trinsik mechanism. The increase of fatty acid plasma concentration, dysregulation of adi­pokines and ectopic fat storage are proposed to be the endocrin mechanism that lead to obesity related insulin resistance while oxidative stress and mitochondria dysfunction are the cell intrinsic mechanisms that play role to the disease. Understanding the molecular mechanisms of obesity related insulin resistance will provide valuable information to search for interventions that help to prevent or treat Type 2 Diabetes Mellitus and cardiovascular diseases and its related pathologies. Keywords: Obesity, insulin resistance, fatty acid, adipokines, oxidative stress, mitochondria

  2. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    Science.gov (United States)

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Reversal learning enhanced by lysergic acid diethylamide (LSD)

    Science.gov (United States)

    King, A.R.; Martin, I.L.; Arabella Melville, K.

    1974-01-01

    1 Small doses of lysergic acid diethylamide (LSD) (12.5-50 μg/kg) consistently facilitated learning of a brightness discrimination reversal. 2 2-Bromo-lysergic acid diethylamide (BOL-148), a structural analogue of LSD, with similar peripheral anti-5-hydroxytrypamine activity but no psychotomimetic properties, had no effect in this learning situation at a similar dose (25 μg/kg). 3 LSD, but not BOL-148, caused a small but significant increase in brain 5-hydroxytryptamine levels, but had no effect on the levels of catecholamines in the brain at 25 μg/kg. PMID:4458849

  4. The Role of lysophosphatidic acide (LPA) in the insulin resistence of the pancreatic β-cells

    OpenAIRE

    Mourad Agha, Zein

    2016-01-01

    The pathogenesis of the type-2-diabetes mellitus underlying is characterized by a combination of peripheral insulin resistance, β-cell dysfunction and reduction in the β cell mass. The increasing of FFA level or their metabolites lead to inhibition of insulin signaling. Consequent, the ability of insulin is reduced and therefore lead to insulin resistance. LPA is a lipid mediator that is associated with a progression of T2D. It has been suggested that LPA and the development of obesity are st...

  5. Monomeric insulins obtained by protein engineering and their medical implications.

    Science.gov (United States)

    Brange, J; Ribel, U; Hansen, J F; Dodson, G; Hansen, M T; Havelund, S; Melberg, S G; Norris, F; Norris, K; Snel, L

    1988-06-16

    The use of insulin as an injected therapeutic agent for the treatment of diabetes has been one of the outstanding successes of modern medicine. The therapy has, however, had its associated problems, not least because injection of insulin does not lead to normal diurnal concentrations of insulin in the blood. This is especially true at meal times when absorption from subcutaneous tissue is too slow to mimic the normal rapid increments of insulin in the blood. In the neutral solutions used for therapy, insulin is mostly assembled as zinc-containing hexamers and this self-association, which under normal physiological circumstances functions to facilitate proinsulin transport, conversion and intracellular storage, may limit the rate of absorption. We now report that it is possible, by single amino-acid substitutions, to make insulins which are essentially monomeric at pharmaceutical concentrations (0.6 mM) and which have largely preserved their biological activity. These monomeric insulins are absorbed two to three times faster after subcutaneous injection than the present rapid-acting insulins. They are therefore capable of giving diabetic patients a more physiological plasma insulin profile at the time of meal consumption.

  6. The choice of catecholamines in septic shock: more and more good arguments to strengthen the known position, but don't lose the faith!

    Science.gov (United States)

    Meier-Hellmann, Andreas

    2006-01-01

    The choice of catecholamines for hemodynamic stabilisation in septic shock patients has been an ongoing debate for several years. Several studies have investigated the regional effects in septic patients. Because of an often very small sample size, because of inconsistent results and because of methodical problems in the monitoring techniques used in these studies, however, it is not possible to provide clear recommendations concerning the use of catecholamines in sepsis. Prospective and adequate-sized studies are necessary because outcome data are completely lacking.

  7. Catecholamine and electrolyte content in the animal vascular wall in radiation sickness and during administration of radioprotectors

    International Nuclear Information System (INIS)

    Litvinov, S.A.

    1980-01-01

    The effect of adrenaline upon the balance of catecholamines and electrolytes in blood vessels in different time periods after whole-body X-ray irradiation and also under conditions of prophylactic prescription of cystamine is studied. The work is conducted in 90 adult cats of both sexes with the mass 2-4 kg. The whole-body X-ray irradiation is carried out at a dose of 400 R. It is shown that X-ray irradiation depending on the stage of radiaiton sickness causes quantitative and qualitative changes of normal biochemical response of vessel tissue for the introduction of different doses of adrenaline. Cystamine decreses the expression of quantitative changes and frequency of qualitative non-adequate changes of electrolyte composition and balance of catecholamines in vessel tissue of irradiated animals when introducing adrenaline in a dose of 15 μg/kg

  8. Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism

    DEFF Research Database (Denmark)

    Macotela, Yazmin; Emanuelli, Brice; Bång, Anneli M

    2011-01-01

    homeostasis and insulin signaling. After 8 weeks on HFD, mice developed obesity, fatty liver, inflammatory changes in adipose tissue and insulin resistance at the level of IRS-1 phosphorylation, as well as alterations in metabolomic profile of amino acid metabolites, TCA cycle intermediates, glucose...... and cholesterol metabolites, and fatty acids in liver, muscle, fat and serum. Doubling dietary leucine reversed many of the metabolite abnormalities and caused a marked improvement in glucose tolerance and insulin signaling without altering food intake or weight gain. Increased dietary leucine was also associated......Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor--leucine--can modify insulin resistance by acting on multiple tissues...

  9. Effect of caloric restriction with or without n-3 polyunsaturated fatty acids on insulin sensitivity in obese subjects: A randomized placebo controlled trial.

    Science.gov (United States)

    Razny, Urszula; Kiec-Wilk, Beata; Polus, Anna; Goralska, Joanna; Malczewska-Malec, Malgorzata; Wnek, Dominika; Zdzienicka, Anna; Gruca, Anna; Childs, Caroline E; Kapusta, Maria; Slowinska-Solnica, Krystyna; Calder, Philip C; Dembinska-Kiec, Aldona

    2015-12-01

    Caloric restriction and n-3 polyunsaturated fatty acid (PUFA) supplementation protect from some of the metabolic complications. The aim of this study was to assess the influence of a low calorie diet with or without n-3 PUFA supplementation on glucose dependent insulinotropic polypeptide (GIP) output and insulin sensitivity markers in obese subjects. Obese, non-diabetic subjects (BMI 30-40 kg/m(2)) and aged 25-65 yr. were put on low calorie diet (1200-1500 kcal/day) supplemented with either 1.8 g/day n-3 PUFA (DHA/EPA, 5:1) (n = 24) or placebo capsules (n = 24) for three months in a randomized placebo controlled trial. Insulin resistance markers and GIP levels were analysed from samples obtained at fasting and during an oral glucose tolerance test (OGTT). Caloric restriction with n-3 PUFA led to a decrease of insulin resistance index (HOMA-IR) and a significant reduction of insulin output as well as decreased GIP secretion during the OGTT. These effects were not seen with caloric restriction alone. Changes in GIP output were inversely associated with changes in red blood cell EPA content whereas fasting GIP level positively correlated with HOMA-IR index. Blood triglyceride level was lowered by caloric restriction with a greater effect when n-3 PUFA were included and correlated positively with fasting GIP level. Three months of caloric restriction with DHA + EPA supplementation exerts beneficial effects on insulin resistance, GIP and triglycerides. Combining caloric restriction and n-3 PUFA improves insulin sensitivity, which may be related to a decrease of GIP levels.

  10. Dietary fat and insulin resistance: a connection through leptin and PPARγ activation

    Directory of Open Access Journals (Sweden)

    Doaa Nader Al-Jada

    2016-06-01

    Full Text Available Insulin resistance refers to reduced insulin action in peripheral tissues and impaired suppression of endogenous glucose production, a state which is critical for maintaining normal glucose homeostasis. Insulin resistance is partly explained by genetic factors and is strongly influenced by the individual's habitual lifestyle. Investigating factors that may influence the development of insulin resistance and their mechanisms of action is highly significant; one of these factors include dietary fat. Both quantitative and qualitative terms of dietary fat have been known to play an important role in the development of insulin resistance, although the mechanism underlying this effect is not fully understood. In this regard, the classical view has been that dietary fat quality mainly affects cell membrane fatty acid composition and consequently the membrane function. Recently, the relationship between dietary fat and insulin resistance has entered an advanced level due to the discovery that different fatty acids can regulate gene expression, transcriptional activity and adipocytokines secretion. In essence, this provides new mechanisms by which fatty acids exert their cellular effects. The present review critically assesses the effect of dietary fat quality on the development of insulin resistance in relation to the adipocytokine, leptin and the activation of the transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ. It is evident that fat quality influences the development of insulin resistance and has a more important role than quantity. Leptin and PPARγ prove to be potential candidates linking dietary fat with insulin resistance. However, the exact role or mechanism of action of various types of dietary fat in the development of insulin resistance is still uncertain. Further well-controlled studies in humans are necessary to establish better evidence-based dietary fat recommendations for diabetes prevention and its

  11. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease

    Science.gov (United States)

    Kawanaka, Miwa; Nishino, Ken; Oka, Takahito; Urata, Noriyo; Nakamura, Jun; Suehiro, Mitsuhiko; Kawamoto, Hirofumi; Chiba, Yasutaka; Yamada, Gotaro

    2015-01-01

    Objective Amino acid imbalance is often found in patients with cirrhosis, and this imbalance is associated with insulin resistance. However, the mechanism underlying the relationship between amino acid imbalance and insulin resistance remains unclear. We evaluated serum amino acid concentrations in patients with nonalcoholic fatty liver disease to determine if any of the levels of amino acids were associated with the biochemical markers and fibrosis stage of nonalcoholic steatohepatitis (NASH). Methods In 137 patients with nonalcoholic fatty liver disease who underwent liver biopsy, plasma levels of branched-chain amino acid (BCAA), tyrosine (Tyr), and the BCAA-to-Tyr ratio values were determined using mass spectroscopy. These values were then assessed for associations with fibrosis stage, anthropometric markers (age, sex, and body mass index), biochemical markers (alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, albumin, platelet count, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and glycosylated hemoglobin), and relevant disease-specific biomarkers (homeostasis model assessment of insulin resistance [HOMA-IR], serum iron, ferritin, leptin, adiponectin, high-sensitivity C-reactive protein, and hyaluronic acid). Results Serum albumin levels, plasma BCAA levels, and BCAA-to-Tyr ratio values were negatively associated with the fibrosis stage. In contrast, Tyr levels increased with increasing fibrotic staging. Tyr levels were also correlated with HOMA-IR results. Conclusion Plasma BCAA levels in patients with NASH decreased with increasing liver fibrosis, while Tyr levels increased with increasing fibrotic stage. These results suggest that amino acid imbalance and insulin resistance are intimately involved in a complex pathogenic mechanism for NASH. PMID:26082668

  12. Reactivity and recovery from different types of work measured by catecholamines and cortisol : a systematic literature overview

    NARCIS (Netherlands)

    Sluiter, J.K; Frings-Dresen, M.H.W.; Meijman, T.F.; van der Beek, A.J.

    Objectives-To review occupational health, laboratory, and sports Literature on neuroendocrine reactivity and recovery from mental, combined mental and physical, or physical tasks. Methods-A systematic literature search was performed in eight databases. Studies with catecholamines or cortisol as

  13. A model to estimate insulin sensitivity in dairy cows

    Directory of Open Access Journals (Sweden)

    Holtenius Kjell

    2007-10-01

    Full Text Available Abstract Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI is based on plasma concentrations of glucose, insulin and free fatty acids (FFA and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  14. Nutrient Restriction Increases Circulating and Hepatic Ceramide in Dairy Cows Displaying Impaired Insulin Tolerance.

    Science.gov (United States)

    Davis, Amanda N; Clegg, J L; Perry, C A; McFadden, J W

    2017-09-01

    The progression of insulin resistance in dairy cows represents a maternal adaptation to support milk production during heightened energy demand; however, excessive adipose tissue lipolysis can develop. In diabetic non-ruminants, the mechanisms that mediate insulin resistance involve the sphingolipid ceramide. We tested the hypothesis that ceramide accumulates in dairy cows experiencing lipolysis and insulin resistance. Nine dairy cows were utilized in a replicated 3 × 3 Latin square design. Cows were ad libitum fed, nutrient-restricted (NR), or NR with nicotinic acid (NA; 5 mg of NA/h per kg BW; delivered i.v.) for 34 h. When provided access, cows were ad libitum fed a mixed ration of grass hay and ground corn to meet requirements. Intake for NR cows was limited to vitamins and minerals. Nicotinic acid was administered to suppress lipolysis. Saline was infused in cows not provided NA. At 32 and 33 h of treatment, a liver biopsy and insulin tolerance test were performed, respectively. Samples were analyzed using colorimetry, immunoassay, and mass spectrometry. Nutrient restriction increased serum fatty acids and ceramide levels, and impaired insulin sensitivity; however, NA infusion was unable to prevent these responses. We also show that NR increases hepatic ceramide accumulation, a response that was positively associated with serum ceramide supply. Our data demonstrate that circulating and hepatic 24:0-Cer are inversely associated with systemic insulin tolerance, an effect not observed for the 16:0 moiety. In conclusion, our results suggest that ceramide accrual represents a metabolic adaptation to nutrient restriction and impaired insulin action in dairy cows.

  15. Insulin-releasing action of the novel antidiabetic agent BTS 67 582.

    Science.gov (United States)

    McClenaghan, N H; Flatt, P R; Bailey, C J

    1998-02-01

    1. BTS 67582 (1,1-dimethyl-2-(2-morpholinophenyl)guanidine fumarate) is a novel antidiabetic agent with a short-acting insulin-releasing effect. This study examined its mode of action in the clonal B-cell line BRIN-BD11. 2. BTS 67582 increased insulin release from BRIN-BD11 cells in a concentration-dependent manner (10[-8] to 10[-4] M) at both non-stimulating (1.1 mM) and stimulating (16.7 mM) concentrations of glucose. 3. BTS 67582 (10[-4] M) potentiated the insulin-releasing effect of a depolarizing concentration of K+ (30 mM), whereas the K+ channel openers pinacidil (400 microM) and diazoxide (300 microM) inhibited BTS 67582-induced release. 4. Suppression of Ca+ channel activity with verapamil (20 microM) reduced the insulin-releasing effect of BTS 67582 (10[-4] M). 5. BTS 67582 (10[-4] M) potentiated insulin release induced by amino acids (10 mM), and enhanced the combined stimulant effects of glucose plus either the fatty acid palmitate (10 mM), or agents which raise intracellular cyclic AMP concentrations (25 microM forskolin and 1 mM isobutylmethylxanthine), or the cholinoceptor agonist carbachol (100 microM). 6. Inhibition of glucose-stimulated insulin release by adrenaline or noradrenaline (10 microM) was partially reversed by BTS 67582 (10[-4] M). 7. These data suggest that the insulin-releasing effect of BTS 67582 involves regulation of ATP-sensitive K+ channel activity and Ca2+ influx, and that the drug augments the stimulant effects of nutrient insulin secretagogues and agents which enhance adenylate cyclase and phospholipase C. BTS 67582 may also exert insulin-releasing effects independently of ATP-sensitive K+ channel activity.

  16. Alterations in Ca2+-dependent and Ca2+-independent release of catecholamines in preparations of rat brain produced by ethanol treatment in vivo

    International Nuclear Information System (INIS)

    Lynch, M.A.; Pagonis, C.; Samuel, D.; Littleton, J.M.

    1985-01-01

    Compared to preparations from control animals, superfused striatal slice preparations from brains of rats treated chronically with ethanol released a significantly greater fraction of stored [ 3 H] dopamine on depolarisation in 40 mM K + . Similarly, the electrically-evoked release of [ 3 H]-norepinephrine from cortical slices and of [ 3 H]-dopamine from striatal slices is also increased, although with this mechanism of depolarisation the change is significant only in the case of [ 3 H] norepinephrine release. In contrast to this tendency to enhancement of Ca 2+ -dependent depolarisation-induced release, a reduced fraction of stored [ 3 H]-catecholamines was released from these preparations by the indirect sympathomimetics tyramine and (+)-amphetamine. The catecholamine release induced by these indirect sympathomimetics is largely independent of external Ca 2+ and the results are interpreted as suggesting that chronic alcohol treatment changes the distribution of catecholamine neurotransmitters between storage pools in the nerve terminal which do or do not require Ca 2+ entry for release

  17. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents.

    Science.gov (United States)

    Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A

    2017-08-01

    Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The effect of chronic exposure to fatty acids

    DEFF Research Database (Denmark)

    Xiao, J.; Gregersen, S.; Kruhøffer, Mogens

    2001-01-01

    Fatty acids affect insulin secretion of pancreatic beta-cells. Investigating gene expression profiles may help to characterize the underlying mechanism. INS-1 cells were cultured with palmitate (0, 50, and 200 microM) for up to 44 d. Insulin secretion and expressions of 8740 genes were studied. We...... 44, respectively. Genes involved in fatty acid oxidation were up-regulated, whereas those involved in glycolysis were down-regulated with 200 microM palmitate. A suppression of insulin receptor and insulin receptor substate-2 gene expression was found on d 44 in cells cultured at 200 microM palmitate....... In conclusion, chronic exposure to low palmitate alters insulin secretion as well as gene expression. The number of genes that changed expression was palmitate dose and exposure time dependent. Randle's fatty acid-glucose cycle seems to be operative on the gene transcription level. A modification of expression...

  19. Sex and muscle structural lipids in obese subjects - an impact on insulin action?

    DEFF Research Database (Denmark)

    Haugaard, SB; Vaag, A.; Høy, Carl-Erik

    2008-01-01

    BACKGROUND: Long-chain polyunsaturated fatty acid (LCPUFA) especially the n-3-FA of skeletal muscle phospholipids may facilitate insulin action, whereas saturated and trans-FA act oppositely. Community studies show that non-diabetic weight matched obese men and women display similar insulin resis...

  20. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul

    2003-01-01

    (HI), 40 mU/m(2) x min], 3-(3)H-glucose, indirect calorimetry, and iv glucose tolerance test. Free fatty acid concentrations were similar during basal steady state but 3.7- to 13-fold higher during clamps. P-glucagon increased and the insulin/glucagon ratio decreased at both LI and HI during...... not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes....

  1. Post-transcriptional gene silencing of ribosomal protein S6 kinase 1 restores insulin action in leucine-treated skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A; Salehzadeh, F; Metayer-Coustard, S

    2009-01-01

    Excessive nutrients, especially amino acids, impair insulin action on glucose metabolism in skeletal muscle. We tested the hypothesis that the branched-chain amino acid leucine reduces acute insulin action in primary myotubes via a negative feedback mechanism involving ribosomal protein S6 kinase 1...... to excessive leucine. In conclusion, S6K1 plays an important role in the regulation of insulin action on glucose metabolism in skeletal muscle....

  2. Spectrophotometric determination of catecholamine using vanadium and eriochrome cyanine r

    International Nuclear Information System (INIS)

    Nagaraja, Padmarajaiah; Shrestha, Ashwinee Kumar; Shivakumar, Anantharaman; Al-Tayar, Naef Ghallab Saeed; Gowda, Avinask K.

    2011-01-01

    highly sensitive spectrophotometric method for the analysis of catecholamine drugs; L-dopa and methyldopa, is described. The analysis is based on the reaction of drug molecules with vanadium (V) which is reduced to vanadium (IV) and form complex with eriochrome cyanine R to give products having maximum absorbance (λ max ) at 565 nm. Beer's law is obeyed in the range 0.028-0.84 and 0.099-0.996 μg mL -1 for L-dopa and methyldopa, respectively. The statistical analysis as well as comparison with reported methods demonstrated high precision and accuracy of the proposed method. The method was successfully applied in the analysis of pharmaceutical preparations. (author)

  3. Insulin biosimilars: the impact on rapid-acting analogue-based therapy.

    Science.gov (United States)

    Franzè, S; Cilurzo, F; Minghetti, P

    2015-04-01

    The impending expiration of patent protection for recombinant insulins provides the opportunity to introduce cost-saving copies, named biosimilars, onto the market. Although there is broad experience in the production and characterisation of insulins, the development of copies is still a challenge. In this paper, the main features of insulins and the EU regulatory framework for their biosimilar products are reviewed. The main focus is on rapid-acting insulin analogues (Humalog(®); Novolog(®)/NovoRapid(®); Apidra(®)). Since they differ by one or two amino acids in chain B, production of one biosimilar for all three drug products is not feasible. However, from post-marketing-collected clinical data, rapid-acting insulin analogues seem to have similar therapeutic efficacy. It is reasonable to suppose that, for prescription to treatment-naïve patients, the cheaper biosimilar would be the preferred choice of physicians, either spontaneously or induced by health insurance. Therefore, its introduction will affect the market share of all the other rapid-acting insulin analogues.

  4. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Impaired insulin action in the human brain: causes and metabolic consequences.

    Science.gov (United States)

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.

  6. Nutrient Excess in AMPK Downregulation and Insulin Resistance

    OpenAIRE

    Coughlan, Kimberly A.; Valentine, Rudy J.; Ruderman, Neil B.; Saha, Asish K.

    2013-01-01

    It is well established that chronic exposure to excess nutrients leads to insulin resistance (IR) in skeletal muscle. Since skeletal muscle is responsible for 70-80% of insulin-stimulated glucose uptake, skeletal muscle IR is a key pathological component of type 2 diabetes (T2D). Recent evidence suggests that inhibition of the nutrient-sensing enzyme AMP-activated protein kinase (AMPK) is an early event in the development of IR in response to high glucose, branched chain amino acids (BCAA), o...

  7. Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity

    OpenAIRE

    Haeusler, Rebecca A.; Camastra, Stefania; Nannipieri, Monica; Astiarraga, Brenno; Castro-Perez, Jose; Xie, Dan; Wang, Liangsu; Chakravarthy, Manu; Ferrannini, Ele

    2015-01-01

    We measured plasma bile acids, markers of bile acid synthesis, and expression of bile acid transporters in obese and nonobese subjects. We found that obesity was associated with increased bile acid synthesis and 12-hydroxylation, blunted response of plasma bile acids to insulin infusion or a mixed meal, and decreased expression of liver bile acid transporters.

  8. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    International Nuclear Information System (INIS)

    Su, Chien-Tien; Lin, Hsiu-Chen; Choy, Cheuk-Sing; Huang, Yung-Kai; Huang, Shiau-Rung; Hsueh, Yu-Mei

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA 5+ ) and dimethylarsinic acid (DMA 5+ ) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: ► This is the first to find that urinary total arsenic is related inversely to the BMI. ► Arsenic methylation capability may be associated with obesity and insulin. ► Obese adolescents with high insulin had low arsenic methylation capacity.

  9. Modified High-Sucrose Diet-Induced Abdominally Obese and Normal-Weight Rats Developed High Plasma Free Fatty Acid and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Li Cao

    2012-01-01

    Full Text Available Introduction. Metabolically obese but normal-weight (MONW individuals have metabolic features of overt obesity, and abdominal adiposity is common in them. Animal models of MONW individuals are lacking. We aimed to develop an abdominally obese and normal-weight (AONW rat model. Methods and Results. Young male Sprague-Dawley rats were fed chow or a modified high-sucrose (HS diet for 20 weeks. The HS diet induced increased visceral adipose tissue without increased body weight, reduced glucose disposal rates, and increased hepatic glucose output during the hyperinsulinemic-euglycemic clamp, increased plasma glucose during the intraperitoneal glucose tolerance test, and increased plasma free fatty acids. Hepatic lipidosis and hepatocyte mitochondria swelling were found in HS rats through light microscopy and transmission electron microscopy; similar impairments were not observed in muscle. RT-PCR showed that mRNA expression of uncoupling protein 3 and peroxisome proliferator-activated receptor-gamma coactivator 1α increased in muscle of HS rats, while expression of mitochondrial transcription factor A, glucose transporter type 4, and insulin receptor substrate-1 did not change significantly. Conclusion. AONW rats developed metabolic disorders seen in MONW individuals. Steatosis, mitochondrial morphologic changes, and insulin resistance were more serious in liver than in muscle. Genes involved in fatty acid metabolism and mitochondrial function changed in less impaired muscle.

  10. A Population Based Study of the Genetic Association between Catecholamine Gene Variants and Spontaneous Low-Frequency Fluctuations in Reaction Time.

    Directory of Open Access Journals (Sweden)

    Jojanneke A Bastiaansen

    Full Text Available The catecholamines dopamine and noradrenaline have been implicated in spontaneous low-frequency fluctuations in reaction time, which are associated with attention deficit hyperactivity disorder (ADHD and subclinical attentional problems. The molecular genetic substrates of these behavioral phenotypes, which reflect frequency ranges of intrinsic neuronal oscillations (Slow-4: 0.027-0.073 Hz; Slow-5: 0.010-0.027 Hz, have not yet been investigated. In this study, we performed regression analyses with an additive model to examine associations between low-frequency fluctuations in reaction time during a sustained attention task and genetic markers across 23 autosomal catecholamine genes in a large young adult population cohort (n = 964, which yielded greater than 80% power to detect a small effect size (f(2 = 0.02 and 100% power to detect a small/medium effect size (f(2 = 0.15. At significance levels corrected for multiple comparisons, none of the gene variants were associated with the magnitude of low-frequency fluctuations. Given the study's strong statistical power and dense coverage of the catecholamine genes, this either indicates that associations between low-frequency fluctuation measures and catecholamine gene variants are absent or that they are of very small effect size. Nominally significant associations were observed between variations in the alpha-2A adrenergic receptor gene (ADRA2A and the Slow-5 band. This is in line with previous reports of an association between ADRA2A gene variants and general reaction time variability during response selection tasks, but the specific association of these gene variants and low-frequency fluctuations requires further confirmation. Pharmacological challenge studies could in the future provide convergent evidence for the noradrenergic modulation of both general and time sensitive measures of intra-individual variability in reaction time.

  11. Amino acid profiles of young adults differ by sex, body mass index and insulin resistance.

    Science.gov (United States)

    Guevara-Cruz, M; Vargas-Morales, J M; Méndez-García, A L; López-Barradas, A M; Granados-Portillo, O; Ordaz-Nava, G; Rocha-Viggiano, A K; Gutierrez-Leyte, C A; Medina-Cerda, E; Rosado, J L; Morales, J C; Torres, N; Tovar, A R; Noriega, L G

    2018-04-01

    An increase in plasma branched-chain amino acids is associated with a higher risk of developing type 2 diabetes and cardiovascular diseases. However, little is known about the basal plasma amino acid concentrations in young adults. Our aim was to determine the plasma amino acid profiles of young adults and to evaluate how these profiles were modified by sex, body mass index (BMI) and insulin resistance (IR). We performed a transversal study with 608 Mexican young adults aged 19.9 ± 2.4 years who were applicants to the Universidad Autónoma de San Luis Potosí. The subjects underwent a physical examination and provided a clinical history and a blood sample for biochemical, hormonal and amino acid analyses. The women had higher levels of arginine, aspartate and serine and lower levels of α-aminoadipic acid, cysteine, isoleucine, leucine, methionine, proline, tryptophan, tyrosine, urea and valine than the men. The obese subjects had higher levels of alanine, aspartate, cysteine, ornithine, phenylalanine, proline and tyrosine and lower levels of glycine, ornithine and serine than the normal weight subjects. Subjects with IR (defined as HOMA > 2.5) had higher levels of arginine, alanine, aspartate, isoleucine, leucine, phenylalanine, proline, tyrosine, taurine and valine than the subjects without IR. Furthermore, we identified two main groups in the subjects with obesity and/or IR; one group was composed of amino acids that positively correlated with the clinical, biochemical and hormonal parameters, whereas the second group exhibited negative correlations. This study demonstrates that young adults with obesity or IR have altered amino acid profiles characterized by an increase in alanine, aspartate, proline and tyrosine and a decrease in glycine. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II

  12. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Jide Tian

    Full Text Available Adipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM, which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD-induced obesity, glucose intolerance and insulin resistance has not been explored. Here, we show that although oral treatment with GABA does not affect water and food consumption it inhibits the HFD-induced gain in body weights in C57BL/6 mice. Furthermore, oral treatment with GABA significantly reduced the concentrations of fasting blood glucose, and improved glucose tolerance and insulin sensitivity in the HFD-fed mice. More importantly, after the onset of obesity and T2DM, oral treatment with GABA inhibited the continual HFD-induced gain in body weights, reduced the concentrations of fasting blood glucose and improved glucose tolerance and insulin sensitivity in mice. In addition, oral treatment with GABA reduced the epididymal fat mass, adipocyte size, and the frequency of macrophage infiltrates in the adipose tissues of HFD-fed mice. Notably, oral treatment with GABA significantly increased the frequency of CD4(+Foxp3(+ Tregs in mice. Collectively, our data indicated that activation of peripheral GABA receptors inhibited the HFD-induced glucose intolerance, insulin resistance, and obesity by inhibiting obesity-related inflammation and up-regulating Treg responses in vivo. Given that GABA is safe for human consumption, activators of GABA receptors may be valuable for the prevention of obesity and intervention of T2DM in the clinic.

  13. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats.

    Science.gov (United States)

    Yamazaki, Ricardo K; Brito, Gleisson A P; Coelho, Isabela; Pequitto, Danielle C T; Yamaguchi, Adriana A; Borghetti, Gina; Schiessel, Dalton Luiz; Kryczyk, Marcelo; Machado, Juliano; Rocha, Ricelli E R; Aikawa, Julia; Iagher, Fabiola; Naliwaiko, Katya; Tanhoffer, Ricardo A; Nunes, Everson A; Fernandes, Luiz Claudio

    2011-04-28

    Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  14. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population.

    Directory of Open Access Journals (Sweden)

    Walter E Gall

    2010-05-01

    Full Text Available Insulin resistance is a risk factor for type 2 diabetes and cardiovascular disease progression. Current diagnostic tests, such as glycemic indicators, have limitations in the early detection of insulin resistant individuals. We searched for novel biomarkers identifying these at-risk subjects.Using mass spectrometry, non-targeted biochemical profiling was conducted in a cohort of 399 nondiabetic subjects representing a broad spectrum of insulin sensitivity and glucose tolerance (based on the hyperinsulinemic euglycemic clamp and oral glucose tolerance testing, respectively.Random forest statistical analysis selected alpha-hydroxybutyrate (alpha-HB as the top-ranked biochemical for separating insulin resistant (lower third of the clamp-derived M(FFM = 33 [12] micromol x min(-1 x kg(FFM (-1, median [interquartile range], n = 140 from insulin sensitive subjects (M(FFM = 66 [23] micromol x min(-1 x kg(FFM (-1 with a 76% accuracy. By targeted isotope dilution assay, plasma alpha-HB concentrations were reciprocally related to M(FFM; and by partition analysis, an alpha-HB value of 5 microg/ml was found to best separate insulin resistant from insulin sensitive subjects. alpha-HB also separated subjects with normal glucose tolerance from those with impaired fasting glycemia or impaired glucose tolerance independently of, and in an additive fashion to, insulin resistance. These associations were also independent of sex, age and BMI. Other metabolites from this global analysis that significantly correlated to insulin sensitivity included certain organic acid, amino acid, lysophospholipid, acylcarnitine and fatty acid species. Several metabolites are intermediates related to alpha-HB metabolism and biosynthesis.alpha-hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation. The underlying biochemical mechanisms may involve increased lipid oxidation and oxidative stress.

  15. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  16. Role of B13 Glu in insulin assembly. The hexamer structure of recombinant mutant (B13 Glu-->Gln) insulin.

    Science.gov (United States)

    Bentley, G A; Brange, J; Derewenda, Z; Dodson, E J; Dodson, G G; Markussen, J; Wilkinson, A J; Wollmer, A; Xiao, B

    1992-12-20

    The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.

  17. Degludec insulin: A novel basal insulin

    OpenAIRE

    Kalra, Sanjay; Unnikrishnan, Ambika Gopalakrishnan; Baruah, Manash; Kalra, Bharti

    2011-01-01

    This paper reviews a novel insulin analogue, degludec, which has the potential to emerge as an ideal basal insulin. It reviews the limitations of existing basal insulin and analogues, and highlights the need for a newer molecule. The paper discusses the potential advantages of degludec, while reviewing its pharmacologic and clinical studies done so far. The paper assesses the potential role of insulin degludec and degludec plus in clinical diabetes practice.

  18. (B1-/sup 125/I-desaminotyrosine)-insulin - A novel homogeneous insulin tracer

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, S; Zahn, H; Brandenburg, D [Deutsches Wollforschungsinstitut, Aachen (Germany F.R.); Machulla, H -J; Dutschka, K [Institut fuer Medizinische Strahlenphysik und Strahlenbiologie des Universitaetsklinikum, Essen (Germany F.R.)

    1980-10-28

    (B1-/sup 125/I-desaminotyrosine)-insulin (/sup 125/I-MII) was prepared with high specific activities (420 Ci/mmole) by exchanging B1-phenylalanine for /sup 125/I-p-hydroxyphenyl-propionic acid N-hydroxysuccinimide ester (Bolton-Hunter reagent). Overall radiochemical yields were about 8%. Analytical quality control and purification were performed by means of radio high pressure liquid chromatography. The radiochemical purity of /sup 125/I-MII was >99%, and the immunoprecipitability was 97%.

  19. Substrate utilization/insulin resistance in sepsis/trauma.

    Science.gov (United States)

    Wolfe, R R

    1997-12-01

    Endogenous substrate metabolism is markedly altered in critically ill patients. Glucose production is elevated not only in the post-absorptive state, but the normal suppressive effect of exogenous glucose and glucose production is greatly diminished. In the post-absorptive state, glucose clearance is generally elevated, potentially causing hypoglycaemia in extreme cases. Somewhat paradoxically, the ability of insulin to stimulate glucose uptake is diminished, so that hyperglycaemia is often evident during nutritional intake. Lipolysis, the breakdown of peripheral fat, is accelerated, meaning that free fatty acids are released into plasma at a rate far exceeding their oxidation. Some of the excess fatty acids are re-esterified in the liver, leading to accelerated hepatic triglyceride formation. A large increase in hepatic triglyceride stores can ensue if the rate of excretion of triglycerides in very low density lipoproteins is not accelerated commensurately with the increased triglyceride production. Indirect calorimetry measurements support the notion that the large increase in availability of fatty acids may lead to a greater reliance on fatty acids as energy substrates. Nonetheless, carbohydrates should be the predominant source of non-protein calories, because the accompanying insulin response effectively enhances protein synthesis. There is already ample fat available via endogenous lipolysis, and more fat given exogenously provides little further benefit.

  20. Effects of B Vitamins Overload on Plasma Insulin Level and Hydrogen Peroxide Generation in Rats.

    Science.gov (United States)

    Sun, Wuping; Zhai, Mingzhu; Zhou, Qian; Qian, Chengrui; Jiang, Changyu

    2017-08-31

    It has been reported that nicotinamide-overload induces oxidative stress associated with insulin resistance, the key feature of type 2 diabetes mellitus (T2DM). This study aimed to investigate the effects of B vitamins in T2DM. Glucose tolerance tests were carried out in adult Sprague-Dawley rats treated with or without cumulative doses of B vitamins. More specifically, insulin tolerance tests were also carried out in adult Sprague-Dawley rats treated with or without cumulative doses of Vitamin B3. We found that cumulative Vitamin B1 and Vitamin B3 administration significantly increased the plasma H₂O₂ levels associated with high insulin levels. Only Vitamin B3 reduced muscular and hepatic glycogen contents. Cumulative administration of nicotinic acid, another form of Vitamin B3, also significantly increased plasma insulin level and H₂O₂ generation. Moreover, cumulative administration of nicotinic acid or nicotinamide impaired glucose metabolism. This study suggested that excess Vitamin B1 and Vitamin B3 caused oxidative stress and insulin resistance.

  1. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males

    Directory of Open Access Journals (Sweden)

    Jorge F. T. de Souza

    2017-12-01

    Full Text Available Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT is emerging as a potential strategy.Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation.Method: Eleven healthy male volunteers were recruited, aged 18–35 years, who declared taking 7–8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition, 24 h of total sleep deprivation (SD condition, HIIT training followed by regular sleep (HIIT+RS condition, and HIIT training followed by 24 h of total sleep deprivation (HIIT+SD condition. They performed six training sessions over 2 weeks and each session consisted of 8–12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT, were performed.Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids.Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition.

  2. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males.

    Science.gov (United States)

    de Souza, Jorge F T; Dáttilo, Murilo; de Mello, Marco T; Tufik, Sergio; Antunes, Hanna K M

    2017-01-01

    Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT) is emerging as a potential strategy. Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation. Method: Eleven healthy male volunteers were recruited, aged 18-35 years, who declared taking 7-8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition), 24 h of total sleep deprivation ( SD condition), HIIT training followed by regular sleep (HIIT+RS condition), and HIIT training followed by 24 h of total sleep deprivation (HIIT+ SD condition). They performed six training sessions over 2 weeks and each session consisted of 8-12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT), were performed. Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids. Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition.

  3. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males

    Science.gov (United States)

    de Souza, Jorge F. T.; Dáttilo, Murilo; de Mello, Marco T.; Tufik, Sergio; Antunes, Hanna K. M.

    2017-01-01

    Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT) is emerging as a potential strategy. Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation. Method: Eleven healthy male volunteers were recruited, aged 18–35 years, who declared taking 7–8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition), 24 h of total sleep deprivation (SD condition), HIIT training followed by regular sleep (HIIT+RS condition), and HIIT training followed by 24 h of total sleep deprivation (HIIT+SD condition). They performed six training sessions over 2 weeks and each session consisted of 8–12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT), were performed. Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids. Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition. PMID:29270126

  4. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul

    2003-01-01

    not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes.......We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp...

  5. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Normal growth spurt and final height despite low levels of all forms of circulating insulin-like growth factor-I in a patient with acid-labile subunit deficiency

    DEFF Research Database (Denmark)

    Domené, Horacio M; Martínez, Alicia S; Frystyk, Jan

    2007-01-01

    BACKGROUND: In a recently described patient with acid-labile subunit (ALS) deficiency, the inability to form ternary complexes resulted in a marked reduction in circulating total insulin-like growth factor (IGF)-I, whereas skeletal growth was only marginally affected. To further study the role of...

  7. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Bojsen-Møller, Kirstine N; Dirksen, Carsten; Jørgensen, Nils Bruun

    2014-01-01

    after RYGB. Participants were included after a preoperative diet induced total weight loss of -9.2±1.2%. Hepatic and peripheral insulin sensitivity were assessed using the hyperinsulinemic euglycemic clamp combined with glucose tracer technique and beta-cell function evaluated in response...... after surgery. Insulin mediated glucose disposal and suppression of fatty acids did not improve immediately after surgery but increased at 3 months and 1 year likely related to the reduction in body weight. Insulin secretion increased after RYGB, but only in patients with type 2 diabetes and only...

  8. The effect of mutations on the structure of insulin fibrils studied by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    Science.gov (United States)

    Garriques, Liza Nielsen; Frokjaer, Sven; Carpenter, John F; Brange, Jens

    2002-12-01

    Fibril formation (aggregation) of human and bovine insulin and six human insulin mutants in hydrochloric acid were investigated by visual inspection, Thioflavin T fluorescence spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The fibrillation tendencies of the wild-type insulins and the insulin mutants were (in order of decreasing fibrillation tendencies): Glu(B1) + Glu(B27) = bovine < human < des-(B1,B2)-insulin < Ser(B2) + Asp(B10) < Glu(A13) + Glu(B10) = Gln(B17) < Asp(B10). Transmission electron micrographs showed that the protofibrils of the mutants were similar to those of wild-type insulins and had a diameter of 5-10 nm and lengths varying from 50 nm to several microns. The fibrils of human insulin mutants exhibited varying degrees of lateral aggregation. The Asp(B10) mutant and human insulin had greater tendency to form laterally aggregated fibrils arranged in parallel bundles, whereas fibrils of the other mutants and bovine insulin were mainly arranged in helical filaments. FTIR spectroscopy showed that the native secondary structure of the wild-type insulins and the human insulin mutants in hydrochloric acid were identical, whereas the secondary structure of the fibrils formed by heating at 50 degrees C depended on the amino acid substitution. FTIR spectra of fibrils of the human insulin mutants exhibited different beta-sheet bands at 1,620-1,640 cm(-1), indicating that the beta-sheet interactions in the fibrils depended on variations in the primary structure of insulin. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2473-2480, 2002

  9. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Hsiu-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Choy, Cheuk-Sing [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Emergency Department, Taipei Hospital, Department of Health, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shiau-Rung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA{sup 5+}) and dimethylarsinic acid (DMA{sup 5+}) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: Black-Right-Pointing-Pointer This is the first to find that urinary total arsenic is related inversely to the BMI. Black-Right-Pointing-Pointer Arsenic methylation capability may be associated with obesity and insulin. Black-Right-Pointing-Pointer Obese adolescents with high insulin had low arsenic methylation capacity.

  10. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway.

    Science.gov (United States)

    Gandhi, Gopalsamy Rajiv; Jothi, Gnanasekaran; Antony, Poovathumkal James; Balakrishna, Kedike; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Stalin, Antony; Al-Dhabi, Naif Abdullah

    2014-12-15

    In this study, the therapeutic efficacy of gallic acid from Cyamopsis tetragonoloba (L.) Taub. (Fabaceae) beans was examined against high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats. Molecular-dockings were done to determine the putative binding modes of gallic acid into the active sites of key insulin-signaling markers. Gallic acid (20 mg/kg) given to high-fat diet fed-streptozotocin-induced rats lowered body weight gain, fasting blood glucose and plasma insulin in diabetic rats. It further restored the alterations of biochemical parameters to near normal levels in diabetic treated rats along with cytoprotective action on pancreatic β-cell. Histology of liver and adipose tissues supported the biochemical findings. Gallic acid significantly enhanced the level of peroxisome proliferator-activated receptor γ (PPARγ) expression in the adipose tissue of treated rat compared to untreated diabetic rat; it also slightly activated PPARγ expressions in the liver and skeletal muscle. Consequently, it improved insulin-dependent glucose transport in adipose tissue through translocation and activation of glucose transporter protein 4 (GLUT4) in phosphatidylinositol 3-kinase (PI3K)/phosphorylated protein kinase B (p-Akt) dependent pathway. Gallic acid docked with PPARγ; it exhibited promising interactions with the GLUT4, glucose transporter protein 1 (GLUT1), PI3K and p-Akt. These findings provided evidence to show that gallic acid could improve adipose tissue insulin sensitivity, modulate adipogenesis, increase adipose glucose uptake and protect β-cells from impairment. Hence it can be used in the management of obesity-associated type 2 diabetes mellitus. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Responses of Blood Glucose, Insulin, Glucagon, and Fatty Acids to Intraruminal Infusion of Propionate in Hanwoo

    Directory of Open Access Journals (Sweden)

    Y. K. Oh

    2015-02-01

    Full Text Available This study was carried out to investigate the effects of intraruminal infusion of propionate on ruminal fermentation characteristics and blood hormones and metabolites in Hanwoo (Korean cattle steers. Four Hanwoo steers (average body wt. 270 kg, 13 month of age equipped with rumen cannula were infused into rumens with 0.0 M (Water, C, 0.5 M (37 g/L, T1, 1.0 M (74 g/L, T2 and 1.5 M (111 g/L, T3 of propionate for 1 hour per day and allotted by 4×4 Latin square design. On the 5th day of infusion, samples of rumen and blood were collected at 0, 60, 120, 180, and 300 min after intraruminal infusion of propionate. The concentrations of serum glucose and plasma glucagon were not affected (p>0.05 by intraruminal infusion of propionate. The serum insulin concentration at 60 min after infusion was significantly (p<0.05 higher in T3 than in C, while the concentration of non-esterified fatty acid (NEFA at 60 and 180 min after infusion was significantly (p<0.05 lower in the propionate treatments than in C. Hence, intraruminal infusion of propionate stimulates the secretion of insulin, and decreases serum NEFA concentration rather than the change of serum glucose concentration.

  12. The role of prefrontal catecholamines in attention and working memory

    Directory of Open Access Journals (Sweden)

    Behrad eNoudoost

    2014-04-01

    Full Text Available While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, To date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory.

  13. The role of prefrontal catecholamines in attention and working memory

    Science.gov (United States)

    Clark, Kelsey L.; Noudoost, Behrad

    2014-01-01

    While much progress has been made in identifying the brain regions and neurochemical systems involved in the cognitive processes disrupted in mental illnesses, to date, the level of detail at which neurobiologists can describe the chain of events giving rise to cognitive functions is very rudimentary. Much of the intense interest in understanding cognitive functions is motivated by the hope that it might be possible to understand these complex functions at the level of neurons and neural circuits. Here, we review the current state of the literature regarding how modulations in catecholamine levels within the prefrontal cortex (PFC) alter the neuronal and behavioral correlates of cognitive functions, particularly attention and working memory. PMID:24782714

  14. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    Directory of Open Access Journals (Sweden)

    Iagher Fabiola

    2011-04-01

    Full Text Available Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG (4 mg/g body weight was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C, coconut fat-treated normal weight group (CO, fish oil-treated normal weight group (FO, obese control group (Ob, coconut fat-treated obese group (ObCO and fish oil-treated obese group (ObFO. Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30% and triacylglycerol (TG; 33% compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  15. Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Zinman, Bernard; Philis-Tsimikas, Athena; Cariou, Bertrand

    2012-01-01

    To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs).......To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs)....

  16. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Kawanaka M

    2015-06-01

    Full Text Available Miwa Kawanaka,1 Ken Nishino,1 Takahito Oka,1 Noriyo Urata,1 Jun Nakamura,1 Mitsuhiko Suehiro,1 Hirofumi Kawamoto,1 Yasutaka Chiba,2 Gotaro Yamada1 1Department of General Internal Medicine 2, Kawasaki Hospital, Kawasaki Medical School, Okayama, Japan; 2Clinical Research Center, Kinki University Hospital, Sayama, Japan Objective: Amino acid imbalance is often found in patients with cirrhosis, and this imbalance is associated with insulin resistance. However, the mechanism underlying the relationship between amino acid imbalance and insulin resistance remains unclear. We evaluated serum amino acid concentrations in patients with nonalcoholic fatty liver disease to determine if any of the levels of amino acids were associated with the biochemical markers and fibrosis stage of nonalcoholic steatohepatitis (NASH. Methods: In 137 patients with nonalcoholic fatty liver disease who underwent liver biopsy, plasma levels of branched-chain amino acid (BCAA, tyrosine (Tyr, and the BCAA-to-Tyr ratio values were determined using mass spectroscopy. These values were then assessed for associations with fibrosis stage, anthropometric markers (age, sex, and body mass index, biochemical markers (alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, albumin, platelet count, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and glycosylated hemoglobin, and relevant disease-specific biomarkers (homeostasis model assessment of insulin resistance [HOMA-IR], serum iron, ferritin, leptin, adiponectin, high-sensitivity C-reactive protein, and hyaluronic acid. Results: Serum albumin levels, plasma BCAA levels, and BCAA-to-Tyr ratio values were negatively associated with the fibrosis stage. In contrast, Tyr levels increased with increasing fibrotic staging. Tyr levels were also correlated with HOMA-IR results. Conclusion: Plasma BCAA levels in patients with NASH decreased with increasing liver fibrosis, while Tyr levels

  17. Effects of heparin on insulin binding and biological activity

    International Nuclear Information System (INIS)

    Kriauciunas, K.M.; Grigorescu, F.; Kahn, C.R.

    1987-01-01

    The effect of heparin, a polyanionic glycosaminoglycan known to alter the function of many proteins, on insulin binding and bioactivity was studied. Cultured human lymphocytes (IM-9) were incubated with varying concentrations of heparin, then extensively washed, and 125 I-labeled insulin binding was measured. Heparin at concentrations used clinically for anticoagulation (1-50 U/ml) inhibited binding in a dose-dependent manner; 50% inhibition of binding occurred with 5-10 U/ml. Scatchard analysis indicated that the decrease in binding was due to a decrease in both the affinity and the apparent number of available insulin receptors. The effect occurred within 10 min at 22 degrees C and persisted even after the cells were extensively washed. Inhibition of insulin binding also occurred when cells were preincubated with heparinized plasma or heparinized serum but not when cells were incubated with normal serum or plasma from blood anticoagulated with EDTA. By contrast, other polyanions and polycations, e.g., poly-L-glutamic acid, poly-L-lysine, succinylated poly-L-lysine, and histone, did not inhibit binding. Heparin also inhibited insulin binding in Epstein-Barr (EB) virus-transformed lymphocytes but had no effect on insulin binding to isolated adipocytes, human erythrocytes, or intact hepatoma cells. When isolated adipocytes were incubated with heparin, there was a dose-dependent inhibition of insulin-stimulated glucose oxidation and, to a lesser extent, of basal glucose oxidation. Although heparin has no effect on insulin binding to intact hepatoma cells, heparin inhibited both insulin binding and insulin-stimulated autophosphorylation in receptors solubilized from these cells

  18. Monomeric insulins and their experimental and clinical implications.

    Science.gov (United States)

    Brange, J; Owens, D R; Kang, S; Vølund, A

    1990-09-01

    Due to the inherent pharmacokinetic properties of available insulins, normoglycemia is rarely, if ever, achieved in insulin-dependent diabetic patients without compromising their quality of life. Subcutaneous insulin absorption is influenced by many factors, among which the associated state of insulin (hexameric) in pharmaceutical formulation may be of importance. This review describes the development of a series of human insulin analogues with reduced tendency to self-association that, because of more rapid absorption, are better suited to meal-related therapy. DNA technology has made it possible to prepare insulins that remain dimeric or even monomeric at high concentration by introducing one or a few amino acid substitutions into human insulin. These analogues were characterized and used for elucidating the mechanisms involved in subcutaneous absorption and were investigated in preliminary clinical studies. Their relative receptor binding and in vitro potency (free-fat cell assay), ranging from 0.05 to 600% relative to human insulin, were strongly correlated (r = 0.97). In vivo, most of the analogues exhibited approximately 100% activity, explainable by a dominating receptor-mediated clearance. This was confirmed by clamp studies in which correlation between receptor binding and clearance was observed. Thus, an analogue with reduced binding and clearance gives higher circulating concentrations, counterbalancing the reduced potency at the cellular level. Absorption studies in pigs revealed a strong inverse correlation (r = 0.96) between the rate of subcutaneous absorption and the mean association state of the insulin analogues. These studies also demonstrated that monomeric insulins were absorbed three times faster than human insulin. In healthy subjects, rates of disappearance from subcutis were two to three times faster for dimeric and monomeric analogues than for human insulin. Concomitantly, a more rapid rise in plasma insulin concentration and an earlier

  19. Inhibition of radioemesis by disruption of catecholamines in dogs

    International Nuclear Information System (INIS)

    Luthra, Y.K.; Mattsson, J.L.; Yochmowitz, M.G.

    1981-01-01

    Dogs were treated 30 min to 1 h before x irradiation with α-methyl-p-tyrosine or 6-hydroxydopamine. A third group of dogs was given a known antiradioemetic drug, haloperidol to verify the sensitivity of the procedure. Irradiated but untreated controls were also used. Light methoxyflurane anesthesia was used for restraint during the exposure. Exposure dose was 800 rad kerma delivered at 50 rad/min to a 10 x 10-cm area covering the abdominal area from xiphoid to pubis. Haloperidol and 6-hydroxydopamine significantly reduced the number of emetic episodes and delayed the onset time to the first episode, α-Methyl-p-tyrosine caused no significant changes. The effectiveness of 6-hydroxydopamine indicates that catecholaminergic neurons are involved in radioemesis, whereas haloperidol and phenothiazine-derivative tranquilizers inhibit radiomesis by blocking catecholamine receptor neurons

  20. The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa.

    Science.gov (United States)

    Homan, Philipp; Grob, Simona; Milos, Gabriella; Schnyder, Ulrich; Eckert, Anne; Lang, Undine; Hasler, Gregor

    2014-12-07

    A relationship between bulimia nervosa and reward-related behavior is supported by several lines of evidence. The dopaminergic dysfunctions in the processing of reward-related stimuli have been shown to be modulated by the neurotrophin brain derived neurotrophic factor (BDNF) and the hormone leptin. Using a randomized, double-blind, placebo-controlled, crossover design, a reward learning task was applied to study the behavior of 20 female subjects with remitted bulimia nervosa and 27 female healthy controls under placebo and catecholamine depletion with alpha-methyl-para-tyrosine (AMPT). The plasma levels of BDNF and leptin were measured twice during the placebo and the AMPT condition, immediately before and 1 hour after a standardized breakfast. AMPT-induced differences in plasma BDNF levels were positively correlated with the AMPT-induced differences in reward learning in the whole sample (P=.05). Across conditions, plasma brain derived neurotrophic factor levels were higher in remitted bulimia nervosa subjects compared with controls (diagnosis effect; P=.001). Plasma BDNF and leptin levels were higher in the morning before compared with after a standardized breakfast across groups and conditions (time effect; Pbulimia nervosa and controls. A role of leptin in reward learning is not supported by this study. However, leptin levels were sensitive to a depletion of catecholamine stores in both remitted bulimia nervosa and controls. © The Author 2015. Published by Oxford University Press on behalf of CINP.