WorldWideScience

Sample records for acidification

  1. Acidification of Forest Soils

    OpenAIRE

    Kauppi, P.; Kaemaeri, J.; Posch, M; Kauppi, L.; Matzner, E.

    1986-01-01

    Acidification is considered to be an unfavourable process in forest soil. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are known sources of acidification. Acidification causes a risk of damage to plant roots and subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In 1-year time steps the model calculates the soil pH as a function of the acid stress and the buff...

  2. Ocean acidification postcards

    Science.gov (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  3. Ocean Acidification Product Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  4. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)

    2009-08-15

    There is growing scientific evidence that, as a result of increasing anthropogenic carbon dioxide (CO{sub 2}) emissions, absorption of CO{sub 2} by the oceans has already noticeably increased the average oceanic acidity from pre-industrial levels. This global threat requires a global response. According to the Intergovernmental Panel on Climate Change (IPCC), continuing CO{sub 2} emissions in line with current trends could make the oceans up to 150% more acidic by 2100 than they were at the beginning of the Anthropocene. Acidification decreases the ability of the ocean to absorb additional atmospheric CO{sub 2}, which implies that future CO{sub 2} emissions are likely to lead to more rapid global warming. Ocean acidification is also problematic because of its negative effects on marine ecosystems, especially marine calcifying organisms, and marine resources and services upon which human societies largely depend such as energy, water, and fisheries. For example, it is predicted that by 2100 around 70% of all cold-water corals, especially those in the higher latitudes, will live in waters undersaturated in carbonate due to ocean acidification. Recent research indicates that ocean acidification might also result in increasing levels of jellyfish in some marine ecosystems. Aside from direct effects, ocean acidification together with other global change-induced impacts such as marine and coastal pollution and the introduction of invasive alien species are likely to result in more fragile marine ecosystems, making them more vulnerable to other environmental impacts resulting from, for example, coastal deforestation and widescale fisheries. The Marine Board-ESF Position Paper on the Impacts of Climate Change on the European Marine and Coastal Environment - Ecosystems indicated that presenting ocean acidification issues to policy makers is a key issue and challenge. Indeed, as the consequences of ocean acidification are expected to emerge rapidly and drastically, but are

  5. Communicating Ocean Acidification

    Science.gov (United States)

    Pope, Aaron; Selna, Elizabeth

    2013-01-01

    Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…

  6. Acidification and Acid Rain

    Science.gov (United States)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  7. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha;

    2016-01-01

    Livestock production systems can be major sources of trace gases including ammonia (NH3), the greenhouse gases methane (CH4) and nitrous oxide (N2O), and odorous compounds such as hydrogen sulphide (H2S). Short-term campaigns have indicated that acidification of livestock slurry during in...... generally high. It was concluded that the contribution from floors to NH3 emissions was effect on N2O emissions was observed. The effect...

  8. Exposure of Mediterranean Countries to Ocean Acidification

    OpenAIRE

    Nathalie Hilmi; Denis Allemand; Mine Cinar; Sarah Cooley; Hall-Spencer, Jason M.; Gunnar Haraldsson; Caroline Hattam; Ross A Jeffree; Orr, James C.; Katrin Rehdanz; Stéphanie Reynaud; Alain Safa; Sam Dupont

    2014-01-01

    This study examines the potential effects of ocean acidification on countries and fisheries of the Mediterranean Sea. The implications for seafood security and supply are evaluated by examining the sensitivity of the Mediterranean to ocean acidification at chemical, biological, and macro-economic levels. The limited information available on impacts of ocean acidification on harvested (industrial, recreational, and artisanal fishing) and cultured species (aquaculture) prevents any biological i...

  9. Exposure of Mediterranean Countries to Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Nathalie Hilmi

    2014-06-01

    Full Text Available This study examines the potential effects of ocean acidification on countries and fisheries of the Mediterranean Sea. The implications for seafood security and supply are evaluated by examining the sensitivity of the Mediterranean to ocean acidification at chemical, biological, and macro-economic levels. The limited information available on impacts of ocean acidification on harvested (industrial, recreational, and artisanal fishing and cultured species (aquaculture prevents any biological impact assessment. However, it appears that non-developed nations around the Mediterranean, particularly those for which fisheries are increasing, yet rely heavily on artisanal fleets, are most greatly exposed to socioeconomic consequences from ocean acidification.

  10. Monitoring Ocean Carbon and Ocean Acidification

    OpenAIRE

    Tanhua, Toste; Orr, James C.; Lorenzoni, Laura; Hansson, Lina

    2015-01-01

    As atmospheric CO2 continues to increase, more and more CO2 enters the ocean, which reduces pH (pH is a measure of acidity, the lower the pH, the more acidic the liquid) in a process referred to as ocean acidification. Declines in surface ocean pH due to ocean acidification are already detectable and accelerating.

  11. Renal acidification defects in medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1988-01-01

    Thirteen patients with medullary sponge kidney underwent a short ammonium chloride loading test to investigate their renal acidification capacity. All but 1 presented with a history of recurrent renal calculi and showed bilateral widespread renal medullary calcification on X-ray examination. Nine...... patients had some form of renal acidification defect; 8 had the distal type of renal tubular acidosis, 2 the complete and 6 the incomplete form. One patient had proximal renal tubular acidosis. These findings, which suggest that renal acidification defects play an important role in the pathogenesis...... of renal calculi in medullary sponge kidney, have considerable therapeutic implications....

  12. The geological record of ocean acidification

    NARCIS (Netherlands)

    Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; Kiessling, W.; Ries, J.; Zachos, J.C.; Royer, D.L.; Barker, S.; Marchitto Jr., T.M.; Moyer, R.; Pelejero, C.; Ziveri, P.; Foster, G.L.; Williams, B.

    2012-01-01

    Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contain

  13. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  14. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T.; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity. PMID:27271641

  15. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  16. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  17. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity. PMID:27271641

  18. Biochemical adaptation to ocean acidification.

    Science.gov (United States)

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  19. Ocean acidification accelerates reef bioerosion.

    Directory of Open Access Journals (Sweden)

    Max Wisshak

    Full Text Available In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO(2 in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process - biologically induced carbonate dissolution via bioerosion - has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO(2 world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia's Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO(2 confirms a significant enforcement of the sponges' bioerosion capacity with increasing pCO(2 under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.

  20. Community-Level Actions that Can Address Ocean Acidification

    OpenAIRE

    Cooley, Sarah R.; Ono, C. Ryan; Melcer, Sage; Roberson, Julia

    2016-01-01

    Ocean acidification has led to detectable changes in seawater chemistry around the world, which are associated with reduced growth and survival of many species. Acute ocean acidification “events” in the Pacific Northwest United States have jeopardized the $270 million, 3200 jobs/year shellfish aquaculture industry in Washington State, and this has contributed to the state's broad-based, legislatively driven response to ocean acidification. Even though impacts from ocean acidification have yet...

  1. Puget Sound ocean acidification model outputs - Modeling the impacts of ocean acidification on ecosystems and populations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NWFSC OA team will model the effects of ocean acidification on regional marine species and ecosystems using food web models, life-cycle models, and bioenvelope...

  2. Ocean acidification genetics - Genetics and genomics of response to ocean acidification

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are applying a variety of genetic tools to assess the response of our ocean resources to ocean acidification, including gene expression techniques,...

  3. Electrochemical acidification of milk by whey desalination

    NARCIS (Netherlands)

    Balster, J.; Punt, I.; Stamatialis, D.F.; Lammers, H.; Verver, A.B.; Wessling, M.

    2007-01-01

    We describe a process configuration for the electrochemical acidification of milk using the desalination function and the acid/base production function of a bipolar membrane process. First, the milk is acidified by the acid produced in the bipolar membrane stack. The precipitate is removed by a soli

  4. Predicting watershed acidification under alternate rainfall conditions

    International Nuclear Information System (INIS)

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, USA using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soilwater flux will result in larger increases in soil-adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distributions of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading. 29 refs., 7 figs., 4 tabs

  5. Coral calcification and ocean acidification

    Science.gov (United States)

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  6. Evolutionary change during experimental ocean acidification.

    Science.gov (United States)

    Pespeni, Melissa H; Sanford, Eric; Gaylord, Brian; Hill, Tessa M; Hosfelt, Jessica D; Jaris, Hannah K; LaVigne, Michèle; Lenz, Elizabeth A; Russell, Ann D; Young, Megan K; Palumbi, Stephen R

    2013-04-23

    Rising atmospheric carbon dioxide (CO2) conditions are driving unprecedented changes in seawater chemistry, resulting in reduced pH and carbonate ion concentrations in the Earth's oceans. This ocean acidification has negative but variable impacts on individual performance in many marine species. However, little is known about the adaptive capacity of species to respond to an acidified ocean, and, as a result, predictions regarding future ecosystem responses remain incomplete. Here we demonstrate that ocean acidification generates striking patterns of genome-wide selection in purple sea urchins (Strongylocentrotus purpuratus) cultured under different CO2 levels. We examined genetic change at 19,493 loci in larvae from seven adult populations cultured under realistic future CO2 levels. Although larval development and morphology showed little response to elevated CO2, we found substantial allelic change in 40 functional classes of proteins involving hundreds of loci. Pronounced genetic changes, including excess amino acid replacements, were detected in all populations and occurred in genes for biomineralization, lipid metabolism, and ion homeostasis--gene classes that build skeletons and interact in pH regulation. Such genetic change represents a neglected and important impact of ocean acidification that may influence populations that show few outward signs of response to acidification. Our results demonstrate the capacity for rapid evolution in the face of ocean acidification and show that standing genetic variation could be a reservoir of resilience to climate change in this coastal upwelling ecosystem. However, effective response to strong natural selection demands large population sizes and may be limited in species impacted by other environmental stressors.

  7. The positive relationship between ocean acidification and pollution.

    Science.gov (United States)

    Zeng, Xiangfeng; Chen, Xijuan; Zhuang, Jie

    2015-02-15

    Ocean acidification and pollution coexist to exert combined effects on the functions and services of marine ecosystems. Ocean acidification can increase the biotoxicity of heavy metals by altering their speciation and bioavailability. Marine pollutants, such as heavy metals and oils, could decrease the photosynthesis rate and increase the respiration rate of marine organisms as a result of biotoxicity and eutrophication, facilitating ocean acidification to varying degrees. Here we review the complex interactions between ocean acidification and pollution in the context of linkage of multiple stressors to marine ecosystems. The synthesized information shows that pollution-affected respiration acidifies coastal oceans more than the uptake of anthropogenic carbon dioxide. Coastal regions are more vulnerable to the negative impact of ocean acidification due to large influxes of pollutants from terrestrial ecosystems. Ocean acidification and pollution facilitate each other, and thus coastal environmental protection from pollution has a large potential for mitigating acidification risk.

  8. Calcifying species sensitivity distributions for ocean acidification

    OpenAIRE

    Azevedo Ligia B.; De Schryver, An M.; Hendriks, A. Jan; Huijbregts, Mark A. J.

    2015-01-01

    Increasing CO2 atmospheric levels lead to increasing ocean acidification, thereby enhancing calcium carbonate dissolution of calcifying species. We gathered peer-reviewed experimental data on the effects of acidified seawater on calcifying species growth, reproduction, and survival. The data were used to derive species-specific median effective concentrations, i.e., pH50, and pH10, via logistic regression. Subsequently, we developed species sensitivity distributions (SSDs) to assess the poten...

  9. Water acidification: effects on the macroalgal community

    OpenAIRE

    Porzio, Lucia

    2010-01-01

    Recent researches, performed in a naturally acidified site (Castello Aragonese d’Ischia - Gulf of Naples, Italy) where volcanic carbon dioxide vents cause long-term changes in seawater carbonate chemistry, lowering the pH from 8.17 down to 6.57, reveal winners and losers within the benthic community. In the same site, we chose to address the impact of ocean acidification on the algal community with an integrated approach by means of ecological, physiological and molecular tools. Qualitat...

  10. Ocean acidification impairs vermetid reef recruitment

    OpenAIRE

    Milazzo, Marco; Rodolfo-Metalpa, Riccardo; Chan, Vera Bin San; Fine, Maoz; Alessi, Cinzia; Thiyagarajan, Vengatesen; Hall-Spencer, Jason M.; Chemello, Renato

    2014-01-01

    Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod ...

  11. Ocean acidification in the Western Arctic Ocean

    Science.gov (United States)

    Cai, W.; Chen, B.; Chen, L.

    2011-12-01

    We report carbonate chemistry and ocean acidification status in the western Arctic Ocean from 65-88οN based on data collected in summer 2008 and 2010. In the marginal seas, surface waters have high pH and high carbonate saturation state (Ω) due to intensive biological uptake of CO2. In the southern Canada Basin, surface waters have low pH and low Ω due to the uptake of atmospheric CO2 and sea-ice melt. In the northern Arctic Ocean basin, there is no serious ocean acidification in surface water due to heavy ice-coverage but pH and Ω in the subsurface waters at the oxygen minimum and nutrient maximum zone (at 100-150 m) are low due mostly to respiration-derived CO2 and an increased biological production and export in surface waters. Such multitude responses of ocean carbonate chemistry (northern vs. southern basin, basins vs. margins, and surface vs. subsurface) to climate changes are unique to the Arctic Ocean system. We will explore biogeochemical control mechanisms on carbonate chemistry and ocean acidification in the Arctic Ocean environments in the context of recent warming and sea-ice retreat.

  12. Ocean acidification in a geoengineering context.

    Science.gov (United States)

    Williamson, Phillip; Turley, Carol

    2012-09-13

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO(2)) in the atmosphere. Ocean acidity (H(+) concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO(2); they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO(2), although with additional temperature-related effects on CO(2) and CaCO(3) solubility and terrestrial carbon sequestration.

  13. Benthic algal communities : recovery from experimental acidification

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.A.; Findlay, D.L.; Kasian, S.E.M. [Fisheries and Oceans Canada, Winnipeg, MB (Canada). Freshwater Inst.; Baulch, H.M. [Fisheries and Oceans Canada, Winnipeg, MB (Canada); Trent Univ., Peterborough, ON (Canada); Armstrong, L.M. [Ducks Unlimited Canada, Stonewall, MB (Canada). Inst. for Wetland and Waterfowl Research; McNicol, D.K. [Canadian Wildlife Service, Ottawa, ON (Canada); Vinebrooke, R.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences

    2009-11-15

    This study evaluated the hypothesis that chemical recovery promotes the rapid recovery of benthic algal communities in formerly acidified lakes. The study was conducted at an experimental lake in Ontario over a 10 year period of pH recovery that followed a 10 year period of experimental acidification from a pH of 6.7 to 4.5. A reference lake in the region was also studied to account for regional changes during the study period. Changes in the epilithon on rock surfaces included lower cyanobacterial biomass following the acidification as well as increases in diatoms and greens. Acidification-induced increases in respiration prevented epilithic metabolic recovery. Prior declines in photosynthesis were reversed. Blooms of metaphytic filamentous green algae with a higher pH occurred during the recovery period. The recovery of many aggregate functional and taxonomic properties lagged behind reductions in acidity. Incomplete chemical recovery and the absence of functionally important biota were attributed to incomplete algal recovery at the lake. 59 refs., 2 tabs., 8 figs.

  14. Symbiosis increases coral tolerance to ocean acidification

    Science.gov (United States)

    Ohki, S.; Irie, T.; Inoue, M.; Shinmen, K.; Kawahata, H.; Nakamura, T.; Kato, A.; Nojiri, Y.; Suzuki, A.; Sakai, K.; van Woesik, R.

    2013-04-01

    Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2-0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (±5% pCO2), to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e. broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  15. Symbiosis increases coral tolerance to ocean acidification

    Directory of Open Access Journals (Sweden)

    S. Ohki

    2013-04-01

    Full Text Available Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2–0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (±5% pCO2, to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii corals acquiring symbionts from the environment (i.e. broadcasting species will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  16. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    Science.gov (United States)

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification.

  17. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  18. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    Science.gov (United States)

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  19. Vulnerability and adaptation of US shellfisheries to ocean acidification

    Science.gov (United States)

    Ekstrom, Julia A.; Suatoni, Lisa; Cooley, Sarah R.; Pendleton, Linwood H.; Waldbusser, George G.; Cinner, Josh E.; Ritter, Jessica; Langdon, Chris; van Hooidonk, Ruben; Gledhill, Dwight; Wellman, Katharine; Beck, Michael W.; Brander, Luke M.; Rittschof, Dan; Doherty, Carolyn; Edwards, Peter E. T.; Portela, Rosimeiry

    2015-03-01

    Ocean acidification is a global, long-term problem whose ultimate solution requires carbon dioxide reduction at a scope and scale that will take decades to accomplish successfully. Until that is achieved, feasible and locally relevant adaptation and mitigation measures are needed. To help to prioritize societal responses to ocean acidification, we present a spatially explicit, multidisciplinary vulnerability analysis of coastal human communities in the United States. We focus our analysis on shelled mollusc harvests, which are likely to be harmed by ocean acidification. Our results highlight US regions most vulnerable to ocean acidification (and why), important knowledge and information gaps, and opportunities to adapt through local actions. The research illustrates the benefits of integrating natural and social sciences to identify actions and other opportunities while policy, stakeholders and scientists are still in relatively early stages of developing research plans and responses to ocean acidification.

  20. Acidification of animal slurry--a review.

    Science.gov (United States)

    Fangueiro, David; Hjorth, Maibritt; Gioelli, Fabrizio

    2015-02-01

    Ammonia emissions are a major problem associated with animal slurry management, and solutions to overcome this problem are required worldwide by farmers and stakeholders. An obvious way to minimize ammonia emissions from slurry is to decrease slurry pH by addition of acids or other substances. This solution has been used commonly since 2010 in countries such as Denmark, and its efficiency with regard to the minimization of NH3 emissions has been documented in many studies. Nevertheless, the impact of such treatment on other gaseous emissions during storage is not clear, since the studies performed so far have provided different scenarios. Similarly, the impact of the soil application of acidified slurry on plant production and diffuse pollution has been considered in several studies. Also, the impact of acidification upon combination with other slurry treatment technologies (e.g. mechanical separation, anaerobic digestion …) is important to consider. Here, a compilation and critical review of all these studies has been performed in order to fully understand the global impact of slurry acidification and assess the applicability of this treatment for slurry management. PMID:25463570

  1. Tracing acidification induced by Deccan volcanism

    Science.gov (United States)

    Font, Eric; Adatte, Thierry; Fantasia, Alicia; Ponte, Jorge; Florindo, Fabio; Abrajevitch, Alexandra; Samant, Bandana; Mohabey, Dhananjay; Thakre, Deepali

    2015-04-01

    The Deccan Volcanic Province (DVP) is constituted by three major phases of eruptions, for which the most voluminous - the Deccan Phase-2 - encompassed the Cretaceous-Paleogene (KT) boundary and has been pointed as the main contributor of the KT mass extinction. However, the mechanisms (including acidification) by which the massive Deccan Phase eruptions contributed to the end-Cretaceous global changes and to the controversial KT mass extinction are still poorly constrained. Here we identify the regional climate and environmental effects of the Deccan eruptions by studying the magnetic and mineral assemblages preserved in the lacustrine and continental intertrappeans sediments from the western Maharashtra Deccan Volcanic Provinces (DVP). To achieve this objective, we applied rock magnetic techniques coupled to scanning electron microscopy and diffuse reflectance spectrophotometry to samples collected in three different stratigraphic sections. Our results show that the main magnetic carriers of the Deccan lacustrine and continental sediments are represented by allogenic (detrital) magnetite and hematite inherited from the weathering of the surrounding underlying basaltic bedrocks. Iron sulphides (pyrrhotite or greigite) are accessorily observed. Interestingly, the Podgawan deposits show peculiar and very distinct magnetic and mineralogical signatures, including iron oxide reductive dissolution and widespread crystallisation of iron vanadates, that we interpreted as the effect of Deccan induced acidification. Keywords: Deccan Volcanic Province, intertrappean continental sediments, environmental magnetism Funded by FCT (PTDC/CTE-GIX/117298/2010)

  2. Parasitic infection: a buffer against ocean acidification?

    Science.gov (United States)

    MacLeod, Colin D; Poulin, Robert

    2016-05-01

    Recently, there has been a concerted research effort by marine scientists to quantify the sensitivity of marine organisms to ocean acidification (OA). Empirical data generated by this research have been used to predict changes to marine ecosystem health, biodiversity and productivity that will be caused by continued acidification. These studies have also found that the effects of OA on marine organisms can be significantly modified by additional abiotic stressors (e.g. temperature or oxygen) and biotic interactions (e.g. competition or predation). To date, however, the effects of parasitic infection on the sensitivity of marine organisms to OA have been largely ignored. We show that parasitic infection significantly altered the response of a marine gastropod to simulated OA conditions by reducing the mortality of infected individuals relative to uninfected conspecifics. Without the inclusion of infection data, our analysis would not have detected the significant effect of pH on host mortality. These results strongly suggest that parasitic infection may be an important confounding factor in OA research and must be taken into consideration when assessing the response of marine species to OA. PMID:27194286

  3. Ocean acidification changes the male fitness landscape

    Science.gov (United States)

    Campbell, Anna L.; Levitan, Don R.; Hosken, David J.; Lewis, Ceri

    2016-01-01

    Sperm competition is extremely common in many ecologically important marine taxa. Ocean acidification (OA) is driving rapid changes to the marine environments in which freely spawned sperm operate, yet the consequences of OA on sperm performance are poorly understood in the context of sperm competition. Here, we investigated the impacts of OA (+1000 μatm pCO2) on sperm competitiveness for the sea urchin Paracentrotus lividus. Males with faster sperm had greater competitive fertilisation success in both seawater conditions. Similarly, males with more motile sperm had greater sperm competitiveness, but only under current pCO2 levels. Under OA the strength of this association was significantly reduced and there were male sperm performance rank changes under OA, such that the best males in current conditions are not necessarily best under OA. Therefore OA will likely change the male fitness landscape, providing a mechanism by which environmental change alters the genetic landscape of marine species. PMID:27531458

  4. Univalent-cation-elicited acidification by yeasts.

    Science.gov (United States)

    Kotyk, A; Georghiou, G

    1994-08-01

    Addition of univalent cations to sugar-metabolizing Saccharomyces cerevisiae, Schizosaccharomyces pombe and Lodderomyces elongisporus brought about a powerful acidification of the external medium with rates up to nearly 20 nmol H+ per min per mg dry wt. in S. cerevisiae, over 15 nmol in S. pombe, and 4.7 nmol in L. elongisporus. These rates were as much as 20 times, 5.5 times and 10.3 times, respectively. higher than in the absence of K+. Use of galactose-induced cells, of H(+)-ATPase-deficient mutants and observations over the entire growth curve indicated that the K+ effect on H+ extrusion is not connected with the H(+)-ATPase function as such but rather depends on metabolic reactions producing ATP. The effect has apparently nothing to do with the electrical potential across the plasma membrane. PMID:7804140

  5. Ocean acidification changes the male fitness landscape

    Science.gov (United States)

    Campbell, Anna L.; Levitan, Don R.; Hosken, David J.; Lewis, Ceri

    2016-08-01

    Sperm competition is extremely common in many ecologically important marine taxa. Ocean acidification (OA) is driving rapid changes to the marine environments in which freely spawned sperm operate, yet the consequences of OA on sperm performance are poorly understood in the context of sperm competition. Here, we investigated the impacts of OA (+1000 μatm pCO2) on sperm competitiveness for the sea urchin Paracentrotus lividus. Males with faster sperm had greater competitive fertilisation success in both seawater conditions. Similarly, males with more motile sperm had greater sperm competitiveness, but only under current pCO2 levels. Under OA the strength of this association was significantly reduced and there were male sperm performance rank changes under OA, such that the best males in current conditions are not necessarily best under OA. Therefore OA will likely change the male fitness landscape, providing a mechanism by which environmental change alters the genetic landscape of marine species.

  6. Ocean acidification changes the male fitness landscape.

    Science.gov (United States)

    Campbell, Anna L; Levitan, Don R; Hosken, David J; Lewis, Ceri

    2016-01-01

    Sperm competition is extremely common in many ecologically important marine taxa. Ocean acidification (OA) is driving rapid changes to the marine environments in which freely spawned sperm operate, yet the consequences of OA on sperm performance are poorly understood in the context of sperm competition. Here, we investigated the impacts of OA (+1000 μatm pCO2) on sperm competitiveness for the sea urchin Paracentrotus lividus. Males with faster sperm had greater competitive fertilisation success in both seawater conditions. Similarly, males with more motile sperm had greater sperm competitiveness, but only under current pCO2 levels. Under OA the strength of this association was significantly reduced and there were male sperm performance rank changes under OA, such that the best males in current conditions are not necessarily best under OA. Therefore OA will likely change the male fitness landscape, providing a mechanism by which environmental change alters the genetic landscape of marine species. PMID:27531458

  7. Ocean acidification alters fish-jellyfish symbiosis.

    Science.gov (United States)

    Nagelkerken, Ivan; Pitt, Kylie A; Rutte, Melchior D; Geertsma, Robbert C

    2016-06-29

    Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral-microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish-jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish-jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries.

  8. Calcifying species sensitivity distributions for ocean acidification.

    Science.gov (United States)

    Azevedo, Ligia B; De Schryver, An M; Hendriks, A Jan; Huijbregts, Mark A J

    2015-02-01

    Increasing CO2 atmospheric levels lead to increasing ocean acidification, thereby enhancing calcium carbonate dissolution of calcifying species. We gathered peer-reviewed experimental data on the effects of acidified seawater on calcifying species growth, reproduction, and survival. The data were used to derive species-specific median effective concentrations, i.e., pH50, and pH10, via logistic regression. Subsequently, we developed species sensitivity distributions (SSDs) to assess the potentially affected fraction (PAF) of species exposed to pH declines. Effects on species growth were observed at higher pH than those on species reproduction (mean pH10 was 7.73 vs 7.63 and mean pH50 was 7.28 vs 7.11 for the two life processes, respectively) and the variability in the sensitivity of species increased with increasing number of species available for the PAF (pH10 standard deviation was 0.20, 0.21, and 0.33 for survival, reproduction, and growth, respectively). The SSDs were then applied to two climate change scenarios to estimate the increase in PAF (ΔPAF) by future ocean acidification. In a high CO2 emission scenario, ΔPAF was 3 to 10% (for pH50) and 21 to 32% (for pH10). In a low emission scenario, ΔPAF was 1 to 4% (for pH50) and 7 to 12% (for pH10). Our SSDs developed for the effect of decreasing ocean pH on calcifying marine species assemblages can also be used for comparison with other environmental stressors.

  9. Ocean acidification alters fish-jellyfish symbiosis.

    Science.gov (United States)

    Nagelkerken, Ivan; Pitt, Kylie A; Rutte, Melchior D; Geertsma, Robbert C

    2016-06-29

    Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral-microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish-jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish-jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries. PMID:27358374

  10. Continuous in-house acidification affecting animal slurry composition

    DEFF Research Database (Denmark)

    Hjorth, Maibritt; Cocolo, Giorgia; Jonassen, Kristoffer;

    2015-01-01

    dissolution in acidified slurry. Acceleration of carbohydrate hydrolysis was indicated, while deceleration of microbial acidogenesis, acetogenesis, methanogenesis and sulphate reduction was indicated. The particles were larger following acidification treatment causing a lower viscosity, likely due...

  11. Climate change and ocean acidification-interactions with aquatic toxicology.

    Science.gov (United States)

    Nikinmaa, Mikko

    2013-01-15

    The possibilities for interactions between toxicants and ocean acidification are reviewed from two angles. First, it is considered how toxicant responses may affect ocean acidification by influencing the carbon dioxide balance. Second, it is introduced, how the possible changes in environmental conditions (temperature, pH and oxygenation), expected to be associated with climate change and ocean acidification, may interact with the toxicant responses of organisms, especially fish. One significant weakness in available data is that toxicological research has seldom been connected with ecological and physiological/biochemical research evaluating the responses of organisms to temperature, pH or oxygenation changes occurring in the natural environment. As a result, although there are significant potential interactions between toxicants and natural environmental responses pertaining to climate change and ocean acidification, it is very poorly known if such interactions actually occur, and can be behind the observed disturbances in the function and distribution of organisms in our seas.

  12. Ocean and Coastal Acidification off New England and Nova Scotia

    Science.gov (United States)

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  13. Nitrogen deposition contributes to soil acidification in tropical ecosystems.

    Science.gov (United States)

    Lu, Xiankai; Mao, Qinggong; Gilliam, Frank S; Luo, Yiqi; Mo, Jiangming

    2014-12-01

    Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening ecosystem health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long-term N deposition on soil acidification processes in tropical forests. We have established a long-term N-deposition experiment in an N-rich lowland tropical forest of Southern China since 2002 with N addition as NH4 NO3 of 0, 50, 100 and 150 kg N ha(-1)  yr(-1) . We measured soil acidification status and element leaching in soil drainage solution after 6-year N addition. Results showed that our study site has been experiencing serious soil acidification and was quite acid-sensitive showing high acidification (pH(H2O) soil profiles. Long-term N addition significantly accelerated soil acidification, leading to depleted base cations and decreased BS, and further lowered ANC. However, N addition did not alter exchangeable Al(3+) , but increased cation exchange capacity (CEC). Nitrogen addition-induced increase in SOC is suggested to contribute to both higher CEC and lower pH. We further found that increased N addition greatly decreased soil solution pH at 20 cm depth, but not at 40 cm. Furthermore, there was no evidence that Al(3+) was leaching out from the deeper soils. These unique responses in tropical climate likely resulted from: exchangeable H(+) dominating changes of soil cation pool, an exhausted base cation pool, N-addition stimulating SOC production, and N saturation. Our results suggest that long-term N addition can contribute measurably to soil acidification, and that shortage of Ca and Mg should receive more attention than soil exchangeable Al in tropical forests with elevated N deposition in the future. PMID:24953639

  14. Urbanization in China drives soil acidification of Pinus massoniana forests

    OpenAIRE

    Juan Huang; , Wei Zhang; Jiangming Mo; Shizhong Wang; Juxiu Liu; Hao Chen

    2015-01-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit...

  15. Will ocean acidification affect marine microbes?

    Science.gov (United States)

    Joint, Ian; Doney, Scott C; Karl, David M

    2011-01-01

    The pH of the surface ocean is changing as a result of increases in atmospheric carbon dioxide (CO(2)), and there are concerns about potential impacts of lower pH and associated alterations in seawater carbonate chemistry on the biogeochemical processes in the ocean. However, it is important to place these changes within the context of pH in the present-day ocean, which is not constant; it varies systematically with season, depth and along productivity gradients. Yet this natural variability in pH has rarely been considered in assessments of the effect of ocean acidification on marine microbes. Surface pH can change as a consequence of microbial utilization and production of carbon dioxide, and to a lesser extent other microbially mediated processes such as nitrification. Useful comparisons can be made with microbes in other aquatic environments that readily accommodate very large and rapid pH change. For example, in many freshwater lakes, pH changes that are orders of magnitude greater than those projected for the twenty second century oceans can occur over periods of hours. Marine and freshwater assemblages have always experienced variable pH conditions. Therefore, an appropriate null hypothesis may be, until evidence is obtained to the contrary, that major biogeochemical processes in the oceans other than calcification will not be fundamentally different under future higher CO(2)/lower pH conditions.

  16. Ocean acidification bends the mermaid's wineglass.

    Science.gov (United States)

    Newcomb, Laura A; Milazzo, Marco; Hall-Spencer, Jason M; Carrington, Emily

    2015-09-01

    Ocean acidification lowers the saturation state of calcium carbonate, decreasing net calcification and compromising the skeletons of organisms such as corals, molluscs and algae. These calcified structures can protect organisms from predation and improve access to light, nutrients and dispersive currents. While some species (such as urchins, corals and mussels) survive with decreased calcification, they can suffer from inferior mechanical performance. Here, we used cantilever beam theory to test the hypothesis that decreased calcification would impair the mechanical performance of the green alga Acetabularia acetabulum along a CO₂ gradient created by volcanic seeps off Vulcano, Italy. Calcification and mechanical properties declined as calcium carbonate saturation fell; algae at 2283 µatm CO₂ were 32% less calcified, 40% less stiff and 40% droopier. Moreover, calcification was not a linear proxy for mechanical performance; stem stiffness decreased exponentially with reduced calcification. Although calcifying organisms can tolerate high CO₂ conditions, even subtle changes in calcification can cause dramatic changes in skeletal performance, which may in turn affect key biotic and abiotic interactions. PMID:26562936

  17. Population-dependent effects of ocean acidification.

    Science.gov (United States)

    Wood, Hannah L; Sundell, Kristina; Almroth, Bethanie Carney; Sköld, Helén Nilsson; Eriksson, Susanne P

    2016-04-13

    Elevated carbon dioxide levels and the resultant ocean acidification (OA) are changing the abiotic conditions of the oceans at a greater rate than ever before and placing pressure on marine species. Understanding the response of marine fauna to this change is critical for understanding the effects of OA. Population-level variation in OA tolerance is highly relevant and important in the determination of ecosystem resilience and persistence, but has received little focus to date. In this study, whether OA has the same biological consequences in high-salinity-acclimated population versus a low-salinity-acclimated population of the same species was investigated in the marine isopod Idotea balthica.The populations were found to have physiologically different responses to OA. While survival rate was similar between the two study populations at a future CO2 level of 1000 ppm, and both populations showed increased oxidative stress, the metabolic rate and osmoregulatory activity differed significantly between the two populations. The results of this study demonstrate that the physiological response to OA of populations from different salinities can vary. Population-level variation and the environment provenance of individuals used in OA experiments should be taken into account for the evaluation and prediction of climate change effects.

  18. Population-dependent effects of ocean acidification.

    Science.gov (United States)

    Wood, Hannah L; Sundell, Kristina; Almroth, Bethanie Carney; Sköld, Helén Nilsson; Eriksson, Susanne P

    2016-04-13

    Elevated carbon dioxide levels and the resultant ocean acidification (OA) are changing the abiotic conditions of the oceans at a greater rate than ever before and placing pressure on marine species. Understanding the response of marine fauna to this change is critical for understanding the effects of OA. Population-level variation in OA tolerance is highly relevant and important in the determination of ecosystem resilience and persistence, but has received little focus to date. In this study, whether OA has the same biological consequences in high-salinity-acclimated population versus a low-salinity-acclimated population of the same species was investigated in the marine isopod Idotea balthica.The populations were found to have physiologically different responses to OA. While survival rate was similar between the two study populations at a future CO2 level of 1000 ppm, and both populations showed increased oxidative stress, the metabolic rate and osmoregulatory activity differed significantly between the two populations. The results of this study demonstrate that the physiological response to OA of populations from different salinities can vary. Population-level variation and the environment provenance of individuals used in OA experiments should be taken into account for the evaluation and prediction of climate change effects. PMID:27053741

  19. Individual and population-level responses to ocean acidification.

    Science.gov (United States)

    Harvey, Ben P; McKeown, Niall J; Rastrick, Samuel P S; Bertolini, Camilla; Foggo, Andy; Graham, Helen; Hall-Spencer, Jason M; Milazzo, Marco; Shaw, Paul W; Small, Daniel P; Moore, Pippa J

    2016-01-01

    Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories.

  20. Acidification of forest soil in Russia: From 1893 to present

    Science.gov (United States)

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  1. AFSC/RACE/SAP/Foy: Effects of ocean acidification on larval Tanner crab: Kodiak Island, Alaska.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To study the effects of ocean acidification we examined the effects of ocean acidification on the larval stages of the economically important southern Tanner crab,...

  2. OA Experimental Results - Species response experiments on the effects of ocean acidification, climate change, and deoxygenation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NWFSC Ocean Acidification (OA) team will conduct a series of species-exposure experiments in the acidification research facility on N. Pacific species of...

  3. Ocean acidification and the Permo-Triassic mass extinction.

    Science.gov (United States)

    Clarkson, M O; Kasemann, S A; Wood, R A; Lenton, T M; Daines, S J; Richoz, S; Ohnemueller, F; Meixner, A; Poulton, S W; Tipper, E T

    2015-04-10

    Ocean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.

  4. Combined ocean acidification and low temperature stressors cause coral mortality

    Science.gov (United States)

    Kavousi, Javid; Parkinson, John Everett; Nakamura, Takashi

    2016-09-01

    Oceans are predicted to become more acidic and experience more temperature variability—both hot and cold—as climate changes. Ocean acidification negatively impacts reef-building corals, especially when interacting with other stressors such as elevated temperature. However, the effects of combined acidification and low temperature stress have yet to be assessed. Here, we exposed nubbins of the scleractinian coral Montipora digitata to ecologically relevant acidic, cold, or combined stress for 2 weeks. Coral nubbins exhibited 100% survival in isolated acidic and cold treatments, but ~30% mortality under combined conditions. These results provide further evidence that coupled stressors have an interactive effect on coral physiology, and reveal that corals in colder environments are also susceptible to the deleterious impacts of coupled ocean acidification and thermal stress.

  5. Experimental ocean acidification alters the allocation of metabolic energy.

    Science.gov (United States)

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  6. Acidification of Forest Soils: A Model for Analyzing Impacts of Acidic Deposition in Europe - Version II

    OpenAIRE

    Kauppi, P.; Kaemaeri, J.; Posch, M; Kauppi, L.; Matzner, E.

    1985-01-01

    Acidification is an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are sources of acidification. Acidification causes a risk of damage to plant roots and a subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of acid stress and the buffer mechanisms of the soil. ...

  7. Acidification of Forest Soils: Model Development and Application for Analyzing Impacts of Acidic Deposition in Europe

    OpenAIRE

    P. E. Kauppi; KÀmÀri, J.; Posch, M; Kauppi, L.; Matzner, E.

    1984-01-01

    Acidification is considered as an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are known as sources of acidification. Acidification causes the risk of damage to plant roots and subsequent risk of a decline in ecosystem productivity. A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of the acid stress and the buff...

  8. Ocean acidification causes bleaching and productivity loss in coral reef builders

    OpenAIRE

    Anthony, K. R. N.; Kline, D. I.; Diaz-Pulido, G.; Dove, S.; Hoegh-Guldberg, O

    2008-01-01

    Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcifi...

  9. Ocean Acidification: a review of the current status of research and institutional developments

    OpenAIRE

    van Beek; M. Dedert

    2012-01-01

    Ocean acidification is defined as the change in ocean chemistry driven by the oceanic uptake of chemical inputs to the atmosphere, including carbon, nitrogen and sulphur compounds. Ocean acidification is also referred to as ‘the other CO2 problem’ of anthropogenic carbon dioxide (CO2) emissions alongside climate change. Ocean acidification has become a hot topic on the international research agenda, whereby most publications are less than a decade old. Ocean acidification has also become an e...

  10. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    OpenAIRE

    Marie-Béatrice Forel; Pierre-Yves Collin; Yue Li; Stephen Kershaw; Sylvie Crasquin

    2012-01-01

    Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO2, raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1) problems with evidence for ocean acidification preserved in sedimentary rocks, wh...

  11. Implications of anthropogenic acidification on forest soil processes in Sweden

    International Nuclear Information System (INIS)

    By anthropogenic acidification the soil forming process, podzolisation, will be perturbed. The organic acids in soil solution will form complexes with aluminium to a less degree and inorganic aluminium will be leached from the illuvial horizon. The soil acidification has not resulted in declined coniferous forest growth, which might be explained by mycorrhizal activity promoting nutrient uptake direct from minerals. Liming and wood ash applications on forest soil might enhance CO2 evolution, increase DOC concentrations and might also initially decrease pH and increase Al concentrations in soil solution

  12. 77 FR 40860 - Strategic Plan for Federal Research and Monitoring of Ocean Acidification

    Science.gov (United States)

    2012-07-11

    ... Monitoring of Ocean Acidification AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... Ocean Acidification is being made available for public review and comment. The Draft Research Plan... section 12405 of the Federal Ocean Acidification Research And Monitoring Act of 2009, 33 U.S.C....

  13. Urbanization in China drives soil acidification of Pinus massoniana forests

    Science.gov (United States)

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-09-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N (-N), P < 0.05 for nitrate N (-N), P < 0.01) and 10-20 cm (for -N, P < 0.05) layers. However, there was no significant loss of exchangeable non-acidic cations along the urbanization gradient, instead their levels were higher in urban than in urban/suburban area at the 0-10 cm layer. Our results suggested N deposition particularly under the climate of high temperature and rainfall, greatly contributed to a significant soil acidification occurred in the urbanized environment.

  14. Mitigating Local Causes of Ocean Acidification with Existing Laws

    Science.gov (United States)

    The oceans continue to absorb CO2 in step with the increasing atmospheric concentration of CO2. The dissolved CO2 reacts with seawater to form carbonic acid (H2CO3) and liberate hydrogen ions, causing the pH of the oceans to decrease. Ocean acidification is thus an inevitable a...

  15. Response of halocarbons to ocean acidification in the Arctic

    NARCIS (Netherlands)

    F.E. Hopkins; S.A. Kimmance; J.A. Stephens; R.G.J. Bellerby; C.P.D. Brussaard; J. Czerny; K.G. Schulz; S.D. Archer

    2013-01-01

    The potential effect of ocean acidification (OA) on seawater halocarbons in the Arctic was investigated during a mesocosm experiment in Spitsbergen in June-July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine ~ 50 m3 mesocosms were studied under a range of pCO2 treatments f

  16. Ocean acidification through the lens of ecological theory.

    Science.gov (United States)

    Gaylord, Brian; Kroeker, Kristy J; Sunday, Jennifer M; Anderson, Kathryn M; Barry, James P; Brown, Norah E; Connell, Sean D; Dupont, Sam; Fabricius, Katharina E; Hall-Spencer, Jason Hall; Klinger, Terrie; Milazzo, Marco; Munday, Philip L; Russell, Bayden D; Sanford, Eric; Schreiber, Sebastian J; Thiyagarajan, Vengatesen; Vaughan, Megan L H; Widdicombe, Steven; Harley, Christopher D G

    2015-01-01

    Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification'and the ecological changes it portends.

  17. Effect of ocean acidification on the benthic foraminifera

    NARCIS (Netherlands)

    Keul, N.; Langer, G.; de Nooijer, L.J.; Bijma, J.

    2013-01-01

    About 30% of the anthropogenically released CO2 is taken up by the oceans; such uptake causes surface ocean pH to decrease and is commonly referred to as ocean acidification (OA). Foraminifera are one of the most abundant groups of marine calcifiers, estimated to precipitate ca. 50 % of biogenic cal

  18. Response of halocarbons to ocean acidification in the Arctic

    NARCIS (Netherlands)

    Hopkins, F.E.; Kimmance, S.A.; Stephens, J.A.; Bellerby, R.G.J.; Brussaard, C.P.D.; Czerny, J.; Schulz, K.G.; Archer, S.D.

    2013-01-01

    The potential effect of ocean acidification (OA) on seawater halocarbons in the Arctic was investigated during a mesocosm experiment in Spitsbergen in June-July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine similar to 50 m(3) mesocosms were studied under a range of pCO(2)

  19. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    NARCIS (Netherlands)

    Boudreau, B.P.; Luo, Yiming; Meysman, Filip J R; Middelburg, J.J.; Dickens, G.R.

    2015-01-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the ocean

  20. Acidification of subsurface coastal waters enhanced by eutrophication

    Science.gov (United States)

    Uptake of fossil-fuel carbon dioxide (CO2) from the atmosphere has acidified the surface ocean by ~0.1 pH units and driven down the carbonate saturation state. Ocean acidification is a threat to marine ecosystems and may alter key biogeochemical cycles. Coastal oceans have also b...

  1. Does ocean acidification induce an upward flux of marine aggregates?

    Directory of Open Access Journals (Sweden)

    X. Mari

    2008-07-01

    Full Text Available The absorption of anthropogenic atmospheric carbon dioxide (CO2 by the ocean provokes its acidification. This acidification may alter several oceanic processes, including the export of biogenic carbon from the upper layer of the ocean, hence providing a feedback on rising atmospheric carbon concentrations. The effect of seawater acidification on transparent exopolymeric particles (TEP driven aggregation and sedimentation processes were investigated by studying the interactions between latex beads and TEP precursors collected in the lagoon of New Caledonia. A suspension of TEP and beads was prepared and the formation of mixed aggregates was monitored as a function of pH under increasing turbulence intensities. The pH was controlled by addition of sulfuric acid. Aggregation and sedimentation processes driven by TEP were drastically reduced when the pH of seawater decreases within the expected limits imposed by increased anthropogenic CO2 emissions. In addition to the diminution of TEP sticking properties, the diminution of seawater pH led to a significant increase of the TEP pool, most likely due to swollen structures. A diminution of seawater pH by 0.2 units or more led to a stop or a reversal of the downward flux of particles. If applicable to oceanic conditions, the sedimentation of marine aggregates may slow down or even stop as the pH decreases, and the vertical flux of organic carbon may reverse. This would enhance both rising atmospheric carbon and ocean acidification.

  2. Terrestrial acidification during the end-Permian biosphere crisis?

    NARCIS (Netherlands)

    Sephton, Mark A.; Jiao, Dan; Engel, Michael H.; Looy, Cindy V.; Visscher, Henk

    2015-01-01

    Excessive acid rainfall associated with emplacement of the Siberian Traps magmatic province is increasingly accepted as a major contributing factor to the end-Permian biosphere crisis. However, direct proxy evidence of terrestrial acidification is so far not available. In this paper, we seek to dete

  3. Ocean acidification alters fish populations indirectly through habitat modification

    Science.gov (United States)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  4. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    Van de Waal, D.B.; John, U.; Ziveri, P.; Reichart, G.J.; Hoins, M.; Sluijs, A.; Rost, B.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate

  5. Does ocean acidification induce an upward flux of marine aggregates?

    Directory of Open Access Journals (Sweden)

    X. Mari

    2008-04-01

    Full Text Available The adsorption of anthropogenic atmospheric carbon dioxide (CO2 by the ocean provokes its acidification. This acidification may alter several oceanic processes, including the export of biogenic carbon from the upper layer of the ocean, hence providing a feedback on rising atmospheric carbon concentrations. The effect of seawater acidification on transparent exopolymeric particles (TEP driven aggregation and sedimentation processes were investigated by studying the interactions between latex beads and TEP precursors collected in the lagoon of New Caledonia. A suspension of TEP and beads was prepared and the formation of mixed aggregates was monitored as a function of pH under increasing turbulence intensities. The pH was controlled by addition of sulfuric acid. Aggregation and sedimentation processes driven by TEP were drastically reduced when the pH of seawater decreases within the expected limits imposed by increased anthropogenic CO2 emissions. In addition to the diminution of TEP sticking properties, the diminution of seawater pH led to a significant increase of the TEP pool, most likely due to swollen structures. A diminution of seawater pH by 0.2 units or more led to a stop or a reversal of the downward flux of particles. If applicable to oceanic conditions, the sedimentation of marine aggregates may slow down or even stop as the pH decreases, and the vertical flux of organic carbon may reverse. This would enhance both rising atmospheric carbon and ocean acidification.

  6. Millennial-scale ocean acidification and late Quaternary

    Energy Technology Data Exchange (ETDEWEB)

    Riding, Dr Robert E [University of Tennessee (UT); Liang, Liyuan [ORNL; Braga, Dr Juan Carlos [Universidad de Granada, Departamento de Estratigrafıa y Paleontologıa, Granada, Spain

    2014-01-01

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14 000 years with largest reduction occurring 12 000 10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.

  7. Urbanization in China drives soil acidification of Pinus massoniana forests.

    Science.gov (United States)

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-01-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N(NH4+(-N)), P urbanization gradient, instead their levels were higher in urban than in urban/suburban area at the 0-10 cm layer. Our results suggested N deposition particularly under the climate of high temperature and rainfall, greatly contributed to a significant soil acidification occurred in the urbanized environment.

  8. Acid soils of western Serbia and their further acidification

    Science.gov (United States)

    Mrvic, Vesna

    2010-05-01

    Acid soils cause many unfavorable soil characteristics from the plant nutrition point of view. Because of increased soil acidity the violation of buffering soil properties due to leaching of Ca and Mg ions is taking place that also can cause soil physical degradation via peptization of colloids. Together with increasing of soil acidity the content of mobile Al increases that can be toxic for plants. Easily available nutritive elements transforms into hardly avaialble froms. The process of deactivation is especially expressed for phosphorous that under such conditions forms non-soluble compounds with sesqui-oxides. From the other hand the higher solubility of some microelements (Zn and B) can cause their accelerated leaching from root zone and therefore, result in their deficiency for plant nutrition. Dangerous and toxic matters transforms into easly-available forms for plants, especially, Cd and Ni under the lower soil pH. The studied soil occupies 36675 hectare in the municipality of Krupan in Serbia, and are characterized with very unfavorable chemical properties: 26% of the territory belongs to the cathegory of very acidic, and 44 % belongs to the cathegory of acidic. The results showed that the soil of the territory of Krupan is limited for agricultural land use due to their high acidity. Beside the statement of negative soil properties determined by acidity, there is a necessity for determination of soil sensitivity for acidification processes toward soil protection from ecological aspect and its prevention from further acidification. Based on such data and categorization of soils it is possible to undertake proper measures for soil protection and melioration of the most endangered soil cover, where the economic aspect of these measures is very important. One of the methods of soil classification based on sensitivity for acidification classification the determination of soil categories is based on the values of soil CEC and pH in water. By combination of these

  9. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  10. Reversal of ocean acidification enhances net coral reef calcification

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; MacLaren, Jana K.; Mason, Benjamin M.; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L.; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-01

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO32-]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO32-], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  11. Observed trends of anthropogenic acidification in North Atlantic water masses

    Directory of Open Access Journals (Sweden)

    M. Vázquez-Rodríguez

    2012-03-01

    Full Text Available The lack of observational pH data has made difficult assessing recent rates of ocean acidification, particularly in the high latitudes. Here we present a time series of high-quality carbon system measurements in the North Atlantic, comprising fourteen cruises spanning over 27 yr (1981–2008 and covering important water mass formation areas like the Irminger and Iceland basins. We provide direct quantification of anthropogenic acidification rates in upper and intermediate North Atlantic waters by removing the natural variability of pH from the observations. Bottle data were normalised to basin-average conditions using climatological data and further condensed into averages per water mass and year to examine the temporal trends. The highest acidification rates of all inspected water masses were associated with surface waters in the Irminger Sea (−0.0018 ± 0.0001 yr−1 and the Iceland Basin (−0.0012 ± 0.0002 yr−1 and, unexpectedly, with Labrador Seawater (LSW which experienced an unprecedented pH drop of −0.0015 ± 0.001 yr−1. The latter stems from the formation by deep convection and the rapid propagation in the North Atlantic subpolar gyre of this well-ventilated water mass. The high concentrations of anthropogenic CO2 are effectively transported from the surface into intermediate waters faster than via downward diffusion, thus accelerating the acidification rates of LSW. An extrapolation of the observed lineal trends of acidification suggests that the pH of LSW could drop 0.45 units with respect to pre-industrial levels by the time atmospheric CO2 concentrations double the present ones.

  12. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth. PMID:26909578

  13. Ocean acidification and its impacts: an expert survey

    Science.gov (United States)

    Gattuso, J.; Mach, K.; Morgan, M. G.

    2011-12-01

    The number of scientists investigating ocean acidification as well as the number of papers published on this issue have increased considerably in the past few years. On the one hand, the advances are welcome for the assessment of ocean acidification and its impacts. On the other hand, the volume and rapidity of the scientific developments as well as some contradictory results have created challenges for assessing the current state of knowledge and informing policy makers. Two tools are being used to synthesize the current information: meta-analysis and expert survey. In January this year, Working Groups I and II of the IPCC organized an expert meeting on ocean acidification in Okinawa. Following this meeting, we built a set of 22 statements, in consultation with several of the meeting participants. An expert survey was then conducted. It involved 52 experts who provided a considerable amount of information. The statements covered a broad array of research fields and were grouped in 3 categories: chemical aspects, biological and biogeochemical responses, and policy and socio-economic aspects. The survey results indicate a relatively strong consensus for most statements related to the past, present and future chemical aspects. Examples of consensual issues are: non-anthropogenic ocean acidification events have occurred in the geological past, anthropogenic CO2 emissions is the main (but not the only) mechanism generating the current ocean acidification event, and ocean acidification will be felt for centuries. The experts generally agreed that there will be impacts on biological and ecological processes and biogeochemical feedbacks, but for such statements, the levels of agreement were lower overall, with more variability across responses. Levels of agreements among experts surveyed were comparatively higher for statements regarding calcification, primary production and nitrogen fixation, as compared to impacts on food-webs. The levels of agreement for statements

  14. Ocean Acidification and the End-Permian Mass Extinction: To What Extent does Evidence Support Hypothesis?

    Directory of Open Access Journals (Sweden)

    Marie-Béatrice Forel

    2012-09-01

    Full Text Available Ocean acidification in modern oceans is linked to rapid increase in atmospheric CO2, raising concern about marine diversity, food security and ecosystem services. Proxy evidence for acidification during past crises may help predict future change, but three issues limit confidence of comparisons between modern and ancient ocean acidification, illustrated from the end-Permian extinction, 252 million years ago: (1 problems with evidence for ocean acidification preserved in sedimentary rocks, where proposed marine dissolution surfaces may be subaerial. Sedimentary evidence that the extinction was partly due to ocean acidification is therefore inconclusive; (2 Fossils of marine animals potentially affected by ocean acidification are imperfect records of past conditions; selective extinction of hypercalcifying organisms is uncertain evidence for acidification; (3 The current high rates of acidification may not reflect past rates, which cannot be measured directly, and whose temporal resolution decreases in older rocks. Thus large increases in CO2 in the past may have occurred over a long enough time to have allowed assimilation into the oceans, and acidification may not have stressed ocean biota to the present extent. Although we acknowledge the very likely occurrence of past ocean acidification, obtaining support presents a continuing challenge for the Earth science community.

  15. Monitoring structure development in milk acidification using diffuse reflectance profiles

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Andersen, Ulf; Møller, Flemming;

    2012-01-01

    The structure of dairy products is important for the consumer, and milk acidification plays a central role for structural development. To ensure the best possible consumer experience, it is important that a product’s structural properties are stable. Therefore process and quality control tools......-invasive method, the system also has potential as a design platform for creating specialized and cost-efficient vision systems. Our preliminary results are highly encouraging and show a clear relation between rheology and diffuse reflectance. A factorial experiment studying the effects of the content of fat......, protein, and temperature in the acidification process is conducted. The purpose of the experiment is to investigate how the change of these parameters affects the diffuse reflectance properties as well as to demonstrate the relation between the optical parameters and structure formation in milk...

  16. Matrix acidification in carbonate reservoirs; Acidificacoes matriciais em reservatorios carbonaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcio de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Carbonate reservoirs are characterized by great diversity of its properties, including permeability and porosity. When submitted to matrix acidification, if no effort is employed, acid will tend to consume carbonates where permeability and porosity are higher, further increasing conductivity of these sites and also increasing permeability and porosity contrast existing before acid effects on formation. That would give limited production as result of small effective producer zone extent, with probable underutilization of potential reservoirs productivity. To overcome this effect and to achieve greater coverage of treatments, divergence techniques should be applied, including associations of them. This paper presents divergence techniques performed in matrix acidification of Campos and Espirito Santo basins wells, which represent great structural diversity and, as consequence, a significant range of situations. Formations tests results are analyzed to verify diversion systems effectiveness, and how they contribute to the growth of productive potential. (author)

  17. Food supply confers calcifiers resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura

    2016-01-18

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  18. Cascading effects of ocean acidification in a rocky subtidal community.

    Directory of Open Access Journals (Sweden)

    Valentina Asnaghi

    Full Text Available Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae and their grazers (sea urchins. Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness. There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from

  19. Ocean acidification and warming will lower coral reef resilience

    OpenAIRE

    Anthony, Kenneth R. N.; Maynard, Jeffrey A; Diaz-Pulido, Guillermo; Peter J Mumby; Marshall, Paul A; Cao, Long; Hoegh-Guldberg, Ove

    2011-01-01

    Ocean warming and acidification from increasing levels of atmospheric CO2 represent major global threats to coral reefs, and are in many regions exacerbated by local-scale disturbances such as overfishing and nutrient enrichment. Our understanding of global threats and local-scale disturbances on reefs is growing, but their relative contribution to reef resilience and vulnerability in the future is unclear. Here, we analyse quantitatively how different combinations of CO2 and fishing pressure...

  20. Acidification of Forest Soil in Russia: 1893-Present

    OpenAIRE

    Lapenis, A. G.; Lawrence, G; Andreev, Andrei; A. A. Bobrov; M. S. Torn

    2004-01-01

    It is commonly believed that fine texture soils developed on carbonateparent material are well buffered from possible acidification. There areno data, however, documenting resistance of such soils to acidicdeposition exposure on a time scale longer than 30-40 years.In this paper we employed a rare opportunity of directly testinglong-term buffering capacity of 19th century forest soils developedon calcareous silt loam. A comparison of chemical analysis of archivedsoils with modern soils collec...

  1. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    OpenAIRE

    Robert Jandl; Stefan Smidt; Franz Mutsch; Alfred Fürst; Harald Zechmeister; Heidi Bauer; Thomas Dirnböck

    2012-01-01

    We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and...

  2. Acidification of the cytosol inhibits endocytosis from coated pits

    OpenAIRE

    1987-01-01

    Acidification of the cytosol of a number of different cell lines strongly reduced the endocytic uptake of transferrin and epidermal growth factor. The number of transferrin binding sites at the cell surface was increased in acidified cells. Electron microscopic studies showed that the number of coated pits at the cell surface was not reduced in cells with acidified cytosol. Experiments with transferrin- horseradish peroxidase conjugates and a monoclonal anti-transferrin receptor antibody demo...

  3. Including high frequency variability in coastal ocean acidification projections

    Directory of Open Access Journals (Sweden)

    Y. Takeshita

    2015-05-01

    Full Text Available Assessing the impacts of anthropogenic ocean acidification requires knowledge of present-day and future environmental conditions. Here, we present a simple model for upwelling margins that projects anthropogenic acidification trajectories by combining high-temporal resolution sensor data, hydrographic surveys for source water characterization, empirical relationships of the CO2 system, and the atmospheric CO2 record. This model characterizes CO2 variability on timescales ranging from hours (e.g. tidal to months (e.g. seasonal, bridging a critical knowledge gap in ocean acidification research. The amount of anthropogenic carbon in a given water mass is dependent on the age, therefore a density–age relationship was derived for the study region, and was combined with the 2013 Intergovernmental Panel on Climate Change CO2 emission scenarios to add density-dependent anthropogenic carbon to the sensor time series. The model was applied to time series from four autonomous pH sensors, each deployed in the surf zone, kelp forest, submarine canyon edge, and shelf break in the upper 100 m of the Southern California Bight. All habitats were within 5 km of one another, and exhibited unique, habitat-specific CO2 variability signatures and acidification trajectories, demonstrating the importance of making projections in the context of habitat-specific CO2 signatures. In general, both the mean and range of pCO2 increase in the future, with the greatest increases in both magnitude and range occurring in the deeper habitats due to reduced buffering capacity. On the other hand, the saturation state of aragonite (ΩAr decreased in both magnitude and range. This approach can be applied to the entire California Current System, and upwelling margins in general, where sensor and complementary hydrographic data are available.

  4. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  5. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons.

    Science.gov (United States)

    Reyes-Nivia, Catalina; Diaz-Pulido, Guillermo; Kline, David; Guldberg, Ove-Hoegh; Dove, Sophie

    2013-06-01

    Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 μatm - 24 °C) and future pCO2 -temperature scenarios projected for the end of the century (Medium: +230 μatm - +2 °C; High: +610 μatm - +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.

  6. Quantifying rates of evolutionary adaptation in response to ocean acidification.

    Science.gov (United States)

    Sunday, Jennifer M; Crim, Ryan N; Harley, Christopher D G; Hart, Michael W

    2011-01-01

    The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.

  7. Anticipating ocean acidification's economic consequences for commercial fisheries

    Science.gov (United States)

    Cooley, Sarah R.; Doney, Scott C.

    2009-06-01

    Ocean acidification, a consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO2 and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the 3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed 34 billion to the US gross national product. Mollusks contributed 19%, or 748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  8. Acidification reversal in low mountain range streams of Germany.

    Science.gov (United States)

    Sucker, Carina; von Wilpert, Klaus; Puhlmann, Heike

    2011-03-01

    This study evaluates the acidification status and trends in streams of forested mountain ranges in Germany in consequence of reduced anthropogenic deposition since the mid 1980s. The analysis is based on water quality data for 86 long-term monitored streams in the Ore Mountains, the Bavarian Forest, the Fichtelgebirge, the Harz Mountains, the Spessart, the Black Forest, the Thuringian Forest, and the Rheinisches Schiefergebirge of Germany and the Vosges of France. Within the observation period, which starts for the individual streams between 1980 and 2001 and ends between 1990 and 2009, trends in chemical water quality were calculated with the Seasonal Mann Kendall Test. About 87% of the streams show significant (p streams) and subsequently decreased base cation concentrations in the stream water (for calcium significant in 58% and magnesium 49% of the streams). Reaction products of acidification such as aluminum (significant for 50%) or manganese (significant for 69%) also decreased. Nitrate (52% with significant decrease) and chloride (38% with significant increase) have less pronounced trends and more variable spatial patterns. For the quotient of acidification, which is the ratio of the sum of base cations and the sum of acid anions, no clear trend is observed: in 44% of the monitored streams values significantly decreased and in 23% values significantly increased. A notable observation is the increasing DOC concentration, which is significant for 55% of the observed streams.

  9. Marine oxygen holes as a consequence of oceanic acidification

    Science.gov (United States)

    Hofmann, M.; Schellnhuber, H.-J.

    2009-04-01

    An increase of atmospheric CO2 levels will not only drive future global mean temperatures towards values unprecedented during the whole Quaternary, but will also lead to an acidification of sea water which could harm the marine biota. Here we assess possible impacts of elevated atmospheric CO2 concentrations on the marine biological carbon pump by utilizing a business-as-usual emission scenario of anthropogenic CO2. A corresponding release of 4075 Petagrams of Carbon in total has been applied to simulate the current millennium by employing an Earth System Model of Intermediate Complexity (EMIC). This work is focused on studying the implications of reduced biogenic calcification caused by an increasing degree of oceanic acidification on the marine biological carbon pump. The attenuation of biogenic calcification imposes a small negative feedback on rising atmospheric pCO2 levels, tending to stabilize the Earth's climate. Since mineral ballast, notably particulate CaCO3, plays a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a dramatic effect discovered in our model world with severe consequences: since organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans with potentially harmful impacts on a variety of marine ecosystems. Our study indicates that unbridled ocean acidification would exacerbate the observed hypoxia trends due to various environmental factors as reported in recent empirical studies.

  10. Transgenerational acclimation of fishes to climate change and ocean acidification.

    Science.gov (United States)

    Munday, Philip L

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be a powerful mechanism by which populations of some species will be able to adjust to projected climate change. Here, I review recent advances in understanding transgenerational acclimation in fishes. Research over the past 2 to 3 years shows that transgenerational acclimation can partially or fully ameliorate negative effects of warming, acidification, and hypoxia in a range of different species. The molecular and cellular pathways underpinning transgenerational acclimation are currently unknown, but modern genetic methods provide the tools to explore these mechanisms. Despite the potential benefits of transgenerational acclimation, there could be limitations to the phenotypic traits that respond transgenerationally, and trade-offs between life stages, that need to be investigated. Future studies should also test the potential interactions between transgenerational plasticity and genetic evolution to determine how these two processes will shape adaptive responses to environmental change over coming decades.

  11. Soil Acidification due to Acid Deposition in Southern China

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Bohan

    1998-12-31

    Anthropogenic emission of SO{sub 2} and NO{sub x} to the atmosphere has made acid deposition one of the most serious environmental problems. In China, acid deposition research started in the late 1970s. The present thesis is part of a joint Chinese-Norwegian research project. The main goal of the thesis was to investigate the mechanism of soil acidification, to estimate soil responses to acid deposition, and to compare relative soil sensitivity to acidification in southern China. Laboratory experiments and modelling simulations were included. Specifically, the thesis (1) studies the characteristics of anion adsorption and cation release of the soils from southern China, (2) examines the effects of increased ionic strength in the precipitation and the effects of anion adsorption on cation release from the soils, (3) compares the relative sensitivity of these soils to acidification and the potentially harmful effects of acid deposition, (4) estimates likely soil responses to different deposition scenarios, including changes in soil waters and soil properties, and (5) investigates long-term changes in soils and soil waters in the Guiyang catchment due to acid deposition. 218 refs., 31 figs., 23 tabs.

  12. Mechanism for sludge acidification in aerobic treatment of coking wastewater

    International Nuclear Information System (INIS)

    This work was undertaken to investigate the cause of sludge acidification that led to disruption of the activated sludge process treating coking wastewater from a steel-making plant in Taiwan. An activated sludge reactor (ASR) with a working volume of 80 L was used as a model system to simulate the behavior of the real wastewater treatment process. Parameters that may cause acidification or inactivation of the sludge (NH3, SCN-, S2O32- and CN-) were studied individually to examine for their effects on the performance of the ASR. The results show that high loading of NH3, SCN- and CN- did not lead to pH decrease, while the ASR attained 85% COD removal and nearly 100% SCN degradation. In contrast, when the wastewater was supplemented with ca. 1000 mg/L of S2O32-, the pH dropped to nearly 4.0 in 2 days and the COD and SCN removal yields were significantly lower (at 50 and 0-20%, respectively). Thus, overloading of S2O32- was apparently a key factor causing sludge acidification. The results suggest that to ensure a normal functioning of the activated sludge, the influent S2O32- concentration should be closely monitored and that the pH control of the ASR is indispensable when the S2O32- loading is in excess

  13. Coral calcifying fluid pH dictates response to ocean acidification.

    Science.gov (United States)

    Holcomb, M; Venn, A A; Tambutté, E; Tambutté, S; Allemand, D; Trotter, J; McCulloch, M

    2014-06-06

    Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification. Lateral growth was associated with lower pHcf and greater changes with acidification. Calcification showed a pattern similar to pHcf, with lateral growth being more strongly affected by acidification than apical. Regulation of pHcf is therefore spatially variable within a coral and critical to determining the sensitivity of calcification to ocean acidification.

  14. Benthic buffers and boosters of ocean acidification on coral reefs

    Directory of Open Access Journals (Sweden)

    K. R. N. Anthony

    2013-02-01

    Full Text Available Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (pn and calcification (gn. Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia contribute to changes in seawater aragonite saturation state (Ωa. Results of flume studies showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350–450 μatm, macroalgae (Chnoospora implexa, turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h−1 – normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560–700 μatm and high flow (35 compared to 8 cm s−1. In contrast, branching corals (Acropora aspera increased Ωa by 0.25 h−1 at ambient CO2 (350–450 μatm during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6–0.8 h−1 and exacerbated by acidification. Calcifying macroalgae (Halimeda spp. raised Ωa by day (by around 0.13 h−1, but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from four different benthic compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water residence times in neighbouring areas dominated by turfs, macroalgae and potentially sand.

  15. Benthic buffers and boosters of ocean acidification on coral reefs

    Directory of Open Access Journals (Sweden)

    K. R. N. Anthony

    2013-07-01

    Full Text Available Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP and calcification (NCC. Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia contribute to changes in the seawater aragonite saturation state (Ωa. Results of flume studies using intact reef habitats (1.2 m by 0.4 m, showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350–450 μatm, macroalgae (Chnoospora implexa, turfs and sand elevated Ωa of the flume water by around 0.10 to 1.20 h−1 – normalised to contributions from 1 m2 of benthos to a 1 m deep water column. The rate of Ωa increase in these groups was doubled under acidification (560–700 μatm and high flow (35 compared to 8 cm s−1. In contrast, branching corals (Acropora aspera increased Ωa by 0.25 h−1 at ambient CO2 (350–450 μatm during the day, but reduced Ωa under acidification and high flow. Nighttime changes in Ωa by corals were highly negative (0.6–0.8 h−1 and exacerbated by acidification. Calcifying macroalgae (Halimeda spp. raised Ωa by day (by around 0.13 h−1, but lowered Ωa by a similar or higher amount at night. Analyses of carbon flux contributions from benthic communities with four different compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Ωa by coral-dominated areas can to some extent be countered by long water-residence times in neighbouring areas dominated by turfs, macroalgae and carbonate sand.

  16. Ocean acidification and temperature increase impacts mussel shell shape and thickness: problematic for protection?

    OpenAIRE

    Fitzer, Susan C.; Vittert, Liberty; Bowman, Adrian; Nicholas A Kamenos; Phoenix, Vernon R.; Cusack, Maggie

    2015-01-01

    Abstract Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under‐saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of t...

  17. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    OpenAIRE

    Frédéric Gazeau; Pieter van Rijswijk; Lara Pozzato; Middelburg, Jack J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sedim...

  18. Divergent ecosystem responses within a benthic marine community to ocean acidification

    OpenAIRE

    Kroeker, Kristy J.; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R.

    2011-01-01

    Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO2 vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones ...

  19. Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions.

    Directory of Open Access Journals (Sweden)

    Shannan Cao

    Full Text Available In human pathological conditions, the acidification of local environment is a frequent feature, such as tumor and inflammation. As the pH of microenvironment alters, the functions of immune cells are about to change. It makes the extracellular acidification a key modulator of innate immunity. Here we detected the impact of extracellular acidification on neutrophil apoptosis and functions, including cell death, respiratory burst, migration and phagocytosis. As a result, we found that under the acid environment, neutrophil apoptosis delayed, respiratory burst inhibited, polarization augmented, chemotaxis differed, endocytosis enhanced and bacteria killing suppressed. These findings suggested that extracellular acidification acts as a key regulator of neutrophil apoptosis and functions.

  20. Ocean warming-acidification synergism undermines dissolved organic matter assembly.

    Science.gov (United States)

    Chen, Chi-Shuo; Anaya, Jesse M; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors--warming and acidification--threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow--even hinder--the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming-acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected.

  1. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification.

  2. Mycobacterial mutants with defective control of phagosomal acidification.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available The pathogenesis of mycobacterial infection is associated with an ability to interfere with maturation of the phagosomal compartment after ingestion by macrophages. Identification of the mycobacterial components that contribute to this phenomenon will allow rational design of novel approaches to the treatment and prevention of tuberculosis. Microarray-based screening of a transposon library was used to identify mutations that influence the fate of Mycobacterium bovis bacille Calmette-Guérin (BCG following uptake by macrophages. A screen based on bacterial survival during a 3-d infection highlighted genes previously implicated in growth of Mycobacterium tuberculosis in macrophages and in mice, together with a number of other virulence genes including a locus encoding virulence-associated membrane proteins and a series of transporter molecules. A second screen based on separation of acidified and non-acidified phagosomes by flow cytometry identified genes involved in mycobacterial control of early acidification. This included the KefB potassium/proton antiport. Mutants unable to control early acidification were significantly attenuated for growth during 6-d infections of macrophages. Early acidification of the phagosome is associated with reduced survival of BCG in macrophages. A strong correlation exists between genes required for intracellular survival of BCG and those required for growth of M. tuberculosis in mice. In contrast, very little correlation exists between genes required for intracellular survival of BCG and those that are up-regulated during intracellular adaptation of M. tuberculosis. This study has identified targets for interventions to promote immune clearance of tuberculosis infection. The screening technologies demonstrated in this study will be useful to the study of pathogenesis in many other intracellular microorganisms.

  3. Ocean acidification affects prey detection by a predatory reef fish.

    Directory of Open Access Journals (Sweden)

    Ingrid L Cripps

    Full Text Available Changes in olfactory-mediated behaviour caused by elevated CO(2 levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2 will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2 and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus. Predators were exposed to either current-day CO(2 levels or one of two elevated CO(2 levels (∼600 µatm or ∼950 µatm that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2 and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2 treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2 treatment and feeding activity was lower for fish in the mid CO(2 treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2 treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2 acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  4. Biochemical alterations induced in Hediste diversicolor under seawater acidification conditions.

    Science.gov (United States)

    Freitas, Rosa; Pires, Adília; Moreira, Anthony; Wrona, Frederick J; Figueira, Etelvina; Soares, Amadeu M V M

    2016-06-01

    Seawater pH is among the environmental factors controlling the performance of marine organisms, especially in calcifying marine invertebrates. However, changes in non-calcifying organisms (including polychaetes) may also occur due to pH decrease. Polychaetes are often the most abundant group of organisms in estuarine systems, representing an important ecological and economic resource. Thus, the present study aimed to evaluate the impacts of seawater acidification in the polychaete Hediste diversicolor, a species commonly used as bioindicator. For this, organisms were exposed to different pH levels (7.9, 7.6 and 7.3) during 28 days and several biochemical markers were measured. The results obtained demonstrated that pH decrease negatively affected osmotic regulation and polychaetes metabolism, with individuals under low pH (7.6 and 7.3) presenting higher carbonic anhydrase activity, lower energy reserves (protein and glycogen content) and higher metabolic rate (measured as Electron transport system activity). The increase on CA activity was associated to organisms osmoregulation capacity while the increase on ETS and decrease on energy reserves was associated to the polychaetes capacity to develop defense mechanisms (e.g. antioxidant defenses). In fact, despite having observed higher lipid peroxidation at pH 7.6, in polychaetes at the lowest tested pH (7.3) LPO levels were similar to values recorded in individuals under control pH (7.9). Such findings may result from higher antioxidant enzyme activity at the lowest tested pH, which prevented organisms from higher oxidative stress levels. Overall, our study demonstrated how polychaetes may respond to near-future ocean acidification conditions, exhibiting the capacity to develop biochemical strategies which will prevent organisms from lethal injuries. Such defense strategies will contribute for polychaetes populations maintenance and survival under predicted seawater acidification scenarios. PMID:27088614

  5. Effects of ocean acidification on learning in coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Maud C O Ferrari

    Full Text Available Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO(2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO(2 effects, whereby some individuals are unaffected at particular CO(2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO(2 (current day levels or 850 µatm CO(2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO(2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO(2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO(2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO(2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO(2-treated fish responded to a general risk cue (injured conspecific cues. These results indicate that exposure to CO(2 may alter the cognitive ability of juvenile fish and render

  6. Acidification of floodplains due to river level decline during drought

    Science.gov (United States)

    Mosley, Luke M.; Palmer, David; Leyden, Emily; Cook, Freeman; Zammit, Benjamin; Shand, Paul; Baker, Andrew; W. Fitzpatrick, Rob

    2014-06-01

    A severe drought from 2007 to 2010 resulted in the lowest river levels (1.75 m decline from average) in over 90 years of records at the end of the Murray-Darling Basin in South Australia. Due to the low river level and inability to apply irrigation, the groundwater depth on the adjacent agricultural flood plain also declined substantially (1-1.5 m) and the alluvial clay subsoils dried and cracked. Sulfidic material (pH > 4, predominantly in the form of pyrite, FeS2) in these subsoils oxidised to form sulfuric material (pH channels and this was transported back to the river via pumping. The drainage water exhibited low pH (2-5) with high soluble metal (Al, Co, Mn, Fe, Mn, Ni, and Zn) concentrations, in exceedance of guidelines for ecosystem protection. Irrigation increased the short-term transport of acidity, however loads were generally greater in the non-irrigation (winter) season when rainfall is highest (0.0026 tonnes acidity/ha/day) than in the irrigation (spring-summer) season (0.0013 tonnes acidity/ha/day). Measured reductions in groundwater acidity and increases in pH have been observed over time but severe acidification persisted in floodplain sediments and waters for over two years post-drought. Results from 2-dimensional modelling of the river-floodplain hydrological processes were consistent with field measurements during the drying phase and illustrated how the declining river levels led to floodplain acidification. A modelled management scenario demonstrated how river level stabilisation and limited irrigation could have prevented, or greatly lessened the severity of the acidification.

  7. Hypothesis: intracellular acidification contributes to infertility in varicocele.

    Science.gov (United States)

    Ghabili, Kamyar; Shoja, Mohammadali M; Agutter, Paul S; Agarwal, Ashok

    2009-07-01

    We suggest that varicocele leads to male factor infertility by a mechanism involving underperfusion of the testis, a shortfall in glucose supply to the tissue, decreased flux through the pentose phosphate pathway, lowering of the reduced nicotinamide-adenine dinucleotide phosphate/oxidized nicotinamide-adenine dinucleotide phosphate ratio and the supply of glutathione to the antioxidant systems, increased levels of reactive oxygen species, peroxidation of spermatozoon membrane lipids, and the consequent generation of acidic degradation products and sequestering of spermine. Acidification of the seminal plasma impairs sperm motility and also inhibits most antioxidant enzymes, exacerbating the accumulation of reactive oxygen species and the resultant lowering of pH.

  8. Was ocean acidification responsible for history's greatest extinction?

    Science.gov (United States)

    Schultz, Colin

    2011-11-01

    Two hundred fifty million years ago, the world suffered the greatest recorded extinction of all time. More than 90% of marine animals and a majority of terrestrial species disappeared, yet the cause of the Permian-Triassic boundary (PTB) dieoff remains unknown. Various theories abound, with most focusing on rampant Siberian volcanism and its potential consequences: global warming, carbon dioxide poisoning, ocean acidification, or the severe drawdown of oceanic dissolved oxygen levels, also known as anoxia. To narrow the range of possible causes, Montenegro et al. ran climate simulations for PTB using the University of Victoria Earth System Climate Model, a carbon cycle-climate coupled general circulation model.

  9. Rates of Ocean Acidification: Decoupling of Planktic and Benthic Extinctions?

    Science.gov (United States)

    Thomas, E.; Alegret, L.

    2012-12-01

    Deep-sea benthic organisms derive food from export of organic matter produced in the photic zone, so that pelagic and benthic productivity are coupled, suggesting that severe extinction of plankton and benthos in the geological past should have been coupled. An asteroid impact at the Cretaceous/Paleogene (K/Pg) boundary (~65 Ma), however, caused mass extinction of calcifying plankton (foraminifera and nannoplankton), whereas benthic calcifyers (foraminifera) did not suffer significant extinction. Also, pelagic calcifyers did not suffer severe extinction during the carbon-cycle perturbation and global warming at the Paleocene-Eocene (P/E) boundary 10 myr later, when deep-sea benthic foraminifera did. The K/Pg extinction has been interpreted as darkness-caused collapse of productivity, but this is not supported by the lack of benthic extinction. To evaluate extinction mechanisms, we compared benthic foraminiferal and stable isotope records at ODP sites in the Pacific, SE Atlantic and Southern Oceans. Across the K/Pg boundary, the decrease in export productivity was moderate, regionally variable, and insufficient to explain the mass extinction at higher levels of the food chain. Across the P/E boundary, productivity increased in epicontinental seas and on continental margins, whereas pelagic productivity may have declined (increased trophic resource continuum). We thus found no evidence that the different benthic and pelagic extinction patterns at K/Pg and P/E were linked to changes in (export) productivity. Instead, the difference between planktic and benthic extinction patterns may have been caused by the occurrence of ocean acidification at different rates. Very rapid (faster than present anthropogenic) surface ocean acidification at the K/Pg boundary may have been due to influx of impact-generated nitric acid, followed by rapid oceanic buffering. This may have been a factor in the massive extinction of pelagic calcifyers, ammonites and top-level predators such as

  10. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits...... in south-eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites...

  11. AFSC/RACE/SAP/Foy: Effects of ocean acidification on embryo stages of Tanner crab: Kodiak Island, Alaska.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To study the effects of ocean acidification we examined the effects of ocean acidification on the embryo stages of the economically important southern Tanner crab,...

  12. Soil Acidification of Alfisols as Influenced by Tea Cultivation in Eastern China

    Institute of Scientific and Technical Information of China (English)

    WANG Hui; XU Ren-Kou; WANG Ning; LI Xing-Hui

    2010-01-01

    Soil acidification is an important process in land degradation around the world as well as in China. Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern China. Cultivation of tea plants caused soil acidification and soil acidity increased with the increase of tea cultivation period. Soil pH of composite samples from cultivated layers decreased by 1.37, 1.62 and 1.85, respectively, after 13, 34 and 54 years of tea plantation,as compared to the surface soil obtained from the unused land. Soil acidification rates at early stages of tea cultivation were found to be higher than those at the later stages. The acidification rate for the period of 0-13 years was as high as 4.40 kmol H+ ha-1 year-1 for the cultivated layer samples. Soil acidification induced the decrease of soil exchangeable base cations and base cation saturation and thus increased the soil exchangeable acidity. Soil acidification also caused the decrease of soil cation exchange capacity, especially for the 54-year-old tea garden. Soil acidification induced by tea plantation also led to the increase of soil exchangeable Al and soluble Al, which was responsible for the Al toxiciy to plants.

  13. Effects of Seawater Acidification on the Liffe Cycle and Fitness of Opossum Shrimp Population

    Science.gov (United States)

    Much of the current concern about ecological effects of ocean acidification focuses on molluscs and coccolithophores because of their importance in the global calcium cycle. However, many other marine organisms are likely to be affected by acidification because of their known se...

  14. Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study

    NARCIS (Netherlands)

    Riebesell, U.; Gattuso, J.-P.; Thingstad, T.F.; Middelburg, J.J.

    2013-01-01

    The growing evidence of potential biological impacts of ocean acidification affirms that this global change phenomenon may pose a serious threat to marine organisms and ecosystems. Whilst ocean acidification will occur everywhere, it will happen more rapidly in some regions than in others. Due to th

  15. Ocean Acidification: a review of the current status of research and institutional developments

    NARCIS (Netherlands)

    Beek, van I.J.M.; Dedert, M.

    2012-01-01

    Ocean acidification is defined as the change in ocean chemistry driven by the oceanic uptake of chemical inputs to the atmosphere, including carbon, nitrogen and sulphur compounds. Ocean acidification is also referred to as ‘the other CO2 problem’ of anthropogenic carbon dioxide (CO2) emissions alon

  16. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea

    Science.gov (United States)

    Horvath, Kimmaree M.; Castillo, Karl D.; Armstrong, Pualani; Westfield, Isaac T.; Courtney, Travis; Ries, Justin B.

    2016-01-01

    Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1–4 °C and pH to decrease by 0.1–0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2 = 424–426, 888–940 ppm-v) and warming (T = 28, 32 °C) on calcification rate and skeletal morphology of the abundant and widespread Caribbean reef-building scleractinian coral Siderastrea siderea. Hierarchical linear mixed-effects modelling reveals that coral calcification rate was negatively impacted by both warming and acidification, with their combined effects yielding the most deleterious impact. Negative effects of warming (32 °C/424 ppm-v) and high-temperature acidification (32 °C/940 ppm-v) on calcification rate were apparent across both 30-day intervals of the experiment, while effects of low-temperature acidification (28 °C/888 ppm-v) were not apparent until the second 30-day interval—indicating delayed onset of acidification effects at lower temperatures. Notably, two measures of coral skeletal morphology–corallite height and corallite infilling–were negatively impacted by next-century acidification, but not by next-century warming. Therefore, while next-century ocean acidification and warming will reduce the rate at which corals build their skeletons, next-century acidification will also modify the morphology and, potentially, function of coral skeletons. PMID:27470426

  17. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea.

    Science.gov (United States)

    Horvath, Kimmaree M; Castillo, Karl D; Armstrong, Pualani; Westfield, Isaac T; Courtney, Travis; Ries, Justin B

    2016-01-01

    Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1-4 °C and pH to decrease by 0.1-0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2 = 424-426, 888-940 ppm-v) and warming (T = 28, 32 °C) on calcification rate and skeletal morphology of the abundant and widespread Caribbean reef-building scleractinian coral Siderastrea siderea. Hierarchical linear mixed-effects modelling reveals that coral calcification rate was negatively impacted by both warming and acidification, with their combined effects yielding the most deleterious impact. Negative effects of warming (32 °C/424 ppm-v) and high-temperature acidification (32 °C/940 ppm-v) on calcification rate were apparent across both 30-day intervals of the experiment, while effects of low-temperature acidification (28 °C/888 ppm-v) were not apparent until the second 30-day interval-indicating delayed onset of acidification effects at lower temperatures. Notably, two measures of coral skeletal morphology-corallite height and corallite infilling-were negatively impacted by next-century acidification, but not by next-century warming. Therefore, while next-century ocean acidification and warming will reduce the rate at which corals build their skeletons, next-century acidification will also modify the morphology and, potentially, function of coral skeletons. PMID:27470426

  18. Acidification and warming affect both a calcifying predator and prey, but not their interaction

    DEFF Research Database (Denmark)

    Landes, Anja; Zimmer, Martin

    2012-01-01

    Both ocean warming and acidification have been demonstrated to affect the growth, performance and reproductive success of calcifying invertebrates. However, relatively little is known regarding how such environmental change may affect interspecific interactions. We separately treated green crabs...... Carcinus maenas and periwinkles Littorina littorea under conditions that mimicked either ambient conditions (control) or warming and acidification, both separately and in combination, for 5 mo. After 5 mo, the predators, prey and predator-prey interactions were screened for changes in response...... to environmental change. Acidification negatively affected the closer-muscle length of the crusher chela and correspondingly the claw-strength increment in C. maenas. The effects of warming and/or acidification on L. littorea were less consistent but indicated weaker shells in response to acidification...

  19. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Thoisen, Christina; Riisgaard, Karen; Lundholm, Nina;

    2015-01-01

    . Our findings show that coastal phytoplankton from Disko Bay is naturally exposed to pH fluctuations exceeding the experimental pH range used in most ocean acidification studies. We emphasize that studies on ocean acidification should include in situ pH before assumptions on the effect of acidification...... on marine organisms can be made. KEY WORDS: Ocean acidification · Coastal · Arctic phytoplankton · Growth rate · pH · CO2 · DIC......ABSTRACT: Long-term measurements (i.e. months) of in situ pH have not previously been reported from the Arctic; this study shows fluctuations between pH 7.5 and 8.3 during the spring bloom 2012 in a coastal area of Disko Bay, West Greenland. The effect of acidification on phytoplankton from...

  20. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development

    DEFF Research Database (Denmark)

    Schrijver, An de; Frenne, Pieter de; Staelens, Jeroen;

    2012-01-01

    -depth understanding of tree species-specific effects on soil acidification is therefore crucial, particularly in view of the predicted global increases in acidifying nitrogen (N) deposition. Here, we report soil acidification rates in a chronosequence of broadleaved deciduous forests planted on former arable land......A change in land use from agriculture to forest generally increases soil acidity. However, it remains unclear to what extent plant traits can enhance or mitigate soil acidification caused by atmospheric deposition. Soil acidification is detrimental for the survival of many species. An in...... in Belgium. This region receives one of the highest loads of potentially acidifying atmospheric deposition in Europe, which allowed us to study a ‘worst case scenario’. We show that less than four decades of forest development caused significant soil acidification. Atmospheric deposition undoubtedly...

  1. Ocean acidification causes structural deformities in juvenile coral skeletons.

    Science.gov (United States)

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.

  2. The exposure of the Great Barrier Reef to ocean acidification.

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  3. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.

    Science.gov (United States)

    Beaufort, L; Probert, I; de Garidel-Thoron, T; Bendif, E M; Ruiz-Pino, D; Metzl, N; Goyet, C; Buchet, N; Coupel, P; Grelaud, M; Rost, B; Rickaby, R E M; de Vargas, C

    2011-08-03

    About one-third of the carbon dioxide (CO(2)) released into the atmosphere as a result of human activity has been absorbed by the oceans, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems and particularly to calcifying organisms such as corals, foraminifera and coccolithophores. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO(2) have yielded contradictory results between and even within species. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO(2) and concomitant decreasing concentrations of CO(3)(2-). Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.

  4. Conservation of acid waterlogged shipwrecks: nanotechnologies for de-acidification

    Science.gov (United States)

    Giorgi, R.; Chelazzi, D.; Baglioni, P.

    2006-06-01

    Preservation of waterlogged wooden artifacts, and in particular ancient wrecks, is a challenge in cultural heritage conservation. Samples, from the Swedish warship Vasa, are under investigation in order to develop innovative methods for wood de-acidification and preservation. The Vasa represents a unique case in the study of ancient wrecks. In the past four years the problem of the acidity of wood emerged as a strong threat to its conservation. The production of sulphuric acid inside the ship wood might be the cause of both chemical damage through the acid hydrolysis of cellulose, and of physical damage of the wood’s pore structure, due to the crystallization of sulphate minerals in the wood pores. In this paper we show that wood acidity can be neutralized by the application of nanoparticles of alkaline-earth carbonates and/or hydroxides. The treatment provides an alkaline reservoir inside the wood. Nanoparticles absorbed in the wood from an alcoholic dispersion adhere to the wood wall and release hydroxyl ions leading to the wood neutralization. Oak and pine samples from the Vasa wreck were characterized and treated with alkaline magnesium or calcium nanoparticle dispersions in non-aqueous solvents. De-acidification was monitored by pH changes and thermal analysis, and all the treated samples were submitted to thermal artificial ageing in order to demonstrate the efficacy of the method. The results obtained opened a new perspective in wood conservation.

  5. The exposure of the Great Barrier Reef to ocean acidification

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E.; Tilbrook, Bronte; Matear, Richard J.; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J.; Duarte, Carlos M.; Gustafsson, Malin S. M.; Ralph, Peter J.; Steven, Andrew D. L.

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  6. The exposure of the Great Barrier Reef to ocean acidification.

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  7. Ocean acidification causes structural deformities in juvenile coral skeletons.

    Science.gov (United States)

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100. PMID:26989776

  8. The exposure of the Great Barrier Reef to ocean acidification

    KAUST Repository

    Mongin, Mathieu

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  9. Ocean acidification reduces growth and calcification in a marine dinoflagellate.

    Science.gov (United States)

    Van de Waal, Dedmer B; John, Uwe; Ziveri, Patrizia; Reichart, Gert-Jan; Hoins, Mirja; Sluijs, Appy; Rost, Björn

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.

  10. Organelle acidification negatively regulates vacuole membrane fusion in vivo

    Science.gov (United States)

    Desfougères, Yann; Vavassori, Stefano; Rompf, Maria; Gerasimaite, Ruta; Mayer, Andreas

    2016-01-01

    The V-ATPase is a proton pump consisting of a membrane-integral V0 sector and a peripheral V1 sector, which carries the ATPase activity. In vitro studies of yeast vacuole fusion and evidence from worms, flies, zebrafish and mice suggested that V0 interacts with the SNARE machinery for membrane fusion, that it promotes the induction of hemifusion and that this activity requires physical presence of V0 rather than its proton pump activity. A recent in vivo study in yeast has challenged these interpretations, concluding that fusion required solely lumenal acidification but not the V0 sector itself. Here, we identify the reasons for this discrepancy and reconcile it. We find that acute pharmacological or physiological inhibition of V-ATPase pump activity de-acidifies the vacuole lumen in living yeast cells within minutes. Time-lapse microscopy revealed that de-acidification induces vacuole fusion rather than inhibiting it. Cells expressing mutated V0 subunits that maintain vacuolar acidity were blocked in this fusion. Thus, proton pump activity of the V-ATPase negatively regulates vacuole fusion in vivo. Vacuole fusion in vivo does, however, require physical presence of a fusion-competent V0 sector. PMID:27363625

  11. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    Science.gov (United States)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  12. Assessment of soil acidification effects on forest growth in Sweden

    International Nuclear Information System (INIS)

    The results of mapping critical loads, areas where they have been exceeded and steady state (Ca+Mg+K)/Al ratios of soils in Sweden, has been used to assess the order of magnitude of the ecological and economic risks involved with acid deposition for Swedish forests. The results of the calculations indicate that 81% of the Swedish forested area received acid deposition in excess of the critical load at present. Under continued deposition at 1990 level, forest die-back is predicted to occur on approximately 1% of the forested area, and significant growth rate reductions are predicted for 80% of the Swedish forested area. For Sweden, growth losses in the order of 17.5 million m-3yr-1 are predicted, equivalent to approximately 19% of current growth. Comparable losses can be predicted for other Nordic countries. The soil acidification situation is predicted to deteriorate significantly during the next 5-15 years, unless rapid emission reductions can be achieved. A minimum deposition reduction over Sweden of 95% on sulphur deposition and 30% on the N deposition in relation to 1990 level is required in order to protect 95% of the Swedish forest ecosystems from adverse effects of acidification. A minimum reduction of 60% on sulphur deposition and 30% on the N deposition is required to keep forest harvest at planned levels. 148 refs., 9 figs., 9 tabs

  13. Tradeable emission permit in Dutch acidification abatement policy

    Energy Technology Data Exchange (ETDEWEB)

    Ruyssenaars, P.; Sliggers, J. [Ministry of Environment (Netherlands)

    1995-12-31

    Target groups as well as the government are under the spell of economic instruments as part of environmental policy. Under this heading fall (regulatory) taxes and tradeable emission permits (VER). Of the two, VER, particularly, receive a lot of attention. From the target groups, because the flexibility of VER means working cost-effectively, which could lead to cost savings. From the government, because it can have more faith in the viability of emission ceilings, and has less need to pass detailed legislation. The latter conforms nicely to the philosophy `government at arm`s length`. The Ministry of Environment has had a study made on the feasibility of VER in the context of the acidification abatement policy in the Netherlands. The development and implementation of policy concerning acidification abatement is at an advanced stage, with deposition targets already set for 2000 and 2010 (2400 and 1400 acid equivalents/ha/year, respectively, averaged for afforested areas). From these, also emission reduction targets per target group are deduced, which can be used in a VER system. The main starting point of the study was to gain more insight into the practical aspects of VER. One important question is what form a VER system for the Netherlands should have to take. Also, an investigation was made into the activities which are necessary to introduce a VER system as well as the time, manpower and money these activities entail

  14. Restructuring of the sponge microbiome favors tolerance to ocean acidification.

    Science.gov (United States)

    Ribes, M; Calvo, E; Movilla, J; Logares, R; Coma, R; Pelejero, C

    2016-08-01

    Ocean acidification is increasing and affects many marine organisms. However, certain sponge species can withstand low-pH conditions. This may be related to their complex association with microbes. We hypothesized that species with greater microbial diversity may develop functional redundancy that could enable the holobiont to survive even if particular microbes are lost at low-pH conditions. We evaluated the effects of acidification on the growth and associated microbes of three ubiquitous Mediterranean sponges by exposing them to the present pH level and that predicted for the year 2100. We found marked differences among the species in the acquisition of new microbes, being high in Dysidea avara, moderate in Agelas oroides and null in Chondrosia reniformis; however, we did not observe variation in the overall microbiome abundance, richness or diversity. The relative abilities to alter the microbiomes contributes to survivorship in an OA scenario as demonstrated by lowered pH severely affecting the growth of C. reniformis, halving that of A. oroides, and unaffecting D. avara. Our results indicate that functional stability of the sponge holobiont to withstand future OA is species-specific and is linked to the species' ability to use horizontal transmission to modify the associated microbiome to adapt to environmental change. PMID:27264698

  15. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.

    Science.gov (United States)

    Hall-Spencer, Jason M; Rodolfo-Metalpa, Riccardo; Martin, Sophie; Ransome, Emma; Fine, Maoz; Turner, Suzanne M; Rowley, Sonia J; Tedesco, Dario; Buia, Maria-Cristina

    2008-07-01

    The atmospheric partial pressure of carbon dioxide (p(CO(2))) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years. The oceans are a principal sink for anthropogenic CO(2) where it is estimated to have caused a 30% increase in the concentration of H(+) in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100 (refs 2, 3). Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO(2) vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of p(CO(2)). Sea-grass production was highest in an area at mean pH 7.6 (1,827 (mu)atm p(CO(2))) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of p(CO(2)) and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.

  16. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2011-12-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms and thereby modifying the oceanic alkalinity cycle. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. Meanwhile, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 will ultimately increase or decrease the globally-integrated pelagic calcification rate. Here, we assess the importance of this uncertainty by introducing a variable dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in the University of Victoria Earth System Climate Model, an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of this parameterization on global ocean carbon cycling under two CO2 emissions scenarios, both integrated to the year 3500. The simulations show a significant sensitivity of the vertical and surface horizontal alkalinity gradients to the parameterization, as well as the removal of alkalinity from the ocean through CaCO3 burial. These sensitivities result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 13 % of total carbon emissions, compared to the case where calcification is insensitive to acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500, a 13 % reduction in the amplitude of warming. Narrowing these uncertainties will require better understanding of both temperature and acidification effects on pelagic calcifiers. Preliminary examination suggests that

  17. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  18. Divergent ecosystem responses within a benthic marine community to ocean acidification.

    Science.gov (United States)

    Kroeker, Kristy J; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R

    2011-08-30

    Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.

  19. Viability and Acidification by Promising Yeasts Intended as Potential Starter Cultures for Rice-based Beverages

    Directory of Open Access Journals (Sweden)

    Antonio Bevilacqua

    2015-08-01

    Full Text Available Over the last years, some innovative cereal-based beverages were designed using beneficial lactic acid bacteria; however, few data are available on the potential role of yeasts. The main topic of this research was to investigate the suitability of four promising yeast strains (Saccharomyces cerevisiae var. boulardii, Kluyveromyces lactis, Saccharomyces pastorianus and Kazachstania exigua as potential starter cultures for rice-based beverages. This aim was achieved through some intermediate scientific aims, i.e., by assessing cell viability and acidification in different cereal substrates (malt extract, soft wheat, rice and kamut flours; thereafter by studying acidification and persistence in an organic rice drink during a prolonged storage at 25 and 4°C. Rice flour provided appropriate growth for all the strains. K. exigua and S. pastorianus experienced a relatively fast acidification within 24 h. After 40 d the yeasts showed similar cell counts (ca. 7 log cfu/mL and acidification (experienced a relatively fast acidification within 24 h. After 40 d the yeasts showed similar cell counts (ca. 7 log cfu/mL and acidification (ΔpH of ca. 2.7 at 25°C and ca. 1.2-1.4 at 4°C in the organic rice drink. The evaluation of viability and acidification by promising candidates should be a simple procedure to screen yeast strains for potential use as starter cultures to design new rice-fermented functional beverages.

  20. Will krill fare well under Southern Ocean acidification?

    Science.gov (United States)

    Kawaguchi, So; Kurihara, Haruko; King, Robert; Hale, Lillian; Berli, Thomas; Robinson, James P.; Ishida, Akio; Wakita, Masahide; Virtue, Patti; Nicol, Stephen; Ishimatsu, Atsushi

    2011-01-01

    Antarctic krill embryos and larvae were experimentally exposed to 380 (control), 1000 and 2000 µatm pCO2 in order to assess the possible impact of ocean acidification on early development of krill. No significant effects were detected on embryonic development or larval behaviour at 1000 µatm pCO2; however, at 2000 µatm pCO2 development was disrupted before gastrulation in 90 per cent of embryos, and no larvae hatched successfully. Our model projections demonstrated that Southern Ocean sea water pCO2 could rise up to 1400 µatm in krill's depth range under the IPCC IS92a scenario by the year 2100 (atmospheric pCO2 788 µatm). These results point out the urgent need for understanding the pCO2-response relationship for krill developmental and later stages, in order to predict the possible fate of this key species in the Southern Ocean. PMID:20943680

  1. Coccolithophore calcification response to past ocean acidification and climate change.

    Science.gov (United States)

    O'Dea, Sarah A; Gibbs, Samantha J; Bown, Paul R; Young, Jeremy R; Poulton, Alex J; Newsam, Cherry; Wilson, Paul A

    2014-11-17

    Anthropogenic carbon dioxide emissions are forcing rapid ocean chemistry changes and causing ocean acidification (OA), which is of particular significance for calcifying organisms, including planktonic coccolithophores. Detailed analysis of coccolithophore skeletons enables comparison of calcite production in modern and fossil cells in order to investigate biomineralization response of ancient coccolithophores to climate change. Here we show that the two dominant coccolithophore taxa across the Paleocene-Eocene Thermal Maximum (PETM) OA global warming event (~56 million years ago) exhibited morphological response to environmental change and both showed reduced calcification rates. However, only Coccolithus pelagicus exhibits a transient thinning of coccoliths, immediately before the PETM, that may have been OA-induced. Changing coccolith thickness may affect calcite production more significantly in the dominant modern species Emiliania huxleyi, but, overall, these PETM records indicate that the environmental factors that govern taxonomic composition and growth rate will most strongly influence coccolithophore calcification response to anthropogenic change.

  2. Detecting the unexpected: a research framework for ocean acidification.

    Science.gov (United States)

    Pfister, Catherine A; Esbaugh, Andrew J; Frieder, Christina A; Baumann, Hannes; Bockmon, Emily E; White, Meredith M; Carter, Brendan R; Benway, Heather M; Blanchette, Carol A; Carrington, Emily; McClintock, James B; McCorkle, Daniel C; McGillis, Wade R; Mooney, T Aran; Ziveri, Patrizia

    2014-09-01

    The threat that ocean acidification (OA) poses to marine ecosystems is now recognized and U.S. funding agencies have designated specific funding for the study of OA. We present a research framework for studying OA that describes it as a biogeochemical event that impacts individual species and ecosystems in potentially unexpected ways. We draw upon specific lessons learned about ecosystem responses from research on acid rain, carbon dioxide enrichment in terrestrial plant communities, and nitrogen deposition. We further characterize the links between carbon chemistry changes and effects on individuals and ecosystems, and enumerate key hypotheses for testing. Finally, we quantify how U.S. research funding has been distributed among these linkages, concluding that there is an urgent need for research programs designed to anticipate how the effects of OA will reverberate throughout assemblages of species.

  3. Nanoparticle de-acidification of the Mary Rose

    Directory of Open Access Journals (Sweden)

    Eleanor J. Schofield

    2011-07-01

    Full Text Available The preservation of waterlogged archaeological wooden finds, such as Henry VIII's flagship the Mary Rose1–3, is complicated by the biological, chemical, and mechanical changes induced from prolonged exposure to a marine environment. Of particular concern are sulfur species that form acidic compounds that attack wood4. Here we show that different sulfur compounds do not form acids at the same rate or pathway and propose a preservation strategy of applying SrCO3 nanoparticles. These nanoparticles not only neutralize problematic sulfuric acid, but also reduced sulfur compounds, such as sulfur and pyrite, which pose a long term threat. This is the first treatment that eliminates acidification at the root. Although this strategy was devised for the Mary Rose, it could be employed to preserve any archaeological organic artifact rich in problematic sulfur, from sunken ships5,6 and silk tapestries7 to ancient texts8 and parchments9.

  4. Ecological impacts of ocean acidification in coastal marine environments (Invited)

    Science.gov (United States)

    Harley, C.; Crim, R.; Gooding, R.; Nienhuis, S.; Tang, E.

    2010-12-01

    Rising atmospheric carbon dioxide concentrations are driving rapid and potentially unprecedented reductions in pH and carbonate ion availability in coastal marine environments. This process, known as ocean acidification (OA), has far-reaching implications for the performance and survival of marine organisms, particularly those with calcified shells and skeletons. Here, we highlight the ways in which OA impacts plants and animals in a coastal benthic food web, with an emphasis on what we know and what we don’t know about the ways in which the responses of individual organisms will scale up to long-term changes in community structure. Our system of interest is the rocky shore benthic community that is broadly represented from Alaska through California. Ecologically important species include producers (micro- and macro-algae), grazers (urchins and gastropods), filter feeders (mussels), and predators (sea stars). Although the direct effects of OA on coastal phytoplankton and kelps remain poorly understood, it appears as though elevated CO2 will increase the doubling rate of benthic diatoms. Small changes in food supply, however, may pale in comparison to the direct effects of OA on heavily calcified grazers and filter feeders. Sea urchin and mussel growth are both reduced by increased CO2 in the lab, and decadal-scale reductions in pH are associated with reduced turban snail growth in the field. Although adult abalone growth appears to be unaffected by CO2, larval development is impaired and larval survival is significantly reduced in acidified conditions. In contrast to the negative effects of OA on heavily calcified herbivores and filter feeders, lightly calcified sea stars actually grow faster when CO2 is experimentally increased. The acidification-induced changes described here are likely to result in substantial shifts in the benthic ecosystem. Increasing predation pressure may further reduce the abundance of grazers and filter feeders that are already suffering

  5. Understanding ocean acidification impacts on organismal to ecological scales

    Science.gov (United States)

    Andersson, Andreas J; Kline, David I; Edmunds, Peter J; Archer, Stephen D; Bednaršek, Nina; Carpenter, Robert C; Chadsey, Meg; Goldstein, Philip; Grottoli, Andrea G.; Hurst, Thomas P; King, Andrew L; Kübler, Janet E.; Kuffner, Ilsa B.; Mackey, Katherine R M; Menge, Bruce A.; Paytan, Adina; Riebesell, Ulf; Schnetzer, Astrid; Warner, Mark E; Zimmerman, Richard C

    2015-01-01

    Ocean acidification (OA) research seeks to understand how marine ecosystems and global elemental cycles will respond to changes in seawater carbonate chemistry in combination with other environmental perturbations such as warming, eutrophication, and deoxygenation. Here, we discuss the effectiveness and limitations of current research approaches used to address this goal. A diverse combination of approaches is essential to decipher the consequences of OA to marine organisms, communities, and ecosystems. Consequently, the benefits and limitations of each approach must be considered carefully. Major research challenges involve experimentally addressing the effects of OA in the context of large natural variability in seawater carbonate system parameters and other interactive variables, integrating the results from different research approaches, and scaling results across different temporal and spatial scales.

  6. Response of Halimeda to ocean acidification: Field and laboratory evidence

    Science.gov (United States)

    Robbins, L.L.; Knorr, P.O.; Hallock, P.

    2009-01-01

    Rising atmospheric pCO2 levels are changing ocean chemistry more dramatically now than in the last 20 million years. In fact, pHvalues of the open ocean have decreased by 0.1 since the 1800s and are predicted to decrease 0.1-0.4 globally in the next 90 years. Ocean acidification will affect fundamental geochemical and biological processes including calcification and carbonate sediment production. The west Florida shelf is a natural laboratory to examine the effects of ocean acidification on aragonite production by calcareous green algae. Scanning electron microscopy (SEM) of crystal morphology of calcifying organisms reveals ultrastructural details of calcification that occurred at different saturation states. Comparison of archived and recent specimens of calcareous green alga Halimeda spp. from the west Florida shelf, demonstrates crystal changes in shape and abundance over a 40+ year time span. Halimeda crystal data from apical sections indicate that increases in crystal concentration and decreases in crystal width occurred over the last 40+ years. Laboratory experiments using living specimens of Halimeda grown in environments with known pH values were used to constrain historical observations. Percentages of organic and inorganic carbon per sample weight of pooled species did not significantly change. However, individual species showed decreased inorganic carbon and increased organic carbon in more recent samples, although the sample sizes were limited. These results indicate that the effect of increased pCO 2 and decreased pH on calcification is reflected in the crystal morphology of this organism. More data are needed to confirm the observed changes in mass of crystal and organic carbon. ?? Author(s) 2009.

  7. CO2-Induced Acidification of the Laurentian Great Lakes

    Science.gov (United States)

    McKinley, G. A.; Phillips, J.; Bennington, V.; Bootsma, H. A.; Pilcher, D.; Sterner, R.; Urban, N. R.

    2013-12-01

    A number of studies indicate that air-water equilibration is the dominant control on pCO2 in several Great Lakes at annual timescales or longer. Assuming this is the case across all lakes at present and into the future, we show that pH will decline by 0.3-0.4 units through 2100 under a business-as-usual CO2 emission scenario. In a survey of the Great Lakes scientific community, 87% of respondents indicate that CO2-driven acidification is likely. The available pH data do not support these predicted trends, but limited sampling in an environment characterized by significant spatio-temporal variability, as well as significant measurement uncertainty, cast doubt on the ability of the historical pH record to resolve the predicted trends. Evaluation of the current sampling strategy using eddy-resolving numerical models of Lake Superior and Lake Michigan are key evidence that the current monitoring strategy is inadequate. In order to track long-term pH change and assess whether atmospheric CO2 will affect the Great Lakes like the oceans, a new approach to Great Lakes pH monitoring is required. Ecological impacts of CO2 acidification have not been studied for the Great Lakes, but potential effects can be gleaned from the literature. In addition, our qualitative and quantitative survey results suggest that processes such as fish recruitment, dreissenid mussel growth, and nutrient cycling may be sensitive to pH, but there is lack of consensus about the magnitude and overall significance of these effects.

  8. Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment

    Science.gov (United States)

    Spilling, Kristian; Paul, Allanah J.; Virkkala, Niklas; Hastings, Tom; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Boxhammer, Tim; Schulz, Kai G.; Ludwig, Andrea; Riebesell, Ulf

    2016-08-01

    Anthropogenic carbon dioxide (CO2) emissions are reducing the pH in the world's oceans. The plankton community is a key component driving biogeochemical fluxes, and the effect of increased CO2 on plankton is critical for understanding the ramifications of ocean acidification on global carbon fluxes. We determined the plankton community composition and measured primary production, respiration rates and carbon export (defined here as carbon sinking out of a shallow, coastal area) during an ocean acidification experiment. Mesocosms ( ˜ 55 m3) were set up in the Baltic Sea with a gradient of CO2 levels initially ranging from ambient ( ˜ 240 µatm), used as control, to high CO2 (up to ˜ 1330 µatm). The phytoplankton community was dominated by dinoflagellates, diatoms, cyanobacteria and chlorophytes, and the zooplankton community by protozoans, heterotrophic dinoflagellates and cladocerans. The plankton community composition was relatively homogenous between treatments. Community respiration rates were lower at high CO2 levels. The carbon-normalized respiration was approximately 40 % lower in the high-CO2 environment compared with the controls during the latter phase of the experiment. We did not, however, detect any effect of increased CO2 on primary production. This could be due to measurement uncertainty, as the measured total particular carbon (TPC) and combined results presented in this special issue suggest that the reduced respiration rate translated into higher net carbon fixation. The percent carbon derived from microscopy counts (both phyto- and zooplankton), of the measured total particular carbon (TPC), decreased from ˜ 26 % at t0 to ˜ 8 % at t31, probably driven by a shift towards smaller plankton (carbon fixation at high CO2. However, the increased primary production did not translate into increased carbon export, and consequently did not work as a negative feedback mechanism for increasing atmospheric CO2 concentration.

  9. Ocean Acidification: Coccolithophore's Light Controlled Effect on Alkalinity

    Science.gov (United States)

    Dobbins, W.

    2015-12-01

    Coccolithophorids, which play a significant role in the flux of calcite and organic carbon from the photic region to deeper pelagic and benthic zones, are potentially far more useful than siliceous phytoplankton for ocean fertilization projects designed to sequester CO2. However, the production of H+ ions during calcification (HCO3 + Ca+ —> CaCO3 + H+) has resulted in localized acidification around coccolithophore blooms. It has been hypothesized that under the correct light conditions photosynthesis could proceed at a rate such that CO2 is removed in amounts equimolar or greater than the H+ produced by calcification, allowing stable or increasing alkalinity despite ongoing calcification. Previously, this effect had not been demonstrated under laboratory conditions. Fifteen Emiliania huxleyi cultures were separated into equal groups with each receiving: 0, 6, 12, 18, or 24 hours of light each day for 24 days. Daily pH, cell density, and temperature measurements revealed a strong positive correlation between light exposure and pH, and no significant decline in pH in any of the cultures. Alkalinity increases were temperature independent and not strongly correlated with cell density, implying photosynthetic removal of carbon dioxide as the root cause. The average pH across living cultures increased from 7.9 to 8.3 over the first week and changed little for the reminder of the 24-day period. The results demonstrate coccolithophorids can increase alkalinity across a broad range of cell densities, despite the acidification inherent to the calcification process. If the light-alkalinity effect reported here proves scalable to larger cultures, Emiliania huxleyi are a strong candidate for carbon sequestration via targeted ocean fertilization.

  10. Ocean acidification risk assessment for Alaska's fishery sector

    Science.gov (United States)

    Mathis, J. T.; Cooley, S. R.; Lucey, N.; Colt, S.; Ekstrom, J.; Hurst, T.; Hauri, C.; Evans, W.; Cross, J. N.; Feely, R. A.

    2015-08-01

    The highly productive fisheries of Alaska are located in seas projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that are most intensely affected by ocean acidification (OA) contribute substantially to the state's commercial fisheries and traditional subsistence way of life. Prior studies of OA's potential impacts on human communities have focused only on possible direct economic losses from specific scenarios of human dependence on commercial harvests and damages to marine species. However, other economic and social impacts, such as changes in food security or livelihoods, are also likely to result from climate change. This study evaluates patterns of dependence on marine resources within Alaska that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. Here, we used a risk assessment framework based on one developed by the Intergovernmental Panel on Climate Change to analyze earth-system global ocean model hindcasts and projections of ocean chemistry, fisheries harvest data, and demographic information. The fisheries examined were: shellfish, salmon and other finfish. The final index incorporates all of these data to compare overall risk among Alaska's federally designated census areas. The analysis showed that regions in southeast and southwest Alaska that are highly reliant on fishery harvests and have relatively lower incomes and employment alternatives likely face the highest risk from OA. Although this study is an intermediate step toward our full understanding, the results presented here show that OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains.

  11. Ocean acidification refugia of the Florida Reef Tract.

    Directory of Open Access Journals (Sweden)

    Derek P Manzello

    Full Text Available Ocean acidification (OA is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO(2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT. During periods of heightened productivity, there is a net uptake of total CO(2 (TCO(2 which increases aragonite saturation state (Ω(arag values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ω(arag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error Ω(arag-values in spring = 4.69 (±0.101. Conversely, Ω(arag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO(2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA.

  12. Historical reconstruction of ocean acidification in the Australian region

    Directory of Open Access Journals (Sweden)

    A. Lenton

    2015-06-01

    Full Text Available The increase in atmospheric greenhouse gases over the last 200 years has caused an increase in ocean acidity levels. Documenting how the ocean has changed is critical for assessing how these changes could impact marine ecosystems and for the management of marine resources. We use present day ocean carbon observations from shelf and offshore waters around Australia, combined with neural network mapping of CO2, to estimate the current seasonal and regional distributions of carbonate chemistry (pH and aragonite saturation state. These predicted changes in carbonate chemistry are combined with atmospheric CO2 concentration changes since to reconstruct pH and aragonite saturation state changes over the last 140 years (1870–2013. The comparison with data collected at Integrated Marine Observing System National Reference Station sites located on the shelf around Australia shows both the mean state and seasonality for the present day is well represented by our reconstruction, with the exception of sites such as the Great Barrier Reef. Our reconstruction predicts that since 1870 an average decrease in aragonite saturation state of 0.48 and of 0.09 in pH has occurred in response to increasing oceanic uptake of atmospheric CO2. Our reconstruction shows that seasonality is the dominant mode of variability, with only small interannual variability present. Large seasonal variability in pH and aragonite saturation state occur in Southwestern Australia driven by ocean dynamics (mixing and in the Tasman Sea by seasonal warming (in the case of aragonite saturation state. The seasonal and historical changes in aragonite saturation state and pH have different spatial patterns and suggest that the biological responses to ocean acidification are likely to be non-uniform depending on the relative sensitivity of organisms to shifts in pH and saturation state. This new historical reconstruction provides an important to link to biological observations to help elucidate

  13. The uncertainty in forecasting trends of forest soil acidification

    International Nuclear Information System (INIS)

    A Regional Soil Acidification Model (RESAM) has been developed to gain insight in to long-term impacts of deposition scenarios on forest soils in The Netherlands. Model predictions of such large-scale environmental effects of acid deposition require extrapolation of site specific data to large geographical regions. The major aim of this study is to quantify the uncertainty in model response to a given deposition scenario, due to uncertainty and spatial variability in data. Furthermore, the uncertainty analysis was performed to determine which additional data will most likely improve the reliability of predictions. An efficient Monte Carlo technique was used in combination with regression analysis. The analysis was restricted to one forest soil ecosystem: a liptic podzol with Douglas fir, subject to a reducing deposition scenario. The investigated output variables were pH, Al/Ca ratio and NH4/K ratio in the root zone, which are generally used as indicators of forest soil acidification and of potential forest damage. Statistical analyses showed that in most cases the relation between the parameters and model output can be satisfactorily described by a linear regression model. The uncertainty contribution of various parameters depends on the considered output variable, soil compartment and time. The uncertainty, as measured by the coefficient of variation, appears to be high for the NH4/K and Al/Ca ratios, whereas it was relatively low for the pH. Results show that the uncertainty in the depositions of SOx, NOx and NHx in a receptor area and the uncertainty in the parameters and variables determining the nitrogen and aluminium dynamics contribute most to the resulting uncertainty of the considered model output. 49 refs., 7 figs., 10 tabs

  14. Mechanisms of airway responses to esophageal acidification in cats.

    Science.gov (United States)

    Lang, Ivan M; Haworth, Steven T; Medda, Bidyut K; Forster, Hubert; Shaker, Reza

    2016-04-01

    Acid in the esophagus causes airway constriction, tracheobronchial mucous secretion, and a decrease in tracheal mucociliary transport rate. This study was designed to investigate the neuropharmacological mechanisms controlling these responses. In chloralose-anesthetized cats (n = 72), we investigated the effects of vagotomy or atropine (100 μg·kg(-1)·30 min(-1) iv) on airway responses to esophageal infusion of 0.1 M PBS or 0.1 N HCl at 1 ml/min. We quantified 1) diameter of the bronchi, 2) tracheobronchial mucociliary transport rate, 3) tracheobronchial mucous secretion, and 4) mucous content of the tracheal epithelium and submucosa. We found that vagotomy or atropine blocked the airway constriction response but only atropine blocked the increase in mucous output and decrease in mucociliary transport rate caused by esophageal acidification. The mucous cells of the mucosa produced more Alcian blue- than periodic acid-Schiff (PAS)-stained mucosubstances, and the mucous cells of the submucosa produced more PAS- than Alcian blue-stained mucosubstances. Selective perfusion of the different segments of esophagus with HCl or PBS resulted in significantly greater production of PAS-stained mucus in the submucosa of the trachea adjacent to the HCl-perfused esophagus than in that adjacent to the PBS-perfused esophagus. In conclusion, airway constriction caused by esophageal acidification is mediated by a vagal cholinergic pathway, and the tracheobronchial transport response is mediated by cholinergic receptors. Acid perfusion of the esophagus selectively increases production of neutral mucosubstances of the apocrine glands by a local mechanism. We hypothesize that the airway responses to esophageal acid exposure are part of the innate, rather than acute emergency, airway defense system. PMID:26846551

  15. Rhizosphere acidification of faba bean, soybean and maize

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.L. [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China); Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094 (China); Cao, J. [School of Life Science, Key Laboratory of Arid and Grassland Ecology, Lanzhou University, Lanzhou 730000 (China); Zhang, F.S. [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China); Li, L., E-mail: lilong@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094 (China)

    2009-07-01

    Interspecific facilitation on phosphorus uptake was observed in faba bean/maize intercropping systems in previous studies. The mechanism behind this, however, remained unknown. Under nitrate supply, the difference in rhizosphere acidification potential was studied by directly measuring pH of the solution and by visualizing and quantifying proton efflux of roots between faba bean (Vicia faba L. cv. Lincan No.5), soybean (Glycine max L. cv. Zhonghuang No. 17) and maize (Zea mays L. cv. Zhongdan No.2) in monoculture and intercrop, supplied without or with 0.2 mmol L{sup -1} P as KH{sub 2}PO{sub 4}. The pH of the nutrient solution grown faba bean was lower than initial pH of 6.0 from day 1 to day 22 under P deficiency, whereas the pH of the solution with maize was declined from day 13 after treatment. Growing soybean increased solution pH irrespective of P supply. Under P deficiency, the proton efflux of faba bean both total (315.25 nmol h{sup -1} plant{sup -1}) and specific proton efflux (0.47 nmol h{sup -1} cm{sup -1}) was greater than that those of soybean (21.80 nmol h{sup -1} plant{sup -1} and 0.05 nmol h{sup -1} cm{sup -1}, respectively). Faba bean had much more ability of rhizosphere acidification than soybean and maize. The result can explain partly why faba bean utilizes sparingly soluble P more effectively than soybean and maize do, and has an important implication in understanding the mechanism behind interspecific facilitation on P uptake by intercropped species.

  16. Contrasting effects of ocean acidification on reproduction in reef fishes

    Science.gov (United States)

    Welch, Megan J.; Munday, Philip L.

    2016-06-01

    Differences in the sensitivity of marine species to ocean acidification will influence the structure of marine communities in the future. Reproduction is critical for individual and population success, yet is energetically expensive and could be adversely affected by rising CO2 levels in the ocean. We investigated the effects of projected future CO2 levels on reproductive output of two species of coral reef damselfish, Amphiprion percula and Acanthochromis polyacanthus. Adult breeding pairs were maintained at current-day control (446 μatm), moderate (652 μatm) or high CO2 (912 μatm) for a 9-month period that included the summer breeding season. The elevated CO2 treatments were consistent with CO2 levels projected by 2100 under moderate (RCP6) and high (RCP8) emission scenarios. Reproductive output increased in A. percula, with 45-75 % more egg clutches produced and a 47-56 % increase in the number of eggs per clutch in the two elevated CO2 treatments. In contrast, reproductive output decreased at high CO2 in Ac. polyacanthus, with approximately one-third as many clutches produced compared with controls. Egg survival was not affected by CO2 for A. percula, but was greater in elevated CO2 for Ac. polyacanthus. Hatching success was also greater for Ac. polyacanthus at elevated CO2, but there was no effect of CO2 treatments on offspring size. Despite the variation in reproductive output, body condition of adults did not differ between control and CO2 treatments in either species. Our results demonstrate different effects of high CO2 on fish reproduction, even among species within the same family. A greater understanding of the variation in effects of ocean acidification on reproductive performance is required to predict the consequences for future populations of marine organisms.

  17. Historical reconstruction of ocean acidification in the Australian region

    Science.gov (United States)

    Lenton, Andrew; Tilbrook, Bronte; Matear, Richard J.; Sasse, Tristan P.; Nojiri, Yukihiro

    2016-03-01

    The ocean has become more acidic over the last 200 years in response increasing atmospheric carbon dioxide (CO2) levels. Documenting how the ocean has changed is critical for assessing how these changes impact marine ecosystems and for the management of marine resources. Here we use present-day ocean carbon observations, from shelf and offshore waters around Australia, combined with neural network mapping of CO2, sea surface temperature, and salinity to estimate the current seasonal and regional distributions of carbonate chemistry (pH and aragonite saturation state). The observed changes in atmospheric CO2 and sea surface temperature (SST) and climatological salinity are then used to reconstruct pH and aragonite saturation state changes over the last 140 years (1870-2013). The comparison with data collected at Integrated Marine Observing System National Reference Station sites located on the shelf around Australia shows that both the mean state and seasonality in the present day are well represented, with the exception of sites such as the Great Barrier Reef. Our reconstruction predicts that since 1870 decrease in aragonite saturation state of 0.48 and of 0.09 in pH has occurred in response to increasing oceanic uptake of atmospheric CO2. Large seasonal variability in pH and aragonite saturation state occur in southwestern Australia driven by ocean dynamics (mixing) and in the Tasman Sea by seasonal warming (in the case of the aragonite saturation state). The seasonal and historical changes in aragonite saturation state and pH have different spatial patterns and suggest that the biological responses to ocean acidification are likely to be non-uniform depending on the relative sensitivity of organisms to shifts in pH and saturation state. This new historical reconstruction provides an important link to biological observations that will help to elucidate the consequences of ocean acidification.

  18. Rhizosphere acidification of faba bean, soybean and maize

    International Nuclear Information System (INIS)

    Interspecific facilitation on phosphorus uptake was observed in faba bean/maize intercropping systems in previous studies. The mechanism behind this, however, remained unknown. Under nitrate supply, the difference in rhizosphere acidification potential was studied by directly measuring pH of the solution and by visualizing and quantifying proton efflux of roots between faba bean (Vicia faba L. cv. Lincan No.5), soybean (Glycine max L. cv. Zhonghuang No. 17) and maize (Zea mays L. cv. Zhongdan No.2) in monoculture and intercrop, supplied without or with 0.2 mmol L-1 P as KH2PO4. The pH of the nutrient solution grown faba bean was lower than initial pH of 6.0 from day 1 to day 22 under P deficiency, whereas the pH of the solution with maize was declined from day 13 after treatment. Growing soybean increased solution pH irrespective of P supply. Under P deficiency, the proton efflux of faba bean both total (315.25 nmol h-1 plant-1) and specific proton efflux (0.47 nmol h-1 cm-1) was greater than that those of soybean (21.80 nmol h-1 plant-1 and 0.05 nmol h-1 cm-1, respectively). Faba bean had much more ability of rhizosphere acidification than soybean and maize. The result can explain partly why faba bean utilizes sparingly soluble P more effectively than soybean and maize do, and has an important implication in understanding the mechanism behind interspecific facilitation on P uptake by intercropped species.

  19. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals

    OpenAIRE

    Maier, C.; Watremez, P.; Taviani, M.; M. G. Weinbauer; Gattuso, J.P.

    2011-01-01

    Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO3 saturati...

  20. Humic lake acidification experiment. Status pr September 1990, one week before start of the treatment

    OpenAIRE

    Gjessing, E.

    1990-01-01

    An important conclusion from the acid rain research during the late 1970's and the early 1980's, was that humic substances (HS) in the water affected the response of acid rain. HS acts as a modifier on both the chemical composition and on the biological activity of acidified surface water. The Humex project will, by artificial acidification of a whole catchment, study the role of HS on the acidification and the role of acidification on the biological properties of HS. In fall 1988, a dystroph...

  1. Acid precipitation and other possible sources for acidification of rivers and lakes

    Energy Technology Data Exchange (ETDEWEB)

    Seip, H.M.; Tollan, A.

    1978-01-01

    The trends in the recent acidification of rivers and lakes in South Norway are reviewed, and the evidence for a causal relationship between acid precipitation and acidification of surface water is critically examined. Results from regional surveys, studies in small catchment areas and from percolation experiments are presented. Several sources may contribute to the acidification. However, changes in the composition of the precipitation during the recent decades, mainly because of increased combustion of fossil fuels, seem to be a dominant cause at least in some of the most affected areas.

  2. Potential impacts of ocean acidification on the Puget Sound food web (NCEI Accession 0134852)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ecosystem impacts of ocean acidification (OA) were explored by imposing scenarios designed to mimic OA on a food web model of Puget Sound, a large estuary in...

  3. Acidification and Tropospheric Ozone in Europe: Towards a Dynamic Economic Analysis

    NARCIS (Netherlands)

    Schmieman, E.C.

    2001-01-01

    Acidification and tropospheric ozone are important transboundary environmental problems with many economic and environmental aspects related to their role in the biogeochemical cycles. The main acidic substances are sulphur dioxide, nitrogen oxides and ammonia. The most important precursors of tropo

  4. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    Science.gov (United States)

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  5. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety.

    Science.gov (United States)

    Shi, Wei; Zhao, Xinguo; Han, Yu; Che, Zhumei; Chai, Xueliang; Liu, Guangxu

    2016-01-01

    To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd(2+)/Ca(2+) in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion.

  6. Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession

    DEFF Research Database (Denmark)

    Flynn, Kevin J.; Darren, Clark R.; Mitra, Aditee;

    2015-01-01

    Human activity causes ocean acidification (OA) though the dissolution of anthropogenically generated CO2 into seawater, and eutrophication through the addition of inorganic nutrients. Eutrophication increases the phytoplankton biomass that can be supported during a bloom, and the resultant uptake...

  7. Effects of ocean acidification, temperature and nutrient regimes on the appendicularian Oikopleura dioica: a mesocosm study

    DEFF Research Database (Denmark)

    Troedsson, Christofer; Bouquet, Jean-Marie; Lobon, Carla M.;

    2012-01-01

    , temperature and nutrient levels, consistent with hypotheses concerning gelatinous zooplankton in future oceans. This suggests appendicularians will play more important roles in marine pelagic communities and vertical carbon transport under projected ocean acidification and elevated temperature scenarios....

  8. Influence of some agricultural practices on the soil acidification in acid precipitation areas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Both acid precipitation and unreasonable agricultural practices are notorious artificial factors resulting in soil acidification. To sort out reasonable agricultural practices favorable to abating soil acidification, the task of this study was directed to a long-term field trial in Chongqing, during which chemical fertilizer, organic fertilizer were applied to different crop rotations and the soil pH value was measured. The results indicated that all treatments decreased pH value in the 0 to 20 cm soil layer after ten years. Problems were more serious when chlorine-containing fertilizer, excessive chemical fertilizer and mixed fertilizer were applied. It is demonstrated that balance rates of N, P and K fertilizers, application of muck in field are advantageous to abating soil acidification. Oil plants affect soil acidification more than cereal in different crop rotation.

  9. Variation among Rice Cultivars in Root Acidification and Its Relation to Cadmium Uptake

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-guo; XU Hai; CAI Guo-liang; QIAN Min; WANG De-ke; ZHU Qing-sen

    2006-01-01

    To understand the mechanisms of Cd uptake and accumulation in rice, soil acidification by root activities was investigated in six rice cultivars differing in Cd accumulation. The results showed a significant difference among the cultivars in pH of pot water and root exudate. Soil acidification abilities varied with rice cultivars. Both pH of pot water and root exudate were lower in indica cultivars than in japonica ones. The difference in root acidification was larger in Cd treated cultivars than the control. Under Cd stress, the pH of pot water and root exudate correlated negatively and significantly with Cd concentrations in rice plants. It was suggested that the soil acidification by root exudates, especially in Cd contaminated soils, may be one of the mechanisms responsible for Cd uptake in rice cultivars.

  10. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    Science.gov (United States)

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  11. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification

    OpenAIRE

    Elizabeth Derse Crook; Kristy J Kroeker; Potts, Donald C.; Mario Rebolledo-Vieyra; Hernandez-Terrones, Laura M.; Adina Paytan

    2016-01-01

    Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag) waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively l...

  12. Economic Vulnerability Assessment of U.S. Fishery Revenues to Ocean Acidification

    Science.gov (United States)

    Cooley, S. R.; Doney, S. C.

    2008-12-01

    Ocean acidification, a predictable consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by decreasing average ocean pH and the carbonate mineral saturation state worldwide. These conditions slow or reverse marine plant and animal calcium carbonate shell growth, thereby harming economically valuable species. In 2006, shellfish and crustaceans provided 50% of the 4 billion U.S. domestic commercial harvest value; value added to commercial fishery products contributed 35 billion to the gross national product that year. Laboratory studies have shown that ocean acidification decreases shellfish calcification; ocean acidification--driven declines in commercial shellfish and crustacean harvests between now and 2060 could decrease nationwide time-integrated primary commercial revenues by 860 million to 14 billion (net present value, 2006 dollars), depending on CO2 emissions, discount rates, biological responses, and fishery structure. This estimate excludes losses from coral reef damage and possible fishery collapses if ocean acidification pushes ecosystems past ecological tipping points. Expanding job losses and indirect economic costs will follow harvest decreases as ocean acidification broadly damages marine habitats and alters marine resource availability. Losses will harm many regions already possessing little economic resilience. The only true solution to ocean acidification is reducing atmospheric CO2 emissions, but implementing regional adaptive responses now from an ecosystem-wide, fisheries perspective will help better preserve sustainable ecosystem function and economic yields. Comprehensive management strategies must include monitoring critical fisheries, explicitly accounting for ocean acidification in management models, reducing fishing pressure and environmental stresses, and supporting regional economies most sensitive to acidification's impacts.

  13. Acidification of pig slurry before separation to improve slurry management on farms.

    Science.gov (United States)

    Regueiro, Iria; Coutinho, João; Balsari, Paolo; Popovic, Olga; Fangueiro, David

    2016-08-01

    Pig slurry, rich in plant nutrients such as nitrogen (N) and phosphorus (P), is generally applied to soil as organic fertilizer. However, costs related to slurry transport may limit its utilization to fields close to the farm, leading to significant N losses, namely ammonia (NH3) emissions. Slurry acidification, to minimize NH3 emissions, is a potential solution to this problem, while solid-liquid separation leads to a solid fraction (SF) - rich in organic matter (OM) and phosphorus - and a liquid fraction (LF) rich in soluble nutrients. We hypothesized that a combination of acidification and separation could affect the quality of the resulting fractions depending on the separation technique used. After acidification, the two most common techniques for separation, centrifugation (CF) and screw-press (SP), were applied. The main characteristics of the slurry fractions in terms of nutrient concentrations and speciation as well as the potential N mineralization (PNM) were analysed. Our results show SFs with improved properties, mostly N and PNM when acidification is performed before separation with both techniques. The PNM was significantly increased in LFs from both techniques after acidification. The [Formula: see text] concentration increased in LFs from SP with acidification; therefore, slurry acidification is recommended to avoid any N losses during the separation process with SP, while CF may not require such pretreatment. Acidification could allow the use of a cheaper technique such as SP relative to CF since it prevents NH3 emissions during the separation process and leads to more equilibrated fractions in terms of nutrient composition. PMID:26695081

  14. Effects of ocean acidification and global warming on reef bioerosion—lessons from a clionaid sponge

    OpenAIRE

    Wisshak, M.; Schönberg, CH. L.; Form, Armin U.; Freiwald, A.

    2013-01-01

    Coral reefs are under threat, exerted by a number of interacting effects inherent to the present climate change, including ocean acidification and global warming. Bioerosion drives reef degradation by recycling carbonate skeletal material and is an important but understudied factor in this context. Twelve different combinations of pCO2 and temperature were applied to elucidate the consequences of ocean acidification and global warming on the physiological response and bioerosion rates of the ...

  15. The influence of food supply on the response of Olympia oyster larvae to ocean acidification

    OpenAIRE

    A. Hettinger; Sanford, E.; T. M. Hill; Hosfelt, J. D.; A. D. Russell; B. Gaylord

    2013-01-01

    Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2) enters seawater and alters ocean pH (termed "ocean acidification"). However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potenti...

  16. Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua)

    OpenAIRE

    Frommel, A. Y.; V Stiebens; Clemmesen, C.; J. Havenhand

    2010-01-01

    Ocean acidification, as a consequence of increasing marine pCO2, may have severe effects on the physiology of marine organisms. However, experimental studies remain scarce, in particular concerning fish. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive – particularly the critical stage of fertilization, in which sperm motility plays a central role. In this study, the effects of ocean acidification (d...

  17. Ocean acidification and warming in the Baltic Sea : effects on diazotrophy and pelagic biogeochemistry

    OpenAIRE

    Paul, Allanah J.

    2016-01-01

    This doctoral dissertation presents the results from two independent mesocosm studies on naturally present summer plankton communities in the Baltic Sea. The aim was to investigate the impact of ocean acidification (increased CO2 concentration and decreased seawater pH) as well as the combination of ocean acidification and ocean warming (increased seawater temperature) on the abundance and activity of diazotrophic organisms and on N-limited plankton communities.

  18. Coral calcifying fluid pH dictates response to ocean acidification

    OpenAIRE

    Holcomb, M.; Venn, A. A.; Tambutté, E.; Tambutté, S.; Allemand, D.; J. Trotter; McCulloch, M.

    2014-01-01

    Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in r...

  19. Effect of initial pH on mesophilic hydrolysis and acidification of swine manure

    OpenAIRE

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lee, Duu-Jong; Lei, Zhongfang; Zhang, Yi; Hwa, Tay Joo

    2013-01-01

    Effects of initial pH (3–12) on mesophilic hydrolysis and acidification reactions of swine manure was studied. The initial pH changed the microbial community in the suspension so as to affect hydrolysis and acidification reactions on swine manure. At pH 10–12 the Clostridium alkalicellum and/or Corynebacterium humireducens were enriched and the soluble chemical oxygen demand (SCOD), total volatile fatty acids (VFAs), proteins and carbohydrates from manure were increased in quantities. In part...

  20. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    Science.gov (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. PMID:27564868

  1. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming.

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-06-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.

  2. Taking action against ocean acidification: a review of management and policy options.

    Science.gov (United States)

    Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre

    2013-10-01

    Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.

  3. Consumers mediate the effects of experimental ocean acidification and warming on primary producers.

    Science.gov (United States)

    Alsterberg, Christian; Eklöf, Johan S; Gamfeldt, Lars; Havenhand, Jonathan N; Sundbäck, Kristina

    2013-05-21

    It is well known that ocean acidification can have profound impacts on marine organisms. However, we know little about the direct and indirect effects of ocean acidification and also how these effects interact with other features of environmental change such as warming and declining consumer pressure. In this study, we tested whether the presence of consumers (invertebrate mesograzers) influenced the interactive effects of ocean acidification and warming on benthic microalgae in a seagrass community mesocosm experiment. Net effects of acidification and warming on benthic microalgal biomass and production, as assessed by analysis of variance, were relatively weak regardless of grazer presence. However, partitioning these net effects into direct and indirect effects using structural equation modeling revealed several strong relationships. In the absence of grazers, benthic microalgae were negatively and indirectly affected by sediment-associated microalgal grazers and macroalgal shading, but directly and positively affected by acidification and warming. Combining indirect and direct effects yielded no or weak net effects. In the presence of grazers, almost all direct and indirect climate effects were nonsignificant. Our analyses highlight that (i) indirect effects of climate change may be at least as strong as direct effects, (ii) grazers are crucial in mediating these effects, and (iii) effects of ocean acidification may be apparent only through indirect effects and in combination with other variables (e.g., warming). These findings highlight the importance of experimental designs and statistical analyses that allow us to separate and quantify the direct and indirect effects of multiple climate variables on natural communities.

  4. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    Science.gov (United States)

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution.

  5. Studies on acidification in two-phase biomethanation process of municipal solid waste.

    Science.gov (United States)

    Bhattacharyya, J K; Kumar, Sunil; Devotta, Sukumar

    2008-01-01

    Biomethanation of municipal solid waste (MSW) is a slow process and the yield of biogas is usually low. Enhancement of acidification is necessary to increase the biogas yield in biomethanation of MSW. MSW contains a significant fraction of ligno-cellulosic material. The acidification of these materials influences the biogas yield. In the present study, hydrolysis and acidification have been considered as a combined phase. Experiments have been conducted to study the effect of recirculation of leachate on the acidification stage of the two-phase biomethanation process. Chemical oxygen demand (COD) and volatile fatty acid (VFA) were considered as indicator parameters. The study was also conducted to investigate the effect of using acid and alkali solution of 0.1% concentration in the acidification study. It was observed that daily recirculation of leachate does not have any major impact on the acidification process. It was also observed that treatment of MSW with sodium hydroxide yields leachate of significantly higher COD and VFA values compared to others. PMID:17276666

  6. Assessing approaches to determine the effect of ocean acidification on bacterial processes

    Science.gov (United States)

    Burrell, Timothy J.; Maas, Elizabeth W.; Teesdale-Spittle, Paul; Law, Cliff S.

    2016-08-01

    Bacterial extracellular enzymes play a significant role in the degradation of labile organic matter and nutrient availability in the open ocean. Although bacterial production and extracellular enzymes may be affected by ocean acidification, few studies to date have considered the methodology used to measure enzyme activity and bacterial processes. This study investigated the potential artefacts in determining the response of bacterial growth and extracellular glucosidase and aminopeptidase activity to ocean acidification as well as the relative effects of three different acidification techniques. Tests confirmed that the observed effect of pH on fluorescence of artificial fluorophores, and the influence of the MCA fluorescent substrate on seawater sample pH, were both overcome by the use of Tris buffer. In experiments testing different acidification methods, bubbling with CO2 gas mixtures resulted in higher β-glucosidase activity and 15-40 % higher bacterial abundance, relative to acidification via gas-permeable silicon tubing and acid addition (HCl). Bubbling may stimulate carbohydrate degradation and bacterial growth, leading to the incorrect interpretation of the impacts of ocean acidification on organic matter cycling.

  7. Responses of the Emiliania huxleyi proteome to ocean acidification.

    Science.gov (United States)

    Jones, Bethan M; Iglesias-Rodriguez, M Debora; Skipp, Paul J; Edwards, Richard J; Greaves, Mervyn J; Young, Jeremy R; Elderfield, Henry; O'Connor, C David

    2013-01-01

    Ocean acidification due to rising atmospheric CO2 is expected to affect the physiology of important calcifying marine organisms, but the nature and magnitude of change is yet to be established. In coccolithophores, different species and strains display varying calcification responses to ocean acidification, but the underlying biochemical properties remain unknown. We employed an approach combining tandem mass-spectrometry with isobaric tagging (iTRAQ) and multiple database searching to identify proteins that were differentially expressed in cells of the marine coccolithophore species Emiliania huxleyi (strain NZEH) between two CO2 conditions: 395 (∼current day) and ∼1340 p.p.m.v. CO2. Cells exposed to the higher CO2 condition contained more cellular particulate inorganic carbon (CaCO3) and particulate organic nitrogen and carbon than those maintained in present-day conditions. These results are linked with the observation that cells grew slower under elevated CO2, indicating cell cycle disruption. Under high CO2 conditions, coccospheres were larger and cells possessed bigger coccoliths that did not show any signs of malformation compared to those from cells grown under present-day CO2 levels. No differences in calcification rate, particulate organic carbon production or cellular organic carbon: nitrogen ratios were observed. Results were not related to nutrient limitation or acclimation status of cells. At least 46 homologous protein groups from a variety of functional processes were quantified in these experiments, of which four (histones H2A, H3, H4 and a chloroplastic 30S ribosomal protein S7) showed down-regulation in all replicates exposed to high CO2, perhaps reflecting the decrease in growth rate. We present evidence of cellular stress responses but proteins associated with many key metabolic processes remained unaltered. Our results therefore suggest that this E. huxleyi strain possesses some acclimation mechanisms to tolerate future CO2 scenarios

  8. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Henriksen, Kim; Sørensen, Mette G;

    2005-01-01

    Patients with defective osteoclastic acidification have increased numbers of osteoclasts, with decreased resorption, but bone formation that remains unchanged. We demonstrate that osteoclast survival is increased when acidification is impaired, and that impairment of acidification results...... in inhibition of bone resorption without inhibition of bone formation. We investigated the role of acidification in human osteoclastic resorption and life span in vitro using inhibitors of chloride channels (NS5818/NS3696), the proton pump (bafilomycin) and cathepsin K. We found that bafilomycin and NS5818 dose...... dependently inhibited acidification of the osteoclastic resorption compartment and bone resorption. Inhibition of bone resorption by inhibition of acidification, but not cathepsin K inhibition, augmented osteoclast survival, which resulted in a 150 to 300% increase in osteoclasts compared to controls. We...

  9. Future acidification of marginal seas: A comparative study of the Japan/East Sea and the South China Sea

    Science.gov (United States)

    Luo, Yiming; Boudreau, Bernard P.

    2016-06-01

    The response of marginal (peripheral) seas to ocean acidification on short and long time scales is not well established. Through modeling, we examine the future acidification of two adjacent marginal seas, the South China Sea (SCS) and the Japan/East Sea (J/ES). Our results illustrate the importance of unique features in determining their acidification. The J/ES basin will become completely undersaturated with regard to calcite rapidly in the next few decades, while the SCS basin will experience relatively slower acidification. During its acidification, the J/ES will continually act as a sink for atmospheric CO2, whereas the SCS will temporarily switch from a source to a sink during the peak pCO2 interval, only to return slowly to being a source again. Marginal sea acidification will be determined by multiple factors, including their connections with the open ocean and their unique physical and biogeochemical dynamics, in addition to the level of atmospheric CO2.

  10. Ocean acidification and marine microorganisms: responses and consequences

    Directory of Open Access Journals (Sweden)

    Surajit Das

    2015-10-01

    Full Text Available Ocean acidification (OA is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.

  11. Ocean acidification increases fatty acids levels of larval fish.

    Science.gov (United States)

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs.

  12. Ocean acidification alters the material properties of Mytilus edulis shells.

    Science.gov (United States)

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.

  13. Response of the Miliolid Archaias angulatus to simulated ocean acidification

    Science.gov (United States)

    Knorr, Paul O.; Robbins, Lisa L.; Harries, Peter J.; Hallock, Pamela; Wynn, Jonathan

    2015-01-01

    A common, but not universal, effect of ocean acidification on benthic foraminifera is a reduction in the growth rate. The miliolid Archaias angulatus is a high-Mg (>4 mole% MgCO3), symbiont-bearing, soritid benthic foraminifer that contributes to Caribbean reef carbonate sediments. A laboratory culture study assessed the effects of reduced pH on the growth of A. angulatus. We observed a statistically significant 50% reduction in the growth rate (p < 0.01), calculated from changes in maximum diameter, from 160 μm/28 days in the pH 8.0/pCO2air 480 ppm control group to 80 μm/28 days at a treatment level of pH 7.6/pCO2air 1328 ppm. Additionally, pseudopore area, δ18O values, and Mg/Ca ratio all increased, albeit slightly in the latter two variables. The reduction in growth rate indicates that under a high-CO2 setting, future A. angulatus populations will consist of smaller adults. A model using the results of this study estimates that at pH 7.6 A. angulatus carbonate production in the South Florida reef tract and Florida Bay decreases by 85%, from 0.27 Mt/yr to 0.04 Mt/yr, over an area of 9,000 km2.

  14. Gas hydrate dissociation prolongs acidification of the Anthropocene oceans

    Science.gov (United States)

    Boudreau, Bernard P.; Luo, Yiming; Meysman, Filip J. R.; Middelburg, Jack J.; Dickens, Gerald R.

    2015-11-01

    Anthropogenic warming of the oceans can release methane (CH4) currently stored in sediments as gas hydrates. This CH4 will be oxidized to CO2, thus increasing the acidification of the oceans. We employ a biogeochemical model of the multimillennial carbon cycle to determine the evolution of the oceanic dissolved carbonate system over the next 13 kyr in response to CO2 from gas hydrates, combined with a reasonable scenario for long-term anthropogenic CO2 emissions. Hydrate-derived CO2 will appreciably delay the neutralization of ocean acidity and the return to preindustrial-like conditions. This finding is the same with CH4 release and oxidation in either the deep ocean or the atmosphere. A change in CaCO3 export, coupled to CH4 release, would intensify the transient rise of the carbonate compensation depth, without producing any changes to the long-term evolution of the carbonate system. Overall, gas hydrate destabilization implies a moderate additional perturbation to the carbonate system of the Anthropocene oceans.

  15. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl

    2012-01-01

    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  16. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis.

    Directory of Open Access Journals (Sweden)

    Masako Nakamura

    Full Text Available Ocean acidification may negatively impact the early life stages of some marine invertebrates including corals. Although reduced growth of juvenile corals in acidified seawater has been reported, coral larvae have been reported to demonstrate some level of tolerance to reduced pH. We hypothesize that the observed tolerance of coral larvae to low pH may be partly explained by reduced metabolic rates in acidified seawater because both calcifying and non-calcifying marine invertebrates could show metabolic depression under reduced pH in order to enhance their survival. In this study, after 3-d and 7-d exposure to three different pH levels (8.0, 7.6, and 7.3, we found that the oxygen consumption of Acropora digitifera larvae tended to be suppressed with reduced pH, although a statistically significant difference was not observed between pH conditions. Larval metamorphosis was also observed, confirming that successful recruitment is impaired when metamorphosis is disrupted, despite larval survival. Results also showed that the metamorphosis rate significantly decreased under acidified seawater conditions after both short (2 h and long (7 d term exposure. These results imply that acidified seawater impacts larval physiology, suggesting that suppressed metabolism and metamorphosis may alter the dispersal potential of larvae and subsequently reduce the resilience of coral communities in the near future as the ocean pH decreases.

  17. Technical Note: Artificial coral reef mesocosms for ocean acidification investigations

    Directory of Open Access Journals (Sweden)

    J. Leblud

    2014-11-01

    Full Text Available The design and evaluation of replicated artificial mesocosms are presented in the context of a thirteen month experiment on the effects of ocean acidification on tropical coral reefs. They are defined here as (semi-closed (i.e. with or without water change from the reef mesocosms in the laboratory with a more realistic physico-chemical environment than microcosms. Important physico-chemical parameters (i.e. pH, pO2, pCO2, total alkalinity, temperature, salinity, total alkaline earth metals and nutrients availability were successfully monitored and controlled. Daily variations of irradiance and pH were applied to approach field conditions. Results highlighted that it was possible to maintain realistic physico-chemical parameters, including daily changes, into artificial mesocosms. On the other hand, the two identical artificial mesocosms evolved differently in terms of global community oxygen budgets although the initial biological communities and physico-chemical parameters were comparable. Artificial reef mesocosms seem to leave enough degrees of freedom to the enclosed community of living organisms to organize and change along possibly diverging pathways.

  18. Ocean acidification accelerates dissolution of experimental coral reef communities

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2014-08-01

    Full Text Available Ocean acidification (OA poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (~400 μatm and high pCO2 (~1300 μatm for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was depressed 59% under high pCO2, with sediment dissolution explaining ~50% of this decrease; net calcification of corals and calcified algae remained positive, but was reduced 29% under elevated pCO2. These results show that despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might switch to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.

  19. Public understanding in Great Britain of ocean acidification

    Science.gov (United States)

    Capstick, Stuart B.; Pidgeon, Nick F.; Corner, Adam J.; Spence, Elspeth M.; Pearson, Paul N.

    2016-08-01

    Public engagement with climate change is critical for maintaining the impetus for meaningful emissions cuts. Ocean acidification (OA) is increasingly recognized by marine scientists as an important, but often overlooked, consequence of anthropogenic emissions. Although substantial evidence now exists concerning people’s understanding of climate change more generally, very little is known about public perceptions of OA. Here, for the first time, we characterize in detail people’s understanding of this topic using survey data obtained in Great Britain (n = 2,501) during 2013 and 2014. We draw on theories of risk perception and consider how personal values influence attitudes towards OA. We find that public awareness of OA is very low compared to that of climate change, and was unaffected by the publication of the IPCC Fifth Assessment Report. Using an experimental approach, we show that providing basic information can heighten concern about OA, however, we find that attitude polarization along value-based lines may occur if the topic is explicitly associated with climate change. We discuss the implications of our findings for public engagement with OA, and the importance of learning lessons from communications research relating to climate change.

  20. Impact of Acidification on Pollutants Fate and Soil Filtration Function

    Directory of Open Access Journals (Sweden)

    Jarmila Makovniková

    2014-12-01

    Full Text Available The objective of this paper was to investigate the effects of simulated acid load on the fate of inorganic pollutants (Cd, Pb, soil sorption potential, soil filtration func-tion. We made use of a short-term acidification pot experiment with grown plant of spring barley cultivated at 4 different soil types (Fluvisol, Cambisol, Stagnosol, Podzol. The potential of soil filtration was evaluated according to the Eq.: [Soil filtration function]=[Potential of soil sorbents]+[Potential of total content of inor-ganic pollutants]. Potential of soil sorbents (PSS is defined by qualitative (pH, or-ganic matter quality - A400/600 and quantitative factors (carbon content-Cox, humus layer thickness-H according to the Eq.:[PSS]=F(pH+F(A465/665+F(Cox*F(H. Acid load significantly influenced soil sorption potential and thus affected increase in Cd and Pb mobility what was reflected in their transfer into the plants. Results of soil filtration function showed significant change of filtration function in Cambisol.

  1. Framework of barrier reefs threatened by ocean acidification.

    Science.gov (United States)

    Comeau, Steeve; Lantz, Coulson A; Edmunds, Peter J; Carpenter, Robert C

    2016-03-01

    To date, studies of ocean acidification (OA) on coral reefs have focused on organisms rather than communities, and the few community effects that have been addressed have focused on shallow back reef habitats. The effects of OA on outer barrier reefs, which are the most striking of coral reef habitats and are functionally and physically different from back reefs, are unknown. Using 5-m long outdoor flumes to create treatment conditions, we constructed coral reef communities comprised of calcified algae, corals, and reef pavement that were assembled to match the community structure at 17 m depth on the outer barrier reef of Moorea, French Polynesia. Communities were maintained under ambient and 1200 μatm pCO2 for 7 weeks, and net calcification rates were measured at different flow speeds. Community net calcification was significantly affected by OA, especially at night when net calcification was depressed ~78% compared to ambient pCO2 . Flow speed (2-14 cm s(-1) ) enhanced net calcification only at night under elevated pCO2 . Reef pavement also was affected by OA, with dissolution ~86% higher under elevated pCO2 compared to ambient pCO2 . These results suggest that net accretion of outer barrier reef communities will decline under OA conditions predicted within the next 100 years, largely because of increased dissolution of reef pavement. Such extensive dissolution poses a threat to the carbonate foundation of barrier reef communities.

  2. Interactions of ANP and ANG II in tubular nephron acidification

    Directory of Open Access Journals (Sweden)

    Mello-Aires M.

    1997-01-01

    Full Text Available (ANP, 1 µM on the kinetics of bicarbonate reabsorption in the rat middle proximal tubule, we performed in vivo experiments using a stopped-flow microperfusion technique with the determination of lumen pH by Sb microelectrodes. These studies confirmed that ANG II added to the luminal or peritubular capillary perfusion fluid stimulates proximal bicarbonate reabsorption and showed that ANP alone does not affect this process, but impairs the stimulation caused by ANG II. We also studied the effects and the interaction of these hormones in cortical distal nephron acidification. Bicarbonate reabsorption was evaluated by the acidification kinetic technique in early (ED and late (LD distal tubules in rats during in vivo stopped-flow microperfusion experiments. The intratubular pH was measured with a double-barreled microelectrode with H+-sensitive resin. The results indicate that ANG II acted by stimulating Na+/H+ exchange in ED (81% and LD (54% segments via activation of AT1 receptors, as well as vacuolar H+-ATPase in LD segments (33%. ANP did not affect bicarbonate reabsorption in either segment and, as opposed to what was seen in the proximal tubule, did not impair the stimulation caused by ANG II. To investigate the mechanism of action of these hormones in more detail, we studied cell pH dependence on ANG II and ANP in MDCK cells using the fluorescent probe BCECF. We showed that the velocity of cell pH recovery was almost abolished in the absence of Na+, indicating that it is dependent on Na+/H+ exchange. ANP (1 µM alone had no effect on this recovery but reversed both the acceleration of H+ extrusion at low ANG II levels (1 pM and 1 nM, and inhibition of H+ extrusion at higher ANG II levels (100 nM. To obtain more information on the mechanism of interaction of these hormones, we also studied their effects on the regulation of intracellular free calcium concentration, [Ca2+]i, monitored with the fluorescent probe Fura-2 in MDCK cells in suspension

  3. Interactions of ANP and ANG II in tubular nephron acidification

    Directory of Open Access Journals (Sweden)

    M. Mello-Aires

    1997-04-01

    Full Text Available (ANP, 1 µM on the kinetics of bicarbonate reabsorption in the rat middle proximal tubule, we performed in vivo experiments using a stopped-flow microperfusion technique with the determination of lumen pH by Sb microelectrodes. These studies confirmed that ANG II added to the luminal or peritubular capillary perfusion fluid stimulates proximal bicarbonate reabsorption and showed that ANP alone does not affect this process, but impairs the stimulation caused by ANG II. We also studied the effects and the interaction of these hormones in cortical distal nephron acidification. Bicarbonate reabsorption was evaluated by the acidification kinetic technique in early (ED and late (LD distal tubules in rats during in vivo stopped-flow microperfusion experiments. The intratubular pH was measured with a double-barreled microelectrode with H+-sensitive resin. The results indicate that ANG II acted by stimulating Na+/H+ exchange in ED (81% and LD (54% segments via activation of AT1 receptors, as well as vacuolar H+-ATPase in LD segments (33%. ANP did not affect bicarbonate reabsorption in either segment and, as opposed to what was seen in the proximal tubule, did not impair the stimulation caused by ANG II. To investigate the mechanism of action of these hormones in more detail, we studied cell pH dependence on ANG II and ANP in MDCK cells using the fluorescent probe BCECF. We showed that the velocity of cell pH recovery was almost abolished in the absence of Na+, indicating that it is dependent on Na+/H+ exchange. ANP (1 µM alone had no effect on this recovery but reversed both the acceleration of H+ extrusion at low ANG II levels (1 pM and 1 nM, and inhibition of H+ extrusion at higher ANG II levels (100 nM. To obtain more information on the mechanism of interaction of these hormones, we also studied their effects on the regulation of intracellular free calcium concentration, [Ca2+]i, monitored with the fluorescent probe Fura-2 in MDCK cells in suspension

  4. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    Science.gov (United States)

    Waldbusser, George G; Hales, Burke; Langdon, Chris J; Haley, Brian A; Schrader, Paul; Brunner, Elizabeth L; Gray, Matthew W; Miller, Cale A; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by

  5. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    Directory of Open Access Journals (Sweden)

    George G Waldbusser

    Full Text Available Ocean acidification (OA is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4 with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material

  6. Response of halocarbons to ocean acidification in the Arctic

    Directory of Open Access Journals (Sweden)

    F. E. Hopkins

    2013-04-01

    Full Text Available The potential effect of ocean acidification (OA on seawater halocarbons in the Arctic was investigated during a mesocosm experiment in Spitsbergen in June–July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine ~ 50 m3 mesocosms were studied under a range of pCO2 treatments from ~ 185 μatm to ~ 1420 μatm. In general, the response of halocarbons to pCO2 was subtle, or undetectable. A large number of significant correlations with a range of biological parameters (chlorophyll a, microbial plankton community, phytoplankton pigments were identified, indicating a biological control on the concentrations of halocarbons within the mesocosms. The temporal dynamics of iodomethane (CH3I alluded to active turnover of this halocarbon in the mesocosms and strong significant correlations with biological parameters suggested a biological source. However, despite a pCO2 effect on various components of the plankton community, and a strong association between CH3I and biological parameters, no effect of pCO2 was seen in CH3I. Diiodomethane (CH2I2 displayed a number of strong relationships with biological parameters. Furthermore, the concentrations, the rate of net production and the sea-to-air flux of CH2I2 showed a significant positive response to pCO2. There was no clear effect of pCO2 on bromocarbon concentrations or dynamics. However, periods of significant net loss of bromoform (CHBr3 were found to be concentration-dependent, and closely correlated with total bacteria, suggesting a degree of biological consumption of this halocarbon in Arctic waters. Although the effects of OA on halocarbon concentrations were marginal, this study provides invaluable information on the production and cycling of halocarbons in a region of the world's oceans likely to experience rapid environmental change in the coming decades.

  7. Ocean acidification and calcifying reef organisms: A mesocosm investigation

    Science.gov (United States)

    Jokiel, P.L.; Rodgers, K.S.; Kuffner, I.B.; Andersson, A.J.; Cox, E.F.; MacKenzie, F.T.

    2008-01-01

    A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ?? 130 ??atm (mean ?? sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight year-1 while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight year-1, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments. ?? 2008 Springer-Verlag.

  8. Ocean acidification and calcifying reef organisms: a mesocosm investigation

    Science.gov (United States)

    Jokiel, P. L.; Rodgers, K. S.; Kuffner, I. B.; Andersson, A. J.; Cox, E. F.; MacKenzie, F. T.

    2008-09-01

    A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide ( pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ± 130 μatm (mean ± sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight year-1 while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight year-1, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.

  9. Acidification effects on biofouling communities: winners and losers.

    Science.gov (United States)

    Peck, Lloyd S; Clark, Melody S; Power, Deborah; Reis, João; Batista, Frederico M; Harper, Elizabeth M

    2015-05-01

    How ocean acidification affects marine life is a major concern for science and society. However, its impacts on encrusting biofouling communities, that are both the initial colonizers of hard substrata and of great economic importance, are almost unknown. We showed that community composition changed significantly, from 92% spirorbids, 3% ascidians and 4% sponges initially to 47% spirorbids, 23% ascidians and 29% sponges after 100 days in acidified conditions (pH 7.7). In low pH, numbers of the spirorbid Neodexiospira pseudocorrugata were reduced ×5 compared to controls. The two ascidians present behaved differently with Aplidium sp. decreasing ×10 in pH 7.7, whereas Molgula sp. numbers were ×4 higher in low pH than controls. Calcareous sponge (Leucosolenia sp.) numbers increased ×2.5 in pH 7.7 over controls. The diatom and filamentous algal community was also more poorly developed in the low pH treatments compared to controls. Colonization of new surfaces likewise showed large decreases in spirorbid numbers, but numbers of sponges and Molgula sp. increased. Spirorbid losses appeared due to both recruitment failure and loss of existing tubes. Spirorbid tubes are comprised of a loose prismatic fabric of calcite crystals. Loss of tube materials appeared due to changes in the binding matrix and not crystal dissolution, as SEM analyses showed crystal surfaces were not pitted or dissolved in low pH conditions. Biofouling communities face dramatic future changes with reductions in groups with hard exposed exoskeletons and domination by soft-bodied ascidians and sponges.

  10. Resilience of SAR11 bacteria to rapid acidification in the high-latitude open ocean.

    Science.gov (United States)

    Hartmann, Manuela; Hill, Polly G; Tynan, Eithne; Achterberg, Eric P; Leakey, Raymond J G; Zubkov, Mikhail V

    2016-02-01

    Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects. PMID:26691595

  11. Soil acidification stimulates the emission of ethylene from temperate forest soils

    Science.gov (United States)

    Xu, Xingkai; Kazuyuki, Inubushi

    2009-11-01

    Soil acidification via acid precipitation is recognized to have detrimental impacts on forest ecosystems, which is in part associated with the function of ethylene released from the soil. However, the impacts of acidification on the cycling of ethylene in forest soils have not been fully taken into consideration in global change studies. Forest topsoils (0-5 cm) under four temperate forest stands were sampled to study the effects of a pH change on the emissions of ethylene and carbon dioxide from the soils and concentrations of dissolved organic carbon (DOC) released into the soils. Increasing acidification or alkalinization of forest soils could increase concentrations of DOC released into the soils under anoxic and oxic conditions. The ethylene emission from these forest topsoils could significantly increase with a decreasing pH, when the soils were acidified experimentally to a pHsoils, which was different from the carbon dioxide emission from the soils. Hence, the short-term stimulating responses of ethylene emission to a decreasing pH in such forest soils resulted from the increase in the DOC concentration due to acidification rather than carbon mineralization. The results would promote one to study the effects of soil acidification on the cycling of ethylene under different forest stands, particularly under degraded forest stands with heavy acid depositions.

  12. Resilience of SAR11 bacteria to rapid acidification in the high-latitude open ocean.

    Science.gov (United States)

    Hartmann, Manuela; Hill, Polly G; Tynan, Eithne; Achterberg, Eric P; Leakey, Raymond J G; Zubkov, Mikhail V

    2016-02-01

    Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects.

  13. Nephrotoxicity of Bence-Jones proteins: interference in renal epithelial cell acidification

    Directory of Open Access Journals (Sweden)

    Nicastri A.L.

    2002-01-01

    Full Text Available The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP was evaluated by rhodamine fluorescence. Renal cells (MDCK were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss. Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000. Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.

  14. The influence of food supply on the response of Olympia oyster larvae to ocean acidification

    Science.gov (United States)

    Hettinger, A.; Sanford, E.; Hill, T. M.; Hosfelt, J. D.; Russell, A. D.; Gaylord, B.

    2013-10-01

    Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2) enters seawater and alters ocean pH (termed "ocean acidification"). However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potential for food supply to influence the response of Olympia oyster (Ostrea lurida) larvae to ocean acidification. In laboratory experiments, we reared oyster larvae under a factorial combination of pCO2 and food level. Elevated pCO2 had negative effects on larval growth, total dry weight, and metamorphic success, but high food availability partially offset these influences. The combination of elevated pCO2 and low food availability led to the greatest reduction in larval performance. However, the effects of food and pCO2 interacted additively rather than synergistically, indicating that they operated independently. Despite the potential for abundant resources to counteract the consequences of ocean acidification, impacts were never completely negated, suggesting that even under conditions of enhanced primary production and elevated food availability, impacts of ocean acidification may still accrue in some consumers.

  15. The influence of food supply on the response of Olympia oyster larvae to ocean acidification

    Directory of Open Access Journals (Sweden)

    A. Hettinger

    2013-03-01

    Full Text Available Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2 enters seawater and alters its pH (termed "ocean acidification". However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potential for food supply to influence the response of Olympia oyster (Ostrea lurida larvae to ocean acidification. In laboratory experiments, we reared oyster larvae under a factorial combination of pCO2 and food level. High food availability offset the negative consequences of elevated pCO2 on larval shell growth and total dry weight. Low food availability, in contrast, exacerbated these impacts. In both cases, effects of food and pCO2 interacted additively rather than synergistically, indicating that they operated independently. Despite the potential for abundant resources to counteract the consequences of ocean acidification, impacts were never completely negated, suggesting that even under conditions of enhanced primary production and elevated food availability, impacts of ocean acidification may still accrue in some consumers.

  16. Ocean acidification accelerates net calcium carbonate loss in a coral rubble community

    Science.gov (United States)

    Stubler, Amber D.; Peterson, Bradley J.

    2016-09-01

    Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d-1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d-1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.

  17. Atmospheric Deposition Effects on Agricultural Soil Acidification State — Key Study: Krupanj Municipality

    Directory of Open Access Journals (Sweden)

    Čakmak Dragan

    2014-07-01

    Full Text Available Acidification, as a form of soil degradation is a process that leads to permanent reduction in the quality of soil as the most important natural resource. The process of soil acidification, which in the first place implies a reduction in soil pH, can be caused by natural processes, but also considerably accelerated by the anthropogenic influence of excessive S and N emissions, uncontrolled deforestation, and intensive agricultural processes. Critical loads, i.e. the upper limit of harmful depositions (primarily of S and N which will not cause damages to the ecosystem, were determined in Europe under the auspices of the Executive Committee of the CLRTAP in 1980. These values represent the basic indicators of ecosystem stability to the process of acidification. This paper defines the status of acidification for the period up to 2100 in relation to the long term critical and target loading of soil with S and N on the territory of Krupanj municipality by applying the VSD model. The Inverse Distance Weighting (IDW geostatistic module was used as the interpolation method. Land management, particularly in areas susceptible to acidification, needs to be focused on well-balanced agriculture and use of crops/seedlings to achieve the optimum land use and sustainable productivity for the projected 100-year period.

  18. The influence of food supply on the response of Olympia oyster larvae to ocean acidification

    Directory of Open Access Journals (Sweden)

    A. Hettinger

    2013-10-01

    Full Text Available Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2 enters seawater and alters ocean pH (termed "ocean acidification". However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potential for food supply to influence the response of Olympia oyster (Ostrea lurida larvae to ocean acidification. In laboratory experiments, we reared oyster larvae under a factorial combination of pCO2 and food level. Elevated pCO2 had negative effects on larval growth, total dry weight, and metamorphic success, but high food availability partially offset these influences. The combination of elevated pCO2 and low food availability led to the greatest reduction in larval performance. However, the effects of food and pCO2 interacted additively rather than synergistically, indicating that they operated independently. Despite the potential for abundant resources to counteract the consequences of ocean acidification, impacts were never completely negated, suggesting that even under conditions of enhanced primary production and elevated food availability, impacts of ocean acidification may still accrue in some consumers.

  19. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    Science.gov (United States)

    Mostofa, Khan M. G.; Liu, Cong-Qiang; Zhai, WeiDong; Minella, Marco; Vione, Davide; Gao, Kunshan; Minakata, Daisuke; Arakaki, Takemitsu; Yoshioka, Takahito; Hayakawa, Kazuhide; Konohira, Eiichi; Tanoue, Eiichiro; Akhand, Anirban; Chanda, Abhra; Wang, Baoli; Sakugawa, Hiroshi

    2016-03-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  20. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Thoisen, Christina; Riisgaard, Karen; Lundholm, Nina;

    2015-01-01

    show that coastal phytoplankton from Disko Bay is naturally exposed to pH fluctuations exceeding the experimental pH range used in most ocean acidification studies. We emphasize that studies on ocean acidification should include in situ pH before assumptions on the effect of acidification on marine......Long-term measurements (i.e. months) of in situ pH have not previously been reported from the Arctic; this study shows fluctuations between pH 7.5 and 8.3 during the spring bloom 2012 in a coastal area of Disko Bay, West Greenland. The effect of acidification on phytoplankton from this area was...... studied at both the community and species level in experimental pH treatments within (pH 8.0, 7.7 and 7.4) and outside (pH 7.1) in situ pH. The growth rate of the phytoplankton community decreased during the experimental acidification from 0.50 ± 0.01 d-1 (SD) at pH 8.0 to 0.22 ± 0.01 d-1 at pH 7...

  1. Municipal solid waste incineration in China and the issue of acidification: A review.

    Science.gov (United States)

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. PMID:26941208

  2. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    Science.gov (United States)

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  3. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions.

    Science.gov (United States)

    Murray, Fiona; Widdicombe, Stephen; McNeill, C Louise; Solan, Martin

    2013-08-30

    Whilst the biological consequences of long-term, gradual changes in acidity associated with the oceanic uptake of atmospheric carbon dioxide (CO2) are increasingly studied, the potential effects of rapid acidification associated with a failure of sub-seabed carbon storage infrastructure have received less attention. This study investigates the effects of severe short-term (8days) exposure to acidified seawater on infaunal mediation of ecosystem processes (bioirrigation and sediment particle redistribution) and functioning (nutrient concentrations). Following acidification, individuals of Amphiura filiformis exhibited emergent behaviour typical of a stress response, which resulted in altered bioturbation, but limited changes in nutrient cycling. Under acidified conditions, A. filiformis moved to shallower depths within the sediment and the variability in occupancy depth reduced considerably. This study indicated that rapid acidification events may not be lethal to benthic invertebrates, but may result in behavioural changes that could have longer-term implications for species survival, ecosystem structure and functioning.

  4. Influence of ocean acidification on the complexation of iron and copper by organic ligands in estuarine waters

    NARCIS (Netherlands)

    Gledhill, M.; Achterberg, E.P.; Li, K.; Mohamed, K.N.; Rijkenberg, M.J.

    2015-01-01

    The uptake of anthropogenic atmospheric CO2 by the oceans causes a shift in the carbonate chemistry system which includes a lowering of pH; this process has been termed ocean acidification. Our understanding of the specific effects of ocean acidification on chemical speciation of trace metals, in pa

  5. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    Science.gov (United States)

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  6. Calcium-calmodulin signalling is involved in light-induced acidification by epidermal leaf cells of pea, Pisum sativum L.

    NARCIS (Netherlands)

    Elzenga, JTM; Staal, M; Prins, HBA

    1997-01-01

    Pathways of signal transduction of red and blue light-dependent acidification by leaf epidermal cells were studied using epidermal strips of the Argenteum mutant of Pisum sativum. In these preparations the contribution of guard cells to the acidification is minimal. The hydroxypyridine nifedipine, a

  7. [Application of Micro-aerobic Hydrolysis Acidification in the Pretreatment of Petrochemical Wastewater].

    Science.gov (United States)

    Zhu, Chen; Wu, Chang-yong; Zhou, Yue-xi; Fu, Xiao-yong; Chen, Xue-min; Qiu, Yan-bo; Wu, Xiao-feng

    2015-10-01

    Micro-aerobic hydrolysis acidification technology was applied in the reconstruction of ananaerobic hydrolysis acidification tank in a north petrochemical wastewater treatment plant. After put into operation, the monitoring results showed that the average removal rate of COD was 11.7% when influent COD was 490.3-673.2 mg x L(-1), hydraulic retention time (HRT) was 24 and the dissolved oxygen (DO) was 0.2-0.35 mg x L(-1). In addition, the BOD5/COD value was increased by 12.4%, the UV254 removal rate reached 11.2%, and the VFA concentration was increased by 23.0%. The relative molecular weight distribution (MWD) results showed that the small molecule organic matter ( 100 x 10(3)) percentage was decreased from 31.8% to 14.0% after micro-aerobic hydrolysis acidification. The aerobic biodegradation batch test showed that the degradation of petrochemical wastewater was significantly improved by the pretreatment of micro-aerobic hydrolysis acidification. The COD of influent can be degraded to 102.2 mg x L(-1) by 48h aerobic treatment while the micro-aerobic hydrolysis acidification effluent COD can be degraded to 71.5 mg x L(-1) on the same condition. The effluent sulfate concentration of micro-aerobic hydrolysis acidification tank [(930.7 ± 60.1) mg x L(-1)] was higher than that of the influent [(854.3 ± 41.5) mg x L(-1)], indicating that sulfate reducing bacteria (SRB) was inhibited. The toxic and malodorous gases generation was reduced with the improvement of environment. PMID:26841606

  8. Background, results and conclusions of the Dutch Priority Programme on Acidification

    International Nuclear Information System (INIS)

    The second phase of the Dutch Priority Programme on Acidification was carried out from 1988-1991. The main research areas were ammonia emissions, the deposition of SOx, NOy and NHx exposure-effect relationships for forest ecosystems (on dry sandy soils) and heathlands, and effectiveness of control measures. The last topic included the evaluation of emission-deposition scenarios and the assessment of critical loads. In 1989, 54% of the acid deposition in the Netherlands originated from the country itself. NHx is the main component in the acid deposition (46% in 1989, 80% from NL). Agriculture contributes the largest portion to the NL fraction of the acid deposition (62% in 1989). Nevertheless, sulphur is the most important factor in soil acidification (contribution about 65% versus nitrogen 35%). Soil acidification is the main effect of acid deposition in the Netherlands, resulting in depletion of the Al buffer and deterioration of the groundwater quality. Disturbance of nutrient balances occurs (also caused by excess nitrogen), resulting in an increasing risk of damage caused by traditional stress factors like drought and pests. In the Netherlands, no mono-causal relationship exists between acid load and forest vitality in terms of needle loss and discolouration; acidification plays a role but it is not the only factor. In general, its impact is a weakening of the tree's resistance to attack by other stress factors. From calculations with the Dutch Acidification Systems model an average deposition of 1400 mol H+ per ha for the Netherlands as a whole in the year 2010 and an average deposition of 1400 mol H+ per ha for forests in the year 2050, seems sufficient to minimise the impact of acidification. 3 refs., 10 figs., 3 tabs

  9. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Directory of Open Access Journals (Sweden)

    Jessica Garzke

    Full Text Available Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5 and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA and arachidonic acid (ARA to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  10. IPCC workshop on impacts of ocean acidification on marine biology and ecosystems. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Mach, K.J.; Plattner, G.-K.; Mastrandrea, M.D.; Tignor, M.; Ebi, K.L.

    2011-09-15

    Understanding the effects of increasing atmospheric CO{sub 2} concentrations on ocean chemistry, commonly termed ocean acidification, as well as associated impacts on marine biology and ecosystems, is an important component of scientific knowledge about global change. The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) will include comprehensive coverage of ocean acidification and its impacts, including potential feedbacks to the climate system. To support ongoing AR5 assessment efforts, Working Group II and Working Group I (WGII and WGI) of the IPCC held a joint Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems in Okinawa, Japan, from 17 to 19 January 2011. The workshop convened experts from the scientific community, including WGII and WGI AR5 authors and review editors, to synthesise scientific understanding of changes in ocean chemistry due to increased CO{sub 2} and of impacts of this changing chemistry on marine organisms, ecosystems, and ecosystem services. This workshop report summarises the scientific content and perspectives presented and discussed during the workshop. It provides syntheses of these perspectives for the workshop's core topics: (i) the changing chemistry of the oceans, (ii) impacts of ocean acidification for individual organisms, and (iii) scaling up responses from individual organisms to ecosystems. It also presents summaries of workshop discussions of key cross-cutting themes, ranging from detection and attribution of ocean acidification and its impacts to understanding ocean acidification in the context of other stressors on marine systems. Additionally, the workshop report includes extended abstracts for keynote and poster presentations at the workshop. (Author)

  11. Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge?

    Science.gov (United States)

    Findlay, Helen S; Burrows, Michael T; Kendall, Michael A; Spicer, John I; Widdicombe, Stephen

    2010-10-01

    The global ocean and atmosphere are warming. There is increasing evidence suggesting that, in addition to other environmental factors, climate change is affecting species distributions and local population dynamics. Additionally, as a consequence of the growing levels of atmospheric carbon dioxide (CO2), the oceans are taking up increasing amounts of this CO2, causing ocean pH to decrease (ocean acidification). The relative impacts of ocean acidification on population dynamics have yet to be investigated, despite many studies indicating that there will be at least a sublethal impact on many marine organisms, particularly key calcifying organisms. Using empirical data, we forced a barnacle (Semibalanus balanoides) population model to investigate the relative influence of sea surface temperature (SST) and ocean acidification on a population nearing the southern limit of its geographic distribution. Hindcast models were compared to observational data from Cellar Beach (southwestern United Kingdom). Results indicate that a declining pH trend (-0.0017 unit/yr), indicative of ocean acidification over the past 50 years, does not cause an observable impact on the population abundance relative to changes caused by fluctuations in temperature. Below the critical temperature (here T(crit) = 13.1 degrees C), pH has a more significant affect on population dynamics at this southern range edge. However, above this value, SST has the overriding influence. At lower SST, a decrease in pH (according to the National Bureau of Standards, pHNBs) from 8.2 to 7.8 can significantly decrease the population abundance. The lethal impacts of ocean acidification observed in experiments on early life stages reduce cumulative survival by approximately 25%, which again will significantly alter the population level at this southern limit. Furthermore, forecast predictions from this model suggest that combined acidification and warming cause this local population to die out 10 years earlier than

  12. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content

    Science.gov (United States)

    Hansen, Thomas; Ismar, Stefanie M. H.; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts. PMID:27224476

  13. Microbial population dynamics and changes in main nutrients during the acidification process of pig manures

    Institute of Scientific and Technical Information of China (English)

    Dongdong Zhang; Xufeng Yuan; Peng Guo; Yali Suo; Xiaofen Wang; Weidong Wang; Zongjun Cui

    2011-01-01

    This study evaluated the impact of pig manure acidification on anaerobic treatment and composition of the fecal microbial community.According to the different chemical oxygen demand (COD) in the anaerobic treatment processes, pig manure was diluted 4 times (×4), 16 times (×l6), or 64 times (×64) and subjected to acidification.During the acidification process, pH, soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), nitrogen (N), phosphorus (P) and potassium (K) were determined along with microbial population dynamics.The pH of the three dilutions first declined, and then slowly increased.The total VFAs of ×4 and ×l6 dilutions peaked on day 15 and 20, respectively.The content of acetic acid, propanoic acid, butanoic acid and valeric acid of the × 4 dilution were 23.6, 11.4, 8.8 and 0.6 g/L respectively, and that of the ×l6 dilution was 5.6, 2.3, 0.9 and 0.2 g/L respectively.Only acetic acid was detected in the ×64 dilution, and its level peaked on day 10.The results showed that the liquid pig manure was more suitable to enter the anaerobic methanogenic bioreactors after two weeks of acidification.During the acidification process, total P concentration increased during the first ten days, then dropped sharply, and rose again to a relatively high final concentration, while total N concentration rose initially and then declined.Based on the analysis of denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library, we concluded that the acidification process reduced the number of pathogenic bacteria species in pig manure.

  14. Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-06-01

    Full Text Available Concrete is a major material used in the construction industry that emits a large amount of substances with environmental impacts during its life cycle. Accordingly, technologies for the reduction in and assessment of the environmental impact of concrete from the perspective of a life cycle assessment (LCA must be developed. At present, the studies on LCA in relation to greenhouse gas emission from concrete are being carried out globally as a countermeasure against climate change. However, the studies on the impact of the substances emitted in the concrete production process on acidification and eutrophication are insufficient. As such, assessing only a single category of environmental impact may cause a misunderstanding about the environmental friendliness of concrete. The substances emitted in the concrete production process have an impact not only on global warming but also on acidification and eutrophication. Acidification and eutrophication are the main causes of air pollution, forest destruction, red tide phenomena, and deterioration of reinforced concrete structures. For this reason, the main substances among those emitted in the concrete production process that have an impact on acidification and eutrophication were deduced. In addition, an LCA technique through which to determine the major emissions from concrete was proposed and a case analysis was carried out. The substances among those emitted in the concrete production process that are related to eutrophication were deduced to be NOx, NH3, NH4+, COD, NO3−, and PO43−. The substances among those emitted in the concrete production process that are related to acidification, were found to be NOx, SO2, H2S, and H2SO4. The materials and energy sources among those input into the concrete production process, which have the biggest impact on acidification and eutrophication, were found to be coarse aggregate and fine aggregate.

  15. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae

    Science.gov (United States)

    Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; e Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the

  16. Field-based experimental acidification alters fouling community structure and reduces diversity.

    Science.gov (United States)

    Brown, Norah E M; Therriault, Thomas W; Harley, Christopher D G

    2016-09-01

    Increasing levels of CO2 in the atmosphere are affecting ocean chemistry, leading to increased acidification (i.e. decreased pH) and reductions in calcium carbonate saturation state. Many species are likely to respond to acidification, but the direction and magnitude of these responses will be based on interspecific and ontogenetic variation in physiology and the relative importance of calcification. Differential responses to ocean acidification (OA) among species will likely result in important changes in community structure and diversity. To characterize the potential impacts of OA on community composition and structure, we examined the response of a marine fouling community to experimental CO2 enrichment in field-deployed flow-through mesocosm systems. Acidification significantly altered the community structure by altering the relative abundance of species and reduced community variability, resulting in more homogenous biofouling communities from one experimental tile to the next both among and within the acidified mesocosms. Mussel (Mytilus trossulus) recruitment was reduced by over 30% in the elevated CO2 treatment compared to the ambient treatment by the end of the experiment. Strong differences in mussel cover (up to 40% lower in acidified conditions) developed over the second half of the 10-week experiment. Acidification did not appear to affect the mussel growth, as average mussel sizes were similar between treatments at the end of the experiment. Hydroid (Obelia dichotoma) cover was significantly reduced in the elevated CO2 treatment after 8 weeks. Conversely, the percentage cover of bryozoan colonies (Mebranipora membranacea) was higher under acidified conditions with differences becoming apparent after 6 weeks. Neither recruitment nor final size of barnacles (Balanus crenatus) was affected by acidification. By the end of the experiment, diversity was 41% lower in the acidified treatment relative to ambient conditions. Overall, our findings support the

  17. Leaky vessels as a potential source of stromal acidification in tumours

    KAUST Repository

    Martin, Natasha K.

    2010-12-01

    Malignant tumours are characterised by higher rates of acid production and a lower extracellular pH than normal tissues. Previous mathematical modelling has indicated that the tumour-derived production of acid leads to a gradient of low pH in the interior of the tumour extending to a normal pH in the peritumoural tissue. This paper uses mathematical modelling to examine the potential of leaky vessels as an additional source of stromal acidification in tumours. We explore whether and to what extent increasing vascular permeability in vessels can lead to the breakdown of the acid gradient from the core of the tumour to the normal tissue, and a progressive acidification of the peritumoural stroma. We compare our mathematical simulations to experimental results found in vivo with a tumour implanted in the mammary fat pad of a mouse in a window chamber construct. We find that leaky vasculature can cause a net acidification of the normal tissue away from the tumour boundary, though not a progressive acidification over time as seen in the experiments. Only through progressively increasing the leakiness can the model qualitatively reproduce the experimental results. Furthermore, the extent of the acidification predicted by the mathematical model is less than as seen in the window chamber, indicating that although vessel leakiness might be acting as a source of acid, it is not the only factor contributing to this phenomenon. Nevertheless, tumour destruction of vasculature could result in enhanced stromal acidification and invasion, hence current therapies aimed at buffering tumour pH should also examine the possibility of preventing vessel disruption.

  18. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    Science.gov (United States)

    Scherner, Fernando; Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; E Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the

  19. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    Directory of Open Access Journals (Sweden)

    Fernando Scherner

    Full Text Available Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9. For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9. The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C. In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a

  20. Microbial population dynamics and changes in main nutrients during the acidification process of pig manures.

    Science.gov (United States)

    Zhang, Dongdong; Yuan, Xufeng; Guo, Peng; Suo, Yali; Wang, Xiaofen; Wang, Weidong; Cui, Zongjun

    2011-01-01

    This study evaluated the impact of pig manure acidification on anaerobic treatment and composition of the fecal microbial community. According to the different chemical oxygen demand (COD) in the anaerobic treatment processes, pig manure was diluted 4 times (x4), 16 times (x16), or 64 times (x64) and subjected to acidification. During the acidification process, pH, soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), nitrogen (N), phosphorus (P) and potassium (K) were determined along with microbial population dynamics. The pH of the three dilutions first declined, and then slowly increased. The total VFAs of x4 and x16 dilutions peaked on day 15 and 20, respectively. The content of acetic acid, propanoic acid, butanoic acid and valeric acid of the x4 dilution were 23.6, 11.4, 8.8 and 0.6 g/L respectively, and that of the x16 dilution was 5.6, 2.3, 0.9 and 0.2 g/L respectively. Only acetic acid was detected in the x64 dilution, and its level peaked on day 10. The results showed that the liquid pig manure was more suitable to enter the anaerobic methanogenic bioreactors after two weeks of acidification. During the acidification process, total P concentration increased during the first ten days, then dropped sharply, and rose again to a relatively high final concentration, while total N concentration rose initially and then declined. Based on the analysis of denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library, we concluded that the acidification process reduced the number of pathogenic bacteria species in pig manure. PMID:21520820

  1. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense

    Science.gov (United States)

    Carrillo, Angel; Li, Ching; Bashan, Yoav

    2002-08-01

    Acidification of the rhizosphere of cactus seedlings (giant cardon, Pachycereus pringlei) after inoculation with the plant growth-promoting bacterium Azospirillum brasilense Cd, in the presence or absence of ammonium and nitrate, was studied to understand how to increase growth of cardon seedlings in poor desert soils. While ammonium enhanced rhizosphere and liquid culture acidification, inoculation with the bacteria enhanced it further. On the other hand, nitrate increased pH of the rhizosphere, but combined with the bacterial inoculation, increase in pH was significantly smaller. Bacterial inoculation with ammonium enhanced plant growth.

  2. Experimental acidification of two biogeochemically-distinct neotropical streams: Buffering mechanisms and macroinvertebrate drift

    Energy Technology Data Exchange (ETDEWEB)

    Ardón, Marcelo, E-mail: ardonsayaom@ecu.edu [Department of Biology and North Carolina Center for Biodiversity, East Carolina University, Greenville, NC 27858 (United States); Duff, John H. [U.S. Geological Survey, Menlo Park, CA 94025 (United States); Ramírez, Alonso [Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931 (Puerto Rico); Small, Gaston E. [Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108 (United States); Jackman, Alan P. [University of California, Davis, CA 95616 (United States); Triska, Frank J. [U.S. Geological Survey, Menlo Park, CA 94025 (United States); Pringle, Catherine M. [Odum School of Ecology, University of Georgia, Athens, GA 30602 (United States)

    2013-01-15

    Research into the buffering mechanisms and ecological consequences of acidification in tropical streams is lacking. We have documented seasonal and episodic acidification events in streams draining La Selva Biological Station, Costa Rica. Across this forested landscape, the severity in seasonal and episodic acidification events varies due to interbasin groundwater flow (IGF). Streams that receive IGF have higher concentrations of solutes and more stable pH (∼ 6) than streams that do not receive IGF (pH ∼ 5). To examine the buffering capacity and vulnerability of macroinvertebrates to short-term acidification events, we added hydrochloric acid to acidify a low-solute, poorly buffered (without IGF) and a high-solute, well buffered stream (with IGF). We hypothesized that: 1) protonation of bicarbonate (HCO{sub 3}{sup −}) would neutralize most of the acid added in the high-solute stream, while base cation release from the sediments would be the most important buffering mechanism in the low-solute stream; 2) pH declines would mobilize inorganic aluminum (Ali) from sediments in both streams; and 3) pH declines would increase macroinvertebrate drift in both streams. We found that the high-solute stream neutralized 745 μeq/L (96% of the acid added), while the solute poor stream only neutralized 27.4 μeq/L (40%). Protonation of HCO{sub 3}{sup −} was an important buffering mechanism in both streams. Base cation, Fe{sup 2+}, and Ali release from sediments and protonation of organic acids also provided buffering in the low-solute stream. We measured low concentrations of Ali release in both streams (2-9 μeq/L) in response to acidification, but the low-solute stream released double the amount Ali per 100 μeq of acid added than the high solute stream. Macroinvertebrate drift increased in both streams in response to acidification and was dominated by Ephemeroptera and Chironomidae. Our results elucidate the different buffering mechanisms in tropical streams and

  3. Inhibition of Endosome-Lysosome System Acidification Enhances Porcine Circovirus 2 Infection of Porcine Epithelial Cells▿

    OpenAIRE

    Misinzo, Gerald; Delputte, Peter; Nauwynck, Hans

    2007-01-01

    Recently, Misinzo et al. (G. Misinzo, P. Meerts, M. Bublot, J. Mast, H. M. Weingartl, and H. J. Nauwynck, J. Gen. Virol. 86:2057-2068, 2005) reported that inhibiting endosome-lysosome system acidification reduced porcine circovirus 2 (PCV2) infection of monocytic 3D4/31 cells. The present study examined the effect of inhibiting endosome-lysosome system acidification in epithelial cells, since epithelial cells support PCV2 infection in vivo and are used in culturing PCV2 in vitro. Ammonium chl...

  4. Acidification of calf bedding reduces fly development and bacterial abundance.

    Science.gov (United States)

    Calvo, M S; Gerry, A C; McGarvey, J A; Armitage, T L; Mitloehner, F M

    2010-03-01

    Environmental stressors, such as high fly density, can affect calf well-being. Sodium bisulfate (SBS) is an acidifier that reduces the pH of flooring and bedding, creating a medium that neither bacteria nor immature flies (also known as larvae or maggots) can thrive in. Two experiments were conducted to investigate the application of SBS to a mixture of rice hull calf bedding and calf slurry (BED) to reduce house fly (Musca domestica L.) larval density and the abundance of bacteria. In experiment 1, dish pans containing 1L of BED and 3,000 house fly eggs were treated with SBS at concentrations of 0, 8.9, 17.7, and 26.5g of SBS/0.05m(2) of BED (CON, LOW, MED, and HIGH, respectively), with each SBS concentration applied to 4 individual pans (16 pans total). Reapplication of the same SBS concentrations in each pan occurred 3 times/wk throughout the 23-d trial. Larval house fly survival was significantly reduced in all pans with SBS relative to CON pans, with lowest survival rates in the MED and HIGH pans (99% and 100% reduction, respectively). The mean pH for each treatment was inversely related to the SBS concentration. In experiment 2, pans containing 1L of BED and 3,000 house fly eggs were treated with either 0g of SBS (CON), 8.9g of SBS/0.05m(2) of BED with reapplication of the acidifier 3 times/wk (SB3x), or 8.9g of SBS/0.05m(2) of BED applied only once at 48h before the end of the 8 d-trial (SB48). Larval house fly survival and bacterial concentrations were reduced (90% larval reduction and 68% bacterial reduction) in the SB3x treatment relative to the CON. Mean pH was also reduced in SB3x pans relative to CON or SB48 pans. Overall, acidification of calf BED using the acidifier SBS resulted in a reduction of bacteria and house fly larval survival. This form of fly control might be expected to reduce adult fly production and, therefore, fly-related stress in calves.

  5. Response of halocarbons to ocean acidification in the Arctic

    Directory of Open Access Journals (Sweden)

    F. E. Hopkins

    2012-07-01

    Full Text Available The potential effect of ocean acidification (OA on seawater halocarbons in the Arctic was investigated during a~mesocosm experiment in Spitsbergen in June–July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine ~50 m3 mesocosms were studied under a range of pCO2 treatments from ~185 μatm to ~1420 μatm. In general, the response of halocarbons to pCO2 was subtle, or undetectable. A large number of significant correlations with a range of biological parameters (chlorophyll a, microbial plankton community, phytoplankton pigments were identified, indicating a biological control on the concentrations of halocarbons within the mesocosms. The temporal dynamics of iodomethane (CH3I alluded to active turnover of this halocarbon in the mesocosms and strong significant correlations with biological parameters suggested a biological source. However, despite a pCO2 effect on various components of the plankton community, and a strong association between CH3I and biological parameters, no effect of pCO2 was seen in CH3I. Diiodomethane (CH2I2 displayed a number of strong relationships with biological parameters. Furthermore, the concentrations, the rate of net production and the sea-to-air flux of CH2I2 showed a significant positive response to pCO2. There was no clear effect of pCO2 on bromocarbon concentrations or dynamics. However, periods of significant net loss of bromoform (CHBr3 were found to be concentration-dependent, and closely correlated with total bacteria, suggesting a degree of biological consumption of this halocarbon in Arctic waters. Although the effects of OA on halocarbon concentrations were marginal, this study provides invaluable information on the production and cycling of halocarbons in a region of the world

  6. Is acidification still a major air pollution concern?; L`acidification est-elle encore un probleme majeur de pollution atmospherique?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Although other forms of long-range air pollution are gaining attention, acidification remains an important issue in certain parts of Europe as well as in other continents. In spite of the European 88/609 directive limiting acid emissions from large fuel burning plants, a large part of Europe soils receives acid deposits superior to the tolerance threshold, known as critical loads. Thus, the European Union is considering several new measures, such as a more drastic 88/609 directive, the limitation of emissions country by country, the limitation of sulfur content in heavy fuels, etc. Emission inventories, evaluation tools, long range transfrontier pollution models, integrated assessment, etc. are presented, together with the positions of various French governmental departments, public authorities and industries concerning the european strategy against acidification

  7. Ocean Acidification Scientific Data Stewardship: An approach for end-to-end data management and integration

    Science.gov (United States)

    Arzayus, K. M.; Garcia, H. E.; Jiang, L.; Michael, P.

    2012-12-01

    As the designated Federal permanent oceanographic data center in the United States, NOAA's National Oceanographic Data Center (NODC) has been providing scientific stewardship for national and international marine environmental and ecosystem data for over 50 years. NODC is supporting NOAA's Ocean Acidification Program and the science community by providing end-to-end scientific data management of ocean acidification (OA) data, dedicated online data discovery, and user-friendly access to a diverse range of historical and modern OA and other chemical, physical, and biological oceanographic data. This effort is being catalyzed by the NOAA Ocean Acidification Program, but the intended reach is for the broader scientific ocean acidification community. The first three years of the project will be focused on infrastructure building. A complete ocean acidification data content standard is being developed to ensure that a full spectrum of ocean acidification data and metadata can be stored and utilized for optimal data discovery and access in usable data formats. We plan to develop a data access interface capable of allowing users to constrain their search based on real-time and delayed mode measured variables, scientific data quality, their observation types, the temporal coverage, methods, instruments, standards, collecting institutions, and the spatial coverage. In addition, NODC seeks to utilize the existing suite of international standards (including ISO 19115-2 and CF-compliant netCDF) to help our data producers use those standards for their data, and help our data consumers make use of the well-standardized metadata-rich data sets. These tools will be available through our NODC Ocean Acidification Scientific Data Stewardship (OADS) web page at http://www.nodc.noaa.gov/oceanacidification. NODC also has a goal to provide each archived dataset with a unique ID, to ensure a means of providing credit to the data provider. Working with partner institutions, such as the

  8. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes

    Science.gov (United States)

    Baron, J.S.; Driscoll, C.T.; Stoddard, J.L.; Richer, E.E.

    2011-01-01

    The ecological effects of elevated atmospheric nitrogen (N) deposition on high-elevation lakes of the western and northeastern United States include nutrient enrichment and acidification. The nutrient enrichment critical load for western lakes ranged from 1.0 to 3.0 kilograms (kg) of N per hectare (ha) per year, reflecting the nearly nonexistent watershed vegetation in complex, snowmelt-dominated terrain. The nutrient enrichment critical load for northeastern lakes ranged from 3.5 to 6.0 kg N per ha per year. The N acidification critical loads associated with episodic N pulses in waters with low values of acid neutralizing capacity were 4.0 kg N per ha per year (western) and 8.0 kg N per ha per year (northeastern). The empirical critical loads for N-caused acidification were difficult to determine because of a lack of observations in the West, and high sulfur deposition in the East. For both nutrient enrichment and acidification, the N critical load was a function of how atmospheric N deposition was determined. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  9. Are brook trout streams in Western Virginia and Shenandoah National Park recovering from acidification?

    Energy Technology Data Exchange (ETDEWEB)

    James R. Webb; Bernard J. Cosby; Frank A. Deviney, Jr.; James N. Galloway; Suzanne W. Maben; Arthur J. Bulger [University of Virginia, Charlottesville, VA (United States). Department of Environmental Sciences

    2004-08-01

    Streamwater composition data obtained through periodic sampling of streams that support brook trout (Salvelinus fontinalis) in the mountains of western Virginia were examined for evidence of recovery from acidification during the 1988-2001 period. Measurements of sulfate deposition in precipitation indicate that sulfate deposition in the region declined approximately 40% between 1985 and 2000. While no significant regional trends in acid-base constituents were observed for the set (n = 65) of western Virginia study streams, significant regional trends were observed for a subset (n = 14) of streams in Shenandoah National Park (SNP). For the subset of SNP streams, the median increase in acid-neutralizing capacity (ANC) was 0.168 {mu} equiv L{sup -1} year{sup -1} and the median decrease in sulfate concentration was -0.229 {mu}equiv L{sup -1} year{sup -1}. Although these trends are consistent with recovery from acidification, the degree of apparent recovery is small compared to estimates of historic acidification in SNP streams and much less than observed in other, more northern regions in the United States. Correlation between sulfate concentration trends and current sulfate concentrations in streamwater suggests that recovery from stream acidification in the western Virginia region is determined by sulfur retention processes in watershed soils. A transient increase in nitrate concentrations that occurred among some western Virginia streams following forest defoliation by the gypsy moth (Lymantria dispar) complicates interpretation of the observed patterns of change in acid-base status. 28 refs., 6 figs., 1 tab.

  10. Urinary acidification and urinary excretion of calcium and citrate in women with bilateral medullary sponge kidney

    DEFF Research Database (Denmark)

    Osther, P J; Mathiasen, Helle; Hansen, A B;

    1994-01-01

    Urinary acidification ability, acid-base status and urinary excretion of calcium and citrate were evaluated in 10 women with bilateral medullary sponge kidney (MSK) and in 10 healthy women. Patients with MSK had higher fasting urine pH compared to normal controls (p

  11. Chronic and episodic acidification of Adirondack streams from acid rain in 2003-2005

    Science.gov (United States)

    Lawrence, G.B.; Roy, K.M.; Baldigo, Barry P.; Simonin, H.A.; Capone, S.B.; Sutherland, J.W.; Nierzwicki-Bauer, S. A.; Boylen, C.W.

    2008-01-01

    Limited information is available on streams in the Adirondack region of New York, although streams are more prone to acidification than the more studied Adirondack lakes. A stream assessment was therefore undertaken in the Oswegatchie and Black River drainages; an area of 4585 km2 in the western part of the Adirondack region. Acidification was evaluated with the newly developed base-cation surplus (BCS) and the conventional acid-neutralizing capacity by Gran titration (ANCG). During the survey when stream water was most acidic (March 2004), 105 of 188 streams (56%) were acidified based on the criterion of BCS acidic (August 2003), 15 of 129 streams (12%) were acidified based on the criterion of BCS acidic deposition to stream acidification was greater than that of strongly acidic organic acids in each of the surveys by factors ranging from approximately 2 to 5, but was greatest during spring snowmelt and least during elevated base flow in August. During snowmelt, the percentage attributable to acidic deposition was 81%, whereas during the October 2003 survey, when dissolved organic carbon (DOC) concentrations were highest, this percentage was 66%. The total length of stream reaches estimated to be prone to acidification was 718 km out of a total of 1237 km of stream reaches that were assessed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  12. PERSISTENT EPISODIC ACIDIFICATION OF STREAMS LINKED TO ACID RAIN EFFECTS ON SOIL

    Science.gov (United States)

    Episodic acidification of streams, identified in the late 1980s as one of the most significant environmental problems caused by acidic deposition, had not been evaluated since the early 1990s despite decreasing levels of acidic deposition over the past decade. This analysis indic...

  13. Differential tolerances to ocean acidification by parasites that share the same host.

    Science.gov (United States)

    MacLeod, C D; Poulin, R

    2015-06-01

    Ocean acidification is predicted to cause major changes in marine ecosystem structure and function over the next century, as species-specific tolerances to acidified seawater may alter previously stable relationships between coexisting organisms. Such differential tolerances could affect marine host-parasite associations, as either host or parasite may prove more susceptible to the stressors associated with ocean acidification. Despite their important role in many ecological processes, parasites have not been studied in the context of ocean acidification. We tested the effects of low pH seawater on the cercariae and, where possible, the metacercariae of four species of marine trematode parasite. Acidified seawater (pH 7.6 and 7.4, 12.5 °C) caused a 40-60% reduction in cercarial longevity and a 0-78% reduction in metacercarial survival. However, the reduction in longevity and survival varied distinctly between parasite taxa, indicating that the effects of reduced pH may be species-specific. These results suggest that ocean acidification has the potential to reduce the transmission success of many trematode species, decrease parasite abundance and alter the fundamental regulatory role of multi-host parasites in marine ecosystems.

  14. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population

    Science.gov (United States)

    Stiasny, Martina H.; Mittermayer, Felix H.; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B. H.; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks. PMID:27551924

  15. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point.

    Science.gov (United States)

    Schlegel, Peter; Binet, Monique T; Havenhand, Jonathan N; Doyle, Christopher J; Williamson, Jane E

    2015-04-01

    Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH -0.3 (35% reduction) and ΔpH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.

  16. Data compilation on the biological response to ocean acidification: an update

    Directory of Open Access Journals (Sweden)

    Y. Yang

    2015-11-01

    Full Text Available The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999. By January 2015, a total of 581 data sets (over 4 000 000 data points from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010. Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

  17. Demonstrating the Effects of Ocean Acidification on Marine Organisms to Support Climate Change Understanding

    Science.gov (United States)

    Kelley, Amanda L.; Hanson, Paul R.; Kelley, Stephanie A.

    2015-01-01

    Ocean acidification, a product of CO[subscript 2] absorption by the world's oceans, is largely driven by the anthropogenic combustion of fossil fuels and has already lowered the pH of marine ecosystems. Organisms with calcium carbonate shells and skeletons are especially susceptible to increasing environmental acidity due to reduction in the…

  18. Global declines in oceanic nitrification rates as a consequence of ocean acidification.

    Science.gov (United States)

    Beman, J Michael; Chow, Cheryl-Emiliane; King, Andrew L; Feng, Yuanyuan; Fuhrman, Jed A; Andersson, Andreas; Bates, Nicholas R; Popp, Brian N; Hutchins, David A

    2011-01-01

    Ocean acidification produced by dissolution of anthropogenic carbon dioxide (CO(2)) emissions in seawater has profound consequences for marine ecology and biogeochemistry. The oceans have absorbed one-third of CO(2) emissions over the past two centuries, altering ocean chemistry, reducing seawater pH, and affecting marine animals and phytoplankton in multiple ways. Microbially mediated ocean biogeochemical processes will be pivotal in determining how the earth system responds to global environmental change; however, how they may be altered by ocean acidification is largely unknown. We show here that microbial nitrification rates decreased in every instance when pH was experimentally reduced (by 0.05-0.14) at multiple locations in the Atlantic and Pacific Oceans. Nitrification is a central process in the nitrogen cycle that produces both the greenhouse gas nitrous oxide and oxidized forms of nitrogen used by phytoplankton and other microorganisms in the sea; at the Bermuda Atlantic Time Series and Hawaii Ocean Time-series sites, experimental acidification decreased ammonia oxidation rates by 38% and 36%. Ammonia oxidation rates were also strongly and inversely correlated with pH along a gradient produced in the oligotrophic Sargasso Sea (r(2) = 0.87, P ocean acidification could reduce nitrification rates by 3-44% within the next few decades, affecting oceanic nitrous oxide production, reducing supplies of oxidized nitrogen in the upper layers of the ocean, and fundamentally altering nitrogen cycling in the sea.

  19. Ocean Acidification: Hands-On Experiments to Explore the Causes and Consequences

    Science.gov (United States)

    Bruno, Barbara C.; Tice, Kimberly A.; Puniwai, Noelani; Achilles, Kate

    2011-01-01

    Ocean acidification is one of the most serious environmental issues facing the planet (e.g., Doney 2006; Guinotte and Fabry 2009). It is caused by excess carbon dioxide (CO[subscript 2]) in the atmosphere. Human activities such as burning fossil fuels put CO[subscript 2] and other heat-trapping gases into the atmosphere, which causes the Earth's…

  20. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    Science.gov (United States)

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks. PMID:27551924

  1. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event

    Science.gov (United States)

    Trecalli, Alberto; Spangenberg, Jorge; Adatte, Thierry; Föllmi, Karl B.; Parente, Mariano

    2012-12-01

    The early Toarcian oceanic anoxic event (Early Jurassic;˜183 Myr ago) is associated with one of the largest negative carbon isotope excursion (CIE) in the whole Phanerozoic (3-7‰). Estimates of the magnitude and rate of CO2 injection in the ocean-atmosphere system are compatible with a scenario of ocean acidification. Many carbonate platforms drowned in the Pliensbachian, well before the early Toarcian event. In this paper we test the hypothesis of surface water ocean acidification by presenting data from a resilient carbonate platform: the Apennine Carbonate Platform of southern Italy. The studied sections document a dramatic shift of the carbonate factory from massive biocalcification to chemical precipitation. Lithiotis bivalves and calcareous algae (Palaeodasycladus mediterraneus), which were the most prolific carbonate producers of Pliensbachian carbonate platforms, disappear during the first phase of the early Toarcian CIE, before the most depleted values are reached. We discuss the local versus supraregional significance of this shift and propose a scenario involving abrupt decline of carbonate saturation, forced by CO2 release at the beginning of the early Toarcian CIE, followed by a calcification overshoot, driven by the recovery of ocean alkalinity. Attribution of the demise of carbonate platform hypercalcifiers to ocean acidification is supported by palaeophysiology and reinforced by experimental data on the detrimental effects of ocean acidification on recent shellfishes and calcareous algae.

  2. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    Science.gov (United States)

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.

  3. Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification?

    Science.gov (United States)

    Feng, Ellias Y.; Keller, David P.; Koeve, Wolfgang; Oschlies, Andreas

    2016-07-01

    Artificial ocean alkalinization (AOA) is investigated as a method to mitigate local ocean acidification and protect tropical coral ecosystems during a 21st century high CO2 emission scenario. Employing an Earth system model of intermediate complexity, our implementation of AOA in the Great Barrier Reef, Caribbean Sea and South China Sea regions, shows that alkalinization has the potential to counteract expected 21st century local acidification in regard to both oceanic surface aragonite saturation Ω and surface pCO2. Beyond preventing local acidification, regional AOA, however, results in locally elevated aragonite oversaturation and pCO2 decline. A notable consequence of stopping regional AOA is a rapid shift back to the acidified conditions of the target regions. We conclude that AOA may be a method that could help to keep regional coral ecosystems within saturation states and pCO2 values close to present-day values even in a high-emission scenario and thereby might ‘buy some time’ against the ocean acidification threat, even though regional AOA does not significantly mitigate the warming threat.

  4. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification.

    Science.gov (United States)

    Crook, Elizabeth Derse; Kroeker, Kristy J; Potts, Donald C; Rebolledo-Vieyra, Mario; Hernandez-Terrones, Laura M; Paytan, Adina

    2016-01-01

    Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag) waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively little difference in coverage of calcifying organisms between the low Ωarag and control zones. However, after 14 months of development, tiles from the low Ωarag zones had up to 70% less cover of calcifying organisms coincident with 42% more fleshy algae than the controls. The percent cover of biofilm and turf algae was also significantly greater in the low Ωarag zones, while the number of key grazing taxa remained constant. We hypothesize that fleshy algae have a competitive edge over the primary calcified space holders, coralline algae, and that acidification leads to altered competitive dynamics between various taxa. We suggest that as acidification impacts reefs in the future, there will be a shift in community assemblages away from upright and crustose coralline algae toward more fleshy algae and turf, established in the early stages of succession. PMID:26784986

  5. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification.

    Science.gov (United States)

    Rossi, Tullio; Nagelkerken, Ivan; Pistevos, Jennifer C A; Connell, Sean D

    2016-01-01

    The dispersal of larvae and their settlement to suitable habitat is fundamental to the replenishment of marine populations and the communities in which they live. Sound plays an important role in this process because for larvae of various species, it acts as an orientational cue towards suitable settlement habitat. Because marine sounds are largely of biological origin, they not only carry information about the location of potential habitat, but also information about the quality of habitat. While ocean acidification is known to affect a wide range of marine organisms and processes, its effect on marine soundscapes and its reception by navigating oceanic larvae remains unknown. Here, we show that ocean acidification causes a switch in role of present-day soundscapes from attractor to repellent in the auditory preferences in a temperate larval fish. Using natural CO2 vents as analogues of future ocean conditions, we further reveal that ocean acidification can impact marine soundscapes by profoundly diminishing their biological sound production. An altered soundscape poorer in biological cues indirectly penalizes oceanic larvae at settlement stage because both control and CO2-treated fish larvae showed lack of any response to such future soundscapes. These indirect and direct effects of ocean acidification put at risk the complex processes of larval dispersal and settlement.

  6. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification

    Science.gov (United States)

    Crook, Elizabeth Derse; Kroeker, Kristy J.; Potts, Donald C.; Rebolledo-Vieyra, Mario; Hernandez-Terrones, Laura M.; Paytan, Adina

    2016-01-01

    Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag) waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively little difference in coverage of calcifying organisms between the low Ωarag and control zones. However, after 14 months of development, tiles from the low Ωarag zones had up to 70% less cover of calcifying organisms coincident with 42% more fleshy algae than the controls. The percent cover of biofilm and turf algae was also significantly greater in the low Ωarag zones, while the number of key grazing taxa remained constant. We hypothesize that fleshy algae have a competitive edge over the primary calcified space holders, coralline algae, and that acidification leads to altered competitive dynamics between various taxa. We suggest that as acidification impacts reefs in the future, there will be a shift in community assemblages away from upright and crustose coralline algae toward more fleshy algae and turf, established in the early stages of succession. PMID:26784986

  7. Planning of an Integrated Acidification Study and Survey on Acid Rain Impacts in China. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lydersen, Espen; Angell, Valter; Eilertsen, Odd; Muniz, Ivar P. [Norsk Inst. for Naturforskning, Trondheim (Norway); Larssen, Thorbjoern; Seip, Hans Martin; Aagaard, Per; Vogt, Rolf D. [Oslo Univ. (Norway); Mulder, Jan

    1997-12-31

    This is the final report from the PIAC project, which was a multidisciplinary survey on acid rain in China. One goal was to document effects of airborne acidifying compounds on vegetation, soil, soil- and surface-water and aquatic biota. Other goals were to exchange knowledge between Chinese and Norwegian scientists, and to visit research sites in highly polluted areas in China and evaluate their need of support in a future collaborative monitoring and research programme. Samples have been collected from over 20 sites in three areas. Negative effects of air pollution are found on all ecosystem levels investigated. The concentration of sulfur in the air in urban and near-urban areas is very high. The concentration of volatile organic compounds is generally high, which means that increased NOx emissions in coming years may increase the ozone problems. Reduced photosynthesis activities were found in some plants and acidification observed in soil and surface water. Aquatic biota also reflect the acidification status of the surface waters investigated. However, it is difficult to assess the degree of damage in these regions because the survey includes too few sites. Surface water acidification is currently not a major environmental problem in China and is unlikely to be one during the next decades. The report includes a status report on acidification in China and a proposed framework for a monitoring programme based on Norwegian experiences. 139 refs., 16 figs., 45 tabs.

  8. Ocean acidification effects on calcification in pCO2 acclimated Caribbean scleractinian coral

    Science.gov (United States)

    Ocean acidification (OA) is projected to increase the acidity of coral reef habitats 2-3 times that of present day pCO2 levels. Many studies have shown the adverse effects on scleractinian calcification when exposed to elevated pCO2 levels, however, in these studies, corals have ...

  9. Increasing acidification of nonreplicating Lactococcus lactis Delta thyA mutants by incorporating ATPase activity

    DEFF Research Database (Denmark)

    Pedersen, Martin Bastian; Købmann, Brian Jensen; Jensen, Peter Ruhdal;

    2002-01-01

    Lactococcus lactis MBP71 DeltathyA (thymidylate synthase) cannot synthesize dTTP de novo, and DNA replication is dependent on thymidine in the growth medium. In the nonreplicating state acidification by MBP71 was completely insensitive to bacteriophages (M. B. Pedersen, P. R. Jensen, T. Janzen, and...

  10. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NARCIS (Netherlands)

    Hagens, M.; Slomp, C.P.; Meysman, F.J.R.; Seitaj, D.; Harlay, J.; Borges, A.V.; Middelburg, J.J.

    2015-01-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-

  11. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification.

    Directory of Open Access Journals (Sweden)

    Elizabeth Derse Crook

    Full Text Available Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively little difference in coverage of calcifying organisms between the low Ωarag and control zones. However, after 14 months of development, tiles from the low Ωarag zones had up to 70% less cover of calcifying organisms coincident with 42% more fleshy algae than the controls. The percent cover of biofilm and turf algae was also significantly greater in the low Ωarag zones, while the number of key grazing taxa remained constant. We hypothesize that fleshy algae have a competitive edge over the primary calcified space holders, coralline algae, and that acidification leads to altered competitive dynamics between various taxa. We suggest that as acidification impacts reefs in the future, there will be a shift in community assemblages away from upright and crustose coralline algae toward more fleshy algae and turf, established in the early stages of succession.

  12. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    NARCIS (Netherlands)

    Nisumaa, A.-M.; Pesant, S.; Bellerby, R.G.J.; Delille, B.; Middelburg, J.J.; Orr, J.C.; Riebesell, U.; Tyrrell, T.; Wolf-Gladrow, D.; Gattuso, J.P.

    2010-01-01

    The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidifi

  13. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer wat

  14. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer wat

  15. Effect of ocean warming and acidification on a plankton community in the NW Mediterranean Sea

    NARCIS (Netherlands)

    Maugendre, L.; Gattuso, J.-P.; Louis, J.; de Kluijver, A.; Marro, S.; Soetaert, K.; Gazeau, F.

    2015-01-01

    The effect of ocean warming and acidification was investigated on a natural plankton assemblage from an oligotrophic area, the bay of Villefranche (NW Mediterranean Sea). The assemblage was sampled in March 2012 and exposed to the following four treatments for 12 days: control (~360 µatm, 14°C), ele

  16. Country-dependent characterisation factors for acidification in Europe - A critical evaluation

    NARCIS (Netherlands)

    Hettelingh, JP; Posch, M; Potting, J

    2005-01-01

    Goal, Scope and Background. Country-dependent characterisation factors for acidification have been derived for use in life cycle assessments to describe the effect on ecosystem protection of a change in national emissions. They have recently also been used in support of European air pollution abatem

  17. Genetic response of a white sucker population to experimental whole lake acidification

    Science.gov (United States)

    Background/Question/MethodsLake acidification can strongly impact the structure and function of lake ecosystems, causing extirpation of some species while other organisms are able adapt to changing pH. We followed the genetics of a population of white sucker (Catostomus commerso...

  18. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety

    Science.gov (United States)

    Shi, Wei; Zhao, Xinguo; Han, Yu; Che, Zhumei; Chai, Xueliang; Liu, Guangxu

    2016-01-01

    To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p health risk of Cd (based on the estimated target hazard quotients, THQ) via consumption of M. meretrix at pH 7.8 and 7.4 significantly increased 1.21 and 1.32 times respectively, suggesting a potential threat to seafood safety. The ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd2+/Ca2+ in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion.

  19. Cytoplasmic Acidification Induced by Inorganic Phosphate Uptake in Suspension Cultured Catharanthus roseus Cells

    Science.gov (United States)

    Sakano, Katsuhiro; Yazaki, Yoshiaki; Mimura, Tetsuro

    1992-01-01

    Cytoplasmic acidification during inorganic phosphate (Pi) absorption by Catharanthus roseus cells were studied by means of a fluorescent pH indicator, 2′,7′-bis-(2-carboxyethyl)-5 carboxyfluorescein (acetomethylester) (BCECF), and 31P-nuclear magnetic resonance spectroscopy. Cytoplasmic acidification measured by decrease in the fluorescence intensity started immediately after Pi application. Within a minute or so, a stable state was attained and no further acidification occurred, whereas Pi absorption was still proceeding. As soon as Pi in the medium was exhausted, cytoplasmic pH started to recover. Coincidentally, the medium pH started to recover toward the original acidic pH. The Pi-induced changes in the cytoplasmic pH were confirmed by 31P-nuclear magnetic resonance study. Maximum acidification of the cytoplasm induced by 1.7 millimolar Pi was 0.2 pH units. Vacuolar pH was also affected by Pi. In some experiments, but not all, pH decreased reversibly by 0.2 to 0.3 pH units during Pi absorption. Results suggest that the cytoplasmic pH is regulated by proton pumps in the plasma membrane and in the tonoplast. In addition, other mechanisms that could consume extra protons in the cytoplasm are suggested. ImagesFigure 1 PMID:16668939

  20. Intraspecific variation in physiological performance of a benthic elasmobranch challenged by ocean acidification and warming.

    Science.gov (United States)

    Di Santo, Valentina

    2016-06-01

    Elucidating the combined effects of increasing temperature and ocean acidification on performance of fishes is central to our understanding of how species will respond to global climate change. Measuring the metabolic costs associated with intense and short activities, such as those required to escape predators, is key to quantifying changes in performance and estimating the potential effects of environmental stressors on survival. In this study, juvenile little skate Leucoraja erinacea from two neighboring locations (Gulf of Maine, or northern location, and Georges Bank, or southern location) were developmentally acclimatized and reared at current and projected temperatures (15, 18 or 20°C) and acidification conditions (pH 8.1 or 7.7), and their escape performance was tested by employing a chasing protocol. The results from this study suggest countergradient variation in growth between skates from the two locations, while the optimum for escape performance was at a lower temperature in individuals from the northern latitudes, which could be related to adaptation to the local thermal environment. Aerobic performance and scope declined in skates from the northern latitudes under simulated ocean warming and acidification conditions. Overall, the southern skates showed lower sensitivity to these climatic stressors. This study demonstrates that even mobile organisms from neighboring locations can exhibit substantial differences in energetic costs of exercise and that skates from the northern part of the geographic range may be more sensitive to the directional increase in temperature and acidification expected by the end of the century.

  1. Effects of Ocean Acidification on the Life Cycle and Fitness of the Mysid Shrimp Americamysis Bahia

    Science.gov (United States)

    Most concern about effects of CO2-induced ocean acidification focuses on mollusks, corals, and coccolithophores because skeletal and shell formation by these organisms is sensitive to the solubility of calcium minerals. However, many other marine organisms are likely affected by...

  2. Intraspecific variation in physiological performance of a benthic elasmobranch challenged by ocean acidification and warming.

    Science.gov (United States)

    Di Santo, Valentina

    2016-06-01

    Elucidating the combined effects of increasing temperature and ocean acidification on performance of fishes is central to our understanding of how species will respond to global climate change. Measuring the metabolic costs associated with intense and short activities, such as those required to escape predators, is key to quantifying changes in performance and estimating the potential effects of environmental stressors on survival. In this study, juvenile little skate Leucoraja erinacea from two neighboring locations (Gulf of Maine, or northern location, and Georges Bank, or southern location) were developmentally acclimatized and reared at current and projected temperatures (15, 18 or 20°C) and acidification conditions (pH 8.1 or 7.7), and their escape performance was tested by employing a chasing protocol. The results from this study suggest countergradient variation in growth between skates from the two locations, while the optimum for escape performance was at a lower temperature in individuals from the northern latitudes, which could be related to adaptation to the local thermal environment. Aerobic performance and scope declined in skates from the northern latitudes under simulated ocean warming and acidification conditions. Overall, the southern skates showed lower sensitivity to these climatic stressors. This study demonstrates that even mobile organisms from neighboring locations can exhibit substantial differences in energetic costs of exercise and that skates from the northern part of the geographic range may be more sensitive to the directional increase in temperature and acidification expected by the end of the century. PMID:27026716

  3. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-01-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406

  4. Effects of Coastal Acidification on the Life Cycle and Fitness of the Mysid Shrimp Americamysis Bahia

    Science.gov (United States)

    Most studies of animal responses to CO2-induced ocean acidification focus on isolated individuals or uniformly aged and conditioned cohorts that lack the complexities typical of wild populations. These studies have become the primary data source for meta-analytic predictions abo...

  5. Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany?

    Directory of Open Access Journals (Sweden)

    C. Alewell

    2001-01-01

    Full Text Available The reversal of freshwater acidification in the low mountain ranges of Germany is of public, political and scientific concern, because these regions are near natural ecosystems and function as an important drinking water supply. The aim of this study was to evaluate the status and trends of acidification reversal after two decades of reduced anthropogenic deposition in selected freshwaters of the low mountain ranges in the Harz, the Fichtelgebirge, the Bavarian Forest, the Spessart and the Black Forest. In response to decreased sulphate deposition, seven out of nine streams investigated had significantly decreasing sulphate concentrations (all trends were calculated with the Seasonal Kendall Test. The decrease in sulphate concentration was only minor, however, due to the release of previously stored soil sulphur. No increase was found in pH and acid neutralising capacity (defined by Reuss and Johnson, 1986. Aluminum concentrations in the streams did not decrease. Thus, no major acidification reversal can currently be noted in spite of two decades of decreased acid deposition. Nevertheless, the first signs of improvement in water quality were detected as there was a decrease in the level and frequency of extreme values of pH, acid neutralising capacity and aluminium concentrations in streams. With respect to nitrogen, no change was determined for either nitrate or ammonium concentrations in precipitation or stream water. Base cation fluxes indicate increasing net loss of base cations from all ecosystems investigated, which could be interpreted as an increase in soil acidification. The latter was due to a combination of continued high anion leaching and significant reduction of base cation deposition. No major improvement was noted in biological recovery, however, initial signs of recovery were detectable as there was re-occurrence of some single macroinvertebrate species which were formerly extinct. The results of this study have important

  6. Long-term patterns in soil acidification due to pollution in forests of the Eastern Sudetes Mountains

    International Nuclear Information System (INIS)

    Soil acidification was assessed in the Eastern Sudetes Mountains (Czech Republic) between 1941 and 2003, i.e. before and after the period of major industrial pollution (1950s-1990s). The twenty sites included in our study were distributed along a gradient of altitude ranging 1000 m. Values of pH have decreased in 80-90% of the pairs of samples after the six decades, on average by 0.7 for pH-H2O and 0.6 for pH-KCl. Organic matter increased in the topsoil, probably reflecting a change in decomposition conditions. The most important finding is that the acidification varies along the joint gradient of altitude/tree layer composition, and displays a changing pattern in three soil horizons (A, B and C). Contrary to expectations, most acidified were soils in beech forests at lower elevations. - Highlights: → Soil acidification varies along the joint gradient of altitude/tree composition. → Soil acidification displays a changing pattern in topsoil and subsoil horizons. → Acidification rate is stronger in soils of beech forests at lower elevation. → Historical measurements provide a reliable evidence of long-term soil acidification. - Strong acidification decreasing with altitude was observed in forest soils resurveyed after more than half a century.

  7. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation.

    Science.gov (United States)

    Mackenzie, Clara L; Ormondroyd, Graham A; Curling, Simon F; Ball, Richard J; Whiteley, Nia M; Malham, Shelagh K

    2014-01-01

    Ocean surface pH levels are predicted to fall by 0.3-0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2-4 °C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH -0.4 pH units) and warming (ambient temperature +4 °C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4-6 h day(-1)). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited.

  8. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean.

    Science.gov (United States)

    Gazeau, Frédéric; van Rijswijk, Pieter; Pozzato, Lara; Middelburg, Jack J

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.

  9. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean.

    Directory of Open Access Journals (Sweden)

    Frédéric Gazeau

    Full Text Available Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate. At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.

  10. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth

    Directory of Open Access Journals (Sweden)

    Wade Jeremy J

    2011-02-01

    Full Text Available Abstract Background Vaginal lactobacilli protect the female genital tract by producing lactic acid, bacteriocins, hydrogen peroxide or a local immune response. In bacterial vaginosis, normal lactobacilli are replaced by an anaerobic flora and this may increase susceptibility to Neisseria gonorrhoeae, a facultative anaerobe. Bacterial interference between vaginal lactobacilli and N. gonorrhoeae has not been studied in liquid medium under anaerobic conditions. By co-cultivating N. gonorrhoeae in the presence of lactobacilli we sought to identify the relative contributions of acidification and hydrogen peroxide production to any growth inhibition of N. gonorrhoeae. Methods Three strains of N. gonorrhoeae distinguishable by auxotyping were grown in the presence of high concentrations (107-108 cfu/mL of three vaginal lactobacilli (L. crispatus, L. gasseri and L. jensenii in an anerobic liquid medium with and without 2-(N-morpholino-ethanesulfonic (MES buffer. Fusobacterium nucleatum was used as an indicator of anaerobiosis. Bacterial counts were performed at 15, 20 and 25 h; at 25 h pH and hydrogen peroxide concentrations were measured. Results Growth of F. nucleatum to >108 cfu/mL at 25 h confirmed anaerobiosis. All bacteria grew in the anaerobic liquid medium and the addition of MES buffer had negligible effect on growth. L. crispatus and L. gasseri produced significant acidification and a corresponding reduction in growth of N. gonorrhoeae. This inhibition was abrogated by the addition of MES. L. jensenii produced less acidification and did not inhibit N. gonorrhoeae. Hydrogen peroxide was not detected in any experiment. Conclusions During anaerobic growth, inhibition of N. gonorrhoeae by the vaginal lactobacilli tested was primarily due to acidification and abrogated by the presence of a buffer. There was no evidence of a specific mechanism of inhibition other than acid production under these conditions and, in particular, hydrogen peroxide was

  11. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation.

    Directory of Open Access Journals (Sweden)

    Clara L Mackenzie

    Full Text Available Ocean surface pH levels are predicted to fall by 0.3-0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2-4 °C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH -0.4 pH units and warming (ambient temperature +4 °C on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4-6 h day(-1. After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited.

  12. Simulated effect of deep-sea sedimentation and terrestrial weathering on projections of ocean acidification

    Science.gov (United States)

    Cao, Long; Zheng, Meidi; Caldeira, Ken

    2016-04-01

    Projections of ocean acidification have often been based on ocean carbon cycle models that do not represent deep-sea sedimentation and terrestrial weathering. Here we use an Earth system model of intermediate complexity to quantify the effect of sedimentation and weathering on projections of ocean acidification under an intensive CO2 emission scenario that releases 5000 Pg C after year 2000. In our simulations, atmospheric CO2 reaches a peak concentration of 2123 ppm near year 2300 with a maximum reduction in surface pH of 0.8. Consideration of deep-sea sedimentation and terrestrial weathering has negligible effect on these peak changes. Only after several millenniums, sedimentation and weathering feedbacks substantially affect projected ocean acidification. Ten thousand years from today, in the constant-alkalinity simulation, surface pH is reduced by ˜0.7 with 95% of the polar oceans undersaturated with respect to calcite, and no ocean has a calcite saturation horizon (CSH) that is deeper than 1000 m. With the consideration of sediment feedback alone, surface pH is reduced by ˜0.5 with 35% of the polar oceans experiencing calcite undersaturation, and 8% global ocean has a CSH deeper than 1000 m. With the addition of weathering feedback, depending on the weathering parameterizations, surface pH is reduced by 0.2-0.4 with no polar oceans experiencing calcite undersaturation, and 30-80% ocean has a CSH that is deeper than 1000 m. Our results indicate that deep-sea sedimentation and terrestrial weathering play an important role in long-term ocean acidification, but have little effect on mitigating ocean acidification in the coming centuries.

  13. Permissive role of cytosolic pH acidification in neurodegeneration: A closer look at its causes and consequences.

    Science.gov (United States)

    Majdi, Alireza; Mahmoudi, Javad; Sadigh-Eteghad, Saeed; Golzari, Samad E J; Sabermarouf, Babak; Reyhani-Rad, Siamak

    2016-10-01

    The maintenance of cytosolic pH in its physiological range is required for normal neuronal activity, and even minor alterations can have serious consequences. This Review summarizes the current understanding of the conditions that are associated with cytosolic pH disruption and that lead to abnormal cytosolic acidification. Oxidative stress results in cytosolic acidification, and this plays a crucial role in the emergence of apoptosis in protein misfolding and excitotoxicity, ultimately leading to irreversible neuronal damage. Through the identification of mechanisms by which intraneuronal pH acidification promotes neurodegeneration, we may identify new approaches for preventing and treating neurodegenerative disorders. © 2016 Wiley Periodicals, Inc. PMID:27282491

  14. AFSC/RACE/FBEP/Hurst: Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is from laboratory experiments that examined the direct effects of projected levels of ocean acidification on the eggs and larvae of walleye pollock.

  15. Multiple stresses from a single agent: Diverse responses to the experimental acidification of Little Rock Lake, Wisconsin

    Science.gov (United States)

    Frost, T.M.; Montz, P.K.; Kratz, T.K.; Badillo, T.; Brezonik, P.L.; Gonzalez, M.J.; Rada, R.G.; Watras, C.J.; Webster, K.E.; Wiener, J.G.; Williamson, C.E.; Morris, D.P.

    1999-01-01

    A single stress, acidification with sulfuric acid, was applied to Little Rock Lake in a whole-ecosystem manipulation. We documented a wide range of responses to the acidification, including increases in the concentrations of various chemicals, shifts in microbial processes and a major increase in water clarity to UV-B radiation. Each of these changes could in itself be considered as a separate ecosystem stress that is distinct from the intended manipulation. Acidification in Little Rock Lake was accompanied by a number of substantial changes in the occurrence of organisms. A series of detailed investigations indicates that the mechanisms underlying these organismal changes are varied but cannot usually be tied to the direct effects of acidification. Overall, our results demonstrate how multiple stresses can arise from a single agent operating on an ecosystem and suggest that singly operating stresses may actually be quite rare.

  16. Long-term response in episodic acidification to declining SO42– deposition in two streams in Nova Scotia

    Directory of Open Access Journals (Sweden)

    H. Laudon

    2002-01-01

    Full Text Available Trends in anthropogenically driven episodic acidification associated with extended winter snow melt/rain episodes between 1983 and 1998 were investigated for two streams in Nova Scotia, Canada. The anthropogenic contribution to Acid Neutralization Capacity (ANC was analysed using the Boreal Dilution Model (Bishop et al., 2000 modified by applying a sea-salt correction to all input hydrochemistry. The anthropogenic contribution to episodic ANC decline was statistically significant and strongly correlated with the decline in acid deposition, which decreased by approximately 50% during the period of record. Sensitivity analysis demonstrated that the BDM can be applied to surface waters with sea-salt contributions although the correction increases model uncertainty. Results of this study demonstrate the effectiveness of reduced emissions in North America in the last decades in decreasing the severity of episodic acidification in the Atlantic region of Canada. Keywords: episodic acidification, acidification recovery, Nova Scotia, snowmelt, winter

  17. Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification

    NARCIS (Netherlands)

    Braeckman, U.; Van Colen, C.; Guilini, K.; Van Gansbeke, D.; Soetaert, K.; Vincx, M.; Vanaverbeke, J.

    2014-01-01

    Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable an

  18. Ecosystem modeling of coastal acidification and hypoxia and structural uncertainties in the representation of sediment-water exchanges

    Science.gov (United States)

    Numerical ecosystem models of coastal acidification (CA) and hypoxia have been developed to synthesize current scientific understanding and provide predictions for nutrient management and policy. However, there is not a scientific consensus about the structure of these models an...

  19. Ocean acidification and warming in the Norwegian and Barents Seas: impacts on marine ecosystems and human uses - Stakeholder consultation report

    OpenAIRE

    Koenigstein, Stefan; Gößling-Reisemann, S.

    2014-01-01

    This report synthesizes the results from interviews and a workshop with stakeholders in Norway about the impacts of climate change and ocean acidification on marine ecosystems and ecosystem services.

  20. Giant clams and rising CO2: light may ameliorate effects of ocean acidification on a solar-powered animal

    OpenAIRE

    Sue-Ann Watson

    2015-01-01

    Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and ...

  1. Ion transporters involved in acidification of the resorption lacuna in osteoclasts

    DEFF Research Database (Denmark)

    Henriksen, Kim; Sørensen, Mette G; Jensen, Vicki K;

    2008-01-01

    Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process...... is currently not well understood. We used a battery of ion channel inhibitors, human osteoclasts, and their subcellular compartments to perform an unbiased analysis of the importance of the different ion transporters for acidification of the resorption lacuna in osteoclasts. CD14(+) monocytes from human...... peripheral blood were isolated, and mature osteoclasts were generated using RANKL and M-CSF. The human osteoclasts were (1) used for acridine orange assays for evaluation of lysosomal acidification, (2) used for bone resorption assays, (3) used for generation of osteoclasts membranes for acid influx...

  2. The metabolic response of pteropods to acidification reflects natural CO2-exposure in oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    K. F. Wishner

    2012-02-01

    Full Text Available Shelled pteropods (Thecosomata are a group of holoplanktonic mollusks that are believed to be especially sensitive to ocean acidification because their aragonitic shells are highly soluble. Despite this concern, there is very little known about the physiological response of these animals to conditions of elevated carbon dioxide. This study examines the oxygen consumption and ammonia excretion of five pteropod species, collected from tropical regions of the Pacific Ocean, to elevated levels of carbon dioxide (0.10%, 1000 ppm. Our results show that pteropods that naturally migrate into oxygen minimum zones, such as Hyalocylis striata, Clio pyramidata, Cavolinia longirostris and Creseis virgula, were not affected by carbon dioxide at the levels and duration tested. Diacria quadridentata, which does not migrate, responds to high carbon dioxide conditions with reduced oxygen consumption and ammonia excretion. This indicates that the natural chemical environment of individual species may influence their resilience to ocean acidification.

  3. Molecular changes during chemical acidification of the buffalo and cow milks

    Directory of Open Access Journals (Sweden)

    F. Gaucheron

    2010-02-01

    Full Text Available Composition and physico-chemical properties of buffalo and cow milks were compared at their initial pH and during chemical acidification. As compare to cow milk, buffalo milk was richer in caseins and minerals such as Ca, Mg and Pi. Along with these differences, the capacity of buffalo milk to be acidified named buffering capacity was also higher than cow milk. The pH decrease induced aggregation of caseins at their isoelectric pH and solubilisations of Ca and Pi were significant for both milks. For both species, these molecular changes were qualitatively similar but quantitatively different. These differences suggested that the acidification process in dairy technology which is well established for cow milk can not be directly extrapolated to buffalo milk and some adaptations are necessary.

  4. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  5. The impact of ocean acidification on the functional morphology of foraminifera.

    Science.gov (United States)

    Khanna, Nikki; Godbold, Jasmin A; Austin, William E N; Paterson, David M

    2013-01-01

    Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism's survival and fitness.

  6. Disparate acidification and calcium carbonate desaturation of deep and shallow waters of the Arctic Ocean

    Science.gov (United States)

    Luo, Yiming; Boudreau, Bernard P.; Mucci, Alfonso

    2016-01-01

    The Arctic Ocean is acidifying from absorption of man-made CO2. Current predictive models of that acidification focus on surface waters, and their results argue that deep waters will acidify by downward penetration from the surface. Here we show, with an alternative model, the rapid, near simultaneous, acidification of both surface and deep waters, a prediction supported by current, but limited, saturation data. Whereas Arctic surface water responds directly by atmospheric CO2 uptake, deeper waters will be influenced strongly by intrusion of mid-depth, pre-acidified, Atlantic Ocean water. With unabated CO2 emissions, surface waters will become undersaturated with respect to aragonite by 2105 AD and could remain so for ∼600 years. In deep waters, the aragonite saturation horizon will rise, reaching the base of the surface mixed layer by 2140 AD and likely remaining there for over a millennium. The survival of aragonite-secreting organisms is consequently threatened on long timescales. PMID:27659188

  7. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-02-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-year period at Finokalia, Crete. At least tenfold increase in soluble phosphorus is observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  8. Ocean acidification affects fish spawning but not paternity at CO2 seeps.

    Science.gov (United States)

    Milazzo, Marco; Cattano, Carlo; Alonzo, Suzanne H; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A; Hall-Spencer, Jason M

    2016-07-27

    Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2 Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish.

  9. Environmental sub models for a macroeconomic model: Agricultural contribution to climate change and acidification in Denmark

    DEFF Research Database (Denmark)

    Jensen, T.S.; Jensen, J.D.; Hasler, B.;

    2007-01-01

    of emission coefficients is described. Emission dependent parameters are identified in order to perform model projections. The model system is demonstrated by projections of agricultural-related emissions in Denmark under two alternative sets of assumptions: a baseline projection and a policy scenario...... economic model, environmental satellite models of energy and waste related emissions contributing to climate change and acidification. The model extension allows the main Danish contribution to climate change and acidification to be modelled. The existing model system is extended by environmental satellite...... models, in which emission coefficients are linked to economic activity variables as modelled by the agricultural sector model ESMERALDA. Agricultural emission sources related to the activity variables in ESMERALDA are mapped in order to develop the environmental satellite models and the development...

  10. Acidification and buffering mechanisms in acid sulfate soil wetlands of the Murray-Darling Basin, Australia.

    Science.gov (United States)

    Glover, Fiona; Whitworth, Kerry L; Kappen, Peter; Baldwin, Darren S; Rees, Gavin N; Webb, John A; Silvester, Ewen

    2011-04-01

    The acid generation mechanisms and neutralizing capacities of sulfidic sediments from two inland wetlands have been studied in order to understand the response of these types of systems to drying events. The two systems show vastly different responses to oxidation, with one (Bottle Bend (BB) lagoon) having virtually no acid neutralizing capacity (ANC) and the other (Psyche Bend (PB) lagoon) an ANC that is an order of magnitude greater than the acid generation potential. While BB strongly acidifies during oxidation the free acid generation is less than that expected from the measured proton production and consumption processes, with additional proton consumption attributed to the formation of an acid-anion (chloride) FeIII (oxyhydr)oxide product, similar to akaganéite (Fe(OH)2.7Cl0.3). While such products can partially attenuate the acidification of these systems, resilience to acidification is primarily imparted by sediment ANC. PMID:21375259

  11. Effects of Cattle Slurry Acidification on Ammonia and Methane Evolution during Storage

    DEFF Research Database (Denmark)

    Petersen, Søren O; Andersen, Astrid; Eriksen, Jørgen

    2012-01-01

    experiments, the pH of acidified cattle slurry increased gradually to between 6.5 and 7. Acidification of slurry reduced the evolution of CH4 by 67 to 87%. The greatest reduction was observed with aged cattle slurry, which had a much higher potential for CH4 production than fresh slurry. Sulfate...... and methionine amendment to cattle slurry without pH adjustment also significantly inhibited methanogenesis, probably as a result of sulfide production. The study suggests that complex microbial interactions involving sulfur transformations and pH determine the potential for CH4 emission during storage of cattle...... slurry, and that slurry acidification may be a cost-effective greenhouse gas mitigation option....

  12. Impeded Acidification of Acid Sulfate Soils in an Inten- sively Drained Sugarcane Land

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recent research results suggest that acidification of acid sulfate soils may be inhibited in well-drained estuarine floodplains in eastern Australia by the absence of natural creek levees. The lack of natural levees has allowed the inundation of the land by regular tidal flooding prior to the construction of flood mitigation work. Such physiographical conditions prevent the development of pre-drainage pyrite-derived soil acidifica- tion that possibly occurred at many levee-protected sites in eastern Australian estuarine floodplains during extremely dry spells. Pre-drainage acidification is considered as an important condition for accumulation of soluble Fe and consequently, the creation of favourable environments for catalysed pyrite oxidation. Under current intensively drained conditions, the acid materials produced by ongoing pyrite oxidation can be rapidly removed from soil pore water by lateral leaching and acid buffering, resulting in low concentrations of soluble Fe in the pyritic layer, which could reduce the rate of pyrite oxidation.

  13. Accelerated acidification by inoculation with a microbial consortia in a complex open environment.

    Science.gov (United States)

    Yu, Jiadong; Zhao, Ye; Liu, Bin; Zhao, Yubin; Wu, Jingwei; Yuan, Xufeng; Zhu, Wanbin; Cui, Zongjun

    2016-09-01

    Bioaugmentation using microbial consortia is helpful in some anaerobic digestion (AD) systems, but accelerated acidification to produce methane has not been performed effectively with corn stalks and cow dung. In this study, the thermophilic microbial consortia MC1 was inoculated into a complex open environment (unsterilized and sterilized systems) to evaluate the feasibility of bioaugmentation to improve acidification efficiency. The results indicated that MC1 itself degraded lignocellulose efficiently, and accumulated more organic acids within 3days. Similar trends were also observed in the unsterilized system, where the hemicellulose degradation rate and organic acid concentrations increased significantly by two-fold and 20.1% (Pfluid improved methane yield significantly (P<0.05) via bioaugmentation. PMID:27253477

  14. Is Erica tetralix abundance on wet heathlands controlled by nitrogen deposition or soil acidification?

    Science.gov (United States)

    Damgaard, Christian; Strandberg, Morten; Kristiansen, Søren Munch; Nielsen, Knud Erik; Bak, Jesper L

    2014-01-01

    Erica tetralix is the key species on NW European wet heathlands, where it is often found to be the dominating plant species. Consequently, it is of considerable concern that the species has decreased significantly in cover from 28% to 18% over a six-year period. In order to understand the underlying causes, a structural equation modeling (SEM) approach was applied on ecological data from 1130 wet heathland plots. Both atmospheric N deposition and soil acidification were included in the SEM. The most important causal effect revealed by the SEM was a significant negative effect of N deposition on the cover of E. tetralix, whereas soil acidity tended to have a negative effect of relatively less importance. There was no significant effect of N deposition on soil pH, which indicates that there are no major indirect effects of N deposition on the cover of E. tetralix mediated by soil acidification.

  15. Auxin-induced acidification is not due to the hydration of respiratory CO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Oberbauer, S.; Rayle, D.; Johnson, K.; Cleland, R.

    1978-01-01

    Sloane and Sadava, in 1975, proposed that auxin-induced cell wall acidification is largely due to carbonic acid derived from respired CO/sub 2/. In this paper we show that the pH values calculated by Sloane and Sadava from measured CO/sub 2/ concentrations do not agree with either theoretical or measured pH values. In addition we show that in an open beaker system the speed with which CO/sub 2/ escapes to the atmosphere is too rapid to allow any substantial accumulation of carbonic acid. Lastly, vigorous bubbling with N/sub 2/ of the acidified medium surrounding auxin-treated pea stem segments does not cause a substantial increase in the pH of the medium. For these reasons we feel that the hypothesis which states that growth-regulator-enhanced wall acidification arises largely from the hydration of respiratory-derived CO/sub 2/ is disproved.

  16. Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient.

    Science.gov (United States)

    Pettit, Laura R; Smart, Christopher W; Hart, Malcolm B; Milazzo, Marco; Hall-Spencer, Jason M

    2015-05-01

    Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH ∼8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH ∼7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera.

  17. Infection of XC cells by MLVs and Ebola virus is endosome-dependent but acidification-independent.

    Science.gov (United States)

    Kamiyama, Haruka; Kakoki, Katsura; Yoshii, Hiroaki; Iwao, Masatomo; Igawa, Tsukasa; Sakai, Hideki; Hayashi, Hideki; Matsuyama, Toshifumi; Yamamoto, Naoki; Kubo, Yoshinao

    2011-01-01

    Inhibitors of endosome acidification or cathepsin proteases attenuated infections mediated by envelope proteins of xenotropic murine leukemia virus-related virus (XMRV) and Ebola virus, as well as ecotropic, amphotropic, polytropic, and xenotropic murine leukemia viruses (MLVs), indicating that infections by these viruses occur through acidic endosomes and require cathepsin proteases in the susceptible cells such as TE671 cells. However, as previously shown, the endosome acidification inhibitors did not inhibit these viral infections in XC cells. It is generally accepted that the ecotropic MLV infection in XC cells occurs at the plasma membrane. Because cathepsin proteases are activated by low pH in acidic endosomes, the acidification inhibitors may inhibit the viral infections by suppressing cathepsin protease activation. The acidification inhibitors attenuated the activities of cathepsin proteases B and L in TE671 cells, but not in XC cells. Processing of cathepsin protease L was suppressed by the acidification inhibitor in NIH3T3 cells, but again not in XC cells. These results indicate that cathepsin proteases are activated without endosome acidification in XC cells. Treatment with an endocytosis inhibitor or knockdown of dynamin 2 expression by siRNAs suppressed MLV infections in all examined cells including XC cells. Furthermore, endosomal cathepsin proteases were required for these viral infections in XC cells as other susceptible cells. These results suggest that infections of XC cells by the MLVs and Ebola virus occur through endosomes and pH-independent cathepsin activation induces pH-independent infection in XC cells.

  18. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    OpenAIRE

    Couce, Elena M; Ridgwell, Andy J; Hendy, Erica

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world’s tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches...

  19. Acidification reduced growth rate but not swimming speed of larval sea urchins

    OpenAIRE

    Kit Yu Karen Chan; Eliseba García; Sam Dupont

    2015-01-01

    Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many benthic marine invertebrates. This key ecological function is modulated by larval development dynamics, biomechanics of the resulting morphology, and behavioral choices. Studies on ocean acidification effects on larval stages have yet to address this important interaction between development and swimming under environmentally-relevant flow conditions. Our video motion analysis revealed that pH covering pr...

  20. Coral bleaching under unconventional scenarios of climate warming and ocean acidification

    Science.gov (United States)

    Kwiatkowski, Lester; Cox, Peter; Halloran, Paul R.; Mumby, Peter J.; Wiltshire, Andy J.

    2015-08-01

    Elevated sea surface temperatures have been shown to cause mass coral bleaching. Widespread bleaching, affecting >90% of global coral reefs and causing coral degradation, has been projected to occur by 2050 under all climate forcing pathways adopted by the IPCC for use within the Fifth Assessment Report. These pathways include an extremely ambitious pathway aimed to limit global mean temperature rise to 2 °C (ref. ; Representative Concentration Pathway 2.6--RCP2.6), which assumes full participation in emissions reductions by all countries, and even the possibility of negative emissions. The conclusions drawn from this body of work, which applied widely used algorithms to estimate coral bleaching, are that we must either accept that the loss of a large percentage of the world’s coral reefs is inevitable, or consider technological solutions to buy those reefs time until atmospheric CO2 concentrations can be reduced. Here we analyse the potential for geoengineering, through stratospheric aerosol-based solar radiation management (SRM), to reduce the extent of global coral bleaching relative to ambitious climate mitigation. Exploring the common criticism of geoengineering--that ocean acidification and its impacts will continue unabated--we focus on the sensitivity of results to the aragonite saturation state dependence of bleaching. We do not, however, address the additional detrimental impacts of ocean acidification on processes such as coral calcification that will further determine the benefit to corals of any SRM-based scenario. Despite the sensitivity of thermal bleaching thresholds to ocean acidification being uncertain, stabilizing radiative forcing at 2020 levels through SRM reduces the risk of global bleaching relative to RCP2.6 under all acidification-bleaching relationships analysed.

  1. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae.

    Directory of Open Access Journals (Sweden)

    Craig S Young

    Full Text Available While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus. In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p0.05. The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001 and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic estuaries can be directly promoted by acidification, a process that will intensify in the coming decades.

  2. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis

    Science.gov (United States)

    Hancock, Joshua R.; Place, Sean P.

    2016-01-01

    As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis. We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid–base regulatory capacity (Na+,K+-ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments. PMID:27729981

  3. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.

    Science.gov (United States)

    Bignami, Sean; Enochs, Ian C; Manzello, Derek P; Sponaugle, Su; Cowen, Robert K

    2013-04-30

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing.

  4. Quantifying the influence of CO2 seasonality on future ocean acidification

    Directory of Open Access Journals (Sweden)

    T. P. Sasse

    2015-04-01

    Full Text Available Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2, and is highly likely to impact the entire marine ecosystem – from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5 to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5, our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.

  5. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae

    Science.gov (United States)

    Young, Craig S.; Gobler, Christopher J.

    2016-01-01

    While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001) and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic estuaries can be directly promoted by acidification, a process that will intensify in the coming decades. PMID:27176637

  6. Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification.

    Science.gov (United States)

    Goncalves, Priscila; Anderson, Kelli; Thompson, Emma L; Melwani, Aroon; Parker, Laura M; Ross, Pauline M; Raftos, David A

    2016-10-01

    Marine organisms need to adapt in order to cope with the adverse effects of ocean acidification and warming. Transgenerational exposure to CO2 stress has been shown to enhance resilience to ocean acidification in offspring from a number of species. However, the molecular basis underlying such adaptive responses is currently unknown. Here, we compared the transcriptional profiles of two genetically distinct oyster breeding lines following transgenerational exposure to elevated CO2 in order to explore the molecular basis of acclimation or adaptation to ocean acidification in these organisms. The expression of key target genes associated with antioxidant defence, metabolism and the cytoskeleton was assessed in oysters exposed to elevated CO2 over three consecutive generations. This set of target genes was chosen specifically to test whether altered responsiveness of intracellular stress mechanisms contributes to the differential acclimation of oyster populations to climate stressors. Transgenerational exposure to elevated CO2 resulted in changes to both basal and inducible expression of those key target genes (e.g. ecSOD, catalase and peroxiredoxin 6), particularly in oysters derived from the disease-resistant, fast-growing B2 line. Exposure to CO2 stress over consecutive generations produced opposite and less evident effects on transcription in a second population that was derived from wild-type (nonselected) oysters. The analysis of key target genes revealed that the acute responses of oysters to CO2 stress appear to be affected by population-specific genetic and/or phenotypic traits and by the CO2 conditions to which their parents had been exposed. This supports the contention that the capacity for heritable change in response to ocean acidification varies between oyster breeding lines and is mediated by parental conditioning.

  7. No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community

    Science.gov (United States)

    Paul, Allanah J.; Achterberg, Eric P.; Bach, Lennart T.; Boxhammer, Tim; Czerny, Jan; Haunost, Mathias; Schulz, Kai-Georg; Stuhr, Annegret; Riebesell, Ulf

    2016-07-01

    Nitrogen fixation by filamentous cyanobacteria supplies significant amounts of new nitrogen (N) to the Baltic Sea. This balances N loss processes such as denitrification and anammox, and forms an important N source supporting primary and secondary production in N-limited post-spring bloom plankton communities. Laboratory studies suggest that filamentous diazotrophic cyanobacteria growth and N2-fixation rates are sensitive to ocean acidification, with potential implications for new N supply to the Baltic Sea. In this study, our aim was to assess the effect of ocean acidification on diazotroph growth and activity as well as the contribution of diazotrophically fixed N to N supply in a natural plankton assemblage. We enclosed a natural plankton community in a summer season in the Baltic Sea near the entrance to the Gulf of Finland in six large-scale mesocosms (volume ˜ 55 m3) and manipulated fCO2 over a range relevant for projected ocean acidification by the end of this century (average treatment fCO2: 365-1231 µatm). The direct response of diazotroph growth and activity was followed in the mesocosms over a 47 day study period during N-limited growth in the summer plankton community. Diazotrophic filamentous cyanobacteria abundance throughout the study period and N2-fixation rates (determined only until day 21 due to subsequent use of contaminated commercial 15N-N2 gas stocks) remained low. Thus estimated new N inputs from diazotrophy were too low to relieve N limitation and stimulate a summer phytoplankton bloom. Instead, regeneration of organic N sources likely sustained growth in the plankton community. We could not detect significant CO2-related differences in neither inorganic nor organic N pool sizes, or particulate matter N : P stoichiometry. Additionally, no significant effect of elevated CO2 on diazotroph activity was observed. Therefore, ocean acidification had no observable impact on N cycling or biogeochemistry in this N-limited, post-spring bloom

  8. Optimising reef-scale CO2 removal by seaweed to buffer ocean acidification

    Science.gov (United States)

    Mongin, Mathieu; Baird, Mark E.; Hadley, Scott; Lenton, Andrew

    2016-03-01

    The equilibration of rising atmospheric {{CO}}2 with the ocean is lowering {pH} in tropical waters by about 0.01 every decade. Coral reefs and the ecosystems they support are regarded as one of the most vulnerable ecosystems to ocean acidification, threatening their long-term viability. In response to this threat, different strategies for buffering the impact of ocean acidification have been proposed. As the {pH} experienced by individual corals on a natural reef system depends on many processes over different time scales, the efficacy of these buffering strategies remains largely unknown. Here we assess the feasibility and potential efficacy of a reef-scale (a few kilometers) carbon removal strategy, through the addition of seaweed (fleshy multicellular algae) farms within the Great Barrier Reef at the Heron Island reef. First, using diagnostic time-dependent age tracers in a hydrodynamic model, we determine the optimal location and size of the seaweed farm. Secondly, we analytically calculate the optimal density of the seaweed and harvesting strategy, finding, for the seaweed growth parameters used, a biomass of 42 g N m-2 with a harvesting rate of up 3.2 g N m-2 d-1 maximises the carbon sequestration and removal. Numerical experiments show that an optimally located 1.9 km2 farm and optimally harvested seaweed (removing biomass above 42 g N m-2 every 7 d) increased aragonite saturation by 0.1 over 24 km2 of the Heron Island reef. Thus, the most effective seaweed farm can only delay the impacts of global ocean acidification at the reef scale by 7-21 years, depending on future global carbon emissions. Our results highlight that only a kilometer-scale farm can partially mitigate global ocean acidification for a particular reef.

  9. A calcium isotope test of end-Permian ocean acidification using biogenic apatite

    Science.gov (United States)

    Hinojosa, J.; Brown, S. T.; DePaolo, D. J.; Paytan, A.; Shen, S.; Chen, J.; Payne, J.

    2011-12-01

    Submarine erosional truncation of uppermost Permian carbonate strata has been interpreted to reflect ocean acidification coincident with the end-Permian mass extinction. Although this scenario is consistent with carbon isotope and paleontological data, several alternative scenarios, such as ocean overturn or collapse of the biological pump, can also account for the carbon isotope and paleontological evidence. Calcium isotopes provide a geochemical proxy to test between acidification and alternative scenarios. Specifically, a negative shift in the calcium isotope composition (δ44/40Ca) of seawater is predicted under the acidification scenario but not the alternatives. The δ44/40Ca of carbonate rocks from south China exhibits a negative excursion of approximately 0.3%, but this shift could result from either a change in the δ44/40Ca of seawater or a change in carbonate mineralogy because calcite and aragonite exhibit substantially different fractionation factors relative to seawater. To test whether the negative shift in δ44/40Ca reflects seawater δ44/40Ca or carbonate mineralogy, we measured the δ44/40Ca of conodont microfossils (calcium hydroxyapatite) from the global stratotype section for the Permian-Triassic boundary at Meishan, China. The conodont δ44/40Ca record shows a negative excursion similar in stratigraphic position and magnitude to that previously observed in carbonate rocks. Parallel negative excursions in the δ44/40Ca of carbonate rocks and conodont microfossils cannot be accounted for by a change in carbonate mineralogy but are consistent with a negative shift in the δ44/40Ca of seawater. These data add further support for the ocean acidification scenario, pointing toward strong similarities between the greatest catastrophe in the history of animal life and anticipated global change during the 21st century.

  10. Diel coral reef acidification driven by porewater advection in permeable sands, Heron Island, Great Barrier Reef

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Glud, Ronnie N.; Maher, Damien;

    2011-01-01

    Little is known about how biogeochemical processes in permeable sediments affect the pH of coastal waters. We demonstrate that seawater recirculation in permeable sands can play a major role in proton (H+) cycling in a coral reef lagoon. The diel pH range (up to 0.75 units) in the Heron Island la...... that the metabolism of advection‐dominated carbonate sands may provide a currently unknown feedback to ocean acidification....

  11. Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan

    OpenAIRE

    Yara, Y.; M. Vogt; Fujii, M.; Yamano, H; Hauri, C; Steinacher, M.; Gruber, N.; Yamanaka, Y.

    2012-01-01

    Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of coral habitats is classified on the basis of the currently observed regional ranges for temperature and saturation states with regard to aragonite (Ωarag). We find ...

  12. Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan

    OpenAIRE

    Yara, Y.; M. Vogt; Fujii, M.; Yamano, H; Hauri, C; Steinacher, M.; Gruber, N.; Yamanaka, Y.

    2012-01-01

    Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of coral habitats is classified on the basis of the currently observed regional ranges for temperature and saturation states with regard to aragonite (Ωarag). We find that, under the "business as usua...

  13. Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan

    OpenAIRE

    Yara, Y.; M. Vogt; Fujii, M.; Yamano, H; Hauri, C; Steinacher, M.; Gruber, N.; Yamanaka, Y.

    2012-01-01

    Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the combined effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of the coral habitats are identified primarily on the basis of the currently observed ranges for temperature and saturation states Ω with regard to aragonite (Ωarag<...

  14. Ocean acidification and global warming impair shark hunting behaviour and growth

    OpenAIRE

    Pistevos, Jennifer C. A.; Ivan Nagelkerken; Tullio Rossi; Maxime Olmos; Connell, Sean D.

    2015-01-01

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and ...

  15. Stakeholder-Informed Ecosystem Modeling of Ocean Warming and Acidification Impacts in the Barents Sea Region

    OpenAIRE

    Koenigstein, Stefan; Ruth, M; Gößling-Reisemann, S.

    2016-01-01

    Climate change and ocean acidification are anticipated to alter marine ecosystems, with consequences for the provision of marine resources and ecosystem services to human societies. However, considerable uncertainties about future ecological changes and ensuing socio-economic impacts impede the identification of societal adaptation strategies. In a case study from the Barents Sea and Northern Norwegian Sea region, we integrated stakeholder perceptions of ecological changes and their significa...

  16. The suitability of Mytilus edulis as proxy archive and its response to ocean acidification

    OpenAIRE

    Heinemann, Agnes

    2011-01-01

    Past climate changes can be used as indicators of future scenarios, however past climatic changes can not be directly observed. Therefore, the reconstruction of past abiotic conditions can approximated using chemical or isotopic proxies. These proxies can be measured in natural archives (e.g. bivalve shells and coral skeletons). One aspect of current climate change is the acidification of the oceans, a phenomenon caused by the oceanic uptake of anthropogenic CO2 and a resulting shift in the m...

  17. The microbiota of high-moisture mozzarella cheese produced with different acidification methods.

    Science.gov (United States)

    Guidone, Angela; Zotta, Teresa; Matera, Attilio; Ricciardi, Annamaria; De Filippis, Francesca; Ercolini, Danilo; Parente, Eugenio

    2016-01-01

    The microbiota of high-moisture Mozzarella cheese made from cow's milk and produced with different acidification methods was evaluated at the end of refrigerated storage by pyrosequencing of the 16S rRNA gene. The cheeses were clearly separated on the basis of the acidification methods. Cheeses produced with the addition of starters were dominated by Streptococcus thermophilus, but a variety of lactic acid bacteria and spoilage microorganisms appeared at low levels (0.01-1%). Cheeses produced by direct addition of citric acid were dominated by a diverse microbiota, including both lactic acid bacteria and psychrotrophic γ-proteobacteria. For five brands the acidification system was not declared on the label: the microbiota was dominated by thermophilic lactic acid bacteria (S. thermophilus, Lactobacillus delbrueckii, Lactobacillus helveticus) but a variety of other subdominant lactic acid bacteria, psychrotrophs and Enterobacteriaceae were present, with a diversity comparable or higher to cheeses produced by direct acid addition. This led to the conclusion that undefined starters were used for acidification. Both ordination methods and network analysis were used for the representation of beta-diversity: matrix cluster analysis, principal coordinate analysis and OTU networks uncovered different aspects of the microbial community structure. For three cheese brands both biological replicates (cheeses from different lots) and technical replicates (replicate cheeses from the same lot) were analyzed. Repeatability was acceptable for OTUs appearing at frequencies >1%, but was low otherwise. A linear mixed model showed that the starter system was responsible for most differences related to dairies, while difference due to psychrotrophic contaminants was more related to lot-to-lot variability.

  18. Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    OpenAIRE

    C. Evenhuis; A. Lenton; Cantin, N. E.; Lough, J.M.

    2015-01-01

    Coral reefs are diverse ecosystems that are threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are explicitly modelled by linking rates of growth, recovery and calcification to rates of bleaching and temperature-stress-induced mortality. The model is underpinned by four key pri...

  19. Treatment of anthraquinone dye wastewater by hydrolytic acidification-aerobic process

    Institute of Scientific and Technical Information of China (English)

    YANG Jian; WU Min; Li Dan

    2004-01-01

    Experiment on microbial degradation with two kinds of biological process, hydrolytic acidification-aerobic process and aerobic process was conducted to treat the anthraquinone dye wastewater with CODCr concentration of 400 mg/L and chroma 800. The experimental result demonstrated that the hydrolytic-aerobic process could raise the biodegradability of anthraquinone dye wastewater effectively. The effluent CODCr can reach 120-170 mg/L and chroma 150 which is superior to that from simple aerobic process.

  20. Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens

    OpenAIRE

    Mettrop, Ivan S.; Cusell, Casper; Annemieke M Kooijman; Lamers, Leon P. M.

    2015-01-01

    In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens (‘rich fens’). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an i...

  1. Climatic modulation of recent trends in ocean acidification in the California Current System

    Science.gov (United States)

    Turi, G.; Lachkar, Z.; Gruber, N.; Münnich, M.

    2016-01-01

    We reconstruct the evolution of ocean acidification in the California Current System (CalCS) from 1979 through 2012 using hindcast simulations with an eddy-resolving ocean biogeochemical model forced with observation-based variations of wind and fluxes of heat and freshwater. We find that domain-wide pH and {{{Ω }}}{arag} in the top 60 m of the water column decreased significantly over these three decades by about -0.02 decade-1 and -0.12 decade-1, respectively. In the nearshore areas of northern California and Oregon, ocean acidification is reconstructed to have progressed much more rapidly, with rates up to 30% higher than the domain-wide trends. Furthermore, ocean acidification penetrated substantially into the thermocline, causing a significant domain-wide shoaling of the aragonite saturation depth of on average -33 m decade-1 and up to -50 m decade-1 in the nearshore area of northern California. This resulted in a coast-wide increase in nearly undersaturated waters and the appearance of waters with {{{Ω }}}{arag}\\lt 1, leading to a substantial reduction of habitat suitability. Averaged over the whole domain, the main driver of these trends is the oceanic uptake of anthropogenic CO2 from the atmosphere. However, recent changes in the climatic forcing have substantially modulated these trends regionally. This is particularly evident in the nearshore regions, where the total trends in pH are up to 50% larger and trends in {{{Ω }}}{arag} and in the aragonite saturation depth are even twice to three times larger than the purely atmospheric CO2-driven trends. This modulation in the nearshore regions is a result of the recent marked increase in alongshore wind stress, which brought elevated levels of dissolved inorganic carbon to the surface via upwelling. Our results demonstrate that changes in the climatic forcing need to be taken into consideration in future projections of the progression of ocean acidification in coastal upwelling regions.

  2. Assessment of the theory and hypotheses of the acidification of watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Krug, E.C.

    1989-04-01

    This report documents and critically assesses the evolution and status of the scientific understanding of the effects of acidic deposition on surface waters. The main conclusion is that the dominant theory of surface-water acidification fails to adequately incorporate many important factors and processes that influence surface water acidity. Some of these factors and processes are not well researched or recognized as being important by most scientists in the aquatic effects research area. 258 refs., 14 figs., 23 tabs.

  3. In natura açaí beverage: quality, pasteurization and acidification

    OpenAIRE

    Palmira Antonia Alves Cruz de Oliveira; Idelfonso Generôzo da Silva; Maria Luzenira de Souza; Cydia Menezes Furtado; Reginaldo Ferreira da Silva

    2011-01-01

    The purpose of this work was to evaluate the physical, physicochemical, chemical and microbiological characteristics of in natura açai (Euterpe precatoria Mart.)beverageprocessed and commercialized in Rio Branco, Acre, submitting it to acidification and pasteurization treatments and evaluating their effects. Açaí fruits were processed to obtain the beverage as generally consumed. A 25 L sample was collected from a processing unit at a market in Rio Branco and transported to the Laboratory of ...

  4. Acidification of non-medicated and oxytetracycline-medicated cattle manures during anaerobic digestion.

    Science.gov (United States)

    Akyol, Cağri; Ince, Orhan; Türker, Gökhan; Ince, Bahar

    2014-01-01

    Possible adverse effects of a commonly used veterinary antibiotic, oxytetracycline (OTC), on acidogenic phase of anaerobic digestion of cattle manure along with optimum operating conditions were investigated. A standard veterinary practice of 50 ml OTC solution (20 mg/kg cattle weight) was injected into the muscles of cattle and then manure samples were collected for 5 days following the injection. The 5-day samples were equally mixed and used throughout digestion experiments. Preliminary batch tests were conducted to obtain the optimum pH range and observe volatile fatty acids (VFAs) production. In this regard, different sets of batch digesters were operated at pH ranging from 5.2 +/- 0.1 to 5.8 +/- 0.1 at mesophilic conditions with total solids content of 6.0 +/- 0.2%. The pH of 5.5 +/- 0.1 was found to be the optimum value for acidification for both non-medicated and OTC-medicated conditions. Under predetermined conditions, maximum total VFA (VFAtot) of 830 +/- 3 mg (as acetic acid)/L was produced and maximum acidification rate was evaluated as 11% for OTC-medicated cattle manure, whereas they were 900 +/- 6 mg (as acetic acid)/L and 12% for non-medicated manure. Digestion studies were further continued in a semi-continuous mode at pH 5.5 +/- 0.1 and SRT/HRT of 5 days. VFAtot concentrations and maximum acidification rate increased up to 2181 +/- 19 mg (as acetic acid)/L and 29% for non-medicated cattle manure. For OTC-medicated cattle manure, lower acidification rate of 18% was observed. PMID:25145191

  5. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Eilers, J.M. (E and S Environmental Chemistry, Inc., Corvallis, OR (United States)); Cosby, B.J. (Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences); Driscoll, C.T. (Syracuse Univ., NY (United States). Dept. of Civil Engineering); Hemond, H.F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering); Charles, D.F.

    1993-03-05

    A project for the US Department of Energy, entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources'' was initiated by E S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

  6. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC)

    International Nuclear Information System (INIS)

    A project for the US Department of Energy, entitled ''Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources'' was initiated by E ampersand S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed

  7. A potential tool for high-resolution monitoring of ocean acidification.

    Science.gov (United States)

    Hakonen, Aron; Anderson, Leif G; Engelbrektsson, Johan; Hulth, Stefan; Karlson, Bengt

    2013-07-01

    Current anthropogenic carbon dioxide emissions generate besides global warming unprecedented acidification rates of the oceans. Recent evidence indicates the possibility that ocean acidification and low oceanic pH may be a major reason for several mass extinctions in the past. However, a major bottleneck for research on ocean acidification is long-term monitoring and the collection of consistent high-resolution pH measurements. This study presents a low-power (measurements at high temporal and spatial resolution (approximately 15 s and 100 m between samples). A 405 nm light emitting diode and the blue and green channels from a digital camera was used for swift detection of fluorescence from the pH sensitive dye 6,8-Dihydroxypyrene-1,3-disulfonic acid in real-time. Main principles were demonstrated by automated continuous measurements of pH in the surface water across the Baltic Sea and the Kattegat region with a large range in salinity (~3-30) and temperature (~0-25°C). Ship-board precision of salinity and temperature adjusted pH measurements were estimated as low as 0.0001 pH units. PMID:23790284

  8. Stable photosymbiotic relationship under CO₂-induced acidification in the acoel worm Symsagittifera roscoffensis.

    Directory of Open Access Journals (Sweden)

    Sam Dupont

    Full Text Available As a consequence of anthropogenic CO₂ emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding. We have studied the impact of extreme pH decrease/pCO₂ increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO₂ with no negative or even positive effects on fitness (survival, growth, fertility and/or photosymbiotic relationship till pCO₂ up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO₂ up to 270 K µatm when seawater is saturated by CO₂. This indicates that photosymbiosis can be resistant to high pCO₂. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO₂ observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding.

  9. Monitoring and assessment of ocean acidification in the Arctic Ocean-A scoping paper

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Feely, Richard; Fabry, Victoria

    2010-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the ocean surface by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution. Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats. The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  10. Severity of ocean acidification following the end-Cretaceous asteroid impact.

    Science.gov (United States)

    Tyrrell, Toby; Merico, Agostino; Armstrong McKay, David Ian

    2015-05-26

    Most paleo-episodes of ocean acidification (OA) were either too slow or too small to be instructive in predicting near-future impacts. The end-Cretaceous event (66 Mya) is intriguing in this regard, both because of its rapid onset and also because many pelagic calcifying species (including 100% of ammonites and more than 90% of calcareous nannoplankton and foraminifera) went extinct at this time. Here we evaluate whether extinction-level OA could feasibly have been produced by the asteroid impact. Carbon cycle box models were used to estimate OA consequences of (i) vaporization of up to 60 × 10(15) mol of sulfur from gypsum rocks at the point of impact; (ii) generation of up to 5 × 10(15) mol of NOx by the impact pressure wave and other sources; (iii) release of up to 6,500 Pg C as CO2 from vaporization of carbonate rocks, wildfires, and soil carbon decay; and (iv) ocean overturn bringing high-CO2 water to the surface. We find that the acidification produced by most processes is too weak to explain calcifier extinctions. Sulfuric acid additions could have made the surface ocean extremely undersaturated (Ωcalcite ocean very rapidly (over a few days) and if the quantity added was at the top end of literature estimates. We therefore conclude that severe ocean acidification might have been, but most likely was not, responsible for the great extinctions of planktonic calcifiers and ammonites at the end of the Cretaceous.

  11. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon

    Science.gov (United States)

    Semiletov, Igor; Pipko, Irina; Gustafsson, Örjan; Anderson, Leif G.; Sergienko, Valentin; Pugach, Svetlana; Dudarev, Oleg; Charkin, Alexander; Gukov, Alexander; Bröder, Lisa; Andersson, August; Spivak, Eduard; Shakhova, Natalia

    2016-05-01

    Ocean acidification affects marine ecosystems and carbon cycling, and is considered a direct effect of anthropogenic carbon dioxide uptake from the atmosphere. Accumulation of atmospheric CO2 in ocean surface waters is predicted to make the ocean twice as acidic by the end of this century. The Arctic Ocean is particularly sensitive to ocean acidification because more CO2 can dissolve in cold water. Here we present observations of the chemical and physical characteristics of East Siberian Arctic Shelf waters from 1999, 2000-2005, 2008 and 2011, and find extreme aragonite undersaturation that reflects acidity levels in excess of those projected in this region for 2100. Dissolved inorganic carbon isotopic data and Markov chain Monte Carlo simulations of water sources using salinity and δ18O data suggest that the persistent acidification is driven by the degradation of terrestrial organic matter and discharge of Arctic river water with elevated CO2 concentrations, rather than by uptake of atmospheric CO2. We suggest that East Siberian Arctic Shelf waters may become more acidic if thawing permafrost leads to enhanced terrestrial organic carbon inputs and if freshwater additions continue to increase, which may affect their efficiency as a source of CO2.

  12. Ocean acidification and global warming impair shark hunting behaviour and growth

    Science.gov (United States)

    Pistevos, Jennifer C. A.; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D.

    2015-01-01

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs. PMID:26559327

  13. Soil acidification: its extent, development during the last decades, and causes

    International Nuclear Information System (INIS)

    During the last decades there has been substantially increasing, extended forest soil acidity in central Europe. The higher the previous saturation in bases had been, the more pronounced was the loss in neutralization capacity. In many northern and central European sites, the rate of protons carried in by wet deposition already exceeds the rate of bases from the soil's buffer activity and from silicate degradation. The resulting, lower pH is buffered by protolysis of Al and Fe oxides. This makes Al the dominant cation in many sites, whose toxicity for forest ecosystems is critically discussed. A part from atmospheric acid deposition, high production and exports of biomass are also liable to cause heavy surface soil acidification locally, but the two types of deposition are basically different. Whereas acidification by organic acids from biomass is restricted to the area between the organic cover layer and the Bh layer, acidification from the deposition of permanently loaded mineral acid anions penetrates beyond the rhizosphere into the C layer and aquifers, endangering the hydrosphere as well. Therefore, the buffering properties of the lithosphere acquire increasing importance. (orig./vhe)

  14. Global assessment of the effects of terrestrial acidification on plant species richness

    International Nuclear Information System (INIS)

    This study estimates the potential losses of vascular plant species richness due to terrestrial acidification for different world's biomes. We used empirical occurrence data of 2409 species from 140 studies and estimated the relative species richness – pH response curves using logistic regressions. The regressions were then used to quantify the fraction of species that are potentially lost due to soil pH changes. Although we found considerable variability within biomes, out results show that the pH at which species richness was maximized was found to be the lowest in (sub)tropical forests (pH = 4.1) and the highest in deserts (pH = 7.4). We also found that (sub)tropical moist forests are highly sensitive to decreases of in soil pH below 4.1. This study can be coupled with existing atmospheric deposition models to quantify the risk of species richness loss following soil acidification. Highlights: ► We compare the sensitivity of four biomes to soil acidification. ► We develop logistic regressions using observational field data. ► Sub(tropical) moist forests are highly affected by pH decreases. ► Logistic regressions can be linked to global scale atmospheric and soil fate models. -- Relationships of potential species richness loss along a soil pH gradient are proposed

  15. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    International Nuclear Information System (INIS)

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl2) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed

  16. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    E. W. Helbling

    2012-06-01

    Full Text Available Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML, thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm for more than 20 generations. Compared to the ambient CO2 level (390 µatm, growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ of cells and partially counteracted the harm to PSII caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. As for photosynthetic carbon fixation, the rate increased with increasing temperature from 15 to 25 °C, regardless of their growth CO2 levels. In addition, UV-induced inhibition of photosynthesis was inversely correlated to temperature. The ratio of repair to UV-induced damage showed inverse relationship with increased NPQ, showing higher values under the ocean acidification condition against UV-B, reflecting that the increased pCO2 and lowered pH counteracted UV-B induced harm.

  17. Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    E. W. Helbling

    2012-10-01

    Full Text Available Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML, thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 μatm for more than 20 generations. Compared to the ambient CO2 level (390 μatm, growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ of cells and partially counteracted the harm to PS II (photosystem II caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.

  18. Calcifying coral abundance near low-pH springs: implications for future ocean acidification

    Science.gov (United States)

    Crook, E. D.; Potts, D.; Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A.

    2012-03-01

    Rising atmospheric CO2 and its equilibration with surface ocean seawater is lowering both the pH and carbonate saturation state (Ω) of the oceans. Numerous calcifying organisms, including reef-building corals, may be severely impacted by declining aragonite and calcite saturation, but the fate of coral reef ecosystems in response to ocean acidification remains largely unexplored. Naturally low saturation (Ω ~ 0.5) low pH (6.70-7.30) groundwater has been discharging for millennia at localized submarine springs (called "ojos") at Puerto Morelos, México near the Mesoamerican Reef. This ecosystem provides insights into potential long term responses of coral ecosystems to low saturation conditions. In-situ chemical and biological data indicate that both coral species richness and coral colony size decline with increasing proximity to low-saturation, low-pH waters at the ojo centers. Only three scleractinian coral species ( Porites astreoides, Porites divaricata, and Siderastrea radians) occur in undersaturated waters at all ojos examined. Because these three species are rarely major contributors to Caribbean reef framework, these data may indicate that today's more complex frame-building species may be replaced by smaller, possibly patchy, colonies of only a few species along the Mesoamerican Barrier Reef. The growth of these scleractinian coral species at undersaturated conditions illustrates that the response to ocean acidification is likely to vary across species and environments; thus, our data emphasize the need to better understand the mechanisms of calcification to more accurately predict future impacts of ocean acidification.

  19. Effects of phosphorus on nutrient uptake and rhizosphere acidification of soybean (Glycine max L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pot experiment was conducted to examine how application of KH2PO4 (0-165 mg·kg-1 P) to affect nutrient ion uptake and rhizosphere acidification of soybean (Glycine max L.) grown in greenhouse for 90 days. When supplied of 82 and 165 mg·kg-1 P,soybeans showed excessive poison. Under all kinds of P levels, the K, Ca, Na and Mg concents in plant tissues were as below order:K was nodules > roots > pods > shoots; Ca was shoots > roots > nodules > pods; Na was roots > nodules > pods > shoots and Mg was shoots > nodules > roots > pods. K concent in plant tisssues had greater effect on rhizosphere acidification than other cations in this experiment irrespective of P supply, and was significantly negative to pH. Na concentration was significantly positive to pH. Excessive P supply induced rhizosphere acidification, pH decreased as P supply increased from 82 to 165 mg·kg-1. Ash alkalinity in shoots and roots was significantly positively correlated with rhizosphere pH irrespective of P supply. All these results suggested that P supply affected nutrient uptake, induced ash alkalinity to increase and rhizosphere pH to decrease in soybean.

  20. Impact of ocean acidification on the structure of future phytoplankton communities

    Science.gov (United States)

    Dutkiewicz, Stephanie; Morris, J. Jeffrey; Follows, Michael J.; Scott, Jeffery; Levitan, Orly; Dyhrman, Sonya T.; Berman-Frank, Ilana

    2015-11-01

    Phytoplankton form the foundation of the marine food web and regulate key biogeochemical processes. These organisms face multiple environmental changes, including the decline in ocean pH (ocean acidification) caused by rising atmospheric pCO2 (ref. ). A meta-analysis of published experimental data assessing growth rates of different phytoplankton taxa under both ambient and elevated pCO2 conditions revealed a significant range of responses. This effect of ocean acidification was incorporated into a global marine ecosystem model to explore how marine phytoplankton communities might be impacted over the course of a hypothetical twenty-first century. Results emphasized that the differing responses to elevated pCO2 caused sufficient changes in competitive fitness between phytoplankton types to significantly alter community structure. At the level of ecological function of the phytoplankton community, acidification had a greater impact than warming or reduced nutrient supply. The model suggested that longer timescales of competition- and transport-mediated adjustments are essential for predicting changes to phytoplankton community structure.

  1. Impeded Acidification of Acid Sulfate Soils in an Inter—sively Drained Sugarcane Land

    Institute of Scientific and Technical Information of China (English)

    C.LIN; R.T.BUSH; 等

    2001-01-01

    Recent research results suggest that acidification of acid sulfate soils may be inhibited in well-drained estuarine floodplains in eastern Australia by the absence of natural creek levees,The lack of natural levees has allowed the inuudation of the land by regular tidal flooding prior to the construction of flood mitigation work.Such physiographical conditions prevent the development of pre-draingae pyrite-derived soil acidifica-tion that possibly occurred at many levee-protected sites in eastern Australian estuarine floodplains during extremely dry spells.Pre-drainage acidification is considered as an important condition for accumulation of soluble Fe and consequently,the creation of favourable environments for catalysed pyrite oxidation.Under current intensively drained onditions,the acid materials produced by ongoing pyrite oxidation can be rapidly removed from soil pore water by lateral leaching and acid buffering,resulting in low concentrations of soluble Fe in the pyritic layer,which could reduce the rate of pyrite oxidation.

  2. Ocean acidification and global warming impair shark hunting behaviour and growth.

    Science.gov (United States)

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D

    2015-01-01

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs. PMID:26559327

  3. Odor tracking in sharks is reduced under future ocean acidification conditions.

    Science.gov (United States)

    Dixson, Danielle L; Jennings, Ashley R; Atema, Jelle; Munday, Philip L

    2015-04-01

    Recent studies show that ocean acidification impairs sensory functions and alters the behavior of teleost fishes. If sharks and other elasmobranchs are similarly affected, this could have significant consequences for marine ecosystems globally. Here, we show that projected future CO2 levels impair odor tracking behavior of the smooth dogfish (Mustelus canis). Adult M. canis were held for 5 days in a current-day control (405 ± 26 μatm) and mid (741 ± 22 μatm) or high CO2 (1064 ± 17 μatm) treatments consistent with the projections for the year 2100 on a 'business as usual' scenario. Both control and mid CO2 -treated individuals maintained normal odor tracking behavior, whereas high CO2 -treated sharks significantly avoided the odor cues indicative of food. Control sharks spent >60% of their time in the water stream containing the food stimulus, but this value fell below 15% in high CO2 -treated sharks. In addition, sharks treated under mid and high CO2 conditions reduced attack behavior compared to the control individuals. Our findings show that shark feeding could be affected by changes in seawater chemistry projected for the end of this century. Understanding the effects of ocean acidification on critical behaviors, such as prey tracking in large predators, can help determine the potential impacts of future ocean acidification on ecosystem function. PMID:25111824

  4. Extracellular acidification stimulates GPR68 mediated IL-8 production in human pancreatic β cells.

    Science.gov (United States)

    Chandra, Vikash; Karamitri, Angeliki; Richards, Paul; Cormier, Françoise; Ramond, Cyrille; Jockers, Ralf; Armanet, Mathieu; Albagli-Curiel, Olivier; Scharfmann, Raphael

    2016-01-01

    Acute or chronic metabolic complications such as diabetic ketoacidosis are often associated with extracellular acidification and pancreatic β-cell dysfunction. However, the mechanisms by which human β-cells sense and respond to acidic pH remain elusive. In this study, using the recently developed human β-cell line EndoC-βH2, we demonstrate that β-cells respond to extracellular acidification through GPR68, which is the predominant proton sensing receptor of human β-cells. Using gain- and loss-of-function studies, we provide evidence that the β-cell enriched transcription factor RFX6 is a major regulator of GPR68. Further, we show that acidic pH stimulates the production and secretion of the chemokine IL-8 by β-cells through NF-кB activation. Blocking of GPR68 or NF-кB activity severely attenuated acidification induced IL-8 production. Thus, we provide mechanistic insights into GPR68 mediated β-cell response to acidic microenvironment, which could be a new target to protect β-cell against acidosis induced inflammation. PMID:27166427

  5. Ocean acidification and global warming impair shark hunting behaviour and growth.

    Science.gov (United States)

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D

    2015-11-12

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs.

  6. Energetic plasticity underlies a variable response to ocean acidification in the pteropod, Limacina helicina antarctica.

    Directory of Open Access Journals (Sweden)

    Brad A Seibel

    Full Text Available Ocean acidification, caused by elevated seawater carbon dioxide levels, may have a deleterious impact on energetic processes in animals. Here we show that high PCO(2 can suppress metabolism, measured as oxygen consumption, in the pteropod, L. helicina forma antarctica, by ∼20%. The rates measured at 180-380 µatm (MO(2  =  1.25 M(-0.25, p  =  0.007 were significantly higher (ANCOVA, p  =  0.004 than those measured at elevated target CO(2 levels in 2007 (789-1000 µatm,  =  0.78 M(-0.32, p  =  0.0008; Fig. 1. However, we further demonstrate metabolic plasticity in response to regional phytoplankton concentration and that the response to CO(2 is dependent on the baseline level of metabolism. We hypothesize that reduced regional Chl a levels in 2008 suppressed metabolism and masked the effect of ocean acidification. This effect of food limitation was not, we postulate, merely a result of gut clearance and specific dynamic action, but rather represents a sustained metabolic response to regional conditions. Thus, pteropod populations may be compromised by climate change, both directly via CO(2-induced metabolic suppression, and indirectly via quantitative and qualitative changes to the phytoplankton community. Without the context provided by long-term observations (four seasons and a multi-faceted laboratory analysis of the parameters affecting energetics, the complex response of polar pteropods to ocean acidification may be masked or misinterpreted.

  7. Producing high-strength liquor from mesophilic batch acidification of chicken manure.

    Science.gov (United States)

    Abendroth, Christian; Wünsche, Erik; Luschnig, Olaf; Bürger, Christoph; Günther, Thomas

    2015-03-01

    This report describes the results from anaerobic batch acidification of chicken manure as a mono-substrate studied under mesophilic conditions. The manure was diluted with tap water to prevent methane formation during acidification and to improve mixing conditions by reducing fluid viscosity; no anaerobic digester sludge has been added as an inoculum. Highest acidification rates were measured at concentrations of 10 gVS L⁻¹ and 20 gVS L⁻¹; the pH value remained high (pH 6.9-7.9) throughout the test duration and unexpected fast methane formation was observed in every single batch. At substrate concentrations of 10 gVS L⁻¹ there was a remarkable methane formation representing a value of 82% of the respective biochemical methane potential of chicken manure. Increasing substrate concentrations did not supress methane formation but impaired acid production. Consequently, the liquor cannot be stored over longer periods but should immediately be used in a digestion process. PMID:25672618

  8. Effect of initial pH on mesophilic hydrolysis and acidification of swine manure.

    Science.gov (United States)

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lee, Duu-Jong; Lei, Zhongfang; Zhang, Yi; Tay, Joo Hwa

    2013-05-01

    Effects of initial pH (3-12) on mesophilic hydrolysis and acidification reactions of swine manure was studied. The initial pH changed the microbial community in the suspension so as to affect hydrolysis and acidification reactions on swine manure. At pH 10-12 the Clostridium alkalicellum and/or Corynebacterium humireducens were enriched and the soluble chemical oxygen demand (SCOD), total volatile fatty acids (VFAs), proteins and carbohydrates from manure were increased in quantities. In particular, at pH 10 the VFA concentration peaked at 13,600 mg-COD/L, with acetate and propionate accounting for 71.8% of the total VFAs. Acidic environment facilitates release of ammonium from manure. The Butyricimonas sp. was found existing at initial pH 5 which led to accumulated quantities of butyrate. Initial pH adjustment was revealed to be an effective way to manipulate rates and end products of hydrolysis and acidification of swine manure. PMID:23567695

  9. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.

    Science.gov (United States)

    Byrne, Maria; Przeslawski, Rachel

    2013-10-01

    Benthic marine invertebrates live in a multistressor world where stressor levels are, and will continue to be, exacerbated by global warming and increased atmospheric carbon dioxide. These changes are causing the oceans to warm, decrease in pH, become hypercapnic, and to become less saturated in carbonate minerals. These stressors have strong impacts on biological processes, but little is known about their combined effects on the development of marine invertebrates. Increasing temperature has a stimulatory effect on development, whereas hypercapnia can depress developmental processes. The pH, pCO2, and CaCO3 of seawater change simultaneously with temperature, challenging our ability to predict future outcomes for marine biota. The need to consider both warming and acidification is reflected in the recent increase in cross-factorial studies of the effects of these stressors on development of marine invertebrates. The outcomes and trends in these studies are synthesized here. Based on this compilation, significant additive or antagonistic effects of warming and acidification of the ocean are common (16 of 20 species studied), and synergistic negative effects also are reported. Fertilization can be robust to near-future warming and acidification, depending on the male-female mating pair. Although larvae and juveniles of some species tolerate near-future levels of warming and acidification (+2°C/pH 7.8), projected far-future conditions (ca. ≥4°C/ ≤pH 7.6) are widely deleterious, with a reduction in the size and survival of larvae. It appears that larvae that calcify are sensitive both to warming and acidification, whereas those that do not calcify are more sensitive to warming. Different sensitivities of life-history stages and species have implications for persistence and community function in a changing ocean. Some species are more resilient than others and may be potential "winners" in the climate-change stakes. As the ocean will change more gradually over

  10. Use of dry milk protein concentrate in pizza cheese manufactured by culture or direct acidification.

    Science.gov (United States)

    Shakeel-Ur-Rehman; Farkye, N Y; Yim, B

    2003-12-01

    Milk protein concentrate (MPC) contains high concentrations of casein and calcium and low concentrations of lactose. Enrichment of cheese milk with MPC should, therefore, enhance yields and improve quality. The objectives of this study were: 1) to compare pizza cheese made by culture acidification using standardized whole milk (WM) plus skim milk (SM) versus WM plus MPC; and 2) compare cheese made using WM + MPC by culture acidification to that made by direct acidification. The experimental design is as follows: vat 1 = WM + SM + culture (commercial thermophilic lactic acid bacteria), vat 2 = WM + MPC + culture, and vat 3 = WM + MPC + direct acid (2% citric acid). Each cheese milk was standardized to a protein-to-fat ratio of approximately 1.4. The experiment was repeated three times. Yield and composition of cheeses were determined by standard methods, whereas the proteolysis was assessed by urea polyacrylamide gel electrophoresis (PAGE) and water-soluble N contents. Meltability of the cheeses was determined during 1 mo of storage, in addition to pizza making. The addition of MPC improved the yields from 10.34 +/- 0.57% in vat 1 cheese to 14.50 +/- 0.84% and 16.65 +/- 2.23%, respectively, in vats 2 and 3 and cheeses. The percentage of fat and protein recoveries showed insignificant differences between the treatments, but TS recoveries were in the order, vat 2 > vat 3 > vat 1. Most of the compositional parameters were significantly affected by the different treatments. Vat 2 cheese had the highest calcium and lowest lactose contencentrations. Vat 3 cheese had the best meltability. Vat 1 cheese initially had better meltability than vat 2 cheese; however, the difference became insignificant after 28 d of storage at 4 degrees C. Vat 3 cheese had the softest texture and produced large-sized blisters when baked on pizza. The lowest and highest levels of proteolysis were found in vats 2 and 3 cheeses, respectively. The study demonstrates the use of MPC in pizza cheese

  11. Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage.

    Science.gov (United States)

    Saw, Ner Mu Nar; Kang, Soo-Young Ann; Parsaud, Leon; Han, Gayoung Anna; Jiang, Tiandan; Grzegorczyk, Krzysztof; Surkont, Michael; Sun-Wada, Ge-Hong; Wada, Yoh; Li, Lijun; Sugita, Shuzo

    2011-09-01

    The Vo sector of the vacuolar H(+)-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1-a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested. Here we investigate the function of Voa isoforms in secretory vesicle acidification and exocytosis by using neurosecretory PC12 cells. Fluorescence-tagged and endogenous Voa1 are primarily localized on secretory vesicles, whereas fluorescence-tagged Voa2 and Voa3 are enriched on the Golgi and early endosomes, respectively. To elucidate the functional roles of Voa1 and Voa2, we engineered PC12 cells in which Voa1, Voa2, or both are stably down-regulated. Our results reveal significant reductions in the acidification and transmitter uptake/storage of dense-core vesicles by knockdown of Voa1 and more dramatically of Voa1/Voa2 but not of Voa2. Overexpressing knockdown-resistant Voa1 suppresses the acidification defect caused by the Voa1/Voa2 knockdown. Unexpectedly, Ca(2+)-dependent peptide secretion is largely unaffected in Voa1 or Voa1/Voa2 knockdown cells. Our data demonstrate that Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, whereas they might not be as critical for exocytosis as recently proposed. PMID:21795392

  12. Comparison of MAGIC and Diatom paleolimnological model hindcasts of lakewater acidification in the Adirondack region of New York

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Bernert, J.A.; Eliers, J.M. (E and S Environmental Chemistry, Corvallis, OR (USA)); Jenne, E.A. (Pacific Northwest Lab., Richland, WA (USA)); Cosby, B.J. (Duke Univ., Durham, NC (USA). School of Forestry and Environmental Studies); Charles, D.F.; Selle, A.R. (Environmental Protection Agency, Corvallis, OR (USA). Environmental Research Lab.)

    1991-03-01

    Thirty-three lakes that had been statistically selected as part of the US Environmental Protection Agency's Eastern Lake Survey and Direct Delayed Response Project (DDRP) were used to compare the MAGIC (watershed) and Diatom (paleolimnological) models. The study lakes represented a well-defined group of Adirondack lakes, each larger than 4 ha in area and having acid-neutralizing capacity (ANC) <400 {mu}eq L{sup {minus}1}. The study first compared current and pre-industrial (before 1850) pH and ANC estimates from Diatom and MAGIC as they were calibrated in the preceding Paleocological Investigation of Recent Lake Acidification (PIRLA) and DDRP studies, respectively. Initially, the comparison of hindcasts of pre-industrial chemistry was confounded by seasonal and methodological differences in lake chemistry data used in calibration of the model. Although certain differences proved to be of little significance for comparison, MAGIC did predict significantly higher pre-industrial ANC and pH values than did Diatom, using calibrations in the preceding studies. Both models suggest acidification of low ANC Adirondack region lakes since preindustrial times, but differ primarily in that MAGIC inferred greater acidification and that acidification has occurred in all lakes in the comparison, whereas Diatom inferred that acidification has been restricted to low ANC lakes (

  13. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    Science.gov (United States)

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  14. Assessment of pH variability at a coastal CO 2 vent for ocean acidification studies

    Science.gov (United States)

    Kerrison, Philip; Hall-Spencer, Jason M.; Suggett, David J.; Hepburn, Leanne J.; Steinke, Michael

    2011-08-01

    Marine environments with naturally high CO 2 concentrations have become important research sites for studying the impacts of future ocean acidification on biological processes. We conducted high temporal resolution pH and temperature measurements in and around a shallow (2.5-3 m) CO 2 vent site off Ischia, Italy in May and June 2008. Loggers were deployed at five stations to monitor water at both the surface and benthos. Our reference station, 500 m from the CO 2 vent, had no noticeable vent influence. It had a naturally high and stable benthic pH (mean 8.16, inter-quartile range (IQ): 8.14-8.18) fluctuating with diel periodicity, presumably driven by community photosynthesis and respiration. A principal component analysis (PCA) revealed that the pH of this station was well constrained by meteorological parameters. In contrast, a station positioned within the vent zone, had a low and very variable benthic mean pH of 7.11 (IQ: 6.91-7.62) with large pH fluctuations not well constrained by a PCA. Any stations positioned within 20 m of the main vent zone had lowered pH, but suffered from abnormally large pH fluctuations making them unsuitable representatives to predict future changes to a shallow coastal environment. Between these extremes, we identified a benthic area with a lower pH of 7.84 (IQ: 7.83-7.88) that retained many of the characteristics of the reference station such as a natural diel pH periodicity and low variability. Our results indicate that a range of pH environments maybe commonplace near CO 2 vents due to their characteristic acidification of benthic water over a wide area. Such environments could become invaluable natural laboratories for ocean acidification research, closely mimicking future CO 2 conditions in a natural setting.

  15. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua

    Science.gov (United States)

    Hu, Marian Y.; Michael, Katharina; Kreiss, Cornelia M.; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO3− cotransporter (NBC1), pendrin-like Cl−/HCO3− exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3− secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3− levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans. PMID:27313538

  16. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    Directory of Open Access Journals (Sweden)

    A.-M. Nisumaa

    2010-07-01

    Full Text Available The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1 gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2 transform the information into common framework, and (3 make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS and the European Project on Ocean Acidification (EPOCA. A total of 185 papers were identified, 100 contained enough information to readily compute carbonate chemistry variables, and 81 data sets were archived at PANGAEA – The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.

    Data access: http://doi.pangaea.de/10.1594/PANGAEA.735138

  17. EPOCA/EUR-OCEANS data-mining compilation on the impacts of ocean acidification

    Directory of Open Access Journals (Sweden)

    A.-M. Nisumaa

    2010-03-01

    Full Text Available The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1 gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2 transform the information into common framework, and (3 make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS and the European Project on Ocean Acidification (EPOCA. A total of 166 papers were identified, 86 contained enough information to readily compute carbonate chemistry variables, and 67 datasets were archived at PANGAEA – The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.

    Data access: http://doi.pangaea.de/10.1594/PANGAEA.735138

  18. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life.

    Science.gov (United States)

    Gobler, Christopher J; Baumann, Hannes

    2016-05-01

    There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH-low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated.

  19. Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions

    Science.gov (United States)

    Gómez, C. E.; Paul, V. J.; Ritson-Williams, R.; Muehllehner, N.; Langdon, C.; Sánchez, J. A.

    2015-06-01

    Ocean acidification can have negative repercussions from the organism to ecosystem levels. Octocorals deposit high-magnesium calcite in their skeletons, and according to different models, they could be more susceptible to the depletion of carbonate ions than either calcite or aragonite-depositing organisms. This study investigated the response of the gorgonian coral Eunicea fusca to a range of CO2 concentrations from 285 to 4,568 ppm (pH range 8.1-7.1) over a 4-week period. Gorgonian growth and calcification were measured at each level of CO2 as linear extension rate and percent change in buoyant weight and calcein incorporation in individual sclerites, respectively. There was a significant negative relationship for calcification and CO2 concentration that was well explained by a linear model regression analysis for both buoyant weight and calcein staining. In general, growth and calcification did not stop in any of the concentrations of pCO2; however, some of the octocoral fragments experienced negative calcification at undersaturated levels of calcium carbonate (>4,500 ppm) suggesting possible dissolution effects. These results highlight the susceptibility of the gorgonian coral E. fusca to elevated levels of carbon dioxide but suggest that E. fusca could still survive well in mid-term ocean acidification conditions expected by the end of this century, which provides important information on the effects of ocean acidification on the dynamics of coral reef communities. Gorgonian corals can be expected to diversify and thrive in the Atlantic-Eastern Pacific; as scleractinian corals decline, it is likely to expect a shift in these reef communities from scleractinian coral dominated to octocoral/soft coral dominated under a "business as usual" scenario of CO2 emissions.

  20. CO2-level Dependent Effects of Ocean Acidification on Squid, Doryteuthis pealeii, Early Life History

    KAUST Repository

    Zakroff, Casey J.

    2013-12-01

    Ocean acidification is predicted to lead to global oceanic decreases in pH of up to 0.3 units within the next 100 years. However, those levels are already being reached currently in coastal regions due to natural CO2 variability. Squid are a vital component of the pelagic ecosystem, holding a unique niche as a highly active predatory invertebrate and major prey stock for upper trophic levels. This study examined the effects of a range of ocean acidification regimes on the early life history of a coastal squid species, the Atlantic longfin squid, Doryteuthis pealeii. Eggs were raised in a flow-through ocean acidification system at CO2 levels ranging from ambient (400ppm) to 2200ppm. Time to hatching, hatching efficiency, and hatchling mantle lengths, yolk sac sizes, and statoliths were all examined to elucidate stress effects. Delays in hatching time of at least a day were seen at exposures above 1300ppm in all trials under controlled conditions. Mantle lengths were significantly reduced at exposures above 1300 ppm. Yolk sac sizes varied between CO2 treatments, but no distinct pattern emerged. Statoliths were increasingly porous and malformed as CO2 exposures increased, and were significantly reduced in surface area at exposures above 1300ppm. Doryteuthis pealeii appears to be able to withstand acidosis stress without major effects up to 1300ppm, but is strongly impacted past that threshold. Since yolk consumption did not vary among treatments, it appears that during its early life stages, D. pealeii reallocates its available energy budget away from somatic growth and system development in order to mitigate the stress of acidosis.

  1. Surface water acidification and critical loads: exploring the F-factor

    Directory of Open Access Journals (Sweden)

    L. Rapp

    2009-05-01

    Full Text Available As acid deposition decreases, uncertainties in methods for calculating critical loads become more important when judgements have to be made about whether or not further emission reductions are needed. An important aspect of one type of model that has been used to calculate surface water critical loads is the empirical F-factor which estimates the degree to which acid deposition is neutralised before it reaches a lake at any particular point in time relative to the pre-industrial, steady-state water chemistry conditions.

    In this paper we will examine how well the empirical F-functions are able to estimate pre-industrial lake chemistry as lake chemistry changes during different phases of acidification and recovery. To accomplish this, we use the dynamic, process-oriented biogeochemical model SAFE to generate a plausible time series of annual runoff chemistry for ca 140 Swedish catchments between 1800 and 2100. These annual hydrochemistry data are then used to generate empirical F-factors that are compared to the "actual" F-factor seen in the SAFE data for each lake and year in the time series. The dynamics of the F-factor as catchments acidify, and then recover are not widely recognised.

    Our results suggest that the F-factor approach worked best during the acidification phase when soil processes buffer incoming acidity. However, the empirical functions for estimating F from contemporary lake chemistry are not well suited to the recovery phase when the F-factor turns negative due to recovery processes in the soil. Therefore, the empirical estimates of the F-factor are a significant source of uncertainty in the estimate of surface water critical loads and related calculations for quantifying lake acidification status, especially now that acid deposition has declined across large areas of Europe and North America.

  2. Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua

    Directory of Open Access Journals (Sweden)

    Marian Yong-An Hu

    2016-06-01

    Full Text Available CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for four weeks to three CO2 levels (550, 1,200 and 2,200 μatm covering present and near-future natural variability, at optimum (10°C and summer maximum temperature (18°C, respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA, Na+/H+-exchanger 3 (NHE3, Na+/HCO3- cotransporter (NBC1, pendrin-like Cl-/HCO3- exchanger (SLC26a6, V-type H+-ATPase subunit a (VHA and Cl- channel 3 (CLC3 in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3- secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3- levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  3. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    Directory of Open Access Journals (Sweden)

    M. Hagens

    2014-11-01

    Full Text Available Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity of the hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands. Monthly water column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC and total alkalinity (TA. The resulting dataset was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air–sea exchange, but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale. In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment–water exchange, but stronger pH fluctuations (0.60 units. This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  4. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral.

    Science.gov (United States)

    Stubler, Amber D; Furman, Bradley T; Peterson, Bradley J

    2015-11-01

    Ocean acidification will disproportionately impact the growth of calcifying organisms in coral reef ecosystems. Simultaneously, sponge bioerosion rates have been shown to increase as seawater pH decreases. We conducted a 20-week experiment that included a 4-week acclimation period with a high number of replicate tanks and a fully orthogonal design with two levels of temperature (ambient and +1 °C), three levels of pH (8.1, 7.8, and 7.6), and two levels of boring sponge (Cliona varians, present and absent) to account for differences in sponge attachment and carbonate change for both living and dead coral substrate (Porites furcata). Net coral calcification, net dissolution/bioerosion, coral and sponge survival, sponge attachment, and sponge symbiont health were evaluated. Additionally, we used the empirical data from the experiment to develop a stochastic simulation of carbonate change for small coral clusters (i.e., simulated reefs). Our findings suggest differential impacts of temperature, pH and sponge presence for living and dead corals. Net coral calcification (mg CaCO3  cm(-2)  day(-1) ) was significantly reduced in treatments with increased temperature (+1 °C) and when sponges were present; acidification had no significant effect on coral calcification. Net dissolution of dead coral was primarily driven by pH, regardless of sponge presence or seawater temperature. A reevaluation of the current paradigm of coral carbonate change under future acidification and warming scenarios should include ecologically relevant timescales, species interactions, and community organization to more accurately predict ecosystem-level response to future conditions.

  5. Modeling the effects of climate change and acidification on global coral reefs

    Science.gov (United States)

    Logan, C. A.; Donner, S. D.; Eakin, C.; Dunne, J. P.

    2010-12-01

    Climate warming threatens to increase the frequency of mass coral bleaching events. Meanwhile, ocean acidification may increase susceptibility to these events and slow the recovery of corals following bleaching. Using future sea surface warming scenarios from global coupled climate models, previous studies have estimated that corals will experience biannual bleaching events by mid-century unless they are able to acclimatize or adapt at a rate of ~0.2-1.0°C per decade. Empirical studies also show that certain coral ecotypes may be more resistant to bleaching than others (e.g. massive vs. branching). Likewise, more variable thermal history may play a significant role in increasing resistance to bleaching. Better quantifying the impacts of climate change and ocean acidification on coral reefs under different future scenarios is critical to making proactive decisions about both mitigation of greenhouse gas emissions and adaptation to climate change. Proposed here is a model that uses two of the ESM2 GFDL models and combines several previous attempts at modeling climate change effects. This model incorporates thermal history and adaptability into a modified Degree Heating Week bleaching threshold. The model is designed to examine the effects of rising SSTs alone as well as in combination with ocean acidification and other factors to predict future global coral reef bleaching frequency and response by coral ecotype. The ESM2 GFDL models are validated for use in coral reef areas by comparing model results against historical SST satellite data for the years 1985-2006 at 4km and 50km spatial resolutions to assess the models’ reproducibility of mean annual temperature, range, and variability. The modified bleaching threshold is tested against observational bleaching records in well-documented areas (e.g., Great Barrier Reef).

  6. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    Science.gov (United States)

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-12-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral

  7. Palaeolimnological assessment of lake acidification and environmental change in the Athabasca Oil Sands Region, Alberta

    Directory of Open Access Journals (Sweden)

    Sergi PLA

    2010-08-01

    Full Text Available Exploitation of the Athabasca Oil Sands has expanded hugely over the last 40 years. Regional emissions of oxidised sulphur and nitrogen compounds increased rapidly over this period and similar emissions have been linked to lake acidification in other parts of North America and Europe. To determine whether lakes in the region have undergone acidification, 12 lakes within the Regional Municipality of Wood Buffalo and the Caribou Mountains were selected to cover chemical and spatial gradients and sediment cores were obtained for palaeolimnological analyses including radiometric dating, diatom analysis, isotopic analysis of bulk sediment 13C and 15N, and spheroidal carbonaceous particles (SCPs. All lake sediment cores show evidence of industrial contamination based on SCPs, but there is no clear industrial signal in stable isotopes. Most lakes showed changes in diatom assemblages and sediment C:N ratios consistent with nutrient enrichment over various timescales, with potential drivers including climatic change, forest fires and anthropogenic nitrogen deposition. Only one of the 12 lakes investigated showed strong evidence of acidification with a decline in diatom-inferred pH from 6.3 to 5.6 since 1970 linked to increasing relative abundances of the acidophilous diatom species Actinella punctata, Asterionella ralfsii and Fragilariforma polygonata. Analysis of mercury (Hg in the acidified lake showed increasing sediment fluxes over the last 20 years, a possible indication of industrial contamination. The acidified lake is the smallest of those studied with the shortest residence time, suggesting a limited capacity for neutralisation of acid inputs in catchment soils or by inlake processes.

  8. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life.

    Science.gov (United States)

    Gobler, Christopher J; Baumann, Hannes

    2016-05-01

    There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH-low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated. PMID

  9. SOIL ACIDIFICATION BY FERROLYSIS IN A PEDOLOGICAL SEQUENCE OF MUNTELE MIC, CARAŞ-SEVERIN COUNTY

    Directory of Open Access Journals (Sweden)

    Gheorghe Rogobete

    2007-10-01

    Full Text Available Soil acidification process in aerated soils is a consequence of: (1 production of various acids in the soil, (2 the effect of ion uptake of biota, (3 nitrogen inputs and (4 the addition of dissolved strong acids. The soils formed by acidolysis process are Umbric Podzols, Umbric – entic Podzols, Haplic Umbrisols – Dystric Cambisol and Dystric Fluvisols. In the case of presence of an argic horizon with alternating aerobic and anaerobic conditions the main process is ferrolysis. During wet periods, iron oxides undergo reduction and in aerobic conditions with Fe2+ oxidation, it will be generating acid soils, like Stagni – albic Luvisols.

  10. Molecular changes during chemical acidification of the buffalo and cow milks

    OpenAIRE

    Gaucheron, F; Piot, M.; Rousseau, F.; Ahmad, S

    2010-01-01

    Composition and physico-chemical properties of buffalo and cow milks were compared at their initial pH and during chemical acidification. As compare to cow milk, buffalo milk was richer in caseins and minerals such as Ca, Mg and Pi. Along with these differences, the capacity of buffalo milk to be acidified named buffering capacity was also higher than cow milk. The pH decrease induced aggregation of caseins at their isoelectric pH and solubilisations of Ca and Pi were significant for both mil...

  11. Ecosystem Resilience to Ocean Deoxygenation and Acidification: Lessons from Contrasting Mass Extinction Events

    Science.gov (United States)

    Sepulveda, J.; Alegret, L.; Kasprak, A. H.; Whiteside, J. H.; Haddad, E.; Cao, C.; Summons, R. E.

    2012-12-01

    Mass extinction events (MEEs) are among the few readily identifiable turning points in the evolution of life, and could serve as potential analogues for understanding ecosystem responses to projected trends in climate change. This study addresses marine ecosystem resilience by examining the biomarker signature of planktonic communities across two contrasting MEEs: (a) the end-Triassic, characterized by intense volcanism, high pCO2 and ocean anoxia; (b) the Cretaceous-Paleogene (K-Pg) boundary, characterized by a bolide impact, reduced photosynthesis and ocean acidification. Results from Kennecott Point in western Canada, provide the first evidence for the occurrence of reducing conditions and photic zone euxinia across the end-Triassic and early Jurassic in the Panthalassic Ocean. The latter was accompanied by abrupt turnovers in plankton ecology favoring prasinophytes, chrysophytes, cyanobacteria, and methanotrophs, which advocates for large perturbations in nutrient inventories. The length of our record suggests that such changes might have persisted for at least 500 ky into the early Jurassic. On the other hand, biomarker and isotopic results from the clay layer of the stratotype section of El Kef in northern Africa indicate that, in stark contrast to calcareous organisms, primary production by non-calcifying organisms was not significantly affected across the K-Pg boundary, whereas no important ecological turnovers were observed. Taking into account the short duration of the boundary clay layer (~10 ky), these results indicate that non-calcifying organisms might have been responsible for sustaining benthic communities in the immediate aftermath of the K-Pg, and probably longer until calcifying organisms resurged again. Our results suggest that environmental changes stemming from elevated CO2, oxygen-deficiency, acidification, and nutrient limitation (end-Triassic scenario) have more negative consequences on marine ecosystems (calcifying and non

  12. Effects of burning high sulfur content coal on acidification of cloud and rain in South China

    International Nuclear Information System (INIS)

    The emissions of SO2 was obtained based on the production and sulfur content of the small-scale coal mines in South China in 1987, then by means of Gaussian smoking-column model to calculate the concentration of SO2. The results showed that the pH value in liquid drops was 4.40-5.47, which are similar to the monitoring data, and also indicated that the high sulfur content coal from the small-scale mines is the chief resource for acidification in South China

  13. Effects of ocean acidification and sea-level rise on coral reefs

    Science.gov (United States)

    Yates, K.K.; Moyer, R.P.

    2010-01-01

    U.S. Geological Survey (USGS) scientists are developing comprehensive records of historical and modern coral reef growth and calcification rates relative to changing seawater chemistry resulting from increasing atmospheric CO2 from the pre-industrial period to the present. These records will provide the scientific foundation for predicting future impacts of ocean acidification and sea-level rise on coral reef growth. Changes in coral growth rates in response to past changes in seawater pH are being examined by using cores from coral colonies.

  14. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae?

    Science.gov (United States)

    Frieder, Christina A; Gonzalez, Jennifer P; Bockmon, Emily E; Navarro, Michael O; Levin, Lisa A

    2014-03-01

    Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2 ], or semidiurnal fluctuations for both mytilid species. Low pH (oceans that has the capacity to modulate the effects of ocean acidification on biological responses.

  15. Pig slurry characteristics, nutrient balance and biogas production as affected by separation and acidification

    DEFF Research Database (Denmark)

    Sommer, S.G.; Hjorth, Maibritt; Leahy, J. J.;

    2015-01-01

    Animal slurry is separated in order to avoid excessive nitrogen, phosphorus and potassium (NPK) fertilization of crops in the field. To enhance fertilizer efficiency further, slurry and its separation products may be acidified, for instance in animal houses. The current study quantified the effects...... of these treatments, both individually and in combination, on fertilizer efficiency, energy production and heavy metal accumulation as a result of manure management. Acidification increased the availability of N to plants in the manure applied, and provided a better match between plant-available NPK in the manure...

  16. Interdisciplinary analysis of soil acidification hazard and its legacy effects in Lithuania

    Science.gov (United States)

    Eidukeviciene, M.; Volungevicius, J.; Marcinkonis, S.; Tripolskaja, L.; Karcauskiene, D.; Fullen, M. A.; Booth, C. A.

    2010-07-01

    An analysis of factors influencing effective soil acidification management is reported. This analysis was conducted simultaneously at both national and local levels. These investigations were accomplished in three stages: (i) validation of acid soil spatial patterns using systems analysis and geoinformation methods; (ii) spatial statistical analysis of soil pH diversity using a statistical grid method; and (iii) development of the concept of soil acidity management. Results indicate the national spatial distribution of topsoil reaction is a natural and stable phenomenon related to Quaternary sub-surface deposits. However, secondary effects of topsoil liming are evident in both spatial and temporal soil reaction patterns.

  17. Treatment of black liquor from the papermaking industry by acidification and reuse

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-bo; MU Huan-zhen; HUANG Yan-chu

    2003-01-01

    Two different kinds of black liquor from the papermaking industry were treated by acidification and reuse. The experimental parameters and conditions were discussed in detail. The experimental results indicated that the treatment process mentioned in this article is an effective process for the treatment of black liquor from the papermaking industry. By the treatment, the solid materials in black liquor are transferred into two by-products and the other components are reused or evaporated. Thus, no wastewater except some condensation water would be discharged in pulping process and the problem of pollution of black liquor would be effectively solved.

  18. International Cooperative Programme for Assessment and Monitoring of Acidification of Rivers and Lakes. Programme Manual

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.; Forsius, M.; Jeffries, D. [and others

    1996-12-31

    The International Cooperative Programme for Assessment of Acidification of Rivers and lakes (ICP Waters) was established in 1985 by the UN/ECE Executive Body for the Convention of Long-Range Transboundary Air Pollution. Achieving the programme objectives requires that both the temporally intensive and regionally extensive data are collected on a continuing basis. To guide the development and harmonization of the various national contributions, a manual was worked out. The present report is an expanded and consolidated revision of that manual. 33 refs., 3 tabs.

  19. Treatment of black liquor from the papermaking industry by acidification and reuse.

    Science.gov (United States)

    Yang, Wen-Bo; Mu, Huan-Zhen; Huang, Yan-Chu

    2003-09-01

    Two different kinds of black liquor from the papermaking industry were treated by acidification and reuse. The experimental parameters and conditions were discussed in detail. The experimental results indicated that the treatment process mentioned in this article is an effective process for the treatment of black liquor from the papermaking industry. By the treatment, the solid materials in black liquor are transferred into two by-products and the other components are reused or evaporated. Thus, no wastewater except some condensation water would be discharged in pulping process and the problem of pollution of black liquor would be effectively solved. PMID:14562934

  20. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics

    OpenAIRE

    L. DONNARUMMA; Lombardi, C.; COCITO, S; Gambi, M. C.

    2014-01-01

    Effects of ocean acidification (OA on the colonization/settlement pattern of the epibiont community of the leaves and rhizomesof the Mediterranean seagrass,Posidoniaoceanica, have been studied at volcanic CO2vents off Ischia (Italy), using “mimics”as artificial substrates. The experiments were conducted in shallowPosidoniastands (2-3 m depth), in three stations on the northand three on the south sides of the study area, distributed along a pH gradient. At each station, 4 rhizome mimics and ...

  1. Quantifying spatially derived carrying capacity occupation: Framework for characterisation modelling and application to terrestrial acidification

    DEFF Research Database (Denmark)

    Bjørn, Anders; Margni, M.; Bulle, C.;

    The popularity of the ecological footprint method and the planetary boundaries concept shows an increasing interest among decision makers in comparing environmental impacts to carrying capacities of natural systems. Recently carrying capacity-based normalisation references were developed for impact...... km*year. This metric resembles that of the ecological footprint method and may be compared to the availability of land or water. The framework was applied to the terrestrial acidification impact category. The geochemical steady-state model PROFILE was used to quantify carrying capacities as...

  2. Prediction of episodic acidification in North-eastern USA: An empirical/mechanistic approach

    Science.gov (United States)

    Davies, T.D.; Tranter, M.; Wigington, P.J.; Eshleman, K.N.; Peters, N.E.; Van Sickle, J.; DeWalle, David R.; Murdoch, Peter S.

    1999-01-01

    Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the North-eastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre-episode ANC and change in discharge as independent variable. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South-eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess 'chemically new' and 'chemically old' water sources during acidification episodes.Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the Northeastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in

  3. Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment.

    Science.gov (United States)

    Karuri, A R; Dobrowsky, E; Tannock, I F

    1993-12-01

    The mean extracellular pH (pHe) within solid tumours has been found to be lower than in normal tissues. Agents which cause intracellular acidification at low pHe might have selective toxicity towards cells in tumours. Weak acids (or their anions) with pKa values in the range of 4-6 have a higher proportion of molecules in the uncharged form at low pHe and can diffuse more rapidly into cells. The effects of organic acids including succinate, monomethyl succinate and malonate to acidify cells have been evaluated under conditions of different pHe in the acidic range. These weak acids caused intracellular acidification of murine EMT-6 and human MGH-U1 cells in a concentration and pHe dependent fashion. At concentrations of 10 mM and above, these acids also caused in vitro cytotoxicity to these cells at low pHe (< 6.5). The rate and extent of cellular acidification caused by these weak acids, and their cytotoxicity at low pHe, were enhanced by exposure to amiloride and 5-(N-ethyl-N-isopropyl)amiloride (EIPA), agents which inhibit Na+/H+ exchange, and hence the regulation of intracellular pH. Acid dependent cytotoxicity was also investigated in a murine solid tumour using the endpoints of growth delay and colony formation in vitro following treatment in vivo. Agents were tested alone or with 15 Gy X-rays to select a population of hypoxic (and presumably acidic) cells. Achievable serum concentrations of succinate were about 1 mM and no antitumour activity of succinate was detected when used in this way. It is concluded that weak acids are selectively taken up into cells, and can cause selective cellular acidification and toxicity, at low pHe in culture. Weak acids that are normal cellular metabolites are not toxic in vivo, but weak acids carrying cytotoxic groups offer the potential for selective uptake and toxicity under the conditions of low pHe that exist in many solid tumours.

  4. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    Science.gov (United States)

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  5. Turf algal epiphytes metabolically induce local pH increase, with implications for underlying coralline algae under ocean acidification

    DEFF Research Database (Denmark)

    Short, J.A.; Pedersen, Ole; Kendrick, G.A.

    2015-01-01

    The presence of epiphytic turf algae may modify the effects of ocean acidification on coralline algal calcification rates by altering seawater chemistry within the diffusive boundary layer (DBL) above coralline algal crusts. We used microelectrodes to measure the effects of turf algal epiphytes...... on seawater pH and the partial pressure of oxygen (pO2) within the DBL at the surface of Hydrolithoideae coralline algal crusts under ambient (36 Pa) CO2 and an ocean acidification scenario with elevated CO2 (200 Pa). Turf algae significantly increased the mean diel amplitude of pH and pO2, and this effect...... was more pronounced under elevated CO2. We suggest that increases in seawater CO2 under ocean acidification conditions may drive an increase in the abundance of epiphytic turf algae, consequently modifying the chemistry within the DBL. Thus, the effect of epiphytic turf algae on microscale pH is striking...

  6. Increase in dimethylsulfide (DMS emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification.

    Directory of Open Access Journals (Sweden)

    Nathalie eGypens

    2014-04-01

    Full Text Available Available information from manipulative experiments suggested that the emission of dimethylsulfide (DMS would decrease in response to the accumulation of anthropogenic CO2 in the ocean (ocean acidification. However, in coastal environments, the carbonate chemistry of surface waters was also strongly modified by eutrophication and related changes in biological activity (increased primary production and change in phytoplankton dominance during the last 50 years. Here, we tested the hypothesis that DMS emissions in marine coastal environments also strongly responded to eutrophication in addition to ocean acidification at decadal timescales. We used the R-MIRO-BIOGAS model in the eutrophied Southern Bight of the North Sea characterized by intense blooms of Phaeocystis that are high producers of dimethylsulfoniopropionate (DMSP, the precursor of DMS. We showed that, for the period from 1951 to 2007, eutrophication actually led to an increase of DMS emissions much stronger than the response of DMS emissions to ocean acidification.

  7. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates.

    Science.gov (United States)

    Kong, Xin; Wei, Yonghong; Xu, Shuang; Liu, Jianguo; Li, Huan; Liu, Yili; Yu, Shuyao

    2016-07-01

    Excessive acidification occurs frequently in food waste (FW) anaerobic digestion (AD) due to the high carbon-to-nitrogen ratio of FW. In this study, zero-valent iron (ZVI) was applied to prevent the excessive acidification. All of the control groups, without ZVI addition (pH∼5.3), produced little methane (CH4) and had high volatile fatty acids/bicarbonate alkalinity (VFA/ALK). By contrast, at OLR of 42.32gVS/Lreactor, the pH of effluent from the reactors with 0.4g/gVSFWadded of ZVI increased to 7.8-8.2, VFA/ALK decreased to reactors, the fractional content of butyric acid changed from 30-40% to 0%, while, that of acetic acid increased. These results indicate that adding ZVI to FW digestion at high OLRs could eliminate excessive acidification by promoting butyric acid conversion and enhancing methanogen activity. PMID:26998799

  8. Acidification rate from chemical N fertilization and alleviation by manure in an 18–year field experiment in a ferralic cambisol, South China

    Science.gov (United States)

    Soil acidification from chemical N fertilization has worsened and is a major yield-limiting factor in the red soils of southern China. Assessment of the acidification process under field conditions over a long term is essential to develop strategies for maintaining soil productivity. The objective o...

  9. Modulation by phytochrome of the blue light-induced extracellular acidification by leaf epidermal cells of pea (Pisum sativum L.) : a kinetic analysis

    NARCIS (Netherlands)

    Elzenga, JTM; Staal, M; Prins, HBA

    2000-01-01

    Blue light induces extracellular acidification, a prerequisite of cell expansion, in epidermis cells of young pea leaves, by stimulation of the proton pumping-ATPase activity in the plasma membrane. A transient acidification, reaching a maximum 2.5-5 min after the start of the pulse, could be induce

  10. Soil acidification occurs under ambient conditions but is retarded by repeated drought: results of a field-scale climate manipulation experiment

    NARCIS (Netherlands)

    G.R. Kopittke; A. Tietema; J.M. Verstraten

    2012-01-01

    Acid atmospheric emissions within Europe and North America have decreased strongly since 1985 and most recent acidification studies have focused on the changes occurring within ecosystems as a result of this decreased deposition. This current study documents a soil acidification trend under ambient

  11. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal.

    Directory of Open Access Journals (Sweden)

    Sue-Ann Watson

    Full Text Available Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2 (control ~400, mid ~650 and high ~950 μatm and light (photosynthetically active radiation 35, 65 and 304 μmol photons m-2 s-1. Elevated CO2 projected for the end of this century (~650 and ~950 μatm reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.

  12. Acidification in Three Lake District Tarns: Historical Iong term trends and modelled future behaviour under changing sulphate and nitrate deposition

    Directory of Open Access Journals (Sweden)

    P. G. Whitchead

    1997-01-01

    Full Text Available Three upland Lake District Tarns, Scoat, Greendale and Burnmoor, have been evaluated using MAGIC (Model of Acidification of Groundwater In Catchments to reconstruct past, present and future chemical behaviour. The modelled historical changes in acidity are compared with palaeoecological estimation of pH to demonstrate model validity. Chemistry as simulated for all anions and cations and two of the three lakes are shown to have undergone significant acidification. The effects of changing atmospheric pollution levels on lake chemistry is evaluated and 80-90% sulphur reduction levels are required to achieve zero alkalinity. The impacts of increased nitrogen deposition are assessed and are shown to further delay reversibility.

  13. Acidifying intermediate water accelerates the acidification of seawater on shelves: An example of the East China Sea

    Science.gov (United States)

    Lui, Hon-Kit; Chen, Chen-Tung Arthur; Lee, Jay; Wang, Shu-Lun; Gong, Gwo-Ching; Bai, Yan; He, Xianqiang

    2015-12-01

    This study is the first to present observed acidification rates at the shelf break of the East China Sea (ECS) and in the Okinawa Trough between 1982 and 2007. The use of apparent oxygen utilization (AOU) data to quantify the change in pH due to physical changes and changes in biological activities is demonstrated. The results thus obtained reveal that the drop in pH of the Kuroshio Intermediate Water (KIW) in the ECS is a result of not only the intrusion of atmospheric CO2, but also an increase in AOU concentration. The acidification rates caused by the increasing AOU concentration could contribute up to -0.00086±0.00017 pH unit yr-1 at 900 m in the Okinawa Trough and -0.00082±0.00057 pH unit yr-1 on the shelf break of the ECS. These values are equivalent to 54% and 51%, respectively, of the acidification rate of -0.0016 pH unit yr-1 based on an assumption of the air-sea CO2 equilibrium. When the effects of changing AOU and θ are eliminated, the acidification rate in the basin of the ECS captures the rate of change that is caused by an increase in anthropogenic CO2 concentration. In contrast, when the effects of changing AOU and θ are eliminated, the acidification rate at the shelf break is 69% higher than the rate based on an assumption of the air-sea CO2 equilibrium. Since the seawater on the shelf contains a higher proportion of the South China Sea (SCS) seawater and coastal water than does that in the Okinawa Trough, the result herein may imply that the SCS seawater, coastal water, or a combination of them suffered a higher acidification rate during the studied period. This study, to the best of the authors' knowledge, is the first to demonstrate that changing the carbonate chemistry of both incoming offshore intermediate seawater and coastal water results in the acidification of seawater on a continental shelf. The results herein reveal a situation in which the acidification of coastal seawater may be faster than expected when the reduction of pH of the

  14. 海洋酸化及国际研究动态%Developments in International Studies on Ocean Acidification

    Institute of Scientific and Technical Information of China (English)

    石莉; 桂静; 吴克勤

    2011-01-01

    全球海洋酸化是对海洋生态系统的最大威胁之一,其对海洋健康的影响已逐渐显示出来,引起世界主要沿海国家和国际组织的高度重视,美国、英国、德国、日本、澳大利亚、韩国等国家纷纷制定海洋酸化问题研究计划,研究应对海洋酸化和保护海洋生态环境的对策.有关国际组织召开海洋酸化问题国际研讨会,协调沿海国家的行动,提高行动的功效,全力以赴应对全球海洋酸化的威胁.本研究分析了海洋酸化的影响,介绍了美国、欧洲、日本、澳大利亚、韩国等国家海洋酸化研究的现状,展望了国际海洋酸化研究的未来及其价值.%Global ocean acidification is one of the most threatening disasters to the ocean ecosystem, and its impacts on the ocean health is gradually manifesting itself. Therefore it has been attached great importance by the countries adjacent to oceans and the related international organizations in the world. The United States, Britain, Germany, Japan, Australia and the Republic of Korea, etc. have one after another formulated their plans for ocean acidification studies, and studied the countermeasures in response to ocean acidification and for marine eco-environmental protection. The related international organizations have held international symposia on the ocean acidification issue to coordinate the actions of ocean-adjacent nations,raise the efficacy of actions and go all out to respond to the threat of global ocean acidification. In the paper the effects of ocean acidification is analyzed to introduce the present situations in ocean acidification studies in such countries as US, Europe, Japan, Australia, and the Republic of Korea, etc. , to look into the future of the international ocean acidification studies, and to access their values.

  15. Acidification trends in south Swedish forest soils 1986-2008 : Slow recovery and high sensitivity to sea-salt episodes.

    OpenAIRE

    Akselsson, Cecilia; Hultberg, Hans; Karlsson, Per Erik; Pihl Karlsson, Gunilla; Hellsten, Sofie

    2013-01-01

    Soil water chemistry in forest soils over 20years was studied at nine sites in southern Sweden. The aim was to investigate the recovery from acidification and the influence of strong sea salt episodes that occur in the region. All sites but one showed signs of recovery from acidification along with the reduced sulphur deposition, but the recovery progress was slow and the soil water was in most cases still highly acidic at the end of the period. In several cases the recovery was delayed by ep...

  16. Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland;

    2013-01-01

    The effect of pulse current on the acidification process and the removal of heavy metals during suspended electrodialytic soil remediation were investigated in this work. Eight experiments with constant and pulse current in two polluted soils were conducted using a 3-compartment membrane cell...... the removal efficiencies of heavy metals were also improved. The carbonate buffering system in a soil is the first mechanism reacting with the produced H+ ions and impeding the heavy metal mobilization. It was found that the effect of improvement on both the acidification process and the removal of heavy...

  17. Preface to special issue (Impacts of surface ocean acidification in polar seas and globally: A field-based approach)

    Science.gov (United States)

    Tyrrell, Toby; Tarling, Geraint A.; Leakey, Raymond J. G.; Cripps, Gemma; Thorpe, Sally; Richier, Sophie; Mark Moore, C.

    2016-05-01

    Both ocean acidification and global warming are consequences of the rise in atmospheric CO2. Ocean acidification is not itself a consequence of global warming, but rather of the invasion of atmospheric CO2 into the ocean. Time-series of carbonate chemistry measurements in different locations around the world all document the continuous and ongoing increase in the amount of CO2 in the ocean, and the consequential accompanying decrease in surface ocean seawater pH at all sites over the last years (Bates et al., 2014).

  18. Impact of climate change and ocean acidification on the marine nitrogen cycle

    International Nuclear Information System (INIS)

    The marine nitrogen cycle is responsible for two climate feedbacks in the Earth System. Firstly, it modulates the fixed nitrogen pool available for phytoplankton growth and hence it modulates in part the strength of the biological pump, one of the mechanisms contributing to the oceanic uptake of anthropogenic CO2. Secondly, the nitrogen cycle produces a powerful greenhouse gas and ozone (O3) depletion agent called nitrous oxide (N2O). Future changes of the nitrogen cycle in response to global warming, ocean deoxygenation and ocean acidification are largely unknown. Processes such as N2-fixation, nitrification, denitrification and N2O production will experience changes under the simultaneous effect of these three stressors. Global ocean biogeochemical models allow us to study such interactions. Using NEMO-PISCES and the CMIP5 model ensemble we project changes in year 2100 under the business-as-usual high CO2 emissions scenario in global scale N2-fixation rates, nitrification rates, N2O production and N2O sea-to-air fluxes adding CO2 sensitive functions into the model parameterizations. Second order effects due to the combination of global warming in tandem with ocean acidification on the fixed nitrogen pool, primary productivity and N2O radiative forcing feedbacks are also evaluated in this thesis. (author)

  19. Technical Note: Maximising accuracy and minimising cost of a potentiometrically regulated ocean acidification simulation system

    Science.gov (United States)

    MacLeod, C. D.; Doyle, H. L.; Currie, K. I.

    2014-05-01

    This article describes a potentiometric ocean acidification simulation system which automatically regulates pH through the injection of 100% CO2 gas into temperature-controlled seawater. The system is ideally suited to long-term experimental studies of the effect of acidification on biological processes involving small-bodied (10-20 mm) calcifying or non-calcifying organisms. Using hobbyist grade equipment, the system was constructed for approximately USD 1200 per treatment unit (tank, pH regulation apparatus, chiller, pump/filter unit). An overall accuracy of ±0.05 pHT units (SD) was achieved over 90 days in two acidified treatments (7.60 and 7.40) at 12 °C using glass electrodes calibrated with salt water buffers, thereby preventing liquid junction error. The accuracy of the system was validated through the independent calculation of pHT (12 °C) using dissolved inorganic carbon (DIC) and total alkalinity (AT) data taken from discrete acidified seawater samples. The system was used to compare the shell growth of the marine gastropod Zeacumantus subcarinatus infected with the trematode parasite Maritrema novaezealandensis with that of uninfected snails, at pH levels of 7.4, 7.6, and 8.1.

  20. Assessing the potential for forest effects due to soil acidification in Maryland

    International Nuclear Information System (INIS)

    Calculations with the PROFILE model indicates that present acid deposition will lead to soil solution BC/Al molar ratios in the forest soils of Maryland far below the limits used for calculation of critical loads in Europe. Weathering rates and molar soil solution BC/Al ratios were calculated using measured mineralogy and texture. It has been assumed that the laboratory experiments on tree seedling response to soil solution Al concentration is applicable to field conditions as applied in the PROFILE model and that the observed connection between growth and needle loss for Sweden is also valid for North America. The assumptions were utilized to estimate the potential for forest damage due to soil acidification in Maryland. The results for Maryland was used to speculate over the possibilities for adverse effects due to soil acidity in Northeastern United States. A preliminary comparison with Maryland and European results suggests that the threat of soil acidification to forest health in the Northeastern United States may have been underestimated. 39 refs., 8 figs., 4 tabs

  1. Role of vacuolar membrane proton pumps in the acidification of protein storage vacuoles following germination.

    Science.gov (United States)

    Wilson, Karl A; Chavda, Burzin J; Pierre-Louis, Gandhy; Quinn, Adam; Tan-Wilson, Anna

    2016-07-01

    During soybean (Glycine max (L.) Merrill) seed development, protease C1, the proteolytic enzyme that initiates breakdown of the storage globulins β-conglycinin and glycinin at acidic pH, is present in the protein storage vacuoles (PSVs), the same subcellular compartments in seed cotyledons where its protein substrates accumulate. Actual proteolysis begins to be evident 24 h after seed imbibition, when the PSVs become acidic, as indicated by acridine orange accumulation visualized by confocal microscopy. Imidodiphosphate (IDP), a non-hydrolyzable substrate analog of proton-translocating pyrophosphatases, strongly inhibited acidification of the PSVs in the cotyledons. Consistent with this finding, IDP treatment inhibited mobilization of β-conglycinin and glycinin, the inhibition being greater at 3 days compared to 6 days after seed imbibition. The embryonic axis does not appear to play a role in the initial PSV acidification in the cotyledon, as axis detachment did not prevent acridine orange accumulation three days after imbibition. SDS-PAGE and immunoblot analyses of cotyledon protein extracts were consistent with limited digestion of the 7S and 11S globulins by protease C1 starting at the same time and proceeding at the same rate in detached cotyledons compared to cotyledons of intact seedlings. Embryonic axis removal did slow down further breakdown of the storage globulins by reactions known to be catalyzed by protease C2, a cysteine protease that normally appears later in seedling growth to continue the storage protein breakdown initiated by protease C1. PMID:27043965

  2. Solar UV irradiances modulate effects of ocean acidification on the coccolithophorid Emiliania huxleyi.

    Science.gov (United States)

    Xu, Kai; Gao, Kunshan

    2015-01-01

    Emiliania huxleyi, the most abundant coccolithophorid in the oceans, is naturally exposed to solar UV radiation (UVR, 280-400 nm) in addition to photosynthetically active radiation (PAR). We investigated the physiological responses of E. huxleyi to the present day and elevated CO2 (390 vs 1000 μatm; with pH(NBS) 8.20 vs 7.86) under indoor constant PAR and fluctuating solar radiation with or without UVR. Enrichment of CO2 stimulated the production rate of particulate organic carbon (POC) under constant PAR, but led to unchanged POC production under incident fluctuating solar radiation. The production rates of particulate inorganic carbon (PIC) as well as PIC/POC ratios were reduced under the elevated CO2, ocean acidification (OA) condition, regardless of PAR levels, and the presence of UVR. However, moderate levels of UVR increased PIC production rates and PIC/POC ratios. OA treatment interacted with UVR to influence the alga's physiological performance, leading to reduced specific growth rate in the presence of UVA (315-400 nm) and decreased quantum yield, along with enhanced nonphotochemical quenching, with addition of UVB (280-315 nm). The results clearly indicate that UV radiation needs to be invoked as a key stressor when considering the impacts of ocean acidification on E. huxleyi.

  3. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    Science.gov (United States)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  4. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    Energy Technology Data Exchange (ETDEWEB)

    Inami, Yoshihiro [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Izumi, Kousuke [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Ueno, Takashi [Department of Biochemistry, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Tanida, Isei [Department of Biochemistry and Cell Biology, Laboratory of Biomembranes, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640 (Japan); Ikejima, Kenichi; Watanabe, Sumio [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2011-09-09

    Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  5. Differential response to ocean acidification in physiological traits of Concholepas concholepas populations

    Science.gov (United States)

    Lardies, Marco A.; Arias, María Belén; Poupin, María Josefina; Manríquez, Patricio H.; Torres, Rodrigo; Vargas, Cristian A.; Navarro, Jorge M.; Lagos, Nelson A.

    2014-07-01

    Phenotypic adaptation to environmental fluctuations frequently occurs by preexisting plasticity and its role as a major component of variation in physiological diversity is being widely recognized. Few studies have considered the change in phenotypic flexibility among geographic populations in marine calcifiers to ocean acidification projections, despite the fact that this type of study provides understanding about how the organism may respond to this chemical change in the ocean. We examined the geographic variation in CO2 seawater concentrations in the phenotype and in the reaction norm of physiological traits using a laboratory mesocosm approach with short-term acclimation in two contrasting populations (Antofagasta and Calfuco) of the intertidal snail Concholepas concholepas. Our results show that elevated pCO2 conditions increase standard metabolic rates in both populations of the snail juveniles, likely due to the higher energy cost of homeostasis. Juveniles of C. concholepas in the Calfuco (southern) population showed a lower increment of metabolic rate in high-pCO2 environments concordant with a lesser gene expression of a heat shock protein with respect to the Antofagasta (northern) population. Combined these results indicate a negative effect of ocean acidification on whole-organism functioning of C. concholepas. Finally, the significant Population × pCO2 level interaction in both studied traits indicates that there is variation between populations in response to high-pCO2 conditions.

  6. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance.

    Science.gov (United States)

    Connell, Sean D; Kroeker, Kristy J; Fabricius, Katharina E; Kline, David I; Russell, Bayden D

    2013-01-01

    Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e.g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from 'natural' volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects.

  7. Land use influences on acidification and recovery of freshwaters in Galloway, south-west Scotland

    Directory of Open Access Journals (Sweden)

    R. C. Helliwell

    2001-01-01

    Full Text Available The long term response of surface waters to changes in sulphur deposition and afforestation is investigated for three upland river systems in the Galloway region of south-west Scotland. From 1984-1999, these rivers exhibited a statistically significant decline in non-marine sulphate concentrations in response to reduced acid deposition. This reduction in non-marine sulphate was, however, insufficient to induce a pH recovery over the period. A statistically significant increase in river pH was observed between 1956-1970 (0.05 yr-1 when subsidised agricultural lime payments were at a maximum. In 1976, this subsidy ceased and surface waters have progressively acidified. In addition, climatic change is found to influence long-term trends in pH. Mean annual pH was greatest during a dry period between 1969-1973 when total annual discharge was low. Thereafter, pH declined gradually in response to higher rainfall and increased total annual discharge. Overall, surface waters draining the afforested catchments of the Rivers Cree and Bladnoch are more acid than those draining the moorland catchment of the Luce. These results indicate that in afforested catchments, current reductions in sulphur emissions have not led to an observed improvement in the acid status of surface waters. Forestry, therefore, represents a confounding factor with regard to chemical recovery from acidification in this region. Keywords: acidification, afforestation, deposition, rivers, lochs, non-marine sulphate, pH

  8. Acidification of musts in warm regions with tartaric acid and calcium sulfate at industrial scale

    Directory of Open Access Journals (Sweden)

    Gómez Juan

    2015-01-01

    Full Text Available Acidification of musts is necessary in warm areas where high temperatures during ripening accelerate breathing com- bustion of tartaric acid and, in particular, malic acid in the berries. L(+ tartaric acid, L(- or D,L malic acid and lactic acids are the only chemical acidifiers authorized by the OIV and European Community regulations. The use of calcium sulfate (gypsum: CaSO4·2H2O is also authorized in the European Community as a complementary acidifier in generous and generous liquor 42 wines from Spain (a practice known as plastering, provided that the residual sulfate content in the wine does not exceed 2.5 g/L expressed as potassium sulfate. However, this practice is not yet approved by OIV. To predict the effect on pH of different acidi- fiers, several chemical modeling approaches have been described in the literature, in particular a simplified model where the acidity of wine is considered to be due to a monoprotic acid. The aim of this work is to verify this model at pilot and industrial scale in the acidification of musts with tartaric and calcium sulfate, added either individually and in combination, using doses up to 3 g/L and to study the modifications that these practices produce on the compositions of the resulting wines. This work sup- plies useful information to study this practice in OIV in order to consider its approval.

  9. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification

    Science.gov (United States)

    Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.

    2013-01-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  10. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification.

    Science.gov (United States)

    Li, Yanbang; Provenzano, Sofia; Bliek, Mattijs; Spelt, Cornelis; Appelhagen, Ingo; Machado de Faria, Laura; Verweij, Walter; Schubert, Andrea; Sagasser, Martin; Seidel, Thorsten; Weisshaar, Bernd; Koes, Ronald; Quattrocchio, Francesca

    2016-08-01

    Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes. PMID:27214749

  11. Acidification and recovery at mountain lakes in Central Alps assessed by the MAGIC model

    Directory of Open Access Journals (Sweden)

    Michela ROGORA

    2004-02-01

    Full Text Available The dynamic model MAGIC was calibrated and applied to 84 lakes in Central Alps to predict the response of water chemistry to different scenarios of atmospheric deposition of S and N compounds. Selected lakes were representative of a wide range of chemical characteristics and of sensitivity to acidification. The most sensitive lakes have already shown in the latest years signs of recovery in terms of pH and ANC. The model well captured the main trends in lake chemical data. According to the model forecast, recovery at sensitive lakes will continue in the next decades under the hypothesis of a further decrease of acidic input from the atmosphere. Results clearly demonstrated the benefits of achieving the emission reductions in both S and N compounds agreed under the Gothenburg Protocol. Nevertheless, besides the achieved reduction of SO4 2- deposition from the peak levels of the 80s, also N deposition should be reduced in the near future to protect alpine lakes from further acidification. The condition of lake catchments with regard to N saturation will probably be the dominant factor driving recovery extent. Beside atmospheric deposition, other factors proved to be important in determining long-term changes in surface water chemistry. Climate warming in particular affects weathering processes in lake catchments and dynamics of the N cycle. Including other factors specific to the alpine area, such as dust deposition and climate change, may improve the fit of experimental data by the model and the reliability of model forecast.

  12. Effects of Al-coagulant sludge characteristics on the efficiency of coagulants recovery by acidification.

    Science.gov (United States)

    Chen, Yi-Jui; Wang, Wen-May; Wei, Ming-Jun; Chen, Jiann-Long; He, Ju-Liang; Chiang, Kung-Yuh; Wu, Chih-Chao

    2012-12-01

    This study evaluated the effects of Al-coagulant sludge characteristics on the efficiency ofcoagulant recovery by acidification with H2SO4. Two sludge characteristics were studied: types of coagulant and textures of the suspended solid in raw water. The coagulant types are aluminium sulphate and polyaluminium chloride (PACl); the textures of the suspended solid are sand-based and clay-based. Efficiency of aluminium recovery at a pH of 2 was compared for different sludges obtained from water treatment plants in Taiwan. The results showed that efficiency of aluminium recovery from sludge containing clayey particles was higher than that from sludge containing sandy particles. As for the effect of coagulant types, the aluminium recovery efficiency for sludge using PACl ranged between 77% and 100%, whereas it ranged between 65% and 72% for sludge using aluminium sulphate as the coagulant. This means using PACl as the coagulant could result in higher recovery efficiency of coagulant and be beneficial for water treatment plants where renewable materials and waste reduction as the factors for making decisions regarding plant operations. However, other metals, such as manganese, could be released with aluminium during the acidification process and limit the use of the recovered coagulants. It is suggested that the recovered coagulants be used in wastewater treatment processes. PMID:23437650

  13. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    International Nuclear Information System (INIS)

    Highlights: → Acidification of autophagosome was blunted in steatotic hepatocytes. → Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. → Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. → Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  14. Physiological compensation for environmental acidification is limited in the deep-sea urchin Strongylocentrotus fragilis

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    2013-05-01

    Full Text Available Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ. Deep-sea animals – particularly, calcifiers – are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of hypercapnia and hypoxia on the deep-sea urchin Strongylocentrotus fragilis, during two long-term exposure experiments (1 month and 4 month at three levels of reduced pH at in situ O2 levels of approx. 10% saturation, and also to control pH at 100% O2 saturation. During the first experiment, internal acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by reduced pH, due in part to low non-bicarbonate extracellular fluid buffering capacity. During the second experiment, longer-term effects of hypercapnia and variable O2 on locomotion, feeding, growth, and gonadosomatic index (GSI were investigated; results show significant mortality and correlation of all measured parameters with environmental acidification at pH 6.6. Transient adverse effects on locomotion and feeding were seen at pH 7.2, without compromise of growth or GSI. Based on the expected changes in ocean pH and oxygen, results suggest extinction of S. fragilis in the eastern North Pacific is unlikely. Rather, we expect a shoaling and contraction of its bathymetric range.

  15. Modeling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    Directory of Open Access Journals (Sweden)

    C. Evenhuis

    2014-01-01

    Full Text Available Coral reefs are diverse ecosystems threatened by rising CO2 levels that are driving the observed increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are able to explicitly modelled by linking the rates of growth, recovery and calcification to the rates of bleaching and temperature stress induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The different characteristics of this model are also assessed against independent data to show that the model captures the observed response of corals. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles for understanding the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can reproduce much of the observed response of corals to changes in temperature and ocean acidification.

  16. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification.

    Science.gov (United States)

    Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Cécile; Wicks, Laura C; Roberts, J Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

  17. Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles.

    Science.gov (United States)

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Remita, Hynd; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2015-11-01

    The pH regulation has a fundamental role in several intracellular processes and its variation via exogenous compounds is a potential tool for intervening in the intracellular processes. Proton caged compounds (PPCs) release protons upon UV irradiation and may efficiently provoke intracellular on-command acidification. Here, we explore the intracellular pH variation, when purposely synthesized PCCs are coupled to gold nanoparticles (AuNPs) and dosed to HEK-293 cells. We detected the acidification process caused by the UV irradiation by monitoring the intensity of the asymmetric stretching mode of the CO(2) molecule at 2343 cm(-1). The comparison between free and AuNPs functionalized proton caged compound demonstrates a highly enhanced CO(2) yield, hence pH variation, in the latter case. Finally, PCC functionalized AuNPs were marked with a purposely synthesized fluorescent marker and dosed to HEK-293 cells. The corresponding fluorescence optical images show green grains throughout the whole cytoplasm. PMID:26235337

  18. Zooplankton feeding ecology and the experimental acidification of Little Rock Lake

    International Nuclear Information System (INIS)

    There is considerable variety in both the selective behavior of suspension feeders and the quality of food available to them. The author reviews this variability and incorporate it in a simple model of particle selection that quantifies the consequences of selective feeding under various feeding conditions. To evaluate the concept that selective feeding enhances fitness, the author tests the hypothesis than an herbivorous zooplankton selects food items that best support its reproduction. Investigations of zooplankton herbivory in experimentally acidified Little Rock Lake indicate that acidification from pH 6.2 to pH 5.2 has not directly impaired feeding rates, while effects on selective feeding behavior are evident. Assessment of the effects of lake acidification on large predatory zooplankton indicate that Chaoborus spp. and water mite populations remain as yet unaffected, while Epischura lacustris and Leptodora kindtii have both declined in the acidified basin. Methodological tests show that preservation of labelled zooplankton by rapid freezing on dry ice minimizes loss of 14C and 32P. 14C retention approximates 100%, while 32P retention is more variable

  19. Physiological compensation for environmental acidification is limited in the deep-sea urchin Strongylocentrotus fragilis

    Science.gov (United States)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2013-05-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals - particularly, calcifiers - are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of hypercapnia and hypoxia on the deep-sea urchin Strongylocentrotus fragilis, during two long-term exposure experiments (1 month and 4 month) at three levels of reduced pH at in situ O2 levels of approx. 10% saturation, and also to control pH at 100% O2 saturation. During the first experiment, internal acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by reduced pH, due in part to low non-bicarbonate extracellular fluid buffering capacity. During the second experiment, longer-term effects of hypercapnia and variable O2 on locomotion, feeding, growth, and gonadosomatic index (GSI) were investigated; results show significant mortality and correlation of all measured parameters with environmental acidification at pH 6.6. Transient adverse effects on locomotion and feeding were seen at pH 7.2, without compromise of growth or GSI. Based on the expected changes in ocean pH and oxygen, results suggest extinction of S. fragilis in the eastern North Pacific is unlikely. Rather, we expect a shoaling and contraction of its bathymetric range.

  20. Technical Note: Maximising accuracy and minimising cost of a potentiometrically regulated ocean acidification simulation system

    Directory of Open Access Journals (Sweden)

    C. D. MacLeod

    2014-05-01

    Full Text Available This article describes a potentiometric ocean acidification simulation system which automatically regulates pH through the injection of 100% CO2 gas into temperature-controlled seawater. The system is ideally suited to long-term experimental studies of the effect of acidification on biological processes involving small-bodied (10–20 mm calcifying or non-calcifying organisms. Using hobbyist grade equipment, the system was constructed for approximately USD 1200 per treatment unit (tank, pH regulation apparatus, chiller, pump/filter unit. An overall accuracy of ±0.05 pHT units (SD was achieved over 90 days in two acidified treatments (7.60 and 7.40 at 12 °C using glass electrodes calibrated with salt water buffers, thereby preventing liquid junction error. The accuracy of the system was validated through the independent calculation of pHT (12 °C using dissolved inorganic carbon (DIC and total alkalinity (AT data taken from discrete acidified seawater samples. The system was used to compare the shell growth of the marine gastropod Zeacumantus subcarinatus infected with the trematode parasite Maritrema novaezealandensis with that of uninfected snails, at pH levels of 7.4, 7.6, and 8.1.

  1. In Situ Boundary Layer Coral Metabolism in the Atlantic Ocean Acidification Test Bed

    Science.gov (United States)

    McGillis, Wade

    2013-04-01

    and Chris Langdon, Brice Loose, Dwight Gledhill, Diana Hsueh, Derek Manzello, Ian Enochs, Ryan Moyer We present net ecosystem productivity (nep) and net ecosystem calcification (nec) in coral and seagrass ecosystems using the boundary layer gradient flux technique (CROSS). Coastal anthropogenic inputs and changes in global ocean chemistry in response to rising levels of atmospheric carbon dioxide has emerged in recent years as a topic of considerable concern. Coral reefs are particularly vulnerable from eroded environmental conditions including ocean acidification and water pollution. The Atlantic Ocean Acidification Testbed (AOAT) project monitors metabolism to ascertain the continuing health of coral reef ecosystems. The CROSS boundary layer nep/nec approach is one component of this diagnostic program. Certification of CROSS as an operational monitoring tool is underway in the AOAT. CROSS inspects a benthic community and measures productivity/respiration and calcification/dissolution over an area of 10 square meters. Being a boundary layer tool, advection and complex mesoscale flows are not a factor or concern and CROSS is autonomous and can be used at deep benthic sites. The interrogation area is not enclosed therefore exposed to ambient light, flow, and nutrient levels. CROSS is easy to deploy, unambiguous, and affordable. Repeated measurements have been made from 2011-2012 in reefal systems in La Parguera Puerto Rico and the Florida Keys, USA. Diurnal, seasonal and regional metabolism will be compared and discussed. The ability to accurately probe benthic ecosystems provides a powerful management and research tool to policy makers and researchers.

  2. Ocean acidification and host-pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii.

    Science.gov (United States)

    Asplund, Maria E; Baden, Susanne P; Russ, Sarah; Ellis, Robert P; Gong, Ningping; Hernroth, Bodil E

    2014-04-01

    Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model system to illustrate the interaction between a calcifying host organism, the blue mussel Mytilus edulis and a common bivalve bacterial pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V. tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e haemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V. tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V. tubiashii increased their viability when exposed to haemocytes of OA-treated mussel. Our findings suggest that even though host organisms may have the capacity to cope with periods of OA, these conditions may alter the outcome of host-pathogen interactions, favouring the success of the latter.

  3. Pteropods from the Caribbean Sea: dissolution as an indicator of past ocean acidification

    Directory of Open Access Journals (Sweden)

    D. Wall-Palmer

    2011-07-01

    Full Text Available The aragonite shell–bearing thecosome pteropods are an important component of the oceanic plankton. However, with increasing pCO2 and the associated reduction in oceanic pH (ocean acidification, thecosome pteropods are thought to be particularly vulnerable to shell dissolution. The distribution and preservation of pteropods over the last 250,000 years have been investigated in marine sediment cores from the Caribbean Sea close to the island of Montserrat. Using the Limacina Dissolution Index (LDX, fluctuations in pteropod dissolution through the most recent glacial/interglacial cycles is documented. By comparison to the oxygen isotope record (global sea ice volume, we show that pteropod dissolution is closely linked to global changes in pCO2 and pH and is, therefore, a global signal. These data are in agreement with the findings of experiments upon living pteropods, which show that variations in pH can greatly affect aragonitic shells. The results of this study provide information which may be useful in the prediction of future changes to the pteropod assemblage caused by ocean acidification.

  4. Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    Science.gov (United States)

    Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.

    2015-05-01

    Coral reefs are diverse ecosystems that are threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are explicitly modelled by linking rates of growth, recovery and calcification to rates of bleaching and temperature-stress-induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, correlated up- and down-regulation of traits that are consistent with resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The performance of the model is assessed against independent data to demonstrate how it can capture the observed response of corals to stress. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles to help understand the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can give insights into how corals respond to changes in temperature and ocean acidification.

  5. Modeling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    Science.gov (United States)

    Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.

    2014-01-01

    Coral reefs are diverse ecosystems threatened by rising CO2 levels that are driving the observed increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are able to explicitly modelled by linking the rates of growth, recovery and calcification to the rates of bleaching and temperature stress induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The different characteristics of this model are also assessed against independent data to show that the model captures the observed response of corals. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles for understanding the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can reproduce much of the observed response of corals to changes in temperature and ocean acidification.

  6. Juvenile Pen Shells (Pinna nobilis) Tolerate Acidification but Are Vulnerable to Warming

    KAUST Repository

    Basso, Lorena

    2015-02-25

    In the course of this century, rising anthropogenic CO2 emissions will likely cause a decrease in ocean pH, know as ocean acidification, together with an increase of water temperature. Only in the last years, studies have focused on synergetic effects of both stressors on marine invertebrates, particularly on early life stages considered more vulnerable. Disparate responses of their singular and combined effects were reported, highlighting the importance of extending the studies to different species and populations of marine invertebrates. Here, we observed the response of important parameters such as growth, mortality and oxygen consumption of juvenile pen shell Pinna nobilis at supplied pCO2 gas levels of 400 ppm (ambient) and 1000 ppm and at three temperatures (20, 23 and 26 °C) during 36 days. To our knowledge, this is the first study on ocean acidification and temperature effects on juveniles of this species. We show that the two stressors play roles at distinct levels, with pCO2 influencing growth and partially mortality, and temperature increasing mortality rates and oxygen consumption strongly. Therefore, juveniles of P. nobilis are more likely affected by increasing temperature than the pCO2 levels expected by the end of the twenty-first century.

  7. Smog Nitrogen and the Rapid Acidification of Forest Soil, San Bernardino Mountains, Southern California

    Directory of Open Access Journals (Sweden)

    Yvonne A. Wood

    2007-01-01

    Full Text Available We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2 of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N added to the soil surface (72 kg ha–1 year–1 from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3 is leached early in the winter wet season is limited to within the top ~130 cm of soil where it accumulates and increases soil acidity.

  8. Episodic acidification of small streams in the northeastern united states: Effects on fish populations

    Science.gov (United States)

    Baker, J.P.; Van Sickle, J.; Gagen, C.J.; DeWalle, David R.; Sharpe, W.E.; Carline, R.F.; Baldigo, Barry P.; Murdoch, Peter S.; Bath, D.W.; Kretser, W.A.; Simonin, H.A.; Wigington, P.J.

    1996-01-01

    As part of the Episodic Response Project (ERP), we studied the effects of episodic acidification on fish in 13 small streams in the northeastern United States: four streams in the Adirondack region of New York, four streams in the Catskills, New York, and five streams in the northern Appalachian Plateau, Pennsylvania. In situ bioassays with brook trout (Salvelinus fontinalis) and a forage fish species (blacknose dace (Rhinichthys atratulus], mottled sculpin (Cottus bairdi), or slimy sculpin (Cottus cognatus), depending on the region) measured direct toxicity. Movements of individual brook trout, in relation to stream chemistry, were monitored using radiotelemetry. Electrofishing surveys assessed fish community status and the density and biomass of brook trout in each stream. During low flow, all streams except one had chemical conditions considered suitable for the survival and reproduction of most fish species (median pH 6.0-7.2 during low flow; inorganic Al 100-200 ??g/L. We conclude that episodic acidification can have long-term effects on fish communities in small streams.

  9. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance

    Science.gov (United States)

    Connell, Sean D.; Kroeker, Kristy J.; Fabricius, Katharina E.; Kline, David I.; Russell, Bayden D.

    2013-01-01

    Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e.g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from ‘natural’ volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects. PMID:23980244

  10. Ocean acidification affects fish spawning but not paternity at CO2 seeps.

    Science.gov (United States)

    Milazzo, Marco; Cattano, Carlo; Alonzo, Suzanne H; Foggo, Andrew; Gristina, Michele; Rodolfo-Metalpa, Riccardo; Sinopoli, Mauro; Spatafora, Davide; Stiver, Kelly A; Hall-Spencer, Jason M

    2016-07-27

    Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2 Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish. PMID:27466451

  11. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification - Supplementary Information

    Science.gov (United States)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  12. Evaluation the anaerobic hydrolysis acidification stage of kitchen waste by pH regulation.

    Science.gov (United States)

    Wang, Yaya; Zang, Bing; Li, Guoxue; Liu, Yu

    2016-07-01

    This study analyzed the composition and characteristic of kitchen waste (KW) from closed cleaning station of Chaoyang District, Beijing. It was featured by high vegetables and peels contents. This study investigated effect of pH regulation and uncontrolled pH (CK) on the lab-scale anaerobic hydrolysis acidification stage of KW. The optimal adjusting mode by NaOH (including dosage and frequency) was evaluated according to indexes of pH, VFAs, NH4(+)-N, TS, VS, TS/VS, TS and VS removal rate. The treatment 4 as first two days adjusting per 16h and then one time per day at pH 7 was chosen as the optimal mode with high VFAs content(47.31g/L), TS and VS removal rate (42.95% and 54.01%, respectively), low adjusting frequency, fewer dosage and practical operability. Thus, adjusting mode of treatment 4 could be considered using in anaerobic hydrolysis acidification stage on engineering.

  13. Prediction of episodic acidification in North-eastern USA: an empirical/mechanistic approach

    Science.gov (United States)

    Davies, T. D.; Tranter, M.; Wigington, P. J., Jr.; Eshleman, K. N.; Peters, N. E.; van Sickle, J.; Dewalle, D. R.; Murdoch, P. S.

    1999-06-01

    Observations from the US Environmental Protection Agency's Episodic Response Project (ERP) in the North-eastern United States are used to develop an empirical/mechanistic scheme for prediction of the minimum values of acid neutralizing capacity (ANC) during episodes. An acidification episode is defined as a hydrological event during which ANC decreases. The pre-episode ANC is used to index the antecedent condition, and the stream flow increase reflects how much the relative contributions of sources of waters change during the episode. As much as 92% of the total variation in the minimum ANC in individual catchments can be explained (with levels of explanation >70% for nine of the 13 streams) by a multiple linear regression model that includes pre-episode ANC and change in discharge as independent variables. The predictive scheme is demonstrated to be regionally robust, with the regional variance explained ranging from 77 to 83%. The scheme is not successful for each ERP stream, and reasons are suggested for the individual failures. The potential for applying the predictive scheme to other watersheds is demonstrated by testing the model with data from the Panola Mountain Research Watershed in the South-eastern United States, where the variance explained by the model was 74%. The model can also be utilized to assess chemically new and chemically old water sources during acidification episodes.

  14. Factors controlling spatial distribution of soil acidification and Al forms in forest soils.

    Science.gov (United States)

    Boruvka, Lubos; Mladkova, Lenka; Drabek, Ondrej

    2005-09-01

    Soil acidification and Al release in forest soils is controlled by a number of factors, like acid deposition, forest type, parent rock, altitude, etc. This paper studies the principal stand factors affecting spatial distribution of the content of KCl-extractable Al (Al(KCl), mainly exchangeable), Na4P2O7-extractable Al (Al(Na4P2O7), mainly organically bound), and other soil characteristics related to acidification in surface organic (O) and subsurface mineral (B) horizons in the Jizera Mountains region. Geostatistical methods were exploited. The highest Al(KCl) contents in the O horizons were related to high S and N content, low pH and low Ca and Mg content in soil. Liming decreased Al(KCl) contents in the O horizons. Al(Na4P2O7) in the O horizons was more abundant under spruce than under beech; in both horizons it was increased on the immission clear-cut areas populated by grass. Surface horizons are more sensitive to external influence (acid deposition, liming) and their spatial variation is stronger. In the mineral horizons, the effect of pedogenetic processes is more important. The effect of stand factors on Al behaviour is complex and often indirect, mediated for example by organic matter or soil reaction. It is difficult to clearly distinguish the effects of the particular factors. PMID:16095712

  15. Evidence for ocean acidification in the Great Barrier Reef of Australia

    Science.gov (United States)

    Wei, Gangjian; McCulloch, Malcolm T.; Mortimer, Graham; Deng, Wengfeng; Xie, Luhua

    2009-04-01

    Geochemical records preserved in the long-lived carbonate skeleton of corals provide one of the few means to reconstruct changes in seawater pH since the commencement of the industrial era. This information is important in not only determining the response of the surface oceans to ocean acidification from enhanced uptake of CO 2, but also to better understand the effects of ocean acidification on carbonate secreting organisms such as corals, whose ability to calcify is highly pH dependent. Here we report an ˜200 year δ 11B isotopic record, extracted from a long-lived Porites coral from the central Great Barrier Reef of Australia. This record covering the period from 1800 to 2004 was sampled at yearly increments from 1940 to the present and 5-year increments prior to 1940. The δ 11B isotopic compositions reflect variations in seawater pH, and the δ 13C changes in the carbon composition of surface water due to fossil fuel burning over this period. In addition complementary Ba/Ca, δ 18O and Mg/Ca data was obtained providing proxies for terrestrial runoff, salinity and temperature changes over the past 200 years in this region. Positive thermal ionization mass spectrometry (PTIMS) method was utilized in order to enable the highest precision and most accurate measurements of δ 11B values. The internal precision and reproducibility for δ 11B of our measurements are better than ±0.2‰ (2 σ), which translates to a precision of better than ±0.02 pH units. Our results indicate that the long-term pre-industrial variation of seawater pH in this region is partially related to the decadal-interdecadal variability of atmospheric and oceanic anomalies in the Pacific. In the periods around 1940 and 1998 there are also rapid oscillations in δ 11B compositions equivalent changes in pH of almost 0.5 U. The 1998 oscillation is co-incident with a major coral bleaching event indicating the sensitivity of skeletal δ 11B compositions to loss of zooxanthellate symbionts

  16. Action plan to counteract soil acidification and to promote sustainable use of forest land

    International Nuclear Information System (INIS)

    This report consists of the National Board of Forestry's proposals on a plan to counteract soil acidification and to promote sustainable use of forest land. In 1989 the government requested the National Board of Forestry to start experimental activities to find measures to counteract soil acidification. In 1997 the Board presented a proposal for liming and vitalisation of forest land. An Environmental Impact Assessment of the proposal was submitted in 1999, after which a revision of the plan was started. In order to obtain better basic knowledge of the situation, the Board of Forestry commissioned nine reports that dealt with different aspects of soil acidification and corrective measures. Major emphasis has also been placed on the national environmental quality goals and the national plan for liming of lakes and waterways. The report is divided into three parts. The first part explains the Board of Forestry's proposals on measures to counteract soil acidification, and the second part, the description of the situation today, presents the conditions for the design of the plan such as political goals and guidelines that affect the plan and its design, the knowledge available today on soil acidification, its effects, possibilities for recovery, and possible measures that can be used. The third and final part contains brief summaries of the responses to the plan when circulated for comments. The action plan allows a return of the buffering capacity of the most acidified forest land, mainly in southern and southwestern Sweden. The Board of Forestry proposes that the spreading of ashes and lime is done within drainage areas where the natural recovery is assessed to be slow and insufficient, and where the leaching of toxic aluminium from forest land is hazardous to the aquatic ecosystem. In the assessments made by the Board, between 200,000 and 350,000 hectares of forest land may require measures of this kind. The Board of Forestry is of the opinion that a three

  17. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata.

    Science.gov (United States)

    Li, Shiguo; Huang, Jingliang; Liu, Chuang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-02-01

    Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture. PMID:26727167

  18. Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough

    Directory of Open Access Journals (Sweden)

    Zhan-Wei Hu

    2016-01-01

    Conclusions: Long-term exposure to traffic-related air pollution in people who live near major roads in Beijing is associated with lower lung function, airway acidification, and a higher prevalence of chronic cough. EBC pH is a potential useful biomarker for evaluating air pollution exposure.

  19. Ocean acidification effects on Caribbean scleractinian coral calcification using a recirculating system: a novel approach to OA research

    Science.gov (United States)

    Projected increases in ocean pCO2 levels are likely to affect calcifying organisms more rapidly and to a greater extent than any other marine organisms. The effects of ocean acidification (OA) has been documented in numerous species of corals in both laboratory and field studies....

  20. Research of the relationship of intracellular acidification and apoptosis in Hela cells based on pH nanosensors

    Institute of Scientific and Technical Information of China (English)

    HE XiaoXiao; WANG Yan; WANG KeMin; PENG JiaoFeng; LIU Fang; TAN WeiHong

    2007-01-01

    In this paper, the relationship of intracellular acidification and apoptosis in Hela cells induced by vincristine sulfate has been studied by use of the ratiometric pH nanosensors that have been developed by our group, employing fluorescein isothiocyanate (FITC) doped as the pH-sensitive dye and Tris(2,2'-bipyidyl) dichlororuthenium(Ⅱ) hexahydrate (RuBpy) doped as reference dye. The pH change of the Hela cells induced by vincristine sulfate has been monitored in vivo, in situ and real time by use of the ratiometric pH nanosensors. The experimental results show that the pH of the apoptotic Hela cells induced by vincristine sulfate has been acidified from 7.11 to 6.51, and the percentage of intracellular acidification is correlated with the induced concentration and incubation time of the vincristine sulfate. The further study of the percentage of intracellular acidification and the percentage of apoptosis of Hela cells at the same time reveals that apoptosis of Hela cells induced by vincristine sulfate is preceded by intracellular acidification. These results would provide theoretical foundation for the therapy of cancer through interfering the pH of cells by use of vincristine sulfate or other anti-cancer drugs.

  1. Research of the relationship of intracellular acidification and apoptosis in Hela cells based on pH nanosensors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper,the relationship of intracellular acidification and apoptosis in Hela cells induced by vin-cristine sulfate has been studied by use of the ratiometric pH nanosensors that have been developed by our group,employing fluorescein isothiocyanate(FITC) doped as the pH-sensitive dye and Tris(2,2’-bipyidyl) dichlororuthenium(II) hexahydrate(RuBpy) doped as reference dye. The pH change of the Hela cells induced by vincristine sulfate has been monitored in vivo,in situ and real time by use of the ratiometric pH nanosensors. The experimental results show that the pH of the apoptotic Hela cells induced by vincristine sulfate has been acidified from 7.11 to 6.51,and the percentage of intra-cellular acidification is correlated with the induced concentration and incubation time of the vincristine sulfate. The further study of the percentage of intracellular acidification and the percentage of apop-tosis of Hela cells at the same time reveals that apoptosis of Hela cells induced by vincristine sulfate is preceded by intracellular acidification. These results would provide theoretical foundation for the therapy of cancer through interfering the pH of cells by use of vincristine sulfate or other anti-cancer drugs.

  2. Inhibition of spontaneous network activity in neonatal hippocampal slices by energy substrates is not correlated with intracellular acidification.

    Science.gov (United States)

    Mukhtarov, Marat; Ivanov, Anton; Zilberter, Yuri; Bregestovski, Piotr

    2011-01-01

    Several energy substrates complementary to glucose, including lactate, pyruvate and β-hydroxybutyrate, serve as a fuel for neurons. It was reported recently that these substrates can substantially modulate cortical excitability in neonatal slices. However, complementary energy substrates (CES) can also induce an intracellular acidification when added exogenously. Therefore, action of CES on the neuronal properties governing excitability in neonatal brain slices may be underlain by a change in the cell energy status or by intracellular acidification, or both. Here, we attempt to elucidate these possibilities in neonatal hippocampus by recording neuronal population activity and monitoring intracellular pH. We show that a spontaneous network activity pattern, giant depolarizing potentials (GDPs), characteristic for the neonatal hippocampal slices exposed to artificial cerebrospinal fluid, is strongly inhibited by CES and this effect is unlikely to be caused by a subtle intracellular acidification induced by these compounds. Indeed, a much stronger intracellular acidification in the HCO(3) -free solution inhibited neither the GDP frequency nor the GDP amplitude. Therefore, modulation of neuronal energy homeostasis is the most likely factor underlying the effect of lactate, pyruvate and β-hydroxybutyrate on network excitability in neonatal brain slices.

  3. High resilience of two coastal plankton communities to 21st century seawater acidification: Evidence from microcosm studies

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Jakobsen, Hans Henrik; Hansen, Per Juul

    2010-01-01

    Increased free CO2 and ocean acidification are among the consequences of anthropogenic carbon emissions. Responses of marine protists to increased levels of CO2 are highly species-specific, and this has been suggested to cause an alteration in plankton species composition, community functions...

  4. ACIDIFICATION OF RAIN IN THE PRESENCE OF SO2, H2O2, O3, AND HNO3

    Science.gov (United States)

    The production of acid sulfate and the accumulation of acid nitrate are calculated for falling raindrops using a physico-chemical model that accounts for the mass transfer of SO2, H2O2, O3, HNO3, and CO2. The acidification is postulated to occur through the absorption of free gas...

  5. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in eastern China.

    Science.gov (United States)

    Alekseeva, T; Alekseev, A; Xu, Ren-Kou; Zhao, An-Zhen; Kalinin, P

    2011-04-01

    The effect of a tea plantation on soil basic properties, chemical and mineralogical compositions, and magnetic properties of Alfisols from eastern China was studied. Under the tea plantation, acidification took place within a soil depth of 70 cm, with the maximum difference in pH in the upper 17 cm (ΔpH = 2.80). Both the tea plantation and unused soil profiles were predominated by free Fe and Al oxides, i.e. citrate/bicarbonate/dithionite extractable Fe (Fe(d)) and Al (Al(d)). Tea plantation soil was characterized by higher Al(d) and Fe(d) and lower Fe oxalate, Fe(2)O(3) and Al(2)O(3); CaO was depleted, whereas SiO(2) accumulated. Acidification induced by the tea plantation led to destruction of vermiculite followed by dissolution of the hydroxy-Al interlayers within its structure. The data clearly demonstrated that significant soil weathering occurred with acidification caused by tea cultivation. This acidification also resulted in decreased content of ferrimagnetic minerals due to the dissolution of minerals and movement of Fe in the profile.

  6. Potential future fisheries yields in shelf waters: a model study of the effects of climate change and ocean acidification

    Science.gov (United States)

    van Leeuwen, S. M.; Le Quesne, W. F.; Parker, E. R.

    2016-01-01

    We applied a coupled marine water column model to three sites in the North Sea. The three sites represent different hydrodynamic regimes and are thus representative of a wider area. The model consists of a hydro-biogeochemical model (GOTM-ERSEM-BFM) coupled one way upwards to a size-structured model representing pelagic predators and detritivores (Blanchard et al., 2009). Thus, bottom-up pressures like changing abiotic environment (climate change, chemical cycling) will have an impact on fish biomass across the size spectrum. Here, we studied three different impacts of future conditions on fish yield: climatic impacts (medium emission scenario), abiotic ocean acidification impacts (reduced pelagic nitrification), and biotic ocean acidification impacts (reduced detritivore growth rate). The three impacts were studied separately and combined, and results showed that sites within different hydrodynamic regimes can respond very differently. The seasonally stratified site showed an increase in fish yields (occurring in winter and spring), with acidification effects of the same order of magnitude as climatic effects. The permanently mixed site also showed an increase in fish yield (increase in summer, decrease in winter), due to climatic effects moderated by acidification impacts. The third site, which is characterised by large inter-annual variability in thermal stratification duration, showed a decline in fish yields (occurring in winter) due to decline in the benthic system which forms an important carbon pathway at this site. All sites displayed a shift towards a more pelagic-oriented system.

  7. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate.

    Science.gov (United States)

    Bak, Gwangbae; Lee, Eun-Jung; Lee, Yuree; Kato, Mariko; Segami, Shoji; Sze, Heven; Maeshima, Masayoshi; Hwang, Jae-Ung; Lee, Youngsook

    2013-06-01

    Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate that vacuolar convolution is accompanied by acidification of the vacuole in fava bean (Vicia faba) guard cells during abscisic acid (ABA)-induced stomatal closure. Vacuolar acidification is necessary for the rapid stomatal closure induced by ABA, since a double mutant of the vacuolar H(+)-ATPase vha-a2 vha-a3 and vacuolar H(+)-PPase mutant vhp1 showed delayed stomatal closure. Furthermore, we provide evidence for the critical role of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] in changes in pH and morphology of the vacuole. Single and double Arabidopsis thaliana null mutants of phosphatidylinositol 3-phosphate 5-kinases (PI3P5Ks) exhibited slow stomatal closure upon ABA treatment compared with the wild type. Moreover, an inhibitor of PI3P5K reduced vacuolar acidification and convolution and delayed stomatal closure in response to ABA. Taken together, these results suggest that rapid ABA-induced stomatal closure requires PtdIns(3,5)P2, which is essential for vacuolar acidification and convolution. PMID:23757398

  8. Assessment of the prediction error in a large-scale application of a dynamic soil acidification model

    NARCIS (Netherlands)

    Kros, J.; Mol-Dijkstra, J.P.; Pebesma, E.J.

    2002-01-01

    The prediction error of a relatively simple soil acidification model (SMART2) was assessed before and after calibration, focussing on the aluminium and nitrate concentrations on a block scale. Although SMART2 is especially developed for application ona national to European scale, it still runs at a

  9. Environmental impacts of combining pig slurry acidification and separation under different regulatory regimes - A life cycle assessment.

    Science.gov (United States)

    Ten Hoeve, Marieke; Gómez-Muñoz, Beatriz; Jensen, Lars S; Bruun, Sander

    2016-10-01

    Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used to investigate the environmental effects of slurry acidification and separation, and whether there were synergetic environmental benefits to combining these technologies. Furthermore, an analysis was undertaken into the effect of implementing regulations restricting the P application rate to soils on the environmental impacts of the technologies. The impact categories analysed were climate change, terrestrial, marine and freshwater eutrophication, fossil resource depletion and toxicity potential. In-house slurry acidification appeared to be the most beneficial scenario under both N and P regulations. Slurry separation led to a lower freshwater eutrophication potential than the other scenarios in which N regulations alone were in force, while these environmental benefits disappeared after implementation of stricter P regulations. With N regulations alone, there was a synergetic positive effect of combining in-house acidification and separation on marine eutrophication potential compared to these technologies individually. The model was sensitive to the chosen ammonia emission coefficients and to the choice of inclusion of indirect nitrous oxide emissions, since scenarios changed ranking for certain impact categories. PMID:27566935

  10. Modelling reversibility of central European mountain lakes from acidification: Part II – the Tatra Mountains

    Directory of Open Access Journals (Sweden)

    J. Kopácek

    2003-01-01

    Full Text Available A dynamic, process-based model of surface water acidification, MAGIC7, has been applied to four representative alpine lakes in the Tatra Mountains (Slovakia and Poland. The model was calibrated for a set of 12 to 22-year experimental records of lake water composition. Surface water and soil chemistry were reconstructed from 1860 to 2002 and forecast to 2050 based on the reduction in sulphur and nitrogen emissions presupposed by the Gothenburg Protocol. Relatively small changes in the soil C:N ratios were not sufficient to simulate observed changes in NO3‾ concentrations, so an alternative empirical approach of changes in terrestrial N uptake was applied. Measured sulphate sorption isotherms did not allow calibration of the pattern of sulphate response in the lakes, indicating that other mechanisms of S release were also important. The lake water chemistry exhibited significant changes during both the acidification advance (1860 to 1980s and retreat (1980s to 2010. An increase in lake water concentrations of strong acid anions (SAA; 104–149 μeq l–1 was balanced by a decline in HCO3‾ (13–62 μeq l–1 and an increase in base cations (BC; 42–72 μeq l–1, H+ (0-18 μeq l–1, and Alin+ (0–26 μeq l–1. The carbonate buffering system was depleted in three lakes. In contrast, lake water concentrations of SAA, BC, H+, and Alin+ decreased by 57–82, 28–42, 0–11, and 0–22 μeq l–1, respectively, the carbonate buffering system was re-established, and HCO3‾ increased by 1–21 μeq l–1 during the chemical reversal from atmospheric acidification (by 2000. The MAGIC7 model forecasts a slight continuation in this reversal for the next decade and new steady-state conditions thereafter. Gran alkalinity should come back to 1950s levels (0–71 μeq l–1 in all lakes after 2010. Partial recovery of the soil pool of exchangeable base cations can be expected in one catchment, while only conservation of the current conditions is

  11. Is the perceived resiliency of fish larvae to ocean acidification masking more subtle effects?

    Directory of Open Access Journals (Sweden)

    E. C. Pope

    2013-10-01

    Full Text Available Ocean acidification, caused by rising concentrations of carbon dioxide (CO2, is widely considered to be a major global threat to marine ecosystems. To investigate the potential effects of ocean acidification on the early life stages of a commercially important fish species, European sea bass (Dicentrarchus labrax, 12 000 larvae were incubated from hatch through metamorphosis under a matrix of two temperatures (17 and 19 °C and two seawater pCO2s (400 and 750 μatm and sampled regularly for 42 days. Calculated daily mortality was significantly affected by both temperature and pCO2, with both increased temperature and elevated pCO2 associated with lower daily mortality and a significant interaction between these two factors. There was no significant pCO2 effect noted on larval morphology during this period but larvae raised at 19 °C possessed significantly larger eyes and lower carbon:nitrogen ratios at the end of the study compared to those raised under 17 °C. These results suggest that D. labrax larvae are resilient to near-future oceanic conditions. However, when the incubation was continued to post-metamorphic (juvenile animals (day 67–69, fish raised under a combination of 19 °C and 750 μatm pCO2 were significantly heavier and exhibited lower aerobic scopes than those incubated at 19 °C and 400 μatm. Most other studies investigating the effects of near-future oceanic conditions on the early life stages of marine fish have used incubations of relatively short durations and suggested these animals are resilient to ocean acidification. We propose the durations of these other studies may be insufficient for more subtle effects, such as those observed in this study, to become apparent. These findings may have important implications for both sea bass in a changing ocean and also for the interpretation of results from other studies that have shown resiliency in marine teleosts exposed to higher atmospheric concentrations of CO2.

  12. Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?

    Directory of Open Access Journals (Sweden)

    H. de Moel

    2009-02-01

    Full Text Available About one third of the anthropogenic carbon dioxide (CO2 released into the atmosphere in the past two centuries has been taken up by the ocean. As CO2 invades the surface ocean, carbonate ion concentrations and pH are lowered. Laboratory studies indicate that this reduces the calcification rates of marine calcifying organisms, including planktic foraminifera. Such a reduction in calcification resulting from anthropogenic CO2 emissions has not been observed, or quantified in the field yet. Here we present the findings of a study in the Western Arabian Sea that uses shells of the surface water dwelling planktic foraminifer Globigerinoides ruber in order to test the hypothesis that anthropogenically induced acidification has reduced shell calcification of this species. We found that light, thin-walled shells from the surface sediment are younger (based on 14C and δ13C measurements than the heavier, thicker-walled shells. Shells in the upper, bioturbated, sediment layer were significantly lighter compared to shells found below this layer. These observations are consistent with a scenario where anthropogenically induced ocean acidification reduced the rate at which foraminifera calcify, resulting in lighter shells. On the other hand, we show that seasonal upwelling in the area also influences their calcification and the stable isotope (δ13C and δ18O signatures recorded by the foraminifera shells. Plankton tow and sediment trap data show that lighter shells were produced during upwelling and heavier ones during non-upwelling periods. Seasonality alone, however, cannot explain the 14C results, or the increase in shell weight below the bioturbated sediment layer. We therefore must conclude that probably both the processes of acidification and seasonal upwelling are responsible for the presence of light shells in the top of the sediment and the age

  13. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity.

    Science.gov (United States)

    El Hage, Tatiana; Merlen, Clémence; Fabrega, Sylvie; Authier, François

    2007-05-01

    Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic

  14. Surface water acidification and critical loads: exploring the F-factor

    Directory of Open Access Journals (Sweden)

    K. Bishop

    2009-11-01

    Full Text Available As acid deposition decreases, uncertainties in methods for calculating critical loads become more important when judgements have to be made about whether or not further emission reductions are needed. An important aspect of one type of model that has been used to calculate surface water critical loads is the empirical F-factor which estimates the degree to which acid deposition is neutralised before it reaches a lake at any particular point in time relative to the pre-industrial, steady-state water chemistry conditions.

    In this paper we will examine how well the empirical F-functions are able to estimate pre-industrial lake chemistry as lake chemistry changes during different phases of acidification and recovery. To accomplish this, we use the dynamic, process-oriented biogeochemical model SAFE to generate a plausible time series of annual runoff chemistry for ca. 140 Swedish catchments between 1800 and 2100. These annual hydrochemistry data are then used to generate empirical F-factors that are compared to the "actual" F-factor seen in the SAFE data for each lake and year in the time series. The dynamics of the F-factor as catchments acidify, and then recover are not widely recognised.

    Our results suggest that the F-factor approach worked best during the acidification phase when soil processes buffer incoming acidity. However, the empirical functions for estimating F from contemporary lake chemistry are not well suited to the recovery phase when the F-factor turns negative due to recovery processes in the soil. This happens when acid deposition has depleted the soil store of BC, and then acid deposition declines, reducing the leaching of base cations to levels below those in the pre-industrial era. An estimate of critical load from water chemistry during recovery and empirical F functions would therefore result in critical loads that are too low. Therefore, the empirical estimates of the F-factor are a significant source of

  15. From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification

    Directory of Open Access Journals (Sweden)

    J. R. Young

    2009-11-01

    Full Text Available The observed variation in the calcification responses of coccolithophores to changes in carbonate chemistry paints a highly incoherent picture, particularly for the most commonly cultured "species", Emiliania huxleyi. The disparity between magnitude and potentially even sign of the calcification change under simulated end-of-century ocean surface chemical changes (higher pCO2, lower pH and carbonate saturation, raises challenges to quantifying future carbon cycle impacts and feedbacks because it introduces significant uncertainty in parameterizations used for global models. Here we compile the results of coccolithophore carbonate chemistry manipulation experiments and review how ocean carbon cycle models have attempted to bridge the gap from experiments to global impacts. Although we can rule out methodological differences in how carbonate chemistry is altered as introducing an experimental bias, the absence of a consistent calcification response implies that model parameterizations based on small and differing subsets of experimental observations will lead to varying estimates for the global carbon cycle impacts of ocean acidification. We highlight two pertinent observations that might help: (1 the degree of coccolith calcification varies substantially, both between species and within species across different genotypes, and (2 the calcification response across mesocosm and shipboard incubations has so-far been found to be relatively consistent. By analogy to descriptions of plankton growth rate vs. temperature, such as the "Eppley curve", which seek to encapsulate the net community response via progressive assemblage change rather than the response of any single species, we posit that progressive future ocean acidification may drive a transition in dominance from more to less heavily calcified coccolithophores. Assemblage shift may be more important to integrated community calcification response than species

  16. The role of ocean acidification in Emiliania huxleyi coccolith thinning in the Mediterranean Sea

    Science.gov (United States)

    Meier, K. J. S.; Beaufort, L.; Heussner, S.; Ziveri, P.

    2014-05-01

    Ocean acidification is a result of the uptake of anthropogenic CO2 from the atmosphere into the ocean and has been identified as a major environmental and economic threat. The release of several thousands of petagrams of carbon over a few hundred years will have an overwhelming effect on surface ocean carbon reservoirs. The recorded and anticipated changes in seawater carbonate chemistry will presumably affect global oceanic carbonate production. Coccolithophores as the primary calcifying phytoplankton group, and especially Emiliania huxleyi as the most abundant species have shown a reduction of calcification at increased CO2 concentrations for the majority of strains tested in culture experiments. A reduction of calcification is associated with a decrease in coccolith weight. However, the effect in monoclonal cultures is relatively small compared to the strong variability displayed in natural E. huxleyi communities, as these are a mix of genetically and sometimes morphologically distinct types. Average coccolith weight is likely influenced by the variability in seawater carbonate chemistry in different parts of the world's oceans and on glacial/interglacial time scales due to both physiological effects and morphotype selectivity. An effect of the ongoing ocean acidification on E. huxleyi calcification has so far not been documented in situ. Here, we analyze E. huxleyi coccolith weight from the NW Mediterranean Sea in a 12-year sediment trap series, and surface sediment and sediment core samples using an automated recognition and analyzing software. Our findings clearly show (1) a continuous decrease in the average coccolith weight of E. huxleyi from 1993 to 2005, reaching levels below pre-industrial (Holocene) and industrial (20th century) values recorded in the sedimentary record and (2) seasonal variability in coccolith weight that is linked to the coccolithophore productivity. The observed long-term decrease in coccolith weight is most likely a result of the

  17. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity.

    Science.gov (United States)

    El Hage, Tatiana; Merlen, Clémence; Fabrega, Sylvie; Authier, François

    2007-05-01

    Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic

  18. Responses of two scleractinian corals to cobalt pollution and ocean acidification.

    Directory of Open Access Journals (Sweden)

    Tom Biscéré

    Full Text Available The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pHT 8.02; pCO2 366 μatm and pHT 7.75; pCO2 1140 μatm and two cobalt concentrations (natural, 0.03 μg L-1 and polluted, 0.2 μg L-1 were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETRmax (relative Electron Transport Rate. Elevated pCO2 levels acted differently on the coral rETRmax values and did not affect their growth rates. No consistent interaction was found between pCO2 levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 ± 0.16 μg L-1 on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO2 conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO2 levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional

  19. Regional variability of acidification in the Arctic: a sea of contrasts

    Directory of Open Access Journals (Sweden)

    E. E. Popova

    2014-01-01

    Full Text Available The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, with potentially negative consequences for calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean-only general circulation model, with embedded biogeochemistry and a comprehensive description of the ocean carbon cycle, to study the response of pH and saturation states of calcite and aragonite to rising atmospheric pCO2 and changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic, and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP8.5 (an Intergovernmental Panel on Climate Change (IPCC Fifth Assessment Report (AR5 scenario with the highest concentrations of atmospheric CO2. The separate impacts of the direct increase in atmospheric CO2 and indirect effects via impact of climate change (changing temperature, stratification, primary production and freshwater fluxes were examined by undertaking two simulations, one with the full system and the other in which atmospheric CO2 was prevented from increasing beyond its preindustrial level (year 1860. Results indicate that the impact of climate change, and spatial heterogeneity thereof, plays a strong role in the declines in pH and carbonate saturation (Ω seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because diminishing ice cover led to greater vertical mixing and primary production. As a consequence, the projected onset of undersaturation in respect to aragonite is highly variable regionally within the

  20. Combined effects of seawater acidification and salinity changes in Ruditapes philippinarum.

    Science.gov (United States)

    Velez, Catia; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2016-07-01

    Due to human activities, predictions for the coming years indicate increasing frequency and intensity of extreme weather events (rainy and drought periods) and pollution levels, leading to salinity shifts and ocean acidification. Therefore, several authors have assessed the effects of seawater salinity shifts and pH decrease on marine bivalves, but most of these studies evaluated the impacts of both factors independently. Since pH and salinity may act together in the environment, and their impacts may differ from their effects when acting alone, there is an urgent need to increase our knowledge when these environmental changes act in combination. Thus, the present study assessed the effects of seawater acidification and salinity changes, both acting alone and in combination, on the physiological (condition index, Na and K concentrations) and biochemical (oxidative stress related biomarkers) performance of Ruditapes philippinarum. For that, specimens of R. philippinarum were exposed for 28days to the combination of different pH levels (7.8 and 7.3) and salinities (14, 28 and 35). The results obtained showed that under control pH (7.8) and low salinity (14) the physiological status and biochemical performance of clams was negatively affected, revealing oxidative stress. However, under the same pH and at salinities 28 and 35 clams were able to maintain/regulate their physiological status and biochemical performance. Moreover, our findings showed that clams under low pH (7.3) and different salinities were able to maintain their physiological status and biochemical performance, suggesting that the low pH tested may mask the negative effects of salinity. Our results further demonstrated that, in general, at each salinity, similar physiological and biochemical responses were found in clams under both tested pH levels. Also, individuals under low pH (salinities 14, 28 and 25) and exposed to pH 7.8 and salinity 28 (control) tend to present a similar response pattern. These