WorldWideScience

Sample records for acids improves lipid

  1. Radiotherapy improves serum fatty acids and lipid profile in breast cancer.

    Science.gov (United States)

    Shaikh, Sana; Channa, Naseem Aslam; Talpur, Farha Naz; Younis, Muhammad; Tabassum, Naila

    2017-05-18

    Breast cancer is a disease with diverse clinical symptoms, molecular profiles, and its nature to response its therapeutic treatments. Radiotherapy (RT), along with surgery and chemotherapy is a part of treatment in breast cancer. The aim of present study was to investigate pre and post treatment effects of radiotherapy in serum fatty acids and its lipids profile in patients with breast cancer. In this comparative as well as follow up study, Serum fatty acids were performed by gas chromatography to investigate fatty acids and Microlab for analysis of lipid profile. Among serum free and total fatty acids the major saturated fatty acids (SFAs) in serum lipids of breast cancer patients (pre and post treated) were stearic acid (18:0) and palmitic acid (16:0). These fatty acids contributed about 35-50% of total fatty acids. The decreased concentrations of linoleic acid (C18:2) and arachidonic acid (C20:4) with a lower ratio of C18:2/C18:1 was found in pretreated breast cancer patients as compared to controls. The n-3/n-6 ratio of breast cancer patients was decreased before treatment but it was 35% increased after treatment. In addition, plasma activity of D6 desaturase was increased in the breast cancer patients, while the activity of D5 desaturase was decreased. Increased levels of SFAs, monounsaturated fatty acids (MUFAs) and decreased polyunsaturated fatty acids (PUFAs) levels in breast cancer patients (pre and post treated) as compared to controls. Serum total cholesterol (TC) (224.4 mg/dL) and low density lipoprotein cholesterol (LDL-C) (142.9 mg/dL) were significantly increased in pretreated breast cancer patients but after the radiotherapy treatment, the TC (150.2 mg/dL) and LDL-C (89.8 mg/dL) were decreased. It seems that RT would have played a potential role in the treatment of BC. After RT the serum levels of PUFAs, TC, and LDL-C are improved. Our study reinforces the important role of RT in the management of BC. The level of PUFAs, TC, and LDL-C can be

  2. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  3. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    Science.gov (United States)

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Introduction to fatty acids and lipids.

    Science.gov (United States)

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  5. Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids

    DEFF Research Database (Denmark)

    Garcia Diaz, Maria; Foged, Camilla; Nielsen, Hanne Mørck

    2015-01-01

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading...... of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique...... efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid–insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer...

  6. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    Science.gov (United States)

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids.

    Science.gov (United States)

    Zhang, Chaolei; Shen, Hongwei; Zhang, Xibin; Yu, Xue; Wang, Han; Xiao, Shan; Wang, Jihui; Zhao, Zongbao K

    2016-10-01

    To improve production of lipids and carotenoids by the oleaginous yeast Rhodosporidium toruloides by screening mutant strains. Upon physical mutagenesis of the haploid strain R. toruloides np11 with an atmospheric and room temperature plasma method followed by chemical mutagenesis with nitrosoguanidine, a mutant strain, R. toruloides XR-2, formed dark-red colonies on a screening plate. When cultivated in nitrogen-limited media, XR-2 cells grew slower but accumulated 0.23 g lipids/g cell dry wt and 0.75 mg carotenoids/g CDW. To improve its production capacity, different amino acids and vitamins were supplemented. p-Aminobenzoic acid and tryptophan had beneficial effects on cell growth. When cultivated in nitrogen-limited media in the presence of selected vitamins, XR-2 accumulated 0.41 g lipids/g CDW and 0.69 mg carotenoids/g CDW. A mutant R. toruloides strain with improved production profiles for lipids and carotenoids was obtained, indicating its potential to use combined mutagenesis for a more productive phenotype.

  8. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Akkarach Bumrungpert

    2018-06-01

    Full Text Available Ferulic acid is the most abundant phenolic compound found in vegetables and cereal grains. In vitro and animal studies have shown ferulic acid has anti-hyperlipidemic, anti-oxidative, and anti-inflammatory effects. The objective of this study is to investigate the effects of ferulic acid supplementation on lipid profiles, oxidative stress, and inflammatory status in hyperlipidemia. The study design is a randomized, double-blind, placebo-controlled trial. Subjects with hyperlipidemia were randomly divided into two groups. The treatment group (n = 24 was given ferulic acid (1000 mg daily and the control group (n = 24 was provided with a placebo for six weeks. Lipid profiles, biomarkers of oxidative stress and inflammation were assessed before and after the intervention. Ferulic acid supplementation demonstrated a statistically significant decrease in total cholesterol (8.1%; p = 0.001, LDL-C (9.3%; p < 0.001, triglyceride (12.1%; p = 0.049, and increased HDL-C (4.3%; p = 0.045 compared with the placebo. Ferulic acid also significantly decreased the oxidative stress biomarker, MDA (24.5%; p < 0.001. Moreover, oxidized LDL-C was significantly decreased in the ferulic acid group (7.1%; p = 0.002 compared with the placebo group. In addition, ferulic acid supplementation demonstrated a statistically significant reduction in the inflammatory markers hs-CRP (32.66%; p < 0.001 and TNF-α (13.06%; p < 0.001. These data indicate ferulic acid supplementation can improve lipid profiles and oxidative stress, oxidized LDL-C, and inflammation in hyperlipidemic subjects. Therefore, ferulic acid has the potential to reduce cardiovascular disease risk factors.

  9. Oleic Acid enhances all-trans retinoic Acid loading in nano-lipid emulsions.

    Science.gov (United States)

    Chinsriwongkul, Akhayachatra; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Sila-On, Warisada; Ruktanonchai, Uracha

    2010-01-01

    The aim of this study was to investigate the enhancement of all-trans retinoic acid (ATRA) loading in nano-lipid emulsions and stability by using oleic acid. The effect of formulation factors including initial ATRA concentration and the type of oil on the physicochemical properties, that is, percentage yield, percentage drug release, and photostability of formulations, was determined. The solubility of ATRA was increased in the order of oleic acid > MCT > soybean oil > water. The physicochemical properties of ATRA-loaded lipid emulsion, including mean particle diameter and zeta potential, were modulated by changing an initial ATRA concentration as well as the type and mixing ratio of oil and oleic acid as an oil phase. The particles of lipid emulsions had average sizes of less than 250 nm and negative zeta potential. The addition of oleic acid in lipid emulsions resulted in high loading capacity. The photodegradation rate was found to be dependent on the initial drug concentration but independent of the type of oily phase used in this study. The release rates were not affected by initial ATRA concentration but were affected by the type of oil, where oleic acid showed the highest release rate of ATRA from lipid emulsions.

  10. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway...... for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...... with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates...

  11. Bioconversion of mixed volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509.

    Science.gov (United States)

    Liu, Jia; Yuan, Ming; Liu, Jia-Nan; Huang, Xiang-Feng

    2017-10-01

    The oleaginous yeast Cryptococcus curvatus ATCC 20509 can use 5-40g/L of acetic, propionic, or butyric acid as sole carbon source to produce lipids. High concentrations (30g/L) of mixed volatile fatty acids (VFAs) were used to cultivate C. curvatus to explore the effects of different ratios of mixed VFAs on lipid production and composition. When mixed VFAs (VFA ratio was 15:5:10) were used as carbon sources, the highest cell mass and lipid concentration were 8.68g/L and 4.93g/L, respectively, which were significantly higher than those when 30g/L of acetic acid was used as sole carbon source. The highest content and yield of odd-numbered fatty acids were 45.1% (VFA ratio was 0:15:15) and 1.62g/L (VFA ratio was 5:15:10), respectively. These results indicate that adjusting the composition ratios of mixed VFAs effectively improves microbial lipid synthesis and the yield of odd-numbered fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    Science.gov (United States)

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel.

  13. Dietary Changes with Omega-3 Fatty Acids Improves the Blood Lipid Profile of Wistar Albino Rats with Hypercholesterolaemia

    OpenAIRE

    Shahida A Khan; Ahmad Makki

    2017-01-01

    Background: Lipid profile is a reasonably reliable parameter for the assessment of cardiovascular risk, besides the anthropometric measurements. Serum lipid dysfunctions in the HDL and LDL components are commonly observed in cardiac patients. Omega-3 fatty acids exhibit a hypolipidemic potential which could be exploited in preventing the onset of this alarmingly increasing problem globally. Aims: To evaluate and compare the effects of different sources of omega-3 fatty acids, on t...

  14. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  15. Ascorbic acid improves the antioxidant activity of European grape juices by improving the juices' ability to inhibit lipid peroxidation of human LDL in vitro

    DEFF Research Database (Denmark)

    Landbo, Anne-Katrine Regel; Meyer, Anne Boye Strunge

    2001-01-01

    . Red grape juice concentrate inhibited lipid peroxidation of LDL by prolonging the lag phase by 2.7 times relative to a control when evaluated at a total phenolic concentration of 10 muM gallic acid equivalents (GAE). Both red grape juices tested blocked lipid peroxidation of LDL at 20 muM GAE. White.......96, P acid alone did not exert antioxidant activity towards LDL, but combinations of 5 muM ascorbic acid with 5 muM GAE juice phenols eliminated the prooxidant activity of white grape juice, and significantly...

  16. Lipids and fatty acids in roasted chickens.

    Science.gov (United States)

    Souza, S A; Visentainer, J V; Matsushita, M; Souza, N E

    1999-09-01

    Total lipids from meat portions of breast, thigh, wing, side and back with and without skin from 10 roasted chickens were extracted with chloroform and methanol and gravimetrically determined, and their fatty acids were analysed as methyl esters by gaseous chromatography, using a flame ionization detector and capillary column. The main fatty acids found were: C16:0, C18:1 omega 9, and C18:2 omega 6. The average ratio observed between PUFA/SFA was of 0.98, mainly due to the great concentration of the C18:2 omega 6 fatty acid, with an average of 26.75%. Regarding to the lipids content, the skinless breast showed the lowest content, 0.78 g/100 g, while the back with skin was the one with the highest content, 12.13 g/100 g except for the pure skin, with 26.54 grams of lipids by 100 grams.

  17. Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism

    Science.gov (United States)

    Patti, Mary-Elizabeth; Houten, Sander M.; Bianco, Antonio C.; Bernier, Raquel; Larsen, P. Reed; Holst, Jens J.; Badman, Michael K.; Maratos-Flier, Eleftheria; Mun, Edward C.; Pihlajamaki, Jussi; Auwerx, Johan; Goldfine, Allison B.

    2015-01-01

    The multifactorial mechanisms promoting weight loss and improved metabolism following Roux-en-Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G-protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross-sectional analysis of fasting serum bile acid composition and both fasting and post-meal metabolic variables, in three subject groups: (i) post-GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 ± 4.84 µmol/l) than in both overweight (3.59 ± 1.95, P = 0.005, Ov) and severely obese (3.86 ± 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P fasting triglycerides (r = −0.40, P = 0.05), and positively correlated with adiponectin (r = −0.48, P < 0.02) and peak glucagon-like peptide-1 (GLP-1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = −0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB. PMID:19360006

  18. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis.

    Science.gov (United States)

    Li, Zhi; Sun, Hanxiao; Mo, Xuemei; Li, Xiuying; Xu, Bo; Tian, Peng

    2013-06-01

    The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP(+) dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP(+)-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.

  19. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis.

    Science.gov (United States)

    Yamada, Ryosuke; Kashihara, Tomomi; Ogino, Hiroyasu

    2017-05-01

    Oleaginous yeasts are considered a promising alternative lipid source for biodiesel fuel production. In this study, we attempted to improve the lipid productivity of the oleaginous yeast Rhodosporidium toruloides through UV irradiation mutagenesis and selection based on ethanol and H 2 O 2 tolerance or cerulenin, a fatty acid synthetase inhibitor. Glucose consumption, cell growth, and lipid production of mutants were evaluated. The transcription level of genes involved in lipid production was also evaluated in mutants. The ethanol and H 2 O 2 tolerant strain 8766 2-31M and the cerulenin resistant strain 8766 3-11C were generated by UV mutagenesis. The 8766 2-31M mutant showed a higher lipid production rate, and the 8766 3-11C mutant produced a larger amount of lipid and had a higher lipid production rate than the wild type strain. Transcriptional analysis revealed that, similar to the wild type strain, the ACL1 and GND1 genes were expressed at significantly low levels, whereas IDP1 and ME1 were highly expressed. In conclusion, lipid productivity in the oleaginous yeast R. toruloides was successfully improved via UV mutagenesis and selection. The study also identified target genes for improving lipid productivity through gene recombination.

  20. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  1. Effect of lipid supplementation on milk fatty acid focus on rumenic acid.

    Directory of Open Access Journals (Sweden)

    Esperanza Prieto-Manrique

    2016-06-01

    Full Text Available The aim of this study was to review the effect of the lipid supplementation on the concentration of conjugated linoleic acid (CLA-c9t11 or rumenic acid and other unsaturated fatty acids in bovine milk. The study addressed the concept and origin of the CLA-c9t11 in ruminants. There is an international trend to improve nutrition quality , which implies an increase in consumption of animal protein, including the healthy and rich in CLA-c9t11 dairy products. CLA-c9t11 has proved to have anticancer effects in animal models. CLA-c9t11 in the bovine milk results from the consumption of unsaturated fatty acids and from the extent of rumen biohydrogenation. Supplementation with unsaturated fatty acids of vegetable origin allows to increase the concentration of CLA-c9t11 and to decrease the proportion of saturated fatty acids in milk, but the response varies depending on the source of fat used, its level, and its interaction with basal diet

  2. Ursodeoxycholic acid improves insulin sensitivity and hepatic steatosis by inducing the excretion of hepatic lipids in high-fat diet-fed KK-Ay mice.

    Science.gov (United States)

    Tsuchida, Takuma; Shiraishi, Muneshige; Ohta, Tetsuya; Sakai, Kaoru; Ishii, Shinichi

    2012-07-01

    Type 2 diabetes mellitus is frequently accompanied by fatty liver/nonalcoholic fatty liver disease. Hence, accumulation of lipids in the liver is considered to be one of the risk factors for insulin resistance and metabolic syndrome. Ursodeoxycholic acid (UDCA) is widely used for the treatment of liver dysfunction. We investigated the therapeutic effects of UDCA on type 2 diabetes mellitus exacerbating hepatic steatosis and the underlying mechanisms of its action using KK-A(y) mice fed a high-fat diet. KK-A(y) mice were prefed a high-fat diet; and 50, 150, and 450 mg/kg of UDCA was orally administered for 2 or 3 weeks. Administration of UDCA decreased fasting hyperglycemia and hyperinsulinemia. Hyperinsulinemic-euglycemic clamp analyses showed that UDCA improved hepatic (but not peripheral) insulin resistance. Hepatic triglyceride and cholesterol contents were significantly reduced by treatment with UDCA, although the genes involved in the synthesis of fatty acids and cholesterol, including fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, were upregulated. Fecal levels of bile acids, neutral sterols, fatty acids, and phospholipids were significantly increased by UDCA treatment. The gene expression levels and protein phosphorylation levels of endoplasmic reticulum stress markers were not changed by UDCA treatment. These results indicate that UDCA ameliorates hyperglycemia and hyperinsulinemia by improving hepatic insulin resistance and steatosis in high-fat diet-fed KK-A(y) mice. Reduction of hepatic lipids might be due to their excretion in feces, followed by enhanced utilization of glucose for the synthesis of fatty acids and cholesterol. Ursodeoxycholic acid should be effective for the treatment of type 2 diabetes mellitus accompanying hepatic steatosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Engineering Yarrowia lipolytica for Enhanced Production of Lipid and Citric Acid

    Directory of Open Access Journals (Sweden)

    Ali Abghari

    2017-07-01

    Full Text Available Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica (Y. lipolytica at various metabolic levels of lipid biosynthesis, degradation, and regulation for enhanced lipid and citric acid production. We used a one-step double gene knock-in and site-specific gene knock-out strategy. The resulting final strain combines the overexpression of homologous DGA1 and DGA2 in a POX-deleted background, and deletion of the SNF1 lipid regulator. This increased lipid and citric acid production in the strain under nitrogen-limiting conditions (C/N molar ratio of 60. The engineered strain constitutively accumulated lipid at a titer of more than 4.8 g/L with a lipid content of 53% of dry cell weight (DCW. The secreted citric acid reached a yield of 0.75 g/g (up to ~45 g/L from pure glycerol in 3 days of batch fermentation using a 1-L bioreactor. This yeast cell factory was capable of simultaneous lipid accumulation and citric acid secretion. It can be used in fed-batch or continuous bioprocessing for citric acid recovery from the supernatant, along with lipid extraction from the harvested biomass.

  4. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2011-12-01

    Full Text Available Abstract Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.

  5. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    International Nuclear Information System (INIS)

    Morita, Mizuki; Katta, AVSK Mohan; Ahmad, Shandar; Mori, Takaharu; Sugita, Yuji; Mizuguchi, Kenji

    2011-01-01

    Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function

  6. The effect of amino acids on lipid production and nutrient removal by Rhodotorula glutinis cultivation in starch wastewater.

    Science.gov (United States)

    Liu, Meng; Zhang, Xu; Tan, Tianwei

    2016-10-01

    In this paper, the components of amino acids in mixed starch wastewater (corn steep water/corn gluten water=1/3, v/v) were analyzed by GC-MS. Effects of amino acids on lipid production by Rhodotorula glutinis and COD removal were studied. The results showed that mixed starch wastewater contained 9 kinds of amino acids and these amino acids significantly improved the biomass (13.63g/L), lipid yield (2.48g/L) and COD removal compared to the basic medium (6.23g/L and 1.56g/L). In a 5L fermentor containing mixed starch wastewater as substrate to culture R. glutinis, the maximum biomass, lipid content and lipid yield reached 26.38g/L, 28.90% and 7.62g/L, with the associated removal rates of COD, TN and TP reaching 77.41%, 69.12% and 73.85%, respectively. The results revealed a promising approach for lipid production with using amino acids present in starch wastewater as an alternative nitrogen source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Role of Lipid Metabolism during Cumulus-Oocyte Complex Maturation: Impact of Lipid Modulators to Improve Embryo Production

    Directory of Open Access Journals (Sweden)

    E. G. Prates

    2014-01-01

    Full Text Available Oocyte intracellular lipids are mainly stored in lipid droplets (LD providing energy for proper growth and development. Lipids are also important signalling molecules involved in the regulatory mechanisms of maturation and hence in oocyte competence acquisition. Recent studies show that LD are highly dynamic organelles. They change their shape, volume, and location within the ooplasm as well as their interaction with other organelles during the maturation process. The droplets high lipid content has been correlated with impaired oocyte developmental competence and low cryosurvival. Yet the underlying mechanisms are not fully understood. In particular, the lipid-rich pig oocyte might be an excellent model to understand the role of lipids and fatty acid metabolism during the mammalian oocyte maturation and their implications on subsequent monospermic fertilization and preimplantation embryo development. The possibility of using chemical molecules to modulate the lipid content of oocytes and embryos to improve cryopreservation as well as its biological effects during development is here described. Furthermore, these principles of lipid content modulation may be applied not only to germ cells and embryo cryopreservation in livestock production but also to biomedical fundamental research.

  8. Measurement of the incorporation of orally administered arachidonic acid into tissue lipids

    International Nuclear Information System (INIS)

    Kulmacz, R.J.; Sivarajan, M.; Lands, W.E.

    1986-01-01

    The applicability of a stable isotope method to monitor the mixing of dietary arachidonic acid with endogenous arachidonic acid in tissue lipids was evaluated. Rats were fed octadeuterated arachidonic acid during a 20-day period, and the entry of the dietary acid into lipid esters of various tissues was examined by gas chromatography-mass spectrometric (GC-MS) analysis of their fatty acids. The rats were maintained on a fat-free diet from weaning until 63 days old to enhance the ratio of the dietary acid to endogenous arachidonate. Three separate forms of eicosatetraenoic acid in the tissue lipids could be distinguished by GC-MS: octadeuterated arachidonic acid (recent dietary origin), unlabeled arachidonic acid (maternal origin) and unlabeled 4,7,10,13-eicosatetraenoic acid (originating from palmitoleic acid). The total eicosatetraenoic acid in the tissue lipids contained about 90% arachidonate from recent dietary origin in lung, kidney, heart and fat, 70% in muscle and liver and 27% in brain. The n-7 isomer of eicosatetraenoic acid was estimated to make up 6% or less of the total eicosatetraenoic acid in lung, kidney, brain, muscle and heart tissue lipids, but it comprised around 15% of the total eicosatetraenoic acid in liver. The unlabeled arachidonic acid of maternal origin thus comprised only about 10% of the eicosatetraenoic acid in all tissues examined except muscle and brain, where it was 24% and 70% of the eicosatetraenoic acid, respectively

  9. Total lipid accumulation and fatty acid profiles of microalga Spirulina ...

    African Journals Online (AJOL)

    Nutrient limitation in terms of nitrogen and phosphorus increased lipid accumulation under depleted growth in Spirulina strains. Nitrogen limitation was found more effective than phosphorus in accumulating lipid. The fatty acid profile was variable: palmitic (48%), linolenic (21%) and linoleic acids (15%) were the most ...

  10. Fatty acid composition of the pollen lipids of Cycas revoluta Thunb

    International Nuclear Information System (INIS)

    Sidorov, R.A.; Kuznetsova, E.I.; Pchelkin, V.P.; Zhukov, A.V.; Gorshkova, E.N.; Tsydendambaev, V.D.

    2016-01-01

    The fatty acid (FA) composition of total extractable and non extractable with chloroform lipids of C. revoluta pollen was determined. Among other minor FAs, unusual Δ5 polymethylene-interrupted FA, Δ5, 11-octadecadienoic acid was found. This FA was found in the seed lipids of C. revoluta earlier, but it was discovered for the first time in pollen lipids. [es

  11. Nanomolar Cellular Antisense Activity of Peptide Nucleic Acid (PNA) Cholic Acid ("Umbrella") and Cholesterol Conjugates Delivered by Cationic Lipids

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    of cholesterol and cholic acid ("umbrella") derivatives of splice correction antisense PNA oligomers. While the conjugates alone were practically inactive up to 1 µM, their activity was dramatically improved when delivered by a cationic lipid transfection agent (LipofectAMINE2000). In particular, PNAs...

  12. Lipid peroxidation and ascorbic acid levels in Nigeria children with ...

    African Journals Online (AJOL)

    This study was undertaken to establish data on the roles of lipid peroxidation and ascorbic acid in the pathology of malaria in Nigeria children. We measured the levels of malondialdehyde (MDA), a marker of lipid peroxidation and ascorbic acid in the plasma of 406 parasitaemic and 212 non-parasitaemic Nigerian children.

  13. Oxidative stability of structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Traditional sunflower oil (SO), randomized lipid (RL) and specific structured lipid (SL), both produced from SO and tricaprylin/caprylic acid, respectively, were stored for up to 12 wk to compare their oxidative stabilities by chemical and sensory analyses. Furthermore, the effect of adding...... a commercial antioxidant blend Grindox 117 (propyl gallate/citric acid/ascorbyl palmitate) or gallic acid to the SL was investigated. The lipid type affected the oxidative stability: SL was less stable than SO and RL. The reduced stability was most likely caused by both the structure of the lipid...

  14. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids....... In vitro studies provided a mechanistic understanding on the varied bioavailability caused by different lipid structures, the lower relative bioavailability of omega-3 fatty acids from FAEE formulation was closely related to the slower digestion rate of FAEE. Microencapsulated fish oil has often been used...... as a food additive because of its better chemical stability; studies showed that microencapsulation did not affect the bioavailability significantly. Even though food structures also affect the digestion and absorption of omega-3 containing lipids, several studies have shown that long-term intake of fish...

  15. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine.

    Science.gov (United States)

    Parsaeimehr, Ali; Sun, Zhilan; Dou, Xiao; Chen, Yi-Feng

    2015-01-01

    Photoautotrophic microalgae are a promising avenue for sustained biodiesel production, but are compromised by low yields of biomass and lipids at present. We are developing a chemical approach to improve microalgal accumulation of feedstock lipids as well as high-value alpha-linolenic acid which in turn might provide a driving force for biodiesel production. We demonstrate the effectiveness of the small bioactive molecule "acetylcholine" on accumulation of biomass, total lipids, and alpha-linolenic acid in Chlorella sorokiniana. The effectiveness exists in different species of Chlorella. Moreover, the precursor and analogs of acetylcholine display increased effectiveness at higher applied doses, with maximal increases by 126, 80, and 60% over controls for biomass, total lipids, and alpha-linolenic acid, respectively. Production of calculated biodiesel was also improved by the precursor and analogs of acetylcholine. The biodiesel quality affected by changes in microalgal fatty acid composition was addressed. The chemical approach described here could improve the lipid yield and biodiesel production of photoautotrophic microalgae if combined with current genetic approaches.

  16. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3.

    Science.gov (United States)

    Azevedo, Marisa F; Camsari, Cagri; Sá, Carla M; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2010-06-01

    In the present study, two phytochemicals - ursolic acid (UA) and luteolin-7-glucoside (L7G) - were assessed in vivo in healthy rats regarding effects on plasma glucose and lipid profile (total cholesterol, HDL and LDL), as well as liver glycogen content, in view of their importance in the aetiology of diabetes and associated complications. Both UA and L7G significantly decreased plasma glucose concentration. UA also significantly increased liver glycogen levels accompanied by phosphorylation of glycogen synthase kinase-3 (GSK3). The increase in glycogen deposition induced by UA (mediated by GSK3) could have contributed to the lower plasma glucose levels observed. Both compounds significantly lowered total plasma cholesterol and low-density lipoprotein levels, and, in addition, UA increased plasma high-density lipoprotein levels. Our results show that UA particularly may be useful in preventable strategies for people at risk of developing diabetes and associated cardiovascular complications by improving plasma glucose levels and lipid profile, as well as by promoting liver glycogen deposition.

  17. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    Science.gov (United States)

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Lipid profile and levels of omega-3 polyunsaturated fatty acids ...

    African Journals Online (AJOL)

    The intake of polyunsaturated fatty acids especially omega-3 is projected to be way below the recommended intake in Kenya. Thus, there is need to find other sources of polyunsaturated fatty acids (PUFAs). This study screened for the lipid profile and levels of omega-3 PUFAs in jackfruit and explored the variation in lipid ...

  19. Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond

    Science.gov (United States)

    Jay, M. I.; Kawaroe, M.; Effendi, H.

    2018-03-01

    Microalgae contain lipids and fatty acids that can be the raw materials of biofuel. Previous studies have been known of using cultivation systems to obtain biomass of C. vulgaris which can be extracted to obtain lipid and fatty acid content. The observational step was observed ten days in photobioreactor and open pond for harvesting biomass using NaOH, lipid extraction using hexane and methanol, and fatty acid analysis using Gas Chromatography. Lipid content of microalgae biomass in photobioreactor and open pond was 2.26 ± 0.51% and 3.18 ± 0.80%, respectively. Fatty acid content ranged between 0.7-22.8% and 0.9-22.6% and the dominant fatty acids in both cultivating system was palmitic acid.

  20. Fatty Acids, Lipid Mediators, and T-Cell Function

    Science.gov (United States)

    de Jong, Anja J.; Kloppenburg, Margreet; Toes, René E. M.; Ioan-Facsinay, Andreea

    2014-01-01

    Research toward the mechanisms underlying obesity-linked complications has intensified during the last years. As a consequence, it has become clear that metabolism and immunity are intimately linked. Free fatty acids and other lipids acquired in excess by current feeding patterns have been proposed to mediate this link due to their immune modulatory capacity. The functional differences between saturated and unsaturated fatty acids, in combination with their dietary intake are believed to modulate the outcome of immune responses. Moreover, unsaturated fatty acids can be oxidized in a tightly regulated and specific manner to generate either potent pro-inflammatory or pro-resolving lipid mediators. These oxidative derivatives of fatty acids have received detailed attention during the last years, as they have proven to have strong immune modulatory capacity, even in pM ranges. Both fatty acids and oxidized fatty acids have been studied especially in relation to macrophage and T-cells functions. In this review, we propose to focus on the effect of fatty acids and their oxidative derivatives on T-cells, as it is an active area of research during the past 5 years. The effect of fatty acids and their derivatives on activation and proliferation of T-cells, as well as the delicate balance between stimulation and lipotoxicity will be discussed. Moreover, the receptors involved in the interaction between free fatty acids and their derivatives with T-cells will be summarized. Finally, the mechanisms involved in modulation of T-cells by fatty acids will be addressed, including cellular signaling and metabolism of T-cells. The in vitro results will be placed in context of in vivo studies both in humans and mice. In this review, we summarize the latest findings on the immune modulatory function of lipids on T-cells and will point out novel directions for future research. PMID:25352844

  1. Fatty acid methyl ester profiles of bat wing surface lipids.

    Science.gov (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  2. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... plasma total triacylglycerol (P = 0.0361), and higher plasma glucose (P = 0.033). Plasma HDL-cholesterol and insulin concentrations and activities of cholesterol ester transfer protein and phospholipid transfer protein did not differ significantly between the diets. Conclusions: Compared with fat high...

  3. Changes of lipid and fatty acid absorption induced by high dose of citric acid ester and lecithin emulsifiers.

    Science.gov (United States)

    Sadouki, Mohamed; Bouchoucha, Michel

    2014-09-01

    To describe the effect of two food emulsifiers, lecithin (E322) and citric acid esters of mono-and diglycerides of fatty acids (E472c), on the intestinal absorption of lipids. The experiment was conducted on 24 male Wistar rats randomly assigned in three groups. For two groups of six rats, 30% of the lipid intake was replaced with lecithin (L) or citric acid ester of mono and diglycerides, (E); the remaining 12 rats were the control group (C). Diet and fecal fat analysis was used to determine the apparent lipid absorption (ALA) and fatty acids. ALA was significantly lower in the group E than in the groups C and L (p acids decreased while the length of the carbon chains increased, and this decrease was higher in the group E. E472c emulsifier decreased the intestinal absorption of lipids.

  4. The classification of fatty acids of lipids from seeds of Persea ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Gas liquid chromatographic analyses of Persea grattisima and ... as oil seeds and the fatty-acids of seed lipids could be potential sources of industrial oil. Keywords: Classification, fatty acids, GLC and Lipids. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  5. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  6. High-Intensity Ultrasound to Improve Physical and Functional Properties of Lipids.

    Science.gov (United States)

    Wagh, Ashwini; Birkin, Peter; Martini, Silvana

    2016-01-01

    High-intensity ultrasound (HIU) has been used in recent years to change the crystallization behavior of edible lipids. This technique can be used in combination with other processing technologies to tailor lipids' functional properties and broaden their application for various food products. In general, sonication induces crystallization, increases crystallization rate, and generates a harder and more elastic crystalline network characterized by smaller crystals with a sharper melting profile. An important application of HIU is to improve the hardness and elasticity of shortenings that have a low content of saturated fatty acids and are free of trans-fats. This review summarizes recent research that used HIU to change the physical and functional properties of edible lipids and focuses on the importance of controlling processing variables such as sonication power level and duration and crystallization temperature.

  7. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains.

    Science.gov (United States)

    Wu, Guanxun; Gao, Zhengquan; Du, Huanmin; Lin, Bin; Yan, Yuchen; Li, Guoqiang; Guo, Yanyun; Fu, Shenggui; Wei, Gongxiang; Wang, Miaomiao; Cui, Meng; Meng, Chunxiao

    2018-03-27

    Sustainable renewable energy is being hotly debated globally because the continued use of finite fossil fuels is now widely recognized as being unsustainable. Microalgae potentially offer great opportunities for resolving this challenge. Abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) are involved in regulating many physiological properties and have been widely used in higher plants. To test if phytohormones have an impact on accumulating lipid for microalgae, ABA, JA and SA were used to induce two Chlorella strains in the present study. The results showed 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L JA, led strain C. vulgaris ZF strain to produce a 45%, 42% and 49% lipid content that was 1.8-, 1.7- and 2.0-fold that of controls, respectively. For FACHB 31 (number 31 of the Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences), the addition of 1.0 mg/L ABA, 10 mg/L SA, and 0.5 mg/L, JA produced 33%, 30% and 38% lipid content, which was 1.8-, 1.6- and 2.1-fold that of controls, respectively. As for lipid productivity, 1.0 mg/L ABA increased the lipid productivity of C. vulgaris ZF strain and FACHB-31 by 123% and 44%; 10 mg/L SA enhanced lipid productivity by 100% and 33%; the best elicitor, 0.5 mg/L JA, augmented lipid productivity by 127% and 75% compared to that of controls, respectively. The results above suggest that the three phytohormones at physiological concentrations play crucial roles in inducing lipid accumulation in Chlorella.

  8. Variation of lipid and fatty acid compositions in Thai Perilla seeds grown at different locations

    Directory of Open Access Journals (Sweden)

    Maitree Suttajit

    2006-03-01

    Full Text Available Perilla or Nga-Kee-Mon (Perilla frutescens seed has long been known as a rich source of α-linolenic acid (18:3, n-3. It is widely cultivated throughout Thailand. However, there are no data on the variation of lipid and fatty acid compositions among crops from different regions. The aim of this study was to examine the compositions of lipids and fatty acids in Thai perilla seed grown at different locations. Two different perilla seeds were harvested from Maehongsorn and Chiang Mai districts, and one commercial perilla was purchased from local market. Seeds were ground, lipid was extracted with chloroform: methanol (2:1, v/v and its composition determined by Iatroscan (TLC/FID. Fatty acid composition was analyzed with GLC using standard methods. Lipid content was between 34-36% (w/w. Triacylglycerol was a predominant lipid in perilla seed (97% of total lipids, and a minor component was phytosterol (3% of total lipids. The ratio of saturates: monounsaturates: polyunsaturates was approximately 1: 1: 8. Most predominant fatty acid was α-linolenic acid (18:3, n-3 (55-60% of total fatty acid. Seeds from Maehongsorn district had the highest concentration of α-linolenic acid, and commercial perilla had the lowest (P<0.05. Other two predominant fatty acids were linoleic acid (18:2, n-6 (18-22% of total fatty acid and oleic acid (18:1 (11-13% of total fatty acid. The results showed that the compositions of lipids and fatty acids in Thai perilla seeds varied significantly among samples from different locations.

  9. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.

    Science.gov (United States)

    Vigor, Claire; Bertrand-Michel, Justine; Pinot, Edith; Oger, Camille; Vercauteren, Joseph; Le Faouder, Pauline; Galano, Jean-Marie; Lee, Jetty Chung-Yung; Durand, Thierry

    2014-08-01

    Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed. Copyright © 2014. Published by Elsevier B.V.

  10. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    Science.gov (United States)

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  11. Changes in cholesterol content and fatty acid composition of serum lipid in irradiated rat

    International Nuclear Information System (INIS)

    Ohashi, Shigeru

    1979-01-01

    The effect of a single dose of whole body irradiation on the serum cholesterol content and fatty acid composition of serum lipids in rats was investigated. A change in the fatty acid composition of liver lipids was also observed. After 600 rad of irradiation, the cholesterol content increased, reached a maximum 3 days after irradiation, and then decreased. After irradiation, an increase in cholesterol content and a marked decrease in triglyceride content were observed, bringing about a change in the amount of total serum lipids. The fatty acid compositions of normal and irradiated rat sera were compared. The relative percentages of palmitic and oleic acids in total lipids decreased while those of stearic and arachidonic acids increased. Serum triglyceride had trace amounts of arachidonic acid and the unsaturated fatty acid component decreased after irradiation. On the other hand, unsaturated fatty acid in cholesterol ester increased after irradiation, while linoleic and arachidonic acids made up 29% and 22% in the controls and 17% and 61% after irradiation, respectively. The fatty acid composition of total liver lipids after irradiation showed a decrease in palmitic and oleic acids and an increase in stearic and arachidonic acids, the same trend as observed in serum lipid fatty acid. Liver cholesterol ester showed trace amounts of linoleic and arachidonic acids and an increase in short-chain fatty acid after irradiation. The major component of serum phospholipids was phosphatidylcholine while palmitostearyl lecithine and unsaturated fatty acid were minor components. Moreover, phosphatidylcholine and phosphatidylethanolamine were the major components of liver phospholipids, having highly unsaturated fatty acids. The changes in fatty acid composition were similar to the changes in total phospholipids. (J.P.N.)

  12. Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Ying-Fang Niu

    2013-11-01

    Full Text Available Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT is a key enzyme that catalyzes the last step of triacylglyceride (TAG biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.

  13. Effect of vitamin C supplementation on lipid profile, serum uric acid, and ascorbic acid in children on hemodialysis.

    Science.gov (United States)

    El Mashad, Ghada Mohamed; ElSayed, Hanan M; Nosair, Nahla A

    2016-01-01

    Children with end-stage renal disease (ESRD) suffer from dyslipidemia and hyperuricemia that might play a causal role in the progression of cardiovascular disease (CVD). The aim of the study is to assess the effects of Vitamin C supplementation on uric acid, ascorbic acid, and serum lipid levels among children on hemodialysis (HD). This prospective study was conducted in the pediatric nephrology unit at Menoufia University Hospital. The study included a total of 60 children with ESRD on maintenance HD therapy. They were divided into two groups: Group I (supplemented group, n = 30) received intravenous Vitamin C supplementation and Group II (control, n = 30) received placebo (intravenous saline) for three months. The results are shown as a mean ± standard deviation. Statistical evaluation was performed by SPSS software (version 11.5) using paired t-test. After supplementation with Vitamin C, the serum Vitamin C and high-density lipoprotein levels increased significantly with a significant reduction in the levels of serum uric acid, cholesterol, low-density lipoproteins, and triglyceride at the end of the study period. No significant changes were observed in the control group. Vitamin C can serve as a useful urate lowering medicine in HD patients to avoid complications of hyperuricemia. Furthermore, it had favorable effects on the lipid profile. This improvement can be considered as a preventive strategy in the progression of CVD in HD patients. Vitamin C supplementation improves ascorbic acid deficiency in these patients.

  14. Effect of vitamin C supplementation on lipid profile, serum uric acid, and ascorbic acid in children on hemodialysis

    Directory of Open Access Journals (Sweden)

    Ghada Mohamed El Mashad

    2016-01-01

    Full Text Available Children with end-stage renal disease (ESRD suffer from dyslipidemia and hyperuricemia that might play a causal role in the progression of cardiovascular disease (CVD. The aim of the study is to assess the effects of Vitamin C supplementation on uric acid, ascorbic acid, and serum lipid levels among children on hemodialysis (HD. This prospective study was conducted in the pediatric nephrology unit at Menoufia University Hospital. The study included a total of 60 children with ESRD on maintenance HD therapy. They were divided into two groups: Group I (supplemented group, n = 30 received intravenous Vitamin C supplementation and Group II (control, n = 30 received placebo (intravenous saline for three months. The results are shown as a mean ± standard deviation. Statistical evaluation was performed by SPSS software (version 11.5 using paired t-test. After supplementation with Vitamin C, the serum Vitamin C and high-density lipoprotein levels increased significantly with a significant reduction in the levels of serum uric acid, cholesterol, low-density lipoproteins, and triglyceride at the end of the study period. No significant changes were observed in the control group. Vitamin C can serve as a useful urate lowering medicine in HD patients to avoid complications of hyperuricemia. Furthermore, it had favorable effects on the lipid profile. This improvement can be considered as a preventive strategy in the progression of CVD in HD patients. Vitamin C supplementation improves ascorbic acid deficiency in these patients.

  15. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    based on a splicing correction of a mutated luciferase gene in HeLa pLuc705 cells by targeting antisense oligonucleotides to a cryptic splice site. Further improvement in the delivery of CatLip-PNA conjugates is achieved by using auxiliary agents/treatments (e.g., chloroquine, calcium ions......Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic....... We have found, however, that this low -bioavailability can be significantly improved by chemical conjugation to a lipid domain ("Lip," such as a fatty acid), thereby creating "CatLip"-conjugates. The cellular uptake of these conjugates is conveniently evaluated using a sensitive cellular assay system...

  16. Activity of caffeic acid in different fish lipid matrices: A review

    DEFF Research Database (Denmark)

    Medina, Isabel; Undeland, Ingrid; Larsson, Karin

    2012-01-01

    that the antioxidant activity depends on the physical state of the lipids and the composition of the intrinsic matrix in which they are situated. Caffeic acid significantly prevented rancidity in both unwashed and washed fish mince, the latter which was fortified with haemoglobin. In the unwashed mince, the activity......Caffeic acid, a hydroxycinnamic acid common in different vegetable sources, has been employed as a natural antioxidant for inhibiting oxidation of fish lipids present in different food matrices. The aim of this review is to discuss the mechanisms involved in the antioxidative and prooxidative...... effects of caffeic acid found in different model systems containing fish lipids. These model systems include bulk fish oils, liposomes from cod roe phospholipids, fish oil emulsions, washed cod mince, regular horse mackerel mince and a fish oil fortified fitness bar. The data reported show...

  17. Dietary Changes with Omega-3 Fatty Acids Improves the Blood Lipid Profile of Wistar Albino Rats with Hypercholesterolaemia

    Directory of Open Access Journals (Sweden)

    Shahida A Khan

    2017-03-01

    Full Text Available Background: Lipid profile is a reasonably reliable parameter for the assessment of cardiovascular risk, besides the anthropometric measurements. Serum lipid dysfunctions in the HDL and LDL components are commonly observed in cardiac patients. Omega-3 fatty acids exhibit a hypolipidemic potential which could be exploited in preventing the onset of this alarmingly increasing problem globally. Aims: To evaluate and compare the effects of different sources of omega-3 fatty acids, on the lipid profile parameters in rats induced with hyperlipidaemia. Methods and material: In our present study, we supplemented omega-3 oils from the plant source as well as the fish source to hypocholesteraemia induced Wistar albino rats for a period of three months. Wistar albino rats were fed normal chow along with 1% cholesterol for a period of three months to induce hypocholesteraemia. To this 1% flax oil and 0.1% fish oil were mixed separately and fed to two groups of rats for another period of three months to check for hypolipidemic effects if any. Results and conclusions: A significant reduction in total cholesterol, LDL, and glucose levels with increases in HDL levels in the flax oil as well as fish oil groups is observed. Also, a noticeable change though not significant was observed in the plasma triglyceride concentrations after the supplementation period. This significant hypolipemic effect by omega-3 fatty acids from both the sources, demonstrates their possible therapeutic use in patients with cardiac risk.

  18. Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality

    Directory of Open Access Journals (Sweden)

    Ahmad Farhad Talebi

    2014-08-01

    Full Text Available Advanced generations of biofuels basically revolve around non-agricultural energy crops. Among those, microalgae owing to its unique characteristics i.e. natural tolerance to waste and saline water, sustainable biomass production and high lipid content (LC, is regarded by many as the ultimate choice for the production of various biofuels such as biodiesel. In the present study, manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina was achieved using pGH plasmid harboring AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. The stability of transformation was confirmed by PCR after several passages. Southern hybridization of AccD probe with genomic DNA revealed stable integration of the cassette in the specific positions in the chloroplast genome with no read through transcription by indigenous promoters. Comparison of the LC and fatty acid profile of the transformed algal cell line and the control revealed the over-expression of the ME/AccD genes in the transformants leading to 12% increase in total LC and significant improvements in biodiesel properties especially by increasing algal oil oxidation stability. The whole process successfully implemented herein for transforming algal cells by genes involved in lipid production pathway could be helpful for large scale biodiesel production from microalgae.

  19. Suppression by ellagic acid of 60Co-irradiation-induced lipid peroxidation in placenta and fetus of rats

    International Nuclear Information System (INIS)

    Oku, Hirotsugu

    1992-01-01

    The effect of ellagic acid, a component of Eucalyptus maculata, on lipid peroxidation was examined in placenta and fetus of pregnant rats irradiated with 60 Co. The increase in lipid peroxide levels by the irradiation of the placenta and fetus brain as well as those of the serum and organs of mother was suppressed by treatment of the mother rats with ellagic acid. This suppressing effect found in placenta and fetus was significantly correlated with that found in mother rats. Moreover, ellagic acid suppressed the morphological changes such as degeneration in the endothelial cells of placenta and liver cells of fetus caused by the irradiation and improved the survival rate after the irradiation. These suppressing effects of ellagic acid were approximately the same as those of α-tocopherol. (author)

  20. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Directory of Open Access Journals (Sweden)

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  1. Serum uric acid and lipid profiles in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Chen, Shuai; He, Shuang; Shang, Jun-Kui; Ma, Ming-Ming; Xu, Chang-Shui; Shi, Xiao-Hong; Zhang, Jie-Wen

    2016-02-01

    Creutzfeldt-Jakob disease (CJD) is a rare, rapidly progressive, and fatal neurodegenerative disease affecting the central nervous system. Brain lipid homeostasis and oxidative stress seem to play an important role in the disease pathogenesis. But little was known whether serum lipids and uric acid (a natural antioxidant) levels changed in patients with prion disease. Here we retrospectively reviewed and compared the serum lipids and uric acid levels of 19 probable sporadic CJD patients and 26 healthy control subjects. We found that the serum uric acid levels in sporadic CJD patients were significantly lower than that in controls (P=0.01). Serum triglycerides, cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and apolipoprotein A1 (ApoA1) were similar in sporadic CJD patients and controls. However, LDL/HDL ratio was lower in sporadic CJD patients (P=0.003). The low serum uric acid and LDL/HDL ratio levels in sporadic CJD indicate that dysfunction in the lipid homeostasis and oxidative stress is associated with sporadic prion disease. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats.

    Science.gov (United States)

    Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G

    2006-01-01

    Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.

  3. Controlling Styrene Maleic Acid Lipid Particles through RAFT.

    Science.gov (United States)

    Smith, Anton A A; Autzen, Henriette E; Laursen, Tomas; Wu, Vincent; Yen, Max; Hall, Aaron; Hansen, Scott D; Cheng, Yifan; Xu, Ting

    2017-11-13

    The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.

  4. Effects of lipid-lowering pharmaceuticals bezafibrate and clofibric acid on lipid metabolism in fathead minnow (Pimephales promelas).

    Science.gov (United States)

    Weston, Anna; Caminada, Daniel; Galicia, Hector; Fent, Karl

    2009-12-01

    The lipid-lowering agents bezafibrate and clofibric acid, which occur at concentrations up to 3.1 and 1.6 microg/L, respectively, are among the most frequently found human pharmaceuticals in the aquatic environment. In contrast to knowledge about their environmental occurrence, little is known about their effects in the environment. The aim of the present study was to analyze effects of these lipid-lowering agents in fish by focusing on their modes of action, lipid metabolism. Fathead minnows were exposed in aquaria to measured concentrations of 0.1, 1.27, 10.18, 101.56, and 106.7 mg/L bezafibrate and to 1.07, 10.75, and 108.91 mg/L clofibric acid for 14 and 21 d, respectively. After exposure, fish liver was analyzed for expression of peroxisome proliferator-activated receptor alpha (PPARalpha) by quantitative polymerase chain reaction (PCR), and the PPAR-regulated enzyme fatty acyl-coenzyme-A oxidase (FAO) involved in fatty acid oxidation. Bezafibrate had no effect, either on PPARalpha expression or on FAO activity, at all concentrations. In contrast, clofibric acid induced FAO activity in male fathead minnows at 108.91 mg/L. No increase in expression of PPARalpha messenger ribonucleic acid was observed. Egg production was apparently decreased after 21 d of exposure to 108.91 mg/L clofibric acid. The present study demonstrates that bezafibrate has very little or no effect on PPARalpha expression and FAO activity, but clofibric acid affects FAO activity.

  5. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    Science.gov (United States)

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  6. Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation.

    Science.gov (United States)

    Trommer, Hagen; Böttcher, Roif; Pöppl, Andreas; Hoentsch, Joachim; Wartewig, Siegfried; Neubert, Reinhard H H

    2002-07-01

    The effects of ascorbic acid on Stratum corneum lipid models following ultraviolet irradiation were studied adding iron ions as transition metal catalysts. Lipid peroxidation was quantified by the thiobarbituric acid assay. The qualitative changes were studied on a molecular level by mass spectrometry. To elucidate the nature of free radical involvement we carried out electron paramagnetic resonance studies. The influence of ascorbic acid on the concentration of hydroxyl radicals was examined using the spin trapping technique. Moreover, we checked the vitamin's ability to react with stable radicals. Ascorbic acid was found to have prooxidative effects in all lipid systems in a concentration dependent manner. The degradation products of ascorbic acid after its prooxidative action were detected. The concentration of the hydroxyl radicals in the Fenton assay was decreased by ascorbic acid. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate showed reduced concentration levels of the stable radical caused by ascorbic acid. Considering human skin and its constant exposure to UV light and oxygen, an increased pool of iron ions in irradiated skin and the depletion of co-antioxidants, the administration of ascorbic acid in cosmetic formulations or in sunscreens could unfold adverse effects among the Stratum corneum lipids.

  7. Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles

    Directory of Open Access Journals (Sweden)

    Mariana Conceição

    2016-03-01

    Full Text Available In a clinical setting, where multiple administrations of the therapeutic agent are usually required to improve the therapeutic outcome, it is crucial to assess the immunogenicity of the administered nanoparticles. In this data work, we investigated the safety profile of the repeated intravenous administration of brain-targeted stable nucleic acid lipid particles (RVG-9r-targeted SNALPs. To evaluate local activation of the immune system, we performed analysis of mouse tissue homogenates and sections from cerebellum. To investigate peripheral activation of the immune system, we used serum of mice that were intravenously injected with RVG-9r-targeted SNALPs. These data are related and were discussed in the accompanying research article entitled “Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado–Joseph disease neurological phenotype” (Conceição et al., in press [1].

  8. Research on the Changes to the Lipid/Polymer Membrane Used in the Acidic Bitterness Sensor Caused by Preconditioning

    Directory of Open Access Journals (Sweden)

    Yuhei Harada

    2016-02-01

    Full Text Available A taste sensor that uses lipid/polymer membranes can evaluate aftertastes felt by humans using Change in membrane Potential caused by Adsorption (CPA measurements. The sensor membrane for evaluating bitterness, which is caused by acidic bitter substances such as iso-alpha acid contained in beer, needs an immersion process in monosodium glutamate (MSG solution, called “MSG preconditioning”. However, what happens to the lipid/polymer membrane during MSG preconditioning is not clear. Therefore, we carried out three experiments to investigate the changes in the lipid/polymer membrane caused by the MSG preconditioning, i.e., measurements of the taste sensor, measurements of the amount of the bitterness substance adsorbed onto the membrane and measurements of the contact angle of the membrane surface. The CPA values increased as the preconditioning process progressed, and became stable after 3 d of preconditioning. The response potentials to the reference solution showed the same tendency of the CPA value change during the preconditioning period. The contact angle of the lipid/polymer membrane surface decreased after 7 d of MSG preconditioning; in short, the surface of the lipid/polymer membrane became hydrophilic during MSG preconditioning. The amount of adsorbed iso-alpha acid was increased until 5 d preconditioning, and then it decreased. In this study, we revealed that the CPA values increased with the progress of MSG preconditioning in spite of the decrease of the amount of iso-alpha acid adsorbed onto the lipid/polymer membrane, and it was indicated that the CPA values increase because the sensor sensitivity was improved by the MSG preconditioning.

  9. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research

    Science.gov (United States)

    2014-01-01

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO2 extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research. PMID:24456581

  10. Studies on lipids and fatty acids in rats with streptozotocin-induced insulin deficiency II. Incorporation of 1-(14)C-sodium acetate into lipids and fatty acids of liver slices and whole blood cells

    OpenAIRE

    三宅,寛治

    1988-01-01

    In order to study the lipid and fatty acid metabolism in the insulin deficient state, the in vitro incorporation of 1-(14)C-sodium acetate into major lipid fractions and fatty acids of liver slices and whole blood cells was determined. Rats were studied one week, one month and three months after insulin deficiency was induced by administration of streptozotocin.The net incorporation of (14)C into lipid fractions and total fatty acids of liver slices significantly decreased after one week. On ...

  11. Low trans structured fat from flaxseed oil improves plasma and hepatic lipid metabolism in apo E(-/-) mice.

    Science.gov (United States)

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Park, Yong-Bok; Lee, Ki-Teak; Park, Taesun; Choi, Myung-Sook

    2009-07-01

    The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E(-/-) mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E(-/-) mice.

  12. Incorporation of deuterium-labeled trans- and cis-13-octadecenoic acids in human plasma lipids

    International Nuclear Information System (INIS)

    Emken, E.A.; Adlof, R.O.; Rohwedder, W.K.; Gulley, R.M.

    1983-01-01

    The absorption and distribution of deuterated trans- and cis-13-octadecenoic acid (13t-18:1 and 13c-18:1) in plasma lipids were compared to deuterated cis-9-octadecenoic acid (9c-18:1) in two young adult male subjects. A mixture of triglycerides was fed in a multiple-labeled experiment where each triglyceride contained a fatty acid labeled with a different number of deuterium atoms. Analysis of human plasma lipids by mass spectroscopy allowed the distribution of the two 13-octadecenoic acid isomers to be directly compared to cis-9-octadecenoic acid. Plasma lipids selectively excluded both the 13t-18:1 and 13c-18:1 isomers relative to 9c-18:1 in all neutral and phospholipid fractions. Discrimination against incorporation of the 13t-18:1 isomer into plasma cholesteryl ester and 2-acyl phosphatidylcholine was nearly absolute. The 1-acyl phosphatidylcholine fraction exhibited a large positive selectivity for the 13t-18:1 isomer. Differences in the relative distribution of the trans and cis 13-18:1 isomers vs. 9c-18:1 in the various lipoprotein lipid classes were found. Analysis of the chylomicron triglyceride component of the plasma lipids indicated all three fatty acids were equally well absorbed

  13. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  14. EFFECT OF FERTILIZER ELEMENTS ON LIPIDS ACCUMULATION AND FATTY ACIDS COMPOSITION OF PUMPKIN SEEDS

    Directory of Open Access Journals (Sweden)

    S. M. Nadezhkin

    2013-01-01

    Full Text Available Effect of organic and mineral fertilizers on pumpkin seeds lipids accumulation and their fatty acids com position is investigated. The influence of nutrition's composition on the seeds size, lipids content and concentration of polyunsaturated fatty acids was shown.

  15. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    Science.gov (United States)

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  16. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    International Nuclear Information System (INIS)

    Keith, Dove; Finlay, Liam; Butler, Judy; Gómez, Luis; Smith, Eric; Moreau, Régis; Hagen, Tory

    2014-01-01

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks

  17. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Dove; Finlay, Liam; Butler, Judy [Linus Pauling Institute, Oregon State University (United States); Gómez, Luis; Smith, Eric [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States); Moreau, Régis [Linus Pauling Institute, Oregon State University (United States); Hagen, Tory [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States)

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  18. Fatty acid composition of lipids in pot marigold (Calendula officinalis L.) seed genotypes.

    Science.gov (United States)

    Dulf, Francisc V; Pamfil, Doru; Baciu, Adriana D; Pintea, Adela

    2013-01-17

    Calendula officinalis L. (pot marigold) is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%), of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. The oil content and fatty acid composition of major lipid fractions in seeds from eleven genotypes of pot marigold (Calendula officinalis L.) were determined. The lipid content of seeds varied between 13.6 and 21.7 g oil/100 g seeds. The calendic and linoleic acids were the two dominant fatty acids in total lipid (51.4 to 57.6% and 28.5 to 31.9%) and triacylglycerol (45.7 to 54.7% and 22.6 to 29.2%) fractions. Polar lipids were also characterised by higher unsaturation ratios (with the PUFAs content between 60.4 and 66.4%), while saturates (consisted mainly of palmitic and very long-chain saturated fatty acids) were found in higher amounts in sterol esters (ranging between 49.3 and 55.7% of total fatty acids). All the pot marigold seed oils investigated contain high levels of calendic acid (more than 50% of total fatty acids), making them favorable for industrial use. The compositional differences between the genotypes should be considered when breeding and exploiting the pot marigold seeds for nutraceutical and pharmacological purposes.

  19. Effect of dietary fat source on fatty acid profile and lipid oxidation of ...

    African Journals Online (AJOL)

    This study investigated the effects of supplementary dietary lipid sources on the fatty acid profile and lipid oxidation of eggs. Five isoenergetic (12.6 MJ AME/kg DM) and isonitrogenous (170 g CP/kg DM) diets were formulated, using a control diet (50 : 50 blend of fish- and linseed oil), fish oil, sunflower oil, high oleic acid ...

  20. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats

    Science.gov (United States)

    Creus, Agustina; Ferreira, María R.; Oliva, María E.; Lombardo, Yolanda B.

    2016-01-01

    This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats. PMID:26828527

  1. Total lipid in the broodstock diet did not affect fatty acid composition and quality of eggs of sea bass (Dicentrarchus labrax L.

    Directory of Open Access Journals (Sweden)

    José Mª Navas

    2001-03-01

    Full Text Available To determine whether an increase in the quantity of lipids ingested by sea bass (Dicentrarchus labrax broodstock could improve egg quality, three year-old sea bass were fed three different diets: a natural diet (Control group, and two artificial diets containing 10% or 17% of total lipids. In two consecutive reproductive seasons, the spawning results, the lipid classes and the fatty acid composition of the eggs were studied. No differences in the absolute content of lipids or in the percentage of different lipid classes were observed between the eggs from the three groups. Both experimental groups fed with the artificial diets produced eggs of poor quality, with low percentages of buoyancy and hatching. Those observed in the eggs from the Control Group were significantly higher (p> 0.01 than those of the experimental groups. The higher hatching rate of the eggs from the Control Group was associated with higher DHA:EPA and AA:EPA ratios. The data obtained showed that the fatty acid composition of the eggs was affected by the fatty acid composition of the diets but not by the total quantity of lipids administered to the broodstock.

  2. Evaluation of conjugated linoleic acid and other health-related lipid ...

    African Journals Online (AJOL)

    Boiled samples preserved the total beneficial lipids of CLA, PUFA, MUFA and omega 3 and 6 fatty acids more than smoked samples. The major fatty acids found in the muscle analyzed are palmitic (C16:0), stearic (C18:0) and octadecenoic (C18:1). Omega 3 fatty acids are 1.05%, 1.16% and 1.30 % for boiled, smoked and ...

  3. The effect of O-acetylsalicylic acid on lipid synthesis by guinea pig gastric mucosa in vitro

    International Nuclear Information System (INIS)

    Spohn, M.; McColl, I.

    1987-01-01

    The aim of this work was to investigate the involvement of lipids as possible components of the gastric mucosal barrier by studying the synthesis and secretion of lipids by the epithelial cell lining of gastric mucosa and the effect of salicylate on these processes. O-Acetylsalicylic acid reversibly reduced in vitro incorporation of (U- 14 C) and of DL-(2- 14 C) mevalonic acid into lipids by isolated epithelial cells and by intact mucosa of guinea pig stomach, indicating reversible inhibition of lipid synthesis by the tissue in the presence of the drug. Inhibition of incorporation of both precursors into total lipids, into their fatty acid components, and into cholesterol is demonstrated

  4. Fatty acid composition of lipids in pot marigold (Calendula officinalis L. seed genotypes

    Directory of Open Access Journals (Sweden)

    Dulf Francisc V

    2013-01-01

    Full Text Available Abstract Background Calendula officinalis L. (pot marigold is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%, of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. Results The oil content and fatty acid composition of major lipid fractions in seeds from eleven genotypes of pot marigold (Calendula officinalis L. were determined. The lipid content of seeds varied between 13.6 and 21.7 g oil/100 g seeds. The calendic and linoleic acids were the two dominant fatty acids in total lipid (51.4 to 57.6% and 28.5 to 31.9% and triacylglycerol (45.7 to 54.7% and 22.6 to 29.2% fractions. Polar lipids were also characterised by higher unsaturation ratios (with the PUFAs content between 60.4 and 66.4%, while saturates (consisted mainly of palmitic and very long-chain saturated fatty acids were found in higher amounts in sterol esters (ranging between 49.3 and 55.7% of total fatty acids. Conclusions All the pot marigold seed oils investigated contain high levels of calendic acid (more than 50% of total fatty acids, making them favorable for industrial use. The compositional differences between the genotypes should be considered when breeding and exploiting the pot marigold seeds for nutraceutical and pharmacological purposes.

  5. Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Barzana, E.; Karel, M.

    1987-01-01

    The lipids of alga Scenedesmus obliquus grown under controlled conditions were separated and fractionated by column and thin-layer chromatography, and fatty acid composition of each lipid component was studied by gas-liquid chromatography (GLC). Total lipids were 11.17%, and neutral lipid, glycolipid and phospholipid fractions were 7.24%, 2.45% and 1.48% on a dry weight basis, respectively. The major neutral lipids were diglycerides, triglycerides, free sterols, hydrocarbons and sterol esters. The glycolipids were: monogalactosyl diglyceride, digalactosyl diglyceride, esterified sterol glycoside, and sterol glycoside. The phospholipids included: phosphatidyl choline, phosphatidyl glycerol and phosphatidyl ethanolamine. Fourteen fatty acids were identified in the four lipid fractions by GLC. The main fatty acids were C18:2, C16:0, C18:3(alpha), C18:1, C16:3, C16:1, and C16:4. Total unsaturated fatty acid and essential fatty acid compositions of the total algal lipids were 80% and 38%, respectively.

  6. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: Oil yield, fatty acid profile, fuel properties.

    Science.gov (United States)

    Khot, Mahesh; Ghosh, Debashish

    2017-04-01

    This study analyzes the single cell oil (SCO), fatty acid profile, and biodiesel fuel properties of the yeast Rhodotorula mucilaginosa IIPL32 grown on the pentose fraction of acid pre-treated sugarcane bagasse as a carbon source. The yeast biomass from nitrogen limiting culture conditions (15.3 g L -1 ) was able to give the SCO yield of 0.17 g g -1 of xylose consumed. Acid digestion, cryo-pulverization, direct in situ transesterification, and microwave assisted techniques were evaluated in comparison to the Soxhlet extraction for the total intracellular yeast lipid recovery. The significant differences were observed among the SCO yield of different methods and the in situ transesterification stood out most for effective yeast lipid recovery generating 97.23 mg lipid as FAME per gram dry biomass. The method was fast and consumed lesser solvent with greater FAME yield while accessing most cellular fatty acids present. The yeast lipids showed the major presence of monounsaturated fatty esters (35-55%; 18:1, 16:1) suitable for better ignition quality, oxidative stability, and cold-flow properties of the biodiesel. Analyzed fuel properties (density, kinematic viscosity, cetane number) of the yeast oil were in good agreement with international biodiesel standards. The sugarcane bagasse-derived xylose and the consolidated comparative assessment of lab scale SCO recovery methods highlight the necessity for careful substrate choice and validation of analytical method in yeast oil research. The use of less toxic co-solvents together with solvent recovery and recycling would help improve process economics for sustainable production of biodiesel from the hemicellulosic fraction of cheap renewable sources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris.

    Science.gov (United States)

    Pandit, Priti Raj; Fulekar, Madhusudan H; Karuna, Mallampalli Sri Lakshmi

    2017-05-01

    Two microalgae strains including Chlorella vulgaris and Acutodesmus obliquus were grown on BG11 medium with salinity stress ranging from 0.06 to 0.4 M NaCl. Highest lipid content in C. vulgaris and A. obliquus was 49 and 43% in BG11 amended with 0.4 M NaCl. The microalgal strains C. vulgaris and A. obliquus grow better at 0.06 M NaCl concentration than control condition. At 0.06 M NaCl, improved dry biomass content in C. vulgaris and A. obliquus was 0.92 and 0.68 gL -1 , respectively. Stress biomarkers like reactive oxygen species, antioxidant enzyme catalase, and ascorbate peroxidase were also lowest at 0.06 M NaCl concentration revealing that both the microalgal strains are well acclimatized at 0.06 M NaCl concentration. The fatty acid composition of the investigated microalgal strains was also improved by increased NaCl concentration. At 0.4 M NaCl, palmitic acid (37%), oleic acid (15.5%), and linoleic acid (20%) were the dominant fatty acids in C. vulgaris while palmitic acid (54%) and stearic acid (26.6%) were major fatty acids found in A. obliquus. Fatty acid profiling of C. vulgaris and A. obliquus significantly varied with salinity concentration. Therefore, the study showed that salt stress is an effective stress that could increase not only the lipid content but also improved the fatty acid composition which could make C. vulgaris and A. obliquus potential strains for biodiesel production.

  8. Distribution and mobility of omega 3 fatty acids in rainbow trout fed varying levels and types of dietary lipid.

    Science.gov (United States)

    Castledine, A J; Buckley, J T

    1980-04-01

    The availability of essential fatty acids in fish neutral lipid to tissue phospholipids was determined under conditions of adequate and inadequate essential fatty acid intake as well as during fasting. Juvenile rainbow trout were fed a semi-purified diet containing varying levels of cod liver oil, with or without supplementary olein. Fatty acid analysis indicated that in all treatments the neutral lipid pool was not turned over during feeding but was enhanced by exogenous or endogenously synthesized fatty acids. Fish that received diets devoid of essential fatty acids maintained virtually all of the docosahexenoic acid originally present in each lipid pool. Fish fed diets containing essential fatty acids deposited them in proportion to the dietary levels. After a 4-week fast, no change was noted in the relative levels of fatty acids in neutral lipid indicating that all fatty acids in neutral lipid were catabolized equally--including essential fatty acids. During fasting there was a selective retention of docosahexenoic and linoleic acids in the phospholipid pool.

  9. Resveratrol suppresses ethanol stress in winery and bottom brewery yeast by affecting superoxide dismutase, lipid peroxidation and fatty acid profile.

    Science.gov (United States)

    Gharwalova, Lucia; Sigler, Karel; Dolezalova, Jana; Masak, Jan; Rezanka, Tomas; Kolouchova, Irena

    2017-11-03

    Mid-exponential cultures of two traditional biotechnological yeast species, winery Saccharomyces cerevisiae and the less ethanol tolerant bottom-fermenting brewery Saccharomyces pastorianus, were exposed to different concentrations of added ethanol (3, 5 and 8%) The degree of ethanol-induced cell stress was assessed by measuring the cellular activity of superoxide dismutase (SOD), level of lipid peroxidation products, changes in cell lipid content and fatty acid profile. The resveratrol as an antioxidant was found to decrease the ethanol-induced rise of SOD activity and suppress the ethanol-induced decrease in cell lipids. A lower resveratrol concentration (0.5 mg/l) even reduced the extent of lipid peroxidation in cells. Resveratrol also alleviated ethanol-induced changes in cell lipid composition in both species by strongly enhancing the proportion of saturated fatty acids and contributing thereby to membrane stabilization. Lower resveratrol concentrations could thus diminish the negative effects of ethanol stress on yeast cells and improve their physiological state. These effects may be utilized to enhance yeast vitality in high-ethanol-producing fermentations or to increase the number of yeast generations in brewery.

  10. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  11. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity.

    Science.gov (United States)

    Mueller, Michaela; Thorell, Anders; Claudel, Thierry; Jha, Pooja; Koefeler, Harald; Lackner, Carolin; Hoesel, Bastian; Fauler, Guenter; Stojakovic, Tatjana; Einarsson, Curt; Marschall, Hanns-Ulrich; Trauner, Michael

    2015-06-01

    Bile acids (BAs) are major regulators of hepatic BA and lipid metabolism but their mechanisms of action in non-alcoholic fatty liver disease (NAFLD) are still poorly understood. Here we aimed to explore the molecular and biochemical mechanisms of ursodeoxycholic acid (UDCA) in modulating the cross-talk between liver and visceral white adipose tissue (vWAT) regarding BA and cholesterol metabolism and fatty acid/lipid partitioning in morbidly obese NAFLD patients. In this randomized controlled pharmacodynamic study, we analyzed serum, liver and vWAT samples from 40 well-matched morbidly obese patients receiving UDCA (20 mg/kg/day) or no treatment three weeks prior to bariatric surgery. Short term UDCA administration stimulated BA synthesis by reducing circulating fibroblast growth factor 19 and farnesoid X receptor (FXR) activation, resulting in cholesterol 7α-hydroxylase induction mirrored by elevated C4 and 7α-hydroxycholesterol. Enhanced BA formation depleted hepatic and LDL-cholesterol with subsequent activation of the key enzyme of cholesterol synthesis 3-hydroxy-3-methylglutaryl-CoA reductase. Blunted FXR anti-lipogenic effects induced lipogenic stearoyl-CoA desaturase (SCD) in the liver, thereby increasing hepatic triglyceride content. In addition, induced SCD activity in vWAT shifted vWAT lipid metabolism towards generation of less toxic and more lipogenic monounsaturated fatty acids such as oleic acid. These data demonstrate that by exerting FXR-antagonistic effects, UDCA treatment in NAFLD patients strongly impacts on cholesterol and BA synthesis and induces neutral lipid accumulation in both liver and vWAT. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Oxidative stability of milk drinks containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Timm Heinrich, Maike; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Milk drinks containing 5% traditional sunflower oil (SO), randomized lipid (RL) or specific structured lipid (SL) (both produced from SO and tricaprylin/caprylic acid) were compared with respect to their particle size, viscosity and oxidative stability during storage. Furthermore, the effect...... drink could not be ascribed was most likely influenced by the structure of the lipid and to a single factor, differences in the process applied to produce and purify the lipids. EDTA was a strong antioxidant, while gallic acid did not exert a distinct antioxidative effect in the milk drink based on SL....... of adding potential antioxidants EDTA or gallic acid to the milk drink based on SL was investigated. The lipid type significantly affected the oxidative stability of the milk drinks: Milk drink based on SL oxidized faster than milk drink based on RL or SO. The reduced oxidative stability in the SL milk...

  13. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning.

    Science.gov (United States)

    Shomonov-Wagner, Limor; Raz, Amiram; Leikin-Frenkel, Alicia

    2015-02-26

    Alpha linolenic acid (ALA, 18:3) in maternal diets has been shown to attenuate obesity associated insulin resistance (IR) in adult offspring in mice. The objective in the present study was to detect the early effects of maternal dietary saturated fatty acids (SFA) and their partial substitution with ω-3 ALA, docosa hexenoic acid (DHA,22:6) and eicosapentenoic acid 20:5 (EPA,20:5) on the HOMA index, liver lipids and fatty acid desaturases in the offspring at weaning. 3 month old C57Bl6/J female mice were fed diets containing normal amount of calories but rich in SFA alone or partially replaced with ALA, DHA or EPA before mating, during pregnancy and lactation. Pregnant mice fed SFA produced offspring with the highest HOMA index, liver lipids and desaturase activities. ALA prevented SFA induced lipid increase but DHA and EPA only reduced it by 42% and 31% respectively. ALA, DHA and EPA decreased HOMA index by 84%, 75% and 83% respectively. ALA, DHA and EPA decreased Δ6 and SCD1 desaturase activities about 30%. SFA feeding to mothers predisposes their offspring to develop IR and liver lipid accumulation already at weaning. ω3 fatty acids reduce IR, ALA halts lipid accumulation whereas DHA and EPA only blunt it.ALA and DHA restore the increased SCD1 to normal. These studies suggest that ω-3 fatty acids have different potencies to preclude lipid accumulation in the offspring partially by affecting pathways associated to SCD1 modulation.

  14. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  15. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    Science.gov (United States)

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.

  16. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  17. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W; Gaboury, B [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1977-03-01

    Cellular membranes have been suggested as possible loci for the development of the oxygen effect in radiobiology. Unsaturated lipids from membranes are subject to very efficient radiation-induced peroxidation, and the deleterious effects generally associated with lipid autoxidation could be initiated by ionizing radiation. Oxidative damage in lipids was characterized not only by high yields but also by a profound dose-rate effect. At dose-rates of x irradiation below 100 rad/min, a very sharp rise occurred in oxidative damage. This damage has been quantified spectrophotometrically in terms of diene conjugation (O.D. 234 mm) and chromatographically in terms of specific 9- and 13-hydroperoxide formation in linoleic acid micelles. Radical scavenging experiments indicated that hydroxyl radical attack initiated the oxidative damage. Dimethyl sulphoxide is exceptional in that it did not protect, but sensitized, linoleic acid to radiation-induced peroxidation. The yields of hydroperoxides were substantial (G = 10 to 40) and could be related to biological changes known to be effected by autoxidizing lipids.

  18. Fatty acid content and lipid fractions in herbs

    DEFF Research Database (Denmark)

    Petersen, Majbritt Bonefeld; Søegaard, Karen; Jensen, Søren Krogh

    2012-01-01

    Experiments have shown a higher transfer efficiency of n-3 and n-6 fatty acids (FA) to milk when feeding herbs compared to feeding grass-clover. With the aim to gain more knowledge for this, the FA profile of ten single plant species and the incorporation of FA in lipid fractions were analysed...

  19. Turnover of lipids labeled by I-123 phenylpentadecanoic acid (IP) compared to C-14 palmitic acid (P)

    International Nuclear Information System (INIS)

    Reske, S.N.; Sauer, W.; Breull, W.; Machulla, H.J.; Winkler, C.

    1984-01-01

    IP has been proposed for evaluation of cardiac lipid metabolism. To elucidate the metabolic fate of IP in more detail, the authors compared its uptake and turnover to that of P in lipids extracted from heart, lung, liver, spleen and kidneys of fasted anaesthetized Wistar rats after simultaneous i.v. tracer injection. The animals were sacrificed at different time intervals until 30 min. p.i. The organs were removed and lipids were extracted with chloroform/methanol. Fractional radioactivity distribution in lipids was analyzed by TLC. I-123 and C-14 radioactivity was assayed in free fatty acid (FFFA)-, phospholipid (PL)-, diglyceride (DG)-, and triglyceride (TG)-fraction in a -spectrometer and 20 weeks later in a liquid scintillation counter. Uptake and turnover patterns of IP-and P-labeled lipids were nearly identical. The authors conclude that IP and P label essentially the same lipids and exhibit very similar lipid turnover characteristics, indicating the feasibility of metabolic studies by means of IP as tracer for lipid metabolism

  20. Lysophosphatidic acid as a lipid mediator with multiple biological actions.

    Science.gov (United States)

    Aikawa, Shizu; Hashimoto, Takafumi; Kano, Kuniyuki; Aoki, Junken

    2015-02-01

    Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  2. Modification of Death rate and Disturbances induced in the Levels of serum total Lipids and free fatty acids of irradiated rats by ascorbic acid and serotonin

    International Nuclear Information System (INIS)

    Mahdy, A.M.; Saada, H.N.; Osama, Z.S.

    1999-01-01

    Intraperitoneal injection of normal rats with ascorbic acid (10 mg/100 g body weight ) or serotonin (2 mg/100 g body weight) had no harmful effect on the life span. Moreover, the levels of serum total lipids and free fatty acids did not show any significant changes at 3, 7, 10 and 14 days after injection. Administration of ascorbic acid or serotonin to rats at the pre mentioned doses, 15 minutes, before gamma irradiation at 7.5 Gy (single dose ) improved the survival time of rats and the hyperlipemic state recorded after radiation exposure

  3. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis

    International Nuclear Information System (INIS)

    Das, Kaberi P.; Wood, Carmen R.; Lin, Mimi T.; Starkov, Anatoly A.; Lau, Christopher; Wallace, Kendall B.; Corton, J. Christopher; Abbott, Barbara D.

    2017-01-01

    Highlights: • Structurally diverse PFAAs induced fatty liver and increased TG accumulation in mouse. • Genes of lipid synthesis and degradation were increased after exposure to PFAAs. • PFAAs did not inhibit either mitochondrial fatty acid transport or β-oxidation directly. - Abstract: Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to their extensive use in industrial and consumer products, and their slow decay. Biochemical tests in rodent demonstrated that these chemicals are potent modifiers of lipid metabolism and cause hepatocellular steatosis. However, the molecular mechanism of PFAAs interference with lipid metabolism remains to be elucidated. Currently, two major hypotheses are that PFAAs interfere with mitochondrial beta-oxidation of fatty acids and/or they affect the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα) in liver. To determine the ability of structurally-diverse PFAAs to cause steatosis, as well as to understand the underlying molecular mechanisms, wild-type (WT) and PPARα-null mice were treated with perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), or perfluorohexane sulfonate (PFHxS), by oral gavage for 7 days, and their effects were compared to that of PPARα agonist WY-14643 (WY), which does not cause steatosis. Increases in liver weight and cell size, and decreases in DNA content per mg of liver, were observed for all compounds in WT mice, and were also seen in PPARα-null mice for PFOA, PFNA, and PFHxS, but not for WY. In Oil Red O stained sections, WT liver showed increased lipid accumulation in all treatment groups, whereas in PPARα-null livers, accumulation was observed after PFNA and PFHxS treatment, adding to the burden of steatosis observed in control (untreated) PPARα-null mice. Liver triglyceride (TG) levels were elevated in WT mice by all PFAAs and in PPARα-null mice only by PFNA. In vitro β-oxidation of palmitoyl carnitine by isolated rat

  4. Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii.

    Science.gov (United States)

    Saito, Hiroaki; Ishikawa, Satoru

    2012-01-01

    The lipids and fatty acids of the neon flying squid (Ommastrephes bartramii) were an-alyzed to clarify its lipid physiology and health benefit as marine food. Triacylglycerols were the only major component in the digestive gland (liver). In all other organs (mantle, arm, integument, and ovary), sterols and phospholipids were the major components with noticeable levels of ceramide aminoethyl phosphonate and sphingomyelin. The significant levels of sphingolipids suggest the O. bartramii lipids is a useful source for cosmetics. Although the lipid content between the liver and all other tissues markedly differed from each other, the same nine dominant fatty acids in the triacylglycerols were found in all organs; 14:0, 16:0, 18:0, 18:1n-9, 20:1n-9, 20:1n-11, 22:1n-11, 20:5n-3 (icosapentaenoic acid, EPA), and 22:6n-3 (docosahexaenoic acid, DHA). Unusually high 20:1n-11 levels in the O. bartramii triacylglycerols were probably characteristic for western Pacific animal depot lipids, compared with non-detectable levels of 20:1n-11 reported in other marine animals. O. bartramii concurrently has high levels of DHA in their triacylglycerols. The major fatty acids in the phospholipids were 16:0, 18:0, 20:1n-9, EPA, and DHA without 20:1n-11. Markedly high levels of both EPA and DHA were observed in phosphatidylethanolamine, while only DHA was found as the major one in phosphatidylcholine. In particular, high levels of DHA were found both in its depot triacylglycerols and tissue phospholipids in all organs of O. bartramii, similar to that in highly migratory fishes. The high DHA levels in all its organs suggest that O. bartramii lipids is a healthy marine source for DHA supplements.

  5. Lipid class and fatty acid content of the Leptocephalus larva of tropical eels

    DEFF Research Database (Denmark)

    Deibel, D.; Parrish, C.C.; Grønkjær, P.

    2012-01-01

    :0 (23 mol%), 22:6n-3 (docosahexaenoic acid, DHA, 16 mol%), 18:0 (8.2 mol%), 20:5n-3 (eicosapentaenoic acid, EPA, 6.7 mol%), 18:1n-9 (6.4 mol%) and 16:1n-7 (6.3 mol%). The DHA:EPA ratio ranged from 2.4 to 2.9, sufficient for normal growth and development of fish larvae generally. The leptocephali had...... storage and condition of leptocephali, we determined the lipid class and fatty acid concentration of larvae collected on a cross-shelf transect off Broome, northwestern Australia. The total lipid concentration of two families and four sub-families of leptocephali ranged from 2.7 to 7.0 mg g wet weight-1......, at the low end of the few published values. Phospholipid and triacylglycerol made up ca. 63 % of the total lipid pool. The triacylglycerol:sterol ratio, an index of nutritional condition, ranged from 0.9 to 3.7, indicating that the leptocephali were in good condition. The predominant fatty acids were 16...

  6. Further investigations on the role of ascorbic acid in stratum corneum lipid models after UV exposure.

    Science.gov (United States)

    Trommer, Hagen; Böttcher, Rolf; Huschka, Christoph; Wohlrab, Wolfgang; Neubert, Reinhard H H

    2005-08-01

    This study is the continuation of our research into vitamin C and its possible effects on human skin after topical administration. The effects of ascorbic acid, iron ions and UV irradiation on stratum corneum lipid models were investigated. The lipid models used were: a simple system (linolenic acid dispersion), a complex system (liposomes consisting of dipalmitoylphosphatidylcholine, cholesterol and linolenic acid) and complex systems with additionally incorporated ceramides (types III and IV). The lipid peroxidation was quantified by the thiobarbituric acid assay. A human adult low-calcium high-temperature (HaCaT) keratinocytes cell culture was used as a second in-vitro model. The amount of intracellular peroxides was determined by measuring the fluorescence intensity using the dihydrorhodamine 123 assay. Electron paramagnetic resonance spectroscopy was used to study the influence of ascorbic acid and iron ions on the signal intensity of 5-doxylstearic acid during UV exposure. Ascorbic acid showed prooxidative properties in the thiobarbituric acid assay whereas cell protection was measured in the HaCaT keratinocytes experiments. Electron paramagnetic resonance investigations revealed different extents of free radical production generated by iron ions, ascorbic acid and UV irradiation. In evaluating the results from this study new aspects of the mechanism of lipid damage caused by these three factors were suggested, transcending the simple redox behaviour of ascorbic acid.

  7. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species.

    Science.gov (United States)

    Toppe, Jogeir; Albrektsen, Sissel; Hope, Britt; Aksnes, Anders

    2007-03-01

    The chemical composition, content of minerals and the profiles of amino acids and fatty acids were analyzed in fish bones from eight different species of fish. Fish bones varied significantly in chemical composition. The main difference was lipid content ranging from 23 g/kg in cod (Gadus morhua) to 509 g/kg in mackerel (Scomber scombrus). In general fatty fish species showed higher lipid levels in the bones compared to lean fish species. Similarly, lower levels of protein and ash were observed in bones from fatty fish species. Protein levels differed from 363 g/kg lipid free dry matter (dm) to 568 g/kg lipid free dm with a concomitant inverse difference in ash content. Ash to protein ratio differed from 0.78 to 1.71 with the lowest level in fish that naturally have highest swimming and physical activity. Saithe (Pollachius virens) and salmon (Salmo salar) were found to be significantly different in the levels of lipid, protein and ash, and ash/protein ratio in the bones. Only small differences were observed in the level of amino acids although species specific differences were observed. The levels of Ca and P in lipid free fish bones were about the same in all species analyzed. Fatty acid profile differed in relation to total lipid levels in the fish bones, but some minor differences between fish species were observed.

  8. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    Science.gov (United States)

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    Science.gov (United States)

    Dhurandhar, Emily J; Krishnapuram, Rashmi; Hegde, Vijay; Dubuisson, Olga; Tao, Rongya; Dong, X Charlie; Ye, Jianping; Dhurandhar, Nikhil V

    2012-01-01

    Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure). Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (pE4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD).

  10. Effect of intermittent frying on fatty acids, vitamin E, lipid oxidation ...

    African Journals Online (AJOL)

    Quality parameters determined in this study were: fatty acid composition of the oils, ... quality were analyzed by High Performance Liquid Chromatography in isocratic mode. ... Conjugated dienes, Anisidine value and viscosity as markers of lipid ... In soybean oils, about 57% and 62.5% of linoleic and linolenic acids were lost ...

  11. Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei SK-02 As a function of growth temperature.

    Science.gov (United States)

    Chodchoey, Kanokwan; Verduyn, Cornelis

    2012-01-01

    Aurantiochytrium mangrovei Sk-02 was grown in a medium containing glucose (40 g/l), yeast extract (10 g/L) and sea salts (15 g/L) at temperatures ranging from 12 to 35°C. The fastest growth (µmax= 0.15 h(-1)) and highest fatty acid content of 415 mg/g-dry cell weight were found in the cells grown at 30°C. However, the cells grown at 12°C showed the highest percentage of polyunsaturated fatty acid (PUFA) (48.6% of total fatty acid). The percentage of docosahexaenoic acid (DHA) and pentadecanoic acid (C15:0) decreased with an increase in the growth temperature, whereas, palmitic acid (C16:0), stearic acid (C18:0) and DPA (C22:5n6) increased with an increase in the growth temperature. The composition of the major lipid class (%w/w) was slightly affected by the growth temperature. The fluidity of the organelle membrane or intracellular lipid (by DPH measurement) decreased with an increase in the growth temperatures, while the plasma membrane fluidity (by TMA-DPH measurement) could still maintain its fluidity in a wide range of temperatures (15 - 37°C). Furthermore, the distribution of DHA was found to be higher (36 - 54%) in phospholipid (PL) as compared to neutral lipid (NL) (20 - 41%).

  12. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    Science.gov (United States)

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  13. The effects of different lipid emulsions on the lipid profile, fatty acid composition, and antioxidant capacity of preterm infants: A double-blind, randomized clinical trial.

    Science.gov (United States)

    Wang, Ying; Feng, Yi; Lu, Li-Na; Wang, Wei-Ping; He, Zhen-Juan; Xie, Li-Juan; Hong, Li; Tang, Qing-Ya; Cai, Wei

    2016-10-01

    Olive oil (OO), medium-chain triglycerides (MCT)/long-chain triglycerides (LCT) mixture and soybean oil (SO) lipid emulsions are currently used for preterm infants in China. The aim of our study was to compare the lipid profile, fatty acid composition, and antioxidant capacity of preterm infants administered OO, MCT/LCT, or SO lipid emulsions. In this study, 156 preterm infants (birth weight emulsions for a minimum of 14 d. On days 0, 7, and 14, the lipid profile, fatty acid composition and antioxidant capacity were analyzed. On day 7, HDL levels in the MCT/LCT group were significantly lower than in the OO (1.06 ± 0.40 mmol/L) or SO groups. LDL levels were higher in the OO group than in the MCT/LCT or SO groups on day 7. A-I/B was higher in MCT/LCT than in OO or SO groups. Myristic acid (C14:0) levels on days 7 and 14 increased in MCT/LCT compared to the OO and SO groups. The OO group had higher oleic acid (C18:1n9) levels than the two other groups. Linoleic acid (C18:2n6), linolenic acid (C18:3n3), and eicosapentaenoic acid (20:5n3) were significantly lower in the OO group than in MCT/LCT or SO groups. Monounsaturated fatty acid levels decreased, and ω-6 polyunsaturated fatty acid and essential fatty acids levels increased in MCT/LCT and SO groups. No significant differences were obtained in SOD, MDA, GSH-Px, and T-AOC among the groups. The three lipid emulsions were safe and well tolerated in preterm infants. Oleic acid (C18:1n9) levels increased and LA (C18:2n6), ALA (C18:3n3), and EPA (C20:5n23) levels decreased in OO compared to MCT/LCT or SO. NCT01683162, https://register.clinicaltrials.gov/. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Age-Specific Lipid and Fatty Acid Profiles of Atlantic Salmon Juveniles in the Varzuga River

    Directory of Open Access Journals (Sweden)

    Svetlana A. Murzina

    2016-06-01

    Full Text Available The age-specific lipid and fatty acid profiles of juvenile Atlantic salmon at different ages (0+, 1+, and 2+ years after hatching from nests located in the mainstream of a large Arctic River, the Varzuga River, and resettling to the favorable Sobachji shoal in autumn before overwinter are herein presented. The contemporary methods of the lipid analysis were used: thin layer chromatography and gas chromatography. The results show that the stability of the regulation of important functions in developing organisms is maintained through structural alterations in lipids. These alterations can be considered as a sequence of the modifications and changes in the ratios of certain lipid classes and fatty acids constituents. In general, changes in the lipids and fatty acids (FAs maintained the physiological limits and controls through the adaptive systems of the organism. The mechanisms of juvenile fish biochemical adaptation to the environmental conditions in the studied biotope include the modification of the energy metabolism and anabolism, and here belongs to the energy characteristics of metabolic processes.

  15. Nutritional evaluation of structured lipid containing omega 6 fatty acid synthesized from coconut oil in rats.

    Science.gov (United States)

    Rao, Reena; Lokesh, Belur R

    2003-06-01

    Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.

  16. Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs

    OpenAIRE

    Bee , Giuseppe

    2001-01-01

    International audience; Dietary conjugated linoleic acids (CLA) have been reported to profoundly affect lipid metabolism and to act as repartitioning agents. Currently, little is known about their effect on the fatty acid profile of tissue lipids in pigs. In the present study we determined the lipid composition of the backfat inner (BFI) and outer layer (BFO), omental fat (OF) and intramuscular fat (IMF) of the longissimus dorsi muscle in 24 Swiss Large White pigs fed diets supplemented eithe...

  17. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid.

    Science.gov (United States)

    Yogeeta, Surinder Kumar; Hanumantra, Rao Balaji Raghavendran; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-05-01

    The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.

  18. Long-Term Effects of Docosahexaenoic Acid-Bound Phospholipids and the Combination of Docosahexaenoic Acid-Bound Triglyceride and Egg Yolk Phospholipid on Lipid Metabolism in Mice

    Science.gov (United States)

    Che, Hongxia; Cui, Jie; Wen, Min; Xu, Jie; Yanagita, Teruyoshi; Wang, Qi; Xue, Changhu; Wang, Yuming

    2018-04-01

    The bioavailability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) depends on their chemical forms. This study investigated the long-term effects of DHA-bound triglyceride (TG-DHA), DHA-bound phospholipid (PL-DHA), and the combination of TG-DHA and egg yolk phospholipid (Egg-PL) on lipid metabolism in mice fed with a high-fat diet (fat levels of 22.5%). Male C57BL/6J mice were fed with different formulations containing 0.5% DHA, including TG-DHA, PL-DHA, and the combination of TG-DHA and Egg-PL, for 6 weeks. Serum, hepatic, and cerebral lipid concentrations and the fatty acid compositions of the liver and brain were determined. The concentrations of serum total triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and hepatic TG in the PL-DHA group and the combination group were significantly lower than those in the high-fat (HF) group ( P Egg-PL in decreasing the AI. Long-term dietary supplementation with low amount of DHA (0.5%) may improve hepatic DHA levels, although cerebral DHA levels may not be enhanced.

  19. Efect of Gamma 60Co Irradiation on The Growth, Lipid Content and Fatty Acid Composition of Botryococcus sp. Microalgae

    Directory of Open Access Journals (Sweden)

    Dini Ermavitalini

    2017-04-01

    Full Text Available Botryococcus sp. is one of microalgae species that has a high lipid content as much as 75% of their dry weight. But, lipid production by microalgae is regulated by their environmental condition (pH, light, temperature, nutrition, etc. Mutagenesis induced by Gamma 60Co irradiation can be utilized to alter the Botryococcus sp. genetic to get microalgae mutant strain that can produce a higher lipid content than the wild strain. Botryococcus sp. was irradiated with different doses of gamma ray of 60Co  (0, 2, 4, 6, and 10 Gy,  and the effect  on the growth, lipid content, and fatty acid composition of microalgae were observed. Research design used is random complete (RAL with 95 %  confident level for quantitive analysis based on the biomass and lipid contents. More over fatty acid composition was analyzed by Gas Cromatography-Mass Spectrometry (GC-MS. Results showed that Gamma irradiated gave an effect on growth and lipid content of Botryococcus sp. But between the control treatment (0 Gy with microalgae irradiated dose of 2 Gy, 4 Gy and 6 Gy were not significantly different. Whereas between the control with 10 Gy irradiated was significantly different. The highest biomassa and lipid content are found in 10 Gy irradiated microalgae with 0.833 gram biomass and 41% lipid content. Fatty acid profile of Botryococcus sp. control has 6 fatty acids while 10 Gy irradiated microalgae has 12 fatty acids, with the long-chain fatty acids increased, whereas short-chain fatty acids decreased.

  20. Parenteral nutrition including an omega-3 fatty-acid-containing lipid emulsion for intensive care patients in China: a pharmacoeconomic analysis

    Directory of Open Access Journals (Sweden)

    Feng Y

    2017-09-01

    Full Text Available Yufei Feng,1 Chao Li,1 Tian Zhang,1 Lorenzo Pradelli2 1Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China; 2AdRes Health Economics and Outcomes Research, Piazza Carlo Emanuele II, Torino, Italy Background/objectives: Parenteral nutrition (PN incorporating omega-3 fatty-acid-enriched lipid emulsions has been shown to be cost effective in Western populations. A pharmacoeconomic evaluation was performed within the Chinese intensive care unit (ICU setting. This assessed whether the additional acquisition cost of PN with omega-3 fatty-acid-enriched lipid emulsion (SMOFlipid vs standard PN was offset by improved clinical outcomes that can reduce subsequent costs. Materials and methods: A pharmacoeconomic discrete event simulation model was developed, based on an update to efficacy data from a previous international meta-analysis, with China-specific clinical and economic input parameters. Sensitivity analyses were undertaken to assess the effects of uncertainty around input parameters. Results: The model predicted that PN with an omega-3 fatty-acid-enriched lipid emulsion was more effective and less costly than PN with standard lipid emulsions for Chinese ICU patients, as follows: reduced length of overall hospital length of stay (19.48 vs 21.35 days, respectively, reduced length of ICU stay (5.03 vs 6.18 days, respectively, and prevention of 35.6% of nosocomial infections leading to a lower total cost per patient (¥47 189 [US $6937] vs ¥54 783 [US $8053], respectively. Additional treatment costs were offset by savings in overall hospital and ICU stay cost, and antibiotic cost, resulting in a mean cost saving of ¥7594 (US $1116 per patient. Sensitivity analyses confirmed the robustness of these findings. Conclusions: PN enriched with an omega-3 fatty-acid-containing lipid emulsion vs standard PN may be effective in reducing length of hospital and ICU stay and infectious complications in

  1. Chronic administration of ellagic acid improved the cognition in middle-aged overweight men.

    Science.gov (United States)

    Liu, Ying; Yu, Shuyi; Wang, Fen; Yu, Haitao; Li, Xueli; Dong, Wanru; Lin, Ruichao; Liu, Qingshan

    2018-03-01

    This study aimed to investigate if ellagic acid has beneficial effects on cognitive deficits in middle-aged overweight individuals and to propose a possible mechanism. A total of 150 middle-aged male participants, including 76 normal-weight and 74 overweight men, aged between 45 to 55 years, were recruited for this study. Both normal-weight and overweight participants were administered either 50 mg ellagic acid or placebo cellulose daily for 12 weeks. Blood lipids, peripheral brain-derived neurotrophic factor (BDNF), and saliva cortisol were assessed on the last day of the procedure to investigate the effects induced by ellagic acid. The results revealed that ellagic acid treatment improved the levels of blood lipid metabolism with a 4.7% decline in total cholesterol, 7.3% decline in triglycerides, 26.5% increase in high-density lipoprotein, and 6.5% decline in low-density lipoprotein. Additionally, ellagic acid increased plasma BDNF by 21.2% in the overweight group and showed no effects on normal-weight participants. Moreover, the increased saliva cortisol level in overweight individuals was inhibited by 22.7% in a 12-week ellagic acid treatment. Also, compared with placebo, overweight individuals who consumed ellagic acid showed enhanced cognitive function as measured by the Wechsler Adult Intelligence Scale-Revised and the Montreal Cognitive Assessment. To the best of our knowledge, this is the first report showing that ellagic acid prevents cognitive deficits through normalization of lipid metabolism, increase in plasma BDNF level, and reduction of saliva cortisol concentration. These results indicate that ellagic acid has a potential to restore cognitive performance related to mild age-related declines.

  2. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival.

    Science.gov (United States)

    Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier

    2017-09-01

    We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  3. Horse meat consumption affects iron status, lipid profile and fatty acid composition of red blood cells in healthy volunteers.

    Science.gov (United States)

    Del Bó, Cristian; Simonetti, Paolo; Gardana, Claudio; Riso, Patrizia; Lucchini, Giorgio; Ciappellano, Salvatore

    2013-03-01

    This study investigated the effect of moderate consumption of horse meat on iron status, lipid profile and fatty acid composition of red blood cells in healthy male volunteers. Fifty-two subjects were randomly assigned to two groups of 26 subjects each: a test group consuming two portions of 175 g/week of horse meat, and a control group that abstained from eating horse meat during the 90 days trial. Before and after 90 days, blood samples were collected for analysis. Horse meat consumption significantly (p ≤ 0.05) reduced serum levels of total and low-density lipoprotein cholesterol ( - 6.2% and - 9.1%, respectively) and transferrin ( - 4.6%). Total n - 3, long chain polyunsaturated fatty acids n - 3 and docosahexeanoic acid content in erythrocytes increased (p ≤ 0.05) by about 7.8%, 8% and 11%, respectively. In conclusion, the regular consumption of horse meat may contribute to the dietary intake of n - 3 polyunsaturated fatty acids and may improve lipid profile and iron status in healthy subjects.

  4. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    Directory of Open Access Journals (Sweden)

    Xabier Osteikoetxea

    Full Text Available In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody and ganglioside GM1 (cholera toxin subunit B. We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition, may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  5. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy

    Directory of Open Access Journals (Sweden)

    Qu CY

    2015-06-01

    Full Text Available Chun-Ying Qu,1,* Min Zhou,1,* Ying-wei Chen,2 Mei-mei Chen,3 Feng Shen,1 Lei-Ming Xu11Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 2Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People’s Republic of China; 3Digestive Department, Xinhua Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China*These authors contributed equally to this workPurpose: The first-line chemotherapy treatment protocol for gastric cancer is combination chemotherapy of 5-fluorouracil (5-FU and cisplatin (CDDP. The aim of this study was to engineer prodrug-based nanostructured lipid carriers (NLC platform for codelivery of 5-FU and CDDP to enhance therapy and decrease toxicity.Methods: First, 5-FU-stearic acid lipid conjugate was synthesized by two steps. Second, 5-FU-stearic acid prodrug and CDDP were loaded in NLC. Finally, hyaluronic acid (HA was coated onto NLC surface. Average size, zeta potential, and drug loading capacity of NLC were evaluated. Human gastric cancer cell line BGC823 (BGC823 cells was used for the testing of in vitro cytotoxicity assays. In vivo antitumor activity of NLC was evaluated in mice bearing BGC823 cells model.Results: HA-coated 5-FU-stearic acid prodrug and CDDP-loaded NLC (HA-FU/C-NLC showed a synergistic effect in combination therapy and displayed the greatest antitumor activity than all of the free drugs or uncoated NLC in vitro and in vivo.Conclusion: This work reveals that HA-coated NLC could be used as a novel carrier to codeliver 5-FU and CDDP for gastric cancer therapy. HA-FU/C-NLC could be a promising targeted and combinational therapy in nanomedicine.Keywords: gastric cancer, nanostructured lipid carriers, hyaluronic acid, combination chemotherapy, lipid prodrug

  6. A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes.

    Science.gov (United States)

    Sehl, Anthony; Couëdelo, Leslie; Fonseca, Laurence; Vaysse, Carole; Cansell, Maud

    2018-06-15

    Lipid transmethylation methods described in the literature are not always evaluated with care so to insure that the methods are effective, especially on food matrix or biological samples containing polyunsaturated fatty acid (PUFA). The aim of the present study was to select a method suitable for all lipid species rich in long chain n-3 PUFA. Three published methods were adapted and applied on individual lipid classes. Lipid (trans)methylation efficiency was characterized in terms of reaction yield and gas chromatography (GC) analysis. The acid-catalyzed method was unable to convert triglycerides and sterol esters, while the method using an incubation at a moderate temperature was ineffective on phospholipids and sterol esters. On the whole only the method using sodium methoxide and sulfuric acid was effective on lipid classes taken individually or in a complex medium. This study highlighted the use of an appropriate (trans)methylation method for insuring an accurate fatty acid composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The role of thyroid hormones in regulating of fatty acid spectrum of brain lipids: ontogenetic aspect

    Directory of Open Access Journals (Sweden)

    Rodynskiy A.G.

    2016-05-01

    Full Text Available In experiments on rats of three age groups the role of thyroid hormones in the regulation of fatty acid spectrum of cortical and hippocampus lipids was studied. It was found that on the background of decreased thyroid status content of polyunsaturated fractions of free fatty acids, significantly changed depending on the age of the animals. In particular, in juvenile rats hypothyroidism was accompanied by a decrease almost twice the number of pentacodan acid decreased lipids viscosity in neurocortex. In old rats reduce of pentacodan acid in the cortex (38% was supplemented by significant (77% decrease in linoleic and linolenic acids. Unlike the two age groups deficiency of thyroid hormones in young animals caused accumulation of free polyunsatarated fatty acids (C18: 2.3 in the cerebral cortex by 74%, which may be associated with a decrease of this fraction in fatty acid spectrum of lipids and increase of viscosity properties of the membranes. These restruc­turing may be associated with modulation of synaptic transmission of specific neurotransmitter systems in the brain.

  8. Analysis of epidermal lipids in normal and atopic dogs, before and after administration of an oral omega-6/omega-3 fatty acid feed supplement. A pilot study.

    Science.gov (United States)

    Popa, Iuliana; Pin, Didier; Remoué, Noëlle; Remoué, Nathalie; Osta, Bilal; Callejon, Sylvie; Videmont, Emilie; Gatto, Hugues; Portoukalian, Jacques; Haftek, Marek

    2011-12-01

    Alterations of the lipid expression in the skin of human and canine atopic subjects may be one of the key factors in the disease development. We have analyzed the ultrastructure of the clinically uninvolved skin of atopic dogs and compared it with the lipid composition of their tape-stripped stratum corneum (SC). The effect of a 2 month treatment of atopic dogs by food supplementation with a mixture of essential fatty acids was evaluated on skin samples taken before and after the treatment period. Electron microscopy revealed that the non-lesional skin of atopic dogs exhibited an abnormal and largely incomplete structure of the lamellar lipids with little cohesion between the corneocyte strata. The SC of atopic dogs was characterized by a significant decrease in the lipid content when compared to the healthy controls. Following oral supplementation with the mixture of essential fatty acids, the overall lipid content of the SC markedly increased. This feature was observed both with the free and, most importantly, with the protein-bound lipids (cholesterol, fatty acids and ceramides), the latter constituting the corneocyte-bound scaffold for ordinate organisation of the extracellular lipid bi-layers. Indeed, the semi-quantitative electron microscopy study revealed that the treatment resulted in a significantly improved organization of the lamellar lipids in the lower SC, comparable to that of the healthy dogs. Our results indicate the potential interest of long-term alimentary supplementation with omega-6 and omega-3 essential fatty acids in canine atopic dermatitis.

  9. Fatty Acid Profiling of Lipid A Isolated from Indigenous salmonella typhi strain by gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, A.; Ali, A.; Tawab, A.; Haque, A.; Iqbal, M. [National Inst. for Biotechnology and Genetic Engineering, Faisalabad (Pakistan)

    2014-02-15

    Typhoid, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem worldwide especially in developing countries. Lipopolysaccharides are one of the main virulence factors of S. Typhi. Hydrophobic lipid A anchors the lipopolysaccharides into the bacterial outer membrane and also serves as the epicenter of endotoxicity, which is linked to the presence of several fatty acid chains. Fatty acid profiling is, therefore, very important to understand the endotoxicity of these pathogenic bacteria. To profile lipid A with respect to its fatty acid constituents, a S. Typhi was isolated from blood culture of a typhoid patient from the Faisalabad region of Pakistan. After its complete identification using biochemical and molecular techniques, this bacterium was cultivated in a fermentor. The cell pellet obtained was subjected to hot phenol process to extract and purify lipopolysaccharides. Acid hydrolysis of the lipopolysaccharides yielded lipid A, which was subjected to analyses using GC-MS after derivatization into their fatty acid methyl esters. The fatty acid methyl esters were identified on the basis of their retention times, compared with standards as well as characteristic mass fragmentation patterns of their respective mass spectra. This fatty acid profiling revealed the occurrence of dodecanoic acid (C12:0), tetradecanoic acid (C14:0), 3-hydroxy tetradecanoic acid (3-OH C14:0) and hexadecanoic acid (C16:0) in the lipid A component of S. Typhi strain with the relative percentage abundances 8.5%, 12.5%, 55.9% and 23.1%, respectively. (author)

  10. Fatty Acid Profiling of Lipid A Isolated from Indigenous salmonella typhi strain by gas chromatography mass spectrometry

    International Nuclear Information System (INIS)

    Jabbar, A.; Ali, A.; Tawab, A.; Haque, A.; Iqbal, M.

    2014-01-01

    Typhoid, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem worldwide especially in developing countries. Lipopolysaccharides are one of the main virulence factors of S. Typhi. Hydrophobic lipid A anchors the lipopolysaccharides into the bacterial outer membrane and also serves as the epicenter of endotoxicity, which is linked to the presence of several fatty acid chains. Fatty acid profiling is, therefore, very important to understand the endotoxicity of these pathogenic bacteria. To profile lipid A with respect to its fatty acid constituents, a S. Typhi was isolated from blood culture of a typhoid patient from the Faisalabad region of Pakistan. After its complete identification using biochemical and molecular techniques, this bacterium was cultivated in a fermentor. The cell pellet obtained was subjected to hot phenol process to extract and purify lipopolysaccharides. Acid hydrolysis of the lipopolysaccharides yielded lipid A, which was subjected to analyses using GC-MS after derivatization into their fatty acid methyl esters. The fatty acid methyl esters were identified on the basis of their retention times, compared with standards as well as characteristic mass fragmentation patterns of their respective mass spectra. This fatty acid profiling revealed the occurrence of dodecanoic acid (C12:0), tetradecanoic acid (C14:0), 3-hydroxy tetradecanoic acid (3-OH C14:0) and hexadecanoic acid (C16:0) in the lipid A component of S. Typhi strain with the relative percentage abundances 8.5%, 12.5%, 55.9% and 23.1%, respectively. (author)

  11. Imaging the lipidome: omega-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins.

    Science.gov (United States)

    Hannoush, Rami N; Arenas-Ramirez, Natalia

    2009-07-17

    Fatty acylation or lipid modification of proteins controls their cellular activation and diverse roles in physiology. It mediates protein-protein and protein-membrane interactions and plays an important role in regulating cellular signaling pathways. Currently, there is need for visualizing lipid modifications of proteins in cells. Herein we report novel chemical probes based on omega-alkynyl fatty acids for biochemical detection and cellular imaging of lipid-modified proteins. Our study shows that omega-alkynyl fatty acids of varying chain length are metabolically incorporated onto cellular proteins. Using fluorescence imaging, we describe the subcellular distribution of lipid-modified proteins across a panel of different mammalian cell lines and during cell division. Our results demonstrate that this methodology is a useful diagnostic tool for analyzing the lipid content of cellular proteins and for studying the dynamic behavior of lipid-modified proteins in various disease or physiological states.

  12. Ontogeny of Sex-Related Differences in Foetal Developmental Features, Lipid Availability and Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Consolacion Garcia-Contreras

    2017-05-01

    Full Text Available Sex-related differences in lipid availability and fatty acid composition during swine foetal development were investigated. Plasma cholesterol and triglyceride concentrations in the mother were strongly related to the adequacy or inadequacy of foetal development and concomitant activation of protective growth in some organs (brain, heart, liver and spleen. Cholesterol and triglyceride availability was similar in male and female offspring, but female foetuses showed evidence of higher placental transfer of essential fatty acids and synthesis of non-essential fatty acids in muscle and liver. These sex-related differences affected primarily the neutral lipid fraction (triglycerides, which may lead to sex-related postnatal differences in energy partitioning. These results illustrate the strong influence of the maternal lipid profile on foetal development and homeorhesis, and they confirm and extend previous reports that female offspring show better adaptive responses to maternal malnutrition than male offspring. These findings may help guide dietary interventions to ensure adequate fatty acid availability for postnatal development.

  13. Comparative evaluation of labelling patterns and turnover of lipids, tagged by 15 (p-123I-phenyl-)pentadecanoic and 1-14C-palmitic acid

    International Nuclear Information System (INIS)

    Reske, S.N.; Sauer, W.; Reichmann, K.; Winkler, C.; Machulla, H.J.; Knust, E.J.

    1984-01-01

    Uptake and turnover of chloroform/methanol extractable tissue lipids labelled in vivo simultaneously with 15(p- 123 I-phenyl-)pentadecanoic and 1- 14 C-palmitic acid were compared. Lipid turnover studies were performed in fasted pentobarbital-anaesthetized Wistar rats in tissues with highly varying free fatty acid turnover rates. In all tissues investigated, i.e. heart, lung, liver, spleen and kidney, both tracers labelled nearly identical lipid fractions. The main tracer uptake was found in free fatty acids, phospholipids, diglycerides and triglycerides. A highly significant correlation of uptake and turnover in main tissue lipid fractions indicated an essentially identical metabolic pathway of both tracers in intermediary tissue lipid metabolism. Concordant tracer uptake and turnover patterns in tissue of lipids with highly varying fatty acid metabolic rates suggested that intrinsic metabolic activity of the tissue and respective lipid fraction was the major determinant of metabolic handling of both iodophenyl fatty- and palmitic acid. Thus, the feasibility of iodophenylpentadecanoic acid as free fatty acid tracer for studying tissue lipid metabolism is demonstrated. (author)

  14. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeiraa, Paulo Goncalves; Siewers, Verena

    2018-01-01

    and tightly regulated metabolic network. Here we generated a Saccharomyces cerevisiae platform strain with a simplified lipid metabolism network with high-level production of free fatty acids (FFAs) due to redirected fatty acid metabolism and reduced feedback regulation. Deletion of the main fatty acid...

  15. Incorporation of 14C-linoleic acid in lipids of normal and psoriatic human skin

    International Nuclear Information System (INIS)

    Ruestow, B.; Metz, D.; Kunze, D.; Meffert, H.

    1980-01-01

    The 14 C-linoleic acid incorporation in lipids of surviving epidermis and corium of normal and psoriatic human skin was investigated. Changes of lipid metabolism were found in both epidermis and corium. Particularly the turnover of phospholipids was increased in the uninvolved psoriatic epidermis in relation to the involved psoriatic epidermis or to healthy controls. Possible reasons of these phenomena and the significance of structural lipids in psoriasis are discussed. (author)

  16. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Directory of Open Access Journals (Sweden)

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  17. Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets

    International Nuclear Information System (INIS)

    Arisawa, Kotoko; Mitsudome, Haruka; Yoshida, Konomi; Sugimoto, Shizuka; Ishikawa, Tomoko; Fujiwara, Yoko; Ichi, Ikuyo

    2016-01-01

    The degree of saturation of fatty acid chains in the bilayer membrane structure is known to control membrane fluidity and packing density. However, the significance of fatty acid composition in the monolayers of lipid droplets (LDs) has not been elucidated. In this study, we noted a relationship between the size of LDs and the fatty acid composition of the monolayer. To obtain large LDs, we generated NIH3T3 cells overexpressing fat-specific protein 27 (FSP27). This induced the fusion of LDs, resulting in larger LDs in FSP27-overexpressing cells compared with LDs in control cells. Moreover, the lipid extracts of LDs from FSP27-overexpressing cells reconstituted large-droplet emulsions in vitro, implying that the lipid properties of LDs might affect the size of LDs. FSP27-overexpressing cells had more saturated fatty acids in the phospholipid monolayer of the LDs compared with control cells. To further investigate the effects of the degree of phospholipid unsaturation on the size of LDs, we synthesized artificial emulsions of a lipid mixed with distearoylphosphatidylcholine (DSPC, diC18:0-PC) and with dioleoylphosphatidylcholine (DOPC, diC18:1n-9-PC) and compared the sizes of the resulting LDs. The emulsions prepared from saturated PC had larger droplets than those prepared from unsaturated PC. Our results suggest that saturated fatty acid chains in phospholipid monolayers might establish the form and/or stability of large LDs. - Highlights: • The lipid extracts of larger LDs from FSP27 cells reconstructed large-droplet emulsions. • Isolated LDs from FSP27 cells had more saturated fatty acids in the phospholipid monolayer compared with the control. • Saturated fatty acids in the phospholipid monolayer are a factor in the formation of large emulsions.

  18. Drug Solubility in Fatty Acids as a Formulation Design Approach for Lipid-Based Formulations: A Technical Note.

    Science.gov (United States)

    Lee, Yung-Chi; Dalton, Chad; Regler, Brian; Harris, David

    2018-06-06

    Lipid-based drug delivery systems have been intensively investigated as a means of delivering poorly water-soluble drugs. Upon ingestion, the lipases in the gastrointestinal tract digest lipid ingredients, mainly triglycerides, within the formulation into monoglycerides and fatty acids. While numerous studies have addressed the solubility of drugs in triglycerides, comparatively few publications have addressed the solubility of drugs in fatty acids, which are the end product of digestion and responsible for the solubility of drug within mixed micelles. The objective of this investigation was to explore the solubility of a poorly water-soluble drug in fatty acids and raise the awareness of the importance of drug solubility in fatty acids. The model API (active pharmaceutical ingredient), a weak acid, is considered a BCS II compound with an aqueous solubility of 0.02 μg/mL and predicted partition coefficient >7. The solubility of API ranged from 120 mg/mL to over 1 g/mL in fatty acids with chain lengths across the range C18 to C6. Hydrogen bonding was found to be the main driver of the solubilization of API in fatty acids. The solubility of API was significantly reduced by water uptake in caprylic acid but not in oleic acid. This report demonstrates that solubility data generated in fatty acids can provide an indication of the solubility of the drug after lipid digestion. This report also highlights the importance of measuring the solubility of drugs in fatty acids in the course of lipid formulation development.

  19. EFFECT OF PHYSICAL EXERCISE ON LIPID PEROXIDATION AND ANTIOXIDANT ASCORBIC ACID DEFENSE

    Directory of Open Access Journals (Sweden)

    Ljiljana M. Popović

    2006-06-01

    Full Text Available Strenuous exercises greatly increase oxygen consumption in the whole body, especially in skeletal muscles. Large part of oxygen consumption is reduced to H2O and ATP, but smaller part (2-5% results in an increased leakage of electrons from the mitochondrial respiratory chain, forming various reactive oxygen species ─ ROS (O2˙¯, H2O2 i OH˙. These free radicals are capable of triggering a chain of damaging biochemical and physiological reactions (oxidative stress, lipid peroxidation,as a base for skeletal muscles damage after exercise. MDA (malondialdehide is a marker of exercise induced lipid peroxidation process. L–ascorbic acid is a major aqueous-phase antioxidant. To estimate antioxidant role of ascorbic acid we use rate between dehidroascorbate and ascorbate. In this paper those markers were determinated in 30 students, in rest and after treadmill running protocol (Bruce Treadmill Protocol. It was found that after the treadmill test , plasma MDA level had increased from 3,04 to 4,39 μM/L. Plasma ascorbic acid was also found to be higher after the treadmill test comparing to rest level (from 55,4 to 67,6 μM/L. DHA/A level in rest was 1,62 and after treadmill test it increased to 2,05. These results suggests that strenuous exercise increased process of lipid peroxidation, but in the same time increased ascorbic acid level in plasma and DHA/A rate indicates stronger antioxidant defense system.

  20. Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori.

    Science.gov (United States)

    Seabra, Catarina Leal; Nunes, Cláudia; Gomez-Lazaro, Maria; Correia, Marta; Machado, José Carlos; Gonçalves, Inês C; Reis, Celso A; Reis, Salette; Martins, M Cristina L

    2017-03-15

    Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid present in fish oil, has been described as a promising molecule to the treatment of Helicobacter pylori gastric infection. However, due to its highly unsaturated structure, DHA can be easily oxidized loosing part of its bioactivity. This work aims the nanoencapsulation of DHA to improve its bactericidal efficacy against H. pylori. DHA was loaded into nanostructured lipid carriers (NLC) produced by hot homogenization and ultrasonication using a blend of lipids (Precirol ATO5 ® , Miglyol-812 ® ) and a surfactant (Tween 60 ® ). Homogeneous NLC with 302±14nm diameter, -28±3mV surface charge (dynamic and electrophoretic light scattering) and containing 66±7% DHA (UV/VIS spectroscopy) were successfully produced. Bacterial growth curves, performed over 24h in the presence of different DHA concentrations (free or loaded into NLC), demonstrated that nanoencapsulation enhanced DHA bactericidal effect, since DHA-loaded NLC were able to inhibit H. pylori growth in a much lower concentrations (25μM) than free DHA (>100μM). Bioimaging studies, using scanning and transmission electron microscopy and also imaging flow cytometry, demonstrated that DHA-loaded NLC interact with H. pylori membrane, increasing their periplasmic space and disrupting membrane and allowing the leakage of cytoplasmic content. Furthermore, the developed nanoparticles are not cytotoxic to human gastric adenocarcinoma cells at bactericidal concentrations. DHA-loaded NLC should, therefore, be envisaged as an alternative to the current treatments for H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Oxidative stability of mayonnaise containing structured lipids produced from sunflower oil and caprylic acid

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Xu, Xuebing; Nielsen, Nina Skall

    2003-01-01

    Mayonnaise based on enzymatically produced specific structured lipid (SL) from sunflower oil and caprylic acid was compared with mayonnaise based on traditional sunflower oil (SO) or chemically randomized lipid (RL) with respect to their oxidative stability, sensory and rheological properties......, but was most likely influenced by the structure of the lipid, the lower tocopherol content and the higher initial levels of lipid hydroperoxides and secondary volatile oxidation compounds in the SL itself compared with the RL and traditional sunflower oil employed. EDTA was a strong antioxidant, while propyl...

  2. Threonine supplementation reduces dietary protein and improves lipid metabolism in Pekin ducks.

    Science.gov (United States)

    Jiang, Y; Tang, J; Xie, M; Wen, Z G; Qiao, S Y; Hou, S S

    2017-12-01

    1. This study was conducted to investigate the efficiency of threonine (Thr) supplementation on reducing dietary crude protein (CP) content and the effects of Thr on lipid metabolism in Pekin ducks. The effects of dietary CP concentration (160, 190 and 220 g/kg) and Thr supplemental concentration (0, 0.7, 1.4, 2.1 and 2.8 g/kg) on growth performance, carcass, liver lipid and plasma profiles were determined in Pekin ducks from 1-21 d of age. 2. A total of 720-d-old male Pekin ducks were randomly allotted to 1 of 15 dietary treatments with 6 replicate cages of 8 birds per cage for each treatment according to average body weight. 3. Dietary Thr supplementation improved growth performance and breast muscle percentage at all CP diets, and ducks fed Thr-supplemented diets had higher plasma concentrations of some plasma amino acids. Thr supplementation reduced the concentrations of total lipid, triglyceride, cholesterol in liver, and plasma low density lipoprotein cholesterin concentration at 160 and 190 g/kg CP, whereas it increased triglyceride concentration at 160 g/kg CP. 4. Thr requirements based on quadratic broken-line model estimation were 6.6 and 7.0 g/kg for optimal average daily gain (ADG), and 6.7 and 7.3 g/kg for breast muscle percentage of Pekin ducks from 1-21 d of age at 190 and 220 g/kg CP, respectively. The dietary Thr requirements and estimated ADG (55.18 vs. 55.86 g/d/bird) and breast muscle percentage (2.79% vs. 2.75%) of Pekin ducks did not differ between 190 and 220 g/kg CP according to the t-test results. 5. Dietary CP level could be reduced to 190 g/kg in Pekin ducks from 1-21 d of age with Thr supplementation to balance dietary amino acids, and Thr supplementation prevented excess liver lipid deposition in this instance.

  3. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    Science.gov (United States)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P 0.931.

  4. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Emily J Dhurandhar

    Full Text Available Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure. Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (p<0.0001, and apoB secretion 1.5 fold(p<0.003. Response of key signaling molecules to E4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD.

  5. A sulfur amino acid-free meal increases plasma lipids in humans.

    Science.gov (United States)

    Park, Youngja; Le, Ngoc-Anh; Yu, Tianwei; Strobel, Fred; Gletsu-Miller, Nana; Accardi, Carolyn J; Lee, Kichun S; Wu, Shaoxiong; Ziegler, Thomas R; Jones, Dean P

    2011-08-01

    The content of sulfur amino acid (SAA) in a meal affects postprandial plasma cysteine concentrations and the redox potential of cysteine/cystine. Because such changes can affect enzyme, transporter, and receptor activities, meal content of SAA could have unrecognized effects on metabolism during the postprandial period. This pilot study used proton NMR ((1)H-NMR) spectroscopy of human plasma to test the hypothesis that dietary SAA content changes macronutrient metabolism. Healthy participants (18-36 y, 5 males and 3 females) were equilibrated for 3 d to adequate SAA, fed chemically defined meals without SAA for 5 d (depletion), and then fed isoenergetic, isonitrogenous meals containing 56 mg·kg(-1)·d(-1) SAA for 4.5 d (repletion). On the first and last day of consuming the chemically defined meals, a morning meal containing 60% of the daily food intake was given and plasma samples were collected over an 8-h postprandial time course for characterization of metabolic changes by (1)H-NMR spectroscopy. SAA-free food increased peak intensity in the plasma (1)H-NMR spectra in the postprandial period. Orthogonal signal correction/partial least squares-discriminant analysis showed changes in signals associated with lipids, some amino acids, and lactate, with notable increases in plasma lipid signals (TG, unsaturated lipid, cholesterol). Conventional lipid analyses confirmed higher plasma TG and showed an increase in plasma concentration of the lipoprotein lipase inhibitor, apoC-III. The results show that plasma (1)H-NMR spectra can provide useful macronutrient profiling following a meal challenge protocol and that a single meal with imbalanced SAA content alters postprandial lipid metabolism.

  6. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel.

    Science.gov (United States)

    Cheirsilp, Benjamas; Louhasakul, Yasmi

    2013-08-01

    Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men

    OpenAIRE

    Urho M Kujala; Markku Peltonen; Merja K. Laine; Merja K. Laine; Jaakko Kaprio; Jaakko Kaprio; Jaakko Kaprio; Olli. J. Heinonen; Jouko Sundvall; Johan G. Eriksson; Johan G. Eriksson; Johan G. Eriksson; Antti Jula; Seppo Sarna; Heikki Kainulainen

    2016-01-01

    Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA) catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid (TCA) cycle, intramyocellular lipid storage and oxidation thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed wheth...

  8. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.

    Science.gov (United States)

    Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew

    2014-07-16

    Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.

  9. Net energy levels on the lipid profile of pork

    Directory of Open Access Journals (Sweden)

    Stephan Alexander da Silva Alencar

    2017-09-01

    Full Text Available ABSTRACT: This study was conducted to evaluate the effects of net energy levels on the lipid profile of adipose tissue and muscle of swines. A total of 90 animals, with initial weight of 71.94±4.43kg, were used, and distributed in a randomized block design in five net energy levels (2,300, 2,425, 2,550, 2,675, and 2,800Kcal kg-1 feed, with nine replicates and two animals per experimental unit. Lipid profiles of adipose tissue and muscle were analyzed using gas chromatography. Increasing the levels of net energy using soybean oil, improved the lipid profile of adipose tissue and muscle, increased linearly (P<0.05 the concentrations of polyunsaturated fatty acids, especially linoleic and α-linolenic acid, reduced linearly (P<0.05 the monounsaturated and saturated fatty acids and omega 6: omega 3. In adipose tissue was observed linear reduction (P<0.05 of atherogenic and thrombogenic indexes. In conclusion, increasing the level of net energy of the diet using soybean oil improved the lipid profile of adipose tissue and muscle.

  10. Preparation of Salicylic Acid Loaded Nanostructured Lipid Carriers Using Box-Behnken Design: Optimization, Characterization and Physicochemical Stability.

    Science.gov (United States)

    Pantub, Ketrawee; Wongtrakul, Paveena; Janwitayanuchit, Wicharn

    2017-01-01

    Nanostructured lipid carriers loaded salicylic acid (NLCs-SA) were developed and optimized by using the design of experiment (DOE). Box-Behnken experimental design of 3-factor, 3-level was applied for optimization of nanostructured lipid carriers prepared by emulsification method. The independent variables were total lipid concentration (X 1 ), stearic acid to Lexol ® GT-865 ratio (X 2 ) and Tween ® 80 concentration (X 3 ) while the particle size was a dependent variable (Y). Box-Behnken design could create 15 runs by setting response optimizer as minimum particle size. The optimized formulation consists of 10% of total lipid, a mixture of stearic acid and capric/caprylic triglyceride at a 4:1 ratio, and 25% of Tween ® 80 which the formulation was applied in order to prepare in both loaded and unloaded salicylic acid. After preparation for 24 hours, the particle size of loaded and unloaded salicylic acid was 189.62±1.82 nm and 369.00±3.37 nm, respectively. Response surface analysis revealed that the amount of total lipid is a main factor which could affect the particle size of lipid carriers. In addition, the stability studies showed a significant change in particle size by time. Compared to unloaded nanoparticles, the addition of salicylic acid into the particles resulted in physically stable dispersion. After 30 days, sedimentation of unloaded lipid carriers was clearly observed. Absolute values of zeta potential of both systems were in the range of 3 to 18 mV since non-ionic surfactant, Tween ® 80, providing steric barrier was used. Differential thermograms indicated a shift of endothermic peak from 55°C for α-crystal form in freshly prepared samples to 60°C for β´-crystal form in storage samples. It was found that the presence of capric/caprylic triglyceride oil could enhance encapsulation efficiency up to 80% and facilitate stability of the particles.

  11. Gamma radiation effects on fattly acid composition of lipids in cotton leaves

    International Nuclear Information System (INIS)

    Arslanova, S.V.; Stepanenko, G.A.; Umarov, A.K.; Nazirov, N.N.

    1976-01-01

    The mechanism of high irradiation dose (30 kR) effect on the lipid fatty acid composition of cotton leaves was studied in the ontogenesis. The experiment was carried out in vegetation vials (capacity 25 kg, humidity level - 65% of full water capacity). Before seeding, each vial was fertilized with 5g P 2 O 5 , 3g K 2 O and 5gN as an auxillary nutrition during vegetation. The test vials also contained 0.4 - 0.5 g CaO per kg of soil. A portion of irradiated seeds was soaked in 1.5% solution of CaO and Ca(NO 3 ) 2 before seeding. The cotton seeds were gamma-irradiated at 50 R/sec in the Institute of Nuclear Physics, Usbec SSR Academy of Sciences. The fatty acid composition of mature leaf lipids determined by gas-liquid chromatography proved to change in the blooming phase. Leaves of irradiated plants contained traces of myristic acid, higher levels of palmitic, palmitoleinic and strearinic acids and lower levels of oleinic and linoleic acids. Lower content of fatty acids with long carbon chains seemed to handicap the renewal of membranes and their components, especially in mitochondria. When irradiated seeds were soaked in calcium salt solution and CaO is added to the soil, the amount of unsaturated long chain fatty acids increased. The fact probably promotes the membrane renewal in irradiated plants

  12. Tris(2-aminoethyl)amine-based α-branched fatty acid amides - Synthesis of lipids and comparative study of transfection efficiency of their lipid formulations.

    Science.gov (United States)

    Erdmann, Nicole; Wölk, Christian; Schulze, Ingo; Janich, Christopher; Folz, Manuela; Drescher, Simon; Dittrich, Matthias; Meister, Annette; Vogel, Jürgen; Groth, Thomas; Dobner, Bodo; Langner, Andreas

    2015-10-01

    The synthesis of a new class of cationic lipids, tris(2-aminoethyl)amine-based α-branched fatty acid amides, is described resulting in a series of lipids with specific variations in the lipophilic as well as the hydrophilic part of the lipids. In-vitro structure/transfection relationships were established by application of complexes of these lipids with plasmid DNA (pDNA) to different cell lines. The α-branched fatty acid amide bearing two tetradecyl chains and two lysine molecules (T14diLys) in mixture with the co-lipid 1,2-di-[(9Z)-octadec-9-enoyl]-sn-glycero-3-phosphoethanolamine (DOPE) (1/2, n/n) exhibits effective pDNA transfer in three different cell lines, namely Hep-G2, A549, and COS-7. The presence of 10% serum during lipoplex incubation of the cells did not affect the transfection efficiency. Based on that, detailed investigations of the complexation of pDNA with the lipid formulation T14diLys/DOPE 1/2 (n/n) were carried out with respect to particle size and charge using dynamic light scattering (DLS), ζ-potential measurements, and transmission electron microscopy (TEM). Additionally, the lipoplex uptake was investigated by confocal laser scanning microscopy (CLSM). Overall, lipoplexes prepared from T14diLys/DOPE 1/2 (n/n) offer large potential as lipid-based polynucleotide carriers and further justify advanced examinations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Microalgal lipids biochemistry and biotechnological perspectives.

    Science.gov (United States)

    Bellou, Stamatia; Baeshen, Mohammed N; Elazzazy, Ahmed M; Aggeli, Dimitra; Sayegh, Fotoon; Aggelis, George

    2014-12-01

    In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives. The committing step in fatty acid biosynthesis is the carboxylation of acetyl-CoA to form malonyl-CoA that is then introduced in the fatty acid synthesis cycle leading to the formation of palmitic and stearic acids. Oleic acid may also be synthesized after stearic acid desaturation while further conversions of the fatty acids (i.e. desaturations, elongations) occur after their esterification with structural lipids of both plastids and the endoplasmic reticulum. The aliphatic chains are also used as building blocks for structuring storage acylglycerols via the Kennedy pathway. Current research, aiming to enhance lipogenesis in the microalgal cell, is focusing on over-expressing key-enzymes involved in the earlier steps of the pathway of fatty acid synthesis. A complementary plan would be the repression of lipid catabolism by down-regulating acylglycerol hydrolysis and/or β-oxidation. The tendency of oleaginous microalgae to synthesize, apart from lipids, significant amounts of other energy-rich compounds such as sugars, in processes competitive to lipogenesis, deserves attention since the lipid yield may be considerably increased by blocking competitive metabolic pathways. The majority of microalgal production occurs in outdoor cultivation and for this reason biotechnological applications face some difficulties

  14. Interplay between lipids and branched-chain amino acids in development of insulin resistance

    Science.gov (United States)

    Newgard, Christopher B.

    2013-01-01

    Summary Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventions. Nevertheless, in animal feeding studies, BCAA supplementation requires the background of a high-fat diet to promote insulin resistance. This article develops a model to explain how lipids and BCAA may synergize to promote metabolic diseases. PMID:22560213

  15. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    Science.gov (United States)

    Chen, Jiana; Huang, Min; Cao, Fangbo; Pardha-Saradhi, P; Zou, Yingbin

    2017-01-01

    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  16. Perfluoroalky acids-induced liver steatosis: Effects on genes controlling lipid homeostasis

    Science.gov (United States)

    Abstract Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to their extensive use in industrial and consumer products, and their slow decay. Biochemical tests in rodent demonstrated that these chemicals are potent modifiers of lipid metabolism and caus...

  17. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria.

    Science.gov (United States)

    Adewuyi, Adewale; Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  18. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2014-01-01

    Full Text Available The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72±0.2%, Albizia lebbeck  (6.40±0.60%, and Caesalpinia pulcherrima  (7.2±0.30%. The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.

  19. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  20. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Directory of Open Access Journals (Sweden)

    Susana Guzman-Puyol

    Full Text Available Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic acid and tomato fruit cutin monomers (a mixture of mainly 9(10,16-dihydroxypalmitic acid (85%, w/w and 16-hydroxyhexadecanoic acid (7.5%, w/w with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  1. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Science.gov (United States)

    Guzman-Puyol, Susana; Benítez, José Jesús; Domínguez, Eva; Bayer, Ilker Sefik; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio; Heredia-Guerrero, José Alejandro

    2015-01-01

    Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic) acid and tomato fruit cutin monomers (a mixture of mainly 9(10),16-dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w)) with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG) surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  2. Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages.

    Science.gov (United States)

    Rombaldova, Martina; Janovska, Petra; Kopecky, Jan; Kuda, Ondrej

    2017-08-26

    It is becoming increasingly apparent that mutual interactions between adipocytes and immune cells are key to the integrated control of adipose tissue inflammation and lipid metabolism in obesity, but little is known about the non-inflammatory functions of adipose tissue macrophages (ATMs) and how they might be impacted by neighboring adipocytes. In the current study we used metabolipidomic analysis to examine the adaptations to lipid overload of M1 or M2 polarized macrophages co-incubated with adipocytes and explored potential benefits of omega-3 polyunsaturated fatty acids (PUFA). Macrophages adjust their metabolism to process excess lipids and M2 macrophages in turn modulate lipolysis and fatty acids (FA) re-esterification of adipocytes. While M1 macrophages tend to store surplus FA as triacylglycerols and cholesteryl esters in lipid droplets, M2 macrophages channel FA toward re-esterification and β-oxidation. Dietary omega-3 PUFA enhance β-oxidation in both M1 and M2. Our data document that ATMs contribute to lipid trafficking in adipose tissue and that omega-3 PUFA could modulate FA metabolism of ATMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Minimal food effect for eicosapentaenoic acid and docosahexaenoic acid bioavailability from omega-3-acid ethyl esters with an Advanced Lipid TechnologiesTM (ALT®)-based formulation.

    Science.gov (United States)

    Lopez-Toledano, Miguel A; Thorsteinsson, Thorsteinn; Daak, Ahmed A; Maki, Kevin C; Johns, Colleen; Rabinowicz, Adrian L; Sancilio, Frederick D

    The absorption of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) omega-3-acid ethyl esters (EEs) is influenced by food. There is a need for a formulation of EE that is less impacted by food effect. SC401 is a novel Advanced Lipid Technologies-based formulation of EPA-EE and DHA-EE. In the presence of an aqueous medium, Advanced Lipid Technologies forms stable micelles in situ independent of bile salt secretion. This effect is hypothesized to improve EPA-EE and DHA-EE bioavailability while it helps mitigate the food effect associated with their consumption. The aim of the article was to assess the effect of food on the bioavailability of DHA and EPA after a single oral dose of 1530 mg omega-3 fatty acids EE (SC401) in 24 healthy subjects under fasted and low-fat (9% of total calories from fat) and high-fat (50% of total calories from fat) meal conditions. This was a randomized, open-label, single-dose, 3-period, 3-way crossover study. Blood samples for pharmacokinetic analyses were taken at predose and at 0.5, 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 10, 12 and 24 hours postdose. To assess the safety of the intervention, active monitoring of adverse events, physical examinations, vital signs, clinical laboratory assessments (chemistry, hematology, and urinalysis), and 12-lead electrocardiograms were conducted. SC401 showed high bioavailability of both EPA and DHA in fasted, low-fat meal, and high-fat meal conditions. No differences were found in SC401 DHA AUC 0-t (t = 24 hours) among the 3 conditions (91.69% high-fat/fasted, 97.12% low-fat/fasted, and 105.92% low-fat/high-fat; P > .05 in all cases). In contrast, SC401 EPA AUC 0-t was affected by food intake (179.06% high-fat/fasted, P food effect for DHA and partially ameliorated it for EPA. SC401 represents a convenient option for treatment of severe hypertriglyceridemia, especially for patients under a restricted intake of dietary fat. Copyright © 2017 National Lipid

  4. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    Science.gov (United States)

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. © 2015 Wiley Periodicals, Inc.

  5. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

    Science.gov (United States)

    Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang

    2012-06-01

    A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii Weber-van Bosse from Bali Island, Indonesia.

    Science.gov (United States)

    Illijas, Muhammad I; Indy, Jeane R; Yasui, Hajime; Itabashi, Yutaka

    2009-01-01

    The lipid class and fatty acid composition of a little-known and rarely collected alga Exophyllum wentii from Bali Island, Indonesia were determined for fresh and frozen-thawed samples using thin-layer chromatography, gas-liquid chromatography, and high-performance liquid chromatography. Glycoglycerolipids, which mainly consisted of mongalactosyldiacylglycerols (MGDG) and digalactosyldiacylglycerols (DGDG), were the predominant lipid components, accounting for 67% and 56% of the total polar lipid content in the fresh and frozen-thawed samples, respectively. Phospholipids, including phosphatidylcholines (PC) and phosphatidylglycerols (PG), were detected with lesser amounts in both samples (16-17% of the total polar lipid content). Free fatty acids (FFA), sterols and triacylglycerols (TAG) were also detected in minor quantities; however, the FFA content in the frozen-thawed sample increased to up to 20% of the total lipid content, suggesting that hydrolysis of the membrane lipids had occurred. A crude enzyme preparation from the alga showed activities for hydrolyzing the acyl groups of the phospholipids and glycoglycerolipids. Palmitic acid (16:0) and arachidonic acid (20:4n-6) were the major fatty acids in both the total lipid and in individual polar lipid classes as well as the dominant fatty acids released from the membrane lipids by enzymatic hydrolysis. The high level of 20:4n-6 (29%) in the total lipid and the presence of considerable amounts of PC (11% of the total polar lipid) and PG (6.2%) support classification of E. wentii into the Division Rhodophyta.

  7. Preparation and In Vitro Evaluation of Glycyrrhetinic Acid-Modified Curcumin-Loaded Nanostructured Lipid Carriers

    Directory of Open Access Journals (Sweden)

    Yang Chu

    2014-02-01

    Full Text Available Curcumin, a phenolic antioxidant compound derived from the rhizome of the turmeric plant Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this study, a Glycyrrhetinic Acid-Modified Curcumin-Loaded Nanostructured Lipid Carrier (Cur-GA-PEG-NLC was prepared by the film ultrasound method to improve the tumor-targeting ability. The drug content was detected by an UV spectrophotometry method. The encapsulation efficiency of curcumin in the nanostructured lipid carriers (NLCs was determined using a mini-column centrifugation method. The encapsulation efficiency for various Cur-GA-PEG-NLC was within the range of 90.06%–95.31% and particle size was between 123.1 nm and 132.7 nm. An in vitro MTT assay showed that Cur-GA10%-PEG-NLC had significantly high cellular uptake and cytotoxicity against HepG2 cells compared with other groups.

  8. Evaluation of factors affecting on lipid extraction for recovery of fatty acids from Nannochloropsis oculata micro-algae to biodiesel production

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2014-11-01

    Full Text Available Background: This study aimed at determining the appropriate method for dewatering and drying biomass and selecting a suitable organic solvent for lipid extraction. Methods: NannochloropsisOculata was cultured in Gillard F/2 medium and after reaching the end of the stationary growth phase, algal biomass was separated from aqueous by centrifuge and dried through three methods: Oven, Air-dried and Lyophilized. Soxhlet apparatus achieved lipid extraction of all samples: diethyl ether, n-hexane and n-pentane using three solvents. At each stage, the quantity and quality of the extracted lipids were determined by Gas Chromatography. Results: In all three drying methods, palmitic acid and palmitoleic acid, and most significantly fatty acid composition of microalgae were extracted. The fatty acid composition of palmitic acid extracted by Diethyl ether was significantly more than the other two solvents. Maximum production of triglyceride was observed in Lyophilized and air-dried microalgae where lipid extraction was performed with diethyl ether solvents and are 75.03% and 76.72% of fatty acid. Conclusion: The use of Lyophilized method for dewatering and drying of biomass and Diethyl ether as solvent for the extraction of lipids from biomass, studied in this paper, as compared to other methods, had higher yields and researches proved that the production of biodiesel from microalgae’s lipid was more efficient.

  9. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids.

    Science.gov (United States)

    Xie, Shuyu; Zhu, Luyan; Dong, Zhao; Wang, Xiaofang; Wang, Yan; Li, Xihe; Zhou, WenZhong

    2011-04-01

    Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid. Furthermore, stearic acid-SLN had larger particle size, bigger polydispersity index (PDI) and higher zeta potential compared with the other two fatty acid formulated SLN. The SLN showed sustained releases in vitro and the released enrofloxacin had the same antibacterial activity as that of the native enrofloxacin. Although in vitro release exhibited similar patterns, within 24 h the releasing rates of the three formulations were significantly different (tetradecanoic acid-SLN>palmitic acid-SLN>stearic acid-SLN). Pharmacokinetic study after a single dose of intramuscular administration to mice demonstrated that tetradecanoic acid-SLN, palmitic acid-SLN, and stearic acid-SLN increased the bioavailability by 6.79, 3.56 and 2.39 folds, and extended the mean residence time (MRT) of the drug from 10.60 h to 180.36, 46.26 and 19.09 h, respectively. These results suggest that the enrofloxacin-fatty acid SLN are promising formulations for sustained release while fatty acids had significant influences on the characteristics and performances of the SLN. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins

    DEFF Research Database (Denmark)

    Pattison, David I; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Oxidation of low-density lipoproteins (LDL) is believed to contribute to the increased uptake of LDL by macrophages, which is an early event in atherosclerosis. Hypochlorous acid (HOCl) has been implicated as one of the major oxidants involved in these processes. In a previous study, the rates...... of reaction of HOCl with the reactive sites in proteins were investigated (Pattison, D. I., and Davies, M. J. (2001) Chem. Res. Toxicol. 14, 1453-1464). The work presented here expands on those studies to determine absolute second-order rate constants for the reactions of HOCl with various lipid components...... nitrogen- and carbon-centered radicals. Subsequent reactions of these species may induce oxidation of the LDL lipid component. In contrast, phosphoryl-choline reacted much more slowly (k Reaction of HOCl with 3-pentenoic acid was used as a model of lipid double bonds...

  11. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    Science.gov (United States)

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comparative evaluation of labelling patterns and turnover of lipids, tagged by 15 (p-/sup 123/I-phenyl-)pentadecanoic and 1-/sup 14/C-palmitic acid

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Sauer, W.; Reichmann, K.; Winkler, C. (Bonn Univ. (Germany, F.R.). Inst. fuer Klinische und Experimentelle Nuklearmedizin); Machulla, H.J.; Knust, E.J. (Essen Univ. (Germany, F.R.). Inst. fuer Medizinische Strahlenphysik und Strahlenbiologie)

    1984-06-15

    Uptake and turnover of chloroform/methanol extractable tissue lipids labelled in vivo simultaneously with 15(p-/sup 123/I-phenyl-)pentadecanoic and 1-/sup 14/C-palmitic acid were compared. Lipid turnover studies were performed in fasted pentobarbital-anaesthetized Wistar rats in tissues with highly varying free fatty acid turnover rates. In all tissues investigated, i.e. heart, lung, liver, spleen and kidney, both tracers labelled nearly identical lipid fractions. The main tracer uptake was found in free fatty acids, phospholipids, diglycerides and triglycerides. A highly significant correlation of uptake and turnover in main tissue lipid fractions indicated an essentially identical metabolic pathway of both tracers in intermediary tissue lipid metabolism. Concordant tracer uptake and turnover patterns in tissue of lipids with highly varying fatty acid metabolic rates suggested that intrinsic metabolic activity of the tissue and respective lipid fraction was the major determinant of metabolic handling of both iodophenyl fatty- and palmitic acid. Thus, the feasibility of iodophenylpentadecanoic acid as free fatty acid tracer for studying tissue lipid metabolism is demonstrated. 21 refs.

  13. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    Directory of Open Access Journals (Sweden)

    Jiana Chen

    Full Text Available A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  14. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jing, E-mail: joemj1005@163.com, E-mail: miaojing@zju.edu.cn [Zhejiang University, Department of Pharmacy, the First Affiliated Hospital, College of Medicine (China); Du, Yongzhong; Yuan, Hong [Zhejiang University, College of Pharmaceutical Sciences (China); Zhang, Xingguo; Li, Qian; Rao, Yuefeng [Zhejiang University, Department of Pharmacy, the First Affiliated Hospital, College of Medicine (China); Zhao, Mengdan [Zhejiang University, Women’s Hospital, College of Medicine (China); Hu, Fuqiang, E-mail: hufq@zju.edu.cn [Zhejiang University, College of Pharmaceutical Sciences (China)

    2015-01-15

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC{sub 50}) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL{sup −1}, respectively, while the IC{sub 50} of Taxol{sup TM} was 1.72 ± 0.09 µg mL{sup −1}. For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC.

  15. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    International Nuclear Information System (INIS)

    Miao, Jing; Du, Yongzhong; Yuan, Hong; Zhang, Xingguo; Li, Qian; Rao, Yuefeng; Zhao, Mengdan; Hu, Fuqiang

    2015-01-01

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC 50 ) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL −1 , respectively, while the IC 50 of Taxol TM was 1.72 ± 0.09 µg mL −1 . For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC

  16. Postprandial lipid responses to an alpha-linolenic acid-rich oil, olive oil and butter in women: A randomized crossover trial

    Directory of Open Access Journals (Sweden)

    Rosenquist Anna

    2011-06-01

    Full Text Available Abstract Background Postprandial lipaemia varies with gender and the composition of dietary fat due to the partitioning of fatty acids between beta-oxidation and incorporation into triacylglycerols (TAGs. Increasing evidence highlights the importance of postprandial measurements to evaluate atherogenic risk. Postprandial effects of alpha-linolenic acid (ALA in women are poorly characterized. We therefore studied the postprandial lipid response of women to an ALA-rich oil in comparison with olive oil and butter, and characterized the fatty acid composition of total lipids, TAGs, and non-esterified fatty acids (NEFAs in plasma. Methods A randomized crossover design (n = 19 was used to compare the postprandial effects of 3 meals containing 35 g fat. Blood samples were collected at regular intervals for 7 h. Statistical analysis was carried out with ANOVA (significant difference = P Results No significant difference was seen in incremental area under the curve (iAUC plasma-TAG between the meals. ALA and oleic acid levels were significantly increased in plasma after ALA-rich oil and olive oil meals, respectively. Palmitic acid was significantly increased in plasma-TAG after the butter meal. The ratios of 18:2 n-6 to18:3 n-3 in plasma-TAGs, three and seven hours after the ALA-rich oil meal, were 1.5 and 2.4, respectively. The corresponding values after the olive oil meal were: 13.8 and 16.9; and after the butter meal: 9.0 and 11.6. Conclusions The postprandial p-TAG and NEFA response in healthy pre-menopausal women was not significantly different after the intake of an ALA-rich oil, olive oil and butter. The ALA-rich oil significantly affected different plasma lipid fractions and improved the ratio of n-6 to n-3 fatty acids several hours postprandially.

  17. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Science.gov (United States)

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  18. Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guochang; French, William Todd; Hernandez, Rafael; Alley, Earl; Paraschivescu, Maria [Dave C. Swalm School of Chemical Engineering, Mississippi State University, P.O. Box 9595, Mississippi State, MS 39762 (United States)

    2011-01-15

    Microbial conversion of lignocellulosic sugars to triacylglycerols (a biodiesel or renewable diesel feedstock) was investigated using the oleaginous yeast Rhodotorula glutinis (ATCC 15125). In the shake flask experiments, R. glutinis was first grown in a nitrogen-rich medium utilizing an artificial acid hydrolysate of lignocellulosic biomass switchgrass as the sole carbon and energy source. Once the culture had reached the stationary phase, the cells were harvested and transferred to a fresh nitrogen-free media containing artificial acid hydrolysate sugars for lipid accumulation. Analysis of the data collected showed that the yeast were able to grow in the medium containing artificial acid hydrolysate sugars as the carbon and energy source. The net specific Growth rate(s) indicated that the presence of acetic acid and furfural in the artificial acid hydrolysate inhibited the growth of R. glutinis on glucose, but not the growth on xylose. The lipid accumulated in the cells, determined by gravimetrical method, increased from initial 4.3%-39.0% of dry cell mass weight. The major fatty acids of the accumulated lipids were palmitic acid, stearic acid, oleic acid, linoleic acid and {gamma}-linoleic acid. These results indicate that it is feasible to convert the sugars in acid hydrolysate of lignocellulosic biomass to triacylglycerols using R. glutinis. (author)

  19. Viability of the microencapsulation of a casein hydrolysate in lipid microparticles of cupuacu butter and stearic acid

    Directory of Open Access Journals (Sweden)

    Samantha Cristina Pinho

    2013-04-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE Solid lipid microparticles produced with a mixture of cupuacu butter and stearic acid were used to microencapsulate a commercial casein hydrolysate (Hyprol 8052. The composition of the lipid matrix used for the production of the lipid microparticles was chosen according to data on the wide angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC of bulk lipid mixtures, which indicated that the presence of 10 % cupuacu butter was sufficient to significantly change the crystalline arrangement of pure stearic acid. Preliminary tests indicated that a minimum proportion of 4 % of surfactant (polysorbate 80 was necessary to produce empty spherical lipid particles with average diameters below 10 mm. The lipid microparticles were produced using 20 % cupuacu butter and 80 % stearic acid and then stabilized with 4 % of polysorbate 80, exhibiting an encapsulation efficiency of approximately 74 % of the casein hydrolysate. The melting temperature of the casein hydrolysate-loaded lipid microparticles was detected at 65.2 °C, demonstrating that the particles were solid at room temperature as expected and indicating that the incorporation of peptides had not affected their thermal behavior. After 25 days of storage, however, there was a release of approximately 30 % of the initial amount of encapsulated casein hydrolysate. This release was not thought to have been caused by the liberation of encapsulated casein hydrolysate. Instead, it was attributed to the possible desorption of the adsorbed peptides present on the surface of the lipid microparticles.

  20. Current trends to comprehend lipid metabolism in diatoms.

    Science.gov (United States)

    Zulu, Nodumo Nokulunga; Zienkiewicz, Krzysztof; Vollheyde, Katharina; Feussner, Ivo

    2018-04-01

    Diatoms are the most dominant phytoplankton species in oceans and they continue to receive a great deal of attention because of their significant contributions in ecosystems and the environment. Due to triacylglycerol (TAG) profiles that are abundant in medium-chain fatty acids, diatoms have emerged to be better feed stocks for biofuel production, in comparison to the commonly studied green microalgal species (chlorophytes). Importantly, diatoms are also known for their high levels of the essential ω3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and are considered to be a promising alternative source of these components. The two most commonly exploited diatoms include Thalassiosira pseudonana and Phaeodactylum tricornutum. Although obvious similarities between diatoms and chlorophytes exist, there are some substantial differences in their lipid metabolism. This review provides an overview on lipid metabolism in diatoms, with P. tricornutum as the most explored model. Special emphasis is placed on the synthesis and incorporation of very long chain ω3 fatty acids into lipids. Furthermore, current approaches including genetic engineering and biotechnological methods aimed at improving and maximizing lipid production in P. tricornutum are also discussed. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. A Simple Method for Measuring Carbon-13 Fatty Acid Enrichment in the Major Lipid Classes of Microalgae Using GC-MS

    Science.gov (United States)

    Elahee Doomun, Sheik Nadeem; Loke, Stella; O’Callaghan, Sean; Callahan, Damien L.

    2016-01-01

    A simple method for tracing carbon fixation and lipid synthesis in microalgae was developed using a combination of solid-phase extraction (SPE) and negative ion chemical ionisation gas chromatography mass spectrometry (NCI-GC-MS). NCI-GC-MS is an extremely sensitive technique that can produce an unfragmented molecular ion making this technique particularly useful for stable isotope enrichment studies. Derivatisation of fatty acids using pentafluorobenzyl bromide (PFBBr) allows the coupling of the high separation efficiency of GC and the measurement of unfragmented molecular ions for each of the fatty acids by single quadrupole MS. The key is that isotope spectra can be measured without interference from co-eluting fatty acids or other molecules. Pre-fractionation of lipid extracts by SPE allows the measurement of 13C isotope incorporation into the three main lipid classes (phospholipids, glycolipids, neutral lipids) in microalgae thus allowing the study of complex lipid biochemistry using relatively straightforward analytical technology. The high selectivity of GC is necessary as it allows the collection of mass spectra for individual fatty acids, including cis/trans isomers, of the PFB-derivatised fatty acids. The combination of solid-phase extraction and GC-MS enables the accurate determination of 13C incorporation into each lipid pool. Three solvent extraction protocols that are commonly used in lipidomics were also evaluated and are described here with regard to extraction efficiencies for lipid analysis in microalgae. PMID:27845718

  2. Effect of Copper on Fatty-Acid Composition and Peroxidation of Lipids in the Roots of Copper Tolerant and Sensitive Silene-Cucubalus.

    NARCIS (Netherlands)

    De Vos, C.H.R.; TenBookum, W.M.; Vooijs, R.; Schat, H.; De Kok, L.J.

    1993-01-01

    The effect of high copper exposure in vivo on the lipid and fatty acid composition and lipid peroxidation was studied in the roots of plants from one copper sensitive and two copper tolerant genotypes of Silene cucubalus. At 0.5 muM Cu (control treatment) the compositions of lipids and fatty acids

  3. Lipid oxidation in fish oil enriched mayonnaise : Calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Hartvigsen, Karsten; Thomsen, Mikael Holm

    2001-01-01

    The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA...... acid may therefore promote the decomposition of lipid hydroperoxides to volatile oxidation products. Addition of extra emulsifier reduced the lipid hydroperoxide levels but did not influence the level of free radicals or the oxidative flavor deterioration in mayonnaisse; however, it appeared to alter...

  4. Lipid stability in meat and meat products.

    Science.gov (United States)

    Morrissey, P A; Sheehy, P J; Galvin, K; Kerry, J P; Buckley, D J

    1998-01-01

    Lipid oxidation is one of the main factors limiting the quality and acceptability of meats and meat products. Oxidative damage to lipids occurs in the living animal because of an imbalance between the production of reactive oxygen species and the animal's defence mechanisms. This may be brought about by a high intake of oxidized lipids or poly-unsaturated fatty acids, or a low intake of nutrients involved in the antioxidant defence system. Damage to lipids may be accentuated in the immediate post-slaughter period and, in particular, during handling, processing, storage and cooking. In recent years, pressure to reduce artificial additive use in foods has led to attempts to increase meat stability by dietary strategies. These include supplementation of animal diets with vitamin E, ascorbic acid, or carotenoids, or withdrawal of trace mineral supplements. Dietary vitamin E supplementation reduces lipid and myoglobin oxidation, and, in certain situations, drip losses in meats. However, vitamin C supplementation appears to have little, if any, beneficial effects on meat stability. The effect of feeding higher levels of carotenoids on meat stability requires further study. Some studies have demonstrated that reducing the iron and copper content of feeds improves meat stability. Post-slaughter carnosine addition may be an effective means of improving lipid stability in processed meats, perhaps in combination with dietary vitamin E supplementation.

  5. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    Science.gov (United States)

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  6. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species.

    Science.gov (United States)

    Sitepu, Irnayuli R; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J Bruce; Gillies, Laura A; Almada, Luis A G; Boundy-Mills, Kyria L

    2013-09-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Diacylglycerol-enriched structured lipids containing CLA and capric acid alter body fat mass and lipid metabolism in rats.

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Ki-Teak; Lee, Mi-Kyung; Jeon, Seon-Min; Choi, Myung-Sook

    2006-01-01

    The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver. Copyright 2006 S. Karger AG, Basel.

  8. Lipid and fatty acid fractions in Lingula anatina (Brachiopoda: an intertidal benthic fauna in the West Bengal-Orissa coast, India

    Directory of Open Access Journals (Sweden)

    Samaresh Samanta

    2014-05-01

    Full Text Available Objective: To record the fractional components of lipid and polyunsaturated fatty acids of Lingula anatina (L. anatina, a Precambrian intertidal benthic brachiopod, giving emphasis on -ω series group especially eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA alongside assessing their biotransformation within the population and mangrove-estuarine associated community. Methods: Different biological samples after being collected from three contrasting study sites viz. SI, SII and SIII at Talsari (Longitude 87°5′ E to 88°5′ E and Latitude 20°30′ N to 22°2′ N were stored at -20 °C until analyzed. Total lipids were extracted from each sample following Bligh and Dryer method. Identification and conformation of fatty acids were done by following Ackman method. Results: On analyzing different collected samples, muscles of L. anatina exhibited the highest amount of total lipids (2.95% of which 54.03% belongs to phospholipid groups. Different body parts of studied species contained appreciable and greater amount of EPA and DHA than α-linolenic acid. Conclusions: Different collected samples exhibited variabilities in respect of total lipids and its fractional fatty acid components. The muscles of L. anatina showed maximum storage of lipids and fatty acids. Differential occurrences of EPA and DHA in different body parts of L. anatina are supposed to be due to the biotransformation process converting the α-linolenic acid from its primary food sources.

  9. Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus Methylomirabilis oxyfera".

    Science.gov (United States)

    Kool, Dorien M; Zhu, Baoli; Rijpstra, W Irene C; Jetten, Mike S M; Ettwig, Katharina F; Sinninghe Damsté, Jaap S

    2012-12-01

    The recently described bacterium "Candidatus Methylomirabilis oxyfera" couples the oxidation of the important greenhouse gas methane to the reduction of nitrite. The ecological significance of "Ca. Methylomirabilis oxyfera" is still underexplored, as our ability to identify the presence of this bacterium is thus far limited to DNA-based techniques. Here, we investigated the lipid composition of "Ca. Methylomirabilis oxyfera" to identify new, gene-independent biomarkers for the environmental detection of this bacterium. Multiple "Ca. Methylomirabilis oxyfera" enrichment cultures were investigated. In all cultures, the lipid profile was dominated up to 46% by the fatty acid (FA) 10-methylhexadecanoic acid (10MeC(16:0)). Furthermore, a unique FA was identified that has not been reported elsewhere: the monounsaturated 10-methylhexadecenoic acid with a double bond at the Δ7 position (10MeC(16:1Δ7)), which comprised up to 10% of the total FA profile. We propose that the typical branched fatty acids 10MeC(16:0) and 10MeC(16:1Δ7) are key and characteristic components of the lipid profile of "Ca. Methylomirabilis oxyfera." The successful detection of these fatty acids in a peatland from which one of the enrichment cultures originated supports the potential of these unique lipids as biomarkers for the process of nitrite-dependent methane oxidation in the environment.

  10. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  11. Fatty-acid oxidation and calcium homeostasis are involved in the rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats.

    Science.gov (United States)

    Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh

    2012-08-01

    Lipid emulsion has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty-acid oxidation is required for rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore opening in bupivacaine-induced cardiac arrest before and after resuscitation with lipid emulsion. Prospective, randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. Asystole was achieved with a single dose of bupivacaine (10 mg/kg over 20 secs, intravenously) and 20% lipid emulsion infusion (5 mL/kg bolus, and 0.5 mL/kg/min maintenance), and cardiac massage started immediately. The rats in CVT-4325 (CVT) group were pretreated with a single dose of fatty-acid oxidation inhibitor CVT (0.5, 0.25, 0.125, or 0.0625 mg/kg bolus intravenously) 5 mins prior to inducing asystole by bupivacaine overdose. Heart rate, ejection fraction, fractional shortening, the threshold for opening of mitochondrial permeability transition pore, oxygen consumption, and membrane potential were measured. The values are mean ± SEM. Administration of bupivacaine resulted in asystole. Lipid Emulsion infusion improved the cardiac function gradually as the ejection fraction was fully recovered within 5 mins (ejection fraction=64±4% and fractional shortening=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10 mins. Lipid emulsion was only able to rescue rats pretreated with low dose of CVT (0.0625 mg/kg; heart rate~181±11 beats/min at 10 mins, recovery of 56%; ejection fraction=50±1%; fractional shortening=26±0.6% at 5 mins, n=3), but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25, or 0.125 mg/kg). The calcium-retention capacity in response to Ca²⁺ overload was significantly higher in cardiac

  12. Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat.

    Science.gov (United States)

    McNeil, Christopher J; Hay, Susan M; Rucklidge, Garry J; Reid, Martin D; Duncan, Gary J; Rees, William D

    2009-11-01

    Previously we have examined the effects of diets deficient in folic acid ( - F) or folate deficient with low methionine and choline ( - F LM LC) on the relative abundance of soluble proteins in the liver of the pregnant rat. In the present study we report the corresponding changes in the fetal liver at day 21 of gestation. The abundance of eighteen proteins increased when dams were fed the - F diet. When dams were fed the - F LM LC diet, thirty-three proteins increased and eight decreased. Many of the differentially abundant proteins in the fetal liver could be classified into the same functional groups as those previously identified in the maternal liver, namely protein synthesis, metabolism, lipid metabolism and proteins associated with the cytoskeleton and endoplasmic reticulum. The pattern was consistent with reduced cell proliferation in the - F LM LC group but not in the - F group. Metabolic enzymes associated with lipid metabolism changed in both the - F and - F LM LC groups. The mRNA for carnitine palmitoyl transferase were up-regulated and CD36 (fatty acid translocase) down-regulated in the - F group, suggesting increased mitochondrial oxidation of fatty acids as an indirect response to altered maternal lipid metabolism. In the - F LM LC group the mRNA for acetyl CoA carboxylase was down-regulated, suggesting reduced fatty acid synthesis. The mRNA for transcriptional regulators including PPARalpha and sterol response element-binding protein-1c were unchanged. These results suggest that an adequate supply of folic acid and the related methyl donors may benefit fetal development directly by improving lipid metabolism in fetal as well as maternal tissues.

  13. Analysis of lipid profile in lipid storage myopathy.

    Science.gov (United States)

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  14. Protective effect of ascorbic acid on netilmicin-induced lipid profile and peroxidation parameters in rabbit blood plasma.

    Science.gov (United States)

    Devbhuti, Pritesh; Sikdar, Debasis; Saha, Achintya; Sengupta, Chandana

    2011-01-01

    A drug may cause alteration in blood-lipid profile and induce lipid peroxidation phenomena on administration in the body. Antioxidant may play beneficial role to control the negative alteration in lipid profile and lipid peroxidation. In view of this context, the present in vivo study was carried out to evaluate the role of ascorbic acid as antioxidant on netilmicin-induced alteration of blood lipid profile and peroxidation parameters. Rabbits were used as experimental animals and blood was collected to estimate blood-lipid profiles, such as total cholesterol (TCh), high density lipoprotein cholesterol (HDL-Ch), low density lipoprotein cholesterol (LDL-Ch), very low density lipoprotein cholesterol (VLDL-Ch), triglycerides (Tg), phospholipids (PL), and total lipids (TL), as well as peroxidation parameters, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), reduced glutathione (GSH) and nitric oxide (NO). The results revealed that netilmicin caused significant enhancement of MDA, HNE, TCh, LDL-Ch, VLDL-Ch, Tg levels and reduction in GSH, NO, HDL-Ch, PL, TL levels. On co-administration, ascorbic acid was found to be effective in reducing netilmicin-induced negative alterations of the above parameters.

  15. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model.

    Science.gov (United States)

    Newman, Monica A; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U

    2017-03-16

    Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin ( p phosphatidylcholines and sphingomyelins were generally increased ( p phosphatidylcholines and lysophosphatidylcholines were decreased ( p insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  16. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    Science.gov (United States)

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of a high monounsaturated fatty acids diet and a Mediterranean diet on serum lipids and insulin sensitivity in adults with mild abdominal obesity

    NARCIS (Netherlands)

    Bos, M.B.; Vries, de J.H.M.; Feskens, E.J.M.; Dijk, van S.J.; Hoelen, D.; Siebelink, E.; Heijligenberg, R.; Groot, de C.P.G.M.

    2010-01-01

    Background and aims - Diets high in monounsaturated fatty acids (MUFA) such as a Mediterranean diet may reduce the risk of cardiovascular diseases by improving insulin sensitivity and serum lipids. Besides being high in MUFA, a Mediterranean diet also contains abundant plant foods, moderate wine and

  19. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes.

    Directory of Open Access Journals (Sweden)

    Ankush Prasad

    Full Text Available Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non

  20. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine

    OpenAIRE

    Parsaeimehr, Ali; Sun, Zhilan; Dou, Xiao; Chen, Yi-Feng

    2015-01-01

    Background Photoautotrophic microalgae are a promising avenue for sustained biodiesel production, but are compromised by low yields of biomass and lipids at present. We are developing a chemical approach to improve microalgal accumulation of feedstock lipids as well as high-value alpha-linolenic acid which in turn might provide a driving force for biodiesel production. Results We demonstrate the effectiveness of the small bioactive molecule ?acetylcholine? on accumulation of biomass, total li...

  1. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    Science.gov (United States)

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety.

    Science.gov (United States)

    Marciani, Luca; Faulks, Richard; Wickham, Martin S J; Bush, Debbie; Pick, Barbara; Wright, Jeff; Cox, Eleanor F; Fillery-Travis, Annette; Gowland, Penny A; Spiller, Robin C

    2009-03-01

    Fat is often included in common foods as an emulsion of dispersed oil droplets to enhance the organoleptic quality and stability. The intragastric acid stability of emulsified fat may impact on gastric emptying, satiety and plasma lipid absorption. The aim of the present study was to investigate whether, compared with an acid-unstable emulsion, an acid-stable fat emulsion would empty from the stomach more slowly, cause more rapid plasma lipid absorption and cause greater satiety. Eleven healthy male volunteers received on two separate occasions 500 ml of 15 % (w/w) [13C]palmitate-enriched olive oil-in-water emulsion meals which were either stable or unstable in the acid gastric environment. MRI was used to measure gastric emptying and the intragastric oil fraction of the meals. Blood sampling was used to measure plasma lipids and visual analogue scales were used to assess satiety. The acid-unstable fat emulsion broke and rapidly layered in the stomach. Gastric emptying of meal volume was slower for the acid-stable fat emulsion (P rate of energy delivery of fat from the stomach to the duodenum was not different up to t = 110 min. The acid-stable emulsion induced increased fullness (P distribution of fat emulsions against the gastric acid environment. This could have implications for the design of novel foods.

  3. Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals

    International Nuclear Information System (INIS)

    Hudak, K.A.; Thompson, J.E.

    1997-01-01

    Pulse-chase labeling of carnation (Dianthus caryophyllus L. cv Improved White Sim) petals with [14C]acetate has provided evidence for a hydrophobic subcompartment of lipid-protein particles within the cytosol that resemble oil bodies, are formed by blebbing from membranes, and are enriched in lipid metabolites (including fragrance volatiles) derived from membrane fatty acids. Fractionation of the petals during pulse-chase labeling revealed that radiolabeled fatty acids appear first in microsomal membranes and subsequently in cytosolic lipid-protein particles, indicating that the particles originate from membranes. This interpretation is supported by the finding that the cytosolic lipid-protein particles contain phospholipid as well as the same fatty acids found in microsomal membranes. Radiolabeled polar lipid metabolites (methanol/ water-soluble) were detectable in both in situ lipid-protein particles isolated from the cytosol and those generated in vitro from isolated radiolabeled microsomal membranes. The lipid-protein particles were also enriched in hexanal, trans-2-hexenal, 1-hexanol, 3-hexen-1-ol, and 2-hexanol, volatiles of carnation flower fragrance that are derived from membrane fatty acids through the lipoxygenase pathway. Therefore, secondary lipid metabolites, including components of fragrance, appear to be formed within membranes of petal tissue and are subsequently released from the membrane bilayers into the cytosol by blebbing of lipid-protein particles

  4. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production

    Directory of Open Access Journals (Sweden)

    Dahlia M. El Maghraby

    2015-01-01

    Full Text Available Using the total lipid contents and fatty acid profiles, the marine macro-algae Jania rubens (Rhodophyceae, Ulva linza (Chlorophyceae and Padina pavonica (Phaeophyceae were evaluated for biodiesel production during the spring, summer and autumn. Seawater parameters such as pH, salinity and temperature were measured. The total lipid content varied from 1.56% (J. rubens to 4.14% (U. linza of dry weight, with the highest values occurring in spring. The fatty acid methyl ester profiles were analysed using gas chromatography. The highest percentage of total fatty acids was recorded in P. pavonica, with 6.2% in autumn, whereas the lowest was in J. rubens, with 68.6% in summer. The relative amount of saturated to unsaturated fatty acids was significantly higher in P. pavonica than in the other macro-algae. Seasonal variations in pH, salinity and temperature had no significant effect on the total lipid and fatty acid contents. Principal component analysis grouped brown and green algae together, whereas red alga grouped out. Furthermore, methyl ester profiles indicate that brown and green seaweeds are preferred, followed by red seaweeds, which appears to have little potential for oil-based products. Therefore, these seaweeds are not targets for biodiesel production.

  5. Effect of Ring Size in ω-Alicyclic Fatty Acids on the Structural and Dynamical Properties Associated with Fluidity in Lipid Bilayers.

    Science.gov (United States)

    Poger, David; Mark, Alan E

    2015-10-27

    Fatty acids containing a terminal cyclic group such as cyclohexyl and cycloheptyl are commonly found in prokaryotic membranes, especially in those of thermo-acidophilic bacteria. These so-called ω-alicyclic fatty acids have been proposed to stabilize the membranes of bacteria by reducing the fluidity in membranes and increasing lipid packing and lipid chain order. In this article, molecular dynamics simulations are used to examine the effect of 3- to 7-membered cycloalkyl saturated and unsaturated (cyclopent-2-enyl and phenyl) rings in ω-alicyclic fatty acyl chains on the structure (lipid packing, lipid chain order, and fraction of gauche defects in the chains) and dynamics (lateral lipid diffusion) of a model lipid bilayer. It was found that ω-alicyclic chains in which the ring was saturated reduced lipid condensation and lowered chain order which would be associated with enhanced fluidity. However, this effect was limited. The lateral diffusion of the lipids diminished as the ring size increased. In particular, ω-cyclohexyl and ω-cycloheptyl acyl tails led to a decrease in lipid diffusion. In contrast, ω-alicyclic acyl chains that contain an unsaturated ring promoted membrane fluidity both in terms of changes in membrane structure and lipid diffusion. This may indicate that saturated and unsaturated terminal rings in ω-alicyclic fatty acids fulfill alternative functions within membranes. Overall, the simulations suggest that ω-alicyclic fatty acids in which the terminal ring is saturated might protect the membrane of thermo-acidophilic bacteria from high-temperature and low-pH conditions through a "dynamical barrier" that would limit lipid diffusion and transmembrane diffusion of undesired ions and molecules.

  6. Relationships between the daily intake of unsaturated plant lipids and the contents of major milk fatty acids in dairy goats

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Marín, A.L.; Núñez Sánchez, N.; Garzón Sigler, A. I.; Peña Blanco, F.; Fuente, M.A. de la

    2015-07-01

    A meta-regression of the effects of the amount of plant lipids consumed by dairy goats on the contents of some milk fat fatty acids (FA) was carried out. Fourteen peer-reviewed published papers reporting 17 experiments were used in the study. Those experiments compared control diets without added fat with diets that included plant lipids rich in unsaturated FA, summing up to 64 treatments. The results showed that increasing daily intake of plant lipids linearly reduced the contents of all medium chain saturated FA in milk fat. Moreover, it was observed that the longer the chain of the milk saturated FA, the greater the negative effect of the plant lipid intake on their contents. On the other hand, the contents of stearic acid and the sum of oleic, linoleic and α-linolenic acids in milk fat linearly increased as daily plant lipid intake rose. The results obtained corroborate previous reports on the effects of feeding dairy goats with increasing amounts of unsaturated plant lipids on milk FA profile. (Author)

  7. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel

    DEFF Research Database (Denmark)

    Butts, Ian; Baeza, R.; Støttrup, Josianne

    2015-01-01

    of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA......), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt...... induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel...

  8. Evidence for a structural role for acid-fast lipids in oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria.

    Science.gov (United States)

    Bushkin, G Guy; Motari, Edwin; Carpentieri, Andrea; Dubey, Jitender P; Costello, Catherine E; Robbins, Phillips W; Samuelson, John

    2013-09-03

    Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp. cause diarrhea in humans and animals, while Toxoplasma causes disseminated infections in fetuses and untreated AIDS patients. Eimeria is a major pathogen of commercial chickens. Oocysts, which are the infectious form of Cryptosporidium and Eimeria and one of two infectious forms of Toxoplasma (the other is tissue cysts in undercooked meat), have a multilayered wall. Recently we showed that the inner layer of the oocyst walls of Toxoplasma and Eimeria is a porous scaffold of fibers of β-1,3-glucan, which are also present in fungal walls but are absent from Cryptosporidium oocyst walls. Here we present evidence for a structural role for lipids in the oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria. Briefly, oocyst walls of each organism label with acid-fast stains that bind to lipids in the walls of mycobacteria. Polyketide synthases similar to those that make mycobacterial wall lipids are abundant in oocysts of Toxoplasma and Eimeria and are predicted in Cryptosporidium. The outer layer of oocyst wall of Eimeria and the entire oocyst wall of Cryptosporidium are dissolved by organic solvents. Oocyst wall lipids are complex mixtures of triglycerides, some of which contain polyhydroxy fatty acyl chains like those present in plant cutin or elongated fatty acyl chains like mycolic acids. We propose a two-layered model of the oocyst wall (glucan and acid-fast lipids) that resembles the two-layered walls of mycobacteria (peptidoglycan and acid-fast lipids) and plants (cellulose and cutin). Oocysts, which are essential for the fecal-oral spread of coccidia, have a wall that is thought responsible for their survival in the environment and for their transit through the stomach and small intestine. While oocyst walls of Toxoplasma and Eimeria are strengthened by a porous scaffold of fibrils of β-1,3-glucan and by proteins cross

  9. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  10. Extracts of black and brown rice powders improve hepatic lipid accumulation via the activation of PPARα in obese and diabetic model mice.

    Science.gov (United States)

    Felix, Angelina Dr; Takahashi, Nobuyuki; Takahashi, Mami; Katsumata-Tsuboi, Rie; Satoh, Ryo; Soon Hui, Teoh; Miyajima, Katsuhiro; Nakae, Dai; Inoue, Hirofumi; Uehara, Mariko

    2017-11-01

    Rice powder extract (RPE) from black and brown rice (Oryza sativa L. indica) improves hepatic lipid accumulation in obese and diabetic model mice via peroxisomal fatty acid oxidation. RPE showed PPARα agonistic activity which did not differ between black and brown RPE despite a higher anthocyanin content in black RPE.

  11. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  12. Temperature-controlled continuous production of all-trans retinoic acid-loaded solid lipid nanoparticles using static mixers

    Science.gov (United States)

    Shao, Wenyao; Yan, Mengwen; Chen, Tingting; Chen, Yuqing; Xiao, Zongyuan

    2017-04-01

    This work aims to develop a temperature-controlled continuous solvent emulsification-diffusion process to synthesize all-trans retinoic acid (ATRA)-loaded solid lipid nanoparticles (SLNs) using static mixers. ATRA-loaded SLNs of around 200 nm were obtained when the flow rates of the organic and aqueous phases were 50 ml min-1 and 500 ml min-1, respectively. It was found that the lipid concentration played a dominant role in the size of the obtained SLNs, and higher drug concentration resulted in relatively low entrapment efficiency. The encapsulation of ATRA in the SLNs was effective in improving its stability according to the photo-degradation test. The in vitro release of SLN was slow without an initial burst. This study demonstrates that the solvent emulsification-diffusion technique with static mixing is an effective method of producing SLNs, and could easily be scaled up for industrial applications. Highlights Higher lipid concentration leads to larger SLNs. SLN transformation occurs due to Ostwald ripening. The ATRA-loaded SLNs around 200 nm were successfully produced with static mixers. ATRA-loaded SLNs show better stability towards sunlight. ATRA in SLNs exhibited a relatively slow release rate without a significant initial burst.

  13. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Seon Min Woo

    2018-04-01

    Full Text Available Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor, necroptosis inhibitor (necrostatin-1, or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO. Furthermore, corosolic acid significantly induces reactive oxygen species (ROS levels, but antioxidants (N-acetyl-l-cysteine (NAC and trolox do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498, breast cancer (MDA-MB231, and hepatocellular carcinoma (SK-Hep1 and Huh7 cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  14. Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Mouritsen, O.G.; Jørgensen, K.

    2002-01-01

    The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration-dependent s...

  15. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  16. Relative utilization of fatty acids for synthesis of ketone bodies and complex lipids in the liver of developing rats.

    Science.gov (United States)

    Yeh, Y Y; Streuli, V L; Zee, P

    1977-04-01

    The regulation of hepatic ketogenesis, as related to the metabolism of fatty acids through oxidative and synthetic pathways, was studied in developing rats. [1-14C] palmitate was used as a substrate to determine the proportions of free fatty acids utilized for the production of ketone bodies, CO2 and complex lipids. Similar developmental patterns of hepatic ketogenesis were obtained by measuring the production of either [14C] acetoacetate from exogenous [1-14C] palmitate or the sum of unlabeled acetoacetate and beta-hydroxybutyrate from endogenous fatty acids. The production of total ketone bodies was low during the late fetal stage and at birth, but increased rapidly to a miximum value within 24 hr after brith. The maximal ketogenic capacity appeared to be maintained for the first 10 days of life. 14CO2 production from [1-14C] palmitate increased by two- to fourfold during the suckling period, from its initial low rate seen at birth. The capacity for synthesis of total complex lipids was low at birth and had increased by day 3 to a maximal value, which was comparable to that of adult fed rats. The high lipogenic capacity lasted throughout the remaining suckling period. When ketogenesis was inhibited by 4-pentenoic acid, the rate of synthesis of complex lipids did not increase despite an increase in unutilized fatty acids. During the mid-suckling period, approximately equal amounts of [1-14C] palmitate were utilized for the synthesis of ketone plus CO2 and for complex lipid synthesis. By contrast, in adult fed rats, the incorporation of fatty acids into complex lipids was four times higher than that of ketone plus CO2. These observations suggest that stimulated hepatic ketogenesis in suckling rats results from the rapid oxidation of fatty acids and consequent increased production of acetyl CoA, but not from impaired capacity for synthesis of complex lipids.

  17. Lipid and bile acid analysis

    NARCIS (Netherlands)

    Argmann, Carmen A.; Houten, Sander M.; Champy, Marie-France; Auwerx, Johan

    2006-01-01

    Lipids are important body constituents that are vital for cellular, tissue, and whole-body homeostasis. Lipids serve as crucial membrane components, constitute the body's main energy reservoir, and are important signaling molecules. As a consequence of these pleiotropic functions, many common

  18. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids

    Science.gov (United States)

    Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T.

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of

  19. Lipids of Parasitic and Saprophytic Leptospires

    Science.gov (United States)

    Johnson, R. C.; Livermore, B. P.; Walby, Judith K.; Jenkin, H. M.

    1970-01-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of β-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola. PMID:16557833

  20. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Einarsdottir, E. S.

    2015-01-01

    in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic...... deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance...

  1. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  2. Myocardial Lipid Profiling During Time Course of High Fat Diet and its Relationship to the Expression of Fatty Acid Transporters

    Directory of Open Access Journals (Sweden)

    Ewa Harasim

    2015-09-01

    Full Text Available Background/Aims: It is well documented that increased fatty acids (FA supply causes lipid accumulation and insulin resistance in skeletal muscles. Whether the same mechanism is present in the heart is still unclear. Therefore, the goal of our study was to determine the content of specific myocardial lipid fractions during feeding rats a high fat diet (HFD for 5 weeks. Moreover, the relation between changes in myocardial lipid content, whole body insulin resistance and the expression of fatty acid transporters in each week of HFD was established. Methods: Gas liquid chromatography and high performance liquid chromatography were used to determine the content of lipid fractions in the left ventricle. Expression of selected proteins was estimated by Western blot technique. All measurements were made after each week of HFD. Results: As expected, lipid profile in myocardium was altered by HFD in different weeks of the study with the most intense changes in triacylglycerols, long chain fatty acid-CoA and ceramide. Furthermore, there was a significant elevation of plasmalemmal (the 4th and the 5th week and mitochondrial expression (from the 3rd to the 5th week of fatty acid translocase. Conclusion: High fat diet affects myocardial lipid profile in each week of its duration and causes alternations in FA metabolism in cardiomyocytes.

  3. Fatty acids of polar lipids in heart tissue are good taxonomic markers ...

    African Journals Online (AJOL)

    The fatty acid profiles in total, neutral and polar lipids in the heart tissues of five freshwater fish species (Nile perch Lates niloticus, Nile tilapia Oreochromis niloticus, marbled lungfish Protopterus aethiopicus, Bagrus docmak and African catfish Clarias gariepinus) from Lakes Victoria and Kyoga were determined ...

  4. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery.

    Science.gov (United States)

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi

    2014-04-01

    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    Science.gov (United States)

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effect of nutrients on total lipid content and fatty acids profile of Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    Behrouz Zarei Darki

    2017-05-01

    Full Text Available ABSTRACT The effect of nutrients on the total lipid content and fatty acid profile of Scenedesmus obliquus isolated from the south coast of the Caspian Sea was evaluated. The nutritional compositions of the media impacted the growth rate and biomass of S. obliquus that ranged from 0.175 day-1 to 0.209 day-1and 0.92 gr·l-1 to 1.79 gr·l-1, respectively. The alga grew better in the medium which was characterized by higher levels of sodium and trace elements such as Fe, Mn, Mo, and Co and poor in N and P as compared with the other media. The highest level of the total lipid (32% and the highest values of saturated fatty acids, in particular palmitic acid also were positively correlated with these nutrients. Peaks in polyunsaturated fatty acids (43.7 %, especially α-linolenic acid (28.4% were related to N and P, but its correlation with K and Mg was more evident. The most important factors correlated with high amount of monounsaturated fatty acids were also N and P, followed by K and Mg to a lesser extent. This study demonstrated that the same algal strain may be a source of different amount of fatty acids, depending on the composition of the culture medium.

  7. In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration

    International Nuclear Information System (INIS)

    Leyton, J.; Drury, P.J.; Crawford, M.A.

    1987-01-01

    Striking differences were found in the compartmentalization of fatty acids into liver lipid fractions. The saturated fatty acids--lauric, myristic, palmitic and stearic--were incorporated into phosphoglycerides at faster rates with increasing chain lengths, while triglyceride incorporation was almost uniform. The degree of incorporation of the unsaturated fatty acids into phosphoglycerides (structural) compared to triglyceride (storage and energy) was the converse of their oxidation rates. The incorporation of oleic, linoleic and alpha-linolenic acids was mainly into triglyceride, whereas dihomo-gamma-linolenic acid and arachidonic acid were preferentially incorporated into phosphoglycerides. The data suggest that distribution of each fatty acid is different depending on its destination for structural or energy function

  8. Influence of in vitro supplementation with lipids from conventional and Alpine milk on fatty acid distribution and cell growth of HT-29 cells

    Directory of Open Access Journals (Sweden)

    Dänicke Sven

    2011-08-01

    Full Text Available Abstract Background To date, the influence of milk and dairy products on carcinogenesis remains controversial. However, lipids of ruminant origin such as conjugated linoleic acids (CLA are known to exhibit beneficial effects in vitro and in vivo. The aim of the present study was to determine the influence of milk lipids of different origin and varying quality presenting as free fatty acid (FFA solutions on cellular fatty acid distribution, cellular viability, and growth of human colon adenocarcinoma cells (HT-29. Methods FAME of conventional and Alpine milk lipids (MLcon, MLalp and cells treated with FFA derivatives of milk lipids were analyzed by means of GC-FID and Ag+-HPLC. Cellular viability and growth of the cells were determined by means of CellTiter-Blue®-assay and DAPI-assay (4',6-diamidino-2-phenylindole dihydrochloride, respectively. Results Supplementation with milk lipids significantly decreased viability and growth of HT-29 cells in a dose- and time-dependent manner. MLalp showed a lower SFA/MUFA ratio, a 8 fold increased CLA content, and different CLA profile compared to MLcon but did not demonstrate additional growth-inhibitory effects. In addition, total concentration and fatty acid distribution of cellular lipids were altered. In particular, treatment of the cells yielded highest amounts of two types of milk specific major fatty acids (μg FA/mg cellular protein after 8 h of incubation compared to 24 h; 200 μM of MLcon (C16:0, 206 ± 43, 200 μM of MLalp (C18:1 c9, (223 ± 19. Vaccenic acid (C18:1 t11 contained in milk lipids was converted to c9,t11-CLA in HT-29 cells. Notably, the ratio of t11,c13-CLA/t7,c9-CLA, a criterion for pasture feeding of the cows, was significantly changed after incubation for 8 h with lipids from MLalp (3.6 - 4.8, compared to lipids from MLcon (0.3 - 0.6. Conclusions Natural lipids from conventional and Alpine milk showed similar growth inhibitory effects. However, different changes in cellular

  9. Enhancing Lipid Stability in Irradiated Beef Mince by Oleoresins and/ or Ascorbic Acid during Chilling Storage

    International Nuclear Information System (INIS)

    Zahran, D.A.

    2008-01-01

    Lipid Oxidation, fatty acids profile and sensory properties of irradiated beef mince (2.5 kGy) treated with oleoresins (rosemary or ginger), ascorbic acid, or combination of ascorbic acid and oleoresins were investigated during 30 days of chilled storage. Thiobarbituric acid reactive substances (TBARS) as an indication of lipid oxidation, of irradiated control samples were significantly higher than those of non irradiated control and samples treated with rosemary and ginger oleoresins. By GC-MS analysis, it was found that the relative percentage of total saturated fatty acids (TSFA) increased in all treatments. However, the highest increase was recorded in irradiated control samples compared to non irradiated control samples. Beef mince samples treated with oleoresins (rosemary or ginger) had the best scores for discoloration and off odour. Thus, the addition of oleoresins (rosemary or ginger) to beef mince before irradiation could be an easily applied method to minimize oxidative degradation of irradiated meat

  10. Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance

    OpenAIRE

    Newgard, Christopher B.

    2012-01-01

    Fatty acids (FA) and FA-derived metabolites have long been implicated in the development of insulin resistance and type 2 diabetes. Surprisingly, application of metabolomics technologies has revealed that branched-chain amino acids (BCAA) and related metabolites are more strongly associated with insulin resistance than many common lipid species. Moreover, the BCAA-related signature is predictive of incident diabetes and intervention outcomes, and uniquely responsive to therapeutic interventio...

  11. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Full Text Available Objective: Plasma levels of branched-chain amino acids (BCAA are consistently elevated in obesity and type 2 diabetes (T2D and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28. We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Results: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Keywords: Insulin sensitivity, BCAA, Fatty acid oxidation, TCA cycle

  12. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    Science.gov (United States)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  13. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    Science.gov (United States)

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  14. Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes.

    Science.gov (United States)

    Ogawa, Susumu; Abe, Takaaki; Nako, Kazuhiro; Okamura, Masashi; Senda, Miho; Sakamoto, Takuya; Ito, Sadayoshi

    2013-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are ω3-polyunsaturated fatty acids mainly contained in the blue-backed fish oil, and are effective in decreasing the lipids disorder and the cardiovascular incidence among diabetic patients. Moreover, it has been suggested that EPA and DHA may improve the insulin resistance and glucose metabolism. However, the clinical effects of EPA and DHA on glucose metabolism remain unclear. We aimed to clarify the effects of EPA/DHA treatment on glycemic control in type 2 diabetes mellitus. This study was a multicenter prospective randomized controlled trial involving 30 elderly type 2 diabetic patients on a liquid diet. Their exercises were almost zero and the content of their meals was strictly managed and understood well. Therefore, the difference by the individual's life was a minimum. The subjects were divided into two groups: those receiving EPA/DHA-rich liquid diet [EPA/DHA (+)] or liquid diet lacking EPA/DHA [EPA/DHA (-)]. Changes in factors related to glucose and lipid metabolism were assessed after the three-month study. Serum concentrations of EPA rose in EPA/DHA (+), although the levels of DHA and fasting C-peptide remained unchanged in EPA/DHA (+). In addition, there was a significant decline in the fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), fasting remnant-like particles and apolipoprotein (apo) B in EPA/DHA (+), compared with the values in EPA/DHA (-). EPA/DHA-rich diet might improve glucose metabolism in elderly type 2 diabetic patients on a liquid diet. This phenomenon may be due to the improved insulin resistance mediated by the rise in serum EPA concentrations.

  15. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation.

    Science.gov (United States)

    Martínez-Soto, Juan Carlos; Domingo, Joan Carles; Cordobilla, Begoña; Nicolás, María; Fernández, Laura; Albero, Pilar; Gadea, Joaquín; Landeras, José

    2016-12-01

    The purpose of this study was to evaluate the effect of docosahexaenoic acid (DHA) dietary supplementation on semen quality, fatty acid composition, antioxidant capacity, and DNA fragmentation. In this randomized, double blind, placebo-controlled, parallel-group study, 74 subjects were recruited and randomly assigned to either the placebo group (n=32) or to the DHA group (n=42) to consume three 500-mg capsules of oil per day over 10 weeks. The placebo group received 1,500 mg/day of sunflower oil and the DHA group 1,500 mg/day of DHA-enriched oil. Seminal parameters (semen volume, sperm concentration, motility, morphology, and vitality), total antioxidant capacity, deoxyribonucleic acid fragmentation, and lipid composition were evaluated prior to the treatment and after 10 weeks. Finally, 57 subjects were included in the study with 25 in the placebo group and 32 in the DHA group. No differences were found in traditional sperm parameters or lipid composition of the sperm membrane after treatment. However, an increase in DHA and Omega-3 fatty acid content in seminal plasma, an improvement in antioxidant status, and a reduction in the percentage of spermatozoa with deoxyribonucleic acid damage were observed in the DHA group after 10 weeks of treatment.

  16. The Effects of Trace Elements on the Lipid Productivity and Fatty Acid Composition of Nannochloropis oculata

    Directory of Open Access Journals (Sweden)

    Xiao Dou

    2013-01-01

    Full Text Available The effects of trace elements on the lipid productivity and fatty acid composition of Nannochloropis oculata (N. oculata were studied. The results showed that trace elements had a strong influence on not only the lipid productivity but also the fatty acid composition. The addition of Fe3+, Zn2+, Mn2+, Mo6+, and EDTA and the deletion of Cu2+ and Co2+ can increase the lipid productivity. The optimum concentrations of the trace elements in the culture medium are 6 times of Fe3+ and EDTA, the same concentration of Zn2+, Mn2+, and Mo6+ as the control group, but the optimum medium has no Cu2+ or Co2+. Fe3+, Zn2+, Mn2+, Mo6+, and EDTA are indispensable during the EPA formation of N. oculata. The addition of Fe3+, Zn2+, Mn2+, Mo6+, and EDTA can strongly increase the content of EPA in the lipid of N. oculata, but the concentration of the trace elements had little influence on the level of EPA.

  17. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    Science.gov (United States)

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk.

  18. [Lipids of Aureobasidium (Pullularia) pullulans].

    Science.gov (United States)

    Elinov, N P; Iurlova, N A; Efimova, T P

    1975-01-01

    Fractional composition of free and bound lipids was studied in Aureobasidium (Pullularia) pullulans 8 by preparative TLC on Silufol. Bound lipids contained a fraction (27.76 +/- 0.5%) of dark brown colour, similar to melanin. The composition of fatty acids was studied by GLC. The following fatty acids were identified and determined quantitatively: C12:0, C14:0, C15:0, C16:0, C18:0, C18:1+C15:2. The following fatty acids predominated in free and bound lipids: C16:0, C18:1+C18:2. The ratio between unsaturated and saturated fatty acids in all fractions of free and bound lipids was more than unity. The following parameters were determined for lipids; ester number (173.89 and 178.53); iodine number (44.1 and 33.10), and saponification number (181.17 and 206.03) (the values are given for free and bound lipids, respectively).

  19. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids

    DEFF Research Database (Denmark)

    Bergenholm, David; Gossing, Michael; Wei, Yongjun

    2018-01-01

    Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics...... as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids...... industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature...

  20. A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats.

    Science.gov (United States)

    Khaire, Amrita; Rathod, Richa; Randhir, Karuna; Kale, Anvita; Joshi, Sadhana

    2016-09-14

    Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p blood pressure, and lowered the levels of plasma/liver DHA (p lipid profile. Vitamin B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p acid supplementation to the vitamin B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial.

  1. Speed of change in biliary lipids and bile acids with chenodeoxycholic acid--is intermittent therapy feasible?

    Science.gov (United States)

    Iser, J H; Murphy, G M; Dowling, R H

    1977-01-01

    To see whehter intermittent chenodeoxycholic acid (CDCA) therapy is a potential alternative to continous treatment for gallstone dissolution, the speed of change in bile lipid composition was studied after starting and stopping CDCA therapy. In addition, the relationship between bile lipid composition and the proportions of the bile acids was examined. Bile-rich duodenal fluid was collected twice in the first week and then at approximately weekly intervals for four to six weeks, from six gallstone patients starting 13-15 mg CDCA.kg BW-1 day-1 and from another group of six patients whose treatment was stopped after gallstone dissolution. After starting treatment, the mean biliary cholesterol saturation index (based on criteria of Hegardt and Dam, 1971) decreased from 1-49 +/- SEM 0-17 to 0-92 +/- 0-13 at three weeks and 0-88 +/- 0-10 at four weeks, by which time bile lipid composition had become relatively constant. In patients whose treatment was stopped, bile reverted to its supersaturated state within one week, changing from an on-treatment mean saturation index of 0-74 +/- 0-10 to 1-15 +/- 0-15 in six to eight days after withdrawing CDCA. The proportion of conjugated CDCA in the biliary bile acids increased from 27-9 +/- 2-5% to 60-5 +/- 4-2% within four days and to 80-7 +/- 6-2% by four weeks after starting CDCA. When treatment was stopped, the proportion of CDCA reverted to pretreatment levels by two to three weeks. The saturation index was significantly related (P less than 0-001) to the percent of conjugated CDCA present, such that when the proportion of CDCA exceeded 70%, bile was almost invariably unsaturated. Since the mean time taken for bile to become unsaturated was not shorter than the time taken for bile to revert to its supersaturated state, it seems that intermittent treatment would not be adequate to maintain an unsaturated bile and is, therefore, unlikely to be as effective as continuous treatment in dissolving gallstones. PMID:838406

  2. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    Science.gov (United States)

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  3. INTERESTERIFIKASI ENZIMATIS MINYAK IKAN DENGAN ASAM LAURAT UNTUK SINTESIS LIPID TERSTRUKTUR [Enzymatic Interesterification of Fish Oil with Lauric Acid for the Synthesis of Structured Lipid

    OpenAIRE

    Edy Subroto1); Chusnul Hidayat2); Supriyadi2)

    2008-01-01

    Structured lipid (SL) containing of medium chain fatty acid (MCFA) at outer position and polyunsaturated fatty acid (PUFA) at sn-2 position has superior dietary and absorption characteristics. The most methods for the enzymatic synthesis of SL were through two steps process, so that it was inefficient. Caprilic acid was usually used as a source of MCFA. In this research, SL was synthesized by enzymatic interesterification between fish oil and lauric acid. The specific lipase from Mucor miehei...

  4. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    Science.gov (United States)

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio

  5. Omega-3 Fatty Acid Supplementation is Associated With Oxidative Stress and Dyslipidemia, but Does not Contribute to Better Lipid and Oxidative Status on Hemodialysis Patients.

    Science.gov (United States)

    de Mattos, Andresa Marques; da Costa, José Abrão Cardeal; Jordão Júnior, Alceu Afonso; Chiarello, Paula Garcia

    2017-09-01

    The aim of the study was to explore the effects of n-3 polyunsaturated fatty acids (PUFA) supplementation in physiological doses on oxidative stress (OS) and dyslipidemia in patients on hemodialysis (HD). Randomized, double-blind, controlled, experimental trial. A total of 88 HD patients ≥18 years old and on HD for at least 6 months. A total of 43 patients received 1.28 g/day of n-3 PUFA, and 45 other patients received soybean oil for 12 weeks. Both oil supplements were vitamin E standardized. Routine tests, lipid profile, advanced oxidation protein products, isoprostanes, vitamins C and E, total antioxidant capacity, serum fatty acids, and adverse effects were evaluated. Supplementation was not able to alter lipid or OS profiles. There was an increase in the serum n-3 PUFA levels (eicosapentaenoic acid: +116%; docosahexaenoic acid: +100%) and an improvement in the n-6/n-3 ratio (-49%) in the supplemented group. Associations between n-3 PUFA and improvement in isoprostane and advanced oxidation protein product and HDL were observed. Treatment was well tolerated. Although the n-3 PUFA supplementation was associated with lower concentrations of isoprostane and advanced oxidation protein product and higher HDL levels, it was not sufficient for the improvement of highly prevalent risk factors, such as OS and dyslipidemia in HD patients. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  6. Lean production of taste improved lipidic sodium benzoate formulations.

    Science.gov (United States)

    Eckert, C; Pein, M; Breitkreutz, J

    2014-10-01

    Sodium benzoate is a highly soluble orphan drug with unpleasant taste and high daily dose. The aim of this study was to develop a child appropriate, individually dosable, and taste masked dosage form utilizing lipids in melt granulation process and tableting. A saliva resistant coated lipid granule produced by extrusion served as reference product. Low melting hard fat was found to be appropriate as lipid binder in high-shear granulation. The resulting granules were compressed to minitablets without addition of other excipients. Compression to 2mm minitablets decreased the dissolved API amount within the first 2 min of dissolution from 33% to 23%. The Euclidean distances, calculated from electronic tongue measurements, were reduced, indicating an improved taste. The reference product showed a lag time in dissolution, which is desirable for taste masking. Although a lag time was not achieved for the lipidic minitablets, drug release in various food materials was reduced to 2%, assuming a suitable taste masking for oral sodium benzoate administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Changes in total lipids and fatty acid contents in sterilized flies of the onion bulb fly, Eumerus Amoenus loew (Diptera; Syrphidae)

    International Nuclear Information System (INIS)

    Souka, S.; Hegazy, R.A.; El-Saeadi, A.A.; Abdel-Salam, A.L.

    1996-01-01

    The changes in total lipids and fatty acid composition of the 5 day-old adults sterilized as 5,6 and 7 day-old pupae, reared on onion, were determined. Females of E. Amoenus adults contained significantly higher (1.8 folds) total lipid than males. Percent reduction in lipid contents increased by sterilization. The relative abundance of the fatty acids C 16, C 18:1, C 18:2 and C 14 was similar in both sexes. The content of total saturated fatty acid decreased in males sterilized as pupae 5 and 6 day-old, however, different data were observed for those irradiated as 7 day-old pupae. 1 fig., 1 tab

  8. Arachidonic acid/docosahexaenoic acid-supplemented diet in early life reduces body weight gain, plasma lipids, and adiposity in later life in ApoE*3 Leiden mice

    NARCIS (Netherlands)

    Wielinga, P.Y.; Harthoorn, L.F.; Verschuren, L.; Schoemaker, M.H.; Jouni, Z.E.; Tol, E.A.F. van; Kleemann, R.; Kooistra, T.

    2012-01-01

    Scope: This study addresses whether early life arachidonic acid (ARA)/docosahexaenoic acid (DHA) supplementation or eicosapentaenoic acid (EPA)/DHA (Omacor) supplementation affects body weight gain, lipid metabolism, and adipose tissue quantity and quality in later life in ApoE*3Leiden-transgenic

  9. Therapeutic Applicability of Anti-Inflammatory and Proresolving Polyunsaturated Fatty Acid-Derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Gerard L. Bannenberg

    2010-01-01

    Full Text Available The enzymatic oxygenation of polyunsaturated fatty acids by lipoxygenases and cyclo-oxygenases is a resourceful mode of formation of specific autacoids that regulate the extent and pace of the inflammatory response. Arachidonate-derived eicosanoids, such as lipoxin A4, prostaglandin (PGD2, PGF2α, PGE2, and PGD2-derived cyclopentenones exert specific roles in counter-regulating inflammation and turning on resolution. Recently recognized classes of autacoids derived from long-chain ω-3 polyunsaturated fatty acids, the E- and D-series resolvins, protectin D1, and maresin 1, act as specialized mediators to dampen inflammation actively, afford tissue protection, stimulate host defense, and activate resolution. It is held that counter-regulatory lipid mediators and the specific molecular pathways activated by such endogenous agonists may be suitable for pharmacological use in the treatment of inflammatory disease. The anti-inflammatory drug aspirin is a striking example of a drug that is able to act in such a manner, namely through triggering the formation of 15-epi-lipoxin A4 and aspirin-triggered resolvins. Different aspects of the therapeutic applicability of lipid mediators have been addressed here, and indicate that the development of innovative pharmacotherapy based on anti-inflammatory and proresolution lipid mediators presents novel prospects for the treatment of inflammatory disease.

  10. An Improvement of Cardiovascular Risk Factors by Omega-3 Polyunsaturated Fatty Acids.

    Science.gov (United States)

    Yanai, Hidekatsu; Masui, Yoshinori; Katsuyama, Hisayuki; Adachi, Hiroki; Kawaguchi, Akiko; Hakoshima, Mariko; Waragai, Yoko; Harigae, Tadanao; Sako, Akahito

    2018-04-01

    An epidemiological survey in the Northwest Greenland reported that the Greenlanders have a lower frequency of acute myocardial infarction and diabetes mellitus. The very low incidence of ischemic heart disease in the Greenlanders was explained by consumption of a diet rich in omega-3 polyunsaturated fatty acids (PUFAs). Possible anti-atherothrombotic effects of omega-3 PUFA include an improvement of lipid metabolism such as a reduction of triglyceride and an increase of high-density lipoprotein-cholesterol (HDL-C), and glucose metabolism, anti-platelet activity, anti-inflammatory effects, an improvement of endothelial function and stabilization of atherosclerotic plaque. The present study reviews an improvement of cardiovascular risk factors such as dyslipidemia and diabetes due to consumption of omega-3 PUFA. A sufficient number of studies suggest that omega-3 PUFA supplementation reduces serum triglyceride and increases HDL-cholesterol. The mechanisms for omega-3 PUFA-mediated improvements of lipid metabolism have been partially elucidated. The studies using experimental animals, part of trials in humans, have shown the beneficial effects of omega-3 PUFA on glucose metabolism and insulin sensitivity. The meta-analysis showed that omega-3 PUFA might prevent development of diabetes in part of population. Further studies should be performed to elucidate the association of omega-3 PUFA supplementation with diabetes, in the future.

  11. Differential molecular regulation of bile acid homeostasis by soy lipid induced phytosterolemia and fish oil lipid emulsions in TPN-fed preterm pigs

    Science.gov (United States)

    Prolonged total parenteral nutrition (PN) may lead to cholestasis and liver disease (PNALD). The soybean oil-based lipid emulsion (Intralipid) and its constituent phytosterols have been implicated in PNALD. Phytosterols may induce cholestasis by antagonism of the nuclear bile-acid receptor, FXR, lea...

  12. The Role of Lipids in Human Milk and Infant Formulae

    Directory of Open Access Journals (Sweden)

    Alessandra Mazzocchi

    2018-05-01

    Full Text Available The quantity and quality of dietary lipids in infant formulae have a significant impact on health outcomes, especially when fat storing and/or absorption are limited (e.g., preterm birth and short bowel disease or when fat byproducts may help to prevent some pathologies (e.g., atopy. The lipid composition of infant formulae varies according to the different fat sources used, and the potential biological effects are related to the variety of saturated and unsaturated fatty acids. For example, since lipids are the main source of energy when the normal absorptive capacity of the digestive tract is compromised, medium-chain saturated fatty acids might cover this requirement. Instead, ruminant-derived trans fatty acids and metabolites of n-3 long-chain polyunsaturated fatty acids with their anti-inflammatory properties can modulate immune function. Furthermore, dietary fats may influence the nutrient profile of formulae, improving the acceptance of these products and the compliance with dietary schedules.

  13. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot

  14. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator.

    Directory of Open Access Journals (Sweden)

    Heidi R Pethybridge

    Full Text Available Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m, sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (90% of total lipid and polyunsaturated fatty acids (34±12% of total fatty acids. In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93% and monounsaturated fatty acids (36±12%. With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm and liver (34.1±3.2 kJ g-1 dm, demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.

  15. Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator.

    Science.gov (United States)

    Pethybridge, Heidi R; Parrish, Christopher C; Bruce, Barry D; Young, Jock W; Nichols, Peter D

    2014-01-01

    Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm) and liver (34.1±3.2 kJ g-1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.

  16. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    L. D. Zhu

    2016-01-01

    Full Text Available In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.

  17. Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.

    Science.gov (United States)

    Zhang, Jianguo; Hu, Bo

    2012-02-01

    Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

  18. Effect of Dietary Marine Microalgae ( Powder on Egg Production, Blood Lipid Profiles, Egg Quality, and Fatty Acid Composition of Egg Yolk in Layers

    Directory of Open Access Journals (Sweden)

    J. H. Park

    2015-03-01

    Full Text Available Two hundred and sixteen Institut de Sélection Animale (ISA brown layers (40 wks of age were studied for 6 wks to examine the effect of microalgae powder (MAP on egg production, egg quality, blood lipid profile, and fatty acid concentration of egg yolk. Dietary treatments were as follows: i CON (basal diet, ii 0.5% MAP (CON+0.5% Schizochytrium powder, and iii 1.0% MAP (CON+1.0% Schizochytrium powder. From 44 to 46 wks, egg production was higher in 1.0% MAP treatment than in control treatment (linear, p = 0.034; however, there was no difference on the egg production from 40 to 43 wks (p>0.05. Serum triglyceride and total cholesterol were significantly reduced in the groups fed with MAP, compared to those in groups fed with control diets (Quadratic, p = 0.034 and p = 0.039, respectively. Inclusion of 0.5% MAP in the diet of layers improved egg yolk color, compared with hens fed with basal diet at 46 wks (quadratic, p = 0.044. Eggshell thickness was linearly increased in MAP-fed treatments at 46th wk (p<0.05. Concentration of yolk docosahexaenoic acid (DHA; C22:6n-3 was increased in treatment groups fed with MAP (linear, p<0.05. The n-6 fatty acids, n-6/n-3 fatty acid, and unsaturated fatty acid/saturated fatty acid were decreased in treatment groups fed with MAP (linear, p<0.05. These results suggest that MAP improved the egg production and egg quality, and may affect serum lipid metabolites in the layers. In addition, MAP increases yolk DHA levels, and deceases n-6/n-3 fatty acid ratio.

  19. Metabolic encephalopathy and lipid storage myopathy associated with a presumptive mitochondrial fatty acid oxidation defect in a dog

    Directory of Open Access Journals (Sweden)

    Vanessa R Biegen

    2015-11-01

    Full Text Available A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurologic examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurologic signs have been described in humans with this group of diseases, descriptions of advanced imaging and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy.

  20. Comparative Analysis of Lipid Content and Fatty Acid Composition of Commercially Important Fish and Shellfish from Sri Lanka and Japan.

    Science.gov (United States)

    Devadason, Chandravathany; Jayasinghe, Chamila; Sivakanesan, Ramiah; Senarath, Samanthika; Beppu, Fumiaki; Gotoh, Naohiro

    2016-01-01

    Sri Lanka is surrounded by the Indian Ocean, allowing plenty of fishes to be caught. Moreover, these fishes represent one of the undocumented fish resources in the world and their detailed lipid profiles have not been previously examined. In this study, the lipid content and fatty acid composition of 50 commercially important fishes from the Indian Ocean (Sri Lanka) and the Pacific Ocean (Japan) were compared. The total lipid content and fatty acid composition, including eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), differed significantly among species. Fish from the Pacific Ocean had higher proportions of fatty acids, including EPA and DHA. Herrings and mackerels from both oceanic areas demonstrated high levels of EPA and DHA, and n-3/n-6 ratio. Brackish and freshwater fishes from both groups showed low levels of PUFAs. Fish from the Indian Ocean were high in n-6 fatty acids. Monounsaturated fatty acid levels were high in omnivorous fish from the Pacific Ocean, and saturated fatty acid levels were high in fish from the Indian Ocean. The results of this study will be of value in determining the dietary usefulness of fish caught in Sri Lanka.

  1. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Koury Josely C

    2011-05-01

    Full Text Available Abstract Background Obesity is a chronic disease associated to an inflammatory process resulting in oxidative stress that leads to morpho-functional microvascular damage that could be improved by some dietary interventions. In this study, the intake of Brazil nuts (Bertholletia excelsa, composed of bioactive substances like selenium, α- e γ- tocopherol, folate and polyunsaturated fatty acids, have been investigated on antioxidant capacity, lipid and metabolic profiles and nutritive skin microcirculation in obese adolescents. Methods Obese female adolescents (n = 17, 15.4 ± 2.0 years and BMI of 35.6 ± 3.3 kg/m2, were randomized 1:1 in two groups with the diet supplemented either with Brazil nuts [BNG, n = 08, 15-25 g/day (equivalent to 3 to 5 units/day] or placebo [PG (lactose, n = 09, one capsule/day] and followed for 16 weeks. Anthropometry, metabolic-lipid profiles, oxidative stress and morphological (capillary diameters and functional [functional capillary density, red blood cell velocity (RBCV at baseline and peak (RBCVmax and time (TRBCVmax to reach it during post-occlusive reactive hyperemia, after 1 min arterial occlusion] microvascular variables were assessed by nailfold videocapillaroscopy at baseline (T0 and after intervention (T1. Results T0 characteristics were similar between groups. At T1, BNG (intra-group variation had increased selenium levels (p = 0.02, RBCV (p = 0.03 and RBCVmax (p = 0.03 and reduced total (TC (p = 0.02 and LDL-cholesterol (p = 0.02. Compared to PG, Brazil nuts intake reduced TC (p = 0.003, triglycerides (p = 0.05 and LDL-ox (p = 0.02 and increased RBCV (p = 0.03. Conclusion Brazil nuts intake improved the lipid profile and microvascular function in obese adolescents, possibly due to its high level of unsaturated fatty acids and bioactive substances. Trial Registration Clinical Trials.gov NCT00937599

  2. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  3. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  4. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model

    Directory of Open Access Journals (Sweden)

    Monica A. Newman

    2017-03-01

    Full Text Available Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON or TGS. A meal tolerance test (MTT was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p < 0.05 and glucose (p < 0.10 peaks compared to CON-fed pigs. The MTT showed increased (p < 0.05 serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p < 0.05 amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p < 0.05 preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased (p < 0.05 postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  5. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2.

    Science.gov (United States)

    Ahmad, Irshad; Sharma, Anil K; Daniell, Henry; Kumar, Shashi

    2015-05-01

    Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 10(6) cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Vrablik, Tracy L. [Washington State Univ., Pullman, WA (United States); Petyuk, Vladislav A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larson, Emily M. [Washington State Univ., Pullman, WA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Watts, Jennifer [Washington State Univ., Pullman, WA (United States)

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type and high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.

  7. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  8. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Merdzhanova Albena

    2017-03-01

    Full Text Available This article presents information about omega-3 (h-3 and omega-6 (n-6 polyunsaturated fatty acid (PUFA contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers’ awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3 and DHA (docosahexaenoic acid, C 22:6 n-3. Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD, stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  9. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    Science.gov (United States)

    Merdzhanova, Albena; Ivanov, Ivaylo; Dobreva, Diana A.; Makedonski, Lyubomir

    2017-03-01

    This article presents information about omega-3 (h-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers' awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3) and DHA (docosahexaenoic acid, C 22:6 n-3). Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD), stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA) a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  10. The effect of ionizing radiation on the fatty acid composition of natural fats and on lipid peroxide formation

    International Nuclear Information System (INIS)

    Hammer, C.T.; Wills, E.D.

    1979-01-01

    The effects of irradiation doses of 200 to 1000 krad on the fatty acid composition of saturated and unsaturated natural food fats have been studied. Lard, coconut oil, corn oil, methyl linoleate and herring oil have been analysed before and after irradiation for lipid peroxide content and fatty acid composition. The effects of storage under varied conditions after irradiation have also been investigated. Irradiation doses of 200 to 1000 krad had little effect on the fatty acid compositions of saturated fats (lard and coconut oil) or of fats with a high antioxidant content (corn oil) but caused destruction of 98 per cent of the highly unsaturated acids (18:4, 20:5, 22:6) and 46 per cent of the diene acids (18:2) in herring oil. The destruction of the polyunsaturated fatty acids increased with increasing storage temperature and storage time. The destruction of polyunsaturated fatty acids was accompanied by an increase in lipid peroxide formation. It is considered that changes in fatty acid composition in natural foods after irradiation are important in consideration of the use of irradiation of food preservation. (author)

  11. Total lipids and fatty acid profile in the liver of wild and farmed catla catla fish

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, M.; Shaihid chatha, S. A.; Tahira, I.; Hussain, B.

    2010-07-01

    This experimental work was aimed to study the moisture content, total lipids and fatty acid profile in the liver of wild and farmed freshwater major carp Catla catla of three different weight categories designated as W{sub 1} (601-900g), W{sub 2} (901- 1200)g and W{sub 3} (1201-1500g). Seven fish specimens of each of the three weight categories of wild and farmed Catla catla were obtained from Trimu Head, Jhang and Fish Hatchery, Satiana Road and Faisalabad, respectively. The fish were dissected to remove the liver and after weighing, liver samples were prepared and subjected to chemical analysis. Wild Catla catla liver had a significantly (p <0.05) higher moisture content as compared to the farmed species. Farmed Catla catla deposited significantly (p < 0.05) higher lipid contents in liver. Proportions of saturated fatty acids varied irregularly in the lipids of the liver from both wild and farmed Catla catla. Saturated fatty acids C12:0, C14:0, C16:0, C18:0, C20:0 and C22:0 were identified with considerable percentages in the liver of Catla catla from both habitats and monounsaturated fatty acid C18:1 was found in considerable amounts in the liver of both major carp. Polyunsaturated fatty acids such as C18:3 (n-6) and C20: 2 (n-6) were detected in the liver of the wild fish of W{sub 2} and W{sub 3} and was similar in the W{sub 3} weight category of the farmed species. (Author) 22 refs.

  12. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    International Nuclear Information System (INIS)

    Ahn, D.U.; Nam, K.C.

    2004-01-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid

  13. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    Directory of Open Access Journals (Sweden)

    Angel Catalá

    2013-01-01

    Full Text Available I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others.

  14. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.U. E-mail: duahn@iastate.edu; Nam, K.C

    2004-10-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% {alpha}-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+{alpha}-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  15. Cytoplasmic lipid bodies of human neutrophilic leukocytes

    International Nuclear Information System (INIS)

    Weller, P.F.; Ackerman, S.J.; Nicholson-Weller, A.; Dvorak, A.M.

    1989-01-01

    The morphology and function of cytoplasmic lipid bodies in human neutrophils were evaluated. By transmission electron microscopy, neutrophil lipid bodies were cytoplasmic inclusions, usually several microns in diameter, that occasionally coalesced to attain a diameter up to 7 microM. Neutrophil lipid bodies were not enveloped by membrane but were often surrounded by a more electron-dense shell at their periphery. Normal peripheral blood neutrophils contained an average of approximately one lipid body per cell. Lipid bodies appeared in greater numbers in neutrophils from inflammatory lesions. Perturbation of neutrophils during conventional methods of cell isolation and purification modestly increased lipid body numbers in neutrophils, whereas incubation of neutrophils with 1 microM oleic acid rapidly induced lipid body formation over 30 to 60 minutes. After granulocytes were incubated for 2 hours with 3H-fatty acids, including arachidonic, oleic, and palmitic acids, electron microscopic autoradiography demonstrated that lipid bodies represented the predominant intracellular sites of localization of each of the three 3H-fatty acids. There was lesser labeling noted in the perinuclear cisterna, but not in cell membranes. Virtually all of each of the three 3H-fatty acids incorporated by the neutrophils were esterified into chromatographically resolved classes of neutral lipids or phospholipids. These findings indicate that cytoplasmic lipid bodies are more prominent in neutrophils in vivo engaged in inflammatory responses and that these organelles in human neutrophils function as sites of deposition of esterified, incorporated fatty acids

  16. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    Science.gov (United States)

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Prospects of fatty acid profile and bioactive composition from lipid seeds for the discrimination of apple varieties with the application of chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Arain, S.; Sherazzi, S. T. H.; Bhanger, M. I.; Memon, N.; Mahesar, S. A.; Rajput, M. T.

    2012-11-01

    The extracted oils from four apple seed varieties (Royal Gala, Red Delicious, Pyrus Malus and Golden Delicious) from Pakistan were investigated for their fatty acid profiles and lipid biactives by GC-MS. The oil contents in the seeds of the apple varieties ranged from 26.8-28.7%. The results revealed that linoleic acid (40.5-49.6%) was the main fatty acid in the Royal Gala, Red Delicious and Pyrus Malus seeds, and oleic acid (38.7-45.5%) was the main fatty acid in the Golden Delicious seeds. Palmitic acid (6.1-7.4%) and stearic acid (2.0-3.1%) were the dominant saturated fatty acids, besides the small amount of palmitoleic, heptadecanoic, linolenic, archidic, eicosanoic, and behenic acids. Sterols, tocopherols, hydrocarbons and some other minor components were also identified from the unsaponifiable lipid fraction. The variation among the results of both fatty acids and lipid bio actives for the four different varieties was assessed by principal component analysis, discriminant analysis and cluster analyses. The results conclude that both oil fractions could be applied as a useful tool to discriminate among the apple seed varieties. (Author) 42 refs.

  18. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    International Nuclear Information System (INIS)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon

    2017-01-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  19. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyung Sik [School of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Oh, Seon-Hee [The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759 (Korea, Republic of); Jun, Dae Won [Internal Medicine, Hanyang University School of Medicine, Seoul 133-791 (Korea, Republic of); Lee, Byung-Hoon, E-mail: lee@snu.ac.kr [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-02-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  20. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells.

    Directory of Open Access Journals (Sweden)

    Kevin Kolahi

    Full Text Available While the human placenta must provide selected long-chain fatty acids to support the developing fetal brain, little is known about the mechanisms underlying the transport process. We tracked the movement of the fluorescently labeled long-chain fatty acid analogue, BODIPY-C12, across the cell layers of living explants of human term placenta. Although all layers took up the fatty acid, rapid esterification of long-chain fatty acids and incorporation into lipid droplets was exclusive to the inner layer cytotrophoblast cells rather than the expected outer syncytiotrophoblast layer. Cytotrophoblast is a progenitor cell layer previously relegated to a repair role. As isolated cytotrophoblasts differentiated into syncytialized cells in culture, they weakened their lipid processing capacity. Syncytializing cells suppress previously active genes that regulate fatty-acid uptake (SLC27A2/FATP2, FABP4, ACSL5 and lipid metabolism (GPAT3, LPCAT3. We speculate that cytotrophoblast performs a previously unrecognized role in regulating placental fatty acid uptake and metabolism.

  1. The effect of CoQ10 and vitamin E on serum total sialic acid, lipid ...

    African Journals Online (AJOL)

    Administrator

    2011-06-13

    Jun 13, 2011 ... This study was designed to evaluate the effect of CoQ10 and vitamin E on serum total sialic acid (TSA), lipid bound sialic acid (LSA) and some elements in rat administered doxorubicin (DXR). Cu levels were increased in the group treated with DXR + vitamin E in comparison with DXR (p<0.05) and CoQ10 ...

  2. The effect of CoQ 10 and vitamin E on serum total sialic acid, lipid ...

    African Journals Online (AJOL)

    This study was designed to evaluate the effect of CoQ10 and vitamin E on serum total sialic acid (TSA), lipid bound sialic acid (LSA) and some elements in rat administered doxorubicin (DXR). Cu levels were increased in the group treated with DXR + vitamin E in comparison with DXR (p<0.05) and CoQ10 groups (p ...

  3. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis.

    Science.gov (United States)

    Janer, Gemma; Navarro, Juan Carlos; Porte, Cinta

    2007-09-01

    Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.

  4. Compositional Shift in Fatty Acid Profiles of Lipids Obtained from Oleaginous Yeasts upon the Addition of Essential Oil from Citrus sinensis L.

    Science.gov (United States)

    Uprety, Bijaya K; Rakshit, Sudip K

    2017-12-01

    Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.

  5. Metabolic incorporation of unsaturated fatty acids into boar spermatozoa lipids and de novo formation of diacylglycerols

    DEFF Research Database (Denmark)

    Svetlichnyy, V.; Müller, P.; Günther-Pomorski, Thomas

    2014-01-01

    Lipids play an important role in the maturation, viability and function of sperm cells. In this study, we examined the neutral and polar lipid composition of boar spermatozoa by thin-layer chromatography/mass spectrometry. Main representatives of the neutral lipid classes were diacylglycerols...... containing saturated (myristoyl, palmitoyl and stearoyl) fatty acyl residues. Glycerophosphatidylcholine and glycerophosphatidylethanolamine with alk(en)yl ether residues in the sn-1 position and unsaturated long chained fatty acyl residues in sn-2 position were identified as the most prominent polar lipids....... The only glycoglycerolipid was sulfogalactosylglycerolipid carrying 16:0-alkyl- and 16:0-acyl chains. Using stable isotope-labelling, the metabolic incorporation of exogenously supplied fatty acids was analysed. Boar spermatozoa incorporated hexadecenoic (16:1), octadecenoic (18:1), octadecadienoic (18...

  6. Control of lipid oxidation in extruded salmon jerky snacks.

    Science.gov (United States)

    Kong, Jian; Perkins, L Brian; Dougherty, Michael P; Camire, Mary Ellen

    2011-01-01

    A shelf-life study was conducted to evaluate the effect of antioxidants on oxidative stability of extruded jerky-style salmon snacks. Deterioration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) due to lipid oxidation is a major concern for this healthy snack. A control jerky with no added antioxidants and 4 jerkies with antioxidants (rosemary, mixed tocopherols, tertiary butylhydroquinone, and ascorbyl palmitate) added as 0.02% of the lipid content were extruded in duplicate in a Coperion ZSK-25 twin screw extruder. Salmon jerkies from each formulation were placed in 3 mil barrier pouches, flushed with nitrogen, and stored at 35 °C and 75% relative humidity. Lipid oxidation was evaluated as by peroxide value and malonaldehyde content. Other chemical analyses included total fatty acid composition, lipid content, moisture, water activity, pH, and salt. Astaxanthin and CIE L*, a*, b* color were also analyzed at 4-wk intervals. Rosemary inhibited peroxide formation better than did other antioxidants at week 8; no treatment inhibited malonaldehyde levels. All jerkies had lower astaxanthin levels after 8 wk, but rosemary-treated jerky had higher pigment concentrations than did the control at weeks 4 and 8. Protection of omega-3 lipids in these extruded jerkies must be improved to offer consumers a convenient source of these healthful lipids. Practical Application: Salmon flesh can be extruded to produce a jerky that provides 410 mg of omega-3 lipids per serving. Natural antioxidants such as rosemary should be added at levels over 0.02% of the lipid content to help control lipid oxidation. Astaxanthin and CIE a* values correlated well with lipid stability and could be used to monitor quality during storage if initial values are known.

  7. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Ramirez, Kelsey; Laurens, Lieve M. L.

    2016-01-13

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  8. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    Science.gov (United States)

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  9. Palmitic acid-labeled lipids selectively incorporated into platelet cytoskeleton during aggregation

    International Nuclear Information System (INIS)

    Packham, M.A.; Guccione, M.A.; Bryant, N.L.; Livne, A.

    1990-01-01

    Previous experiments showed that during the early stages (20-30 seconds) of aggregation induced by adenosine diphosphate (ADP, 2 microM) or thrombin (0.1 U/mL) of rabbit or human platelets prelabeled with [3H]palmitic acid, labeled lipid became associated with the cytoskeleton isolated after lysis with 1% Triton X-100, 5 mM EGTA [ethylene glycol-bis-(beta-aminoethyl ether)]-N,N,N',N'-tetra-acetic acid. The association appeared to be related to the number of sites of contact and was independent of the release of granule contents. We have now investigated the nature of the labeled lipids by thin-layer and column chromatography and found differences between the distribution of the label in intact platelets (both stimulated and unstimulated) and the isolated cytoskeletons. In both species, and with either ADP or thrombin as aggregating agent, 70-85% of the label in both intact platelets and in the cytoskeletons was in phospholipids. The distribution of label among the phospholipids in the cytoskeletons was similar to that in intact platelets except that the percentage of label in phosphatidylcholine was significantly higher in the cytoskeletons of human platelets than in the intact platelets, and the percentage of label in phosphatidylserine/phosphatidylinositol was significantly lower in the cytoskeletons of rabbit platelets and thrombin-aggregated human platelets than in intact platelets. The cytoskeletons contained a lower percentage of label in triacylglycerol, diacylglycerol, and cholesterol ester than the intact platelets. Contrary to a report in the literature, we found no evidence for the incorporation of diacylglycerol and palmitic acid into the cytoskeleton

  10. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    International Nuclear Information System (INIS)

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-01-01

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  11. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  12. Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides.

    Science.gov (United States)

    Ren, Xiaojie; Zhao, Xinhe; Turcotte, François; Deschênes, Jean-Sébastien; Tremblay, Réjean; Jolicoeur, Mario

    2017-02-11

    Microalgae have the potential to rapidly accumulate lipids of high interest for the food, cosmetics, pharmaceutical and energy (e.g. biodiesel) industries. However, current lipid extraction methods show efficiency limitation and until now, extraction protocols have not been fully optimized for specific lipid compounds. The present study thus presents a novel lipid extraction method, consisting in the addition of a water treatment of biomass between the two-stage solvent extraction steps of current extraction methods. The resulting modified method not only enhances lipid extraction efficiency, but also yields a higher triacylglycerols (TAG) ratio, which is highly desirable for biodiesel production. Modification of four existing methods using acetone, chloroform/methanol (Chl/Met), chloroform/methanol/H 2 O (Chl/Met/H 2 O) and dichloromethane/methanol (Dic/Met) showed respective lipid extraction yield enhancement of 72.3, 35.8, 60.3 and 60.9%. The modified acetone method resulted in the highest extraction yield, with 68.9 ± 0.2% DW total lipids. Extraction of TAG was particularly improved with the water treatment, especially for the Chl/Met/H 2 O and Dic/Met methods. The acetone method with the water treatment led to the highest extraction level of TAG with 73.7 ± 7.3 µg/mg DW, which is 130.8 ± 10.6% higher than the maximum value obtained for the four classical methods (31.9 ± 4.6 µg/mg DW). Interestingly, the water treatment preferentially improved the extraction of intracellular fractions, i.e. TAG, sterols, and free fatty acids, compared to the lipid fractions of the cell membranes, which are constituted of phospholipids (PL), acetone mobile polar lipids and hydrocarbons. Finally, from the 32 fatty acids analyzed for both neutral lipids (NL) and polar lipids (PL) fractions, it is clear that the water treatment greatly improves NL-to-PL ratio for the four standard methods assessed. Water treatment of biomass after the first solvent extraction step

  13. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture.

    Science.gov (United States)

    Marinho, Gonçalo S; Holdt, Susan L; Jacobsen, Charlotte; Angelidaki, Irini

    2015-07-15

    This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013-2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%-0.88% dry weight (DW) in July to 3.33%-3.35% DW in November (p EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC)-PUFA's in general compared to traditional vegetables.

  14. Effects of dietary lipid sources on performance and apparent total tract digestibility of lipids and energy when fed to nursery pigs.

    Science.gov (United States)

    Mendoza, S M; van Heugten, E

    2014-02-01

    Acidulated fats and oils are by-products of the fat-refining industry. They contain high levels of FFA and are 10% to 20% less expensive than refined fats and oils. Two studies were designed to measure the effects of dietary lipid sources low or high in FFA on growth performance and apparent total tract digestibility (ATTD) of lipids and GE in nursery pigs. In Exp. 1, 189 pigs at 14 d postweaning (BW of 9.32 ± 0.11 kg) were used for 21 d with 9 replicate pens per treatment and 3 pigs per pen. Dietary treatments consisted of a control diet without added lipids and 6 diets with 6% inclusion of lipids. Four lipid sources were combined to create the dietary treatments with 2 levels of FFA (0.40% or 54.0%) and 3 degrees of fat saturation (iodine value [IV] = 77, 100, or 123) in a 2 × 3 factorial arrangement. Lipid sources were soybean oil (0.3% FFA and IV = 129.4), soybean-cottonseed acid oil blend (70.5% FFA and IV = 112.9), choice white grease (0.6% FFA and IV = 74.8), and choice white acid grease (56.0% FFA and IV = 79.0). Addition of lipid sources decreased ADFI (810 vs. 872 g/d; P = 0.018) and improved G:F (716 vs. 646 g/kg; P source. Fat increased (P sources.

  15. Veganism Is a Viable Alternative to Conventional Diet Therapy for Improving Blood Lipids and Glycemic Control.

    Science.gov (United States)

    Trepanowski, John F; Varady, Krista A

    2015-01-01

    The American Diabetes Association (ADA) and the National Cholesterol Education Program (NCEP) have each outlined a set of dietary recommendations aimed at improving glycemic control and blood lipids, respectively. However, traditional vegan diets (low-fat diets that proscribe animal product consumption) are also effective at improving glycemic control, and dietary portfolios (vegan diets that contain prescribed amounts of plant sterols, viscous fibers, soy protein, and nuts) are also effective at improving blood lipids. The purpose of this review was to compare the effects of traditional vegan diets and dietary portfolios with ADA and NCEP diets on body weight, blood lipids, blood pressure, and glycemic control. The main findings are that traditional vegan diets appear to improve glycemic control better than ADA diets in individuals with type 2 diabetes mellitus (T2DM), while dietary portfolios have been consistently shown to improve blood lipids better than NCEP diets in hypercholesterolemic individuals.

  16. Significant Enrichment of Polyunsaturated Fatty Acids (PUFAs) in the Lipids Extracted by Supercritical CO2 from the Livers of Australian Rock Lobsters (Jasus edwardsii).

    Science.gov (United States)

    Nguyen, Trung T; Zhang, Wei; Barber, Andrew R; Su, Peng; He, Shan

    2015-05-13

    Australian rock lobster (Jasus edwardsii) liver contains approximately 24.3% (w/w) lipids, which can contain a high amount of polyunsaturated fatty acids (PUFAs). However, this material has been found to be contaminated with arsenic (240 mg/kg) and cadmium (8 mg/kg). The high level of contaminants in the raw material and the large amount of PUFAs in the lipids prove a significant challenge in the extraction of high-quality lipids from this byproduct by conventional methods. Supercritical carbon dioxide (SC-CO2) extraction is a highly promising technology for lipid extraction with advantages including low contamination and low oxidation. The technique was optimized to achieve nearly 94% extraction of lipids relative to conventional Soxhlet extraction in Australian rock lobster liver at conditions of 35 MPa and 50 °C for 4 h. The extracted lipids are significantly enriched in PUFAs at 31.3% of total lipids, 4 times higher than those in the lipids recovered by Soxhlet extraction (7.8%). Specifically, the concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in SC-CO2 extraction are 7 times higher than those obtained by Soxhlet extraction. Moreover, very small amounts of toxic heavy metals such as lead (Pb), arsenic (As), mercury (Hg), and cadmium (Cd) were detected in the SC-CO2-extracted lipids, 0.5-27 times lower than those in the Soxhlet-extracted lipids, which are 40-200 times lower than the regulatory limit maximum values. The low levels of contaminants and the high proportion of PUFAs (dominated by DHA and EPA) found in the SC-CO2-extracted lipids from Australian rock lobster liver suggest that the material could potentially be used as a valuable source of essential fatty acids for human consumption.

  17. Purification of specific structured lipids by distillation: Effects on acyl migration

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, A.; Adler-Nissen, Jens

    2001-01-01

    The cause and effects of acyl migration during the purification of specific structured lipids by distillation were studied in a conventional batch deodorizer with stripping steam. The mixture of specific structured lipids produced by lipase-catalyzed acidolysis between rapeseed oil and capric acid...... influenced the rate of acyl migration, and their combinations made the effect more severe. However, diacylglycerols were found to be the main reason for acyl migration. In the distillation of the specific structured lipid product mixture, distillation temperature and time were the main factors to determine...... the degree of acyl migration and the extent of separation of free fatty acids. The results indicate that more efficient separation technology should be used to improve the quality of the purified structured lipids. in order to reduce the distillation temperature, vacuum should be made as low as possible...

  18. Amelioration of High Cholesterol Diet Caused Lipids Accumulation in Hepatic Cells by Rutin and Ascorbic Acid

    OpenAIRE

    Abdulaziz M. Aleisa

    2013-01-01

    Non Alcoholic Fatty Liver Disease (NAFLD) has become a very common metabolic disorder. It refers to a group of conditions where excess fats are deposited in hepatic cells. Several approaches have been considered for the management of NAFLD including dietary changes, which were reported to suppress hepatic lipids accumulation in previous studies. The present study was designed to investigate the possible synergistic effects of Rutin (RT) and Ascorbic Acid (AA) against lipids accumulation in he...

  19. Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    2016-08-01

    Full Text Available Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion on

  20. Effect of substratum, serum and linoleic acid on the lipid synthesis of isolated alveolar type II cells

    International Nuclear Information System (INIS)

    Cott, G.R.; Edeen, K.E.; Hale, S.G.; Mason, R.J.

    1986-01-01

    The authors examined the effect of cellular substratum (plastic or amnionic basement membrane (ABM)) and serum additive (fetal bovine (FBS), pork, horse, rat or human) on phospholipid synthesis in alveolar type II cells. The cells were isolated from adult rats, cultured for 48 hours under the various substratum and serum conditions, and then incubated for an additional 2 hours with [1- 14 C] acetate. ABM consistently caused a significant increase in the percent of radiolabel incorporated into phosphatidylcholine (PC) and/or phosphatidylglycerol (PG). Serum also had a significant effect with the highest values of PC and saturated PC being obtained with rat serum and the highest PG values with horse serum. The fatty acid composition of the sera used varied according to species with the largest variations in percent linoleic acid. Supplementing media with linoleic acid resulted in a marked increase in saturated PC values and a fall in PG values. Therefore, they conclude that: 1) ABM improves differentiated function, 2) FBS supplementation may not be optimal, and 3) the different effects of linoleic acid supplementation on PC, saturated PC, and PG values suggests an independent regulation of synthesis for these lipid species in vitro

  1. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture

    Directory of Open Access Journals (Sweden)

    Gonçalo S. Marinho

    2015-07-01

    Full Text Available This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA and at a reference site in Denmark (2013–2014. Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%–0.88% dry weight (DW in July to 3.33%–3.35% DW in November (p < 0.05 in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%–33.35%, 14:0 (11.07%–29.37% and 18:1n-9 (10.15%–16.94%. Polyunsaturated fatty acids (PUFA’s made up more than half of the fatty acids with a maximum in July (52.3%–54.0% fatty acid methyl esters; FAME. This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3, but also arachidonic (ARA and stearidonic acid (SDA, which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon and lean fish (cod this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC-PUFA’s in general compared to traditional vegetables.

  2. Strawberry (cv. Romina Methanolic Extract and Anthocyanin-Enriched Fraction Improve Lipid Profile and Antioxidant Status in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Tamara Y. Forbes-Hernández

    2017-05-01

    Full Text Available Dyslipidemia and oxidation of low density lipoproteins (LDL are recognized as critical factors in the development of atherosclerosis. Healthy dietary patterns, with abundant fruit and vegetable consumption, may prevent the onset of these risk factors due to the presence of phytochemical compounds. Strawberries are known for their high content of polyphenols; among them, flavonoids are the major constituents, and it is presumed that they are responsible for the biological activity of the fruit. Nevertheless, there are only a few studies that actually evaluate the effects of different fractions isolated from strawberries. In order to assess the effects of two different strawberry extracts (whole methanolic extract/anthocyanin-enriched fraction on the lipid profile and antioxidant status in human hepatocellular carcinoma (HepG2 cells, the triglycerides and LDL-cholesterol content, lipid peroxidation, intracellular reactive oxygen species (ROS content and antioxidant enzymes’ activity on cell lysates were determined. Results demonstrated that both strawberry extracts not only improved the lipid metabolism by decreasing triglycerides and LDL-cholesterol contents, but also improved the redox state of HepG2 cells by modulating thiobarbituric acid-reactive substances production, antioxidant enzyme activity and ROS generation. The observed effects were more pronounced for the anthocyanin-enriched fraction.

  3. Cytotoxic lipidic α-amino acids from the zoanthid Protopalythoa variabilis from the Northeastern coast of Brazil

    International Nuclear Information System (INIS)

    Wilke, Diego Veras; Jimenez, Paula Christine; Pessoa, Claudia; Moraes, Manoel Odorico de; Costa-Lotufo, Leticia Veras; Araujo, Renata Mendonca; Silva, Wildson Max Barbosa da; Silveira, Edilberto Rocha; Pessoa, Otilia Deusdenia Loiola; Braz-Filho, Raimundo; Lopes, Norberto Peporine

    2009-01-01

    Two lipidic α-amino acids 1a and 1b were isolated from the zoanthid Protopalythoa variabilis using a bioguided fractionation for cytotoxic activity. The structures of the metabolites were determined by spectroscopic methods, including NMR (nuclear magnetic resonance) 1 H and 13 C, IR infrared) and high resolution mass spectrometry (positive mode). The cytotoxic activity of the crude extract, as well as of the mixture of 1a and 1b were measured in vitro using the MTT assay for four human tumor cell lines. This finding has important biological and chemical implications for this type of compound. This is the first report of lipidic α-amino acids from natural sources, as well as of their cytotoxic activity. (author)

  4. Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition.

    Science.gov (United States)

    Fan, Wei; Lam, Sin Man; Xin, Jingxue; Yang, Xiao; Liu, Zhonghua; Liu, Yuan; Wang, Yong; Shui, Guanghou; Huang, Xun

    2017-03-01

    The general transcription factor TBP (TATA-box binding protein) and its associated factors (TAFs) together form the TFIID complex, which directs transcription initiation. Through RNAi and mutant analysis, we identified a specific TBP family protein, TRF2, and a set of TAFs that regulate lipid droplet (LD) size in the Drosophila larval fat body. Among the three Drosophila TBP genes, trf2, tbp and trf1, only loss of function of trf2 results in increased LD size. Moreover, TRF2 and TAF9 regulate fatty acid composition of several classes of phospholipids. Through RNA profiling, we found that TRF2 and TAF9 affects the transcription of a common set of genes, including peroxisomal fatty acid β-oxidation-related genes that affect phospholipid fatty acid composition. We also found that knockdown of several TRF2 and TAF9 target genes results in large LDs, a phenotype which is similar to that of trf2 mutants. Together, these findings provide new insights into the specific role of the general transcription machinery in lipid homeostasis.

  5. The effect of interesterification on the bioavailability of fatty acids in structured lipids.

    Science.gov (United States)

    Farfán, M; Villalón, M J; Ortíz, M E; Nieto, S; Bouchon, P

    2013-08-15

    Fatty acid (FA) profile is a critical factor in the nutritional properties of fats, but, stereochemistry may also play a fundamental role in the rate and extent to which FAs are absorbed and become available. To better understand this phenomenon, we evaluated the bioavailability of FAs in linseed-oil and palm-stearin blends compared to their interesterified mix, using a sn-1,3 stereospecific lipase, to determine if there was any difference in terms of FA availability when using this technology. Test meals were fed through an intragastric feeding tube on Sprague-Dawley male rats after 18 h fasting. Postprandial blood samples were collected after meal or physiological serum (control) administration and the FA profile of plasma lipids was determined. Results showed that modification of the melting profile through interesterification, without altering the bioavailability determined by sn-2 stereochemistry, could delay lipid absorption at the beginning, but had no effect on total lipid absorption. Copyright © 2013. Published by Elsevier Ltd.

  6. Fabrication of phytic acid sensor based on mixed phytase-lipid Langmuir-Blodgett films.

    Science.gov (United States)

    Caseli, Luciano; Moraes, Marli L; Zucolotto, Valtencir; Ferreira, Marystela; Nobre, Thatyane M; Zaniquelli, Maria Elisabete D; Rodrigues Filho, Ubirajara P; Oliveira, Osvaldo N

    2006-09-26

    This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.

  7. Bile acids and lipids in isolated rat hepatocytes. II. Source of cholesterol used for bile acid formation, estimated by incorporation of tritium from tritiated water, and by the effect of ML-236B

    NARCIS (Netherlands)

    Kempen, H.J.; Vos Van Holstein, M.; Lange, J.de

    1983-01-01

    Chemicals/CAS: cholesterol, 57-88-5; cholic acid, 32500-01-9, 361-09-1, 81-25-4; colestyramine, 11041-12-6, 58391-37-0; compactin, 73573-88-3; lipid, 66455-18-3; tritium oxide, 14940-65-9; Bile Acids and Salts; Cholesterol, 57-88-5; Cholestyramine, 11041-12-6; compactin, 73573-88-3; Lipids;

  8. Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue.

    Directory of Open Access Journals (Sweden)

    Jialin Xu

    Full Text Available AIMS: The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD, regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting. METHODS AND RESULTS: Male C57BL/6 (WT and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36 and Fatty acid transport protein (FATP 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. CONCLUSION: Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.

  9. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast

    Directory of Open Access Journals (Sweden)

    Flore Dagorn

    2016-05-01

    Full Text Available Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg on the French Atlantic coast. Total lipid and phospholipid (PL fatty acids (FAs and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight varied from 7.1% (winter to 8.6% (spring. Of this, PLs accounted for 28.1% (spring to 50.4% (winter. Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter. Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter. Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5% and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5% were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter. Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin.

  10. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast

    Science.gov (United States)

    Dagorn, Flore; Couzinet-Mossion, Aurélie; Kendel, Melha; Beninger, Peter G.; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2016-01-01

    Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg) on the French Atlantic coast. Total lipid and phospholipid (PL) fatty acids (FAs) and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight) varied from 7.1% (winter) to 8.6% (spring). Of this, PLs accounted for 28.1% (spring) to 50.4% (winter). Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter). Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs) with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter). Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5%) and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5%) were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID) FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter). Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin. PMID:27231919

  11. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity.

    Science.gov (United States)

    Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2018-01-01

    Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.

  12. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas DE

    2015-01-01

    Background: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Objective: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Design: Folic acid–supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr+/+ and Mthfr+/− mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Results: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr+/− mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr+/− livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr+/− mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. Conclusions: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2

  13. Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii

    International Nuclear Information System (INIS)

    Borges, Lucelia; Moron-Villarreyes, Joaquin A.; D'Oca, Marcelo G. Montes; Abreu, Paulo Cesar

    2011-01-01

    The aim of this study was to investigate the possible interference of anionic and cationic flocculants in the lipid extraction and fatty acid profiles of two species of marine microalgae: Nannochloropsis oculata and Thalassiosira weissflogii. Cells were grown in batch cultures (f/2 medium, salinity of 28, temperature of 20 o C, light intensity of 40 μmol photons m -2 s -1 and 12/12 h L/D photoperiod) and concentrated using sodium hydroxide (control), sodium hydroxide and the anionic polyacrylamide flocculant Magnafloc ® LT-25 (APF treatment) and sodium hydroxide plus the cationic polyacrylamide flocculant Flopam ® (CPF treatment). There were no statistically significant differences among treatments with respect to lipid extraction for both species. However, N. oculata which presented higher percentages of C16:0, C16:1 and C20:5 fatty acids showed an increase of C14:0 and a decrease of C20:5 with the use of anionic flocculant. Additionally, T. weissflogii which had high percentages of C16:0, C16:1, C16:3 and C20:5, showed a decrease of C18:0 and C18:1n9c when both flocculants were used and a small decrease of C16:0 in the APF treatment. The results indicate that the choice of flocculant should be based on the level of saturation desirable, i.e., if the goal is to produce more stable biodiesel, with low percentage unsaturated fatty acids, then anionic flocculants should be used. On the other hand, if the aim is to produce unsaturated fatty acids for commercial uses in the pharmacy or food industries, then anionic polymers should be avoided. -- Highlights: → Interference of flocculants on biochemical of two marine microalgae. → Lipids extraction and fatty acids profile from Nannochloropsis oculata and Thalassiosira weissflogii. → No differences in the lipids but some differences on fatty acids profile.

  14. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA.

  15. Terminalia arjuna: A novel natural preservative for improved lipid oxidative stability and storage quality of muscle foods

    Directory of Open Access Journals (Sweden)

    Insha Kousar Kalem

    2017-12-01

    Full Text Available The study was conducted to explore the possibility of utilization of Terminalia arjuna as a novel natural preservative in meat products by using chevon sausages as a model system. Chevon sausages were prepared by incorporating different levels of T. arjuna viz. T1 (0.25%, T2 (0.50% and T3 (0.75% and were assessed for various lipid oxidative stability and storage quality parameters under refrigerated (4 ± 1 °C conditions. T. arjuna showed a significant (p < 0.05 effect on the lipid oxidative stability as the treated products exhibited significantly (p < 0.05 lower TBARS (mg malonaldehyde/kg values in comparison to control. A significant (p < 0.05 effect was also observed on the microbial stability as T. arjuna incorporated products showed significantly (p < 0.05 lower values for total plate count (log cfu/g, psychrophilic count (log cfu/g, yeast and mould count (log cfu/g and FFA (% oleic acid values. Significantly (p < 0.05 higher scores were observed for various sensory parameters of the products incorporated with T. arjuna during refrigerated storage. T. arjuna successfully improved the lipid oxidative stability and storage quality of the model meat product and may be commercially exploited as a novel preservative in muscle foods. Keywords: Terminalia arjuna, Chevon sausages, Natural preservative, Lipid oxidation, Storage quality

  16. A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences.

    Science.gov (United States)

    Conlan, Jessica A; Rocker, Melissa M; Francis, David S

    2017-01-01

    Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral's condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1) tissue isolation by air-spraying and (2) crushing the coral in toto . Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes ( Acropora millepora , Montipora crassotuberculata , Porites cylindrica , and Pocillopora damicornis ). Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55-69% and 56-64%, respectively). As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.

  17. A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences

    Directory of Open Access Journals (Sweden)

    Jessica A. Conlan

    2017-08-01

    Full Text Available Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral’s condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1 tissue isolation by air-spraying and (2 crushing the coral in toto. Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes (Acropora millepora, Montipora crassotuberculata, Porites cylindrica, and Pocillopora damicornis. Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55–69% and 56–64%, respectively. As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.

  18. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-04-01

    Full Text Available Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park (YNP, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings, the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly

  19. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    International Nuclear Information System (INIS)

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A.

    1990-01-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans

  20. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...

  1. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming, E-mail: dr_dongming@126.com

    2016-08-05

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. -- Highlights: •Liraglutide reduces lipid accumulation in hepatic steatosis both in vivo and in vitro. •Autophagy was involved in relieving effects of liraglutide on hepatic steatosis. •AMPK/mTOR pathway was involved in liraglutide-induced autophagy.

  2. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway

    International Nuclear Information System (INIS)

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming

    2016-01-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. -- Highlights: •Liraglutide reduces lipid accumulation in hepatic steatosis both in vivo and in vitro. •Autophagy was involved in relieving effects of liraglutide on hepatic steatosis. •AMPK/mTOR pathway was involved in liraglutide-induced autophagy.

  3. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    DEFF Research Database (Denmark)

    Corpeleijn, Eva; Hessvik, Nina P; Bakke, Siril S

    2010-01-01

    Obesity and insulin resistance are related to both enlarged intramyocellular triacylglycerol stores and accumulation of lipid intermediates. We investigated how lipid overflow can change the oxidation of intramyocellular lipids (ICL(OX)) and intramyocellular lipid storage (ICL). These experiments...... were extended by comparing these processes in primary cultured myotubes established from healthy lean and obese type 2 diabetic (T2D) individuals, two extremes in a range of metabolic phenotypes. ICLs were prelabeled for 2 days with 100 microM [(14)C]oleic acid (OA). ICL(OX) was studied using a (14)CO......(2) trapping system and measured under various conditions of extracellular OA (5 or 100 microM) and glucose (0.1 or 5.0 mM) and the absence or presence of mitochondrial uncoupling [carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)]. First, increased extracellular OA availability (5 vs. 100...

  4. Effects of Acidic Polysaccharides from Gastrodia Rhizome on Systolic Blood Pressure and Serum Lipid Concentrations in Spontaneously Hypertensive Rats Fed a High-Fat Diet

    Science.gov (United States)

    Lee, Ok-Hwan; Kim, Kyung-Im; Han, Chan-Kyu; Kim, Young-Chan; Hong, Hee-Do

    2012-01-01

    The effects of acidic polysaccharides purified from Gastrodia rhizome on blood pressure and serum lipid levels in spontaneously hypertensive rats (SHR) fed a high-fat diet were investigated. Acidic polysaccharides were purified from crude polysaccharides by DEAE-Sepharose CL-6B. Thirty-six male SHR were randomly divided into three groups: Gastrodia rhizome crude polysaccharide (A), acidic polysaccharide (B) groups, and a control group (C). A 5-week oral administration of all treatment groups was performed daily in 3- to 8-week-old SHRs with a dose of 6 mg/kg of body weight/day. After 5 weeks of treatment, total cholesterol in the acidic polysaccharide group, at 69.7 ± 10.6 mg/dL, was lower than in the crude polysaccharide group (75.0 ± 6.0 mg/dL) and the control group (89.2 ± 7.4 mg/dL). In addition, triglyceride and low-density lipoprotein cholesterol levels in the acidic polysaccharide group were lower than in the crude polysaccharide and control groups. The atherogenic index of the acidic polysaccharide group was 46.3% lower than in the control group. Initial blood pressure after the initial three weeks on the high-fat diet averaged 195.9 ± 3.3 mmHg among all rats. Compared with the initial blood pressure, the final blood pressure in the control group was increased by 22.8 mmHg, whereas it decreased in the acidic polysaccharide group by 14.9 mmHg. These results indicate that acidic polysaccharides from Gastrodia rhizome reduce hypertension and improve serum lipid levels. PMID:22312280

  5. Effects of Acidic Polysaccharides from Gastrodia Rhizome on Systolic Blood Pressure and Serum Lipid Concentrations in Spontaneously Hypertensive Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Hee-Do Hong

    2012-01-01

    Full Text Available The effects of acidic polysaccharides purified from Gastrodia rhizome on blood pressure and serum lipid levels in spontaneously hypertensive rats (SHR fed a high-fat diet were investigated. Acidic polysaccharides were purified from crude polysaccharides by DEAE-Sepharose CL-6B. Thirty-six male SHR were randomly divided into three groups: Gastrodia rhizome crude polysaccharide (A, acidic polysaccharide (B groups, and a control group (C. A 5-week oral administration of all treatment groups was performed daily in 3- to 8-week-old SHRs with a dose of 6 mg/kg of body weight/day. After 5 weeks of treatment, total cholesterol in the acidic polysaccharide group, at 69.7 ± 10.6 mg/dL, was lower than in the crude polysaccharide group (75.0 ± 6.0 mg/dL and the control group (89.2 ± 7.4 mg/dL. In addition, triglyceride and low-density lipoprotein cholesterol levels in the acidic polysaccharide group were lower than in the crude polysaccharide and control groups. The atherogenic index of the acidic polysaccharide group was 46.3% lower than in the control group. Initial blood pressure after the initial three weeks on the high-fat diet averaged 195.9 ± 3.3 mmHg among all rats. Compared with the initial blood pressure, the final blood pressure in the control group was increased by 22.8 mmHg, whereas it decreased in the acidic polysaccharide group by 14.9 mmHg. These results indicate that acidic polysaccharides from Gastrodia rhizome reduce hypertension and improve serum lipid levels.

  6. A potential synbiotic product improves the lipid profile of diabetic rats

    Directory of Open Access Journals (Sweden)

    Roselino Mariana N

    2012-09-01

    Full Text Available Abstract Background Previous studies showed that intake of yacon or some lactic acid bacteria was able to inhibit the development of diabetes mellitus, by reducing glucose and associated symptoms, for example, the lipid profile. Objective The purpose of this study was to assess the consumption influence of a potential symbiotic product of soybean and yacon extract and fermented Enterococcus faecium CRL 183 and Lactobacillus helveticus ssp jugurti 416 in reducing blood glucose and lipid levels in an animal model. Methods Diabetes mellitus was chemically induced by intraperitoneal administration of streptozotocin (50 mg/kg body weight. The rats were divided into four groups (n=10: GI – non-diabetic animals that received only a standard chow diet (negative control, GII – diabetic animals that received only chow diet (positive control, GIII – diabetic animals that received the chow diet + 1 mL/kg body weight/day of soybean and yacon unfermented product, GIV – diabetic rats that received the chow diet + 1 mL/kg body weight/day of soybean and yacon fermented product. There was a seven-week treatment period and the following parameters were evaluated: animal body weight, food and water intake, blood glucose, enzyme activities of aspartate aminotransferase (AST and alanine aminotransferase (ALT, triglycerides levels, total cholesterol, HDL-C, non-HDL-C. Cell viability of the fermented product was checked weekly for a seven-week period. Results The product average viable population was 108-109 CFU/mL, by ensuring both the rods and cocci regular intake. No difference was observed between the water and feed intake and body weight of groups that received unfermented and fermented products and the untreated diabetic group. The same was observed for the blood glucose and AST and ALT activities, while some improvement was observed for a lipid profile, represented by reduction of triglycerides level by 15.07% and 33.50% in groups III and IV

  7. Influence of maternal dietary n-3 fatty acids on breast milk and liver lipids of rat dams and offspring - a preliminary study

    DEFF Research Database (Denmark)

    Hartvigsen, M.S.; Mu, Huiling; Høy, Carl-Erik

    2003-01-01

    The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed experime......The impact of triacylglycerol (TAG) structure and level of n-3 fatty acids on the fatty acid profile of total breast milk lipids and total liver phospholipids (PL) of dams and offspring (1, 3 and 13 weeks of age), when administered during development, was examined. Pregnant rats were fed...... experimental diets from the 8(th) day of pregnancy throughout lactation. After weaning and until 13 weeks of age, the offspring were fed the same diet as their dams. The experimental diets contained either a specific structured oil, linseed oil or fish oil. In the specific structured oil, a-linolenic acid (18...... fatty acids. Samples from three animals in each group were analyzed. The highest level of 22:6n-3 in the breast milk was obtained with diets containing this fatty acid itself. The fatty acid profile of rat dam liver PL was very different from the milk lipids indicating that the maternal dietary fats...

  8. Seasonal comparison of wild and farmed brown trout (Salmo trutta forma fario L., 1758): crude lipid, gonadosomatic index and fatty acids.

    Science.gov (United States)

    Kaya, Yalçin; Erdem, Mehmet Emіn

    2009-08-01

    Brown trout is one of the most preferred wild freshwater fish species in the east Black Sea region (Turkey) due to its nutritional value and palatable aroma as well as being popular for sport fishing. In this research, seasonal variations in the crude lipid, gonadosomatic index and fatty acid composition of wild and farmed brown trout were investigated. The spawning period of wild and farmed brown trout appears to be from August to October and from October to January, respectively. The mean crude lipid content in farmed brown trout (3.62%) was significantly higher (P≤0.05) than that of wild brown trout (2.80%). Significant seasonal differences (P≤0.05) in crude lipid content were observed in both fish. The percentage of total saturated fatty acids was similar (P≥0.05) in both fish. Total polyunsaturated fatty acids were higher (P≤0.05) in the wild brown trout compared with the farmed brown trout, while its total monounsaturated fatty acids content was lower (P≤0.05). The muscle lipids of wild fish contained significantly (P≤0.05) higher percentages of C16:1n-7, C17:1n-7, C18:3n-3, C20:2n-6, C20:4n-6, C20:5n-3 and C22:2n-6 fatty acids and contained lower percentages of C14:0, C18:1n-9, C18:2n-6, C20:1n-9, C24:1n-9 and C22:6n-3 fatty acids than farmed fish. The total amounts of n-3 fatty acids in wild fish were higher than in farmed fish, but total amounts of n-6 fatty acids in farmed fish were higher than in wild fish. The n3/n6 proportion in wild fish was higher than that of farmed fish.

  9. Improved biomass and lipid production in Synechocystis sp. NN using industrial wastes and nano-catalyst coupled transesterification for biodiesel production.

    Science.gov (United States)

    Jawaharraj, Kalimuthu; Karpagam, Rathinasamy; Ashokkumar, Balasubramaniem; Kathiresan, Shanmugam; Moorthy, Innasi Muthu Ganesh; Arumugam, Muthu; Varalakshmi, Perumal

    2017-10-01

    In this study, the improved biomass (1.6 folds) and lipid (1.3 folds) productivities in Synechocystis sp. NN using agro-industrial wastes supplementation through hybrid response surface methodology-genetic algorithm (RSM-GA) for cost-effective methodologies for biodiesel production was achieved. Besides, efficient harvesting in Synechocystis sp. NN was achieved by electroflocculation (flocculation efficiency 97.8±1.2%) in 10min when compared to other methods. Furthermore, different pretreatment methods were employed for lipid extraction and maximum lipid content of 19.3±0.2% by Synechocystis sp. NN was attained by ultrasonication than microwave and liquid nitrogen assisted pretreatment methods. The highest FAME (fatty acid methyl ester) conversion of 36.5±8.3mg FAME/g biomass was obtained using titanium oxide as heterogeneous nano-catalyst coupled whole-cell transesterification based method. Conclusively, Synechocystis sp. NN may be used as a biodiesel feedstock and its fuel production can be enriched by hybrid RSM-GA and nano-catalyst technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. LipSpin: A New Bioinformatics Tool for Quantitative 1H NMR Lipid Profiling.

    Science.gov (United States)

    Barrilero, Rubén; Gil, Miriam; Amigó, Núria; Dias, Cintia B; Wood, Lisa G; Garg, Manohar L; Ribalta, Josep; Heras, Mercedes; Vinaixa, Maria; Correig, Xavier

    2018-02-06

    The structural similarity among lipid species and the low sensitivity and spectral resolution of nuclear magnetic resonance (NMR) have traditionally hampered the routine use of 1 H NMR lipid profiling of complex biological samples in metabolomics, which remains mostly manual and lacks freely available bioinformatics tools. However, 1 H NMR lipid profiling provides fast quantitative screening of major lipid classes (fatty acids, glycerolipids, phospholipids, and sterols) and some individual species and has been used in several clinical and nutritional studies, leading to improved risk prediction models. In this Article, we present LipSpin, a free and open-source bioinformatics tool for quantitative 1 H NMR lipid profiling. LipSpin implements a constrained line shape fitting algorithm based on voigt profiles and spectral templates from spectra of lipid standards, which automates the analysis of severely overlapped spectral regions and lipid signals with complex coupling patterns. LipSpin provides the most detailed quantification of fatty acid families and choline phospholipids in serum lipid samples by 1 H NMR to date. Moreover, analytical and clinical results using LipSpin quantifications conform with other techniques commonly used for lipid analysis.

  11. Stimulation of gluconeogenesis by intravenous lipids in preterm infants: response depends on fatty acid profile

    NARCIS (Netherlands)

    van Kempen, Anne A. M. W.; van der Crabben, Saskia N.; Ackermans, Mariëtte T.; Endert, Erik; Kok, Joke H.; Sauerwein, Hans P.

    2006-01-01

    In preterm infants, both hypo- and hyperglycemia are a frequent problem. Intravenous lipids can affect glucose metabolism by stimulation of gluconeogenesis by providing glycerol, which is a gluconeogenic precursor, and/or free fatty acids (FFA), which are stimulants of the rate of gluconeogenesis.

  12. Influence of dietary lipid sources on sensory characteristics of broiler

    African Journals Online (AJOL)

    Influence of dietary lipid sources on sensory characteristics of broiler meat ... fatty acid profile of poultry products such as eggs and meat by means of dietary inclusion of ..... Designer eggs: From improvement of egg composition to functional.

  13. Development of nanostructured lipid carriers containing salicyclic acid for dermal use based on the Quality by Design method.

    Science.gov (United States)

    Kovács, A; Berkó, Sz; Csányi, E; Csóka, I

    2017-03-01

    The aim of our present work was to evaluate the applicability of the Quality by Design (QbD) methodology in the development and optimalization of nanostructured lipid carriers containing salicyclic acid (NLC SA). Within the Quality by Design methology, special emphasis is layed on the adaptation of the initial risk assessment step in order to properly identify the critical material attributes and critical process parameters in formulation development. NLC SA products were formulated by the ultrasonication method using Compritol 888 ATO as solid lipid, Miglyol 812 as liquid lipid and Cremophor RH 60® as surfactant. LeanQbD Software and StatSoft. Inc. Statistica for Windows 11 were employed to indentify the risks. Three highly critical quality attributes (CQAs) for NLC SA were identified, namely particle size, particle size distribution and aggregation. Five attributes of medium influence were identified, including dissolution rate, dissolution efficiency, pH, lipid solubility of the active pharmaceutical ingredient (API) and entrapment efficiency. Three critical material attributes (CMA) and critical process parameters (CPP) were identified: surfactant concentration, solid lipid/liquid lipid ratio and ultrasonication time. The CMAs and CPPs are considered as independent variables and the CQAs are defined as dependent variables. The 2 3 factorial design was used to evaluate the role of the independent and dependent variables. Based on our experiments, an optimal formulation can be obtained when the surfactant concentration is set to 5%, the solid lipid/liquid lipid ratio is 7:3 and ultrasonication time is 20min. The optimal NLC SA showed narrow size distribution (0.857±0.014) with a mean particle size of 114±2.64nm. The NLC SA product showed a significantly higher in vitro drug release compared to the micro-particle reference preparation containing salicylic acid (MP SA). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Novel Eicosapentaenoic Acid-derived F3-isoprostanes as Biomarkers of Lipid Peroxidation*

    Science.gov (United States)

    Song, Wen-Liang; Paschos, Georgios; Fries, Susanne; Reilly, Muredach P.; Yu, Ying; Rokach, Joshua; Chang, Chih-Tsung; Patel, Pranav; Lawson, John A.; FitzGerald, Garret A.

    2009-01-01

    Isoprostanes (iPs) are prostaglandin (PG) isomers generated by free radical-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs). Urinary F2-iPs, PGF2α isomers derived from arachidonic acid (AA) are used as indices of lipid peroxidation in vivo. We now report the characterization of two major F3-iPs, 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI, derived from the ω-3 fatty acid, eicosapentaenoic acid (EPA). Although the potential therapeutic benefits of EPA receive much attention, a shift toward a diet rich in ω-3 PUFAs may also predispose to enhanced lipid peroxidation. Urinary 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI are highly correlated and unaltered by cyclooxygenase inhibition in humans. Fish oil dose-dependently elevates urinary F3-iPs in mice and a shift in dietary ω-3/ω-6 PUFAs is reflected by an increasing slope [m] of the line relating urinary 8, 12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI. Administration of bacterial lipopolysaccharide evokes a reversible increase in both urinary 8,12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI in humans on an ad lib diet. However, while excretion of the iPs is highly correlated (R2 median = 0.8), [m] varies by an order of magnitude, reflecting marked inter-individual variability in the relative peroxidation of ω-3 versus ω-6 substrates. Clustered analysis of F2- and F3-iPs refines assessment of the oxidant stress response to an inflammatory stimulus in vivo by integrating variability in dietary intake of ω-3/ω-6 PUFAs. PMID:19520854

  15. Serum fatty acid composition in normal Japanese and its relationship with dietary fish and vegetable oil contents and blood lipid levels.

    Science.gov (United States)

    Nakamura, T; Takebe, K; Tando, Y; Arai, Y; Yamada, N; Ishii, M; Kikuchi, H; Machida, K; Imamura, K; Terada, A

    1995-01-01

    A survey was conducted on 110 normal Japanese adults (55 men and 55 women) to determine their caloric intake, dietary fat content and its origin (animal, plant, or marine). In addition, their blood lipid levels and fatty acid compositions were examined. Men in their 30s-50s consumed 2,600-2,800 calories and 60 g of fats, while women in the same age range consumed 2,000-2,200 calories and 52-58 g of fats. In both sexes, caloric, fat, and cholesterol intakes were lower for those in their 60s but protein and crude fiber consumption remained generally unchanged. When the dietary fats were classified according to origin, men and women in their 30s were found to consume less oil of marine origin. This appeared to be the result of a western style diet for Japanese adults in their 30s. Compared with men, women exhibited lower blood lipid levels. As age increased, the total cholesterol level of the blood rose in women. Thus the blood lipid level was generally equal in the two groups in their 60s. There was a positive correlation between the blood eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels and dietary consumption of fish oil. The marine/plant lipid ratio was positively correlated with the blood EPA/arachidonic acid ratio. Therefore, it was believed that the origin of the dietary fats consumed is a factor in determining the blood fatty acid profile. The linoleic acid (18:2), arachidonic acid (20:4), and 18:2 + 20:4 contents were negatively correlated to the total cholesterol level in the blood but positively correlated to the HDL-cholesterol level. Polyunsaturated fatty acids (18:2 + 20:4 + 20:5 + 22:6) were negatively correlated with the blood triglyceride level. From the findings presented above, we concluded that dietary fats not derived from animal sources should be classified into fish and vegetable oils to evaluate their dietary significance. We also noted that Japanese in their 30s consume less fish oil, indicating the western trend in their

  16. Mesenchymal Stem Cells Enhance Liver Regeneration via Improving Lipid Accumulation and Hippo Signaling

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-01-01

    Full Text Available The liver has the potential to regenerate after injury. It is a challenge to improve liver regeneration (LR after liver resection in clinical practice. Bone morrow-derived mesenchymal stem cells (MSCs have shown to have a role in various liver diseases. To explore the effects of MSCs on LR, we established a model of 70% partial hepatectomy (PHx. Results revealed that infusion of MSCs could improve LR through enhancing cell proliferation and cell growth during the first 2 days after PHx, and MSCs could also restore liver synthesis function. Infusion of MSCs also improved liver lipid accumulation partly via mechanistic target of rapamycin (mTOR signaling and enhanced lipid β-oxidation support energy for LR. Rapamycin-induced inhibition of mTOR decreased liver lipid accumulation at 24 h after PHx, leading to impaired LR. And after infusion of MSCs, a proinflammatory environment formed in the liver, evidenced by increased expression of IL-6 and IL-1β, and thus the STAT3 and Hippo-YAP pathways were activated to improve cell proliferation. Our results demonstrated the function of MSCs on LR after PHx and provided new evidence for stem cell therapy of liver diseases.

  17. Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Haus, Jacob M; Solomon, Thomas; Kelly, Karen R

    2013-01-01

    measures included hepatic triglyceride content, and a lipid saturation index and polyunsaturated lipid index (PUI) of the liver, obtained by 1H magnetic resonance spectroscopy (N = 14). Insulin sensitivity was estimated from an oral glucose tolerance test (OGTT), and mononuclear cells were isolated...... to assess reactive oxygen species production during the OGTT. Circulating glucose, insulin, and high molecular weight (HMW) adiponectin were determined from plasma. Main Outcome: Short-term aerobic exercise training improved hepatic lipid composition in patients with NAFLD. Results: Exercise training...... resulted in an increase in liver PUI (P Index: P

  18. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Correlation of Serum Ascorbic Acid with Serum Lipids in Healthy Subjects

    OpenAIRE

    藤野, 武彦; 村田, 晃; 金谷, 庄蔵; 森田, ケイ; 宇都宮, 弘子; 本多, 理恵

    1985-01-01

    The serum levels of ascorbic acid (ASA), total cholesterol, HDL cholesterol and triglyceride were estimated in 82 healthy persons who consisted of 41 men aged 18 to 69 and 41 women aged 32 to 69. None of fasting lipid profils correlated with the serum level of ASA in total subjects. In young men aged 18 to 23, however, there was significant negative correlation between ASA and total cholesterol. These findings suggest that ASA may be one of effective drug to decrease the level of cholesterol.

  20. Relationship between the concentrations of plasma phospholipid stearic acid and plasma lipoprotein lipids in healthy men.

    Science.gov (United States)

    Li, D

    2001-01-01

    This study investigated the correlation between the plasma phospholipid (PL) saturated fatty acid (SFA) concentration (as a surrogate marker of SFA intake) and plasma lipid and lipoprotein lipid concentrations in 139 healthy Australian men aged 20-55 years old with widely varying intakes of saturated fat (vegans, n=18; ovolacto vegetarians, n=43; moderate meat eaters, n=60; high meat eaters, n=18). Both the ovolacto vegetarian and vegan groups demonstrated significant decreases in plasma total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C) and triacylglycerol concentrations compared with both the high-meat-eater and moderate-meat-eater groups. Total SFA and individual SFA [palmitic acid (16:0), stearic acid (18:0) and arachidic acid (20:0)] in the plasma PL were significantly lower in both the ovolacto vegetarian and vegan groups than in both the high- and moderate-meat-eater groups, while myristic acid (14:0) was significantly lower in the vegans than in the high-meat-eaters. Bivariate analysis of the results showed that the plasma PL stearic acid concentration was strongly positively correlated with plasma TC (P<0.0001), LDL-C (P<0.0001) and triacylglycerol (P<0.0001), with r(2) values of 0.655, 0.518 and 0.43 respectively. In multiple linear regression, after controlling for potential confounding factors (such as exercise, dietary group, age, body mass index, plasma PL myristic acid, palmitic acid and arachidic acid, and dietary total fat, saturated fat, cholesterol, carbohydrate and fibre intake), the plasma PL stearic acid concentration was still strongly positively correlated with plasma TC (P<0.0001) and LDL-C (P=0.006) concentrations. Based on the present data, it would seem appropriate for the population to reduce their dietary total SFA intake rather than to replace other SFA with stearic acid.

  1. Comparative Proteome Analysis between High Lipid-Producing Strain Mucor circinelloides WJ11 and Low Lipid-Producing Strain CBS 277.49.

    Science.gov (United States)

    Tang, Xin; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Song, Yuanda; Chen, Wei

    2017-06-21

    Mucor circinelloides is one of few oleaginous fungi that produces a useful oil rich in γ-linolenic acid, but it usually only produces <25% total lipid. Nevertheless, we isolated a new strain WJ11 that can produce up to 36% lipid of cell dry weight. In this study, we have systematically analyzed the global changes in protein levels between the high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 (15%, lipid/cell dry weight) at lipid accumulation phase through comparative proteome analysis. Proteome analysis demonstrated that the branched-chain amino acid and lysine metabolism, glycolytic pathway, and pentose phosphate pathway in WJ11 were up-regulated, while the activities of tricarboxylic acid cycle and branch point enzyme for synthesis of isoprenoids were retarded compared with CBS 277.49. The coordinated regulation at proteome level indicate that more acetyl-CoA and NADPH are provided for fatty acid biosynthesis in WJ11 compared with CBS 277.49.

  2. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations......Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...

  3. Food availability and reproduction affects lipid and fatty acid composition of the brown mussel, Perna perna, raised in suspension culture.

    Science.gov (United States)

    Narváez, Mirle; Freites, L; Guevara, M; Mendoza, J; Guderley, H; Lodeiros, C J; Salazar, G

    2008-02-01

    We examined the influence of the reproductive cycle and environmental factors on variations of the condition index (CI), tissue dry mass, shell size, total lipid content, and relative percent of fatty acids in the mussel, Perna perna. Spat or juveniles were reared to commercial size (70 mm) in suspension culture in the Golfo de Cariaco, Venezuela between May and October 2004. The dry mass of soft tissues and shell, a visual assessment of gonadal status and the organism lipid profile were established every fortnight. In parallel, we measured the environmental conditions, following chlorophyll a, salinity, temperature and seston levels. After an initial decrease, the CI rose and remained high until August after which it decreased continuously until October. Total lipid values also decreased initially, after which they showed two periods of rapid recuperation and depletion, the first between May and August and the second between August and October. Similar tendencies were noted in the fatty acids, C18:3n-3, C18:4n-3 and C22:6n-3. Correlation analysis found no significant relationships between environmental parameters and the variations in total lipids. However, significant correlations were noted between fatty acids and specific environmental parameters. In particular, temperature was inversely correlated with C14:0, C16:1n-7, C18:0, C18:1n-9 and 20:5n-3. Chlorophyll a was positively correlated with C14:0, C16:1n-7, C18:1n-7, C18:4n-3 and 20:4n-6. On the other hand, gametogenesis had an effect on C14:0, C16:1n-7, C18:1n-9 and C18:1n-7, while spawned and gonadal regression states had an effect on fatty acid 20:4n-6. Temperature and chlorophyll a levels strongly influenced the proportion of mussels spawning, suggesting that their influence upon lipid composition may be secondary to their impact upon reproduction. Despite the thermal stability of this tropical system, the lipid composition of mussels changed markedly during the study, reflecting the central role of diet

  4. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  5. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  6. Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifida, in the Marlborough Sounds, New Zealand.

    Science.gov (United States)

    Boulom, Sayvisene; Robertson, John; Hamid, Nazimah; Ma, Qianli; Lu, Jun

    2014-10-15

    Monthly changes of lipids, fatty acids, phytosterol and α-tocopherol in New Zealand brown macroalgae, Undaria pinnatifida, were investigated. U. pinnatifida lipid content ranged from 17 to 45mg/g in the blade and between 21 and 63mg/g in the sporophyll. It was a rich source of polyunsaturated fatty acids (PUFAs) with n-6 PUFAs reaching a maximum in December. The unsaponifiable lipid was comprised of α-tocopherol, fucosterol and 24-methylenecholesterol, that were found in higher concentrations in the winter. The content of fucosterol ranged from 146 to 338μg/g, and that of 24-methylenecholesterol between 8.4 and 48μg/g. The contents of α-tocopherol were 13, 14 and 9.6μg/g in winter, spring and summer, respectively. New Zealand U. pinnatifida sporophyll had a high level of beneficial lipids and could potentially be further processed as a source of functional food lipids instead of being discarded as a waste product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Optimization of 14C liquid scintillation counting of plant and soil lipids to trace short term formation, translocation and degradation of lipids

    International Nuclear Information System (INIS)

    Wiesenberg, G.L.B.; Gocke, M.; Yakov Kuzyakov

    2010-01-01

    Two powerful approaches are frequently used to trace incorporation and degradation of plant derived C in soil: 14 C labelling/chasing and analysis of lipid composition. In this study, we coupled these approaches in order to trace short term incorporation of plant derived lipids into rhizosphere and non-rhizosphere soil. Methodological optimization was required and implied 14 C liquid scintillation counting improvement for plant lipid extracts taking into account organic solvents, solvent-to-scintillation cocktail ratio, and amount of lipids. Following method optimization, 14 C data of fatty acids indicated a notable contribution of root derived lipids to rhizosphere and non-rhizosphere soil. Coupling of 14 C labelling/chasing with lipid analysis is a powerful and cheap approach for tracing of root derived C in soil allowing for estimation of C budget, for determination of C formation and translocation within plants and from plant to soil, as well as for identification of short term dynamics of specific compound classes within soil. (author)

  8. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism

    Directory of Open Access Journals (Sweden)

    Rosa L. Miyares

    2014-07-01

    Full Text Available Dyslipidemias are a major cause of morbidity and mortality in the world, particularly in developed nations. Investigating lipid and lipoprotein metabolism in experimentally tractable animal models is a crucial step towards understanding and treating human dyslipidemias. The zebrafish, a well-established embryological model, is emerging as a notable system for studies of lipid metabolism. Here, we describe the value of the lecithotrophic, or yolk-metabolizing, stages of the zebrafish as a model for studying lipid metabolism and lipoprotein transport. We demonstrate methods to assay yolk lipid metabolism in embryonic and larval zebrafish. Injection of labeled fatty acids into the zebrafish yolk promotes efficient uptake into the circulation and rapid metabolism. Using a genetic model for abetalipoproteinemia, we show that the uptake of labeled fatty acids into the circulation is dependent on lipoprotein production. Furthermore, we examine the metabolic fate of exogenously delivered fatty acids by assaying their incorporation into complex lipids. Moreover, we demonstrate that this technique is amenable to genetic and pharmacologic studies.

  9. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity.

    Science.gov (United States)

    Boyd, Eric S; Hamilton, Trinity L; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  10. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    Science.gov (United States)

    Boyd, Eric S.; Hamilton, Trinity L.; Wang, Jinxiang; He, Liu; Zhang, Chuanlun L.

    2013-01-01

    Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity

  11. Dietary Lipid Sources Influence Fatty Acid Composition in Tissue of Large Yellow Croaker (Larmichthys crocea by Regulating Triacylglycerol Synthesis and Catabolism at the Transcriptional Level.

    Directory of Open Access Journals (Sweden)

    Hong Qiu

    Full Text Available An 8-week feeding trial was conducted to evaluate the effects of dietary lipid sources on growth performance, fatty acid composition, rate-limiting enzyme activities and gene expression related to lipid metabolism in large yellow croaker (Larmichthys crocea. Five iso-nitrogenous and iso-lipidic experimental diets were formulated to contain different lipid sources, such as fish oil (FO, soybean oil (SO, linseed oil (LO, rapeseed oil (RO and peanut oil (PO, respectively. Triplicate groups of 50 fish (initial weight 13.77±0.07g were stocked in 15 floating net cages (1.5m×1.5m×2.0m. Fish fed the diets containing RO and LO had lower weight gain and specific growth rates than those fed the FO, SO and PO diets. Survival, feed efficiency, protein efficiency ratio, hepatosomatic index, viscerasomatic index and condition factor were not significantly affected by different dietary lipid sources. Fish fed the diet containing FO had higher lipid content in whole body compared with the other groups, whereas fish fed the SO diet had the lowest muscle lipid content. Fatty acid profiles of muscle and liver reflected the fatty acid composition of the diets. Plasma glucose, triglyceride, and the enzymatic activity of aspartate aminotransferase and alanine aminotransferase were significantly influenced by different dietary lipid sources, while total protein, cholesterol, superoxide dismutase or malondialdehyde in plasma were not affected by the different dietary lipid sources. Fish fed the LO diet had lower adipose triglyceride lipase and fatty acid synthase activities in liver than those fed the diets containing FO and RO, while the LO diet resulted in the highest hepatic carnitine palmitoultransferase-1 activity. Hepatic gene relative expression of adipose triglyceride lipase and carnitine palmitoyltransferase-1 in fish fed PO diet was significantly higher than all other groups, whereas fish fed the SO and LO diets had lower relative expression levels of

  12. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Dominguez-Gonzalez, Mayelin; Ayala, Victoria; Jové, Mariona; Mota-Martorell, Natalia; Piñol-Ripoll, Gerard; Gil-Villar, Maria Pilar; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2017-05-01

    Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of a Diet Enriched with Fresh Coconut Saturated Fats on Plasma Lipids and Erythrocyte Fatty Acid Composition in Normal Adults.

    Science.gov (United States)

    Nagashree, Rokkam Shankar; Manjunath, N K; Indu, M; Ramesh, M; Venugopal, V; Sreedhar, P; Pavithra, N; Nagendra, Hongasandra R

    2017-07-01

    The objective of this study was to compare the effects of increased saturated fatty acid (SFA) (provided by fresh coconut) versus monounsaturated fatty acid (MUFA) intake (provided by a combination of groundnuts and groundnut oil) on plasma lipids and erythrocyte fatty acid (EFA) composition in healthy adults. Fifty-eight healthy volunteers, randomized into 2 groups, were provided standardized diet along with 100 g fresh coconut or groundnuts and groundnut oil combination for 90 days in a Yoga University. Fasting blood samples were collected before and after the intervention period for the measurement of plasma lipids and EFA profile. Coconut diet increased low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels significantly. In contrast, the groundnut diet decreased total cholesterol (TC), mainly due to a decrease in HDL levels. There were no differences in the major SFA of erythrocytes in either group. However, coconut consumption resulted in an increase in C14:0 and C24:0 along with a decrease in levels of C18:1 n9 (oleic acid). There was a significant increase in levels of C20:3 n6 (dihomo-gamma linolenic acid, DGLA). Consumption of SFA-rich coconut for 3 months had no significant deleterious effect on erythrocytes or lipid-related factors compared to groundnut consumption. On the contrary, there was an increase in the anti-atherogenic HDL levels and anti-inflammatory precursor DGLA in erythrocyte lipids. This suggests that coconut consumption may not have any deleterious effects on cardiovascular risk in normal subjects.

  14. Profiling of Polar Lipids in Marine Oleaginous Diatom Fistulifera solaris JPCC DA0580: Prediction of the Potential Mechanism for Eicosapentaenoic Acid-Incorporation into Triacylglycerol

    Directory of Open Access Journals (Sweden)

    Yue Liang

    2014-05-01

    Full Text Available The marine oleaginous diatom Fistulifera solaris JPCC DA0580 is a candidate for biodiesel production because of its high lipid productivity. However, the substantial eicosapentaenoic acid (EPA content in this strain would affect the biodiesel quality. On the other hand, EPA is also known as the essential health supplement for humans. EPAs are mainly incorporated into glycerolipids in the microalgal cell instead of the presence as free fatty acids. Therefore, the understanding of the EPA biosynthesis including the incorporation of the EPA into glycerolipids especially triacylglycerol (TAG is fundamental for regulating EPA content for different purposes. In this study, in order to identify the biosynthesis pathway for the EPA-containing TAG species, a lipidomic characterization of the EPA-enriched polar lipids was performed by using direct infusion electrospray ionization (ESI-Q-TRAP-MS and MS/MS analyses. The determination of the fatty acid positional distribution showed that the sn-2 position of all the chloroplast lipids and part of phosphatidylcholine (PC species was occupied by C16 fatty acids. This result suggested the critical role of the chloroplast on the lipid synthesis in F. solaris. Furthermore, the exclusive presence of C18 fatty acids in PC highly indicated the biosynthesis of EPA on PC. Finally, the PC-based acyl-editing and head group exchange processes were proposed to be essential for the incorporation of EPA into TAG and chloroplast lipids.

  15. LIPID SYNTHESIS, INTRACELLULAR TRANSPORT, AND SECRETION

    Science.gov (United States)

    Stein, Olga; Stein, Yechezkiel

    1967-01-01

    In the mammary glands of lactating albino mice injected intravenously with 9, 10-oleic acid-3H or 9, 10-palmitic acid-3H, it has been shown that the labeled fatty acids are incorporated into mammary gland glycerides. The labeled lipid in the mammary gland 1 min after injection was in esterified form (> 95%), and the radioautographic reaction was seen over the rough endoplasmic reticulum and over lipid droplets, both intracellular and intraluminal. At 10–60 min after injection, the silver grains were concentrated predominantly over lipid droplets. There was no concentration of radioactivity over the granules in the Golgi apparatus, at any time interval studied. These findings were interpreted to indicate that after esterification of the fatty acid into glycerides in the rough endoplasmic reticulum an in situ aggregation of lipid occurs, with acquisition of droplet form. The release of the lipid into the lumen proceeds directly and not through the Golgi apparatus, in contradistinction to the mode of secretion of casein in the mammary gland or of lipoprotein in the liver. The presence of strands of endoplasmic reticulum attached to intraluminal lipid droplets provides a structural counterpart to the milk microsomes described in ruminant milk. PMID:6033535

  16. Additions of caffeic acid, ascorbyl palmitate or gamma-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    The objectives of the study were to investigate the effects of caffeic acid, ascorbyl palmitate and gamma-tocopherol on protection of fish oil-enriched energy bars against lipid oxidation during storage for 10 weeks at room temperature. The lipophilic gamma-tocopherol reduced lipid oxidation during...... storage when added at a concentration above 440 mu g/g fish oil. However, the best antioxidative effect was observed when it was added at a concentration of 660 mu g/g fish oil. In contrast, prooxidative effects were observed when using either gamma-tocopherol at concentrations below 220 mu g/g fish oil......, or the hydrophilic caffeic acid, or the amphiphilic ascorbyl palmitate at concentrations of 75, 150 and 300 mu g/g fish oil. Prooxidative effects were observed as an increase in the formation of lipid hydroperoxides and volatile secondary oxidation products, as well as the development of rancid off...

  17. Antioxidant status, lipoprotein profile and liver lipids in rats fed on high-cholesterol diet containing currant oil rich in n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Vecera, R; Skottová, N; Vána, P; Kazdová, L; Chmela, Z; Svagera, Z; Walterá, D; Ulrichová, J; Simánek, V

    2003-01-01

    Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu(2+) induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern.

  18. Effects of immediate-release niacin and dietary fatty acids on acute insulin and lipid status in individuals with metabolic syndrome.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Lopez, Sergio; Bermudez, Beatriz; Guerrero, Juan M; Abia, Rocio; Muriana, Francisco Jg

    2018-04-01

    The nature of dietary fats profoundly affects postprandial hypertriglyceridemia and glucose homeostasis. Niacin is a potent lipid-lowering agent. However, limited data exist on postprandial triglycerides and glycemic control following co-administration of high-fat meals with a single dose of niacin in subjects with metabolic syndrome (MetS). The aim of the study was to explore whether a fat challenge containing predominantly saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated (LCPUFAs) fatty acids together with a single dose of immediate-release niacin have a relevant role in postprandial insulin and lipid status in subjects with MetS. In a randomized crossover within-subject design, 16 men with MetS were given a single dose of immediate-release niacin (2 g) and ∼15 cal kg -1 body weight meals containing either SFAs, MUFAs, MUFAs plus omega-3 LCPUFAs or no fat. At baseline and hourly over 6 h, plasma glucose, insulin, C-peptide, triglycerides, free fatty acids (FFAs), total cholesterol, and both high- and low-density lipoprotein cholesterol were assessed. Co-administered with niacin, high-fat meals significantly increased the postprandial concentrations of glucose, insulin, C-peptide, triglycerides, FFAs and postprandial indices of β-cell function. However, postprandial indices of insulin sensitivity were significantly decreased. These effects were significantly attenuated with MUFAs or MUFAs plus omega-3 LCPUFAs when compared with SFAs. In the setting of niacin co-administration and compared to dietary SFAs, MUFAs limit the postprandial insulin, triglyceride and FFA excursions, and improve postprandial glucose homeostasis in MetS. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Bioactive Lipids in Dairy Fat

    DEFF Research Database (Denmark)

    Hellgren, Lars; Nordby, Pernille

    2017-01-01

    Milk fat is the most important energy source for the newborn infant beside its important role as energy source, milk fat also contain a range of bioactive lipids, that potentially can modulate the immune response and metabolic regulation in the child. In this chapter we review the literature on b...... on bioactive dairy fatty acids: conjugated linoleic acid, branched chained and odd chained fatty acids, as well as bioactive complex lipids such as sphingomyelin and gangliosides....

  20. CD1b-mycolic acid tetramers demonstrate T-cell fine specificity for mycobacterial lipid tails

    NARCIS (Netherlands)

    Van Rhijn, Ildiko; Iwany, Sarah K; Fodran, Peter; Cheng, Tan-Yun; Gapin, Laurent; Minnaard, Adriaan J; Moody, D Branch

    Mycobacterium tuberculosis synthesizes a thick cell wall comprised of mycolic acids (MA), which are foreign antigens for human T cells. T-cell clones from multiple donors were used to determine the fine specificity of MA recognition by human αβ T cells. Most CD1-presented lipid antigens contain

  1. Effect of nitrogen sources on biomass, lipid and docosahexanoic acid production by Aurantiochytrium sp. SW1

    Science.gov (United States)

    Auma, Khairunnisa; Hamid, Aidil Abdul; Yusoff, Wan Mohtar Wan

    2018-04-01

    A local isolate, Aurantiochytrium sp. SW1 has been verified to have high content of docosahexanoic acid (DHA). However, the effect of different nitrogen sources on biomass, lipid concentration and DHA content in Aurantiochytrium sp. SW1 is still unknown. Hence, this study is focused in using six different organic and inorganic nitrogen sources to grow Aurantiochytrium sp. SW1 in optimized Burja medium. Monosodium glutamate (MSG) gave the highest biomass concentration of 15.97 g/L followed by ammonium nitrate (NH4NO3) with 13.37 g/L at 96 hr. These two nitrogen sources had significant effect on the biomass concentration (pDHA content in lipid showed cultivation using MSG reached 47.9% (4.95 g/L). Statistical analysis using least significant difference (LSD) showed significant lipid production (pDHA productivity (0.052 g/L hr-1) was obtained in medium containing MSG. This study proves that nitrogen component in the medium significantly affects the biomass concentration, lipid and DHA content.

  2. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    Science.gov (United States)

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  3. Effect of irradiation on lipid peroxidation in serum, 1

    International Nuclear Information System (INIS)

    Haisa, Yoshio

    1975-01-01

    Rabbits were irradiated once with 1000R over the whole body, and the following results were obtained. 1) The whole lipid content of serum: The whole lipid content was found to have increased about 2.6 times 24 hours after irradiation, and even after a lapse of 48 hours such a tendency persisted. 2) Serum whole TBA level: 24 hours after irradiation the whole TBA level had increased markedly up to about 6.5-fold of that before irradiation. 3) Lipid content of fraction: Especially marked in the increase in triglyceride. 4) TBA level of fractionated lipid: There is seen a marked increase in cholesterol ester, which practically occupied the entire serum TBA value. Next marked was the increase in phospholipid, and quantitatively it was classified that the increases seen in triglyceride and free fatty acids are not concerned with the rise in the free fatty acid content and TBA level. 5) Serum lipid contents and TBA level in fasting: By taking the level of serum lipid 24 hours after the start of fasting as one, the serum lipid levels were studied at 48 and 72 hours after the start of fasting, and it was found that both serum lipid and TBA levels rose only very slightly. 6) Changes in fatty acids: The relative ratio of palmitic acid to the whole fatty acids increased after irradiation, and the ratios of linolic acid and linolenic acid were decreased by irradiation while by 48 hours the relative ratio of linolic acid was decreased to about 1/5 of that before irradiation, and the relative ratio of linolenic acid was markedly decreased to about 1/35. (JPN)

  4. Lipid containing nanodrug delivery system for the treatment of Tuberculosis

    CSIR Research Space (South Africa)

    Lemmer, Yolandy

    2010-09-01

    Full Text Available of the antibiotics in the cells, hence reducing the dose frequency and simultaneously improve patient compliance. The cell wall envelope of Mycobacterium tuberculosis (M.tb) contains unique high molecular weight lipids. Of these, the most abundant are mycolic acids...

  5. Comparison of lipid content and Fatty Acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from china.

    Science.gov (United States)

    Li, Guipu; Sinclair, Andrew J; Li, Duo

    2011-03-09

    The lipid content and fatty acid composition in the edible meat of twenty-nine species of wild and cultured freshwater and marine fish and shrimps were investigated. Both the lipid content and fatty acid composition of the species were specified due to their unique food habits and trophic levels. Most of the marine fish demonstrated higher lipid content than the freshwater fish, whereas shrimps had the lowest lipid content. All the marine fish and shrimps had much higher total n-3 PUFA than n-6 PUFA, while most of the freshwater fish and shrimps demonstrated much lower total n-3 PUFA than n-6 PUFA. This may be the biggest difference in fatty acid composition between marine and freshwater species. The cultured freshwater fish demonstrated higher percentages of total PUFA, total n-3 PUFA, and EPA + DHA than the wild freshwater fish. Two freshwater fish, including bighead carp and silver carp, are comparable to the marine fish as sources of n-3 PUFA.

  6. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture

    OpenAIRE

    Marinho, Gon?alo S.; Holdt, Susan L.; Jacobsen, Charlotte; Angelidaki, Irini

    2015-01-01

    This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013–2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%–0.88% dry w...

  7. MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Svetlana Uzbekova

    2015-03-01

    Full Text Available In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs. Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments.

  8. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value.

    Science.gov (United States)

    Jeennor, Sukanya; Veerana, Mayura; Anantayanon, Jutamas; Panchanawaporn, Sarocha; Chutrakul, Chanikul; Laoteng, Kobkul

    2017-12-10

    Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL). Lipid analysis of the yeast tranformant carrying MaDGAT2 showed that the NL biosynthesis and lipid particle formation were restored by the gene complementation. Substrate specificity study of the fungal enzyme by fatty acid supplementation in the transformant cultures showed that it had a broad specificity on saturated and unsaturated fatty acid substrates for esterification into triacylglycerol (TAG). The n-6 polyunsaturated fatty acids (PUFAs) with 18 and 20 carbon atoms, including linoleic acid, γ-linolenic acid, dihomo γ-linolenic and arachidonic acid could be incorporated into TAG fraction in the yeast cells. Interestingly, among n-3 PUFAs tested, the MaDGAT2 enzyme preferred eicosapentaenoic acid (EPA) substrate as its highly proportional constituent found in TAG fraction. This study provides a potential genetic tool for reconstituting oils rich in long-chain PUFAs with nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    Science.gov (United States)

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  10. Lipid composition of positively buoyant eggs of reef building corals

    Science.gov (United States)

    Arai, Iakayuki; Kato, Misako; Heyward, Andrew; Ikeda, Yutaka; Iizuka, Tokio; Maruyama, Tadashi

    1993-07-01

    Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5 81.8%), triacylglycerols (1.1 8.4%) and polar lipids c/mainly phospholipids (11.9 13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9 51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 μm diameter lipid droplets which fill most of the central mass of the coral eggs.

  11. Specific-structured lipids: nutritional perspectives and production potentials

    DEFF Research Database (Denmark)

    Xu, Xuebing; Høy, Carl-Erik; Balchen, Steen

    1997-01-01

    Structured lipids are referring to any triacylglycerols containing both long chain fatty acids (mostly essential fatty acids) and medium or short chain fatty acids. In case of specific-structured lipids (SSLs), each group of fatty acids locates specifically at sn-2 or -1.3 positions of the glycerol...... backbone. Recently the nutritional perspectives of this kind of lipids attract many interests. This causes an increasing interest in the production of them by lipase-catalyzed interesterification. One of the advantages of lipase method over chemical ones is that SSLs can be produced with particular fatty...

  12. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids.

    Directory of Open Access Journals (Sweden)

    Miguel A Martín-Acebes

    Full Text Available West Nile virus (WNV is a neurovirulent mosquito-borne flavivirus, which main natural hosts are birds but it also infects equines and humans, among other mammals. As in the case of other plus-stranded RNA viruses, WNV replication is associated to intracellular membrane rearrangements. Based on results obtained with a variety of viruses, different cellular processes have been shown to play important roles on these membrane rearrangements for efficient viral replication. As these processes are related to lipid metabolism, fatty acid synthesis, as well as generation of a specific lipid microenvironment enriched in phosphatidylinositol-4-phosphate (PI4P, has been associated to it in other viral models. In this study, intracellular membrane rearrangements following infection with a highly neurovirulent strain of WNV were addressed by means of electron and confocal microscopy. Infection of WNV, and specifically viral RNA replication, were dependent on fatty acid synthesis, as revealed by the inhibitory effect of cerulenin and C75, two pharmacological inhibitors of fatty acid synthase, a key enzyme of this process. However, WNV infection did not induce redistribution of PI4P lipids, and PI4P did not localize at viral replication complex. Even more, WNV multiplication was not inhibited by the use of the phosphatidylinositol-4-kinase inhibitor PIK93, while infection by the enterovirus Coxsackievirus B5 was reduced. Similar features were found when infection by other flavivirus, the Usutu virus (USUV, was analyzed. These features of WNV replication could help to design specific antiviral approaches against WNV and other related flaviviruses.

  13. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    Science.gov (United States)

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  14. Lipid structure does not modify incorporation of EPA and DHA into blood lipids in healthy adults: a randomised-controlled trial.

    Science.gov (United States)

    West, Annette L; Burdge, Graham C; Calder, Philip C

    2016-09-01

    Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.

  15. Production of microbial oil with high oleic acid content by Trichosporon capitatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zong, Minhua [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640 (China); Li, Yuanyuan; Chen, Lei [School of Biosciences and Bioengineering, South China University of Technology, Guangzhou 510640 (China)

    2011-01-15

    Microbial oils with high unsaturated fatty acids content, especially oleic acid content, are good feedstock for high quality biodiesel production. Trichosporon capitatum was found to accumulate lipid with around 80% oleic acid and 89% total unsaturated fatty acids content on nitrogen-limited medium. In order to improve its lipid yield, effects of medium components and culture conditions on cell growth and lipid accumulation were investigated. Optimization of media resulted in a 61% increase in the lipid yield of T. capitatum after cultivation at 28 C and 160 rpm for 6 days. In addition, T. capitatum could grow well on cane molasses and afford a lipid yield comparable to that on synthetic nitrogen-limited medium. The biodiesel from the microbial oil produced by T. capitatum on cane molasses displayed a low cold filter plugging point (-15 C), and so T. capitatum might be a promising strain to provide lipid suitable for high quality biodiesel production. (author)

  16. Changes in isoprenoid lipid synthesis by gemfibrozil and clofibric acid in rat hepatocytes.

    Science.gov (United States)

    Hashimoto, F; Taira, S; Hayashi, H

    2000-05-15

    We studied whether gemfibrozil and clofibric acid alter isoprenoid lipid synthesis in rat hepatocytes. After incubation of the cells with the agent for 74 hr, [(14)C]acetate or [(3)H]mevalonate was added, and the cells were further incubated for 4 hr. Gemfibrozil and clofibric acid increased ubiquinone synthesis from [(14)C]acetate and [(3)H]mevalonate. The effect of gemfibrozil was greater than that of clofibric acid. Also, gemfibrozil decreased dolichol synthesis from [(14)C]acetate and [(3)H]mevalonate. However, clofibric acid increased dolichol synthesis from [(3)H]mevalonate. Gemfibrozil decreased cholesterol synthesis from [(14)C]acetate and [(3)H]mevalonate. Clofibric acid decreased cholesterol synthesis from [(14)C]acetate, but did not affect synthesis from [(3)H]mevalonate. These results suggest that both agents, at different rates, activate the synthetic pathway of ubiquinone, at least from mevalonate. Gemfibrozil may inhibit the synthetic pathway of dolichol, at least from mevalonate. Contrary to gemfibrozil, clofibric acid may activate the synthetic pathway of dolichol from mevalonate. Gemfibrozil may inhibit the synthetic pathway of cholesterol from mevalonate in addition to the pathway from acetate to mevalonate inhibited by both agents.

  17. Effect of dietary poly unsaturated fatty acids on total brain lipid concentration and anxiety levels of electron beam irradiated mice

    International Nuclear Information System (INIS)

    Suchetha Kumari; Bekal, Mahesh

    2013-01-01

    The whole brain irradiation causes injury to the nervous system at various levels. Omega-3 poly unsaturated fatty acids are very much essential for the growth and development of nervous system. Dietary supplementation of these nutrients will promote the development of injured neuronal cells. Therefore this study was undertaken to establish the role of Omega-3 poly unsaturated fatty acids on total brain lipid concentration, lipid peroxidation and anxiety levels in the irradiated mice. The effect of Electron Beam Radiation (EBR) on total brain lipid concentration, lipid peroxidation and anxiety level were investigated in male Swiss albino mice. The study groups were subjected to a sub-lethal dose of EBR and also the flax seed extract and fish oil were given orally to the irradiated mice. Irradiated groups show significant elevation in anxiety levels when compared to control group, indicating the acute radiation effects on the central nervous system. But the oral supplementation of dietary PUFA source decrees the anxiety level in the irradiated group. The analysis of lipid peroxidation showed a significant level of changes when compared between control and radiation groups. Dietary PUFA supplementation showed a significant level of decrease in the lipid peroxidation in the irradiated groups. The observation of total lipids in brain shows decrease in concentration in the irradiated groups, the differences in the variables follow the similar patterns as of that the MDA levels. This study suggests that the dietary intake of PUFAs may help in prevention and recovery of the oxidative stress caused by radiation. (author)

  18. Combined thin layer chromatography and gas chromatography with mass spectrometric analysis of lipid classes and fatty acids in malnourished polar bears (Ursus maritimus) which swam to Iceland.

    Science.gov (United States)

    Eibler, Dorothee; Krüger, Sabine; Skírnisson, Karl; Vetter, Walter

    2017-03-01

    Between 2008 and 2011, four polar bears (Ursus maritimus) from the Greenland population swam and/or drifted on ice to Iceland where they arrived in very poor body condition. Body fat resources in these animals were only between 0% and 10% of the body weight (usually 25%). Here we studied the lipid composition in different tissues (adipose tissue if available, liver, kidney and muscle). Lipid classes were determined by thin layer chromatography (TLC) and on-column gas chromatography with mass spectrometry (GC/MS). The fatty acid pattern of total lipids and free fatty acids was analyzed by GC/MS in selected ion monitoring (SIM) mode. Additionally, cholesteryl esters and native fatty acid methyl esters, initially detected as zones in thin layer chromatograms, were enriched by solid phase extraction and quantified by GC/MS. The ratio of free fatty acids to native fatty acid methyl esters could be correlated with the remained body lipids in the polar bears and thus may also serve as a marker for other starving animals or even for humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nutritional strategies to improve the lipid composition of meat, with emphasis on Thailand and Asia.

    Science.gov (United States)

    Jaturasitha, S; Chaiwang, N; Kayan, A; Kreuzer, M

    2016-10-01

    This article reviews opportunities for enriching the lipids of meat with n-3 fatty acids and conjugated linoleic acids (CLAs), both considered beneficial to human health. Special focus is put on feeds available and research carried out in Thailand. A differentiated consideration concerning the value of different n-3 fatty acids and isomers of CLAs is necessary. In ruminants, it is difficult to enrich the meat with n-3 fatty acids due to the extensive ruminal biohydrogenation of unsaturated fatty acids, but several possibilities to enhance the proportion of the most desired CLA isomer, rumenic acid, exist. By contrast, pork and poultry meat can be easily enriched with n-3 fatty acids. With purified CLA sources, CLAs also can be enhanced, but it is difficult to achieve this exclusively for rumenic acid. An interesting approach might consist in supplementing the CLA precursor vaccenic acid instead. Possible constraints for meat quality and in the fatty acid levels achieved are outlined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ruminal fatty acid metabolism : altering rumen biohydrolgenation to improve milk fatty acid profile of dairy cows

    NARCIS (Netherlands)

    Sterk, A.R.

    2011-01-01

    Nutritional guidelines promote a reduced intake of saturated fatty acids (FA) and increased intake of unsaturated FA by humans. Milk and dairy products contain a high proportion of saturated FA caused by extensive alterations of dietary lipids in the rumen through the processes of lipolysis and

  1. Enhancement of lipid extraction for improved biodiesel recovery from the biodiesel promising microalga Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Abomohra, Abd El-Fatah; Jin, Wenbiao; El-Sheekh, Mostafa

    2016-01-01

    Highlights: • Chloroform:methanol 2:1 showed the highest lipid extraction efficiency. • Prolongation of extraction time over 2 h showed insignificant effect on EFAs yield and significantly increased FFAs. • Cell-disruption is not essential for lipid extraction from S. obliquus cells. • Hot-water treatment for 5 min showed significant increase in EFAs yield. - Abstract: During the transesterification of oil feedstock for biodiesel production, the reaction primarily happens at the ester bonds where the fatty acid chains meet the glycerol. Therefore, only esterified fatty acids (EFAs) are able to be turned directly into biodiesel by transesterification. In this study, an optimized procedure for EFAs recovery from the biodiesel promising microalga Scenedesmus obliquus was studied. The effect of different solvent mixtures (ratios), extraction times, pretreatments and cell-disruption methods on intracellular EFAs and free fatty acids (FFAs) yield was examined. Using of chloroform:methanol (C:M) 2:1 for 2 h was shown to be the best solvent mixture for lipid extraction which resulted in the highest EFAs yield. Furthermore, testing of different cell-disruption methods showed that cell-disruption is not essential for lipid extraction from S. obliquus cells. Although, microwave pretreatment showed significant increase in EFAs yield with respect to overnight oven drying at 80 °C, all showed insignificant differences to the control. Moreover, overnight cell freezing showed 7.7% significant reduction in EFAs yield with respect to the control, while hot-water treatment for 5 min showed significant increase by 13.7%. On the other hand, overnight cell incubation, in oven or freezing, resulted in significant increase in FFAs up to 7.44 and 12.47 mg g"−"1 of the dry weight, respectively. In addition, the present study showed that no pretreatment with isopropanol to inactivate the lipases is needed when hot-water pretreatment is performed. This study suggested that hot

  2. Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions.

    Science.gov (United States)

    Vidyashankar, S; Deviprasad, K; Chauhan, V S; Ravishankar, G A; Sarada, R

    2013-09-01

    Five indigenous microalgal strains of Scenedesmus, Chlorococcum, Coelastrum, and Ankistrodesmus genera, isolated from Indian fresh water habitats, were studied for carbon-dioxide tolerance and its effect on growth, lipid and fatty acid profile. Scenedesmus dimorphus strain showed maximum growth (1.5 g/L) and lipid content (17.83% w/w) under CO2 supplementation, hence selected for detailed evaluation. The selected strain was alkaline adapted but tolerated (i) wide range of pH (5-11); (ii) elevated salinity levels (up to 100 mM, NaCl) with low biomass yields and increased carotenoids (19.34 mg/g biomass); (iii) elevated CO2 levels up to 15% v/v with enhancement in specific growth rate (0.137 d(-1)), biomass yield (1.57 g/L), lipid content (19.6% w/w) and CO2 biofixation rate (0.174 g L(-1) d(-1)). Unsaturated fatty acid content (alpha linolenic acid) increased with CO2 supplementation in the strain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sugar versus fat: elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica.

    Science.gov (United States)

    Bhutada, Govindprasad; Kavšcek, Martin; Ledesma-Amaro, Rodrigo; Thomas, Stéphane; Rechberger, Gerald N; Nicaud, Jean-Marc; Natter, Klaus

    2017-05-01

    Triacylglycerol (TAG) and glycogen are the two major metabolites for carbon storage in most eukaryotic organisms. We investigated the glycogen metabolism of the oleaginous Yarrowia lipolytica and found that this yeast accumulates up to 16% glycogen in its biomass. Assuming that elimination of glycogen synthesis would result in an improvement of lipid accumulation, we characterized and deleted the single gene coding for glycogen synthase, YlGSY1. The mutant was grown under lipogenic conditions with glucose and glycerol as substrates and we obtained up to 60% improvement in TAG accumulation compared to the wild-type strain. Additionally, YlGSY1 was deleted in a background that was already engineered for high lipid accumulation. In this obese background, TAG accumulation was also further increased. The highest lipid content of 52% was found after 3 days of cultivation in nitrogen-limited glycerol medium. Furthermore, we constructed mutants of Y. lipolytica and Saccharomyces cerevisiae that are deleted for both glycogen and TAG synthesis, demonstrating that the ability to store carbon is not essential. Overall, this work showed that glycogen synthesis is a competing pathway for TAG accumulation in oleaginous yeasts and that deletion of the glycogen synthase has beneficial effects on neutral lipid storage. © FEMS 2017.

  4. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    Science.gov (United States)

    2014-10-01

    acid ( DHA ; 22:6ω-3) Eicosapentaenoic acid (EPA; 20:5ω-3) Lipoxin A4 Resolvin E1 Protectin DX Resolvin D1 LOX LOX LOX Structures and Endogenous Source...1 AD_________________ Award Number: W81XWH-12-2-0082 TITLE: Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid...Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects of

  5. Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA).

    Science.gov (United States)

    Bays, Harold; Kothari, Shanu N; Azagury, Dan E; Morton, John M; Nguyen, Ninh T; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures generally improve dyslipidemia, sometimes substantially so. Bariatric procedures also improve other major cardiovascular risk factors. This 2-part Scientific Statement examines the lipid effects of bariatric procedures and reflects contributions from authors representing the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and the Obesity Medicine Association (OMA). Part 1 was published in the Journal of Clinical Lipidology, and reviewed the impact of bariatric procedures upon adipose tissue endocrine and immune factors, adipose tissue lipid metabolism, as well as the lipid effects of bariatric procedures relative to bile acids and intestinal microbiota. This Part 2 reviews: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies, that may occur after bariatric procedures. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  6. Effects of cadmium on lipids of almond seedlings (Prunus dulcis).

    Science.gov (United States)

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Jomni, Chiraz; Marzouk, Brahim; Ben Abdallah, Ferjani

    2014-12-01

    Cadmium uptake and distribution, as well as its effects on lipid composition was investigated in almond seedlings (Prunus dulcis) grown in culture solution supplied with two concentrations of Cd (50 and 150 μM). The accumulation of Cd increased with external metal concentrations, and was considerably higher in roots than in leaves. Fourteen days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Galactolipid, phospholipid and neutral lipid concentrations decreased more in roots than in leaves by Cd-treatment. In almost all lipid classes the proportion of palmitic acid (16:0), linoleic (18: 2) and that of linolenic (18: 3) acid decreased, suggesting that heavy metal treatment induced an alteration in the fatty acid synthesis processes. In conclusion, our results show that the changes found in total fatty acids, in the quantities of all lipids classes, and in the in the profiles of individual polar lipids suggest that membrane structure and function might be altered by Cd stress.

  7. Lipid Biosynthesis as an Antifungal Target

    Directory of Open Access Journals (Sweden)

    Jiao Pan

    2018-04-01

    Full Text Available Lipids, commonly including phospholipids, sphingolipids, fatty acids, sterols, and triacylglycerols (TAGs, are important biomolecules for the viability of all cells. Phospholipids, sphingolipids, and sterols are important constituents of biological membranes. Many lipids play important roles in the regulation of cell metabolism by acting as signaling molecules. Neutral lipids, including TAGs and sterol esters (STEs, are important storage lipids in cells. In view of the importance of lipid molecules, this review briefly summarizes the metabolic pathways for sterols, phospholipids, sphingolipids, fatty acids, and neutral lipids in fungi and illustrates the differences between fungal and human (or other mammalian cells, especially in relation to lipid biosynthetic pathways. These differences might provide valuable clues for us to find target proteins for novel antifungal drugs. In addition, the development of lipidomics technology in recent years has supplied us with a shortcut for finding new antifungal drug targets; this ability is important for guiding our research on pathogenic fungi.

  8. Improvement of Lipid Profile and Antioxidant Status of Hyperlipidaemic Albino Rats by Gamma-irradiated Safflower (Carthamus tinctorius L.)

    International Nuclear Information System (INIS)

    Hamza, R.G.; Farag, M.F.

    2011-01-01

    Hyper-Lipidemia is a dominant risk factor that contributes to the development and progression of atherosclerosis. Safflower is rich in the essential omega-6 and omega-3 polyunsaturated fatty acids and phenolic compounds which are known to be effective for the treatment of hyper- lipidemia. This study was performed to examine the efficacy of safflower to ameliorate the induced hyper-lipidemia in rats. The results obtained revealed that rats fed on high fat diet (HFD) significantly induced an increase in lipid profile, glucose and some liver enzymes as well as elevation of malondialdehyde (MDA) associated with a significant decrease in high density lipoprotein (HDL-C), glutathione (GSH) content and some antioxidant enzymes activity. However, when rats received HFD containing either raw or irradiated safflower (1% w/w), a significant improvement in the above mentioned parameters was seen. In conclusion, safflower supplementation in diet of rats pointed out to a promising role of safflower, a natural product, on antioxidant enzymes, liver function and lipid profile of hyper-lipidemic rats, regardless if it is irradiated or not

  9. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats.

    Science.gov (United States)

    Murugan, Pidaran; Pari, Leelavinothan

    2006-08-01

    Hyperlipidaemia is an associated complication of diabetes mellitus. We recently reported that tetrahydrocurcumin lowered the blood glucose in diabetic rats. In the present study, we have investigated the effect of tetrahydrocurcumin, one of the active metabolites of curcumin on lipid profile and lipid peroxidation in streptozotocin-nicotinamide-induced diabetic rats. Tetrahydrocurcumin 80 mg/kg body weight was administered orally to diabetic rats for 45 days, resulted a significant reduction in blood glucose and significant increase in plasma insulin in diabetic rats, which proved its antidiabetic effect. Tetrahydrocurcumin also caused a significant reduction in lipid peroxidation (thiobarbituric acid reactive substances and hydroperoxides) and lipids (cholesterol, triglycerides, free fatty acids and phospholipids) in serum and tissues, suggesting its role in protection against lipid peroxidation and its antihyperlipidemic effect. Tetrahydrocurcumin showed a better effect when compared with curcumin. Results of the present study indicate that tetrahydrocurcumin showed antihyperlipidaemic effect in addition to its antidiabetic effect in type 2 diabetic rats.

  10. Lipid and fatty acid fractions in Lingula anatina (Brachiopoda): an intertidal benthic fauna in the West Bengal-Orissa coast, India

    OpenAIRE

    Samaresh Samanta; Tapas Kumar Das; Amalesh Choudhury; Susanta Kumar Chakraborty

    2014-01-01

    Objective: To record the fractional components of lipid and polyunsaturated fatty acids of Lingula anatina (L. anatina), a Precambrian intertidal benthic brachiopod, giving emphasis on -ω series group especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) alongside assessing their biotransformation within the population and mangrove-estuarine associated community. Methods: Different biological samples after being collected from three contrasting study sites viz. ...

  11. Enzymatic synthesis of capric acid-rich structured lipids (MUM type) using Candida antarctica lipase.

    Science.gov (United States)

    SilRoy, Sumita; Ghosh, Mahua

    2011-01-01

    The objective of the work was to produce capric acid rich structured lipids starting from various Indian indigenous vegetable oils, such as rice bran, ground nut and mustard oils. Acidolysis reaction between individual vegetable oils and capric acid in one is to three molar ratios at 45 degree centigrade temperature was carried out using position specific Candida antarctica lipase so as to protect the Sn-2 position of the oils which are rich in unsaturated fatty acids. The incorporation of capric acid depended on the reaction time showing 6 % within 6 h and 30.8 % in 72 h with rice bran oil. Similarly, in ground nut oil incorporation of capric acid was 34.2 % in 72 h compared to 5.3 % in 6 h. Thus mustard oil showed much lower incorporation than the other two oils, with 3.3 % and 19.5 % in 6 and 72 h respectively. The incorporation of capric acid was influenced by the nature of the fatty acids present in the original oil. The fatty acid composition of Sn-2 position of the structured triacylglycerols of the three oils revealed that capric acid was mainly replacing the fatty acids occupying the Sn-1 and 3 positions of the triglyceride molecule.

  12. The Potential of Microalgae Lipids for Edible Oil Production.

    Science.gov (United States)

    Huang, Yanfei; Zhang, Dongmei; Xue, Shengzhang; Wang, Meng; Cong, Wei

    2016-10-01

    The objective of this study was to evaluate the potential of oil-rich green algae, Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis oceanica, to produce edible oil with respect to lipid and residue properties. The results showed that C. vulgaris and N. oceanica had similarly much higher lipid recovery (about 50 %) in hexane extraction than that of S. obliquus (about 25 %), and C. vulgaris had the highest content of neutral lipids among the three algae. The fatty acid compositions of neutral lipids from C. vulgaris and S. obliquus were mainly C16 and C18, resembling that of vegetable oils. ARA and EPA were the specific valuable fatty acids in lipids of N. oceanica, but the content of which was lower in neutral lipids. Phytol was identified as the major unsaponifiable component in lipids of the three algae. Combined with the evaluation of the ratios in SFA/MUFA/PUFA, (n-6):(n-3) and content of free fatty acids, lipids obtained from C. vulgaris displayed the great potential for edible oil production. Lipids of N. oceanica showed the highest antioxidant activity, and its residue contained the largest amounts of protein as well as the amino acid compositions were greatly beneficial to the health of human beings.

  13. [Lipid and fatty acid profile of Perna viridis, green mussel (Mollusca: Bivalvia) in different areas of the Eastern Venezuela and the West Coast of Trinidad].

    Science.gov (United States)

    Koftayan, Tamar; Milano, Jahiro; D'Armas, Haydelba; Salazar, Gabriel

    2011-03-01

    The species Perna viridis is a highly consumed species, which fast growth makes it an interesting aquaculture alternative for Venezuelan and Trinidad coasts. With the aim to contribute with its nutritional value information, this study analyzed lipid and fatty acid contents from samples taken in five locations from Eastern Venezuela and three from Trinidad West Coast. Total lipids were extracted and quantified, from a pooled sample of 100 organisms per location, by standard gravimetric methods, and their identification and quantification was done by TLC/FID (Iatroscan system). Furthermore, the esterified fatty acids of total lipid, phospholipids and triacylglycerols were identified and quantified by gas chromatography. Eastern Venezuela samples from Los Cedros, La Brea and Chaguaramas showed the highest total lipid values of 7.92, 7.74 and 7.53, respectively, and the minimum values were obtained for La Restinga (6.08%). Among lipid composition, Chacopata samples showed the lowest phospholipid concentration (48.86%) and the maximum values for cholesterol (38.87%) and triacylglycerols (12.26%); besides, La Esmeralda and Rio Caribe samples exhibited maximum phospholipids (88.71 and 84.93 respectively) and minimum cholesterol (6.50 and 4.42%) concentrations. Saturated fatty acids represented between 15.04% and 65.55% within total lipid extracts, with maximum and minimum values for La Esmeralda and Chacopata, respectively. Polyunsaturated results resulted between 7.80 and 37.18%, with higher values in La Brea and lower values in La Esmeralda. For phospholipids, saturated fatty acids concentrations varied between 38.81 and 48.68% for Chaguaramas and Chacopata samples, respectively. In the case of polyunsaturated fatty acids, these varied between non detected and 34.51%, with high concentrations in Los Cedros (27.97%) and Chaguaramas (34.51%) samples. For the triacylglycerols, the saturated fatty acids composition oscillated between 14.27 and 53.80% with low

  14. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    Science.gov (United States)

    Zhao, Jian

    2015-04-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers

    Directory of Open Access Journals (Sweden)

    CARVAJAL OCTAVIO

    1997-01-01

    Full Text Available Objective. The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Material and methods. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. Results. The hypertriglyceridemic group showed a statistically significant (p< 0.05 reduction of triglycerides and significant (p< 0.01 elevation of high density lipoproteins. The hypercholesterolemic group reduced significantly the levels of cholesterol and triglycerides; high density lipoproteins were augmented by 11.6%. Conclusions. The hipolipidemic effect of n-3 polyunsaturated fatty acids was manifest in the Mexican volunteers under the conditions here evaluated.

  16. Protective effect of morin on lipid peroxidation and lipid profile in ammonium chloride-induced hyperammonemic rats

    Directory of Open Access Journals (Sweden)

    S Subash

    2012-04-01

    Full Text Available Objective: To evaluated the protective effects of morin (3, 5, 7, 2', 4'-pentahydroxyflavone on lipid peroxidation and lipid levels during ammonium chloride (AC induced hyperammonemia in experimental rats. Methods: Thirty two male albino Wistar rats, which are weighing between 180-200 g were used for the study. The hyperammonemia was induced by administration of 100 mg/kg body weight (i.p. thrice in a week of AC for 8 weeks. Rats were treated with morin at dose (30 mg/kg body weight via intragastric intubations together with AC. At the end of experimental duration, blood ammonia, plasma urea, lipid peroxidation indices [thiobarbituric acid reactive substances, hydroperoxides and lipid levels (cholesterol, triglycerides, free fatty acids and phospholipids] in serum and tissues were analysed to evaluate the antiperoxidative and antilipidemic effects of morin. Results: Ammonia, urea, lipid peroxidative indices and lipid levels were significantly increased in AC administered group. Morin treatment resulted in positive modulation of ammonia, urea, lipid peroxidative indices and lipid levels. Morin administration to normal rats did not exhibit any significant changes in any of the parameters studied. Conclusions: It can be concluded that the beneficial effect of morin on ammonia, urea, lipid peroxidative indices and lipid levels could be due to its antioxidant property.

  17. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug

    Energy Technology Data Exchange (ETDEWEB)

    Savian, Ana L. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Rodrigues, Daiane [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Weber, Julia; Ribeiro, Roseane F. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Motta, Mariana H. [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Schaffazick, Scheila R.; Adams, Andréa I.H. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Andrade, Diego F. de; Beck, Ruy C.R. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000 (Brazil); and others

    2015-01-01

    Dithranol is a very effective drug for the topical treatment of psoriasis. However, it has some adverse effects such as irritation and stain in the skin that make its application and patient adherence to treatment difficult. The aims of this work were to prepare and characterize dithranol-loaded nanocapsules as well as to evaluate the photostability and the irritation potential of these nanocarriers. Lipid-core nanocapsules containing dithranol (0.5 mg/mL) were prepared by interfacial deposition of preformed polymer. EDTA (0.05%) or ascorbic acid (0.02%) was used as antioxidants. After preparation, dithranol-loaded lipid-core nanocapsules showed satisfactory characteristics: drug content close to the theoretical concentration, encapsulation efficiency of about 100%, nanometric mean size (230–250 nm), polydispersity index below 0.25, negative zeta potential, and pH values from 4.3 to 5.6. In the photodegradation study against UVA light, we observed a higher stability of the dithranol-loaded lipid-core nanocapsules comparing to the solution containing the free drug (half-life times around 4 and 1 h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing EDTA, respectively; half-life times around 17 and 7 h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing ascorbic acid, respectively). Irritation test by HET-CAM method was conducted to evaluate the safety of the formulations. From the results it was found that the nanoencapsulation of the drug decreased its toxicity compared to the effects observed for the free drug. - Highlights: • Strategy to prepare lipid-core nanocapsules containing dithranol • Evaluation of the nanoencapsulation effect on the photostability and irritation • Evaluation of the in vitro release of dithranol-loaded lipid-core nanocapsules.

  18. The influence of acclimation temperature on the lipid composition of the larval lamprey, Petromyzon marinus, depends on tissue and lipid class.

    Science.gov (United States)

    Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H

    2010-11-01

    This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.

  19. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Peng, Debby

    2013-01-01

    Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250......,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA...

  20. Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women.

    Science.gov (United States)

    García-Alonso, F J; Jorge-Vidal, V; Ros, G; Periago, M J

    2012-06-01

    We compared the effects of consumption of n-3 polyunsaturated fatty acids (PUFA)-enriched tomato juice versus plain tomato juice on the serum lipid profile and levels of biomarkers related to antioxidant status and cardiovascular disease (CVD) risk in women. Eighteen healthy women participated in a 2-week intervention trial involving the daily intake of 500 mL of n-3 PUFA-enriched juice (n = 11) or plain tomato juice (n = 7). Each serving of enriched juice provided 250 mg of eicosapentaenoic acid (EPA) plus docosahexanoic acid (DHA). Both juices provided natural antioxidant compounds such as phenolics (181 mg) and lycopene (26.5 mg). Intervention with the enriched juice had no effect on the lipid profile, and serum levels of triglycerides and cholesterol (total, LDL, and HDL) remained unchanged. The serum antioxidant status improved following juice intake, as revealed by an increase in total antioxidant capacity and a slight decrease in lipid peroxidation. The serum levels of homocysteine, a cardiovascular risk factor, decreased following n-3 PUFA-enriched juice consumption. A decrease in vascular adhesion molecule 1 (VCAM-1) levels was also noted after intake of either plain or enriched tomato juice, whereas intercellular adhesion molecule 1 (ICAM-1) levels only decreased following intake of the enriched juice. Overall, stronger positive amelioration of CVD risk factors was observed following the intake of n-3 PUFA-enriched juice than after plain tomato juice consumption, which suggested a possible synergistic action between n-3 PUFAs and tomato antioxidants.

  1. GABA interaction with lipids in organic medium

    International Nuclear Information System (INIS)

    Beltramo, D.; Kivatinitz, S.; Lassaga, E.; Arce, A.

    1987-01-01

    The interaction of 3 H-GABA and 14 C-glutamate with lipids in an aqueous organic partition system was studied. With this partition system 3 H-GABA and 14 C-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium the authors could not demonstrate any interaction between 3 H-GABA-lipids. The apparent dissociation constants (K/sub d/) for 3 H-GABA-lipids or 14 C-glutamate-lipids interactions inorganic medium were in the millimolar range and maximal charge between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, β-alanine and glycine displaced 3 H-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 μM were required and in the partition system 3 H-GABA and lipid phosphorus were both concentrated at the interface. Therefore, lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 15 references, 1 figure, 3 tables

  2. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  3. Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure.

    Science.gov (United States)

    Bougaran, Gaël; Rouxel, Catherine; Dubois, Nolwenn; Kaas, Raymond; Grouas, Sophie; Lukomska, Ewa; Le Coz, Jean-René; Cadoret, Jean-Paul

    2012-11-01

    Microalgae offer a high potential for energetic lipid storage as well as high growth rates. They are therefore considered promising candidates for biofuel production, with the selection of high lipid-producing strains a major objective in projects on the development of this technology. We developed a mutation-selection method aimed at increasing microalgae neutral lipid productivity. A two step method, based on UVc irradiation followed by flow cytometry selection, was applied to a set of strains that had an initial high lipid content and improvement was assessed by means of Nile-red fluorescence measurements. The method was first tested on Isochrysis affinis galbana (T-Iso). Following a first round of mutation-selection, the total fatty acid content had not increased significantly, being 262 ± 21 mgTFA (gC)-1 for the wild type (WT) and 269 ± 49 mgTFA (gC)-1 for the selected population (S1M1). Conversely, fatty acid distribution among the lipid classes was affected by the process, resulting in a 20% increase for the fatty acids in the neutral lipids and a 40% decrease in the phospholipids. After a second mutation-selection step (S2M2), the total fatty acid content reached 409 ± 64 mgTFA (gC)-1 with a fatty acid distribution similar to the S1M1 population. Growth rate remained unaffected by the process, resulting in a 80% increase for neutral lipid productivity. Copyright © 2012 Wiley Periodicals, Inc.

  4. Chlorophyll-derived fatty acids regulate expression of lipid metabolizing enzymes in liver - a nutritional opportunity

    Directory of Open Access Journals (Sweden)

    Wolfrum Christian

    2001-01-01

    Full Text Available Nutritional values of fatty acid classes are normally discussed on the basis of their saturated, monounsaturated and polyunsaturated structures with implicit understanding that they are straight-chain. Here we focus on chlorophyll-derived phytanic and pristanic acids that are minor isoprenoid branched-chain lipid constituents in food, but of unknown nutritional value. After describing the enzyme machinery that degrades these nutrient fatty acids in the peroxisome, we show by the criteria of a mouse model and of a human cell culture model that they induce with high potency expression of enzymes responsible for beta-oxidation of straight-chain fatty acids in the peroxisome. We summarize present mechanistic knowledge on fatty acid signaling to the nucleus, which involves protein/protein contacts between peroxisome proliferator activated receptor (PPAR and fatty acid binding protein (FABP. In this signaling event the branched-chain fatty acids are the most effective ones. Finally, on the basis of this nutrient-gene interaction we discuss nutritional opportunities and therapeutic aspects of the chlorophyll-derived fatty acids.

  5. Glucose and lipid metabolism in rats supplemented with glycyrrhizic acid exposed to short- or long- term stress and fed on a high-calorie diet

    OpenAIRE

    Yaw, Hui Ping

    2017-01-01

    Stress and consumption of high-calorie diet are well-recognized as the primary contributor to various metabolic diseases such as the metabolic syndrome. Glycyrrhizic acid (GA), an active compound in the root extract of the licorice plant, Glycyrrhiza glabra has been shown to improve hyperglycaemia and dyslipidaemia in rats fed on a high- calorie diet. However, the effect of GA on glucose and lipid metabolism in rats under stress in combination with high- calorie diet has yet to be expl...

  6. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater

    Directory of Open Access Journals (Sweden)

    Barcelos Oliveira, Jorge Luiz

    2006-09-01

    Full Text Available Alternative culture media have been evaluated for the cultivation of microalgae, among them are, industrial and agriculture wastewaters, that make residue recycling possible by bioconverting it into a rich, nourishing biomass that can be used as a feeding complement in aquaculture and in diverse areas. The objective of this research is to determine the lipid, fatty acid profile and carotenoid produced by the microalgae Chlorella vulgaris cultivated in a hydroponic wastewater, with different dilutions. The results showed that lipid contents did not present significant differences. Fatty acids were predominantly 16:0, 18:0, 18:1 and 18:3n-6. For total carotenoids, the dilution of hydroponic wastewater did not stimulate the production of these pigments. From this study, it was determined that, the use of hydroponic wastewater as an alternative culture medium for  the cultivation of Chlorella vulgaris generates good perspectives for lipid, fatty acid and carotenoid production.Medios de cultivo alternativos vienen siendo evaluados para el cultivo de microalgas, entre ellos, están los afluentes industriales y agrícolas, que posibilitan la reciclaje del residuo, bioconvirtiéndose en una biomasa enriquecida bajo el punto de vista nutricional, que puede ser utilizada como complemento alimenticio, para la acuacultura y en varias otras áreas de actuación. El presente trabajo tuvo como objetivo determinar los contenidos de lípidos, composición de ácidos grasos y carotenoides producidos por la microalga Chlorella vulgaris cultivada en solución hidropónica residual, con diferentes diluciones. Los resultados de los contenidos de lípidos totales no presentaron diferencia significativa. Los ácidos grasos predominantes fueron los 16:0, 18:0, 18:1 e 18:3n-6. Para los carotenoides totales, la dilución de la solución hidropónica residual no estimuló la producción de estos pigmentos por la microalga. La utilización de la solución hidrop

  7. LIPID METABOLISM INDICES AND FATTY ACIDS PROFILE IN THE BLOOD SERUM OF BROILER CHICKENS FED A DIET WITH LIGNOCELLULOSE

    Directory of Open Access Journals (Sweden)

    M Bogusławska-Tryk

    Full Text Available ABSTRACT The aim of the research was to determine lipid metabolism indices and fatty acid profile in the blood serum of Ross 308 chickens (n = 48, fed a finisher mixture supplemented with 0, 0.25, 0.5 and 1.0% of lignocellulose. The feeding trial lasted from 21 to 42 d of the birds' age. Blood samples were collected from each chicken at 42d of age from the pterygoid canal vein. In the blood serum the content of triglycerides (TG, total cholesterol (TCHOL and high density lipoprotein (HDL fraction was determined by the spectrophotometric method. The fatty acids concentration was estimated with the use of the gas chromatography method. Lignocellulose in doses of 0.5 and 1.0% significantly reduced the concentration of triglycerides and low density lipoprotein (LDL fraction. Saturated fatty acids (SFA and monounsaturated fatty acids (MUFA content was not affected by dietary treatments whereas lignocellulose significantly influenced the profile of polyunsaturated fatty acids (PUFA from n-3 and n-6 families. Insoluble fiber decreased (p< 0.05 serum concentration of a-linolenic acid (C18:3n-3 and increased share of docosahexaenoic acid (C22:6n-3, dihomogammalinolenic acid (C20:3n-6 and arachidonic acid (C20:4n-6 in total PUFA, compared to the control birds. The results of the present study have shown that the incorporation of limited amounts of lignocellulose into the broiler diet can influence the lipid metabolism in the chickens.

  8. Lipases as biocatalysts for the synthesis of structured lipids.

    Science.gov (United States)

    Jala, Ram Chandra Reddy; Hu, Peng; Yang, Tiankui; Jiang, Yuanrong; Zheng, Yan; Xu, Xuebing

    2012-01-01

    Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.

  9. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition

    Directory of Open Access Journals (Sweden)

    Christine Hellwing

    2018-01-01

    Full Text Available Background Toll like receptors (TLRs are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. Methods In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA or arachidonic acid (AA and analyzed for receptor expression and microdomain localization in context of TLR stimulation. Results and Conclusions Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.

  10. Fatty Acid Profile of Sunshine Bass: II. Profile Change Differs Among Fillet Lipid Classes.

    Science.gov (United States)

    Trushenski, Jesse T; Lewis, Heidi A; Kohler, Christopher C

    2008-07-01

    Fatty acid (FA) profile of fish tissue mirrors dietary FA profile and changes in a time-dependent manner following a change in dietary FA composition. To determine whether FA profile change varies among lipid classes, we evaluated the FA composition of fillet cholesteryl esters (CE), phospholipids (PL), and triacylglycerols (TAG) of sunshine bass (SB, Morone chrysops x M. saxatilis) raised on feeds containing fish oil or 50:50 blend of fish oil and coconut, grapeseed, linseed, or poultry oil, with or without implementation of a finishing period (100% FO feed) prior to harvest. Each lipid class was associated with a generalized FA signature, irrespective of nutritional history: fillet PL was comprised largely of saturated FA (SFA), long-chain polyunsaturated FA (LC-PUFA), and total n-3 FA; fillet TAG was higher in MC-PUFA and total n-6 FA; and fillet CE was highest in monounsaturated FA (MUFA). Neutral lipids reflected dietary composition in a near-direct fashion; conversely, PL showed evidence of selectivity for MC- and LC-PUFA. Shorter-chain SFA were not strongly reflected within any lipid fraction, even when dietary availability was high, suggesting catabolism of these FA. FA metabolism in SB is apparently characterized by a division between saturated and unsaturated FA, whereby LC-PUFA are preferentially incorporated into tissues and SFA are preferentially oxidized for energy production. We demonstrated provision of SFA in grow-out feeds for SB, instead MC-PUFA which compete for tissue deposition, meets energy demands and allows for maximum inclusion of LC-PUFA within fillet lipids.

  11. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry

    NARCIS (Netherlands)

    Moore, E.K.; Hopmans, E.C.; Rijpstra, W.I.C.; Villanueva, L.; Sinninghe Damsté, J.S.

    2016-01-01

    RATIONALE: Intact polar lipids (IPLs) are the building blocks of cell membranes, and amino acid containing IPLs havebeen observed to be involved in response to changing environmental conditions in various species of bacteri a. High-performance liquid chromatography/mass spectrometry (HPLC/MS) has

  12. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    Science.gov (United States)

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  13. Changes in LDL fatty acid composition as a response to olive oil treatment are inversely related to lipid oxidative damage: The EUROLIVE study

    DEFF Research Database (Denmark)

    Cicero, Arrigo F G; Nascetti, Simona; López-Sabater, Maria C

    2008-01-01

    The aim of our study was to assess the changes in the fatty acid composition of low density lipoproteins (LDL) after sustained consumption of olive oil at real-life doses (25 mL/day) and their relationship with lipid oxidative damage.......The aim of our study was to assess the changes in the fatty acid composition of low density lipoproteins (LDL) after sustained consumption of olive oil at real-life doses (25 mL/day) and their relationship with lipid oxidative damage....

  14. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    Science.gov (United States)

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  15. Acquisition of lipid metabolic capability in hepatocyte-like cells directly induced from mouse fibroblasts

    Directory of Open Access Journals (Sweden)

    Shizuka eMiura

    2014-08-01

    Full Text Available Recently, the numbers of patients with non-alcoholic fatty liver disease (NAFLD and non-alcoholic steatohepatitis (NASH have increased worldwide. NAFLD and NASH are known as risk factors for liver cirrhosis and hepatocellular carcinoma. Because many factors can promote the progression of NAFLD and NASH, the treatment of these patients involves various strategies. Thus, it is desired that drugs for patients with NAFLD and NASH should be developed more easily and rapidly using cultures of primary hepatocytes. However, it is difficult to use hepatocytes as a tool for drug screening, because these cells cannot be functionally maintained in culture. Thus, in this study, we sought to examine whether induced hepatocyte-like (iHep cells, which were directly induced from mouse dermal fibroblasts by infection with a retrovirus expressing Hnf4α and Foxa3, possess the potential for lipid metabolism, similar to hepatocytes. Our data showed that iHep cells were capable of synthesizing lipids from a cis-unsaturated fatty acid, a trans-unsaturated fatty acid, and a saturated fatty acid, accumulating the synthesized lipids in cellular vesicles, and secreting the lipids into the culture medium. Moreover, the lipid synthesis in iHep cells was significantly inhibited in cultures with lipid metabolism improvers. These results demonstrate that iHep cells could be useful not only for screening of drugs for patients with NAFLD and NASH, but also for elucidation of the mechanisms underlying hereditary lipid metabolism disorders, as an alternative to hepatocytes.

  16. Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production?

    Science.gov (United States)

    Li, Shengxian; Chu, Qianqian; Ma, Jing; Sun, Yun; Tao, Tao; Huang, Rong; Liao, Yu; Yue, Jiang; Zheng, Jun; Wang, Lihua; Xue, Xinli; Zhu, Mingjiang; Kang, Xiaonan; Yin, Huiyong; Liu, Wei

    2017-03-01

    Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction. This study aimed to investigate serum lipid profiles in newly diagnosed patients with PCOS using lipidomics and correlate these features with the hyperinsulinemia and hyperandrogenism associated with PCOS and obesity. Thirty-two newly diagnosed women with PCOS and 34 controls were divided into obese and lean subgroups. A PCOS rat model was used to validate results of the human studies. Serum lipid profiles, including phospholipids, free fatty acids (FFAs), and bioactive lipids, were analyzed using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS. Elevation in phosphatidylcholine and a concomitant decrease in lysophospholipid were found in obese patients with PCOS vs lean controls. Obese patients with PCOS had decreased PUFA levels and increased levels of long-chain saturated fatty acids vs lean controls. Serum bioactive lipids downstream of arachidonic acid were increased in obese controls, but reduced in both obese and lean patients with PCOS vs their respective controls. Patients with PCOS showed abnormal levels of phosphatidylcholine, FFAs, and PUFA metabolites. Circulating insulin and androgens may have opposing effects on lipid profiles in patients with PCOS, particularly on the bioactive lipid metabolites derived from PUFAs. These clinical observations warrant further studies of the molecular mechanisms and clinical implications of PCOS and obesity. Copyright © 2017 by the Endocrine Society

  17. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses.

    Directory of Open Access Journals (Sweden)

    Pei-Luen Jiang

    Full Text Available Stable cnidarian-dinoflagellate (genus Symbiodinium endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B upon nitrogen (N-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503, indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG and cholesterol ester (CE were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs, a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm.

  18. Fatty Acid Uptake and Lipid Storage Induced by HIF-1α Contribute to Cell Growth and Survival after Hypoxia-Reoxygenation

    Directory of Open Access Journals (Sweden)

    Karim Bensaad

    2014-10-01

    Full Text Available Summary: An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3 and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α-dependent manner. There was a significant lipid droplet (LD accumulation in hypoxia that was time and O2 concentration dependent. Knockdown of endogenous expression of FABP3, FABP7, or Adipophilin (an essential LD structural component significantly impaired LD formation under hypoxia. We showed that LD accumulation is due to FABP3/7-dependent fatty acid uptake while de novo fatty acid synthesis is repressed in hypoxia. We also showed that ATP production occurs via β-oxidation or glycogen degradation in a cell-type-dependent manner in hypoxia-reoxygenation. Finally, inhibition of lipid storage reduced protection against reactive oxygen species toxicity, decreased the survival of cells subjected to hypoxia-reoxygenation in vitro, and strongly impaired tumorigenesis in vivo. : Bensaad et al. now show that FABP3 and FABP7 are induced by HIF-1α and lead to a significant lipid droplet (LD accumulation in hypoxia. In hypoxia-reoxygenation, ATP production occurs via fatty acid β-oxidation or glycogen degradation in a cell-type-dependent manner, while inhibition of LD formation increases ROS toxicity and decreases cell survival in vitro and strongly impairs tumorigenesis in vivo.

  19. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    Science.gov (United States)

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  20. Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells

    Directory of Open Access Journals (Sweden)

    Madácsi Ramóna

    2010-06-01

    Full Text Available Abstract Background Cytoplasmic lipid-droplets are common inclusions of eukaryotic cells. Lipid-droplet binding thalidomide analogs (2,6-dialkylphenyl-4/5-amino-substituted-5,6,7-trifluorophthalimides with potent anticancer activities were synthesized. Results Cytotoxicity was detected in different cell lines including melanoma, leukemia, hepatocellular carcinoma, glioblastoma at micromolar concentrations. The synthesized analogs are non-toxic to adult animals up to 1 g/kg but are teratogenic to zebrafish embryos at micromolar concentrations with defects in the developing muscle. Treatment of tumor cells resulted in calcium release from the endoplasmic reticulum (ER, induction of reactive oxygen species (ROS, ER stress and cell death. Antioxidants could partially, while an intracellular calcium chelator almost completely diminish ROS production. Exogenous docosahexaenoic acid or eicosapentaenoic acid induced calcium release and ROS generation, and synergized with the analogs in vitro, while oleic acid had no such an effect. Gene expression analysis confirmed the induction of ER stress-mediated apoptosis pathway components, such as GADD153, ATF3, Luman/CREB3 and the ER-associated degradation-related HERPUD1 genes. Tumor suppressors, P53, LATS2 and ING3 were also up-regulated in various cell lines after drug treatment. Amino-phthalimides down-regulated the expression of CCL2, which is implicated in tumor metastasis and angiogenesis. Conclusions Because of the anticancer, anti-angiogenic action and the wide range of applicability of the immunomodulatory drugs, including thalidomide analogs, lipid droplet-binding members of this family could represent a new class of agents by affecting ER-membrane integrity and perturbations of ER homeostasis.

  1. Changes of Protein and Lipid Contents, Amino Acid and Fatty Acid Compositions in Eggs and Yolk-Sac Larvae of American Shad ( Alosa sapidissima)

    Science.gov (United States)

    Liu, Zhifeng; Gao, Xiaoqiang; Yu, Jiuxiang; Wang, Yaohui; Guo, Zhenglong; Huang, Bin; Liu, Baoliang; Hong, Lei

    2018-04-01

    To investigate the changes of the biochemical composition of American shad ( Alosa sapidissima) eggs and larvae at embryonic and early larval stages, samples were collected at different development stages from artificial fertilization to the end of yolk absorption including 2 h, 12 h and 30 h after fertilization and newly hatched larvae including 1 and 3 days after hatching. The composition of lipid, fatty acids, protein and amino acids were analyzed. The content of total protein exhibited a decreasing trend during embryogenesis and larval development, and a significant reduction was detected after hatching ( P acids after hatching except for glycine ( P fatty acids remained stable during the period of embryogenesis. But after hatching, a significant decrease was found in the content of C18:2n-6, C18:3n-6, SFA and ratio of EPA/ARA ( P acids.

  2. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Renil [Department of Mechanical Engineering, Ohio University, Athens, OH (United States); Stuart, Ben, E-mail: stuart@ohio.edu [Department of Civil Engineering, Ohio University, Athens, OH (United States)

    2015-01-20

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  3. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp

    International Nuclear Information System (INIS)

    Anthony, Renil; Stuart, Ben

    2015-01-01

    Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates, and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (University of Texas at Austin LB2396). Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. The lipid extracts were derivatized and analyzed using gas chromatography–mass spectroscopy. All solvent extracts contained hexadecanoic acid, linoleic acid, and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%), cyclohexane (0.14%), and hexane (0.11%). This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  4. Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle

    Directory of Open Access Journals (Sweden)

    Sara eMaatta

    2012-03-01

    Full Text Available Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole mass spectrometry indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD is a family of enzymes that hydrolyzes phospholipids to produce phosphatidic acid. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of phosphatidic acid. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  5. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids.

    Science.gov (United States)

    Bergenholm, David; Gossing, Michael; Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2018-04-01

    Chain length and degree of saturation plays an important role for the characteristics of various products derived from fatty acids, such as fuels, cosmetics, and food additives. The seeds of Theobroma cacao are the source of cocoa butter, a natural lipid of high interest for the food and cosmetics industry. Cocoa butter is rich in saturated fatty acids that are stored in the form of triacylglycerides (TAGs). One of the major TAG species of cocoa butter, consisting of two stearic acid molecules and one oleic acid molecule (stearic acid-oleic acid-stearic acid, sn-SOS), is particularly rare in nature as the saturated fatty acid stearic acid is typically found only in low abundance. Demand for cocoa butter is increasing, yet T. cacao can only be cultivated in some parts of the tropics. Alternative means of production of cocoa butter lipids (CBLs) are, therefore, sought after. Yeasts also store fatty acids in the form of TAGs, but these are typically not rich in saturated fatty acids. To make yeast an attractive host for microbial production of CBLs, its fatty acid composition needs to be optimized. We engineered Saccharomyces cerevisiae yeast strains toward a modified fatty acid synthesis. Analysis of the fatty acid profile of the modified strains showed that the fatty acid content as well as the titers of saturated fatty acids and the titers of TAGs were increased. The relative content of potential CBLs in the TAG pool reached up to 22% in our engineered strains, which is a 5.8-fold increase over the wild-type. SOS content reached a level of 9.8% in our engineered strains, which is a 48-fold increase over the wild type. © 2018 Wiley Periodicals, Inc.

  6. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism.

    Science.gov (United States)

    Zhao, Yongteng; Li, Dafei; Xu, Jun-Wei; Zhao, Peng; Li, Tao; Ma, Huixian; Yu, Xuya

    2018-07-01

    In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. ``Sheddable'' PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake

    Science.gov (United States)

    Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie

    2016-05-01

    PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic

  8. Lipids in citrus sinensis seeds

    International Nuclear Information System (INIS)

    Hamid, S.; Liaquat, L.; Khalid, B.; Khan, J.I.

    2003-01-01

    The seed oil of citrus sinensis when subjected to different physicochemical tests showed moisture 13.2%, ash 7.5%, ester value 1.29%, free fatty acid 0.4%. iodine value 65.0% and protein value 6.0%. According to lipid analysis. the oil was classified into hydrocarbons. wax esters, sterol esters, triglycerides. free fatty acids, 1,3 and 1,2 diglycerides, alcohols, sterols, monoglycerides, phosphatidylethanolamines, phosphatidylcholines and lysophosphatidylethanolamines. The fatty acid (C/sub 12.0/ - C/sub 21.0/) composition of all lipid classes was determined with the help of thin layer and gas liquid chromatography. (author)

  9. Short term exposure to perluoroalkyl acids causes increase of hepatic lipid and triglyceride in conjunction with liver hypertrophy

    Science.gov (United States)

    ABSTRACT BODY: Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to extensive use of industrial and consumer products. These chemicals activate peroxisome proliferatoractivated receptor-alpha (PPARa) in liver and after lipid metabolism. The current stu...

  10. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    Science.gov (United States)

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins

    Directory of Open Access Journals (Sweden)

    Pablo Esteban Morales

    2017-01-01

    Full Text Available Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR. In this scenario, the “isolation” of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.

  12. Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment

    Science.gov (United States)

    O’Brien, Katie M.; Upson, Kristen; Cook, Nancy R.; Weinberg, Clarice R.

    2015-01-01

    Background Investigators measuring exposure biomarkers in urine typically adjust for creatinine to account for dilution-dependent sample variation in urine concentrations. Similarly, it is standard to adjust for serum lipids when measuring lipophilic chemicals in serum. However, there is controversy regarding the best approach, and existing methods may not effectively correct for measurement error. Objectives We compared adjustment methods, including novel approaches, using simulated case–control data. Methods Using a directed acyclic graph framework, we defined six causal scenarios for epidemiologic studies of environmental chemicals measured in urine or serum. The scenarios include variables known to influence creatinine (e.g., age and hydration) or serum lipid levels (e.g., body mass index and recent fat intake). Over a range of true effect sizes, we analyzed each scenario using seven adjustment approaches and estimated the corresponding bias and confidence interval coverage across 1,000 simulated studies. Results For urinary biomarker measurements, our novel method, which incorporates both covariate-adjusted standardization and the inclusion of creatinine as a covariate in the regression model, had low bias and possessed 95% confidence interval coverage of nearly 95% for most simulated scenarios. For serum biomarker measurements, a similar approach involving standardization plus serum lipid level adjustment generally performed well. Conclusions To control measurement error bias caused by variations in serum lipids or by urinary diluteness, we recommend improved methods for standardizing exposure concentrations across individuals. Citation O’Brien KM, Upson K, Cook NR, Weinberg CR. 2016. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect 124:220–227; http://dx.doi.org/10.1289/ehp.1509693 PMID:26219104

  13. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.

    Science.gov (United States)

    Sakamoto, Seiichi; Uto, Takuhiro; Shoyama, Yukihiro

    2015-02-01

    To investigate an interfacial behavior of the aglycon of glycyrrhizin (GC), glycyrrhetinic acid (GA), with a lipid raft model consisting of equimolar ternary mixtures of N-palmitoyl sphingomyelin (PSM), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL), Langmuir monolayer techniques were systematically conducted. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms showed that the adsorbed GA at the air/water interface was desorbed into the bulk upon compression of the lipid monolayer. In situ morphological analysis by Brewster angle microscopy and fluorescence microscopy revealed that the raft domains became smaller as the concentrations of GA in the subphase (CGA) increased, suggesting that GA promotes the formation of fluid networks related to various cellular processes via lipid rafts. In addition, ex situ morphological analysis by atomic force microscopy revealed that GA interacts with lipid raft by lying down at the surface. Interestingly, the distinctive striped regions were formed at CGA=5.0 μM. This phenomenon was observed to be induced by the interaction of CHOL with adsorbed GA and is involved in the membrane-disrupting activity of saponin and its aglycon. A quantitative comparison of GA with GC (Sakamoto et al., 2013) revealed that GA interacts more strongly with the raft model than GC in the monolayer state. Various biological activities of GA are known to be stronger than those of GC. This fact allows us to hypothesize that differences in the interactions of GA/GC with the model monolayer correlate to their degree of exertion for numerous activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor

    International Nuclear Information System (INIS)

    Cao Peigang; Dube, Marc A.; Tremblay, Andre Y.

    2008-01-01

    High-purity fatty acid methyl ester (FAME) was produced from different lipids, such as soybean oil, canola oil, a hydrogenated palm oil/palm oil blend, yellow grease, and brown grease, combined with methanol using a continuous membrane reactor. The membrane reactor combines reaction and separation in a single unit, provides continuous mixing of raw materials, and maintains a high molar ratio of methanol to lipid in the reaction loop while maintaining two phases during the reaction. It was demonstrated that the membrane reactor can be operated using a very broad range of feedstocks at highly similar operating conditions to produce FAME. The total glycerine and free glycerine contents of the FAME produced were below the ASTM D6751 standard after a single reaction step. Under essentially the same reaction conditions, a conventional batch reaction was not able to achieve the same degree of FAME purity. The effect of the fatty acid composition of the lipid feedstocks on the FAME purity was also shown. It was demonstrated that, due to the fatty acid composition, FAME from virgin soybean oil and virgin canola oil was produced in the membrane reactor within ASTM specifications even without a water washing step

  15. Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages

    Czech Academy of Sciences Publication Activity Database

    Rombaldová, Martina; Janovská, Petra; Kopecký, Jan; Kuda, Ondřej

    2017-01-01

    Roč. 490, č. 3 (2017), s. 1080-1085 ISSN 0006-291X R&D Projects: GA ČR(CZ) GA16-05151S; GA MŠk(CZ) LTAUSA17173 Institutional support: RVO:67985823 Keywords : adipose tissue * macrophages * omega-3 PUFA * fatty acid re-esterification * lipolysis * lipid mediators Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition OBOR OECD: Endocrinology and metabolism (including diabetes, hormones) Impact factor: 2.466, year: 2016

  16. Early Effect of High Dose of Ionizing Radiation Exposure on Plasma Lipids Profile and Liver Fatty Acids Composition in Rats

    International Nuclear Information System (INIS)

    Noaman, E.; Mansour, S.Z.; Ibrahim, N.K.

    2005-01-01

    The present study was conducted to analyze the effect of acute gamma-irradiation on rats at supralethal doses of 20 Gy to determine the synthesis and amounts of free fatty acids, neutral lipids and phospholipids of plasma and liver after 24 and 48 h of gamma-irradiation. Male Wistar rats weighing 120+- 20 g were exposed to 20 Gy of gamma radiation (dose rate of 0.59 Gy/min). Exposure of rats to ionizing radiation resulted in significant alterations in the assayed parameters indicating lipid metabolism disturbance. Plasma cholesterol and phospholipid levels increased up to 71.3 and 71.5 %, respectively, after 24 h from radiation exposure and then returned to 28 and 27 % change in-compare with control values after 48 h post-irradiation. Plasma triacylglycerol concentrations increased concomitantly with irradiation, but their values are less high than cholesterol and phospholipid levels recording significant changes at 19 and 9 % comparing with control rats. Lipid peroxidation measured as MDA recorded significant elevation after 24 and 48 h post irradiation. It was shown that the synthesis of free fatty acids, cholesterol, cholesterol ethers and phospholipids was activated 48 h after irradiation at 20 Gy. The amount of free fatty acids of the rat liver decreased at 20 Gy exposures. This is assumed to be a result of the radioresistance to some degree in the system of free fatty acid synthesis of the rat to the gamma-irradiation in the lethal doses

  17. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp.

    Directory of Open Access Journals (Sweden)

    Renil eAnthony

    2015-01-01

    Full Text Available Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (UTEX LB2396. Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. All solvent extracts contained hexadecanoic acid, linoleic acid and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%, cyclohexane (0.14% and hexane (0.11%. This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  18. [Cholesterol metabolism and lipid peroxidation processes in hypodynamia. Effect of using ascorbic acid and alpha-tocopherol].

    Science.gov (United States)

    Elikov, A V; Tsapok, P I

    2010-01-01

    Study status of cholesterol metabolism, processes of lipid peroxidation and antioxidant protection in blood plasma, erythrocytes and homogenates of the, heart, liver, muscle femors of rats attached to movement active. Establishment effects application of ascorbic acid and alpha-tocopherol. Ascorbic acid and alpha-tocopherol were infused daily. The daily dosage was 2 and 1 mg respectively. Characteristic shift changes of cholesterol metabolism in conditions of limited muscular activity were revealed. It was shown that vitamin antioxidants play a role in correction of metabolic disorders in case of immobile distress syndrome.

  19. Targeting Adipose Tissue Lipid Metabolism to Improve Glucose Metabolism in Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Johan W.E. Jocken

    2014-10-01

    Full Text Available With Type 2 diabetes mellitus and cardiovascular disease prevalence on the rise, there is a growing need for improved strategies to prevent or treat obesity and insulin resistance, both of which are major risk factors for these chronic diseases. Impairments in adipose tissue lipid metabolism seem to play a critical role in these disorders. In the classical picture of intracellular lipid breakdown, cytosolic lipolysis was proposed as the sole mechanism for triacylglycerol hydrolysis in adipocytes. Recent evidence suggests involvement of several hormones, membrane receptors, and intracellular signalling cascades, which has added complexity to the regulation of cytosolic lipolysis. Interestingly, a specific form of autophagy, called lipophagy, has been implicated as alternative lipolytic pathway. Defective regulation of cytosolic lipolysis and lipophagy might have substantial effects on lipid metabolism, thereby contributing to adipose tissue dysfunction, insulin resistance, and related cardiometabolic (cMet diseases. This review will discuss recent advances in our understanding of classical lipolysis and lipophagy in adipocyte lipid metabolism under normal and pathological conditions. Furthermore, the question of whether modulation of adipocyte lipolysis and lipophagy might be a potential therapeutic target to combat cMet disorders will be addressed.

  20. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    International Nuclear Information System (INIS)

    Javee, Anand; Sulochana, Sujitha Balakrishnan; Pallissery, Steffi James; Arumugam, Muthu

    2016-01-01

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  1. Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202

    Energy Technology Data Exchange (ETDEWEB)

    Javee, Anand [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Sulochana, Sujitha Balakrishnan [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Pallissery, Steffi James [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Arumugam, Muthu, E-mail: arumugam@niist.res.in [Biotechnology Division, National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-11-23

    Abiotic stress in oleaginous microalgae enhances lipid accumulation, which is stored in a specialized organelle called lipid droplets (LDs). Both the LDs or lipid body are enriched with major lipid droplet protein (MLDP). It serves as a major structural component and also plays a key role in recruiting other proteins and enzymes involved in lipid body maturation. In the present study, the presence of MLDP was detected in two abiotic stress condition namely nitrogen starvation and salt stress condition. Previous research reveals that nitrogen starvation enhances lipid accumulation. Therefore, the effect of salt on growth, biomass yield, and fatty acid profile is studied in detail. The specific growth rate of Scenedesmus quadricauda under the salt stress of 10mM concentration is about 0.174 μ and in control, the SGR is 0.241 μ. An increase in the doubling time of the cells shows that the rate of cell division decreases during salt stress (2.87–5.17). The dry biomass content also decreased drastically at 50mM salt-treated cells (129 mg/L) compared to control (236 mg/L) on the day 20. The analysis of fatty acid composition also revealed that there is a 20% decrease in the saturated fatty acid level and 19.9% increment in monounsaturated fatty acid level, which makes salt-mediated lipid accumulation as a suitable biodiesel precursor.

  2. Study of lipids and fatty acids of phospholipids in the repair tissu of cutaneous burns of irradiated mice

    International Nuclear Information System (INIS)

    Drouet, J.; Pellat, B.; Dubos, M.; Goyffon, M.

    The influence of whole-body irradiation on the biochemical changes in skin after thermal burns in mice was studied. A decrease of total lipids and cholesterol biosynthesis was observed together with an intensification of the desaturation of fatty acids [fr

  3. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    Science.gov (United States)

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-round in Integrated Multi-trophic Aquaculture

    DEFF Research Database (Denmark)

    Silva Marinho, Goncalo; Holdt, Susan Løvstad; Jacobsen, Charlotte

    2015-01-01

    This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site...... in Denmark (2013-2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%-0.88% dry weight (DW) in July to 3.33%-3.35% DW in November (p composition...... such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better...